WorldWideScience

Sample records for variable wind conditions

  1. A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2016-07-01

    Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.

  2. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    of the variability for the 2020 Danish power system, one can see that in the worst case, up to 1500 MW of power can be lost in 30 minutes. We present results showing how this issue is partially solved by the new High Wind Storm Controller presented by Siemens in the TWENTIES project.......Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context......, the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact...

  3. Variability of the Wind Turbine Power Curve

    Directory of Open Access Journals (Sweden)

    Mahesh M. Bandi

    2016-09-01

    Full Text Available Wind turbine power curves are calibrated by turbine manufacturers under requirements stipulated by the International Electrotechnical Commission to provide a functional mapping between the mean wind speed v ¯ and the mean turbine power output P ¯ . Wind plant operators employ these power curves to estimate or forecast wind power generation under given wind conditions. However, it is general knowledge that wide variability exists in these mean calibration values. We first analyse how the standard deviation in wind speed σ v affects the mean P ¯ and the standard deviation σ P of wind power. We find that the magnitude of wind power fluctuations scales as the square of the mean wind speed. Using data from three planetary locations, we find that the wind speed standard deviation σ v systematically varies with mean wind speed v ¯ , and in some instances, follows a scaling of the form σ v = C × v ¯ α ; C being a constant and α a fractional power. We show that, when applicable, this scaling form provides a minimal parameter description of the power curve in terms of v ¯ alone. Wind data from different locations establishes that (in instances when this scaling exists the exponent α varies with location, owing to the influence of local environmental conditions on wind speed variability. Since manufacturer-calibrated power curves cannot account for variability influenced by local conditions, this variability translates to forecast uncertainty in power generation. We close with a proposal for operators to perform post-installation recalibration of their turbine power curves to account for the influence of local environmental factors on wind speed variability in order to reduce the uncertainty of wind power forecasts. Understanding the relationship between wind’s speed and its variability is likely to lead to lower costs for the integration of wind power into the electric grid.

  4. Investigation of load reduction for a variable speed, variable pitch, and variable coning wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    A two bladed, variable speed and variable pitch wind turbine was modeled using ADAMS{reg_sign} to evaluate load reduction abilities of a variable coning configuration as compared to a teetered rotor, and also to evaluate control methods. The basic dynamic behavior of the variable coning turbine was investigated and compared to the teetered rotor under constant wind conditions as well as turbulent wind conditions. Results indicate the variable coning rotor has larger flap oscillation amplitudes and much lower root flap bending moments than the teetered rotor. Three methods of control were evaluated for turbulent wind simulations. These were a standard IPD control method, a generalized predictive control method, and a bias estimate control method. Each control method was evaluated for both the variable coning configuration and the teetered configuration. The ability of the different control methods to maintain the rotor speed near the desired set point is evaluated from the RMS error of rotor speed. The activity of the control system is evaluated from cycles per second of the blade pitch angle. All three of the methods were found to produce similar results for the variable coning rotor and the teetered rotor, as well as similar results to each other.

  5. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  6. Wind, Wave, and Tidal Energy Without Power Conditioning

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  7. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    International Nuclear Information System (INIS)

    Feng, Ju; Sheng, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades

  8. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  9. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  10. The variability of interconnected wind plants

    International Nuclear Information System (INIS)

    Katzenstein, Warren; Fertig, Emily; Apt, Jay

    2010-01-01

    We present the first frequency-dependent analyses of the geographic smoothing of wind power's variability, analyzing the interconnected measured output of 20 wind plants in Texas. Reductions in variability occur at frequencies corresponding to times shorter than ∼24 h and are quantified by measuring the departure from a Kolmogorov spectrum. At a frequency of 2.8x10 -4 Hz (corresponding to 1 h), an 87% reduction of the variability of a single wind plant is obtained by interconnecting 4 wind plants. Interconnecting the remaining 16 wind plants produces only an additional 8% reduction. We use step change analyses and correlation coefficients to compare our results with previous studies, finding that wind power ramps up faster than it ramps down for each of the step change intervals analyzed and that correlation between the power output of wind plants 200 km away is half that of co-located wind plants. To examine variability at very low frequencies, we estimate yearly wind energy production in the Great Plains region of the United States from automated wind observations at airports covering 36 years. The estimated wind power has significant inter-annual variability and the severity of wind drought years is estimated to be about half that observed nationally for hydroelectric power.

  11. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...... optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently......In order to reduce the impact on the electrical grid from the shutdown of MW wind turbines at wind speeds higher than the cut-out wind speed of 25 m/s, we propose in this paper to run the turbines at high wind speeds up to 40 m/s. Two different operation designs are made for both constant speed...

  12. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Anca D.; Soerensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Iov, Florin; Blaabjerg, Frede [Aalborg Univ. (Denmark). Inst. of Energy Technology

    2004-07-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions.

  13. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    DEFF Research Database (Denmark)

    Hansen, A.D.; Iov, F.; Sørensen, Poul Ejnar

    2004-01-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind tu......-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions....

  14. Control of variable speed wind turbines with doubly-fed induction generators

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2005-07-01

    The paper presents an overall control method for variable speed pitch controlled wind turbines with doubly-fed induction generators (DFIG). Emphasis is on control strategies and algorithms applied at each hierarchical control level of the wind turbine. The objectives of the control system are: 1) to control the power drawn from the wind turbine in order to track the wind turbine maximum power operation point, 2) to limit the power in case of large wind speeds, and 3) to control the reactive power interchanged between the wind turbine generator and the grid. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wide range of wind speeds. The model of the variable speed, variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DlgSILENT PowerFactory which allows investigation of the dynamic performance of grid-connected wind turbines within realistic electrical grid models. Simulation results are presented and analysed in different normal operating conditions. (author)

  15. Intelligent control for large-scale variable speed variable pitch wind turbines

    Institute of Scientific and Technical Information of China (English)

    Xinfang ZHANG; Daping XU; Yibing LIU

    2004-01-01

    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  16. The influence of solar wind variability on magnetospheric ULF wave power

    International Nuclear Information System (INIS)

    Pokhotelov, D.; Rae, I.J.; Mann, I.R.

    2015-01-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  17. On the aerodynamics of variable-geometry oval-trajectory Darrieus wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, F.L.; Seminara, J.J.; Otero, A.D. [College of Engineering, University of Buenos Aires, Paseo Colon 850, Buenos Aires C1063ACV (Argentina)

    2007-01-15

    A new computational model for the aerodynamics of vertical-axis wind turbines is introduced. It is based on the double-multiple streamtube concept and it incorporates the capacity of dealing with rotors whose blades follow oval-trajectories at variable setting-angles. We applied this model to the study of the aerodynamics of an innovative concept in extra-large wind-power plants: the VGOT (variable-geometry oval-trajectory) Darrieus wind turbine. Due to the especial geometric characteristics of the VGOT Darrieus, it was necessary to propose three new non-dimensional parameters to quantify its performance under different wind-conditions: the equivalent power coefficient, the equivalent solidity coefficient and the trajectory efficiency. We show some numerical results testing several rotor configurations working under different wind scenarios. (author)

  18. Performance comparison of control schemes for variable-speed wind turbines

    Science.gov (United States)

    Bottasso, C. L.; Croce, A.; Savini, B.

    2007-07-01

    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies.

  19. Performance comparison of control schemes for variable-speed wind turbines

    International Nuclear Information System (INIS)

    Bottasso, C L; Croce, A; Savini, B

    2007-01-01

    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies

  20. The economics of a variable speed wind-diesel

    International Nuclear Information System (INIS)

    Moll, W.

    1992-01-01

    A remote community power supply system generating over 1,000 kWH/d will have at least one diesel generator running all the time. If one or more wind turbine generators are added to such a system, the diesel generator will produce less power when wind speeds are adequate, but its fuel efficiency will gradually decrease as load decreases. In the variable speed wind/diesel concept, the diesel rpm is reduced with decreasing load and a high fuel efficiency is maintained over virtually the full power range. The outputs of the diesel and wind turbine generators are fed into an inverter which synthesizes a desired voltage wave-shape with controlled magnitude and frequency. The variable speed wind/diesel concept may make vertical axis wind turbines suitable for remote community power supply because the inverter effectively isolates the power ripple of the wind turbine. A possible wind/diesel system configuration using the variable speed concept is illustrated. The economics of a 50-kW variable speed diesel and a 80-kW variable speed wind turbine generator was analyzed. Going from a constant speed diesel generator to a variable speed generator operating at 55% capacity factor, a 6% fuel saving was achieved. Adding one 80-kW wind turbine increased fuel savings to 32% at 5 m/s wind speed, but the unit energy cost rose 8.5%. At 7 m/s wind speed, fuel savings were 59% and energy savings were 7.8%. Economics are better for a peaking variable speed 50-kW wind/diesel system added to an existing diesel system to extend the installed capacity. At 7 m/s wind speed the fuel savings translate into ca $40,000 over 10 y and purchase of a $150,000 diesel generator is postponed. 7 figs., 1 tab

  1. Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    When the wind power accounts for a large portion of the grid, it will be required to regulate the active power and reactive power. This paper investigates a MWlevel variable speed wind turbine with a permanent magnet synchronous generator (PMSG). The power control capabilities of two kinds...... of control schemes conducted respectively on this wind turbine under two conditions, including rapid wind speed change and grids faults, are compared. The simulation study of the wind turbine system is conducted using PSCAD/EMTDC, and the results show the different power control capabilities of the two...

  2. The influence of solar wind variability on magnetospheric ULF wave power

    Directory of Open Access Journals (Sweden)

    D. Pokhotelov

    2015-06-01

    Full Text Available Magnetospheric ultra-low frequency (ULF oscillations in the Pc 4–5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind–IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996–2004 of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature, plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind–magnetosphere coupling.

  3. Wind and load variability in the Nordic countries

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Rissanen, S. [VTT Technical Research Centre of Finland, Espoo (Finland); Larsen, X. [Danmarks Tekniske Universitet, Lyngby (Denmark); Loevholm, A. L. [Kjeller Vindteknikk (Norway)

    2013-04-15

    This publication analysed the variability of wind production and load in Denmark, Finland, Sweden, and the Nordic region as a whole, based on real data measured from large-scale wind power during 2009-2011. The Nordic-wide wind power time series was scaled up such that Sweden had same amount of wind power production than Denmark, and Finland and Norway only 50% of the wind power production in Denmark. Wind power production in Denmark and Sweden is somewhat correlated (coefficient 0.7) but less correlation is found between the other countries. The variations from one hour to the next are only weakly correlated between all countries, even between Denmark and Sweden. Largest variations occur when the production is approximately 30-70% of installed capacity and variability is low during periods of light winds. The variability in shorter time scales was less than the hourly variations. During the three years analysed in this publication there were few storm incidents and they did not produce dramatic wind power ramps in the Nordic region. Wind and load variations are not correlated between the countries, which is beneficial from the viewpoint of wind integration. The smoothing effect is shown as reduction of variability from a single country to Nordic-wide wind power. The impact of wind power on the variability that the system experiences is evaluated by analysing the variability of net load with different wind power penetration levels. The Nordic-wide wind power production increases the highest hourly ramps by 2.4% (up) and -3.6% (down) of installed wind power capacity when there is 20% wind power penetration and by 2.7% (up) and -4.7% (down) for 30% wind penetration. These results assess the impacts of variability only. The next step will be assessing the uncertainty from forecast errors. The timing of ramp events, and occurrence of high-wind and low-load are studied. With current wind penetration, low production levels (2-5% of installed wind power) can occur in a

  4. Elsaesser variable analysis of fluctuations in the ion foreshock and undisturbed solar wind

    Science.gov (United States)

    Labelle, James; Treumann, Rudolf A.; Marsch, Eckart

    1994-01-01

    Magnetohydrodynamics (MHD) fluctuations in the solar wind have been investigated previously by use of Elsaesser variables. In this paper, we present a comparison of the spectra of Elsaesser variables in the undisturbed solar wind at 1 AU and in the ion foreshock in front of the Earth. Both observations take place under relatively strong solar wind flow speed conditions (approximately equal 600 km/s). In the undisturbed solar wind we find that outward propagating Alfven waves dominate, as reported by other observers. In the ion foreshock the situation is more complex, with neither outward nor inward propagation dominating over the entire range investigated (1-10 mHz). Measurements of the Poynting vectors associated with the fluctuations are consistent with the Elsaesser variable analysis. These results generally support interpretations of the Elsaesser variables which have been made based strictly on solar wind data and provide additional insight into the nature of the ion foreshock turbulence.

  5. Coastal and rain-induced wind variability depicted by scatterometers

    Science.gov (United States)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    conditions, using collocations with the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and the tropical moored buoy wind and precipitation data. It turns out that the effect of low and moderate rain appears mainly in increasing the wind variability near the surface and, unlike for Ku-band scatterometers, the rain rate itself does not appear clearly as a limiting factor in ASCAT wind quality. Moreover, the downburst patterns as observed by ASCAT are unique and have large implications for air-sea exchange. At the conference, the main progress in scatterometer wind data processing will be shown.

  6. Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao

    2014-01-01

    generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power...... and the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind......Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which may produce flicker during continuous operation. This paper presents a model of an MW-level variable-speed wind turbine with a doubly fed induction...

  7. Flicker Study on Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue

    2008-01-01

    capacity, grid impedance angle) are analyzed. Flicker mitigation is realized by output reactive power control of the variable speed wind turbines with PMSG. Simulation results show the output reactive power control is an effective measure to mitigate the flicker during continuous operation of grid......Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed...... in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated during continuous operation. The dependence of flicker emission on wind characteristics (mean speed, turbulence intensity), 3p torque oscillations due to wind shear and tower shadow effects and grid conditions (short circuit...

  8. Energy Storage on the Grid and the Short-term Variability of Wind

    Science.gov (United States)

    Hittinger, Eric Stephen

    profitability of wind farms. We find that market scenarios using existing price signals to motivate wind to reduce variability allow wind generators to participate in variability reduction when the market conditions are favorable, and can reduce short-term (30-minute) fluctuations while having little effect on wind farm revenue.

  9. Variability in large-scale wind power generation

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2016-01-01

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net ...... with well-dispersed wind power. Copyright © 2015 John Wiley & Sons, Ltd....

  10. Far offshore wind conditions in scope of wind energy

    NARCIS (Netherlands)

    Holtslag, M.C.

    2016-01-01

    Far offshore atmospheric conditions are favourable for wind energy purposes since mean wind speeds are relatively high (i.e., high power production) while turbulence levels are relatively low (i.e., less fatigue loads) compared to onshore conditions. Offshore wind energy, however, is still expensive

  11. Multi-decadal Variability of the Wind Power Output

    Science.gov (United States)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  12. Load alleviation on wind turbine blades using variable airfoil geometry

    Energy Technology Data Exchange (ETDEWEB)

    Basualdo, S.

    2005-03-01

    A two-dimensional theoretical study of the aeroelastic behaviour of an airfoil has been performed, whose geometry can be altered using a rear-mounted flap. This device is governed by a controller, whose objective is to reduce the airfoil displacements and, therefore, the stresses present in a real blade. The aerodynamic problem was solved numerically by a panel method using the potential theory, suitable for modelling attached flows. It is therefore mostly applicable for Pitch Regulated Variable Speed (PRVS) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable airfoil geometry is an effective means of reducing the vibration magnitudes of an airfoil that represents a section of a wind turbine blade, when subject to stochastic wind signals. The results of this investigation encourage further investigations with 3D aeroelastic models to predict the reduction in loads in real wind turbines. (author)

  13. Empirical models of wind conditions on Upper Klamath Lake, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Wood, Tamara M.

    2010-01-01

    Upper Klamath Lake is a large (230 square kilometers), shallow (mean depth 2.8 meters at full pool) lake in southern Oregon. Lake circulation patterns are driven largely by wind, and the resulting currents affect the water quality and ecology of the lake. To support hydrodynamic modeling of the lake and statistical investigations of the relation between wind and lake water-quality measurements, the U.S. Geological Survey has monitored wind conditions along the lakeshore and at floating raft sites in the middle of the lake since 2005. In order to make the existing wind archive more useful, this report summarizes the development of empirical wind models that serve two purposes: (1) to fill short (on the order of hours or days) wind data gaps at raft sites in the middle of the lake, and (2) to reconstruct, on a daily basis, over periods of months to years, historical wind conditions at U.S. Geological Survey sites prior to 2005. Empirical wind models based on Artificial Neural Network (ANN) and Multivariate-Adaptive Regressive Splines (MARS) algorithms were compared. ANNs were better suited to simulating the 10-minute wind data that are the dependent variables of the gap-filling models, but the simpler MARS algorithm may be adequate to accurately simulate the daily wind data that are the dependent variables of the historical wind models. To further test the accuracy of the gap-filling models, the resulting simulated winds were used to force the hydrodynamic model of the lake, and the resulting simulated currents were compared to measurements from an acoustic Doppler current profiler. The error statistics indicated that the simulation of currents was degraded as compared to when the model was forced with observed winds, but probably is adequate for short gaps in the data of a few days or less. Transport seems to be less affected by the use of the simulated winds in place of observed winds. The simulated tracer concentration was similar between model results when

  14. Variable geometry Darrieus wind machine

    Science.gov (United States)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  15. Performance of a 3 kW wind turbine generator with variable pitch control system

    International Nuclear Information System (INIS)

    Nagai, Baku M.; Ameku, Kazumasa; Roy, Jitendro Nath

    2009-01-01

    A prototype 3 kW horizontal upwind type wind turbine generator of 4 m in diameter has been designed and examined under real wind conditions. The machine was designed based on the concept that even small wind turbines should have a variable pitch control system just as large wind turbines, especially in Japan where typhoons occur at least once a year. A characteristic of the machine is the use of a worm and gear system with a stepping motor installed in the center of the hub, and the rotational main shaft. The machine is constructed with no mechanical breaking system so as to avoid damage from strong winds. In a storm, the wind turbine is slowed down by adjusting the pitch angle and the maximum electrical load. Usually the machine is controlled at several stages depending on the rotational speed of the blades. Two control methods have been applied: the variable pitch angle, and regulation of the generator field current. The characteristics of the generator under each rotational speed and field current are first investigated in the laboratory. This paper describes the performances of the wind turbine in terms of the functions of wind turbine rotational speed, generated outputs, and its stability for wind speed changes. The expected performances of the machine have been confirmed under real wind conditions and compared with numerical simulation results. The wind turbine showed a power coefficient of 0.257 under the average wind speed of 7.3 m/s.

  16. Estimating Health Condition of the Wind Turbine Drivetrain System

    Directory of Open Access Journals (Sweden)

    Peng Qian

    2017-10-01

    Full Text Available Condition Monitoring (CM has been considered as an effective method to enhance the reliability of wind turbines and implement cost-effective maintenance. Thus, adopting an efficient approach for condition monitoring of wind turbines is desirable. This paper presents a data-driven model-based CM approach for wind turbines based on the online sequential extreme learning machine (OS-ELM algorithm. A physical kinetic energy correction model is employed to normalize the temperature change to the value at the rated power output to eliminate the effect of variable speed operation of the turbines. The residual signal, obtained by comparing the predicted values and practical measurements, is processed by the physical correction model and then assessed with a Bonferroni interval method for fault diagnosis. Models have been validated using supervisory control and data acquisition (SCADA data acquired from an operational wind farm, which contains various types of temperature data of the gearbox. The results show that the proposed method can detect more efficiently both the long-term aging characteristics and the short-term faults of the gearbox.

  17. Reliability of offshore wind power production under extreme wind conditions. Deliverable D 9.5. Work Package 9: Electrical grid

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Zeni, Lorenzo

    years, with each year simulated with five random seeds, leading to a total of 25 annual wind power time series for six large offshore wind farms, summing up to a little over 330 wind turbines. Two storm control strategies were used. The analysis involved several aspects inspired from reliability studies....... The aspects investigated are storm events occurrences and durations, storm control strategy impact on the capacity factor (lost production), the loss of production (power produced from wind drops below a certain threshold due to high wind speeds and storm controller) and finally, the wind power production......Reliability of offshore wind production under extreme wind conditions was investigated in this report. The wind power variability from existing and future large offshore wind farms in Western Denmark were simulated using the Correlated Wind model developed at Risø. The analysis was done for five...

  18. Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-10-01

    Full Text Available Condition monitoring (CM is used to assess the health status of wind turbines (WT by detecting turbine failure and predicting maintenance needs. However, fluctuating operating conditions cause variations in monitored features, therefore increasing the difficulty of CM, for example, the frequency-domain analysis may lead to an inaccurate or even incorrect prediction when evaluating the health of the WT components. In light of this challenge, this paper proposed a method for the health evaluation of WT components based on vibration signals. The proposed approach aimed to reduce the evaluation error caused by the impact of the variable operating condition. First, the vibration signal was decomposed into a set of sub-signals using variational mode decomposition (VMD. Next, the sub-signal energy and the probability distribution were obtained and normalized. Finally, the concept of entropy was introduced to evaluate the health condition of a monitored object to provide an effective guide for maintenance. In particular, the health evaluation for CM was based on a performance review over a range of operating conditions, rather than at a certain single operating condition. Experimental investigations were performed which verified the efficiency of the evaluation method, as well as a comparison with the previous method.

  19. The atmospheric transfer of pollution for a site with rapidly variable winds (low winds)

    International Nuclear Information System (INIS)

    Maigne, J.P.

    1980-01-01

    This paper firstly describes the ICAIR 2 computer model which takes into account the variability in space and time of wind speed and direction in estimating the dispersion of a pollutant in the atmosphere. This is done by breaking down each release into a series of separate puffs which continuously respond to the meteorological conditions applying at the point in time to the positions in which they are located. The law governing the change in each of the puffs is tri-Gaussian and the standard deviations used are a function of the transfer time and the wind speed for transfer times of less than 2000 seconds and of the transfer time alone beyond this period. Finally, the concentration patterns at various points calculated using ICAIR 2 are compared with those obtained during a series of experiments in situ using tracers at low wind speeds (< 1 m/s)

  20. Grid impact of variable-speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Aa [Chalmers Univ. of Technology, Dept. of Electric Power Engineering, Goeteborg (Sweden); Soerensen, P [Risoe National Lab., Roskilde (Denmark); Santjer, F [German Wind Energy Inst., DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In this paper the power quality of variable-speed wind turbines equipped with forced-commutated inverters is investigated. Measurements have been taken on the same type of variable-speed wind turbines in Germany and Sweden. The measurements have been analysed according to existing IEC standards. Special attention has been paid to the aggregation of several wind turbines on flicker emission and harmonics. The aggregation has been compared with the summation laws used in the draft IEC 61400-21 `Power Quality Requirements for Grid Connected wind turbines`. The methods for calculating and summing flicker proposed by IEC Standards are reliable. Harmonics and inter-harmonics are treated in IEC 61000-4-7 and IEC 61000-3-6. The methods for summing harmonics and inter-harmonics in IEC 61000-3-6 are applicable to wind turbines. In order to obtain a correct magnitude of the frequency components, the use of a well-defined window width, according to IEC 61000-4-7 Amendment 1 is of a great importance. (au)

  1. Wind effect on salt transport variability in the Bay of Bengal

    Science.gov (United States)

    Sandeep, K. K.; Pant, V.

    2017-12-01

    The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.

  2. Winds in cataclysmic variable stars

    International Nuclear Information System (INIS)

    Cordova, F.A.; Ladd, E.F.; Mason, K.O.

    1984-01-01

    Ultraviolet spectrophotometry of two dwarf novae, CN Ori and RX And, at various phases of their outburst cycles confirms that the far uv flux increases dramatically about 1-2 days after the optical outburst begins. At this time the uv spectral line profiles indicate the presence of a high velocity wind. The detectability of the wind depends more on the steepness of the spectrum, and thus on the flux in the extreme ultraviolet, than on the absolute value of the far uv luminosity. The uv continuum during outburst consists of (at least) two components, the most luminous of which is located behind the wind and is completely absorbed by the wind at the line frequencies. Several pieces of evidence suggest that the uv emission lines that are observed in many cataclysmic variables during quiescence have a different location in the binary than the wind, and are affected very little by the outburst

  3. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    Science.gov (United States)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  4. Survey of variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Hylander, J.; Thorborg, K. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    During the last five years the production and operation of variable-speed wind turbines have advanced from a few experimental machines to a serial production of at least 10 MW of installed capacity of variable speed machines per week. The rated power of serial wind turbines is today around 600 kW and for the prototypes up to 3000 kW. Variable speed operation of wind turbines can be obtained with several different types of electrical generating systems, such as synchronous generators with diode rectifiers and thyristor inverters or induction generators with IGBT-converters, for the wide speed range. For the narrow speed range the wound motor induction generator with a rotor cascade or a controlled rotor resistance is preferable. The development of permanent magnetic material and the reduction of costs of the power electronic components have opened a possibility of designing cost-effective wind turbines with a directly driven generator. Pitch control together with variable speed will make it possible to limit the power variation within a few percent, 2 to 5 %, of the rated power. 7 refs, 4 figs, 2 tabs

  5. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects.

    Science.gov (United States)

    Corscadden, Kenneth W; Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement.

  6. Control of variable speed wind turbine with doubly-fed induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Iov, F.; Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology, Aalborg (Denmark)

    2004-07-01

    draIn this paper, a Control method suitable for a variable speed grid connected pitch-controlled wind turbine with doubly-fed induction generator (DFIG) is developed. The targets of the Control system are: 1) to Control the power drawn from the wind turbine in order to track the wind turbine optimum operation point 2) to limit the power in case of high wind speeds and 3) to Control the reactive power interchanged between the wind turbine generator and the grid. The considered configuration of DFIG is an induction generator with a wound rotor connected to the grid through a back-to-back power converter and a stator directly connected to the grid. The paper presents the overall Control system of the variable speed DFIG wind turbine, with focus on the Control strategies and algorithms applied at each hierarchical Control level of the wind turbine. There are two Control levels: a DFIG Control level and wind turbine Control level. The DFIG Control level contains a fast Control of the power converter and of the doubly-fed induction generator and it has as goal to Control the active and reactive power of the wind turbine independently. The wind turbine Control level supervises with Control signals both the DFIG Control level and the hydraulic pitch Control system of the wind turbine. The present Control method is designed for normal continuous operations. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT, which makes possible to investigate the dynamic performance of gid-connected wind turbines as a part of realistic electrical grid models. Several significant simulation results are performed With the overall Control-implemented algorithm applied on a variable speed, variable pitch wind turbine model. (au)

  7. Speed control at low wind speeds for a variable speed fixed pitch wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rosmin, N.; Watson, S.J.; Tompson, M. [Loughborough Univ., Loughborough, Leicestershire (United Kingdom)

    2010-03-09

    The maximum power regulation below rated wind speed is regulated by changing the rotor/generator speed at large frequency range in a fixed pitch, variable speed, stall-regulated wind turbine. In order to capture the power at a maximum value the power coefficient is kept at maximum peak point by maintaining the tip speed ratio at its optimum value. The wind industry is moving from stall regulated fixed speed wind turbines to newer improved innovative versions with better reliability. While a stall regulated fixed pitch wind turbine is among the most cost-effective wind turbine on the market, its problems include noise, severe vibrations, high thrust loads and low power efficiency. Therefore, in order to improve such drawbacks, the rotation of the generator speed is made flexible where the rotation can be controlled in variable speed. This paper discussed the development of a simulation model which represented the behaviour of a stall regulated variable speed wind turbine at low wind speed control region by using the closed loop scalar control with adjustable speed drive. The paper provided a description of each sub-model in the wind turbine system and described the scalar control of the induction machine. It was concluded that by using a constant voltage/frequency ratio of the generator's stator side control, the generator speed could be regulated and the generator torque could be controlled to ensure the power coefficient could be maintained close to its maximum value. 38 refs., 1 tab., 10 figs.

  8. Variability of Wind Speeds and Power over Europe

    Science.gov (United States)

    Tambke, J.; von Bremen, L.; de Decker, J.; Schmidt, M.; Steinfeld, G.; Wolff, J.-O.

    2010-09-01

    This study comprises two parts: First, we describe the vertical wind speed and turbulence profiles that result from our improved PBL scheme and compare it to observations and 1-dimensional approaches (Monin-Obukhov etc.). Second, we analyse the spatio-temporal correlations in our meso-scale simulations for the years 2004 to 2007 over entire Europe, with special focus on the Irish, North and Baltic Sea. 1.) Vertical Wind Speed Profiles The vertical wind profile above the sea has to be modelled with high accuracy for tip heights up to 160m in order to achieve precise wind resource assessments, to calculate loads and wakes of wind turbines as well as for reliable short-term wind power forecasts. We present an assessment of different models for wind profiles in unstable, neutral and stable thermal stratification. The meso-scale models comprise MM5, WRF and COSMO-EU (LME). Both COSMO-EU from the German Weather Service DWD and WRF use a turbulence closure of 2.5th order - and lead to similar results. Especially the limiting effect of low boundary layer heights on the wind shear in very stable stratification is well captured. In our new WRF-formulation for the mixing length in the Mellor-Yamada-Janjic (MYJ) parameterisation of the Planetary Boundary Layer (PBL-scheme), the master length scale itself depends on the Monin-Obukhov-Length as a parameter for the heat flux effects on the turbulent mixing. This new PBL-scheme shows a better performance for all weather conditions than the original MYJ-scheme. Apart from the low-boundary-layer-effect in very stable situations (which are seldom), standard Monin-Obukhov formulations in combination with the Charnock relation for the sea surface roughness show good agreement with the FINO1-data (German Bight). Interesting results were achieved with two more detailed micro-scale approaches: - the parameterization proposed by Pena, Gryning and Hasager [BLM 2008] that depends on the boundary layer height - our ICWP-model, were the flux

  9. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  10. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M

    2008-01-01

    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  11. Wind resource in metropolitan France: assessment methods, variability and trends

    International Nuclear Information System (INIS)

    Jourdier, Benedicte

    2015-01-01

    France has one of the largest wind potentials in Europe, yet far from being fully exploited. The wind resource and energy yield assessment is a key step before building a wind farm, aiming at predicting the future electricity production. Any over-estimation in the assessment process puts in jeopardy the project's profitability. This has been the case in the recent years, when wind farm managers have noticed that they produced less than expected. The under-production problem leads to questioning both the validity of the assessment methods and the inter-annual wind variability. This thesis tackles these two issues. In a first part are investigated the errors linked to the assessment methods, especially in two steps: the vertical extrapolation of wind measurements and the statistical modelling of wind-speed data by a Weibull distribution. The second part investigates the inter-annual to decadal variability of wind speeds, in order to understand how this variability may have contributed to the under-production and so that it is better taken into account in the future. (author) [fr

  12. A rotating bluff-body disc for reduced variability in wind tunnel aerosol studies.

    Science.gov (United States)

    Koehler, Kirsten A; Anthony, T Renee; van Dyke, Michael; Volckens, John

    2011-01-01

    A rotating bluff-body disc (RBD) was developed to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. The RBD is designed to rotate eight personal aerosol samplers around a circular path in a forward-facing plane aligned with the wind tunnel cross section. Rotation of the RBD allows each sampler to traverse an identical path about the wind tunnel cross section, which reduces the effects of spatial heterogeneity associated with dispersing supermicron aerosol in low-velocity wind tunnels. Samplers are positioned on the face of the RBD via sampling ports, which connect to an air manifold on the back of the disc. Flow through each sampler was controlled with a critical orifice or needle valve, allowing air to be drawn through the manifold with a single pump. A metal tube, attached to this manifold, serves as both the axis of rotation and the flow conduction path (between the samplers and the vacuum source). Validation of the RBD was performed with isokinetic samplers and 37-mm cassettes. For facing-the-wind tests, the rotation of the RBD significantly decreased intra-sampler variability when challenged with particle diameters from 1 to 100 μm. The RBD was then employed to determine the aspiration efficiency of Institute of Occupational Medicine (IOM) personal samplers under a facing-the-wind condition. Operation of IOM samplers on the RBD reduced the between-sampler variability for all particle sizes tested.

  13. Laboratory development of wind turbine simulator using variable ...

    African Journals Online (AJOL)

    user

    1*Department of Electronics Engineering, Prof. ... In this paper variable speed induction motor drive using scalar control is interfaced in wind energy conversion ... the wind turbine simulator is used as a necessary tool in research laboratories.

  14. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    International Nuclear Information System (INIS)

    Melicio, R.; Mendes, V.M.F.; Catalao, J.P.S.

    2011-01-01

    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn.

  15. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal); Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2011-04-15

    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (author)

  16. AC-DC integrated load flow calculation for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  17. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    Science.gov (United States)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  18. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...

  19. An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems

    Directory of Open Access Journals (Sweden)

    Ana Fernández-Guillamón

    2018-06-01

    Full Text Available This paper presents a new frequency controller for variable speed wind turbines connected to the grid under power imbalance conditions. It is based on the fast power reserve emulation technique, having two different operation modes: overproduction and recovery mode. In the first mode, the active power provided by wind turbines is set over the mechanical power, reducing their rotational speed. This overproduction power is estimated according to the frequency excursion. In the second mode, the active power is established under the mechanical power to recover the initial rotational speed through a smooth trajectory. The power system considered for simulation purposes includes thermal, hydro-power and wind-power plants. The controller proposed has been evaluated under different mix-generation scenarios implemented in Matlab/Simulink. Extensive results and comparison to previous proposals are also included in the paper.

  20. Frequency support capability of variable speed wind turbine based on electromagnetic coupler

    DEFF Research Database (Denmark)

    You, Rui; Barahona Garzón, Braulio; Chai, Jianyun

    2015-01-01

    In the variable speed wind turbine based on electromagnetic coupler (WT-EMC), a synchronous generator is directly coupled with grid. So like conventional power plants WT-EMC is able to support grid frequency inherently. But due to the reduced inertia of synchronous generator, its frequency support...... capability has to be enhanced. In this paper, the frequency support capability of WT-EMC is studied at three typical wind conditions and with two control strategies-droop control and inertial control to enhance its frequency support capability. The synchronous generator speed, more stable than the grid...

  1. On the Origins of the Intercorrelations Between Solar Wind Variables

    Science.gov (United States)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  2. Load flow analysis for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede

    2009-01-01

    factors such as the different wind farm configurations, the control of wind turbines and the power losses of pulse width modulation converters are considered. The DC/DC converter model is proposed and integrated into load flow algorithm by modifying the Jacobian matrix. Two iterative methods are proposed...... and integrated into the load flow algorithm: one takes into account the control strategy of converters and the other considers the power losses of converters. In addition, different types of variable speed wind turbine systems with different control methods are investigated. Finally, the method is demonstrated......A serial AC-DC integrated load flow algorithm for variable speed offshore wind farms is proposed. It divides the electrical system of a wind farm into several local networks, and different load flow methods are used for these local networks sequentially. This method is fast, more accurate, and many...

  3. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be

  4. Flicker study on variable speed wind turbines with doubly fed induction generators

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    to a conclusion that the factors mentioned above have different influences on flicker emission compared with that in the case of the fixed speed wind turbine. Flicker mitigation is realized by output reactive power control of the variable speed wind turbine with doubly fed induction generator. Simulation results...... show the wind turbine output reactive power control provides an effective means for flicker mitigation regardless of mean wind speed, turbulence intensity and short circuit capacity ratio.......Grid connected wind turbines may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a doubly fed induction generator developed in the simulation tool of PSCAD/EMTDC. Flicker emission of variable speed wind turbines...

  5. Variable speed control for Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.

    A robust variable speed control for vertical axis wind turbine applications is implemented. It is a PI rotor speed controller based on an induction generator model operated at variable frequency. The generator dynamics are approximated by a first order differential equation with a prescribed slip....... In order to allow variability in the rotor speed an inverter is assumed which changes the nominal generator speed. Below rated power the optimum tip speed ratio is tracked, while above the power is constrained to rated. The wind speed which is needed in the control it is considered as a known signal...... the Inflow project. The investigation of the VAWT performance under different control parameters such as the PI gains has been performed by Christos Galinos. Deterministic and turbulent wind speed steps of 2 m/s from 6 m/s to 24 m/s and back to 12 m/s are applied. The controller gives smooth transient...

  6. Adaptive Torque Control of Variable Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. E.

    2004-08-01

    The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.

  7. Wind and load variability in the Nordic countries

    DEFF Research Database (Denmark)

    Holttinen, Hannele; Rissanen, Simo; Larsén, Xiaoli Guo

    the three years analysed in this publication there were few storm incidents and they did not produce dramatic wind power ramps in the Nordic region. Wind and load variations are not correlated between the countries, which is beneficial from the viewpoint of wind integration. The smoothing effect is shown......This publication analysed the variability of wind production and load in Denmark, Finland, Sweden, and the Nordic region as a whole, based on real data measured from large-scale wind power during 2009–2011. The Nordic-wide wind power time series was scaled up such that Sweden had same amount...... of wind power production than Denmark, and Finland and Norway only 50% of the wind power production in Denmark. Wind power production in Denmark and Sweden is somewhat correlated (coefficient 0.7) but less correlation is found between the other countries. The variations from one hour to the next are only...

  8. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    . The nonlinear controller aims at regulating the generator torque such that an optimal tip-speed ratio can be obtained. Simply relying on the measured rotor angular velocity the proposed observer backstepping controller guarantees global asymptotic tracking of the desired trajectory while maintaining a globally......This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torque...

  9. A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics

    Directory of Open Access Journals (Sweden)

    Dongran Song

    2017-05-01

    Full Text Available Variable speed wind turbines (VSWTs usually adopt a maximum power point tracking (MPPT method to optimize energy capture performance. Nevertheless, obtained performance offered by different MPPT methods may be affected by the impact of wind turbine (WT’s inertia and wind speed characteristics and it needs to be clarified. In this paper, the tip speed ratio (TSR and optimal torque (OT methods are investigated in terms of their performance under different wind speed characteristics on a 1.5 MW wind turbine model. To this end, the TSR control method based on an effective wind speed estimator and the OT control method are firstly presented. Then, their performance is investigated and compared through simulation test results under different wind speeds using Bladed software. Comparison results show that the TSR control method can capture slightly more wind energy at the cost of high component loads than the other one under all wind conditions. Furthermore, it is found that both control methods present similar trends of power reduction that is relevant to mean wind speed and turbulence intensity. From the obtained results, we demonstrate that, to further improve MPPT capability of large VSWTs, other advanced control methods using wind speed prediction information need to be addressed.

  10. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Science.gov (United States)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  11. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Directory of Open Access Journals (Sweden)

    Bieniek Andrzej

    2017-01-01

    Full Text Available The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 ms-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  12. Analysis of North Sea Offshore Wind Power Variability

    NARCIS (Netherlands)

    Buatois, A.; Gibescu, M.; Rawn, B.G.; Van der Meijden, M.A.M.M.

    2014-01-01

    This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind

  13. A wind proxy based on migrating dunes at the Baltic coast: statistical analysis of the link between wind conditions and sand movement

    Science.gov (United States)

    Bierstedt, Svenja E.; Hünicke, Birgit; Zorita, Eduardo; Ludwig, Juliane

    2017-07-01

    We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution. The present analysis is based on the dune record derived from geo-radar measurements by Ludwig et al. (2017). The dune system is located at the Baltic Sea coast of Poland and is migrating from west to east along the coast. The dunes present layers with different thicknesses that can be assigned to absolute dates at interannual timescales and put in relation to seasonal wind conditions. To statistically analyse this record and calibrate it as a wind proxy, we used a gridded regional meteorological reanalysis data set (coastDat2) covering recent decades. The identified link between the dune annual layers and wind conditions was additionally supported by the co-variability between dune layers and observed sea level variations in the southern Baltic Sea. We include precipitation and temperature into our analysis, in addition to wind, to learn more about the dependency between these three atmospheric factors and their common influence on the dune system. We set up a statistical linear model based on the correlation between the frequency of days with specific wind conditions in a given season and dune migration velocities derived for that season. To some extent, the dune records can be seen as analogous to tree-ring width records, and hence we use a proxy validation method usually applied in dendrochronology, cross-validation with the leave-one-out method, when the observational record is short. The revealed correlations between the wind record from the reanalysis and the wind record derived from the dune structure is in the range between 0.28 and 0.63, yielding similar statistical validation skill as dendroclimatological records.

  14. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  15. Transient and dynamic control of a variable speed wind turbine with synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens [Riso National Laboratory, Wind Energy Department, PO Box 49, DK 4000 Roskilde, (Denmark)

    2007-02-14

    In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full-scale converter-connected high-speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full-scale converter-connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. (Author).

  16. Control of variable speed variable pitch wind turbine based on a disturbance observer

    Science.gov (United States)

    Ren, Haijun; Lei, Xin

    2017-11-01

    In this paper, a novel sliding mode controller based on disturbance observer (DOB) to optimize the efficiency of variable speed variable pitch (VSVP) wind turbine is developed and analyzed. Due to the highly nonlinearity of the VSVP system, the model is linearly processed to obtain the state space model of the system. Then, a conventional sliding mode controller is designed and a DOB is added to estimate wind speed. The proposed control strategy can successfully deal with the random nature of wind speed, the nonlinearity of VSVP system, the uncertainty of parameters and external disturbance. Via adding the observer to the sliding mode controller, it can greatly reduce the chattering produced by the sliding mode switching gain. The simulation results show that the proposed control system has the effectiveness and robustness.

  17. Minimisation of Generation Variability of a Group of Wind Plants

    Directory of Open Access Journals (Sweden)

    Dubravko Sabolić

    2017-09-01

    Full Text Available Minimisation of variability of energy delivered from a group of wind plants into the power system using portfolio theory approach was studied. One of the assumptions of that theory is Gaussian distribution of the sample, which is not satisfied in case of wind generation. Therefore, optimisation of a “portfolio” of plants with different goal functions was studied. It was supposed that a decision on distribution of a fixed amount of generation capacity to be installed among a set of geographical locations with known wind statistics is to be made with minimised variability of generation as a goal. In that way the statistical cancellation of variability would be used in the best possible manner. This article is a brief report on results of such an investigation. An example of nine locations in Croatia was used. These locations’ wind statistics are known from historic generation data.

  18. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    OpenAIRE

    Bieniek Andrzej

    2017-01-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating index...

  19. Costs of solar and wind power variability for reducing CO2 emissions.

    Science.gov (United States)

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  20. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  1. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  2. The effect of long-distance interconnection on wind power variability

    International Nuclear Information System (INIS)

    Fertig, Emily; Apt, Jay; Jaramillo, Paulina; Katzenstein, Warren

    2012-01-01

    We use time- and frequency-domain techniques to quantify the extent to which long-distance interconnection of wind plants in the United States would reduce the variability of wind power output. Previous work has shown that interconnection of just a few wind plants across moderate distances could greatly reduce the ratio of fast- to slow-ramping generators in the balancing portfolio. We find that interconnection of aggregate regional wind plants would not reduce this ratio further but would reduce variability at all frequencies examined. Further, interconnection of just a few wind plants reduces the average hourly change in power output, but interconnection across regions provides little further reduction. Interconnection also reduces the magnitude of low-probability step changes and doubles firm power output (capacity available at least 92% of the time) compared with a single region. First-order analysis indicates that balancing wind and providing firm power with local natural gas turbines would be more cost-effective than with transmission interconnection. For net load, increased wind capacity would require more balancing resources but in the same proportions by frequency as currently, justifying the practice of treating wind as negative load. (letter)

  3. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.

    Science.gov (United States)

    Xu, B F; Wang, T G; Yuan, Y; Cao, J F

    2015-02-28

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Enhancement of wind stress evaluation method under storm conditions

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  5. Variable slip wind generator modeling for real-time simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, R.; Brochu, J.; Turmel, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ

    2006-07-01

    A model of a wind turbine using a variable slip wound-rotor induction machine was presented. The model was created as part of a library of generic wind generator models intended for wind integration studies. The stator winding of the wind generator was connected directly to the grid and the rotor was driven by the turbine through a drive train. The variable resistors was synthesized by an external resistor in parallel with a diode rectifier. A forced-commutated power electronic device (IGBT) was connected to the wound rotor by slip rings and brushes. Simulations were conducted in a Matlab/Simulink environment using SimPowerSystems blocks to model power systems elements and Simulink blocks to model the turbine, control system and drive train. Detailed descriptions of the turbine, the drive train and the control system were provided. The model's implementation in the simulator was also described. A case study demonstrating the real-time simulation of a wind generator connected at the distribution level of a power system was presented. Results of the case study were then compared with results obtained from the SimPowerSystems off-line simulation. Results showed good agreement between the waveforms, demonstrating the conformity of the real-time and the off-line simulations. The capability of Hypersim for real-time simulation of wind turbines with power electronic converters in a distribution network was demonstrated. It was concluded that hardware-in-the-loop (HIL) simulation of wind turbine controllers for wind integration studies in power systems is now feasible. 5 refs., 1 tab., 6 figs.

  6. Variable speed wind turbine generator system with current controlled voltage source inverter

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.

    2011-01-01

    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  7. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  8. Maximizing Energy Capture of Fixed-Pitch Variable-Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.; Migliore, P.

    2000-08-01

    Field tests of a variable-speed, stall-regulated wind turbine were conducted at a US Department of Energy Laboratory. A variable-speed generating system, comprising a doubly-fed generator and series-resonant power converter, was installed on a 275-kW, downwind, two-blade wind turbine. Gearbox, generator, and converter efficiency were measured in the laboratory so that rotor aerodynamic efficiency could be determined from field measurement of generator power. The turbine was operated at several discrete rotational speeds to develop power curves for use in formulating variable-speed control strategies. Test results for fixed-speed and variable-speed operation are presented along with discussion and comparison of the variable-speed control methodologies. Where possible, comparisons between fixed-speed and variable-speed operation are shown.

  9. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  10. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    Science.gov (United States)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high

  11. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  12. Variable accretion of stellar winds onto Sgr A*

    Science.gov (United States)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-12-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  13. Variable accretion of stellar winds onto Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jorge [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Nayakshin, Sergei [Department of Physics and Astronomy, University of Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  14. Variable accretion of stellar winds onto Sgr A*

    International Nuclear Information System (INIS)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-01-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre

  15. Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions

    Science.gov (United States)

    Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.

    2016-09-01

    The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.

  16. Models for Numerical Evaluation of Variable Speed Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, Hui; Chen, Zhe; Polinder, H.

    2007-01-01

    of different wind generator systems, the other presents the optimization results and evaluation of variable speed wind generator systems. In this report, firstly, it gives an overview of various wind generator topologies, including their advantages and disadvantages, market status and developing trends. Next...

  17. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, Lion

    2014-11-14

    Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the ''system and market integration'' literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of ''integration costs''. Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus ''dispatchable'' power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly

  18. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    International Nuclear Information System (INIS)

    Hirth, Lion

    2014-01-01

    Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the ''system and market integration'' literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of ''integration costs''. Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus ''dispatchable'' power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly

  19. The variability of maximum wind gusts in the Czech Republic between 1961 and 2014

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Hostýnek, J.; Řezníčková, Ladislava; Zahradníček, Pavel; Tolasz, R.; Dobrovolný, Petr; Štěpánek, Petr

    2017-01-01

    Roč. 37, č. 4 (2017), s. 1961-1978 ISSN 0899-8418 Institutional support: RVO:67179843 Keywords : Czech Republic * Emma wind storm * Homogenisation * Kyrill wind storm * Maximum wind gust * Spatial variability * Temporal variability * Wind measurement Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016

  20. Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. I. Solution Topology and Wind Geometry

    OpenAIRE

    Feldmeier, Achim; Shlosman, Isaac

    1999-01-01

    We analyze the dynamics of 2-D stationary, line-driven winds from accretion disks in cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed by Castor, Abbott & Klein for O stars. Our main assumption is that wind helical streamlines lie on straight cones. We find that the Euler equation for the disk wind has two eigenvalues, the mass loss rate and the flow tilt angle with the disk. Both are calculated self-consistently. The wind is characte...

  1. Maps of mesoscale wind variability over the North Sea region

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Badger, Jake

    Mesoscale wind fluctuations affect the operation of wind farms, particularly as the number of geographically concentrated wind farms in the North Sea increases (Akhmatov et al. 2007). The frequency and intensity of wind fluctuations could be considered as a new siting criterion, together with exi...... for a 1 year period. The model was run with a horizontal grid spacing of 2 km. The variability maps are created by integrating the average 24 hour spectra at every grid point over different time-scales....

  2. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  3. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)

    2011-05-15

    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)

  4. Solar wind conditions for a quiet magnetosphere

    International Nuclear Information System (INIS)

    Kerns, K.J.; Gussenhoven, M.S.

    1990-01-01

    The conditions of the solar wind that lead to a quiet magnetosphere are determined under the assumption that the quiet or baseline magnetosphere can be identified by prolonged periods of low values of the am index. The authors analyzed solar wind data from 1978 to 1984 (7 years) during periods in which am ≤ 3 nT to identify those solar wind parameters that deviate significantly from average values. Parallel studies were also performed for prolonged periods of Kp = 0, 0+ and AE z ) show distinctive variations from average values. They independently varied these solar wind parameters and the length of time the conditions must persist to minimize am. This was done with the additional requirement that the conditions yield a reasonable number of occurrences (5% of the data set). The resulting baseline conditions are V ≤ 390 km/s; 180 degree - arctan |B y /B z | ≤ 101 degree, when b z ≤ 0 (no restriction on B z positive); B ≤ 6.5 nT; and persistence of these conditions for at least 5 hours. Minimizing the am index does not require a clear upper limit on the value of B z as might be anticipated from the work of Gussenhoven (1988) and Berthelier (1980). Apparently, this is a result of the requirement that the conditions must occur 5% of the time. When the requirement is lowered to 1% occurrence, an upper limit to B z emerges

  5. Diurnal variability of inner-shelf circulation in the lee of a cape under upwelling conditions

    Science.gov (United States)

    Lamas, L.; Peliz, A.; Dias, J.; Oliveira, P. B.; Angélico, M. M.; Castro, J. J.; Fernandes, J. N.; Trindade, A.; Cruz, T.

    2017-07-01

    The nearshore circulation in the lee of a cape under upwelling conditions was studied using in-situ data from 3 consecutive summers (2006-2008). Focus was given to a period between 20 July and 04 August 2006 to study the diurnal variability of the cross-shelf circulation. This period was chosen because it had a steady upwelling-favourable wind condition modulated by a diurnal cycle much similar to sea breeze. The daily variability of the observed cross-shelf circulation consisted of three distinct periods: a morning period with a 3-layer vertical structure with onshore velocities at mid-depth, a mid-day period where the flow is reversed and has a 2-layer structure with onshore velocities at the surface and offshore flow below, and, lastly, in the evening, a 2-layer period with intensified offshore velocities at the surface and onshore flow at the bottom. The observed cross-shelf circulation showed a peculiar vertical shape and diurnal variability different from several other systems described in literature. We hypothesize that the flow reversal of the cross-shelf circulation results as a response to the rapid change of the wind magnitude and direction at mid-day with the presence of the cape north of the mooring site influencing this response. A numerical modelling experiment exclusively forced by winds simulated successfully most of the circulation at the ADCP site, especially the mid-day reversal and the evening's upwelling-type structure. This supports the hypothesis that the cross-shelf circulation at diurnal timescales is mostly wind-driven. By analysing the 3D circulation in the vicinity of Cape Sines we came to the conclusion that the diurnal variability of the wind and the flow interaction with topography are responsible for the circulation variability at the ADCP site, though only a small region in the south of the cape showed a similar diurnal variability. The fact that the wind diurnally undergoes relaxation and intensification strongly affects the

  6. Predictability and Variability of Wave and Wind

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kofoed, Jens Peter; Sørensen, Hans Christian

    This project covers two fields of study: a) Wave energy predictability and electricity markets. b) Variability of the power output of WECs in diversified systems : diversified renewable systems with wave and offshore wind production. See page 2-4 in the report for a executive summery....

  7. Analysis of winter weather conditions and their potential impact on wind farm operations

    Science.gov (United States)

    Novakovskaia, E.; Treinish, L. A.; Praino, A.

    2009-12-01

    conditions with horizontal grid resolutions in the one to two km range. In addition, the vertical grid structure was defined to ensure at least ten levels within the boundary layer and two from the bottom to the top of the turbine. This approach enables us to estimate the variability of winds at the farms and how it is distributed over the region. Further, we analyze the potential differences in structural risks at these farms during the 2009 winter season, and whether such differences in wind and weather patterns should be considered in choice of turbine design, installation and operations. We believe that this methodology can be extended to provide an estimate for mean annual energy production at a wind farm with the potential to improve the quality of siting and layout.

  8. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm...... to the case of a large number of wind farms in Europe and Australia among others is finally discussed....

  9. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    Science.gov (United States)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  10. Condition Parameter Modeling for Anomaly Detection in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yonglong Yan

    2014-05-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.

  11. Dynamic modelling and analysis of a wind turbine with variable speed

    NARCIS (Netherlands)

    Steinbuch, M.

    1986-01-01

    On behalf of the operation of the Dutch National Wind Farm, which is under construction now, a study is being performed on the control system design of variable speed wind turbines. To realize this a non-linear dynamic model of a wind turbine with synchronous generator and AC/ DC/AC conversion has

  12. Wind power variability and power system reserves in South Africa

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Litong-Palima, Marisciel; Hahmann, Andrea N.

    2017-01-01

    Variable renewable generation, primarily from wind and solar, introduces new uncertainties in the operation of power systems. This paper describes and applies a method to quantify how wind power development will affect the use of short-term automatic reserves in the future South African power sys...

  13. Wind farm power production in the changing wind: Robustness quantification and layout optimization

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2017-01-01

    Wind farms operate often in the changing wind. The wind condition variations in a wide range of time scales lead to the variability of wind farms’ power production. This imposes a major challenge to the power system operators who are facing a higher and higher penetration level of wind power. Thu...

  14. An oilspill trajectory analysis model with a variable wind deflection angle

    Science.gov (United States)

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  15. Empowering wind power. On social and institutional conditions affecting the performance of entrepreneurs in the wind power supply market in the Netherlands

    International Nuclear Information System (INIS)

    Agterbosch, S.

    2006-01-01

    This dissertation focuses on wind energy for electricity generation, analysing the evolution of the wind power supply market in the Netherlands. We analysed different kind of wind power entrepreneurs (energy distributors, small private investors, wind cooperatives and new independent wind power producers), their capacity to implement wind energy and the social and institutional conditions that affected their investments over the period 1989-2004. Central in the analyses are the institutional regulatory dimension and the social context as explanatory variables for the emergence and performance of these wind power entrepreneurs. Special attention is given to the liberalisation of the electricity market. The primary social actors for the implementation of wind energy projects in a liberalised market are entrepreneurs willing to invest. Understanding conditions that trigger entrepreneurs to invest in these projects, and understanding conditions that determine the chance of success for entrepreneurs to implement and exploit their projects, is vital for setting up effective policies to stimulate wind electricity generation. The analytical perspective that we used to study investment behaviour of wind power entrepreneurs and their capacity to implement wind energy can be referred to as the 'new institutional perspective'. Based on this new institutional perspective the concept of implementation capacity has been developed. Implementation capacity indicates the feasibility for wind power entrepreneurs to adopt wind turbines, and enables to explain, comparatively, changing possibilities in time for different types of entrepreneurs. The development of the wind power supply market is divided into three successive market periods: Monopoly powers (1989-1995), Interbellum (1996-1997) and Free market (1998-2002). We conducted case studies on the implementation capacity of the four entrepreneurial groups in each of the three market periods. The case studies led to conclusions

  16. Wind Stress Variability Observed Over Coastal Waters

    Science.gov (United States)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2016-02-01

    The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these

  17. Condition monitoring of a wind turbine doubly-fed induction generator through current signature analysis

    Science.gov (United States)

    Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio

    2017-11-01

    Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.

  18. Critical Speed Control for a Fixed Blade Variable Speed Wind Turbine

    Directory of Open Access Journals (Sweden)

    Morgan Rossander

    2017-10-01

    Full Text Available A critical speed controller for avoiding a certain rotational speed is presented. The controller is useful for variable speed wind turbines with a natural frequency in the operating range. The controller has been simulated, implemented and tested on an open site 12 kW vertical axis wind turbine prototype. The controller is based on an adaptation of the optimum torque control. Two lookup tables and a simple state machine provide the control logic of the controller. The controller requires low computational resources, and no wind speed measurement is needed. The results suggest that the controller is a feasible method for critical speed control. The skipping behavior can be adjusted using only two parameters. While tested on a vertical axis wind turbine, it may be used on any variable speed turbine with the control of generator power.

  19. Variable Speed Wind Turbine Based on Multiple Generators Drive-Train Configuration

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine. A cascaded multilevel converter interface based on the MPMSGs is developed to synthesize a desired high ac sinusoidal...... output voltage, which could be directly connected to the grids. What is more, such arrangement has been made so that the output ac voltage having a selected phase angle difference among the stator windings of multiple generators. A phase angle shift strategy is proposed in this paper, which effectively...... reduce the fluctuation of the electromagnetic torque sum and results in a good performance for the MPMSGs structure. The simulation study is conducted using PSCAD/EMTDC, and the results verify the feasibility of this variable speed wind turbine based on multiple generators drive-train configuration....

  20. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  1. Wind-driven rain as a boundary condition for HAM simulations: analysis of simplified modelling approaches

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Roels, Staf

    2007-01-01

    While the numerical simulation of moisture transfer inside building components is currently undergoing standardisation, the modelling of the atmospheric boundary conditions has received far less attention. This article analyses the modelling of the wind-driven-rain load on building facades...... though: the full variability with the perpendicular wind speed and horizontal rain intensity should be preserved, where feasible, for improved estimations of the moisture transfer in building components. In the concluding section, it is moreover shown that the dependence of the surface moisture transfer...

  2. Control of variable speed pitch-regulated wind turbines in strong wind conditions using a combined feedforward and feedback technique

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2012-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in s...

  3. A New Structure Based on Cascaded Multilevel Converter for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    An alternative structure for variable speed wind turbine, using multiple permanent magnet synchronous generators (PMSGs) drive-train configuration and cascaded multilevel converter is proposed in this paper. This study presents a power electronic solution for the wind turbine. A transformer......-less cascaded multilevel converter interface based on PMSGs is developed to synthesize a desired high ac sinusoidal output voltage. The benefits of high power and high ac voltage make this structure possible to be applied in the wind power generation. In addition, the bulky transformer could be omitted....... A simulation model of 10 MW variable speed wind turbine based on PMSGs developed in PSCAD/EMTDC is presented. The dynamic performance of grid-connected wind turbine is analyzed. Simulation results shows that the proposed structure may be attractive in wind power generation....

  4. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...... fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...

  5. Short time-scale wind forced variability in the Río de la Plata Estuary and its role on ichthyoplankton retention

    Science.gov (United States)

    Simionato, C. G.; Berasategui, A.; Meccia, V. L.; Acha, M.; Mianzan, H.

    2008-01-01

    The Río de la Plata Estuary presents a strong bottom salinity front located over a submerged shoal. Apparently favored by retention processes, it is a spawning ground for several coastal fishes. This estuary is very shallow and essentially wind driven and, moreover, in time scales relevant to biota, estuarine circulation is wind dominated and highly variable. Two intriguing questions are, therefore, how this system can favor retention and what the involved mechanisms are. This paper qualitatively explores mechanisms involved in the estuary where retention is favored applying numerical simulations in which neutral particles - simulating fish eggs and early larvae - are released along the bottom frontal zone and tracked for different wind conditions. Results suggest that retentive features can be a consequence of estuarine response to natural wind variability acting over bathymetric features. For winds from most directions, particles either remain trapped near their launching position or move northeastward to southwestward along the shoal. As alternation of winds that favor along-shoal motion is the dominant feature of wind variability in the region, a retentive scenario results from prevailing wind variability. Additionally, winds that tend to export particles with a poor chance of being restored to the front are neither frequent nor persistent. Results show, therefore, that physical forcing alone might generate a retentive scenario at the inner part of this estuary. The physical retention mechanism is more effective for bottom than for surface launched particles. Wind statistics indicate that the proposed mechanism has different implications for retention along the seasons. Spring is the most favorable season, followed by summer, when particles would have a larger propensity to reach the southern area of the estuary (Samborombón Bay). Fall and winter are increasingly less favorable. All these features are consistent with patterns observed in the region in

  6. A disturbance decoupling nonlinear control law for variable speed wind turbines

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Poulsen, Niels Kjølstad

    2007-01-01

    This paper describes a nonlinear control law for controlling variable speed wind turbines using feedback linearization. The novel aspect of the control law is its ability to decouple the effect of wind fluctuations. Furthermore, the transformation to feedback linearizable coordinates is chosen...

  7. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanting Hu

    2013-07-01

    Full Text Available Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.

  8. Fuzzy logic based variable speed wind generation system

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.

    1996-12-31

    This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.

  9. Global assessment of surfing conditions: seasonal, interannual and long-term variability

    Science.gov (United States)

    Espejo, A.; Losada, I.; Mendez, F.

    2012-12-01

    International surfing destinations owe a great debt to specific combinations of wind-wave, thermal conditions and local bathymetry. As surf quality depends on a vast number of geophysical variables, a multivariable standardized index on the basis of expert judgment is proposed to analyze surf resource in a worldwide domain. Data needed is obtained by combining several datasets (reanalyses): 60-year satellite-calibrated spectral wave hindcast (GOW, WaveWatchIII), wind fields from NCEP/NCAR, global sea surface temperature from ERSST.v3b, and global tides from TPXO7.1. A summary of the global surf resource is presented, which highlights the high degree of variability in surfable events. According to general atmospheric circulation, results show that west facing low to middle latitude coasts are more suitable for surfing, especially those in Southern Hemisphere. Month to month analysis reveals strong seasonal changes in the occurrence of surfable events, enhancing those in North Atlantic or North Pacific. Interannual variability is investigated by comparing occurrence values with global and regional climate patterns showing a great influence at both, global and regional scales. Analysis of long term trends shows an increase in the probability of surfable events over the west facing coasts on the planet (i.e. + 30 hours/year in California). The resulting maps provide useful information for surfers and surf related stakeholders, coastal planning, education, and basic research.; Figure 1. Global distribution of medium quality (a) and high quality surf conditions probability (b).

  10. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  11. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Blaabjerg, Frede; Boldea, Ion

    2004-01-01

    the interaction between a wind turbine and the power system. The model is intended to simulate the behaviour of the wind turbine using induction generators both during normal operation. Sample simulation results for two induction generators (2/0.5 MW) validate the fundamental issues.......To optimise the power produced in a wind turbine, the speed of the turbine should vary with the wind speed. A simple control method is proposed that will allow an induction machine to run a turbine at its maximum power coefficient. Various types of power control strategies have been suggested...... for application in variable speed wind turbines. The usual strategy is to control the power or the torque acting on the wind turbine shafts. This paper presents an alternative control strategy, where the rotational speed is the controlled variable. The paper describes a model, which is being developed to simulate...

  12. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    Science.gov (United States)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  13. Adaptive control algorithm for improving power capture of wind turbines in turbulent winds

    DEFF Research Database (Denmark)

    Diaz-Guerra, Lluis; Adegas, Fabiano Daher; Stoustrup, Jakob

    2012-01-01

    , the complex and time-varying aerodynamics a WT face due to turbulent winds make their determination a hard task. The selected constant parameters may maximize energy for a particular, but not all, wind regime conditions. Adaptivity can modify the controller to increase power capture under variable wind...

  14. Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-10-01

    Full Text Available Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This paper presents an input variable selection method for wind speed forecasting models. The candidate input variables for various leading periods are selected and random forests (RF is employed to evaluate the importance of all variable as features. The feature subset with the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme learning machine is constructed to evaluate the performance of input variables selection based on RF. The results of the case study show that by removing the uncorrelated and redundant features, RF effectively extracts the most strongly correlated set of features from the candidate input variables. By finding the optimal feature combination to represent the original information, RF simplifies the structure of the wind speed forecasting model, shortens the training time required, and substantially improves the model’s accuracy and generalization ability, demonstrating that the input variables selected by RF are effective.

  15. Development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A. [Quebec Univ., Montreal, PQ (Canada). Dept. of Electrical Engineering

    2010-07-01

    Interest in renewable energy sources has grown in recent years in response to concerns of increasing pollution levels and depleting fossil fuels. Among renewable energy sources, wind energy generation is the fastest growing technology and one of the most cost-effective and environmental friendly means to generate electricity from renewable sources. Modern wind turbines are ready to be deployed in large scale as a result of recent developments in wind power technology. Variable speed permanent magnet synchronous generators (PMSG) based wind energy conversion systems (WECS) are becoming more popular. The use of a permanent magnet reduces size, cost and weight of overall WECS. In addition, the absence of field winding and its excitation system avoids heat dissipation in the rotor winding, thereby improving overall efficiency of the WECS. This type of configuration is more appropriate for remote locations, particularly for off-shore wind application, where the geared doubly fed induction generator usually requires regular maintenance due to tearing-wearing in brushes, windings and gear box. This presentation discussed the development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features. A novel adaptive network-based fuzzy inference system was used to estimate the speed and position of variable speed PMSG under fluctuating wind conditions. A novel control strategy was developed for the grid interfacing inverter incorporating power quality improvement features at point of common coupling.

  16. Improving transition between power optimization and power limitation of variable speed/variable pitch wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A D; Bindner, H [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Rebsdorf, A [Vestas Wind Systems A/S, Lem (Denmark)

    1999-03-01

    The paper summarises and describes the main results of a recently performed study of improving the transition between power optimization and power limitation for variable speed/variable pitch wind turbines. The results show that the capability of varying the generator speed also can be exploited in the transition stage to improve the quality of the generated power. (au)

  17. Gain-scheduled Linear Quadratic Control of Wind Turbines Operating at High Wind Speed

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    2007-01-01

    This paper addresses state estimation and linear quadratic (LQ) control of variable speed variable pitch wind turbines. On the basis of a nonlinear model of a wind turbine, a set of operating conditions is identified and a LQ controller is designed for each operating point. The controller gains...... are then interpolated linearly to get a control law for the entire operating envelope. A nonlinear state estimator is designed as a combination of two unscented Kalman filters and a linear disturbance estimator. The gain-scheduling variable (wind speed) is then calculated from the output of these state estimators...

  18. Aerodynamic Research of the Experimental Prototype of the Variable Geometry Wind Turbine

    Directory of Open Access Journals (Sweden)

    Urbahs Aleksandrs

    2017-12-01

    Full Text Available The aim of this research is to develop a vertical rotation axis variable geometry wind turbine (WT. The experimental prototype is being manufactured with the help of CAM (Computer-aided manufacturing technologies – computer-based preparation of the product manufacturing process. The Institute of Aeronautics of Riga Technical University is using CNC (Computer Numerical Control machines for manufacturing the innovative WT and its components. The aerodynamic research has been done in T-4 wind tunnel at an air flow rate from 5 m/s to 30 m/s. The power increase of the variable geometry WT is a topical issue. Installation of such WTs in wind farms is possible and is subject to further research.

  19. Control of a Stand-Alone Variable Speed Wind Energy Supply System †

    Directory of Open Access Journals (Sweden)

    Mohamed M. Hamada

    2013-04-01

    Full Text Available This paper presents a simple control strategy for the operation of a variable speed stand-alone wind turbine with a permanent magnet synchronous generator (PMSG. The PMSG is connected to a three phase resistive load through a switch mode rectifier and a voltage source inverter. Control of the generator side converter is used to achieve maximum power extraction from the available wind power. Control of the DC-DC bidirectional buck-boost converter, which is connected between batteries bank and DC-link voltage, is used to maintain the DC-link voltage at a constant value. It is also used to make the batteries bank stores the surplus of wind energy and supplies this energy to the load during a wind power shortage. The load side voltage source inverter uses a relatively complex vector control scheme to control the output load voltage in terms of amplitude and frequency. The control strategy works under wind speed variation as well as with variable load. Extensive simulation results have been performed using MATLAB/SIMULINK.

  20. Modeling and control of PMSG-based variable-speed wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Woo; Ko, Hee-Sang [Wind Energy Research Center, Korea Institute of Energy Research, Yuseong-gu Jang-Dong 71-2,305-343 Daejeon (Korea); Kim, Sung-Soo [Chungbuk National University (Korea)

    2010-01-15

    This paper presents a control scheme of a variable-speed wind turbine with a permanent-magnetic synchronous generator (PMSG) and full-scale back-to-back voltage source converter. A comprehensive dynamical model of the PMSG wind turbine and its control scheme is presented. The control scheme comprises both the wind-turbine control itself and the power-converter control. In addition, since the PMSG wind turbine is able to support actively the grid due to its capability to control independently active and reactive power production to the imposed set-values with taking into account its operating state and limits, this paper presents the supervisory reactive power control scheme in order to regulate/contribute the voltage at a remote location. The ability of the control scheme is assessed and discussed by means of simulations, based on a candidate site of the offshore wind farm in Jeju, Korea. (author)

  1. An Analysis of Variable-Speed Wind Turbine Power-Control Methods with Fluctuating Wind Speed

    Directory of Open Access Journals (Sweden)

    Seung-Il Moon

    2013-07-01

    Full Text Available Variable-speed wind turbines (VSWTs typically use a maximum power-point tracking (MPPT method to optimize wind-energy acquisition. MPPT can be implemented by regulating the rotor speed or by adjusting the active power. The former, termed speed-control mode (SCM, employs a speed controller to regulate the rotor, while the latter, termed power-control mode (PCM, uses an active power controller to optimize the power. They are fundamentally equivalent; however, since they use a different controller at the outer control loop of the machine-side converter (MSC controller, the time dependence of the control system differs depending on whether SCM or PCM is used. We have compared and analyzed the power quality and the power coefficient when these two different control modes were used in fluctuating wind speeds through computer simulations. The contrast between the two methods was larger when the wind-speed fluctuations were greater. Furthermore, we found that SCM was preferable to PCM in terms of the power coefficient, but PCM was superior in terms of power quality and system stability.

  2. Wind generator with electronic variable-speed drives

    Energy Technology Data Exchange (ETDEWEB)

    David, A.; Buchheit, N.; Jakobsen, H.

    1996-12-31

    Variable speed drives have been inserted between the network and the generator on certain recent wind power facilities. They have the following advantages: the drive allows the wind generator to operate at low speed with a significant reduction in acoustic noise, an important point if the facilities are sited near populated areas; the drive optimizes energy transfer, providing a gain of 4 to 10 %; the drive can possibly replace certain mechanical parts (the starting system and it in some cases, the reduction gear); the drive not only provides better transient management in relation to the network for less mechanical stress on the wind generator, it is also able to control reactive power. One commercial drive design sold by several manufacturers has already been installed on several wind generators with outputs of between 150 and 600 kw. In addition, such a solution is extremely well suited to mixed renewable energy systems. This design uses two inverse rectifier type converters and can therefore exchange energy in both directions. The equivalent drive with a single IGBT converter on the motor side and a diode converter on the network side is the solution most widely adopted throughout industry (with more than 50, 000 units installed in France per year). It still remains to be seen whether such a solution could be profitable in wind generator application (since the cost of the drive is quite high). This technical analysis is more destined for the converter-machine assembly specialists and is presented in this document, paying particular attention as it does to the modelling of the `wind energy - generator - drive - network` assembly, the associated drive command and control strategies and the simulations obtained during various transients. A 7.5 kW test bed has been installed in the Laboratoire d`Electronique de Puissance de Clamart, enabling tests to be carried out which emulate the operation of a wind generator.

  3. An improved fuzzy synthetic condition assessment of a wind turbine generator system

    DEFF Research Database (Denmark)

    Li, H.; Hu, Y. G.; Yang, Chao

    2013-01-01

    This paper presents an improved fuzzy synthetic model that is based on a real-time condition assessment method of a grid-connected wind turbine generator system (WTGS) to improve the operational reliability and optimize the maintenance strategy. First, a condition assessment framework is proposed...... by analyzing the monitoring data of the WTGS. An improved fuzzy synthetic condition assessment method is then proposed that utilizes the concepts of deterioration degree, dynamic limited values and variable weight calculations of the assessment indices. Finally, by using on-line monitoring data of an actual...... 850 kW WTGS, real-time condition assessments are performed that utilize the proposed fuzzy synthetic method; the model’s effectiveness is also compared to a traditional fuzzy assessment method in which constant limited values and constant weights are adopted. The results show that the condition...

  4. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    International Nuclear Information System (INIS)

    Tutelea, L N; Deaconu, S I; Popa, G N

    2015-01-01

    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA]. (paper)

  5. Spatial and temporal variability of winds in the Northern European Seas

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Badger, Merete; Hahmann, Andrea N.

    2013-01-01

    the spatial and temporal variability of the near-surface wind field, including the inter- and intra-annual variability for resource assessment purposes. This study demonstrates the applicability of satellite observations as the means to provide information useful for selecting areas to perform higher...

  6. Effect of high wind conditions on AHX performance for PFBR

    International Nuclear Information System (INIS)

    Goyal, P.; Datta, Anu; Verma, Vishnu; Singh, R.K.

    2013-05-01

    In case of normal shut down or station blackout condition the core decay heat is removed by Safety Grade Decay Heat Removal System (SGDHRS) in PFBR. The Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. SGDHRS remove decay heat from the core and dissipate it into the environment with the help of Air Heat Exchanger (AHX). SGDHRS consists of four redundant numbers of totally independent circuits capable of removing decay heat from the hot pool through natural convection in the primary and intermediate sodium sides as well as in the air side. Each circuit consists of a sodium to sodium heat exchanger (DHX) and a sodium to AHX connected to intermediate sodium circuit, AHX is located at a higher elevation compared to DHX. AHX is serpentine type finned tube compact heat exchanger with sodium in the tube side and air flowing over finned tubes. A tall stack provides the driving force for the natural convection of air flow through the AHX, when the dampers are opened. The AHX is placed outside of Reactor Control Building (RCB), on the roof of Steam Generator Building. Due to the presence of nearby buildings around the stack, the AHX performance under high wind condition may be affected. A CFD simulation using CFD-ACE+ code has been carried in which effect of high wind condition and nearby building on AHX performance have been studied. For high wind condition various orientation of wind movement was considered for parametric studies. AHX performance for all the cases were compared with the results that obtained for the absence of nearby buildings. A comparative table was prepared to understand how the AHX performance is effected with the high wind condition for various direction and with the presence of nearby building. It was observed that AHX performance is influenced by high wind conditions in most of the cases for with and without presence of nearby building. Hence to ensure the optimal performance of the AHX under high wind conditions its

  7. Modeling and Design Optimization of Variable-Speed Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Ulas Eminoglu

    2014-01-01

    Full Text Available As a result of the increase in energy demand and government subsidies, the usage of wind turbine system (WTS has increased dramatically. Due to the higher energy production of a variable-speed WTS as compared to a fixed-speed WTS, the demand for this type of WTS has increased. In this study, a new method for the calculation of the power output of variable-speed WTSs is proposed. The proposed model is developed from the S-type curve used for population growth, and is only a function of the rated power and rated (nominal wind speed. It has the advantage of enabling the user to calculate power output without using the rotor power coefficient. Additionally, by using the developed model, a mathematical method to calculate the value of rated wind speed in terms of turbine capacity factor and the scale parameter of the Weibull distribution for a given wind site is also proposed. Design optimization studies are performed by using the particle swarm optimization (PSO and artificial bee colony (ABC algorithms, which are applied into this type of problem for the first time. Different sites such as Northern and Mediterranean sites of Europe have been studied. Analyses for various parameters are also presented in order to evaluate the effect of rated wind speed on the design parameters and produced energy cost. Results show that proposed models are reliable and very useful for modeling and optimization of WTSs design by taking into account the wind potential of the region. Results also show that the PSO algorithm has better performance than the ABC algorithm for this type of problem.

  8. Variable Ratio Hydrostatic Transmission Simulator for Optimal Wind Power Drivetrains

    Directory of Open Access Journals (Sweden)

    Jose M. Garcia-Bravo

    2017-01-01

    Full Text Available This work presents a hydromechanical transmission coupled to an electric AC motor and DC generator to simulate a wind power turbine drive train. The goal of this project was to demonstrate and simulate the ability of a hydrostatic variable ratio system to produce constant electric power at varying wind speeds. The experimental results show that the system can maintain a constant voltage when a 40% variation in input speed is produced. An accompanying computer simulation of the system was built and experimentally validated showing a discrete error no larger than 12%. Both the simulation and the experimental results show that the electrical power output can be regulated further if an energy storage device is used to absorb voltage spikes produced by abrupt changes in wind speed or wind direction.

  9. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Weihao; Zhang, Yunqian; Chen, Zhe

    2013-01-01

    operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power...... oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.......Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG...

  10. Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions

    DEFF Research Database (Denmark)

    Battistia, L.; Benini, E.; Brighenti, A.

    2016-01-01

    The DeepWind Project aims at investigating the feasibility of a new floating vertical-axis wind turbine (VAWT) concept, whose purpose is to exploit wind resources at deep-water offshore sites. The results of an extensive experimental campaign on the DeepWind reduced scale demonstrator are here...... was installed on a high precision test bench, whose axis was suitable to be inclined up to 15° with respect to the design (i.e. upright) operating condition. The experiments were performed at the large scale, high speed wind tunnel of the Politecnico di Milano (Italy), using a “free jet” (open channel...... presented for different wind speeds and rotor angular velocities, including also skewed flow operation due to a tilted rotor arrangement. To accomplish this, after being instrumented to measure aerodynamic power and thrust (both in streamwise and transversal directions), a troposkien three-bladed rotor...

  11. Can wind help explain seasonal differences in avian migration speed?

    NARCIS (Netherlands)

    Kemp, M.U.; Shamoun-Baranes, J.; van Gasteren, H.; Bouten, W.; van Loon, E.E.

    2010-01-01

    A bird's ground speed is influenced by the wind conditions it encounters. Wind conditions, although variable, are not entirely random. Instead, wind exhibits persistent spatial and temporal dynamics described by the general circulation of the atmosphere. As such, in certain geographical areas wind's

  12. Constraining 20th Century Pacific Trade-Wind Variability Using Coral Mn/Ca

    Science.gov (United States)

    Sayani, H. R.; Thompson, D. M.; Carilli, J.; Ireland, T. J.; Cobb, K. M.; Atwood, A. R.; Grothe, P. R.; Miller, S. J.; Hitt, N. T.; O'Connor, G.

    2017-12-01

    Global mean surface temperatures during the 20th century are characterized by multidecadal periods of either accelerated or reduced rates of warming that cannot be explained by external forcings alone. Both observations and modeling studies suggest that the reduced rate of global surface warming during the early-2000s can be largely explained by decadal climate variability in the tropical Pacific, specifically changes in trade-wind strength [e.g. Meehl et al., 2016]. However, the relationship between Pacific trade-wind strength and global surface warming is poorly constrained due to the lack of instrumental wind observations prior to the 1970s. Surface corals are now routinely used to generate records of past sea-surface temperature (SST) change, and have dramatically improved our understanding of oceanic variability in the tropical Pacific. Yet, there are few direct measurements of the atmospheric response to this SST variability. Skeletal Mn/Ca ratios in corals from Tarawa Atoll (1.3˚N, 173˚E) have been shown to track El Niño-related westerly wind events on interannual timescales [Shen et al., 1992], and the strength of Pacific trade winds on decadal timescales [Thompson et al., 2015]. Here, we investigate the utility of this novel wind proxy at Kiritimati Atoll (Christmas Island; 2˚N, 157.5˚W), a site that is hydrographically similar to Tarawa. We use a series of seawater samples collected across the 2015/16 El Niño to characterize and quantify the relationship between westerly wind events and seawater Mn variability around Kiritimati. Anchored by this modern-day calibration, we present a new reconstruction of westerly winds across the late-20thcentury from Kiritimati Atoll. We also assess the reproducibility of coral Mn/Ca across cores collected at varying distances from the lagoon, which represents the primary source of seawater Mn to the reef at our site. Lastly, we discuss the strengths and limitations of this novel proxy, as well as the potential for

  13. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    International Nuclear Information System (INIS)

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-01-01

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvénic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvénic structures, while Alfvénic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvénic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  14. Golf in the Wind: Exploring the Effect of Wind on the Accuracy of Golf Shots

    Science.gov (United States)

    Yaghoobian, Neda; Mittal, Rajat

    2015-11-01

    Golf play is highly dependent on the weather conditions with wind being the most significant factor in the unpredictability of the ball landing position. The direction and strength of the wind alters the aerodynamic forces on a ball in flight, and consequently its speed, distance and direction of travel. The fact that local wind conditions on any particular hole change over times-scales ranging all the way from a few seconds to minutes, hours and days introduces an element of variability in the ball trajectory that is not understood. Any such analysis is complicated by the effect of the local terrestrial and vegetation topology, as well as the inherent complexity of golf-ball aerodynamics. In the current study, we use computational modeling to examine the unpredictability of the shots under different wind conditions over Hole-12 at the Augusta National Golf Club, where the Masters Golf Tournament takes place every year. Despite this being the shortest hole on the course, the presence of complex vegetation canopy around this hole introduces a spatial and temporal variability in wind conditions that evokes uncertainty and even fear among professional golfers. We use our model to examine the effect of wind direction and wind-speed on the accuracy of the golf shots at this hole and use the simulations to determine the key aerodynamic factors that affect the accuracy of the shot.

  15. Analysis of North Sea Offshore Wind Power Variability

    Directory of Open Access Journals (Sweden)

    Aymeric Buatois

    2014-05-01

    Full Text Available This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind farms, and this total production is analyzed to identify the largest aggregated hourly power variations. Based on publicly available information, a simplified representation of the coastal power grid is built for the countries bordering the North Sea. Wind farms less than 60 km from shore are connected radially to the mainland, while the rest are connected to a hypothetical offshore HVDC (High-Voltage Direct Current power grid, designed such that wind curtailment does not exceed 1% of production. Loads and conventional power plants by technology and associated cost curves are computed for the various national power systems, based on 2030 projections. Using the MATLAB-based MATPOWER toolbox, the hourly optimal power flow for this regional hybrid AC/DC grid is computed for high, low and medium years from the meso-scale database. The largest net load variations are evaluated per market area and related to the extra load-following reserves that may be needed from conventional generators.

  16. CFD modelling of nocturnal low-level jet effects on wind energy related variables

    Science.gov (United States)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba; Ejsing Jørgensen, Hans

    2010-05-01

    The development of a wind speed maximum in the nocturnal boundary layer, referred to as a low-level jet (LLJ), is a common feature of the vertical structure of the atmospheric boundary layer (ABL). Characterizing and understanding LLJ streams is growing in importance as wind turbines are being built larger and taller to take advantage of higher wind speeds at increased heights. We used a computational fluid dynamics (CFD) model to explore LLJs effect on wind speed, wind directional and speed shear inside the surface layer 40 - 130 m, where their physical measurements are not trivial and still rare today. We used the one-dimensional version of the ABL model SCADIS (Sogachev et al. 2002: Tellus 54:784-819). The unique feature of the model, based on a two-equation closure approach, is the treatment of buoyancy effects in a universal way, which overcomes the uncertainties with model coefficients for non-shear source/sink terms (Sogachev, 2009: Boundary Layer Meteor. 130:423-435). From a variety of mechanisms suggested for formation of LLJs, such as inertial oscillations, baroclinicity over sloping terrain, and land-sea breeze effects, the one-dimensional ABL model is capable of simulating only the first one. However, that mechanism, which is caused by the diurnal oscillation of eddy viscosity, is often responsible for jet formation. Sensitivity tests carried out showed that SCADIS captures the most prominent features of the LLJ, including its vertical structure as well as its diurnal phase and amplitude. We simulated ABL pattern under conditions typical for LLJ formation (a fair day on July 1, a flat low-roughness underlying surface) at 30 and 50o latitudes. Diurnal variability of wind speed and turbulence intensity at four levels of 40, 70, 100 and 130 m above ground and of wind and directional shear between those levels were analysed. Despite of small differences in LLJ structure the properties of LLJ important for wind energy production are still common for two

  17. Testing the effectiveness of monolayers under wind and wave conditions.

    Science.gov (United States)

    Palada, C; Schouten, P; Lemckert, C

    2012-01-01

    Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.

  18. Wind energy under cold climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-03-01

    There is an increasing interest in wind energy production under different climatic conditions, among them cold climate and icing conditions. More and more wind turbines are being installed in cold climates and even adapted technology has been developed for that environment. Various national activities are going on in at least Finland, Canada, Italy, Sweden, etc. and international collaboration has been carried out within the European Union's Non-nuclear energy programme. Wind turbine operation is affected by both the cold temperatures and the formation of ice on the blades and the supporting structure. Cold temperatures can be handled by material selections known in other technical fields but to prevent icing, new techniques have to be - and have been - developed. Icing affects the reliability of anemometers, which concerns both turbine control and resource estimation, and changes the aerodynamics of the blades, which eventually stops the turbine. In addition, occasional icing events can locally affect public safety. The development of applied technology has entered some different paths and different solutions are tried out. As the applications are entering a commercial phase, these is a request to gather the experiences and monitor the reliability in a form that can be utilised by developers, manufactureres, consultants and other tenderers. The Topical Experts Meeting will focus on site classification, operational experiences, modelling and mesurements of ice induced loads and safety aspects. (EHS)

  19. Low-Voltage Ride-Through of Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    This paper presents a simulation model of a MW-level variable speed wind turbine with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simulation tool of PSCAD/EMTDC. The low voltage ride-through (LVRT) capability of the wind turbine is investigated. A new...... control scheme for the wind turbine that keeps it connected to the grid during grid faults is designed and simulated. Its design has special focus on the regulation of the DC-link voltage. Simulation results show the proposed control scheme is an effective measure to improve LVRT capability of variable...

  20. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during.......3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscillation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals...

  1. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Science.gov (United States)

    Rodgers, K. B.; Mikaloff-Fletcher, S. E.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B. R.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.

    2011-10-01

    Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  2. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Directory of Open Access Journals (Sweden)

    K. B. Rodgers

    2011-10-01

    Full Text Available Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004 indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980 or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980. As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950–1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980–2004. This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  3. Wind Patterns of Coastal Tanzania: Their Variability and Trends

    African Journals Online (AJOL)

    Abstract—Patterns in Tanzanian coastal winds were investigated in terms of their variability at the weather stations of Tanga, Zanzibar, Dar es Salaam and Mtwara. Three-hourly data collected over a 30-year period (1977-2006) were used for the study. Statistical analyses included regressions, correlations, spectral analysis,.

  4. Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting

    DEFF Research Database (Denmark)

    Gallego, Cristobal; Pinson, Pierre; Madsen, Henrik

    2011-01-01

    Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these e......Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some...... on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power...... transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different...

  5. Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods

    OpenAIRE

    Peng Guo; Nan Bai

    2011-01-01

    Condition Monitoring (CM) of wind turbines can greatly reduce the maintenance costs for wind farms, especially for offshore wind farms. A new condition monitoring method for a wind turbine gearbox using temperature trend analysis is proposed. Autoassociative Kernel Regression (AAKR) is used to construct the normal behavior model of the gearbox temperature. With a proper construction of the memory matrix, the AAKR model can cover the normal working space for the gearbox. When the gearbox has a...

  6. Application of Portfolio Theory to Minimization of Generation Variability in a System with Wind plants

    International Nuclear Information System (INIS)

    Sabolic, D.

    2016-01-01

    This paper evaluates validity of modern portfolio theory (MPT) for planning of installation of new wind plants with the lowest possible generation variability for given expected yearly generation. Suppose a Planner had historic meteorological data on wind speeds at a finite number of locations over longer time periods, and that they were technically convertible to time series of forecasted generation powers per megawatt of installed capacity. Suppose further that she intended to upgrade existing system with certain fixed amount of new wind plant capacity. Then she would be able to allocate shares in that total capacity to the available locations in a way that suits her policy goals regarding relation between total expected annual generation and total variability of generation best. Minimization of variability is a legitimate policy goal because it increases total costs of energy supply, so that leaving generation to vary more than technically necessary is economically inefficient. This article focuses on applicability of portfolio theory to such a problem. In the presented research, measured 15-minute data of wind generation in existing Croatian wind plants were used.(author).

  7. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016

    Science.gov (United States)

    Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability. PMID:29329349

  8. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016.

    Science.gov (United States)

    Wohland, Jan; Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability.

  9. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016.

    Directory of Open Access Journals (Sweden)

    Jan Wohland

    Full Text Available Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability.

  10. IUE observations of variability in winds from hot stars

    Science.gov (United States)

    Grady, C. A.; Snow, T. P., Jr.

    1981-01-01

    Observations of variability in stellar winds or envelopes provide an important probe of their dynamics. For this purpose a number of O, B, Be, and Wolf-Rayet stars were repeatedly observed with the IUE satellite in high resolution mode. In the course of analysis, instrumental and data handling effects were found to introduce spurious variability in many of the spectra. software was developed to partially compensate for these effects, but limitations remain on the type of variability that can be identified from IUE spectra. With these contraints, preliminary results of multiple observations of two OB stars, one Wolf-Rayet star, and a Be star are discussed.

  11. Near-IR spectroscopic monitoring of CLASS I protostars: Variability of accretion and wind indicators

    Energy Technology Data Exchange (ETDEWEB)

    Connelley, Michael S. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Greene, Thomas P. [NASA Ames Research Center, M.S. 245-6, Moffett Field, CA 94035 (United States)

    2014-06-01

    We present the results of a program that monitored the near-IR spectroscopic variability of a sample of 19 embedded protostars. Spectra were taken on time intervals from 2 days to 3 yr, over a wavelength range from 0.85 μm to 2.45 μm, for 4-9 epochs of observations per target. We found that the spectra of all targets are variable and that every emission feature observed is also variable (although not for all targets). With one exception, there were no drastic changes in the continua of the spectra, nor did any line completely disappear, nor did any line appear that was not previously apparent. This analysis focuses on understanding the connection between accretion (traced by H Br γ and CO) and the wind (traced by He I, [Fe II], and sometimes H{sub 2}). For both accretion and wind tracers, the median variability was constant versus the time interval between observations; however, the maximum variability that we observed increased with the time interval between observations. Extinction is observed to vary within the minimum sampling time of 2 days, suggesting extinguishing material within a few stellar radii at high disk latitudes. The variability of [Fe II] and H{sub 2} were correlated for most (but not all) of the 7 young stellar objects showing both features, and the amplitude of the variability depends on the veiling. Although the occurrence of CO and Br γ emission are connected, their variability is uncorrelated, suggesting that these emissions originate in separate regions near the protostar (e.g., disk and wind). The variability of Br γ and wind tracers were found to be positively correlated, negatively correlated, or uncorrelated, depending on the target. The variability of Br γ, [Fe II], and H{sub 2} always lies on a plane, although the orientation of the plane in three dimensions depends on the target. While we do not understand all interactions behind the variability that we observed, we have shown that spectroscopic variability is a powerful tool

  12. Altitudinal gradients, midwinter melt, and wind effects on snow accumulation in semiarid midlatitude Andes under La Niña conditions

    Science.gov (United States)

    Ayala, A.; McPhee, J.; Vargas, X.

    2014-04-01

    The Andes Cordillera remains a sparsely monitored and studied snow hydrology environment in comparison to similar mountain ranges in the Northern Hemisphere. In order to uncover some of the key processes driving snow water equivalent (SWE) spatial variability, we present and analyze a distributed SWE data set, sampled at the end of accumulation season 2011. Three representative catchments across the region were monitored, obtaining measurements in an elevation range spanning 2000 to 3900 m asl and from 32.4° to 34.0°S in latitude. Climatic conditions during this season corresponded to a moderate La Niña phenomenon, which is generally correlated with lower-than normal accumulation. Collected measurements can be described at the regional and watershed extents by altitudinal gradients that imply an increase by a factor of two in snow depth between 2200 and 3000 m asl, though with significant variability at the upper sites. In these upper sites, we found north-facing, wind-sheltered slopes showing 25% less average SWE values than south-facing, wind-exposed ones. This suggests that under these conditions, solar radiation dominated wind transport effects in controlling end-of-winter variability. Nevertheless, we found clusters of snow depth measurements above 3000 m asl that can be explained by wind exposure differences. This is the first documented snow depth data set of this spatial extent for this region, and it is framed within an ongoing research effort aimed at improving understanding and modeling of snow hydrology in the extratropical Andes Cordillera.

  13. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  14. Response Load Extrapolation for Wind Turbines during Operation Based on Average Conditional Exceedance Rates

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan

    2011-01-01

    to cases where the Gumbel distribution is the appropriate asymptotic extreme value distribution. However, two extra parameters are introduced by which a more general and flexible class of extreme value distributions is obtained with the Gumbel distribution as a subclass. The general method is implemented...... within a hierarchical model where the variables that influence the loading are divided into ergodic variables and time-invariant non-ergodic variables. The presented method for statistical response load extrapolation was compared with the existing methods based on peak extrapolation for the blade out......The paper explores a recently developed method for statistical response load (load effect) extrapolation for application to extreme response of wind turbines during operation. The extrapolation method is based on average conditional exceedance rates and is in the present implementation restricted...

  15. UDE-based control of variable-speed wind turbine systems

    Science.gov (United States)

    Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang

    2017-01-01

    In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.

  16. Modeling, Simulation and Control of Matrix Convert for Variable Speed Wind Turbine System

    Directory of Open Access Journals (Sweden)

    M. Alizadeh Moghadam

    2015-09-01

    Full Text Available This paper presents modeling, simulation and control of matrix converter (MC for variable speed wind turbine (VSWT system including permanent magnet synchronous generator (PMSG. At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independent control maximum power point tracking (MPPT of generator side and regulate reactive power of grid side for the operation of the VSWT system. The MPPT is implemented by a new control system. This control system is based on control of zero d-axis current (ZDC. The ZDC control can be realized by transfer the three-phase stator current in the stationary reference frame into d-and q-axis components in the synchronous reference frame. Also this paper is presented, a novel control strategy to regulate the reactive power supplied by a variable speed wind energy conversion system. This control strategy is based on voltage oriented control (VOC. The simulation results based on Simulink/Matlab software show that the controllers can extract maximum power and regulate reactive power under varying wind velocities.

  17. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  18. DFIG-based offshore wind power plant connected to a single VSC-HVDC operated at variable frequency: Energy yield assessment

    International Nuclear Information System (INIS)

    De-Prada-Gil, Mikel; Díaz-González, Francisco; Gomis-Bellmunt, Oriol; Sumper, Andreas

    2015-01-01

    The existence of HVDC (High Voltage Direct Current) transmission systems for remote offshore wind power plants allows devising novel wind plant concepts, which do not need to be synchronized with the main AC grid. This paper proposes an OWPP (offshore wind power plant) design based on variable speed wind turbines driven by DFIGs (doubly fed induction generators) with reduced power electronic converters connected to a single VSC-HVDC converter which operates at variable frequency and voltage within the collection grid. It is aimed to evaluate the influence of the power converter size and wind speed variability within the WPP on energy yield efficiency, as well as to develop a coordinated control between the VSC-HVDC converter and the individual back-to-back reduced power converters of each DFIG-based wind turbine in order to provide control capability for the wind power plant at a reduced cost. To maximise wind power generation by the OWPP, an optimum electrical frequency search algorithm for the VSC-HVDC converter is proposed. Both central wind power plant control level and local wind turbine control level are presented and the performance of the system is validated by means of simulations using MATLAB/Simulink ® . - Highlights: • Influence of converter size and wind speed variability on energy capture efficiency. • Coordinated control between a VSC-HVDC and DFIG WTs with reduced power converters. • Static and dynamic analysis of the performance of the implemented control scheme. • Optimal variable frequency operation to maximize WPP generation at a reduced cost

  19. Flap controllers applied on the OffshoreWindChina (OWC) 5MW reference wind turbine for Chinese typhoon conditions

    DEFF Research Database (Denmark)

    Barlas, Athanasios

    The report describes the development of flap controllers applied on the OffshoreWindChina (OWC) 5MW reference wind turbine for Chinese typhoon conditions. Optimal flap controllers are designed and tuned based on linear aeroelastic models from HawcStab2. The controllers are evaluated in normal......, parked and storm conditions, targeting the alleviation of fatigue and extreme loads....

  20. Do Wind Turbines Affect Weather Conditions?: A Case Study in Indiana

    Directory of Open Access Journals (Sweden)

    Meghan F. Henschen

    2011-01-01

    Full Text Available Wind turbines are becoming increasingly widespread in the United States as the world looks for cleaner sources of energy. Scientists, policymakers, and citizens have strong opinions regarding the positive and negative effects of wind energy projects, and there is a great deal of misinformation about wind energy circulating on the Web and other media sources. The purpose of this study is to gain a better understanding of how the rotation of hundreds of turbines can influence local weather conditions within a wind farm and in the surrounding areas. This experiment measures temperature, atmospheric pressure, wind speed, wind direction, relative humidity, and evaporation with five weather instruments at Meadow Lake Wind Farm located in White, Jasper, and Benton Counties, Indiana, from November 4 through November 18, 2010. The data show that as wind passes throughout the wind farm, the air warms during the overnight and early morning hours and cools during daytime hours. Observed lower humidity rates and higher evaporation rates downwind also demonstrate that the air dries out as it travels through the wind farm. Further research over multiple seasons is necessary to examine the effects of warmer nighttime temperatures and drier conditions progressively downwind of the installation. Nevertheless, wind turbines did not negatively affect local weather patterns in our small-scale research and may actually prevent frost, which could have important positive implications for farmers by potentially prolonging the growing season.

  1. Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelrahem

    2016-12-01

    Full Text Available Currently, the electric power production by wind energy conversion systems (WECSs has increased significantly. Consequently, wind turbine (WT generators are requested to fulfill the grid code (GC requirements stated by network operators. In case of grid faults/voltage dips, a mismatch between the generated active power from the wind generator and the active power delivered to the grid is produced. The conventional approach is using a braking chopper (BC in the DC-link to dissipate this active power. This paper proposes a fault-ride through (FRT strategy for variable-speed WECSs based on permanent magnet synchronous generators (PMSGs. The proposed strategy exploits the rotor inertia of the WECS (inertia of the WT and PMSG to store the surplus active power during the grid faults/voltage dips. Thus, no additional hardware components are requested. Furthermore, a direct model predictive control (DMPC scheme for the PMSG is proposed in order to enhance the dynamic behavior of the WECS. The behavior of the proposed FRT strategy is verified and compared with the conventional BC approach for all the operation conditions by simulation results. Finally, the simulation results confirm the feasibility of the proposed FRT strategy.

  2. Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2015-01-01

    This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...

  3. Spatial and temporal variability of mean daily wind speeds in the Czech Republic, 1961-2015

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Zahradníček, Pavel; Řezníčková, Ladislava; Tolasz, R.; Štěpánek, Petr; Dobrovolný, Petr

    2017-01-01

    Roč. 72, č. 3 (2017), s. 197-216 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-11805S Institutional support: RVO:67179843 Keywords : mean daily wind speed * spatial variability * temporal variability * wind stilling * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.578, year: 2016

  4. Meso-scale wind variability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Larsen, X.; Vincent, C.; Soerensen, P.; Pinson, P.; Trombe, P.-J.; Madsen, H.; Cutululis, N.

    2011-11-15

    The project has aimed to characterize mesoscale meteorological phenomenon for the North Sea and the Inner Danish waters, and additionally aimed on improving the predictability and quality of the power production from offshore windfarms. The meso-scale meteorology has been characterized with respect to the physical processes, climatology, spectral characteristics and correlation properties based on measurements from wind farms, satellite data (SAR) and mesoscale numerical modeling (WRF). The abilities of the WRF model to characterize and predict relevant mesoscale phenomenon has been proven. Additionally application of statistical forecasting, using a Markov switching approach that can be related to the meteorological conditions, to analyze and short term predict the power production from an offshore wind farms have been documented. Two PhD studies have been conducted in connection with the project. The project has been a cooperative project between Risoe DTU, IMM DTU, DONG Energy, Vattenfall and VESTAS. It is registered as Energinet.dk, project no. 2007-1-7141. (Author)

  5. A conceptual framework for evaluating variable speed generator options for wind energy applications

    Science.gov (United States)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-01-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  6. Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights

    International Nuclear Information System (INIS)

    Wang, Longyan; Tan, Andy C.C.; Cholette, Michael; Gu, Yuantong

    2016-01-01

    Highlights: • The effectiveness of three analytical wake models is studied. • The results of the analytical wake models are compared with the CFD simulations. • The results of CFD simulation are verified by comparison to the offshore wind farm observation data. • The onshore wind farm with both constant and different hub height turbines are analyzed. • PARK model is able to predict the total wind farm power production well with tuned surface roughness value. - Abstract: Extensive power losses of wind farm have been witnessed due to the wake interactions between wind turbines. By applying analytical wake models which describe the wind speed deficits in the wake quantitatively, the power losses can be regained to a large extent through wind farm layout optimization, and this has been extensively reported in literature. Nevertheless, the effectiveness of the analytical wake models in predicting the wind farm power production have rarely been studied and compared for wind farm with both constant and variable wind turbine hub heights. In this study, the effectiveness of three different analytical wake models (PARK model, Larsen model and B-P model) is thoroughly compared over a wide range of wake properties. After the validation with the observation data from offshore wind farm, CFD simulations are used to verify the effectiveness of the analytical wake models for an onshore wind farm. The results show that when using the PARK model the surface roughness value (z 0 ) must be carefully tuned to achieve good performance in predicting the wind farm power production. For the other two analytical wake models, their effectiveness varies depending on the situation of wind farm (offshore or onshore) and the wind turbine hub heights (constant or variable). It was found that the results of B-P model agree well with the CFD simulations for offshore wind farm, but not for the onshore wind farm. The Larsen model is more accurate for the wind farm with variable wind turbine

  7. LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe

    2014-01-01

    Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...

  8. 75 FR 2159 - In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of...

    Science.gov (United States)

    2010-01-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-641] In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of Investigation With Final Determination of No..., and the sale within the United States after importation of certain variable speed wind turbines and...

  9. Wind Turbine Condition Monitoring Strategy through Multiway PCA and Multivariate Inference

    Directory of Open Access Journals (Sweden)

    Francesc Pozo

    2018-03-01

    Full Text Available This article states a condition monitoring strategy for wind turbines using a statistical data-driven modeling approach by means of supervisory control and data acquisition (SCADA data. Initially, a baseline data-based model is obtained from the healthy wind turbine by means of multiway principal component analysis (MPCA. Then, when the wind turbine is monitorized, new data is acquired and projected into the baseline MPCA model space. The acquired SCADA data are treated as a random process given the random nature of the turbulent wind. The objective is to decide if the multivariate distribution that is obtained from the wind turbine to be analyzed (healthy or not is related to the baseline one. To achieve this goal, a test for the equality of population means is performed. Finally, the results of the test can determine that the hypothesis is rejected (and the wind turbine is faulty or that there is no evidence to suggest that the two means are different, so the wind turbine can be considered as healthy. The methodology is evaluated on a wind turbine fault detection benchmark that uses a 5 MW high-fidelity wind turbine model and a set of eight realistic fault scenarios. It is noteworthy that the results, for the presented methodology, show that for a wide range of significance, α ∈ [ 1 % , 13 % ] , the percentage of correct decisions is kept at 100%; thus it is a promising tool for real-time wind turbine condition monitoring.

  10. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-Saharan Africa.

    Science.gov (United States)

    Vansteelant, W M G; Kekkonen, J; Byholm, P

    2017-05-31

    Contemporary tracking studies reveal that low migratory connectivity between breeding and non-breeding ranges is common in migrant landbirds. It is unclear, however, how internal factors and early-life experiences of individual migrants shape the development of their migration routes and concomitant population-level non-breeding distributions. Stochastic wind conditions and geography may determine whether and where migrants end up by the end of their journey. We tested this hypothesis by satellite-tagging 31 fledgling honey buzzards Pernis apivorus from southern Finland and used a global atmospheric reanalysis model to estimate the wind conditions they encountered on their first outbound migration. Migration routes diverged rapidly upon departure and the birds eventually spread out across 3340 km of longitude. Using linear regression models, we show that the birds' longitudinal speeds were strongly affected by zonal wind speed, and negatively affected by latitudinal wind, with significant but minor differences between individuals. Eventually, 49% of variability in the birds' total longitudinal displacements was accounted for by wind conditions on migration. Some birds circumvented the Baltic Sea via Scandinavia or engaged in unusual downwind movements over the Mediterranean, which also affected the longitude at which these individuals arrived in sub-Saharan Africa. To understand why adult migrants use the migration routes and non-breeding sites they use, we must take into account the way in which wind conditions moulded their very first journeys. Our results present some of the first evidence into the mechanisms through which low migratory connectivity emerges. © 2017 The Authors.

  11. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-Saharan Africa

    Science.gov (United States)

    Kekkonen, J.; Byholm, P.

    2017-01-01

    Contemporary tracking studies reveal that low migratory connectivity between breeding and non-breeding ranges is common in migrant landbirds. It is unclear, however, how internal factors and early-life experiences of individual migrants shape the development of their migration routes and concomitant population-level non-breeding distributions. Stochastic wind conditions and geography may determine whether and where migrants end up by the end of their journey. We tested this hypothesis by satellite-tagging 31 fledgling honey buzzards Pernis apivorus from southern Finland and used a global atmospheric reanalysis model to estimate the wind conditions they encountered on their first outbound migration. Migration routes diverged rapidly upon departure and the birds eventually spread out across 3340 km of longitude. Using linear regression models, we show that the birds' longitudinal speeds were strongly affected by zonal wind speed, and negatively affected by latitudinal wind, with significant but minor differences between individuals. Eventually, 49% of variability in the birds' total longitudinal displacements was accounted for by wind conditions on migration. Some birds circumvented the Baltic Sea via Scandinavia or engaged in unusual downwind movements over the Mediterranean, which also affected the longitude at which these individuals arrived in sub-Saharan Africa. To understand why adult migrants use the migration routes and non-breeding sites they use, we must take into account the way in which wind conditions moulded their very first journeys. Our results present some of the first evidence into the mechanisms through which low migratory connectivity emerges. PMID:28539514

  12. Identification of severe wind conditions using a Reynolds Averaged Navier-Stokes solver

    International Nuclear Information System (INIS)

    Soerensen, N N; Bechmann, A; Johansen, J; Myllerup, L; Botha, P; Vinther, S; Nielsen, B S

    2007-01-01

    The present paper describes the application of a Navier-Stokes solver to predict the presence of severe flow conditions in complex terrain, capturing conditions that may be critical to the siting of wind turbines in the terrain. First it is documented that the flow solver is capable of predicting the flow in the complex terrain by comparing with measurements from two meteorology masts. Next, it is illustrated how levels of turbulent kinetic energy can be used to easily identify areas with severe flow conditions, relying on a high correlation between high turbulence intensity and severe flow conditions, in the form of high wind shear and directional shear which may seriously lower the lifetime of a wind turbine

  13. State-Space Modeling and Performance Analysis of Variable-Speed Wind Turbine Based on a Model Predictive Control Approach

    Directory of Open Access Journals (Sweden)

    H. Bassi

    2017-04-01

    Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.

  14. DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2010-12-01

    Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.

  15. Variable frequency operation of active stall wind farms using a dc connection to grid

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede; Sorensen, Poul

    2005-01-01

    Currently, there is an increasing trend to connect large MW wind farms to the transmISSIon system. Requirements that focus on the influence of the farms on the grid stability and power quality, and on the control capabilities of wind farms have already been established. The main trends of modern...... wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics the control capabilities of these wind turbines/farms are extended and thus the grid requirements...... are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid have less control capabilities. These wind turbines/farms cannot regulate their production and contribute to power system stability. A DC transmission system for connection...

  16. Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol; Sumper, Andreas [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Junyent-Ferre, Adria; Galceran-Arellano, Samuel [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain)

    2010-10-15

    The paper deals with the evaluation of power generated by variable and constant frequency offshore wind farms connected to a single large power converter. A methodology to analyze different wind speed scenarios and system electrical frequencies is presented and applied to a case study, where it is shown that the variable frequency wind farm concept (VF) with a single power converter obtains 92% of the total available power, obtained with individual power converters in each wind turbine (PC). The PC scheme needs multiple power converters implying drawbacks in terms of cost, maintenance and reliability. The VF scheme is also compared to a constant frequency scheme CF, and it is shown that a significant power increase of more than 20% can be obtained with VF. The case study considers a wind farm composed of four wind turbines based on synchronous generators. (author)

  17. Study on the abnormal data rejection and normal condition evaluation applied in wind turbine farm

    Science.gov (United States)

    Zhang, Ying; Qian, Zheng; Tian, Shuangshu

    2016-01-01

    The condition detection of wind turbine is always an important issue which attract more and more attentions because of the rapid development of wind farm. And the on-line data analysis is also difficult since a lot of measured data is collected. In this paper, the abnormal data rejection and normal condition evaluation of wind turbine is processed. At first, since there are large amounts of abnormal data in the normal operation of wind turbine, which is probably caused by fault, maintenance downtime, power-limited operation and failure of wind speed sensor, a novel method is proposed to reject abnormal data in order to make more accurate analysis for the wind turbine condition. The core principle of this method is to fit the wind power curves by using the scatter diagram. The data outside the area covered by wind power curves is the abnormal data. The calculation shows that the abnormal data is rejected effectively. After the rejection, the vibration signals of wind turbine bearing which is a critical component are analyzed and the relationship between the vibration characteristic value and the operating condition of wind turbine is discussed. It will provide powerful support for the accurate fault analysis of wind turbine.

  18. Wind-generated Electricity in China: Decreasing Potential, Inter-annual Variability and Association with Changing Climate.

    Science.gov (United States)

    Sherman, Peter; Chen, Xinyu; McElroy, Michael B

    2017-11-24

    China hosts the world's largest market for wind-generated electricity. The financial return and carbon reduction benefits from wind power are sensitive to changing wind resources. Wind data derived from an assimilated meteorological database are used here to estimate what the wind generated electricity in China would have been on an hourly basis over the period 1979 to 2015 at a geographical resolution of approximately 50 km × 50 km. The analysis indicates a secular decrease in generating potential over this interval, with the largest declines observed for western Inner Mongolia (15 ± 7%) and the northern part of Gansu (17 ± 8%), two leading wind investment areas. The decrease is associated with long-term warming in the vicinity of the Siberian High (SH), correlated also with the observed secular increase in global average surface temperatures. The long-term trend is modulated by variability relating to the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO). A linear regression model incorporating indices for the PDO and AO, as well as the declining trend, can account for the interannual variability of wind power, suggesting that advances in long-term forecasting could be exploited to markedly improve management of future energy systems.

  19. Control and Health Monitoring of Variable Speed Wind Power Generation Systems; Period of Performance: 10 July 1997 - 10 July 2000

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. D.; Bikdash, M.; Schulz, M. J.

    2001-09-01

    This document reports accomplishments on variable speed control, furling analysis, and health monitoring of wind turbines. There are three parts, prepared by Song, Bikdash, and Schulz, respectively. The first part discusses variable-speed control of wind turbines, exploring a memory-based method for wind speed prediction and wind turbine control. The second part addresses the yaw dynamics of wind turbines, including modeling, analysis, and control. The third part of the report discusses new analytical techniques that were developed and tested to detect initial damage to prevent failures of wind turbine rotor blades.

  20. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    OpenAIRE

    Weihao Hu; Yunqian Zhang; Zhe Chen; Yanting Hu

    2013-01-01

    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG) developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution) power oscillation due to wind shear and tower shadow effects is the sign...

  1. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. [Lewis 8 by 6-foot supersonic wind tunnel tests

    Science.gov (United States)

    Nelson, D. P.

    1980-01-01

    Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.

  2. DAC with LQR Control Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammad; Hussain, Dil Muhammad Akbar; Soltani, Mohsen

    2014-01-01

    Disturbance Accommodation Control (DAC) is used to model and simulate a system with known disturbance waveform. This paper presents a control scheme to mitigate the effect of disturbances by using collective pitch control for the aboverated wind speed (Region III) for a variable speed wind turbine....... We have used Linear Quadratic Regulator (LQR) to obtain full state feedback gain, disturbance feedback gain is calculated independently and then estimator gain is achieved by poleplacement technique in the DAC augmented plant model. The reduced order model (two-mass model) of wind turbine is used...... and 5MW National Renewable Energy Laboratory (NREL) wind turbine is used in this research. We have shown comparison of results relating to pitch angle, drive train torsion and generator speed obtained by a PID controller and DAC. Simulations are performed in MATLAB/Simulink. The results are compared...

  3. A PLL-based resampling technique for vibration analysis in variable-speed wind turbines with PMSG: A bearing fault case

    Science.gov (United States)

    Pezzani, Carlos M.; Bossio, José M.; Castellino, Ariel M.; Bossio, Guillermo R.; De Angelo, Cristian H.

    2017-02-01

    Condition monitoring in permanent magnet synchronous machines has gained interest due to the increasing use in applications such as electric traction and power generation. Particularly in wind power generation, non-invasive condition monitoring techniques are of great importance. Usually, in such applications the access to the generator is complex and costly, while unexpected breakdowns results in high repair costs. This paper presents a technique which allows using vibration analysis for bearing fault detection in permanent magnet synchronous generators used in wind turbines. Given that in wind power applications the generator rotational speed may vary during normal operation, it is necessary to use special sampling techniques to apply spectral analysis of mechanical vibrations. In this work, a resampling technique based on order tracking without measuring the rotor position is proposed. To synchronize sampling with rotor position, an estimation of the rotor position obtained from the angle of the voltage vector is proposed. This angle is obtained from a phase-locked loop synchronized with the generator voltages. The proposed strategy is validated by laboratory experimental results obtained from a permanent magnet synchronous generator. Results with single point defects in the outer race of a bearing under variable speed and load conditions are presented.

  4. City ventilation of Hong Kong at no-wind conditions

    Science.gov (United States)

    Yang, Lina; Li, Yuguo

    We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.

  5. Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Wenna Zhang

    2016-04-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system are used widely in wind farms to obtain operation and performance information about wind turbines. The paper presents a three-way model by means of parallel factor analysis (PARAFAC for wind turbine fault detection and sensor selection, and evaluates the method with SCADA data obtained from an operational farm. The main characteristic of this new approach is that it can be used to simultaneously explore measurement sample profiles and sensors profiles to avoid discarding potentially relevant information for feature extraction. With K-means clustering method, the measurement data indicating normal, fault and alarm conditions of the wind turbines can be identified, and the sensor array can be optimised for effective condition monitoring.

  6. Estimating annoyance to calculated wind turbine shadow flicker is improved when variables associated with wind turbine noise exposure are considered.

    Science.gov (United States)

    Voicescu, Sonia A; Michaud, David S; Feder, Katya; Marro, Leonora; Than, John; Guay, Mireille; Denning, Allison; Bower, Tara; van den Berg, Frits; Broner, Norm; Lavigne, Eric

    2016-03-01

    The Community Noise and Health Study conducted by Health Canada included randomly selected participants aged 18-79 yrs (606 males, 632 females, response rate 78.9%), living between 0.25 and 11.22 km from operational wind turbines. Annoyance to wind turbine noise (WTN) and other features, including shadow flicker (SF) was assessed. The current analysis reports on the degree to which estimating high annoyance to wind turbine shadow flicker (HAWTSF) was improved when variables known to be related to WTN exposure were also considered. As SF exposure increased [calculated as maximum minutes per day (SFm)], HAWTSF increased from 3.8% at 0 ≤ SFm wind turbine-related features, concern for physical safety, and noise sensitivity. Reported dizziness was also retained in the final model at p = 0.0581. Study findings add to the growing science base in this area and may be helpful in identifying factors associated with community reactions to SF exposure from wind turbines.

  7. Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods

    Directory of Open Access Journals (Sweden)

    Peng Guo

    2011-11-01

    Full Text Available Condition Monitoring (CM of wind turbines can greatly reduce the maintenance costs for wind farms, especially for offshore wind farms. A new condition monitoring method for a wind turbine gearbox using temperature trend analysis is proposed. Autoassociative Kernel Regression (AAKR is used to construct the normal behavior model of the gearbox temperature. With a proper construction of the memory matrix, the AAKR model can cover the normal working space for the gearbox. When the gearbox has an incipient failure, the residuals between AAKR model estimates and the measurement temperature will become significant. A moving window statistical method is used to detect the changes of the residual mean value and standard deviation in a timely manner. When one of these parameters exceeds predefined thresholds, an incipient failure is flagged. In order to simulate the gearbox fault, manual temperature drift is added to the initial Supervisory Control and Data Acquisitions (SCADA data. Analysis of simulated gearbox failures shows that the new condition monitoring method is effective.

  8. Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27

    Directory of Open Access Journals (Sweden)

    Andrés Honrubia-Escribano

    2016-12-01

    Full Text Available Considerable efforts are currently being made by several international working groups focused on the development of generic, also known as simplified or standard, wind turbine models for power system stability studies. In this sense, the first edition of International Electrotechnical Commission (IEC 61400-27-1, which defines generic dynamic simulation models for wind turbines, was published in February 2015. Nevertheless, the correlations of the IEC generic models with respect to specific wind turbine manufacturer models are required by the wind power industry to validate the accuracy and corresponding usability of these standard models. The present work conducts the validation of the two topologies of variable speed wind turbines that present not only the largest market share, but also the most technological advances. Specifically, the doubly-fed induction machine and the full-scale converter (FSC topology are modeled based on the IEC 61400-27-1 guidelines. The models are simulated for a wide range of voltage dips with different characteristics and wind turbine operating conditions. The simulated response of the IEC generic model is compared to the corresponding simplified model of a wind turbine manufacturer, showing a good correlation in most cases. Validation error sources are analyzed in detail, as well. In addition, this paper reviews in detail the previous work done in this field. Results suggest that wind turbine manufacturers are able to adjust the IEC generic models to represent the behavior of their specific wind turbines for power system stability analysis.

  9. Wind Conditions for Wind Farm Hanstholm

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.; Mann, Jakob

    The net annual energy production (AEP) of the Hanstholm Wind Farm is 158 GWh per year for the Siemens SWT-3.6-120 turbine and 140 GWh for the Vestas V112-3.0 turbine. These values have an uncertainty (standard deviation) of 6%. This result is mainly based on the data for Risø DTU’s test station...... at Høvsøre where wind speeds are measured at approximately the same height as the turbines at Hanstholm and where the terrain is similar. On top of that meso-scale modeling has been used to extrapolate the climatology from Høvsøre to Hanstholm increasing the AEP by almost 6% compared to just using...... the Høvsøre climatology directly. This method of extrapolation is rather new, but several older investigations indicate that the wind resource at Hanstholm is slightly higher than at Høvsøre. The work is carried out for Grontmij-Carl Bro according to a contract dated January 18th 2011....

  10. Modular Multilevel Converters Based Variable Speed Wind Turbines for Grid Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Liu, Dong; Wang, Yanbo

    2016-01-01

    in the dc-link of the power converter to improve system performance, but also ensure the grid-side current balancing to increase the generated power of the wind turbine under the unbalanced grid fault, in comparison with the conventional VSWT based on BTB three-level NPC converters. The simulation studies......The modular multilevel converter (MMC) becomes attractive in the medium- and high-power application with high modularity. In this paper, the MMC is proposed to be applied in the variable speed wind turbine (VSWT) based on the full-scale back-to-back (BTB) power converter, where the generator...

  11. Grid Compatibility of Variable Speed Wind Turbines with Directly Coupled Synchronous Generator and Hydro-Dynamically Controlled Gearbox

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.; Poeller, M. [DIgSILENT GmbH, 72810 Gomaringen (Germany); Basteck, A.; Tilscher, M.; Pfister, J. [Voith Turbo GmbH and Co. KG, 74564 Crailsheim (Germany)

    2006-07-01

    This paper analyzes grid integration aspects of a new type of variable-speed wind turbine, the directly coupled synchronous generator with hydro-dynamically controlled gearbox. In contrast to existing wind generators using synchronous generators, the generator of this concept is directly connected to the AC grid, without the application of any power electronics converter. Variable speed operation of the turbine is mechanically achieved by a gear box with continuously controllable variable gear box ratio. For this purpose, a detailed dynamic model of a 2 MW wind turbine with a Voith WinDrive has been implemented using the modelling environment of the simulation software DIgSILENT PowerFactory. For investigating grid compatibility aspects of this new wind generator concept, a model of a 50 MW wind farm, with typical layout, based on 25 wind turbines of the 2 MW-class has been analyzed. This paper focuses on the compatibility of the new concept with existing connection standards, such as the E.ON grid code. Of special interest are typical stability phenomena of synchronous generators, such as transient and oscillatory stability as well as power quality issues like voltage flicker. The results of stability studies are presented and possible advantages of the new concept with special focus on offshore applications are discussed.

  12. Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines : A Parameter Study

    NARCIS (Netherlands)

    Jarquin Laguna, A.; Diepeveen, N.F.B.

    2013-01-01

    In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed

  13. Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2017-12-01

    Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.

  14. Cost-Effective Shaft Torque Observer for Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Kirkegaard, Poul Henning; Pedersen, Bo Juul

    2015-01-01

    Improvement of condition monitoring (CM) systems for wind turbines (WTs) and reduction of the cost of wind energy are possible if knowledge about the condition of different WT components is available. CM based on the WT drive train shaft torque signal can give a better understanding of the gearbox...... of the augmented Kalman filter with fading memory (AKFF) is compared with the augmented Kalman filter (AKF) using simulated data of theWT for different load conditions, measurement noise levels andWT fault scenarios. A multiple-model algorithm, based on a set of different Kalman filters, is designed for practical...

  15. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  16. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates

    DEFF Research Database (Denmark)

    Murcia Leon, Juan Pablo; Réthoré, Pierre-Elouan; Dimitrov, Nikolay Krasimirov

    2018-01-01

    of the uncertainty in annual energy production due to wind resource variability and/or robust wind power plant layout optimization. It can be concluded that it is possible to capture the global behavior of a modern wind turbine and its uncertainty under realistic inflow conditions using polynomial response surfaces......Polynomial surrogates are used to characterize the energy production and lifetime equivalent fatigue loads for different components of the DTU 10 MW reference wind turbine under realistic atmospheric conditions. The variability caused by different turbulent inflow fields are captured by creating......-alignment. The methodology presented extends the deterministic power and thrust coefficient curves to uncertainty models and adds new variables like damage equivalent fatigue loads in different components of the turbine. These surrogate models can then be implemented inside other work-flows such as: estimation...

  17. Assessment of Wind Turbine for Site-Specific Conditions using Probabilistic Methods

    DEFF Research Database (Denmark)

    Heras, Enrique Gómez de las; Gutiérrez, Roberto; Azagra, Elena

    2013-01-01

    turbines, helping to the decision making during the site assessment phase of wind farm designs. First, the design equation for the failure mode of interest is defined, where the loads associated to the site-specific wind conditions are compared with the design limits of the structural component. A limit...... be very dependent on the site. The uncertainties on the wind properties depend on issues like the available wind data, the quality of the measurement sensors, the type of terrain or the accuracy of the engineering models for horizontal and vertical spatial extrapolation. An example is included showing two...

  18. A Thermal Performance Analysis and Comparison of Fiber Coils with the D-CYL Winding and QAD Winding Methods

    Directory of Open Access Journals (Sweden)

    Xuyou Li

    2016-06-01

    Full Text Available The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL and quadrupolar (QAD winding methods is comparatively analyzed. Simulation by the finite element method (FEM is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs.

  19. Scalable conditional induction variables (CIV) analysis

    KAUST Repository

    Oancea, Cosmin E.; Rauchwerger, Lawrence

    2015-01-01

    challenges to automatic parallelization. Because the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow

  20. Tacholess order-tracking approach for wind turbine gearbox fault detection

    Science.gov (United States)

    Wang, Yi; Xie, Yong; Xu, Guanghua; Zhang, Sicong; Hou, Chenggang

    2017-09-01

    Monitoring of wind turbines under variable-speed operating conditions has become an important issue in recent years. The gearbox of a wind turbine is the most important transmission unit; it generally exhibits complex vibration signatures due to random variations in operating conditions. Spectral analysis is one of the main approaches in vibration signal processing. However, spectral analysis is based on a stationary assumption and thus inapplicable to the fault diagnosis of wind turbines under variable-speed operating conditions. This constraint limits the application of spectral analysis to wind turbine diagnosis in industrial applications. Although order-tracking methods have been proposed for wind turbine fault detection in recent years, current methods are only applicable to cases in which the instantaneous shaft phase is available. For wind turbines with limited structural spaces, collecting phase signals with tachometers or encoders is difficult. In this study, a tacholess order-tracking method for wind turbines is proposed to overcome the limitations of traditional techniques. The proposed method extracts the instantaneous phase from the vibration signal, resamples the signal at equiangular increments, and calculates the order spectrum for wind turbine fault identification. The effectiveness of the proposed method is experimentally validated with the vibration signals of wind turbines.

  1. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    Science.gov (United States)

    Decker, Ryan; Barbre, Robert E.

    2014-01-01

    Space launch vehicles incorporate upper-level wind profiles to determine wind effects on the vehicle and for a commit to launch decision. These assessments incorporate wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the upper-level winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Five sets of temporal wind pairs at various times (.75, 1.5, 2, 3 and 4-hrs) at the Eastern Range, Western Range and Wallops Flight Facility were developed for use in upper-level wind assessments. Database development procedures as well as statistical analysis of temporal wind variability at each launch range will be presented.

  2. Power system integration and control of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Eek, Jarle

    2009-12-15

    A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance

  3. Determination of Correlation for Extreme Metocean Variables

    Directory of Open Access Journals (Sweden)

    Nizamani Zafarullah

    2017-01-01

    Full Text Available Metocean environmental load includes wind, wave and currents. Offshore structures are designed for two environmental load design conditions i.e. extreme and operational load conditions of environmental loads are evaluated. The ccorrelation between load variables using Joint probability distribution, Pearson correlation coefficient and Spearman’s rank correlation coefficients methods in Peninsular Malaysia (PM, Sabah and Sarawak are computed. Joint probability distribution method is considered as a reliable method among three different methods to determine the relationship between load variables. The PM has good correlation between the wind-wave and wave-current; Sabah has both strong relationships of wind-wave and wind-current with 50 year return period; Sarawak has good correlation between wind and current in both 50 years and 100 years return period. Since Sabah has good correlation between the associated load variables, no matter in 50 years or 100 years of return period of load combination. Thus, method 1 of ISO 19901-1, specimen provides guideline for metocean loading conditions, can be adopted for design for offshore structure in Sabah. However, due to weak correlations in PM and Sarawak, this method cannot be applied and method 2, which is current practice in offshore industry, should continueto be used.

  4. Analysis of the short-term overproduction capability of variable speed wind turbines

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit; Margaris, Ioannis D.

    2014-01-01

    Emphasis in this article is on variable speed wind turbines (VSWTs) capability to provide short-term overproduction and better understanding of VSWTs’ mechanical and electrical limits to deliver such support. VSWTs’ short-term overproduction capability is of primary concern for the transmission...

  5. Reduction of the Random Variables of the Turbulent Wind Field

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.

    2012-01-01

    .e. Importance Sampling (IS) or Subset Simulation (SS), will be deteriorated on problems with many random variables. The problem with PDEM is that a multidimensional integral has to be carried out over the space defined by the random variables of the system. The numerical procedure requires discretization......Applicability of the Probability Density Evolution Method (PDEM) for realizing evolution of the probability density for the wind turbines has rather strict bounds on the basic number of the random variables involved in the model. The efficiency of most of the Advanced Monte Carlo (AMC) methods, i...... of the integral domain; this becomes increasingly difficult as the dimensions of the integral domain increase. On the other hand efficiency of the AMC methods is closely dependent on the design points of the problem. Presence of many random variables may increase the number of the design points, hence affects...

  6. The Economics of Storage, Transmission and Drought: Integrating Variable Wind Power into Spatially Separated Electricity Grids

    NARCIS (Netherlands)

    Scora, H.; Sopinka, A.; Kooten, van G.C.

    2012-01-01

    To mitigate the high variability of wind and make it a more viable renewable energy source, observers recommend greater integration of spatially-separated electrical grids, with high transmission lines linking load centers, scattered wind farms and hydro storage sites. In this study, we examine the

  7. On the long-term variability of Jupiter and Saturn zonal winds

    Science.gov (United States)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Hueso, R.; Barrado-Izagirre, N.; Legarreta, J.; Rojas, J. F.

    2012-12-01

    We present an analysis of the long-term variability of Jupiter and Saturn zonal wind profiles at their upper cloud level as retrieved from cloud motion tracking on images obtained at ground-based observatories and with different spacecraft missions since 1979, encompassing about three Jovian and one Saturn years. We study the sensitivity and variability of the zonal wind profile in both planets to major planetary-scale disturbances and to seasonal forcing. We finally discuss the implications that these results have for current model efforts to explain the global tropospheric circulation in these planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] Sánchez-Lavega A., et al., Icarus, 147, 405-420 (2000). [2] García-Melendo E., Sánchez LavegaA., Icarus, 152, 316-330 (2001) [3] Sánchez-Lavega A., et al., Nature, 423, 623-625 (2003). [4] García-Melendo E., et al., Geophysical Research Letters, 37, L22204 (2010).

  8. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    Science.gov (United States)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  9. Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model

    International Nuclear Information System (INIS)

    Galdi, V.; Piccolo, A.; Siano, P.

    2009-01-01

    Nowadays, incentives and financing options for developing renewable energy facilities and the new development in variable speed wind technology make wind energy a competitive source if compared with conventional generation ones. In order to improve the effectiveness of variable speed wind systems, adaptive control systems able to cope with time variances of the system under control are necessary. On these basis, a data driven designing methodology for TSK fuzzy models design is presented in this paper. The methodology, on the basis of given input-output numerical data, generates the 'best' TSK fuzzy model able to estimate with high accuracy the maximum extractable power from a variable speed wind turbine. The design methodology is based on fuzzy clustering methods for partitioning the input-output space combined with genetic algorithms (GA), and recursive least-squares (LS) optimization methods for model parameter adaptation

  10. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  11. Cost-effective Design and Operation of Variable Speed Wind Turbines. Closing the Gap between the Control Engineering and the Wind Engineering Community

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, D.P.

    2003-02-18

    Wind has the potential to play a more important role in the future world electricity supply, provided that the cost per kilowatt hour is further reduced. The cost of wind-generated electricity can be effectively reduced by improvements in both wind turbine design and operation. In this thesis a design tool has been developed that offers the possibility to generate accurate and reliable dynamic models of the complete wind turbine. The models can be either used to evaluate the impact that design choices have on the economic viability, or to assess the dynamic behavior of the selected wind turbine configuration under various conditions.

  12. Second-order Sliding Mode Control of DFIG Based Variable Speed Wind Turbine for Maximum Power Point Tracking

    Institute of Scientific and Technical Information of China (English)

    Xiangjie Liu; Chengcheng Wang; Yaozhen Han

    2017-01-01

    This paper proposes a super-twisting second order sliding mode control scheme to maximize the wind energy capture of a doubly fed induction generator based variable speed wind turbine (VSWT) system, and minimize the reactive power simultaneously. Two second order sliding mode controllers are designed to achieve the control objectives, reduce mechanical stress and improve control accuracy. By regulating the generator rotor voltage, one controller makes the wind turbine rotor speed track the optimal speed, which can maximize power generation. The other maintains the rotor current at rated value to minimize the reactive power. A quadratic form Lyapunov function is adopted to determine the range of controller parameters and guarantee the finite time stability. Simulation results on a 1.5 MW doubly fed induction generator (DFIG)-based variable speed wind turbine demonstrate the validity of the proposed control strategy.

  13. Nonlinear Cointegration Approach for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Konrad Zolna

    2015-01-01

    Full Text Available Monitoring of trends and removal of undesired trends from operational/process parameters in wind turbines is important for their condition monitoring. This paper presents the homoscedastic nonlinear cointegration for the solution to this problem. The cointegration approach used leads to stable variances in cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity in cointegration residuals obtained from the nonlinear cointegration analysis. Examples using three different time series data sets—that is, one with a nonlinear quadratic deterministic trend, another with a nonlinear exponential deterministic trend, and experimental data from a wind turbine drivetrain—are used to illustrate the method and demonstrate possible practical applications. The results show that the proposed approach can be used for effective removal of nonlinear trends form various types of data, allowing for possible condition monitoring applications.

  14. Common characterization of variability and forecast errors of variable energy sources and their mitigation using reserves in power system integration studies

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlis, N.; Huneault, M. [IREQ, Varennes, QC (Canada); Robitaille, A. [Dir. Plantif. de la Production Eolienne, Montreal, QC (Canada). HQ Production; Holttinen, H. [VTT Technical Research Centre of Finland, VTT (Finland)

    2012-07-01

    This In this paper we define and characterize the two random variables, variability and forecast error, over which uncertainty in power systems operations is characterized and mitigated. We show that the characterization of both these variables can be carried out with the same mathematical tools. Furthermore, this common characterization of random variables lends itself to a common methodology for the calculation of non-contingency reserves required to mitigate their effects. A parallel comparison of these two variables demonstrates similar inherent statistical properties. They depend on imminent conditions, evolve with time and can be asymmetric. Correlation is an important factor when aggregating individual wind farm characteristics in forming the distribution of the total wind generation for imminent conditions. (orig.)

  15. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  16. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S., E-mail: sp5hd@Virginia.EDU; Lee, T.R.; Phelps, S.; De Wekker, S.F.J.

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (z{sub i}), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime z{sub i} from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the z{sub i} and the fine fraction (0.3–0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. - Highlights: • Role of atmospheric boundary layer depth on particle

  17. Development and validation of a new fallout transport method using variable spectral winds

    International Nuclear Information System (INIS)

    Hopkins, A.T.

    1984-01-01

    A new method was developed to incorporate variable winds into fallout transport calculations. The method uses spectral coefficients derived by the National Meteorological Center. Wind vector components are computed with the coefficients along the trajectories of falling particles. Spectral winds are used in the two-step method to compute dose rate on the ground, downwind of a nuclear cloud. First, the hotline is located by computing trajectories of particles from an initial, stabilized cloud, through spectral winds to the ground. The connection of particle landing points is the hotline. Second, dose rate on and around the hotline is computed by analytically smearing the falling cloud's activity along the ground. The feasibility of using spectral winds for fallout particle transport was validated by computing Mount St. Helens ashfall locations and comparing calculations to fallout data. In addition, an ashfall equation was derived for computing volcanic ash mass/area on the ground. Ashfall data and the ashfall equation were used to back-calculate an aggregated particle size distribution for the Mount St. Helens eruption cloud

  18. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS

    Science.gov (United States)

    Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.

    2017-06-01

    A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.Plain Language SummaryWe survey the environment around the Moon to determine when and where strong amplifications in the charged particle density and magnetic field strength occur. These structures may be some of the smallest shock waves in the solar system, and learning about their formation informs us about the interaction of charged particles with small-scale magnetic fields throughout the solar system and beyond. We find that these compressions occur in an extended region downstream from the lunar dawn and dusk regions and

  19. Optimal sizing of small wind/battery systems considering the DC bus voltage stability effect on energy capture, wind speed variability, and load uncertainty

    International Nuclear Information System (INIS)

    Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.

    2012-01-01

    Highlights: ► We propose a mathematical model for optimal sizing of small wind energy systems. ► No other previous work has considered all the aspects included in this paper. ► The model considers several parameters about batteries. ► Wind speed variability is considered by means of ARMA model. ► The results show how to minimize the expected energy that is not supplied. - Abstract: In this paper, a mathematical model for stochastic simulation and optimization of small wind energy systems is presented. This model is able to consider the operation of the charge controller, the coulombic efficiency during charge and discharge processes, the influence of temperature on the battery bank capacity, the wind speed variability, and load uncertainty. The joint effect of charge controller operation, ambient temperature, and coulombic efficiency is analyzed in a system installed in Zaragoza (Spain), concluding that if the analysis without considering these factors is carried out, the reliability level of the physical system could be lower than expected, and an increment of 25% in the battery bank capacity would be required to reach a reliability level of 90% in the analyzed case. Also, the effect of the wind speed variability and load uncertainty in the system reliability is analyzed. Finally, the uncertainty in the battery bank lifetime and its effect on the net present cost are discussed. The results showed that, considering uncertainty of 17.5% in the battery bank lifetime calculated using the Ah throughput model, about 12% of uncertainty in the net present cost is expected. The model presented in this research could be a useful stochastic simulation and optimization tool that allows the consideration of important uncertainty factors in techno-economic analysis.

  20. Wind Turbine Diagnosis under Variable Speed Conditions Using a Single Sensor Based on the Synchrosqueezing Transform Method.

    Science.gov (United States)

    Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin

    2017-05-18

    The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation.

  1. Operational constraints and hydrologic variability limit hydropower in supporting wind integration

    International Nuclear Information System (INIS)

    Fernandez, Alisha R; Blumsack, Seth A; Reed, Patrick M

    2013-01-01

    Climate change mitigation will require rapid adoption of low-carbon energy resources. The integration of large-scale wind energy in the United States (US) will require controllable assets to balance the variability of wind energy production. Previous work has identified hydropower as an advantageous asset, due to its flexibility and low-carbon emissions production. While many dams currently provide energy and environmental services in the US and globally, we find that multi-use hydropower facilities would face significant policy conflicts if asked to store and release water to accommodate wind integration. Specifically, we develop a model simulating hydroelectric operational decisions when the electric facility is able to provide wind integration services through a mechanism that we term ‘flex reserves’. We use Kerr Dam in North Carolina as a case study, simulating operations under two alternative reservoir policies, one reflecting current policies and the other regulating flow levels to promote downstream ecosystem conservation. Even under perfect information and significant pricing incentives, Kerr Dam faces operational conflicts when providing any substantial levels of flex reserves while also maintaining releases consistent with other river management requirements. These operational conflicts are severely exacerbated during periods of drought. Increase of payments for flex reserves does not resolve these operational and policy conflicts. (letter)

  2. Siemens Wind Power 3.6 MW wind turbines for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav; Nygaard Nielsen, Joergen; Thisted, Jan; Groendahl, Erik; Egedal, Per; Noertoft Frydensbjerg, Michael; Jensen, Kim Hoej [Siemens Wind Power A/S, Brande (Denmark)

    2008-07-01

    Siemens Wind power A/S is the key player on the offshore wind power market. The Siemens Wind Power 3.6 MW variable-speed wind turbine is among the word's largest, most advanced and competitive wind turbines with a solid portfolio of large offshore wind farms. Transmission system operators and developers require dynamic wind turbine models for evaluation of fault-ride-through capability and investigations of power system stability. The even larger size of the on- and offshore wind farms has entailed that the grid impact of the voltage and frequency control capability of the wind farm can be appropriated modelled and evaluated. Siemens Wind Power has developed a dynamic model of the 3.6 MW variable-speed wind turbine with the fault-ride-through sequences and models of the voltage and frequency controllers to be applied for large offshore wind farms. The dynamic models have been implemented in the commercially available simulation tools such as DIgSILENT PowerFactory and Siemens PTI PSS/E and successfully validated from measurements. (orig.)

  3. Aspects of structural health and condition monitoring of offshore wind turbines.

    Science.gov (United States)

    Antoniadou, I; Dervilis, N; Papatheou, E; Maguire, A E; Worden, K

    2015-02-28

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.

  4. Aspects of structural health and condition monitoring of offshore wind turbines

    Science.gov (United States)

    Antoniadou, I.; Dervilis, N.; Papatheou, E.; Maguire, A. E.; Worden, K.

    2015-01-01

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector. PMID:25583864

  5. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  6. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  7. Modeling of a Switched Reluctance Motor under Stator Winding Fault Condition

    DEFF Research Database (Denmark)

    Chen, Hao; Han, G.; Yan, Wei

    2016-01-01

    A new method for modeling stator winding fault with one shorted coil in a switched reluctance motor (SRM) is presented in this paper. The method is based on artificial neural network (ANN), incorporated with a simple analytical model in electromagnetic analysis to estimate the flux-linkage charac......A new method for modeling stator winding fault with one shorted coil in a switched reluctance motor (SRM) is presented in this paper. The method is based on artificial neural network (ANN), incorporated with a simple analytical model in electromagnetic analysis to estimate the flux......-linkage characteristics of SRM under the stator winding fault. The magnetic equivalent circuit method with ANN is applied to calculate the nonlinear flux-linkage characteristics under stator winding fault condition. A stator winding fault 12/8 SRM prototype system is developed to verify the effectiveness of the proposed...... method. The results for a stator winding fault with one shorted coil are obtained from the proposed method and from the experimental work on a developed prototype. It is shown that the simulation results are close to the test results....

  8. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  9. Capacity expansion model of wind power generation based on ELCC

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  10. Condition monitoring of rotor blades of modern wind power systems; Ueberwachung mit Hertz. Condition Monitoring von Rotorblaettern moderner Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, Nikolaus

    2010-06-15

    With seven wind turbines, the Austrian wind farm ''Sternwald'' is the biggest wind farm in Upper Austria. It is the only wind farm in a forest, and all turbines are therefore equipped with automatic fire fighting equipment. The mountain range on which the wind farm is located is about 1000 m high, with strong wind and much ice and snow in the winter season. For this reason, the owner decided to instal a condition monitoring system with ice detectors. The piezoelectric sensors are mounted directly on the rotor blades as measurements on the nacelle will always be incorrect. Installation on the rotor blades, on the other hand, makes high demands on the fastenings and sensors as the velocity of the blade tips may be up to 250 km per hour. (orig.)

  11. A Two-Stage Diagnosis Framework for Wind Turbine Gearbox Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Janet M. Twomey

    2013-01-01

    Full Text Available Advances in high performance sensing technologies enable the development of wind turbine condition monitoring system to diagnose and predict the system-wide effects of failure events. This paper presents a vibration-based two stage fault detection framework for failure diagnosis of rotating components in wind turbines. The proposed framework integrates an analytical defect detection method and a graphical verification method together to ensure the diagnosis efficiency and accuracy. The efficacy of the proposed methodology is demonstrated with a case study with the gearbox condition monitoring Round Robin study dataset provided by the National Renewable Energy Laboratory (NREL. The developed methodology successfully picked five faults out of seven in total with accurate severity levels without producing any false alarm in the blind analysis. The case study results indicated that the developed fault detection framework is effective for analyzing gear and bearing faults in wind turbine drive train system based upon system vibration characteristics.

  12. Utility-scale variable-speed wind turbines using a doubly-fed generator with a soft-switching power converter

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, C.H.; Lauw, H.K.; Marckx, D.A. [Electronic Power Conditioning, Inc., Corvallis, OR (United States)

    1996-12-31

    Utility-scale wind turbines operating at variable RPM have been studied for a considerable period of time. Whereas the increase in energy output originally has been considered the principal benefit of variable-speed operation, the ability to tightly control the drive-train torque by electronic means is becoming another very important cost factor, especially for turbine ratings above 500 kilowatts. This cost benefit becomes even more significant as optimum turbine ratings today are approaching (and surpassing) 1 Megawatt. Having identified the benefits for the turbine, the designer is confronted with the task of finding the most cost-effective variable-speed generation system which allows him to make use of the benefits, yet does not introduce well-known electrical problems associated with state-of-the-art variable-speed generator controls, such as drastically reduced generator winding life, excessive harmonics on the utility, and poor utility power factor. This paper will indicate that for high-power (> 500 kW), utility-scale wind turbines a doubly-fed generator system in connection with a soft-switching resonant power converter is the least-cost variable-speed generation system offering all of the desired benefits, yet avoids the introduction of the potential electrical problems stated above. 3 refs., 3 figs., 1 tab.

  13. North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: uncertainty and long term downscaled variability

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Bustamante, E.; Jimenez, P.A. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Universidad Complutense de Madrid, Departamento de Astrofisica y CC. de la Atmosfera, Madrid (Spain); Gonzalez-Rouco, J.F. [Universidad Complutense de Madrid, Departamento de Astrofisica y CC. de la Atmosfera, Madrid (Spain); Navarro, J. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Xoplaki, E. [University of Bern, Institute of Geography and Oeschger Centre for Climate Change Research, Bern (Switzerland); Montavez, J.P. [Universidad de Murcia, Departamento de Fisica, Murcia (Spain)

    2012-01-15

    The variability and predictability of the surface wind field at the regional scale is explored over a complex terrain region in the northeastern Iberian Peninsula by means of a downscaling technique based on Canonical Correlation Analysis. More than a decade of observations (1992-2005) allows for calibrating and validating a statistical method that elicits the main associations between the large scale atmospheric circulation over the North Atlantic and Mediterranean areas and the regional wind field. In an initial step the downscaling model is designed by selecting parameter values from practise. To a large extent, the variability of the wind at monthly timescales is found to be governed by the large scale circulation modulated by the particular orographic features of the area. The sensitivity of the downscaling methodology to the selection of the model parameter values is explored, in a second step, by performing a systematic sampling of the parameters space, avoiding a heuristic selection. This provides a metric for the uncertainty associated with the various possible model configurations. The uncertainties associated with the model configuration are considerably dependent on the spatial variability of the wind. While the sampling of the parameters space in the model set up moderately impact estimations during the calibration period, the regional wind variability is very sensitive to the parameters selection at longer timescales. This fact illustrates that downscaling exercises based on a single configuration of parameters should be interpreted with extreme caution. The downscaling model is used to extend the estimations several centuries to the past using long datasets of sea level pressure, thereby illustrating the large temporal variability of the regional wind field from interannual to multicentennial timescales. The analysis does not evidence long term trends throughout the twentieth century, however anomalous episodes of high/low wind speeds are identified

  14. Long-range transport of air pollution under light gradient wind conditions

    International Nuclear Information System (INIS)

    Kurita, H.; Sasaki, K.; Muroga, H.; Ueda, H.; Wakamatsu, S.

    1985-01-01

    The long-range transport of air pollution on clear days under light gradient wind conditions is investigated from an analysis of all days with high oxidant concentrations in 1979 at locations in central Japan that are far from pollutant sources. Surface-level wind and pressure distributions over a 300 x 300 km area were analyzed, together with concentration isopleths of oxidants and suspended particles produced by photochemical reactions

  15. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  16. Earth, Wind and Fire. Natural air conditioning; Earth, Wind and Fire. Natuurlijke airconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Bronsema, B.

    2013-06-07

    Starting point for the Earth, Wind and Fire research, of which the sub-concepts of Ventec roof, Climate Cascade and Solar Chimney are an integral part of the (Architectural) building design, are the following hypotheses: (1) An integrated approach of Architecture / Constructions and Climate Design is capable of using the available ambient energy in the form of earth mass, wind, and sun, to condition the air mainly naturally in a building; (2) The sub-concepts can be modeled and validated, in order to be able to reliably support the design process in practice; and (3) The sub-concepts can individually or in combination contribute to the realization of zero energy buildings [Dutch] Airconditioning van gebouwen kan volledig met natuurlijke middelen, zonder mechanische ventilatie. Dat stelt de auteur in zijn proefschrift. Hij wil met vallend water, zon en wind een energiepositief kantoor realiseren. Bronsema is nu op zoek naar een gebouw voor een grootschalige praktijkproef met zijn Earth, Wind and Fire-concept. Het systeem bestaat uit drie hoofdonderdelen: het Ventecdak, de Klimaatcascade en de Zonneschoorsteen. Het Ventecdak zorgt voor aanvoer van verse en afvoer van vuile lucht door gebruikmaking van over- en onderdrukken. Die lucht wordt via de klimaatcascade toegevoerd en via een Zonneschoorsteen afgevoerd. Een mock-up van de Zonneschoorsteen is gerealiseerd als een elf meter hoge toren, die met opgevangen warmte van invallend zonlicht ventilatielucht verwarmt. Het op gang brengen van de luchtstroom gebeurt in de Klimaatcascade. Dit is een bouwkundige schacht waarin van bovenaf waterdruppels worden gesproeid waarmee de lucht kan worden gekoeld of verwarmd.

  17. A Case for Including Atmospheric Thermodynamic Variables in Wind Turbine Fatigue Loading Parameter Identification

    International Nuclear Information System (INIS)

    Kelley, Neil D.

    1999-01-01

    This paper makes the case for establishing efficient predictor variables for atmospheric thermodynamics that can be used to statistically correlate the fatigue accumulation seen on wind turbines. Recently, two approaches to this issue have been reported. One uses multiple linear-regression analysis to establish the relative causality between a number of predictors related to the turbulent inflow and turbine loads. The other approach, using many of the same predictors, applies the technique of principal component analysis. An examination of the ensemble of predictor variables revealed that they were all kinematic in nature; i.e., they were only related to the description of the velocity field. Boundary-layer turbulence dynamics depends upon a description of the thermal field and its interaction with the velocity distribution. We used a series of measurements taken within a multi-row wind farm to demonstrate the need to include atmospheric thermodynamic variables as well as velocity-related ones in the search for efficient turbulence loading predictors in various turbine-operating environments. Our results show that a combination of vertical stability and hub-height mean shearing stress variables meet this need over a period of 10 minutes

  18. Statistical and time domain signal analysis of the thermal behaviour of wind turbine drive train components under dynamic operation conditions

    International Nuclear Information System (INIS)

    Nienhaus, K; Baltes, R; Bernet, C; Hilbert, M

    2012-01-01

    Gearboxes and generators are fundamental components of all electrical machines and the backbone of all electricity generation. Since the wind energy represents one of the key energy sources of the future, the number of wind turbines installed worldwide is rapidly increasing. Unlike in the past wind turbines are more often positioned in arctic as well as in desert like regions, and thereby exposed to harsh environmental conditions. Especially the temperature in those regions is a key factor that defines the design and choice of components and materials of the drive train. To optimize the design and health monitoring under varying temperatures it is important to understand the thermal behaviour dependent on environmental and machine parameters. This paper investigates the behaviour of the stator temperature of the double fed induction generator of a wind turbine. Therefore, different scenarios such as start of the turbine after a long period of no load, stop of the turbine after a long period of full load and others are isolated and analysed. For each scenario the dependences of the temperature on multiple wind turbine parameters such as power, speed and torque are studied. With the help of the regression analysis for multiple variables, it is pointed out which parameters have high impact on the thermal behaviour. Furthermore, an analysis was done to study the dependences in the time domain. The research conducted is based on 10 months of data of a 2 MW wind turbine using an adapted data acquisition system for high sampled data. The results appear promising, and lead to a better understanding of the thermal behaviour of a wind turbine drive train. Furthermore, the results represent the base of future research of drive trains under harsh environmental conditions, and it can be used to improve the fault diagnosis and design of electrical machines.

  19. Comparison between OpenFOAM CFD & BEM theory for variable speed – variable pitch HAWT

    Directory of Open Access Journals (Sweden)

    ElQatary Islam

    2014-01-01

    Full Text Available OpenFoam is used to compare computational fluid dynamics (CFD with blade element momentum theory (BEM for a variable speed - variable pitch HAWT (Horizontal Axis Wind Turbine. The wind turbine is first designed using the BEM to determine the blade chord, twist and operating conditions. The wind turbine blade has an outer diameter of 14 m, uses a NACA 63–415 profile for the entire blade and root to tip twist distribution of 15deg (Figure 3. The RPM varies from 20–75 for freestream velocities varying between 3–10.5 m/s (variable speed and a constant RPM of 78.78 for velocities ranging between 11–25 m/s (variable pitch. OpenFOAM is used to investigate the wind turbine performance at several operating points including cut-in wind speed (3 m/s, rated wind speed (10.5 m/s and in the variable pitch zone. Simulation results show that in the variable-speed operating range, both CFD and BEM compare reasonably well. This agreement can be attributed to the fact that the complex three-dimensional flow around the turbine blades can be split into two radial segments. For radii less than the mid-span, the flow is three-dimensional, whereas for radii greater than the mid-span, the flow is approximately two-dimensional. Since the majority of the power is produced from sections beyond the mid-span, the agreement between CFD and BEM is reasonable. For the variable-pitch operating range the CFD results and BEM deviate considerably. In this case the majority of the power is produced from the inner sections in which the flow is three-dimensional and can no longer be predicted by the BEM. The results show that differences in pitch angles up to 10deg can result to regulate the power for high wind speeds in the variable-pitch operation zone.

  20. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  1. Matching of wind turbine type and system scale to wind conditions; Chiten no fukyo ni taisuru furyoku turbine no keitai to sytem taikaku no seigosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Tanzawa, Y. [Nippon Institute of Technology, Saitama (Japan); Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering; Hashizume, T.

    2000-09-25

    The matching of the wind turbine type and system scale of the stand-alone wind turbine generator system to wind conditions is investigated using our dynamic simulation model. This paper examines three types of wind turbines: the Darrieus-Savonius hybrid wind turbine, the Darrieus turbine proper and the up-wind Propeller turbine. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient. As a computed result of the net extracting energy under fluctuations of wind speed and direction, the Darrieus turbine proper has little conformability to wind fluctuations because of its output characteristics. As for other wind turbines, large-scale systems do not always have advantages over small-scale systems as the effect of the dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine under wind direction fluctuations is much reduced when compared with that of the hybrid wind turbine. Thus, it is concluded that the appropriate wind turbine type and system scale exist for each wind condition. (author)

  2. Improving Fault Ride-Through Capability of Variable Speed Wind Turbines in Distribution Networks

    DEFF Research Database (Denmark)

    Mokryani, Geev; Siano, P.; Piccolo, Antonio

    2013-01-01

    In this paper, a fuzzy controller for improving the fault ride-through (FRT) capability of variable speed wind turbines (WTs) equipped with a doubly fed induction generator (DFIG) is presented. DFIGs can be used as reactive power sources to control the voltage at the point of common coupling (PCC......). The controller is designed to compensate for the voltage at the PCC by simultaneously regulating the reactive and active power generated by WTs. The performance of the controller is evaluated in different case studies considering a different number of wind farms in different locations. Simulations carried out...

  3. Social barriers in wind power implementation in The Netherlands: Perceptions of wind power entrepreneurs and local civil servants of institutional and social conditions in realizing wind power projects

    International Nuclear Information System (INIS)

    Agterbosch, Susanne; Glasbergen, Pieter; Vermeulen, Walter J.V.

    2007-01-01

    The primary social factors for the implementation of wind energy projects in a liberalized market are entrepreneurs willing to invest. Understanding conditions that trigger entrepreneurs to invest in these projects, and understanding conditions that determine the chance of success for entrepreneurs to implement and exploit their projects, is vital for setting up effective policies to stimulate wind electricity generation. This paper analyses the way in which wind power entrepreneurs and local civil servants experience social and institutional conditions in the operational process of realizing wind power projects, and their perceptions of policy implications. A groups support system in an electronic board room was used to analyze the perceptions. From the analysis it was concluded that wind power entrepreneurs and civil servants share the opinion that the institutionally embedded power position of local politicians, and the sensitiveness of the local political debate for the popular opinion are most critical for project realization. With regard to the proposed solutions, both groups differ in their approach. Entrepreneurs stress procedural solutions, such as limiting the possibilities to appeal, reducing the complexity of the formal authorization trajectory and using a top down planning approach. Civil servants stress more strategic solutions, such as providing more public information on the necessity of wind power for local politicians and citizens, and community involvement in planning processes. Finally, the analysis explains that steering strategies that have been developed at the national level to solve the planning problems at the operational level do not address the right problems. (author)

  4. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use of the...

  5. Laboratory modeling of air-sea interaction under severe wind conditions

    Science.gov (United States)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow

  6. Control Method for Variable Speed Wind Turbines to Support Temporary Primary Frequency Control

    DEFF Research Database (Denmark)

    Wang, Haijiao; Chen, Zhe; Jiang, Quanyuan

    2014-01-01

    This paper develops a control method for variable speed wind turbines (VSWTs) to support temporary primary frequency control of power system. The control method contains two parts: (1) up-regulate support control when a frequency drop event occurs; (2) down-regulate support control when a frequen...

  7. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Online Condition Monitoring (CM) is a key technology for the Operation and Maintenance (O&M) of wind turbines. Lubricating oil is the blood of the wind turbine gearbox. Metal debris in lubricating oil contains abundant information regarding the ageing and wear/damage of mechanical transmission sy...

  8. Influence of the material used to build the blades of a wind turbine on their starting conditions

    Directory of Open Access Journals (Sweden)

    Năstase Eugen-Vlad

    2017-01-01

    Full Text Available Wind energy has been shown to be one of the most viable sources of renewable energy. Hydraulic machines that convert the energy of a fluid into mechanical energy are called turbines. A wind turbine is a device which extracts kinetic energy from the wind. With increasing energy demands is necessary to increase the size of wind turbines. Under these conditions the turbine will start only at high wind speeds. On the other hand, the control of high speed is more difficult and the reduction of the inertial forces becomes mandatory. This study presents an analysis of the material influence on the wind turbine starting conditions.

  9. Sliding mode direct power control of RSC for DFIGs driven by variable speed wind turbines

    Directory of Open Access Journals (Sweden)

    E.G. Shehata

    2015-12-01

    Full Text Available In spite of its several advantages, a classic direct power control (DPC of doubly fed induction generators (DFIGs driven by variable speed wind turbines has some drawbacks. In this paper, a simple and robust total sliding mode controller (TSMC is designed to improve the classical DPC performance without complicating the overall scheme. The TSMC is designed to regulate the DFIG stator active and reactive powers. Two integral switching functions are selected for describing the switching surfaces of the active and reactive powers. Reaching phase stability problem of the classical sliding mode controller is avoided in the proposed TSMC. Neither current control loops nor accurate values of machine parameters are required in the proposed scheme. In addition, axes transformation of the stator voltage and current are eliminated. The grid side converter is controlled based on DPC principle to regulate both DC-link voltage and total reactive power. The feasibility of the proposed DPC scheme is validated through simulation studies on a 1.5 MW wind power generation system. The performance of the proposed and conventional DPC schemes is compared under different operating conditions.

  10. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    Science.gov (United States)

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Loads in wind farms under non-neutral ABL stability conditions: A full-scale validation study of the DWM model

    DEFF Research Database (Denmark)

    The purpose of this study is twofold: To validate a generalized version of the DWM approach for load prediction under non-neural atmospheric stability conditions, and to demonstrate the importance of atmospheric stability for wind turbines operating in wind farm conditions.......The purpose of this study is twofold: To validate a generalized version of the DWM approach for load prediction under non-neural atmospheric stability conditions, and to demonstrate the importance of atmospheric stability for wind turbines operating in wind farm conditions....

  12. Design and dynamic simulation of a fixed pitch 56 kW wind turbine drive train with a continuously variable transmission

    Science.gov (United States)

    Gallo, C.; Kasuba, R.; Pintz, A.; Spring, J.

    1986-01-01

    The dynamic analysis of a horizontal axis fixed pitch wind turbine generator (WTG) rated at 56 kW is discussed. A mechanical Continuously Variable Transmission (CVT) was incorporated in the drive train to provide variable speed operation capability. One goal of the dynamic analysis was to determine if variable speed operation, by means of a mechanical CVT, is capable of capturing the transient power in the WTG/wind environment. Another goal was to determine the extent of power regulation possible with CVT operation.

  13. Research on Condition Assessment Method of Transmission Tower Under the Action of Strong Wind

    Science.gov (United States)

    Huang, Ren-mou; An, Li-qiang; Zhang, Rong-lun; Wu, Jiong; Liang, Ya-feng

    2018-03-01

    Transmission towers are often subjected to the external damage of severe weather like strong wind and so on, which may cause the collapse due to the yield and fracture of the tower material. Aiming this issue, an assessment method was proposed in this paper to assess the operation condition of transmission towers under strong wind. With a reasonable assess index system established firstly, then the internal force of the tower material was solved and its stability was determined through the mechanical analysis of the transmission tower finite element model. Meanwhile, the condition risk level of the tower was finally determined by considering the difference among the influences of other factors like corrosion and loose of members, slope on the transmission tower through the analytic hierarchy process. The assessment method was applied to assess the wind-induced collapse of towers in 110kV Bao Yi II line in Wenchang City, Hainan Province, of which the result proves the method can assess the condition of transmission tower under strong wind and of guiding significance for improving the windproof capability of transmission towers.

  14. Variable speed wind turbine control by discrete-time sliding mode approach.

    Science.gov (United States)

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Two-Dimensional Bifurcated Inlet Variable Cowl Lip Test Completed in 10- by 10-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Hoffman, T. R.

    2000-01-01

    Researchers at the NASA Glenn Research Center at Lewis Field successfully tested a variable cowl lip inlet at simulated takeoff conditions in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) as part of the High-Speed Research Program. The test was a follow-on to the Two-Dimensional Bifurcated (2DB) Inlet/Engine test. At the takeoff condition for a High-Speed Civil Transport aircraft, the inlet must provide adequate airflow to the engine with an acceptable distortion level and high-pressure recovery. The test was conducted to study the effectiveness of installing two rotating lips on the 2DB Inlet cowls to increase mass flow rate and eliminate or reduce boundary layer flow separation near the lips. Hardware was mounted vertically in the test section so that it extended through the tunnel ceiling and that the 2DB Inlet was exposed to the atmosphere above the test section. The tunnel was configured in the aerodynamic mode, and exhausters were used to pump down the tunnel to vacuum levels and to provide a maximum flow rate of approximately 58 lb/sec. The test determined the (1) maximum flow in the 2DB Inlet for each variable cowl lip, (2) distortion level and pressure recovery for each lip configuration, (3) boundary layer conditions near variable lips inside the 2DB Inlet, (4) effects of a wing structure adjacent to the 2DB Inlet, and (5) effects of different 2DB Inlet exit configurations. It also employed flow visualization to generate enough qualitative data on variable lips to optimize the variable lip concept. This test was a collaborative effort between the Boeing Company and Glenn. Extensive inhouse support at Glenn contributed significantly to the progress and accomplishment of this test.

  16. Low-frequency photospheric and wind variability in the early-B supergiant HD 2905

    Science.gov (United States)

    Simón-Díaz, S.; Aerts, C.; Urbaneja, M. A.; Camacho, I.; Antoci, V.; Fredslund Andersen, M.; Grundahl, F.; Pallé, P. L.

    2018-04-01

    Context. Despite important advances in space asteroseismology during the last decade, the early phases of evolution of stars with masses above 15 M⊙ (including the O stars and their evolved descendants, the B supergiants) have been only vaguely explored up to now. This is due to the lack of adequate observations for a proper characterization of the complex spectroscopic and photometric variability occurring in these stars. Aim. Our goal is to detect, analyze, and interpret variability in the early-B-type supergiant HD 2905 (κ Cas, B1 Ia) using long-term, ground-based, high-resolution spectroscopy. Methods: We gather a total of 1141 high-resolution spectra covering some 2900 days with three different high-performance spectrographs attached to 1-2.6m telescopes at the Canary Islands observatories. We complement these observations with the hipparcos light curve, which includes 160 data points obtained during a time span of 1200 days. We investigate spectroscopic variability of up to 12 diagnostic lines by using the zero and first moments of the line profiles. We perform a frequency analysis of both the spectroscopic and photometric dataset using Scargle periodograms. We obtain single snapshot and time-dependent information about the stellar parameters and abundances by means of the FASTWIND stellar atmosphere code. Results: HD 2905 is a spectroscopic variable with peak-to-peak amplitudes in the zero and first moments of the photospheric lines of up to 15% and 30 km s-1, respectively. The amplitude of the line-profile variability is correlated with the line formation depth in the photosphere and wind. All investigated lines present complex temporal behavior indicative of multi-periodic variability with timescales of a few days to several weeks. No short-period (hourly) variations are detected. The Scargle periodograms of the hipparcos light curve and the first moment of purely photospheric lines reveal a low-frequency amplitude excess and a clear dominant frequency

  17. X-ray emission and the winds of cataclysmic variables

    International Nuclear Information System (INIS)

    Cordova, F.A.

    1985-01-01

    X-ray and ultraviolet observations of cataclysmic variable stars reveal a variety of exotic behavior - pulsations, winds, and episodic outbursts - are these related, what do they tell us about the nature of the outburst, about the environment of the accreting white dwarf. The author summarizes the observed changes in the x-ray and uv continuum and spectral features through the outbursts of the dwarf novae. The author then discusses how the modeling of these data have refined our ideas about the location and nature of the emissions, and the source of the outbursts. The author shows how comparisons of the x-ray and uv properties of cataclysmic variables with similar phenomena in other astronomical systems - the solar corona, OB stars, and Be stars - suggest ways in which the x-ray and uv emissions in CVs may be related, and point to further, specific observations that would elucidate our understanding of the behavior and role of the white dwarf in the outburst. 26 references

  18. Adaptive Voltage Control Strategy for Variable-Speed Wind Turbine Connected to a Weak Network

    DEFF Research Database (Denmark)

    Abulanwar, Elsayed; Hu, Weihao; Chen, Zhe

    2016-01-01

    and smoothness at the point of connection (POC) in order to maximise the wind power penetration into such networks. Intensive simulation case studies under different network topology and wind speed ranges reveal the effectiveness of the AVC scheme to effectively suppress the POC voltage variations particularly......Significant voltage fluctuations and power quality issues pose considerable constraints on the efficient integration of remotely located wind turbines into weak networks. Besides, 3p oscillations arising from the wind shear and tower shadow effects induce further voltage perturbations during...... continuous operation. This study investigates and analyses the repercussions raised by integrating a doubly-fed induction generator wind turbine into an ac network of different parameters and very weak conditions. An adaptive voltage control (AVC) strategy is proposed to retain voltage constancy...

  19. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    Science.gov (United States)

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  20. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  1. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.

  2. Online identification of wind model for improving quadcopter trajectory monitoring

    Science.gov (United States)

    Beniak, Ryszard; Gudzenko, Oleksandr

    2017-10-01

    In this paper, we consider a problem of quadcopter control in severe weather conditions. One type of such weather conditions is a strong variable wind. In this paper, we ponder deterministic and stochastic models of winds at low altitudes with the quadcopter performing aggressive maneuvers. We choose an adaptive algorithm as our control algorithm. This algorithm might seem suitable one to solve the given problem, as it is able to adjust quickly to changing conditions. However, as shown in the paper, this algorithm is not applicable to rapidly changing winds and requires additional filters to smooth the impulse streams, so as not to lose the stability of the object.

  3. Balancing Europe's wind power output through spatial deployment informed by weather regimes.

    Science.gov (United States)

    Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini

    2017-08-01

    As wind and solar power provide a growing share of Europe's electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's wind power and can help guide new deployment pathways which minimise this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimising the negative impacts of output variability.

  4. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    Science.gov (United States)

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  5. Variability of sea ice deformation rates in the Arctic and their relationship with basin-scale wind forcing

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-12-01

    Full Text Available The temporal variability of the moments of probability distribution functions (pdfs of total sea ice deformation rates in the Arctic is analyzed in the context of the basin-scale wind forcing acting on the ice. The pdfs are estimated for 594 satellite-derived sea ice deformation maps from 11 winter seasons between 1996/1997 and 2007/2008, provided by the RADARSAT Geophysical Processor System. The temporal scale analyzed equals 3 days. The moments of the pdfs, calculated for a range of spatial scales (12.5–900 km, have two dominating components of variability: a seasonal cycle, with deformation rates decreasing throughout winter towards a minimum in March; and a short-term, synoptic variability, strongly correlated with the area-averaged magnitude of the wind stress over the Arctic, estimated based on the NCEP-DOE Reanalysis-2 data (correlation coefficient of 0.71 for the mean deformation rate. Due to scaling properties of the moments, logarithms of higher moments are strongly correlated with the wind stress as well. Exceptions are observed only at small spatial scales, as a result of extreme deformation events, not directly associated with large-scale wind forcing. By repeating the analysis within regions of different sizes and locations, we show that the wind–ice deformation correlation is largest at the basin scale and decreases with decreasing size of the area of study. Finally, we suggest that a positive trend in seasonally averaged correlation between sea ice deformation rates and the wind forcing, present in the analyzed data, may be related to an observed decrease in the multi-year ice area in the Arctic, indicating possibly even stronger correlations in the future.

  6. Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel

    NARCIS (Netherlands)

    Moonen, P.; Blocken, B.J.E.; Roels, S.; Carmeliet, J.E.

    2006-01-01

    A methodology for numerically simulating the flow conditions in closed-circuit wind tunnels is developed as a contribution to the general philosophy of incorporating Computational Fluid Dynamics (CFD) in wind tunnel design and testing and to CFD validation studies. The methodology is applied to the

  7. An Experimental Study on the Wind-Induced Response of Variable Message Signs

    Directory of Open Access Journals (Sweden)

    Debbie Meyer

    2017-11-01

    Full Text Available Variable message sign (VMS systems are widely used in motorways to provide traffic information to motorists. Such systems are subjected to wind-induced structural vibration that can lead to damage due to fatigue. The limited information that is available on the safe wind design of VMS motivated a large scale testing that was conducted at the wall of wind (WOW Experimental Facility at Florida International University (FIU. One of the objectives of the present study was to experimentally assess the wind-induced force coefficients on VMS of different geometries and utilize these results to provide improved design guidelines. A comprehensive range of VMS geometries was tested, and mean normal and lateral force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model, for wind directions of 0° and 45°. The results confirmed that the mean drag coefficient on a prismatic VMS is smaller than the value of 1.7 suggested by American Association of State Highway and Transportation Officials (AASHTO. An alternative to this value is presented in the form of a design matrix with coefficients ranging from 0.98 to 1.28, depending on the aspect and depth ratio of the VMS. Furthermore, results indicated that the corner modification on a VMS with chamfered edges demonstrated a reduction in the drag coefficient compared to sharper edges. Finally, the dynamic loading effects were considered by evaluating the gust effect factor, using the ASCE 7 formulations, for various VMS weights and geometries. The findings revealed a wide range of possible gust effect factors, both above and below the current AASHTO specification of 1.14. Future research may include different geometries of VMS and a wider range of wind directions.

  8. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara

    2013-07-01

    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  9. Wind impact on the Black Sea ecosystem

    Science.gov (United States)

    Stanichny, Sergey; Ratner, Yuriy; Shokurov, Mike; Stanychna, Rimma; Soloviev, Dmytro; Burdyugov, Vyacheslav

    2010-05-01

    Combination of the recent satellite and meteorological data for the regional investigation allowed to describe new features of the processes in marine ecosystem and detect some relations with wind variability for different time scales. Next topics are highlighted in presentation: 1. Inter-annual variability of the wind stress curl over the Black Sea. Shift in the atmospheric processes after 2003 year and related variations in chlorophyll concentration and intensity of the mesoscale currents. 2. Like-tropical cyclone in September 2005 and its impact o the Black Sea upper layer. 3. Strong storm November 11, 2007 and oil pollutions of the Kerch Strait. 4. Relation of the Danube waters transport with wind fields for summer 2007 and 2008. 5. "Valley" wind in the Eastern part of the Black Sea and its impact on the Rim current formation. 6. Low wind conditions and blue -green algae bloom. NCEP, SKIRON and MHI MM5 wind data together with AVHRR, MODIS, MERIS, ETM+, QuikSCAT, ASAR (ESA) satellite data were used for investigation. Work was done with support of the SESAME FP7, "Stable Ecosystem" and Operational Oceanography NASU projects.

  10. Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

    2013-08-01

    This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

  11. Dispersion under low wind speed conditions using Gaussian Plume approach

    International Nuclear Information System (INIS)

    Rakesh, P.T.; Srinivas, C.V.; Baskaran, R.; Venkatesan, R.; Venkatraman, B.

    2018-01-01

    For radioactive dose computation due to atmospheric releases, dispersion models are essential requirement. For this purpose, Gaussian plume model (GPM) is used in the short range and advanced particle dispersion models are used in all ranges. In dispersion models, other than wind speed the most influential parameter which determines the fate of the pollutant is the turbulence diffusivity. In GPM the diffusivity is represented using empirical approach. Studies show that under low wind speed conditions, the existing diffusivity relationships are not adequate in estimating the diffusion. An important phenomenon that occurs during the low wind speed is the meandering motions. It is found that under meandering motions the extent of plume dispersion is more than the estimated value using conventional GPM and particle transport models. In this work a set of new turbulence parameters for the horizontal diffusion of the plume is suggested and using them in GPM, the plume is simulated and is compared against observation available from Hanford tracer release experiment

  12. Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2014-04-01

    Full Text Available As the demand for wind energy continues to grow at exponential rates, reducing operation and maintenance (OM costs and improving reliability have become top priorities in wind turbine (WT maintenance strategies. In addition to the development of more highly evolved WT designs intended to improve availability, the application of reliable and cost-effective condition-monitoring (CM techniques offers an efficient approach to achieve this goal. This paper provides a general review and classification of wind turbine condition monitoring (WTCM methods and techniques with a focus on trends and future challenges. After highlighting the relevant CM, diagnosis, and maintenance analysis, this work outlines the relationship between these concepts and related theories, and examines new trends and future challenges in the WTCM industry. Interesting insights from this research are used to point out strengths and weaknesses in today’s WTCM industry and define research priorities needed for the industry to meet the challenges in wind industry technological evolution and market growth.

  13. Economic analysis of condition monitoring systems for offshore wind turbine sub-systems

    DEFF Research Database (Denmark)

    May, Allan; MacMillan, David; Thöns, Sebastian

    2015-01-01

    The use of condition monitoring systems on offshore wind turbines has increased dramatically in recent times. However, their use is mostly restricted to vibration based monitoring systems for the gearbox, generator and drive train. A survey of commercially available condition monitoring systems...... year life cycle. The model uses Hidden Markov Models to represent both the actual system state and the observed condition monitoring state. The CM systems are modelled to include reduced failure types, false alarms, detection rates and 6 month failure warnings. The costs for system failures are derived...... and their associated costs has been completed for the blades, drive train, tower and foundation. This paper considers what value can be obtained from integrating these additional systems into the maintenance plan. This is achieved by running simulations on an operations and maintenance model for a wind farm over a 20...

  14. "Magnetic" termite mound surfaces are oriented to suit wind and shade conditions.

    Science.gov (United States)

    Jacklyn, Peter M

    1992-09-01

    The termites Amitermes meridionalis and A. laurensis construct remarkable meridional or "magnetic" mounds in northern Australia. These mounds vary geographically in mean orientation in a manner that suggests such variation is an adaptive response to local environmental conditions. Theoretical modelling of solar irradiance and mound rotation experiments show that maintenance of an eastern face temperature plateau during the dry season is the most likely physical basis for the mound orientation response. Subsequent heat transfer analysis shows that habitat wind speed and shading conditions also affect face temperature gradients such as the rate of eastern face temperature change. It is then demonstrated that the geographic variation in mean mound orientation follows the geographic variation in long-term wind speed and shading conditions across northern Australia such that an eastern face temperature plateau is maintained in all locations.

  15. VisibleWind: wind profile measurements at low altitude

    Science.gov (United States)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  16. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  17. Identification of severe wind conditions using a Reynolds averaged Navier-Stokes solver

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Bechmann, Andreas; Johansen, Jeppe

    2007-01-01

    The present paper describes the application of a Navier-Stokes solver to predict the presence of severe flow conditions in complex terrain, capturing conditions that may be critical to the siting of wind turbines in the terrain. First it is documented that the flow solver is capable of predicting...

  18. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in s...

  19. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  20. A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Robert W. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Bagenal, Fran [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); McComas, David J. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); Fowler, Christopher M., E-mail: rebert@swri.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States)

    2014-09-19

    We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1–4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013a), Jupiter's bow shock and magnetopause is expected to be at least 8–12% further from Jupiter, if these trends continue.

  1. Extending wind turbine operational conditions; a comparison of set point adaptation and LQG individual pitch control for highly turbulent wind

    International Nuclear Information System (INIS)

    Engels, W P; Subhani, S; Zafar, H; Savenije, F

    2014-01-01

    Extreme wind conditions can cause excessive loading on the turbine. This not only results in higher design loads, but when these conditions occur in practice, will also result in higher maintenance cost. Although there are already effective methods of dealing with gusts, other extreme conditions should also be examined. More specifically, extreme turbulence conditions (e.g. those specified by design load case 1.3 in IEC61400-1 ed. 3) require special attention as they can lead to design-driving extreme loads on blades, tower and other wind turbine components. This paper examines two methods to deal with extreme loads in a case of extreme turbulent wind. One method is derating the turbine, the other method is an individual pitch control (IPC) algorithm. Derating of the turbine can be achieved in two ways, one is changing the rated torque, the other is changing the rated rotor speed. The effect of these methods on fatigue loads and extreme loads is examined. Non-linear aero-elastic simulations using Phatas, show that reducing the rated rotor speed is far more effective at reducing the loads than reducing torque. Then, the IPC algorithm is proposed. This algorithm is a linear quadratic Gaussian (LQG) controller based on a time invariant model, defined in the fixed reference frame that includes the first tower and blade modes. Because this method takes the dynamics of the system into account more than conventional IPC control, it is expected that these loads dealt with more effectively, when they are particularly relevant. It is expected that in extreme turbulent the blade and tower dynamics are indeed more relevant. The effect of this algorithm on fatigue loads and pitch effort is examined and compared with the fatigue loads and pitch effort of reference IPC. Finally, the methods are compared in non-linear aero-elastic simulations with extreme turbulent wind

  2. Online identification of wind model for improving quadcopter trajectory monitoring

    Directory of Open Access Journals (Sweden)

    Beniak Ryszard

    2017-01-01

    Full Text Available In this paper, we consider a problem of quadcopter control in severe weather conditions. One type of such weather conditions is a strong variable wind. In this paper, we ponder deterministic and stochastic models of winds at low altitudes with the quadcopter performing aggressive maneuvers. We choose an adaptive algorithm as our control algorithm. This algorithm might seem suitable one to solve the given problem, as it is able to adjust quickly to changing conditions. However, as shown in the paper, this algorithm is not applicable to rapidly changing winds and requires additional filters to smooth the impulse streams, so as not to lose the stability of the object.

  3. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Science.gov (United States)

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  4. Bayesian based Diagnostic Model for Condition based Maintenance of Offshore Wind Farms

    DEFF Research Database (Denmark)

    Asgarpour, Masoud; Sørensen, John Dalsgaard

    2018-01-01

    Operation and maintenance costs are a major contributor to the Levelized Cost of Energy for electricity produced by offshore wind and can be significantly reduced if existing corrective actions are performed as efficiently as possible and if future corrective actions are avoided by performing...... sufficient preventive actions. This paper presents an applied and generic diagnostic model for fault detection and condition based maintenance of offshore wind components. The diagnostic model is based on two probabilistic matrices; first, a confidence matrix, representing the probability of detection using...... for a wind turbine component based on vibration, temperature, and oil particle fault detection methods. The last part of the paper will have a discussion of the case study results and present conclusions....

  5. Appendix I3-1 to Wind HUI Initiative 1: AWST-WindNET-Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Zack

    2012-07-15

    diagnostic analysis of large ramp events. The analysis was completed for both the wind farm on the southern tip of the Big Island and on the northern tip of the island. The WindNET project was designed to also deploy sensors to validate the Big Island observational targeting study and enhance operator's understanding of predominate causes of wind variability conditions at the wind facilities. Compromises had to be made with the results from the observation targeting study to accommodate project resource limitations, availability of suitable sites, and other factors. To focus efforts, field sensor deployment activities focused on the wind facility on the southern point of Big Island.

  6. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)

    2010-06-15

    To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection. (author)

  7. Scalable conditional induction variables (CIV) analysis

    DEFF Research Database (Denmark)

    Oancea, Cosmin Eugen; Rauchwerger, Lawrence

    2015-01-01

    parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.......Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as filter, or stack operations and pose significant challenges to automatic parallelization. Because...... the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same...

  8. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  9. A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Directory of Open Access Journals (Sweden)

    Robert Wilkes Ebert

    2014-09-01

    Full Text Available We examine Ulysses solar wind and interplanetary magnetic field (IMF observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 – 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013, Jupiter’s bow shock and magnetopause is expected to be at least 8 – 12% further from Jupiter, if these trends continue.

  10. Tip Speed Ratio Based Maximum Power Tracking Control of Variable Speed Wind Turbines; A Comprehensive Design

    Directory of Open Access Journals (Sweden)

    Murat Karabacak

    2017-08-01

    Full Text Available The most primitive control method of wind turbines used to generate electric energy from wind is the fixed speed control method. With this method, it is not possible that turbine input power is transferred to grid at maximum rate. For this reason, Maximum Power Tracking (MPT schemes are proposed. In order to implement MPT, the propeller has to rotate at a different speed for every different wind speed. This situation has led MPT based systems to be called Variable Speed Wind Turbine (VSWT systems. In VSWT systems, turbine input power can be transferred to grid at rates close to maximum power. When MPT based control of VSWT systems is the case, two important processes come into prominence. These are instantaneously determination and tracking of MPT point. In this study, using a Maximum Power Point Tracking (MPPT method based on tip speed ratio, power available in wind is transferred into grid over a back to back converter at maximum rate via a VSWT system with permanent magnet synchronous generator (PMSG. Besides a physical wind turbine simulator is modelled and simulated. Results show that a time varying MPPT point is tracked with a high performance.

  11. Tacholess order-tracking approach for wind turbine gearbox fault detection

    Institute of Scientific and Technical Information of China (English)

    Yi WANG; Yong XIE; Guanghua XU; Sicong ZHANG; Chenggang HOU

    2017-01-01

    Monitoring of wind turbines under variablespeed operating conditions has become an important issue in recent years.The gearbox of a wind turbine is the most important transmission unit;it generally exhibits complex vibration signatures due to random variations in operating conditions.Spectral analysis is one of the main approaches in vibration signal processing.However,spectral analysis is based on a stationary assumption and thus inapplicable to the fault diagnosis of wind turbines under variable-speed operating conditions.This constraint limits the application of spectral analysis to wind turbine diagnosis in industrial applications.Although order-tracking methods have been proposed for wind turbine fault detection in recent years,current methods are only applicable to cases in which the instantaneous shaft phase is available.For wind turbines with limited structural spaces,collecting phase signals with tachometers or encoders is difficult.In this study,a tacholess order-tracking method for wind turbines is proposed to overcome the limitations of traditional techniques.The proposed method extracts the instantaneous phase from the vibration signal,resamples the signal at equiangular increments,and calculates the order spectrum for wind turbine fault identification.The effectiveness of the proposed method is experimentally validated with the vibration signals of wind turbines.

  12. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    International Nuclear Information System (INIS)

    Feretic, Danilo; Cavlina, Nikola

    2010-01-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  13. Variability of wind stress and currents at selected locations over the north Indian Ocean during 1977 and 1979 summer monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Sadhuram, Y.; RameshBabu, V.; Rao, M.V.

    Intra-seasonal variability of wind stress, wind stress curl and currents at different locations over the northern Indian Ocean during two contrasting monsoon seasons has been investigated making use of the time series data collected during MONSOON...

  14. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2006-01-01

    Full Text Available Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5 is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  15. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    Science.gov (United States)

    de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.

    2006-04-01

    Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  16. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    of the WindScanner data is high, although the fidelity of the estimated vertical velocity component is significantly limited by the elevation angles of the scanner heads. The system of long-range WindScanners presented in this paper is close to being fully operational, with the pilot study herein serving...

  17. Wind power merit-order and feed-in-tariffs effect: A variability analysis of the Spanish electricity market

    International Nuclear Information System (INIS)

    Azofra, D.; Jiménez, E.; Martínez, E.; Blanco, J.; Saenz-Díez, J.C.

    2014-01-01

    Highlights: • M5P algorithm-based model determines influence of wind power on Spanish spot market. • Assessment of the wind power influence for different levels of wind resource. • Cost-benefit analysis is developed, accounting feed-in-tariffs and merit order effect. • The worst and best levels of wind power production for the system are determined. - Abstract: The incipient large-scale energy-storage technologies are not sufficiently developed yet, which means that the wind power production depends on the wind speed at every moment. This, along with the fact that the wind resource is not constant over time, makes wind power production quite variable. Therefore, an artificial intelligence-based technique (M5P algorithm) is applied to empirical hourly data to determine the influence of wind power technology on the spot market for different levels of wind resource in 2012. It concludes that wind power depressed the spot prices between 7.42 and 10.94 €/MW h for a wind power production of 90% and 110% of the real one, respectively. Furthermore, taking into account the important presence of wind power in the Spanish generation mix, the above range has been extended up to 0% in order to determine the worst and best level of wind power production for the Spanish electrical system (from an economical point of view). To do so, both feed-in-tariffs and wind power impact on spot market (merit order effect) have been accounted in accordance with the different levels of wind power production. Since empirical data from 2012 have been used to conduct the research, the results presented in this paper may provide policy makers with a worst and best-case scenario to discuss about the convenience of the last cutting expenses over wind power technology in Spain

  18. Modelling the day to day wind variability offshore central Chile at about 30 deg. south

    International Nuclear Information System (INIS)

    Rutllant, J.

    1994-07-01

    Cycles of strengthening and relaxation of the winds offshore 30 degrees S at central Chile, are related to the propagation of coastal-lows, a year-round phenomenon occurring with periodicities of about one in five days. Simple physical modelling of the day to day variability of the alongshore wind component at a coastal strip extending offshore up to the Rossby deformation radius of these wave perturbations, is presented in terms of the relevant horizontal pressure gradients and the ageostrophic components arising from the coastal-low propagation. The results of 5-day composites of 8 wind-events each, at the winter and summer halves of the annual cycle, respectively; lead to a good agreement between the observed phase-lag of the winds with respect to the pressure forcing field, stressing the importance of the ageostrophic wind components at the extremes of the pressure wave perturbation associated with the passage of coastal-lows over the Point Lengua de Vaca (30 15 S) area. A possible contribution of the upwelling-favorable wind enhancement at the time of the pressure rise and subsequent fall, ahead of the coastal-low, is postulated through an upwelling-front low-level jet, that would be carried onshore and closer to the surface by the combination of the enhanced coastal upwelling, the coastal depression of the subsidence inversion base and the coastal ageostrophic wind components during the passage of the leading edge of the coastal lows. (author). 26 refs, 5 figs, 1 tab

  19. Modeling and Operational Testing of an Isolated Variable Speed PMSG Wind Turbine with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    BAROTE, L.

    2012-05-01

    Full Text Available This paper presents the modeling and operational testing of an isolated permanent magnet synchronous generator (PMSG, driven by a small wind turbine with a battery energy storage system during wind speed and load variations. The whole system is initially modeled, including the PMSG, the boost converter and the storage system. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropriate control method. Energy storage devices are required for power balance and power quality in stand alone wind energy systems. The main purpose is to supply 230 V / 50 Hz domestic appliances through a single-phase inverter. The experimental waveforms, compared to the simulation results, show a good prediction of the electrical variable parameters. Furthermore, it can be seen that the results validate the stability of the supply.

  20. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    In this paper, an energy and exergy analysis is performed on four different wind power systems, including both horizontal and vertical axis wind turbines. Significant variability in turbine designs and operating parameters are encompassed through the selection of systems. In particular, two airfoils (NACA 63(2)-215 and FX 63-137) commonly used in horizontal axis wind turbines are compared with two vertical axis wind turbines (VAWTs). A Savonius design and Zephyr VAWT benefit from operational attributes in wind conditions that are unsuitable for airfoil type designs. This paper analyzes each system with respect to both the first and second laws of thermodynamics. The aerodynamic performance of each system is numerically analyzed by computational fluid dynamics software, FLUENT. A difference in first and second law efficiencies of between 50 and 53% is predicted for the airfoil systems, whereas 44-55% differences are predicted for the VAWT systems. Key design variables are analyzed and the predicted results are discussed. The exergetic efficiency of each wind turbine is studied for different geometries, design parameters and operating conditions. It is shown that the second law provides unique insight beyond a first law analysis, thereby providing a useful design tool for wind power development. (author)

  1. Wind speed dynamical model in a wind farm

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2010-01-01

    , the dynamic model for wind flow will be established. The state space variables are determined based on a fine mesh defined for the farm. The end goal of this method is to assist the development of a dynamical model of a wind farm that can be engaged for better wind farm control strategies....

  2. Role of wind forcing and eddy activity in the intraseasonal variability of the barrier layer in the South China Sea

    Science.gov (United States)

    Liang, Zhanlin; Xie, Qiang; Zeng, Lili; Wang, Dongxiao

    2018-03-01

    In addition to widely discussed seasonal variability, the barrier layer (BL) of the South China Sea (SCS) also exhibits significant intraseasonal variability (ISV) and plays an important role in the upper heat and salt balances. The characteristics and mechanisms of spatiotemporal variations in the BL are investigated using an eddy-resolving ocean model OFES (OGCM For the Earth Simulator) ouput and related atmospheric and oceanic processes. The active intraseasonal BL variability in the SCS occurs mainly during the late summer/autumn and winter and exhibits remarkable differences between these two periods. The BL ISV in late summer/autumn occurs in the southern basin, while in winter, it is limited to the northwestern basin. To further discuss the evolution and driving thermodynamic mechanisms, we quantify the processes that control the variability of intraseasonal BL. Different mechanisms for the intraseasonal BL variability for these two active periods are investigated based on the case study and composite analysis. During late summer/autumn, the active BL in the southern basin is generated by advected and local freshwater, and then decays rapidly with the enhanced wind. In winter, anticyclonic eddy activity is associated with the evolution of the BL by affecting the thermocline and halocline variations, while wind stress and wind stress curl have no obvious influence on BL.

  3. Quality controls for wind measurement of a 1290-MHz boundary layer profiler under strong wind conditions.

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2017-09-01

    Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.

  4. Decadal variability on the Northwest European continental shelf

    Science.gov (United States)

    Jones, Sam; Cottier, Finlo; Inall, Mark; Griffiths, Colin

    2018-02-01

    Decadal scale time series of the shelf seas are important for understanding both climate and process studies. Despite numerous investigations of long-term temperature variability in the shelf seas, studies of salinity variability are few. Salt is a more conservative tracer than temperature in shallow seas, and it can reveal changes in local hydrographic conditions as well as transmitted basin-scale changes. Here, new inter-annual salinity time series on the northwest European shelf are developed and a 13 year high resolution salinity record from a coastal mooring in western Scotland is presented and analysed. We find strong temporal variability in coastal salinity on timescales ranging from tidal to inter-annual, with the magnitude of variability greatest during winter months. There is little seasonality and no significant decadal trend in the coastal time series of salinity. We propose 4 hydrographic states to explain salinity variance in the shelf area west of Scotland based on the interaction between a baroclinic coastal current and wind-forced barotropic flow: while wind forcing is important, we find that changes in the buoyancy-driven flow are more likely to influence long-term salinity observations. We calculate that during prevailing westerly wind conditions, surface waters in the Sea of the Hebrides receive a mix of 62% Atlantic origin water to 38% coastal sources. This contrasts with easterly wind conditions, during which the mix is 6% Atlantic to 94% coastal sources on average. This 'switching' between hydrographic states is expected to impact nutrient transport and therefore modify the level of primary productivity on the shelf. This strong local variability in salinity is roughly an order of magnitude greater than changes in the adjacent ocean basin, and we infer from this that Scottish coastal waters are likely to be resilient to decadal changes in ocean climate.

  5. Low-frequency photospheric and wind variability in the early-B supergiant HD2905

    DEFF Research Database (Denmark)

    Simon-Diaz, S.; Aerts, C.; Urbaneja, M. A.

    2018-01-01

    to the lack of adequate observations for a proper characterization of the complex spectroscopic and photometric variability occurring in these stars. Aims. Our goal is to detect, analyze, and interpret variability in the early-B-type supergiant HD2905 (kappa Cas, B1 Ia) using long-term, ground-based, high...... snapshot and time-dependent information about the stellar parameters and abundances by means of the FASTWIND stellar atmosphere code. Results. HD2905 is a spectroscopic variable with peak-to-peak amplitudes in the zero and first moments of the photospheric lines of up to 15% and 30 km s(-1), respectively....... Conclusions. Combined long-term uninterrupted space photometry with high-precision spectroscopy is the best strategy to unravel the complex low-frequency photospheric and wind variability of B supergiants. Three-dimensional (3D) simulations of waves and of convective motions in the sub-surface layers can shed...

  6. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  7. 变速变桨风力机组控制策略研究%Research on the Control Strategy for Variable Speed and Variable Pitch Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    陈铁军; 汪兆财

    2012-01-01

    In order to increase the utilization efficiency of wind energy of wind turbine power generation system, and improve the quality of output electric energy, with the chaotic system theory as the core, the control structure of chaotic automation used for variable speed and variable pitch wind turbine is established. In addition, combining with fuzzy control theory, the algorithm of controller is given. The simulation of the control structure and control algorithm shows that comparing with conventional control method, the variable speed and variable pitch wind turbine with chaotic automation control structure and under control algorithm reaches predicted target, the practical control effect is excellent.%为提高风力机发电系统的风能利用效率、改善输出电能质量,针对变速变桨风力发电机组的控制问题,以混杂系统理论为核心,建立了应用于变速变桨风力机组的混杂自动机控制结构.同时,结合模糊控制理论,给出控制器的算法.通过对该控制结构和控制算法的仿真表明,与常规的控制方法相比,采用混杂自动机控制结构和控制算法控制变速变桨风力机组,既提高了风能的利用效率,又很好地改善了风力机输出电能质量,实际控制效果良好.

  8. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  9. A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate

    Science.gov (United States)

    Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.

    2018-04-01

    There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.

  10. Validated Loads Prediction Models for Offshore Wind Turbines for Enhanced Component Reliability

    DEFF Research Database (Denmark)

    Koukoura, Christina

    To improve the reliability of offshore wind turbines, accurate prediction of their response is required. Therefore, validation of models with site measurements is imperative. In the present thesis a 3.6MW pitch regulated-variable speed offshore wind turbine on a monopole foundation is built...... are used for the modification of the sub-structure/foundation design for possible material savings. First, the background of offshore wind engineering, including wind-wave conditions, support structure, blade loading and wind turbine dynamics are presented. Second, a detailed description of the site...

  11. GeneratorSE: A Sizing Tool for Variable-Speed Wind Turbine Generators

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-22

    This report documents a set of analytical models employed by the optimization algorithms within the GeneratorSE framework. The initial values and boundary conditions employed for the generation of the various designs and initial estimates for basic design dimensions, masses, and efficiency for the four different models of generators are presented and compared with empirical data collected from previous studies and some existing commercial turbines. These models include designs applicable for variable-speed, high-torque application featuring direct-drive synchronous generators and low-torque application featuring induction generators. In all of the four models presented, the main focus of optimization is electromagnetic design with the exception of permanent-magnet and wire-wound synchronous generators, wherein the structural design is also optimized. Thermal design is accommodated in GeneratorSE as a secondary attribute by limiting the winding current densities to acceptable limits. A preliminary validation of electromagnetic design was carried out by comparing the optimized magnetic loading against those predicted by numerical simulation in FEMM4.2, a finite-element software for analyzing electromagnetic and thermal physics problems for electrical machines. For direct-drive synchronous generators, the analytical models for the structural design are validated by static structural analysis in ANSYS.

  12. Wind turbine condition monitoring based on SCADA data using normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar; Achiche, Sofiane

    2013-01-01

    This paper proposes a system for wind turbine condition monitoring using Adaptive Neuro-Fuzzy Interference Systems (ANFIS). For this purpose: (1) ANFIS normal behavior models for common Supervisory Control And Data Acquisition (SCADA) data are developed in order to detect abnormal behavior...... the applicability of ANFIS models for monitoring wind turbine SCADA signals. The computational time needed for model training is compared to Neural Network (NN) models showing the strength of ANFIS in training speed. (2) For automation of fault diagnosis Fuzzy Interference Systems (FIS) are used to analyze...

  13. Surfing wave climate variability

    Science.gov (United States)

    Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.

    2014-10-01

    International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.

  14. able utilizando redes neuronales artificiales; UTILIZATION OF ARTIFICIAL NEURAL NETWORK IN THE SIMULATION AND CONTROL OF WIND TURBINE GENERATORS WITH VARIABLE SPEED AND VARIABLE PITCH.

    Directory of Open Access Journals (Sweden)

    Osley López González

    2011-02-01

    Full Text Available Con el objetivo de aprovechar al máximo la energía del viento y, a la vez, llevar a cabo un control rápido ypreciso de la potencia máxima suministrada al aumentar la misma se han venido utilizando cada vez mássistemas de control capaces de operar en el punto óptimo de entrega de potencia para determinadosvalores de velocidad del viento y limitarla cuando éste supera su valor máximo. Este sistema de control,considerado en su conjunto, debe responder con la exactitud, estabilidad y rapidez necesaria ante lavariabilidad y aleatoriedad del viento. La relación entre sus variables de salida (velocidad de la turbina ypaso de la pala y la de entrada (velocidad del viento que sea capaz de aprovechar la máxima potenciadisponible en el viento en una zona de trabajo y de limitarla en otra, es altamente complicada puesdepende de factores constructivos y de diseño de la turbina y del generador. Esta característica es muydifícil de representar (sea con el objetivo de simulación o con el de control mediante relacionesfuncionales matemáticas convencionales.En este trabajo los autores proponen representar dicha relaciónmediante la utilización de Redes Neuronales Artificiales entrenadas para ser capaces de responderadecuadamente ante cualquier entrada. Basados en los parámetros y características de un aerogeneradorreal de velocidad y paso variables y utilizando el toolbox de Redes Neuronales del MATLAB SIMULINK losautores obtuvieron un modelo neuronal del sistema de control de la velocidad y el paso de la turbinacomprobando su correcta operación ante diferentes perturbaciones de la red eléctrica mediante estemismo lenguaje de simulación. Se demostró que estas redes pueden ser utilizadas con éxito en lasimulación y el control de este tipo de máquinas en cualquier condición de operación. In order to capture the maximum energy from the wind, control systems operating always at an optimumpower has been utilized. This control system

  15. The role of remote wind forcing in the subinertial current variability in the central and northern parts of the South Brazil Bight

    Science.gov (United States)

    Dottori, Marcelo; Castro, Belmiro Mendes

    2018-05-01

    Data analysis of continental shelf currents and coastal sea level, together with the application of a semi-analytical model, are used to estimate the importance of remote wind forcing on the subinertial variability of the current in the central and northern areas of the South Brazil Bight. Results from both the data analysis and from the semi-analytical model are robust in showing subinertial variability that propagates along-shelf leaving the coast to the left in accordance with theoretical studies of Continental Shelf Waves (CSW). Both the subinertial variability observed in along-shelf currents and sea level oscillations present different propagation speeds for the narrow northern part of the SBB ( 6-7 m/s) and the wide central SBB region ( 11 m/s), those estimates being in agreement with the modeled CSW propagation speed. On the inner and middle shelf, observed along-shelf subinertial currents show higher correlation coefficients with the winds located southward and earlier in time than with the local wind at the current meter mooring position and at the time of measurement. The inclusion of the remote (located southwestward) wind forcing improves the prediction of the subinertial currents when compared to the currents forced only by the local wind, since the along-shelf-modeled currents present correlation coefficients with observed along-shelf currents up to 20% higher on the inner and middle shelf when the remote wind is included. For most of the outer shelf, on the other hand, this is not observed since usually, the correlation between the currents and the synoptic winds is not statistically significant.

  16. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  17. Adaptive settings of distance relay for MOV-protected series compensated line with distributed capacitance considering wind power

    Science.gov (United States)

    Sivov, Oleg Viktorovich

    Series compensated lines are protected from overvoltage by metal-oxide-varistors (MOVs) connected in parallel with the capacitor bank. The nonlinear characteristics of MOV devices add complexity to fault analysis and distance protection operation. During faults, the impedance of the line is modified by an equivalent impedance of the parallel MOV/capacitor circuit, which affects the distance protection. The intermittent wind generation introduces additional complexity to the system performance and distance protection. Wind variation affects the fault current level and equivalent MOV/capacitor impedance during a fault, and hence the distance relay operation. This thesis studies the impact of the intermittent wind power generation on the operation of MOV during faults. For the purpose of simulation, an equivalent wind farm model is proposed to generate a wind generation profile using wind farm generation from California independent system operator (ISO) as a guide for wind power variation to perform the study. The IEEE 12-bus test system is modified to include MOV-protected series capacitor and the equivalent wind farm model. The modified test system is simulated in the MATLAB/Simulink environment. The study has been achieved considering three phase and single line to ground (SLG) faults on the series compensated line to show the effect of wind variation on the MOV operation. This thesis proposes an adaptive setting method for the mho relay distance protection of series compensated line considering effects of wind power variation and MOV operation. The distributed parameters of a transmission line are taken into account to avoid overreaching and underreaching of distance relays. The study shows that variable wind power affects system power flow and fault current in the compensated line during a fault which affects the operation of MOVs for different fault conditions. The equivalent per-phase impedance of the MOV/capacitor circuit has an effect on the system operation

  18. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation

    Science.gov (United States)

    Armstrong, Alona; Burton, Ralph R.; Lee, Susan E.; Mobbs, Stephen; Ostle, Nicholas; Smith, Victoria; Waldron, Susan; Whitaker, Jeanette

    2016-04-01

    The global drive to produce low-carbon energy has resulted in an unprecedented deployment of onshore wind turbines, representing a significant land use change for wind energy generation with uncertain consequences for local climatic conditions and the regulation of ecosystem processes. Here, we present high-resolution data from a wind farm collected during operational and idle periods that shows the wind farm affected several measures of ground-level climate. Specifically, we discovered that operational wind turbines raised air temperature by 0.18 °C and absolute humidity (AH) by 0.03 g m-3 during the night, and increased the variability in air, surface and soil temperature throughout the diurnal cycle. Further, the microclimatic influence of turbines on air temperature and AH decreased logarithmically with distance from the nearest turbine. These effects on ground-level microclimate, including soil temperature, have uncertain implications for biogeochemical processes and ecosystem carbon cycling, including soil carbon stocks. Consequently, understanding needs to be improved to determine the overall carbon balance of wind energy.

  19. A hybrid measure-correlate-predict method for long-term wind condition assessment

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille; Hodge, Bri-Mathias

    2014-01-01

    Highlights: • A hybrid measure-correlate-predict (MCP) methodology with greater accuracy is developed. • Three sets of performance metrics are proposed to evaluate the hybrid MCP method. • Both wind speed and direction are considered in the hybrid MCP method. • The best combination of MCP algorithms is determined. • The developed hybrid MCP method is uniquely helpful for long-term wind resource assessment. - Abstract: This paper develops a hybrid measure-correlate-predict (MCP) strategy to assess long-term wind resource variations at a farm site. The hybrid MCP method uses recorded data from multiple reference stations to estimate long-term wind conditions at a target wind plant site with greater accuracy than is possible with data from a single reference station. The weight of each reference station in the hybrid strategy is determined by the (i) distance and (ii) elevation differences between the target farm site and each reference station. In this case, the wind data is divided into sectors according to the wind direction, and the MCP strategy is implemented for each wind direction sector separately. The applicability of the proposed hybrid strategy is investigated using five MCP methods: (i) the linear regression; (ii) the variance ratio; (iii) the Weibull scale; (iv) the artificial neural networks; and (v) the support vector regression. To implement the hybrid MCP methodology, we use hourly averaged wind data recorded at five stations in the state of Minnesota between 07-01-1996 and 06-30-2004. Three sets of performance metrics are used to evaluate the hybrid MCP method. The first set of metrics analyze the statistical performance, including the mean wind speed, wind speed variance, root mean square error, and mean absolute error. The second set of metrics evaluate the distribution of long-term wind speed; to this end, the Weibull distribution and the Multivariate and Multimodal Wind Distribution models are adopted. The third set of metrics analyze

  20. On the modelling and partial-load control of variable-speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Novak, P [Chalmers Univ. of Technology, Goeteborg (Sweden). School of Electrical and Computer Engineering

    1996-12-31

    The focus of this thesis is on modelling and variable-speed control of wind turbines. A physical model structure including the fundamental drive-train mode is derived and validated by system-identification experiments on a full-scale wind turbine. The resulting, parametrized model has been used as a basis for an evaluation of controllers for partial-load operation, validated by non-linear simulations. This evaluation, including several controller concepts, verifies that a sophisticated controller becomes necessary, when stretching the limits in power-loss minimization. This control strategy also demands the sampling frequency to be pushed to a high level. As a consequence, the angular-position measurements become time correlated and, in the limit, periodic. It is shown in the thesis how the resulting, operating-point-dependent effects on the measurement errors influence the estimation quality, using a stationary Kalman filter as an example. A gain-scheduling estimation approach is shown to improve the performance. 39 refs, 63 figs, 2 tabs

  1. Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature

    International Nuclear Information System (INIS)

    Abouhnik, Abdelnasser; Albarbar, Alhussein

    2012-01-01

    Highlights: ► We used finite element method to model wind turbine induced vibration characteristics. ► We developed a technique for eliminating wind turbine’s vibration modulation problems. ► We use empirical mode decomposition to decompose the vibration into its fundamental elements. ► We show the area under shaft speed is a good indicator for assessing wind blades condition. ► We validate the technique under different wind turbine speeds and blade (cracks) conditions. - Abstract: Vibration based monitoring techniques are well understood and widely adopted for monitoring the condition of rotating machinery. However, in the case of wind turbines the measured vibration is complex due to the high number of vibration sources and modulation phenomenon. Therefore, extracting condition related information of a specific element e.g. blade condition is very difficult. In the work presented in this paper wind turbine vibration sources are outlined and then a three bladed wind turbine vibration was simulated by building its model in the ANSYS finite element program. Dynamic analysis was performed and the fundamental vibration characteristics were extracted under two healthy blades and one blade with one of four cracks introduced. The cracks were of length (10 mm, 20 mm, 30 mm and 40 mm), all had a consistent 3 mm width and 2 mm depth. The tests were carried out for three rotation speeds; 150, 250 and 360 r/min. The effects of the seeded faults were revealed by using a novel approach called empirically decomposed feature intensity level (EDFIL). The developed EDFIL algorithm is based on decomposing the measured vibration into its fundamental components and then determines the shaft rotational speed amplitude. A real model of the simulated wind turbine was constructed and the simulation outcomes were compared with real-time vibration measurements. The cracks were seeded sequentially in one of the blades and their presence and severity were determined by decomposing

  2. Increasing Juniperus virginiana L. pollen in the Tulsa atmosphere: long-term trends, variability, and influence of meteorological conditions

    Science.gov (United States)

    Flonard, Michaela; Lo, Esther; Levetin, Estelle

    2018-02-01

    In the Tulsa area, the Cupressaceae is largely represented by eastern red cedar ( Juniperus virginiana L.). The encroachment of this species into the grasslands of Oklahoma has been well documented, and it is believed this trend will continue. The pollen is known to be allergenic and is a major component of the Tulsa atmosphere in February and March. This study examined airborne Cupressaceae pollen data from 1987 to 2016 to determine long-term trends, pollen seasonal variability, and influence of meteorological variables on airborne pollen concentrations. Pollen was collected through means of a Burkard sampler and analyzed with microscopy. Daily pollen concentrations and yearly pollen metrics showed a high degree of variability. In addition, there were significant increases over time in the seasonal pollen index and in peak concentrations. These increases parallel the increasing population of J. virginiana in the region. Pollen data were split into pre- and post-peak categories for statistical analyses, which revealed significant differences in correlations of the two datasets when analyzed with meteorological conditions. While temperature and dew point, among others were significant in both datasets, other factors, like relative humidity, were significant only in one dataset. Analyses using wind direction showed that southerly and southwestern winds contributed to increased pollen concentrations. This study confirms that J. virginiana pollen has become an increasing risk for individuals sensitive to this pollen and emphasizes the need for long-term aerobiological monitoring in other areas.

  3. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    Science.gov (United States)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  4. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2004-11-01

    Full Text Available This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers.

  5. Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site

    Energy Technology Data Exchange (ETDEWEB)

    Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Velazquez, Sergio [Department of Electronics and Automatics Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Matias, J.M. [Department of Statistics, University of Vigo, Lagoas Marcosende, 36200 Vigo (Spain)

    2011-02-15

    Due to the interannual variability of wind speed a feasibility analysis for the installation of a Wind Energy Conversion System at a particular site requires estimation of the long-term mean wind turbine energy output. A method is proposed in this paper which, based on probabilistic Bayesian networks (BNs), enables estimation of the long-term mean wind speed histogram for a site where few measurements of the wind resource are available. For this purpose, the proposed method allows the use of multiple reference stations with a long history of wind speed and wind direction measurements. That is to say, the model that is proposed in this paper is able to involve and make use of regional information about the wind resource. With the estimated long-term wind speed histogram and the power curve of a wind turbine it is possible to use the method of bins to determine the long-term mean energy output for that wind turbine. The intelligent system employed, the knowledgebase of which is a joint probability function of all the model variables, uses efficient calculation techniques for conditional probabilities to perform the reasoning. This enables automatic model learning and inference to be performed efficiently based on the available evidence. The proposed model is applied in this paper to wind speeds and wind directions recorded at four weather stations located in the Canary Islands (Spain). Ten years of mean hourly wind speed and direction data are available for these stations. One of the conclusions reached is that the BN with three reference stations gave fewer errors between the real and estimated long-term mean wind turbine energy output than when using two measure-correlate-predict algorithms which were evaluated and which use a linear regression between the candidate station and one reference station. (author)

  6. Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site

    International Nuclear Information System (INIS)

    Carta, Jose A.; Velazquez, Sergio; Matias, J.M.

    2011-01-01

    Due to the interannual variability of wind speed a feasibility analysis for the installation of a Wind Energy Conversion System at a particular site requires estimation of the long-term mean wind turbine energy output. A method is proposed in this paper which, based on probabilistic Bayesian networks (BNs), enables estimation of the long-term mean wind speed histogram for a site where few measurements of the wind resource are available. For this purpose, the proposed method allows the use of multiple reference stations with a long history of wind speed and wind direction measurements. That is to say, the model that is proposed in this paper is able to involve and make use of regional information about the wind resource. With the estimated long-term wind speed histogram and the power curve of a wind turbine it is possible to use the method of bins to determine the long-term mean energy output for that wind turbine. The intelligent system employed, the knowledgebase of which is a joint probability function of all the model variables, uses efficient calculation techniques for conditional probabilities to perform the reasoning. This enables automatic model learning and inference to be performed efficiently based on the available evidence. The proposed model is applied in this paper to wind speeds and wind directions recorded at four weather stations located in the Canary Islands (Spain). Ten years of mean hourly wind speed and direction data are available for these stations. One of the conclusions reached is that the BN with three reference stations gave fewer errors between the real and estimated long-term mean wind turbine energy output than when using two measure-correlate-predict algorithms which were evaluated and which use a linear regression between the candidate station and one reference station.

  7. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Floors, Rogier Ralph; Peña, Alfredo

    2016-01-01

    Wind-speed observations from tall towers are used in combination with observations up to 600 m in altitude from a Doppler wind lidar to study the long-term conditions over suburban (Hamburg), rural coastal (Høvsøre) and marine (FINO3) sites. The variability in the wind field among the sites is ex...... of the vertical profile of the shape parameter fits well with observations over land, coastal regions and over the sea. An applied model for the dependence of the reversal height on the surface roughness is in good agreement with the observations over land....

  8. Wind power development field test project at Maruyama-machi. Close survey on wind conditions; Maruyamamachi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A survey was made on wind conditions in Maruyama-machi, Awa-gun, Chiba prefecture, on the assumption that a wind power generation system was installed therein. The survey period was one year from Oct., 1998 to Sept., 1999. The observations were carried out on the average wind velocity, average wind direction, standard deviation of velocity, and the maximum instantaneous wind velocity. With a fixed point observation at 20 m above ground, and with the minimum observation time unit of 10 minutes, an average value during the 10 minutes was determined as the measurement of each category. However, the maximum instantaneous wind velocity was determined on the measurement with the minimum observation time unit of 2 seconds. The average annual wind velocity was 3.5 m/s, the maximum wind velocity during the period was 27 m/s, and the wind axis was WSW-ENE, with the total occurrence rate of the wind direction 44.1%. The intensity of turbulence was 0.23 at a wind velocity of 2.0 m/s or above and was 0.22 at 4.0 m/s or above. An estimated annual operation rate of a windmill was 40-60% using the rated value of a 150 kW, 300 kW and 750 kW class windmills. (NEDO)

  9. Gearbox Fatigue Load Estimation for Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    control and data acquisition (SCADA) system. Estimated loads can be further used for prediction of remaining operating lifetime of turbine components, detection of high stress level or fault detection. An augmented Kalman filter is chosen as the fatigue load estimator because its characteristics well suit......The focus of the paper is on a design of a fatigue load estimator for predictive condition monitoring systems (CMS) of wind turbines. In order to avoid high-price measurement equipment required for direct load measuring, an indirect approach is suggested using only measurements from supervisory...... for the real time application. This paper presents results of the estimation of the gearbox fatigue load, often called shaft torque, using simulated data of wind turbine. Noise sensitivity of the algorithm is investigated by assuming different levels of measurement noise. Shaft torque estimations are compared...

  10. Cross-polarization microwave radar return at severe wind conditions: laboratory model and geophysical model function.

    Science.gov (United States)

    Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr

    2014-05-01

    Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer

  11. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

    Institute of Scientific and Technical Information of China (English)

    Binrong WEN; Sha WEI; Kexiang WEI; Wenxian YANG; Zhike PENG; Fulei CHU

    2017-01-01

    The magnitude and stability of power output are two key indices of wind turbines.This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine.First,wind speed models,particularly the wind shear model and the tower shadow model,are described in detail.The widely accepted tower shadow model is modified in view of the cone-shaped towers of modem large-scale wind turbines.Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory.Results indicate that power fluctuation is mainly caused by tower shadow,whereas power loss is primarily induced by wind shear.Under steady wind conditions,power loss can be divided into wind farm loss and rotor loss.Wind farm loss is constant at 3α(3α-1)R2/(8H2).By contrast,rotor loss is strongly influenced by the wind turbine control strategies and wind speed.That is,when the wind speed is measured in a region where a variable-speed controller works,the rotor loss stabilizes around zero,but when the wind speed is measured in a region where the blade pitch controller works,the rotor loss increases as the wind speed intensifies.The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

  12. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.

    Science.gov (United States)

    Owens, Mathew J; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  13. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme

    Science.gov (United States)

    Owens, Mathew J.; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  14. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  15. Wind power development field test project at Okkobe-cho. Close survey on wind conditions; Okkobecho ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A survey was made on regional wind conditions on the assumption that a wind power generator was installed around Okkobe Rakuno-no-oka, Okkobe-cho, Monbetsu-gun, Hokkaido. The survey period was one year from Oct., 1998 to Sept., 1999. The observations were carried out on the average wind velocity, average wind direction, standard deviation of velocity, and the maximum instantaneous wind velocity. With a fixed point observation at 20 m above ground, and with the minimum observation time unit of 10 minutes, an average value during the 10 minutes was determined as the measurement of each category. However, the maximum instantaneous wind velocity was determined on the measurement with the minimum observation time unit of 2 seconds. The average wind velocity was 4.8 m/s, the maximum wind velocity during the period was 29.9 m/s, the prevailing wind direction was WSW (17.1%), the wind axis was WSW-ENE, and the total occurrence rate of wind direction was 51.1%. The intensity of turbulence was 0.19 at a wind velocity of 2.0 m/s or above and was 0.16 at 4.0 m/s or above. An estimated annual operation rate of a windmill was 59-77% using the rated value of a 150 kW, 300 kW and 750 kW class windmills. (NEDO)

  16. Regulation techniques for smoothing active power in aggregated wind farms distributed within Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Martinez, Sergio; Vigueras-Rodriguez, Antonio; Gomez-Lazaro, Emilio [Universidad de Castilla-La Mancha, Albacete (Spain). Renewable Energy Research Inst.

    2009-07-01

    With the increasing production of wind power worldwide, power fluctuations have an impact on power system operation and costs. Power systems with high wind penetration gives rise to concerns about the adverse effects of wind farms on power operations and its staability. The integration of the power produced by wind farms is evaluated through ramp rates calculated as suggested by Parson et al. The worst cases regarding the power system are the most negative ramp rates in the Wind Farm, where the Power System has to compensate such drops in the wind power production. In most onshore wind farms production fluctuates much less than in offshore farms, due to two main reasons. First, offshore wind turbines are collected in a more reduced area, so fluctuations are more correlated. In addition, offshore meteorological conditions are often different than onshore. Furthermore, the variability of wind power is reduced when looking at a large interconnected sytem with geographically dispersed wind power production. This paper deals with a comparison of the smoothed out variability of wind power production time series for the single and aggregated wind farms, parting from their wind power production. The data analyzed come from a 1 year-period measurements of 9 wind farms spread over Spain. (orig.)

  17. Dependence of Substorm Evolution on Solar Wind Condition: Simulation Study

    Science.gov (United States)

    Kamiyoshikawa, N.; Ebihara, Y.; Tanaka, T.

    2017-12-01

    A substorm is one of the remarkable disturbances occurring in the magnetosphere. It is known that the substorm occurs frequently when IMF is southward and solar wind speed is high. However, the physical process to determine substorm scale is not well understood. We reproduced substorms by using global MHD simulation, calculated auroral electrojet (ionospheric Hall current) flowing in the ionosphere to investigate the dependence of substorm evolution on solar wind condition. Solar wind speed of 372.4 km/s and IMF Bz of 5.0 nT were imposed to, obtain the quasi-stationary state of the magnetosphere. Then the solar wind parameters were changed as a step function. For the solar wind speed, we assumed 300 km/s, 500 km/s and 700 km/s. For IMF, we assumed -1.0 nT, -3.0 nT, -5.0 nT, -7.0 nT and -9.0 nT. In total, 15 simulation runs were performed. In order to objectively evaluate the substorm, the onset was identified with the method based on the one proposed by Newell et al. (2011). This method uses the SME index that is an extension of the AE index. In this study, the geomagnetic variation induced by the ionospheric Hall current was obtained every 1 degree from the magnetic latitude 40 degrees to 80 degrees and in every 0.5 hours in the magnetic region direction. The upper and the lower envelopes of the geomagnetic variation are regarded as SMU index and SML index, respectively. The larger the solar wind speed, the larger the southward IMF, the more the onset tends to be faster. This tendency is consistent with the onset occurrence probability indicated by Newell et al. (2016). Moreover, the minimum value of the SML index within 30 minutes from the beginning of the onset tends to decrease with the solar wind speed and the magnitude of the southward IMF. A rapid decrease of the SML index can be explained by a rapid increase in the field-aligned currents flowing in and out of the nightside ionosphere. This means that electromagnetic energies flowing into the ionosphere

  18. The northern edge of the band of solar wind variability: Ulysses at ∼4.5AU

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; Feldman, W.C.; McComas, D.J.; Riley, P.; Goldstein, B.E.; Neugebauer, M.

    1997-01-01

    Ulysses observations reveal that the northern edge of the low-latitude band of solar wind variability at ∼4.5AU was located at N30 degree in the latter part of 1996 when solar activity was at a minimum. This edge latitude is intermediate between edge latitudes found during previous encounters with the band edge along different portions of Ulysses close-quote polar orbit about the Sun. Corotating interaction regions, CIRs, near the northern edge of the band were tilted in such a manner that the forward and reverse shocks bounding the CIRs were propagating equatorward and poleward, respectively, providing definite confirmation that CIRs have opposed tilts in the opposite solar hemispheres. No shocks or coronal mass ejections, CMEs, were detected during the ∼1.5y traverse of the northern, high-latitude northern hemisphere; however, at the northern edge of the band of variability an expanding CME was observed that was driving a shock into the high-speed wind.copyright 1997 American Geophysical Union

  19. Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    Science.gov (United States)

    Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.

    2017-12-01

    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed

  20. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  1. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  2. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    International Nuclear Information System (INIS)

    Choun, Young Sun; Kim, Min Kyu; Kang, Ju Whan; Kim, Yang Seon

    2016-01-01

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  3. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Kang, Ju Whan; Kim, Yang Seon [Mokpo National University, Muan (Korea, Republic of)

    2016-05-15

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  4. Kinematics of a vertical axis wind turbine with a variable pitch angle

    Science.gov (United States)

    Jakubowski, Mateusz; Starosta, Roman; Fritzkowski, Pawel

    2018-01-01

    A computational model for the kinematics of a vertical axis wind turbine (VAWT) is presented. A H-type rotor turbine with a controlled pitch angle is considered. The aim of this solution is to improve the VAWT productivity. The discussed method is related to a narrow computational branch based on the Blade Element Momentum theory (BEM theory). The paper can be regarded as a theoretical basis and an introduction to further studies with the application of BEM. The obtained torque values show the main advantage of using the variable pitch angle.

  5. Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability

    Directory of Open Access Journals (Sweden)

    Bo Qu

    2012-09-01

    Full Text Available The North Atlantic Oscillation (NAO is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST, and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75°N to 80°N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed. Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61. SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.

  6. Principles of a simulation model for a variable-speed pitch-regulated wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Camblong, H.; Vidal, M.R.; Puiggali, J.R.

    2004-07-01

    This paper considers the basic principles for establishing a simulation- model of a variable speed, pitch regulated, wind turbine. This model is used to test various control algorithms designed with the aim of maximising energetic yield and robustness and minimising flicker emission and dynamic drive train loads. One of the most complex elements of such a system is the interaction between wind and turbine. First, a detailed and didactic analysis of this interaction is given. This is used to understand some complicated phenomena, and to help design a simpler and more efficient (in terms of processing time) mathematical model. Additional submodels are given for the mechanical coupling, the pitch system and the electrical power system, before the entire model is validated by comparison with filed measurements on a 180 kW turbine. The complete simulation model is flexible, efficient and allows easy evaluation of different control algorithms. (author)

  7. Power maximization of an asynchronous wind turbine with a variable speed feeding a centrifugal pump

    International Nuclear Information System (INIS)

    Ouchbel, T.; Zouggar, S.; Elhafyani, M.L.; Seddik, M.; Oukili, M.; Aziz, A.; Kadda, F.Z.

    2014-01-01

    Highlights: • The pumping system studied contain a WT, a SEIG, an IM and a CP. • The system must ensure the water pumping in optimum conditions despite the wind speed. • A steady state study and a practical testing are performed to resolve the control law. • A MPPT is proposed on the basis of static converter SVC. - Abstract: This article focuses on the study of a pumping system compound of a wind turbine, a self-excited induction generator (SEIG), an induction motor (IM), and a centrifugal pump (CP), which aims to ensure the water pumping in optimum conditions regardless the wind speed. As a first step, a study in the steady and dynamic state to determine the control law is examined. As a second step, and so as to achieve a maximum energy flow we have proposed a Maximum Power Point Tracking (MPPT) algorithm based on a static converter SVC. As a final step, experimental and simulation results are discussed to show the reliability of the system proposed

  8. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    , variability due to geographic distribution of wind resources, and forecast error. Electric power system factors include the mix of thermal generation resources, available transmission, demand patterns, and market structures. Hydropower factors include relative storage capacity, reservoir operating policies and hydrologic conditions. In addition, the wind, power system, and hydropower factors are often interrelated because stochastic weather patterns can simultaneously influence wind generation, power demand, and hydrologic inflows. One of the central findings is that the sensitivity of the model to changes cannot be performed one factor at a time because the impact of the factors is highly interdependent. For example, the net value of wind generation may be very sensitive to changes in transmission capacity under some hydrologic conditions, but not at all under others.

  9. On control strategies for power optimization and regulation of variable speed wind turbines; Sur les strategies de commande pour l'optimisation et la regulation de puissance des eoliennes a vitesse variable

    Energy Technology Data Exchange (ETDEWEB)

    Boukhezzar, B

    2006-02-15

    The research work is dealing with variable speed wind turbines modelling and control design, in order to achieve the objectives of maximizing the extracted energy from the wind, below the rated power area in the one hand and in the other hand regulating the electric power production, above the rated power area, while reducing mechanical transient loads. For this purpose, we have studied various control strategies from linear to nonlinear based. some of the controllers that we have developed, herein appear for the first time in the relevant domain, the remaining others are an adaptation of well know controllers to the adopted wind turbine models. as matter of fact, we have derived two wind turbine models as well as a wind speed estimator. Indeed, the estimator allows obtaining the effective wind speed which cannot be measured, since the wind profile around the rotor is variable in time and space. As results, it has been shown that single input control by means of pitch angle or generator control cannot succeed to simultaneously drive the electric power output regulation and the rotor speed reference tracking. So then, our idea is to combine nonlinear dynamic state feedback torque control and pitch linear based control which turns out to be the best strategy. In addition, the validation of the controllers performance, using a high turbulence wind speed profile, has been performed through wind turbine simulators provided by nrel (national renewable energy laboratory, golden, co), has confirmed the theoretical results and has led to quite satisfactory conclusions in terms of energy capture optimization, power regulation and disturbances strong rejection as well. (author)

  10. Scalable conditional induction variables (CIV) analysis

    KAUST Repository

    Oancea, Cosmin E.

    2015-02-01

    Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as Alter, or stack operations and pose significant challenges to automatic parallelization. Because the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same representation. Our technique requires no modifications of our dependence tests, which is agnostic to the original shape of the subscripts, and is more powerful than previously reported dependence tests that rely on the pairwise disambiguation of read-write references. We have implemented the CIV analysis in our parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.

  11. Report on a wind power development field test project (detailed wind condition investigation) in the city of Choshi; Choshishi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This paper describes observation on the annual wind condition at the Yokka-ichibadai in the city of Choshi. The average wind velocities were 4.7 and 3.8 m/s at the ground height of 20 and 10 meters, respectively, not having reached the NEDO's criterion values 5.6 and 5.0 m/s. The annual wind direction emergence rate on the wind axis was 70%, meeting the criterion value of 60% or higher, and the wind direction is stable. The exponent for the vertical wind velocity distribution was 3.3, which is similar to that in the urban area. Disturbance in the wind condition was 0.18, meeting the criterion value of 0.30 or lower. The maximum momentary wind velocity was 31.9 m/s, which is well below the criterion of 60 m/s presenting no problem as a wind mill construction site. The wind energy density was 94 W/m{sup 2}, being only 63% of the criterion value, when all the azimuths were used as the object. The result of the investigation is that the average wind velocity is low and the wind energy density is also low. However, if the size of wind mill to be introduced is set to the class B (300 kW), it is possible to attain an annual operation rate of 58%, an annual energy acquisition amount of 515 MWh, and a facility utilization rate of 19.6%. If set to the class C (750 kW), an operation rate of 78%, an annual energy acquisition of 1296 MWh, and a facility utilization rate of 19.7% can be obtained, meeting the criterion value. (NEDO)

  12. On damage detection in wind turbine gearboxes using outlier analysis

    Science.gov (United States)

    Antoniadou, Ifigeneia; Manson, Graeme; Dervilis, Nikolaos; Staszewski, Wieslaw J.; Worden, Keith

    2012-04-01

    The proportion of worldwide installed wind power in power systems increases over the years as a result of the steadily growing interest in renewable energy sources. Still, the advantages offered by the use of wind power are overshadowed by the high operational and maintenance costs, resulting in the low competitiveness of wind power in the energy market. In order to reduce the costs of corrective maintenance, the application of condition monitoring to gearboxes becomes highly important, since gearboxes are among the wind turbine components with the most frequent failure observations. While condition monitoring of gearboxes in general is common practice, with various methods having been developed over the last few decades, wind turbine gearbox condition monitoring faces a major challenge: the detection of faults under the time-varying load conditions prevailing in wind turbine systems. Classical time and frequency domain methods fail to detect faults under variable load conditions, due to the temporary effect that these faults have on vibration signals. This paper uses the statistical discipline of outlier analysis for the damage detection of gearbox tooth faults. A simplified two-degree-of-freedom gearbox model considering nonlinear backlash, time-periodic mesh stiffness and static transmission error, simulates the vibration signals to be analysed. Local stiffness reduction is used for the simulation of tooth faults and statistical processes determine the existence of intermittencies. The lowest level of fault detection, the threshold value, is considered and the Mahalanobis squared-distance is calculated for the novelty detection problem.

  13. Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration

    Directory of Open Access Journals (Sweden)

    M. Herrmann

    2011-07-01

    Full Text Available Atmospheric datasets coming from long term reanalyzes of low spatial resolution are used for different purposes. Wind over the sea is, for example, a major ingredient of oceanic simulations. However, the shortcomings of those datasets prevent them from being used without an adequate corrective preliminary treatment. Using a regional climate model (RCM to perform a dynamical downscaling of those large scale reanalyzes is one of the methods used in order to produce fields that realistically reproduce atmospheric chronology and where those shortcomings are corrected. Here we assess the influence of the configuration of the RCM used in this framework on the representation of wind speed spatial and temporal variability and intense wind events on a daily timescale. Our RCM is ALADIN-Climate, the reanalysis is ERA-40, and the studied area is the Mediterranean Sea.

    First, the dynamical downscaling significantly reduces the underestimation of daily wind speed, in average by 9 % over the whole Mediterranean. This underestimation has been corrected both globally and locally, and for the whole wind speed spectrum. The correction is the strongest for periods and regions of strong winds. The representation of spatial variability has also been significantly improved. On the other hand, the temporal correlation between the downscaled field and the observations decreases all the more that one moves eastwards, i.e. further from the atmospheric flux entry. Nonetheless, it remains ~0.7, the downscaled dataset reproduces therefore satisfactorily the real chronology.

    Second, the influence of the choice of the RCM configuration has an influence one order of magnitude smaller than the improvement induced by the initial downscaling. The use of spectral nudging or of a smaller domain helps to improve the realism of the temporal chronology. Increasing the resolution very locally (both spatially and temporally improves the representation of spatial

  14. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill; Kim, Jonghoon

    2017-05-11

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application. With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.

  15. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X

    2016-01-01

    method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method...... of early deterioration condition was presented. Finally, two cases showed the validity of the proposed probability evaluation method in detecting early deterioration condition and in tracking their further deterioration for the critical components.......This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration...

  16. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    Science.gov (United States)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  17. A new method for wind speed forecasting based on copula theory.

    Science.gov (United States)

    Wang, Yuankun; Ma, Huiqun; Wang, Dong; Wang, Guizuo; Wu, Jichun; Bian, Jinyu; Liu, Jiufu

    2018-01-01

    How to determine representative wind speed is crucial in wind resource assessment. Accurate wind resource assessments are important to wind farms development. Linear regressions are usually used to obtain the representative wind speed. However, terrain flexibility of wind farm and long distance between wind speed sites often lead to low correlation. In this study, copula method is used to determine the representative year's wind speed in wind farm by interpreting the interaction of the local wind farm and the meteorological station. The result shows that the method proposed here can not only determine the relationship between the local anemometric tower and nearby meteorological station through Kendall's tau, but also determine the joint distribution without assuming the variables to be independent. Moreover, the representative wind data can be obtained by the conditional distribution much more reasonably. We hope this study could provide scientific reference for accurate wind resource assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  19. Generating wind fluctuations for Large Eddy Simulation inflow boundary condition

    International Nuclear Information System (INIS)

    Bekele, S.A.; Hangan, H.

    2004-01-01

    Large Eddy Simulation (LES) studies of flows over bluff bodies immersed in a boundary layer wind environment require instantaneous wind characteristics. The influences of the wind environment on the building pressure distribution are a well-established fact in the experimental study of wind engineering. Measured wind data of full or model scale are available only at a limited number of points. A method of obtaining instantaneous wind data at all mesh points of the inlet boundary for LES computation is necessary. Herein previous and new wind inflow generation techniques are presented. The generated wind data is then applied to a LES computation of a channel flow. The characteristics of the generated wind fluctuations in comparison to the measured data and the properties of the flow field computed from these two wind data are discussed. (author)

  20. Influence on surfers wind conditions east of the new Hanstholm harbour/wind turbine project

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Astrup, Poul

    on the lee side, which is an important area for wind and kite surfers. In this study, both changes in mean wind velocities as well as the turbulence level are investigated for the surf area between a location called ”Fish Factory” to the location called ”Hamburg”. The interesting wind speed interval is 8-16m...

  1. Flexible reserve markets for wind integration

    Science.gov (United States)

    Fernandez, Alisha R.

    effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent variable at each time step. The approach here uses quantile regression to describe the relationship between independent variable and the conditional quantiles (equivalently the percentiles) of the dependent variable. An estimate of the conditional density is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much wind generation and positive for too little wind generation) and the wind power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead wind generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of wind generation in Europe.

  2. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  3. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    In this paper, a topology using a Dual-stator Winding Induction Generator (DWIG) and a boost converter is proposed for the variable speed wind power application. At low rotor speeds, the generator saturation limits the voltage of the DWIG. Using a boost converter, higher DC voltage can be produced...... while the DWIG operates at Maximum Power Point Tracking (MPPT) even at low speed and low voltage conditions. Semiconductor Excitation Controller (SEC) of the DWIG utilizes Control-Winding Voltage Oriented Control (CWVOC) method to adjust the voltage, considering V/f characteristics. For the proposed...... topology, the SEC capacity and the excitation capacitor is optimized by analyzing the SEC reactive current considering wind turbine power-speed curve, V/f strategy, and the generator parameters. The method shows that the per-unit capacity of the SEC can be limited to the inverse of DWIG magnetizing...

  4. Dependence of Weibull distribution parameters on the CNR threshold i wind lidar data

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier Ralph

    2015-01-01

    in the boundary layer. Observations from tall towers in combination with observations from a lidar of wind speed up to 600 m are used to study the long-term variability of the wind profile over sub-urban, rural, coastal and marine areas. The variability is expressed in terms of the shape parameter in the Weibull...... over land, both terms are about equally important in the coastal area where the height of the reversal height is low and in the marine conditions, the second term dominates....

  5. Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2016-10-01

    Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life.

  6. Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds

    Directory of Open Access Journals (Sweden)

    Yun-Su Kim

    2015-02-01

    Full Text Available This paper presents a method to seek the PI controller parameters of a PMSG wind turbine to improve control performance. Since operating conditions vary with the wind speed, therefore the PI controller parameters should be determined as a function of the wind speed. Small-signal modeling of a PMSG WT is implemented to analyze the stability under various operating conditions and with eigenvalues obtained from the small-signal model of the PMSG WT, which are coordinated by adjusting the PI controller parameters. The parameters to be tuned are chosen by investigating participation factors of state variables, which simplifies the problem by reducing the number of parameters to be tuned. The process of adjusting these PI controller parameters is carried out using particle swarm optimization (PSO. To characterize the improvements in the control method due to the PSO method of tuning the PI controller parameters, the PMSG WT is modeled using the MATLAB/SimPowerSystems libraries with the obtained PI controller parameters.

  7. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect

    Directory of Open Access Journals (Sweden)

    Alvaro Semedo

    2018-03-01

    Full Text Available A climatology of wind sea and swell waves along the Canary eastern boundary current area, from west Iberia to Mauritania, is presented. The study is based on the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis ERA-Interim. The wind regime along the Canary Current, along west Iberia and north-west Africa, varies significantly from winter to summer. High summer wind speeds generate high wind sea waves, particularly along the coasts of Morocco and Western Sahara. Lower winter wind speeds, along with stronger extratropical storms crossing the North Atlantic sub-basin up north lead to a predominance of swell waves in the area during from December to February. In summer, the coast parallel wind interacts with the coastal headlands, increasing the wind speed and the locally generated waves. The spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering.

  8. Electrical components library for HAWC2; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.A.; Larsen, Torben J.; Soerensen, Poul; Hansen, Anca D. (Risoe National Lab., DTU, Wind Energy Dept., Roskilde (DK)); Iov, F. (Aalborg Univ., Institute of Energy Technology (DK))

    2007-12-15

    The work presented in this report is part of the EFP project called ''A Simulation Platform to Model, Optimize and Design Wind Turbines'' partly funded by the Danish Energy Authority under contract number 1363/04-0008. The project is carried out in cooperation between Risoe National Laboratory and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state and dynamical models for fixed and variable speed wind turbines. A simple steady-state slip model was developed for the fixed speed wind turbine. This model is suitable for aeroelastic design of wind turbines under normal operation. A dynamic model of an induction generator for the fixed speed wind turbine was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical-electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design, was implemented. The model can be used for normal and, to some extent, for fault operation. The reduced order dynamic model of a DFIG was implemented. The model includes only the active power controller and can be used for normal operation conditions. (au)

  9. Interconnector capacity allocation in offshore grids with variable wind generation

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    2013-01-01

    the interconnector capacity should be allocated for wind generation and for international power trading. The main difficulty arises from the stochastic nature of wind generation: in a case with radial connections to the national coast, the wind park owner has the possibility of aggregating the offshore wind park....... It is concluded that treating offshore generation as a single price zone within the interconnector reduces the wind operator’s ability to pool it with other generation. Furthermore, a single offshore price zone between two markets will always receive the lower spot market price of the neighbouring zones, although...

  10. Directionality Effects of Aligned Wind and Wave Loads on a Y-Shape Semi-Submersible Floating Wind Turbine under Rated Operational Conditions

    Directory of Open Access Journals (Sweden)

    Shengtao Zhou

    2017-12-01

    Full Text Available The Y-shape (triangular semi-submersible foundation has been adopted by most of the built full-scale floating wind turbines, such as Windfloat, Fukushima Mirai and Shimpuu. Considering the non-fully-symmetrical shape and met-ocean condition, the foundation laying angle relative to wind/wave directions will not only influence the downtime and power efficiency of the floating turbine, but also the strength and fatigue safety of the whole structure. However, the dynamic responses induced by various aligned wind and wave load directions have scarcely been investigated comparatively before. In our study, the directionality effects are investigated by means of combined wind and wave tests and coupled multi-body simulations. By comparing the measured data in three load directions, it is found that the differences of platform motions are mainly derived from the wave loads and larger pitch motion can always be observed in one of the directions. To make certain the mechanism underlying the observed phenomena, a coupled multi-body dynamic model of the floating wind turbine is established and validated. The numerical results demonstrate that the second-order hydrodynamic forces contribute greatly to the directionality distinctions for surge and pitch, and the first-order hydrodynamic forces determine the variations of tower base bending moments and nacelle accelerations. These findings indicate the directionality effects should be predetermined comprehensively before installation at sea, which is important for the operation and maintenance of the Y-shape floating wind turbines.

  11. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.

    Science.gov (United States)

    Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.

  12. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    Science.gov (United States)

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.

  13. The environment of the wind-wind collision region of η Carinae

    Science.gov (United States)

    Panagiotou, C.; Walter, R.

    2018-02-01

    Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods: We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results: The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within 10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.

  14. Quantifying uncertainties in wind energy assessment

    Science.gov (United States)

    Patlakas, Platon; Galanis, George; Kallos, George

    2015-04-01

    The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.

  15. An adapted blockage factor correlation approach in wind tunnel experiments of a Savonius-style wind turbine

    International Nuclear Information System (INIS)

    Roy, Sukanta; Saha, Ujjwal K.

    2014-01-01

    Highlights: • Significance of the blockage correction in wind tunnel experiments of Savonius-style wind turbine. • Adaptation of blockage factor correlations under open type test sections for blockage ratio of 21.16%. • Effectiveness of adapted correlations for smaller blockage ratios (BRs) of 16% and 12.25%. • Estimate the magnitude of the blockage correction under various loading conditions for each BR. • Variation of blockage correction factor with respect to tip speed ratio and BR. - Abstract: An investigation into the blockage correction effects in wind tunnel experiments of a small-scale wind energy conversion system in an open type test section is carried out. The energy conversion system includes a Savonius-style wind turbine (SSWT) and a power measurement assembly. As the available correlations for the closed type test sections may not be appropriate for the open test section under dynamic loading conditions, new correlations are adapted for the blockage correction factors with free stream wind speed, turbine rotational speed and variable load applied to the turbine to quantify the energy conversion coefficients more precisely. These are obtained for a blockage ratio of 21.16% through a comparison of present experimental data with those of established experimental data under dynamic loading conditions. Further, the accuracy of the adapted correlations is substantiated into the experiments with smaller blockage ratios of 16% and 12.25%. The relationships of the tip speed ratios and blockage ratios with the blockage correction factor are also discussed. Using these correlations, this study provides evidence of increase of blockage correction in the range 1–10% with the increase of both tip speed ratio and blockage ratio. The results also indicate that for blockage ratios approaching 10 and tip speed ratios below 0.5, the blockage effects are almost negligible in the open type test sections

  16. Effect of Difference-frequency Forces on the Dynamics of a Semi-submersible Type FVAWT in Misaligned Wave-wind Condition

    DEFF Research Database (Denmark)

    Wang, Kai; Cheng, Zhengshun; Moan, Torgeir

    2015-01-01

    With increasing interests in the development of offshore floating vertical axis wind turbines (FVAWTs), a large amount of studies on the FVAWTs have been conducted. This paper focuses on evaluating the effect of second-order difference-frequency force on the dynamics of a 5 MW FVAWT in misaligned...... wave-wind condition. The studied FVAWT is composed of a 5 MW Darrieus rotor, a semi-submersible floater and a catenary mooring system. Fully coupled nonlinear time domain simulations were conducted using the state-of-art code Simo- Riflex-DMS. Several misaligned wave-wind conditions were selected...... to investigate the global dynamic responses of the FVAWT, such as the platform motions, structural responses and mooring line tensions. It has been found that the wave-wind misalignment does not significantly affect the mean values of the global responses since the global responses are primarily wind...

  17. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    Science.gov (United States)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  18. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  19. The value of using seasonality and meteorological variables to model intra-urban PM2.5 variation

    Science.gov (United States)

    Olvera Alvarez, Hector A.; Myers, Orrin B.; Weigel, Margaret; Armijos, Rodrigo X.

    2018-06-01

    A yearlong air monitoring campaign was conducted to assess the impact of local temperature, relative humidity, and wind speed on the temporal and spatial variability of PM2.5 in El Paso, Texas. Monitoring was conducted at four sites purposely selected to capture the local traffic variability. Effects of meteorological events on seasonal PM2.5 variability were identified. For instance, in winter low-wind and low-temperature conditions were associated with high PM2.5 events that contributed to elevated seasonal PM2.5 levels. Similarly, in spring, high PM2.5 events were associated with high-wind and low-relative humidity conditions. Correlation coefficients between meteorological variables and PM2.5 fluctuated drastically across seasons. Specifically, it was observed that for most sites correlations between PM2.5 and meteorological variables either changed from positive to negative or dissolved depending on the season. Overall, the results suggest that mixed effects analysis with season and site as fixed factors and meteorological variables as covariates could increase the explanatory value of LUR models for PM2.5.

  20. Investigation of Dynamic Aerodynamics and Control of Wind Turbine Sections Under Relevant Inflow/Blade Attitude Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Jonathan W. [University of Wyoming

    2014-08-05

    The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as an analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.

  1. Life cycle management. Condition monitoring of wind power plants; Life-cycle-management. Zustandsueberwachung von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R. [cmc GmbH, Kiel (Germany)

    2013-06-01

    The author of the contribution under consideration reports on maintenance strategies and condition monitoring in the field of wind energy. Beside the components in the drive train of wind turbines under consideration, the condition monitoring of the hardware systems and their software is explained. A brief overview of the field of machinery diagnosis and an explanation of the transmission of the measured data follow. Additional sensors such as sensors for the rotor blade monitoring, oil particles counter or oil quality sensors are described. In the field of diagnostic certainty, special follow-up studies such as video endoscopy, analysis of oil or grease, filter testing and material testing are discussed. The information from these thematic fields is used in the life-cycle management database for operationally relevant evaluations and considerations of economy of condition monitoring systems.

  2. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near‐Sun Conditions With a Simple One‐Dimensional “Upwind” Scheme

    Science.gov (United States)

    Riley, Pete

    2017-01-01

    Abstract Long lead‐time space‐weather forecasting requires accurate prediction of the near‐Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near‐Sun solar wind and magnetic field conditions provide the inner boundary condition to three‐dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics‐based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near‐Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near‐Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near‐Sun solar wind speed at a range of latitudes about the sub‐Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun‐Earth line. Propagating these conditions to Earth by a three‐dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one‐dimensional “upwind” scheme is used. The variance in the resulting near‐Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996–2016, the upwind ensemble is found to provide a more “actionable” forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large). PMID:29398982

  3. A preliminary comparison of Na lidar and meteor radar zonal winds during geomagnetic quiet and disturbed conditions

    Science.gov (United States)

    Kishore Kumar, G.; Nesse Tyssøy, H.; Williams, Bifford P.

    2018-03-01

    We investigate the possibility that sufficiently large electric fields and/or ionization during geomagnetic disturbed conditions may invalidate the assumptions applied in the retrieval of neutral horizontal winds from meteor and/or lidar measurements. As per our knowledge, the possible errors in the wind estimation have never been reported. In the present case study, we have been using co-located meteor radar and sodium resonance lidar zonal wind measurements over Andenes (69.27°N, 16.04°E) during intense substorms in the declining phase of the January 2005 solar proton event (21-22 January 2005). In total, 14 h of measurements are available for the comparison, which covers both quiet and disturbed conditions. For comparison, the lidar zonal wind measurements are averaged over the same time and altitude as the meteor radar wind measurements. High cross correlations (∼0.8) are found in all height regions. The discrepancies can be explained in light of differences in the observational volumes of the two instruments. Further, we extended the comparison to address the electric field and/or ionization impact on the neutral wind estimation. For the periods of low ionization, the neutral winds estimated with both instruments are quite consistent with each other. During periods of elevated ionization, comparatively large differences are noticed at the highermost altitude, which might be due to the electric field and/or ionization impact on the wind estimation. At present, one event is not sufficient to make any firm conclusion. Further study with more co-located measurements are needed to test the statistical significance of the result.

  4. Wind power in areas with limited export capability

    Energy Technology Data Exchange (ETDEWEB)

    Matevosyan, Julija

    2004-03-01

    During the last two decades, increase in electricity demand and environmental concern resulted in fast growth of power production from renewable sources. Wind power is one of the most efficient alternatives. Due to rapid development of wind turbine technology and increasing size of wind farms, wind power plays a significant part in the power production mix of Germany, Spain, Denmark and some other countries. Wind power has to be build in areas with good wind potential. The best conditions for installation of wind power are, thus, in remote areas free of obstacles, and consequently with low population density. The transmission system in such areas might not be dimensioned to accommodate additional large-scale power plants. Insufficient transmission capacity problem, however, would emerge for any type of new generation, planned in similar conditions, although wind power has some special features that should be considered solving this problem. In this thesis the four possibilities are considered. One possibility is to revise the methods for calculation of available transmission capacity. Another solution for large-scale integration of wind power in such areas is to reinforce the network. This alternative however may be expensive and time consuming. Since wind power production depends on the wind speed, the wind farm utilization time is only 2,000-4,000 hours a year, and power production peaks not necessarily occur during periods with insufficient transmission capacity. Therefore wind energy curtailment may be considered as an alternative for large-scale wind power integration. It is also possible to store excess wind energy during the periods with insufficient transmission capacity. Conventional power plants with possibilities of fast production control (e.g. hydropower plants or gas power plants) may also be employed for this purpose. There is a lot of research regarding first two measures, therefore, this thesis provides a review and summarized conclusions from the

  5. Power and loads for wind turbines in yawed conditions. Analysis of field measurements and aerodynamic predictions

    Energy Technology Data Exchange (ETDEWEB)

    Boorsma, K. [ECN Wind Energy, Petten (Netherlands)

    2012-11-15

    A description is given of the work carried out within the framework of the FLOW (Far and Large Offshore Wind) project on single turbine performance in yawed flow conditions. Hereto both field measurements as well as calculations with an aerodynamic code are analyzed. The rotors of horizontal axis wind turbines follow the changes in the wind direction for optimal performance. The reason is that the power is expected to decrease for badly oriented rotors. So, insight in the effects of the yaw angle on performance is important for optimization of the yaw control of each individual turbine. The effect of misalignment on performance and loads of a single 2.5 MW wind turbine during normal operation is investigated. Hereto measurements at the ECN Wind Turbine Test Site Wieringermeer (EWTW) are analyzed from December 2004 until April 2009. Also, the influence of yaw is studied using a design code and results from this design code are compared with wind tunnel measurements.

  6. Offshore Wind Power Production in Critical Weather Conditions

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2012-01-01

    control the power balance during offshore storm passages. The demonstration will be done on Horns Rev 2 wind farm. In the same project, the impact of a storm front passage over the system security, for the whole Danish system, and with the expected offshore wind power in 2020 will be investigated....... This paper will present the results of up-scaling the impact that a storm front passage will have on the Danish power system in 2020, given that the existing wind turbine storm controller is not replaced. The simulations are done with CorWind and the analysis is focusing on establishing a reference case...... and quantifying the balancing reserve requirements needed in order to keep the security of the power system....

  7. Sound Propagation Around Off-Shore Wind Turbines. Long-Range Parabolic Equation Calculations for Baltic Sea Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lisa

    2003-07-01

    Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.

  8. Coordinated Frequency Control of Wind Turbines in Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio

    The integration of large amounts of wind power in power systems presents huge challenges. In particular, with the increase of wind power generation, more regulation reserves would be necessary, the capability of the power system to offer conventional regulating power would be reduced...... particular views. These models were developed and verified during this work, basedaround a particular manufacturer’s wind turbine and on said isolated power system withwind power. The capability of variable speed wind turbines for providing Inertial Response is analysed. To perform this assessment, a control...... generation were studied considering a large share of wind power in the system. Results show the abilities of the architectures to manage the variability of the generated wind power, reducing the impact on the grid frequency and providing suitable frequency regulation service when required. The coordination...

  9. Wind Power Utilization Guide.

    Science.gov (United States)

    1981-09-01

    The expres- sions for the rotor torque for a Darrieus machine can be found in Reference 4.16. The Darrieus wind turbine offers the following... turbine generators, wind -driven turbines , power conditioning, wind power, energy conservation, windmills, economic ana \\sis. 20 ABS 1"ACT (Conti,on... turbines , power conditioning requirements, siting requirements, and the economics of wind power under different conditions. Three examples are given to

  10. Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator

    Directory of Open Access Journals (Sweden)

    Mohamed Zribi

    2017-05-01

    Full Text Available This paper deals with the control of a variable-speed wind energy conversion (WEC system using a squirrel cage induction generator (SCIG connected to the grid through a back-to-back three phase (AC-DC-AC power converter. The sliding mode control technique is used to control the WEC system. The objective of the controllers is to force the states of the system to track their desired states. One controller is used to regulate the generator speed and the flux so that maximum power is extracted from the wind. Another controller is used to control the grid side converter, which controls the DC bus voltage and the active and reactive powers injected into the grid. The performance of the controlled wind energy conversion system is verified through MATLAB simulations, which show that the controlled system performs well.

  11. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Xiao [Northeastern University; Gao, Wenzhong [University of Denver; Yan, Weihang [University of Denver; Wang, Jianhui [Northeastern University

    2017-08-09

    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.

  12. Progress in wind tunnel experimental techniques for wind turbine?

    Institute of Scientific and Technical Information of China (English)

    Jingping XIAO; Li CHEN; Qiang WANG; Qiao WANG

    2016-01-01

    Based on the unsteady aerodynamics experiment (UAE) phase VI and the model experiment in controlled conditions (MEXICO) projects and the related research carried out in China Aerodynamic Research and Development Center (CARDC), the recent progress in the wind tunnel experimental techniques for the wind turbine is sum-marized. Measurement techniques commonly used for di?erent types of wind tunnel ex-periments for wind turbine are reviewed. Important research achievements are discussed, such as the wind tunnel disturbance, the equivalence of the airfoil in?ow condition, the three-dimensional (3D) e?ect, the dynamic in?ow in?uence, the ?ow ?eld structure, and the vortex induction. The corresponding research at CARDC and some ideas on the large wind turbine are also introduced.

  13. Field evaluation of vegetation and noise barriers for mitigation of near-freeway air pollution under variable wind conditions

    Science.gov (United States)

    Lee, Eon S.; Ranasinghe, Dilhara R.; Ahangar, Faraz Enayati; Amini, Seyedmorteza; Mara, Steven; Choi, Wonsik; Paulson, Suzanne; Zhu, Yifang

    2018-02-01

    Traffic-related air pollutants are a significant public health concern, particularly near freeways. Previous studies have suggested either soundwall or vegetation barriers might reduce the near-freeway air pollution. This study aims to investigate the effectiveness of a combination of both soundwall and vegetation barrier for reducing ultrafine particles (UFPs, diameter ≤ 100 nm) and PM2.5 (diameter ≤ 2.5 μm) concentrations. Concurrent data collection was carried out at both upwind and downwind fixed locations approximately 10-15 m away from the edge of two major freeways in California. This study observed that the reduction of UFP and PM2.5 was generally greater with the combination barrier than with either soundwall or vegetation alone. Since there were no non-barrier sites at the study locations, the reductions reported here are all in relative terms. The soundwall barrier was more effective for reducing PM2.5 (25-53%) than UFPs (0-5%), and was most effective (51-53% for PM2.5) when the wind speed ranged between 1 and 2 m/s. Under the same range of wind speed, the vegetation barrier had little effect (0-5%) on reducing PM2.5; but was effective at reducing UFP (up to 50%). For both types of roadside barrier, decreasing wind speed resulted in greater net reduction of UFPs (i.e., total number particle concentrations; inversely proportional). This trend was observed, however, only within specific particle size ranges (i.e., diameter pollution mitigation.

  14. Annual mean sea level and its sensitivity to wind climate

    Science.gov (United States)

    Gerkema, Theo; Duran Matute, Matias

    2017-04-01

    Changes in relative mean sea level affect coastal areas in various ways, such as the risk of flooding, the evolution of barrier island systems, or the development of salt marshes. Long-term trends in these changes are partly masked by variability on shorter time scales. Some of this variability, for instance due to wind waves and tides (with the exception of long-period tides), is easily averaged out. In contrast, inter-annual variability is found to be irregular and large, of the order of several decimeters, as is evident from tide gauge records. This is why the climatic trend, typically of a few millimeters per year, can only be reliably identified by examining a record that is long enough to outweigh the inter-annual and decadal variabilities. In this presentation we examine the relation between the annual wind conditions from meteorological records and annual mean sea level along the Dutch coast. To do this, we need reliable and consistent long-term wind records. Some wind records from weather stations in the Netherlands date back to the 19th century, but they are unsuitable for trend analysis because of changes in location, height, surroundings, instrument type or protocol. For this reason, we will use only more recent, homogeneous wind records, from the past two decades. The question then is whether such a relatively short record is sufficient to find a convincing relation with annual mean sea level. It is the purpose of this work to demonstrate that the answer is positive and to suggest methods to find and exploit such a relation. We find that at the Dutch coast, southwesterly winds are dominant in the wind climate, but the west-east direction stands out as having the highest correlation with annual mean sea level. For different stations in the Dutch Wadden Sea and along the coast, we find a qualitatively similar pattern, although the precise values of the correlations vary. The inter-annual variability of mean sea level can already be largely explained by

  15. Seasonal and Interannual Variability in Gulf of Maine Hydrodynamics: 2002–2011

    OpenAIRE

    Li, Yizhen; He, Ruoying; McGillicuddy, Dennis J.

    2014-01-01

    In situ observations including long-term moored meteorological and oceanographic measurements and multi-year gulf-wide ship survey data are used to quantify interannual variability of surface wind, river runoff, and hydrographic conditions in the Gulf of Maine during summers 2002–2011. The cumulative upwelling index shows that upwelling (downwelling)-favorable wind conditions were most persistent in 2010 (2005) over the 10-year study period. River discharge was highest in 2005; peak runoff oc...

  16. Statistical conditional sampling for variable-resolution video compression.

    Directory of Open Access Journals (Sweden)

    Alexander Wong

    Full Text Available In this study, we investigate a variable-resolution approach to video compression based on Conditional Random Field and statistical conditional sampling in order to further improve compression rate while maintaining high-quality video. In the proposed approach, representative key-frames within a video shot are identified and stored at full resolution. The remaining frames within the video shot are stored and compressed at a reduced resolution. At the decompression stage, a region-based dictionary is constructed from the key-frames and used to restore the reduced resolution frames to the original resolution via statistical conditional sampling. The sampling approach is based on the conditional probability of the CRF modeling by use of the constructed dictionary. Experimental results show that the proposed variable-resolution approach via statistical conditional sampling has potential for improving compression rates when compared to compressing the video at full resolution, while achieving higher video quality when compared to compressing the video at reduced resolution.

  17. Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Zhaoan

    2009-01-01

    /EMTDC. Flicker emission of this system is investigated. Reactive power compensation is mostly adopted for flicker mitigation. However, the flicker mitigation technique shows its limits, when the grid impedance angle is low in some distribution networks. A new method of flicker mitigation by controlling active...... power is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the dc-link voltage of the full-scale converter. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation controller...... is an effective means for flicker mitigation of variable-speed wind turbines with full-scale back-to-back power converters during continuous operation....

  18. Performance Analysis of FLC Controlled PV-Wind Hybrid Power System for dc Load with Real-Time Data in Matlab, Simulink

    Directory of Open Access Journals (Sweden)

    A. V. Pavan Kumar

    2017-05-01

    Full Text Available Hybrid power system is a combination of different but complementary energy generation systems based on renewable energies. The Hybrid power system harnesses most of the power from the environmental conditions, reduces the losses and repetitive maintenance, thus improving efficiency and reliability of the system. This is achieved by proper coordination control between the Renewable Energy Sources (RES. This paper focuses on the implementation of Photovoltaic - Wind hybrid power system with real-time data of environmental conditions. The continuous real-time values of the solar irradiation and wind speed are obtained from the weather monitoring system at the location. The PV will be the primary source of generation during the day and wind generation can act as power conditioning. The Hybrid model is implemented in Matlab Simulink and its performance is examined under variable environmental conditions with a variable resistive load. A scale down experiment set-up of PV-Wind hybrid system is utilized to evaluate the performance of the proposed control logic. It has emerged from the simulation and experimental study that the hybrid system implemented with the real-time data maintains the output voltage constant irrespective of environmental conditions and load condition.

  19. Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil

    International Nuclear Information System (INIS)

    Soares MC Borba, Bruno; Szklo, Alexandre; Schaeffer, Roberto

    2012-01-01

    Several studies have proposed different tools for analyzing the integration of variable renewable energy into power grids. This study applies an optimization tool to model the expansion of the electric power system in northeastern Brazil, enabling the most efficient dispatch of the variable output of the wind farms that will be built in the region over the next 20 years. The expected combined expansion of wind generation with conventional inflexible generation facilities, such as nuclear plants and run-of-the-river hydropower plants, poses risks of future mismatch between supply and demand in northeastern Brazil. Therefore, this article evaluates the possibility of using a fleet of plug-in hybrid electric vehicles (PHEVs) to regularize possible energy imbalances. Findings indicate that a dedicated fleet of 500 thousand PHEVs in 2015, and a further 1.5 million in 2030, could be recharged overnight to take advantage of the surplus power generated by wind farms. To avoid the initial costs of smart grids, this article suggests, as a first step, the use of a governmental PHEV fleet that allows fleet managers to control battery charging times. Finally, the study demonstrates the advantages of optimizing simultaneously the power and transport sectors to test the strategy suggested here. -- Highlights: ► We evaluated the use of plug-in hybrid electric vehicles (PHEV) to regularize possible energy imbalances in northeastern Brazil. ► This imbalance might result from the large-scale wind power penetration along with conventional inflexible power plants in the region. ► We adapted the MESSAGE optimization tool to the base conditions of the Brazilian power system. ► 500 thousand PHEVs in 2015 and 1.5 million in 2030 could be recharged taking advantage of wind energy surplus.

  20. Wind power development field test project at Kodomari-mura 'Marinetopia'. Close survey on wind conditions; Kodomarimura Marinetopia ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A survey was made on wind conditions in Imabetsu-machi, Higashi Tsugaru-gun, Aomori prefecture, on the assumption that a wind power generation system was installed therein. The survey period was one year from Oct., 1998 to Sept., 1999. The observations were carried out on the average wind velocity, average wind direction, standard deviation of velocity, and the maximum instantaneous wind velocity. With a fixed point observation at 20 m above ground, and with the minimum observation time unit of 10 minutes, an average value during the 10 minutes was determined as the measurement of each category. However, the maximum instantaneous wind velocity was determined on the measurement with the minimum observation time unit of 2 seconds. The annual average wind velocity was 4.8 m/s, the maximum wind velocity during the period was 35 m/s, the prevailing wind direction was NW-WNW and ESE-SEW, and the occurrence rate of wind direction at the wind axis of NW-SE was 88.1%. The intensity of turbulence was 0.24 at a wind velocity of 2.0 m/s or above and was 0.20 at 4.0 m/s or above. An estimated annual operation rate of a windmill was 46-64% using the rated value of a 150 kW, 300 kW and 750 kW class windmills. (NEDO)

  1. Effect of fall wind on wind power generation; Furyoku hatsuden ni okeru dashikaze no koka

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H [Nihon University, Tokyo (Japan)

    1997-11-25

    Wind conditions in Arakawa Town, Niigata Prefecture, were surveyed by anemometers and anemoscopes installed at 3 different points, and the data are analyzed to develop the prediction model for investigating possibility of introduction of wind mills there. Outlined herein is power generated by fall wind by comparing predicted power availability with the actual results. In order to investigate possibility of power generation by fall wind, the wind conditions and power availability are simulated using the observed wind condition data. Predicted wind velocity involves a large error at a point where frequency of prevailing wind direction is high, and direction in which average wind velocity is high coincides with direction in which land is slanted at a high slope. Fall wind occurs locally for geographical reasons. Location of the wind mill must be carefully considered, because it is complex, although potentially gives a larger quantity of power. A wind mill of 400kW can produce power of around 600MWh annually, when it is located at the suited site confirmed by the wind condition analysis results. 6 refs., 5 figs., 6 tabs.

  2. Sensitivity analysis of floating offshore wind farms

    International Nuclear Information System (INIS)

    Castro-Santos, Laura; Diaz-Casas, Vicente

    2015-01-01

    Highlights: • Develop a sensitivity analysis of a floating offshore wind farm. • Influence on the life-cycle costs involved in a floating offshore wind farm. • Influence on IRR, NPV, pay-back period, LCOE and cost of power. • Important variables: distance, wind resource, electric tariff, etc. • It helps to investors to take decisions in the future. - Abstract: The future of offshore wind energy will be in deep waters. In this context, the main objective of the present paper is to develop a sensitivity analysis of a floating offshore wind farm. It will show how much the output variables can vary when the input variables are changing. For this purpose two different scenarios will be taken into account: the life-cycle costs involved in a floating offshore wind farm (cost of conception and definition, cost of design and development, cost of manufacturing, cost of installation, cost of exploitation and cost of dismantling) and the most important economic indexes in terms of economic feasibility of a floating offshore wind farm (internal rate of return, net present value, discounted pay-back period, levelized cost of energy and cost of power). Results indicate that the most important variables in economic terms are the number of wind turbines and the distance from farm to shore in the costs’ scenario, and the wind scale parameter and the electric tariff for the economic indexes. This study will help investors to take into account these variables in the development of floating offshore wind farms in the future

  3. Voltage control of a variable speed wind turbine connected to an isolated load: Experimental study

    International Nuclear Information System (INIS)

    Masmoudi, Abdelkarim; Krichen, Lotfi; Ouali, Abderrazak

    2012-01-01

    Highlights: ► We develop an experimental test bench of a wind energy conversion system. ► A DC motor is emulating a variable speed wind turbine using a DS1104 card. ► The production unit is supplying a three-phase load. ► A voltage control is established in order to regulate the DC bus voltage and the line-to-line voltages. - Abstract: This study is interested in the development of an experimental test bench of an autonomous wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG). After the description of the test bench, the elements constituting the WECS are presented. Then, a real time model implemented under a digital signal processor (DSP) system is established. The first objective of this work is to validate the functionality of the test bench leading to experiment some principles developed in theory. The second objective is to control the load connection voltages and the DC bus voltage. For the first control, two resonant controllers are used and for the second one, a dump load, connected to the DC bus, offers the possibility to maintain a balance between production and consumption in spite of wind fluctuations and load variations. The experimental results show the effectiveness of the test bench trying out in real time the behavior of a WECS supplying an isolated load.

  4. Fuzzy Stochastic Unit Commitment Model with Wind Power and Demand Response under Conditional Value-At-Risk Assessment

    Directory of Open Access Journals (Sweden)

    Jiafu Yin

    2018-02-01

    Full Text Available With the increasing penetration of wind power and demand response integrated into the grid, the combined uncertainties from wind power and demand response have been a challenging concern for system operators. It is necessary to develop an approach to accommodate the combined uncertainties in the source side and load side. In this paper, the fuzzy stochastic conditional value-at-risk criterions are proposed as the risk measure of the combination of both wind power uncertainty and demand response uncertainty. To improve the computational tractability without sacrificing the accuracy, the fuzzy stochastic chance-constrained goal programming is proposed to transfer the fuzzy stochastic conditional value-at-risk to a deterministic equivalent. The operational risk of forecast error under fuzzy stochastic conditional value-at-risk assessment is represented by the shortage of reserve resource, which can be further divided into the load-shedding risk and the wind curtailment risk. To identify different priority levels for the different objective functions, the three-stage day-ahead unit commitment model is proposed through preemptive goal programming, in which the reliability requirement has the priority over the economic operation. Finally, a case simulation is performed on the IEEE 39-bus system to verify the effectiveness and efficiency of the proposed model.

  5. Artificial intelligence to predict short-term wind speed

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Tiago; Soares, Joao; Ramos, Sergio; Vale, Zita [Polytechnic of Porto (Portugal). GECAD - ISEP

    2012-07-01

    The use of renewable energy is increasing exponentially in many countries due to the introduction of new energy and environmental policies. Thus, the focus on energy and on the environment makes the efficient integration of renewable energy into the electric power system extremely important. Several European countries have been seeing a high penetration of wind power, representing, gradually, a significant penetration on electricity generation. The introduction of wind power in the network power system causes new challenges for the power system operator due to the variability and uncertainty in weather conditions and, consequently, in the wind power generation. As result, the scheduling dispatch has a significantly portion of uncertainty. In order to deal with the uncertainty in wind power and, with that, introduce improvements in the power system operator efficiency, the wind power forecasting may reveal as a useful tool. This paper proposes a data-mining-based methodology to forecast wind speed. This method is based on the use of data mining techniques applied to a real database of historical wind data. The paper includes a case study based on a real database regarding the last three years to predict wind speed at 5 minute intervals. (orig.)

  6. Investigating the origin of cyclical wind variability in hot, massive stars - I. On the dipolar magnetic field hypothesis

    NARCIS (Netherlands)

    David-Uraz, A.; Wade, G.A.; Petit, V.; ud-Doula, A.; Sundqvist, J.O.; Grunhut, J.; Schultz, M.; Neiner, C.; Alecian, E.; Henrichs, H.F.; Bouret, J.-C.

    2014-01-01

    OB stars exhibit various types of spectral variability associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These are proposed to be caused by either magnetic fields or non-radial pulsations. In this paper, we evaluate the possible relation

  7. Integrative modeling and novel particle swarm-based optimal design of wind farms

    Science.gov (United States)

    Chowdhury, Souma

    To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate policy changes and reported under-performance of existing projects) calls for a paradigm shift in wind power generation technologies. This dissertation develops a comprehensive methodology to explore, analyze and define the interactions between the key elements of wind farm development, and establish the foundation for designing high-performing wind farms. The primary contribution of this research is the effective quantification of the complex combined influence of wind turbine features, turbine placement, farm-land configuration, nameplate capacity, and wind resource variations on the energy output of the wind farm. A new Particle Swarm Optimization (PSO) algorithm, uniquely capable of preserving population diversity while addressing discrete variables, is also developed to provide powerful solutions towards optimizing wind farm configurations. In conventional wind farm design, the major elements that influence the farm performance are often addressed individually. The failure to fully capture the critical interactions among these factors introduces important inaccuracies in the projected farm performance and leads to suboptimal wind farm planning. In this dissertation, we develop the Unrestricted Wind Farm Layout Optimization (UWFLO) methodology to model and optimize the performance of wind farms. The UWFLO method obviates traditional assumptions regarding (i) turbine placement, (ii) turbine-wind flow interactions, (iii) variation of wind conditions, and (iv) types of turbines (single/multiple) to be installed. The allowance of multiple turbines, which demands complex modeling, is rare in the existing literature. The UWFLO method also significantly advances the state of the art in wind farm optimization by

  8. Wake interaction and power production of variable height model wind farms

    International Nuclear Information System (INIS)

    Vested, M H; Sørensen, J N; Hamilton, N; Cal, R B

    2014-01-01

    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream of a tall wind turbine to some extent passes above the standard height wind turbine. Overall the experiments show that the velocity field downstream of the exit row changes considerably when the mast height is alternating

  9. Design of a 3 kW wind turbine generator with thin airfoil blades

    Energy Technology Data Exchange (ETDEWEB)

    Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan)

    2008-09-15

    Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)

  10. A survey on wind power ramp forecasting.

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  11. Hourly Wind Speed Interval Prediction in Arid Regions

    Science.gov (United States)

    Chaouch, M.; Ouarda, T.

    2013-12-01

    The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term

  12. SIMULATION OF COOLING TOWER AND INFLUENCE OF AERODYNAMIC ELEMENTS ON ITS WORK UNDER CONDITIONS OF WIND

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2014-01-01

    Full Text Available Modern Cooling Towers (CT may utilize different aerodynamic elements (deflectors, windbreak walls etc. aimed to improvement of its heat performance especially at the windy conditions. In this paper the effect of flow rotation in overshower zone of CT and windbreak walls on a capacity of tower evaporating unit in the windy condition is studied numerically. Geometry of the model corresponds to real Woo-Jin Power station, China. Analogy of heat and mass transfer was used that allowed to consider aerodynamic of one-dimension flow and carried out detailed 3D calculations applying modern PC. Heat transfer coefficient of irrigator and its hydrodynamic resistance were established according to experimental data on total air rate in cooling tower. Numerical model is tested and verified with experimental data.Nonlinear dependence of CT thermal performance on wind velocity is demonstrated with the minimum (critical wind velocity at ucr ~ 8 m/s for simulated system. Application of windbreak walls does not change the value of the critical wind velocity, but may improves performance of cooling unit at moderate and strong wind conditions. Simultaneous usage of windbreak walls and overshower deflectors may increase efficiency up to 20–30 % for the deflectors angle a = 60o. Simulation let one analyze aerodynamic patterns, induced inside cooling tower and homogeneity of velocities’ field in irrigator’s area.Presented results may be helpful for the CT aerodynamic design optimization, particularly, for perspective hybrid type CTs.

  13. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  14. Quantitative variability of renewable energy resources in Norway

    Science.gov (United States)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  15. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  16. Wind scatterometry with improved ambiguity selection and rain modeling

    Science.gov (United States)

    Draper, David Willis

    Although generally accurate, the quality of SeaWinds on QuikSCAT scatterometer ocean vector winds is compromised by certain natural phenomena and retrieval algorithm limitations. This dissertation addresses three main contributors to scatterometer estimate error: poor ambiguity selection, estimate uncertainty at low wind speeds, and rain corruption. A quality assurance (QA) analysis performed on SeaWinds data suggests that about 5% of SeaWinds data contain ambiguity selection errors and that scatterometer estimation error is correlated with low wind speeds and rain events. Ambiguity selection errors are partly due to the "nudging" step (initialization from outside data). A sophisticated new non-nudging ambiguity selection approach produces generally more consistent wind than the nudging method in moderate wind conditions. The non-nudging method selects 93% of the same ambiguities as the nudged data, validating both techniques, and indicating that ambiguity selection can be accomplished without nudging. Variability at low wind speeds is analyzed using tower-mounted scatterometer data. According to theory, below a threshold wind speed, the wind fails to generate the surface roughness necessary for wind measurement. A simple analysis suggests the existence of the threshold in much of the tower-mounted scatterometer data. However, the backscatter does not "go to zero" beneath the threshold in an uncontrolled environment as theory suggests, but rather has a mean drop and higher variability below the threshold. Rain is the largest weather-related contributor to scatterometer error, affecting approximately 4% to 10% of SeaWinds data. A simple model formed via comparison of co-located TRMM PR and SeaWinds measurements characterizes the average effect of rain on SeaWinds backscatter. The model is generally accurate to within 3 dB over the tropics. The rain/wind backscatter model is used to simultaneously retrieve wind and rain from SeaWinds measurements. The simultaneous

  17. Adaptive Controller for Drive System PMSG in Wind Turbine

    Directory of Open Access Journals (Sweden)

    Gnanambal

    2014-07-01

    Full Text Available This paper proposes adaptive Maximum Power Point Tracking (MPPT controller for Permanent Magnet Synchronous Generator (PMSG wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC link voltage control and grid voltage support controls. Simulation model using MATLAB Simulink has developed to investigate the performance of proposed control techniques for PMSG wind turbine steady and variable wind conditions. This paper shows that the direct driven grid connected PMSG system has excellent performances and confirms the feasibility of the proposed techniques. While the wind turbine market continues to be dominated by conventional gear-driven wind turbine systems, the direct drive is attracting attention. PM machines are more attractive and superior with higher efficiency and energy yield, higher reliability, and power-to-weight ratio compared with electricity-excited machines.

  18. Near-surface wind variability over the broader Adriatic region: insights from an ensemble of regional climate models

    Science.gov (United States)

    Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2018-06-01

    Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.

  19. Condition analysis and operating lifetime extension concepts for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Korzeniewski, Thomas [GMA-Engineering GmbH, Hamburg (Germany). Business Unit Wind Energy

    2014-11-01

    In Germany the basis for the expansion of wind energy was already laid at the beginning of the 1990s. Hence, the first wind turbines already started to reach the end of their permitted lifetime. At that time as today the different wind turbine types were engineered for an operational lifetime of 20 years. As reliable wind turbines types were already available in the 1990s, it is technically and commercially reasonable to consider the extension of their operational lifetime. Of particular interest is the lifetime extension of wind turbine types installed in the beginning of the 2000s. During that period many wind turbine types were launched which absolutely correspond to state-of-the-art technology.

  20. Wind power development field test project at Rokkasho-mura, Aomori prefecture. Close survey on wind conditions; Aomoriken Rokkashomura ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A survey was made on wind conditions in Rokkasho-mura, Kamikita-gun, Aomori prefecture, on the assumption that a wind power generation system was installed therein. The survey period was one year from Oct., 1998 to Sept., 1999. The observations were carried out on the average wind velocity, average wind direction, standard deviation of velocity, and the maximum instantaneous wind velocity. With a fixed point observation at 20 m above ground, and with the minimum observation time unit of 10 minutes, an average value during the 10 minutes was determined as the measurement of each category. However, the maximum instantaneous wind velocity was determined on the measurement with the minimum observation time unit of 2 seconds. The annual average wind velocity was 4.6 m/s, the maximum wind velocity during the period was 26.0 m/s, the prevailing wind direction was NW (20.8%), WNW (18.0%), and SE (13.5%), and the total occurrence rate of wind direction at the wind axis of NW-SE was 75.7%. The intensity of turbulence was 0.25 at a wind velocity of 2.0 m/s or above and was 0.21 at 4.0 m/s or above. An estimated annual operation rate of a windmill was 59-72% using the rated value of a 150 kW, 300 kW and 750 kW class windmills. (NEDO)

  1. Effect of wind turbine wakes on summer-time wind profiles in the US Great Plains

    Science.gov (United States)

    Rhodes, M. E.; Lundquist, J. K.; Aitken, M.

    2011-12-01

    Wind energy is steadily becoming a significant source of grid electricity in the United States, and the Midwestern United States provides one of the nation's richest wind resources. This study examines the effect of wind turbine wakes on the wind profile in central Iowa. Data were collected using a coherent Doppler LiDAR system located approximately 2.5 rotor diameters north of a row of modern multi-MW wind turbine generators. The prevailing wind direction was from the South allowing the LiDAR to capture wind turbine wake properties; however, a number of periods existed where the LiDAR captured undisturbed flow. The LiDAR system reliably obtained readings up to 200 m above ground level (AGL), spanning the entire rotor disk (~40 m to 120 m AGL) which far surpasses the information provided by traditional wind resource assessment instrumentation. We extract several relevant parameters from the lidar data including: horizontal wind speed, vertical velocity, horizontal turbulence intensity, wind shear, and turbulent kinetic energy (TKE). Each time period at a particular LiDAR measurement height was labeled "wake" or "undisturbed" based on the wind direction at that height. Wake and undisturbed data were averaged separately to create a time-height cross-section averaged day for each parameter. Significant differences between wake and undisturbed data emerge. During the day, wake conditions experience larger values of TKE within the altitudes of the turbine rotor disk while TKE values above the rotor disk are similar between waked and undisturbed conditions. Furthermore, the morning transition of TKE in the atmospheric boundary layer commences earlier during wake conditions than in undisturbed conditions, and the evening decay of TKE persists longer during wake conditions. Waked wind shear is consistently greater than undisturbed periods at the edges of the wind turbine rotor disk (40m & 120m AGL), but especially so during the night where wind shear values during wake

  2. Wind resource characterization in the Arabian Peninsula

    KAUST Repository

    Yip, Chak Man Andrew

    2015-12-28

    Wind energy is expected to contribute to alleviating the rise in energy demand in the Middle East that is driven by population growth and industrial development. However, variability and intermittency in the wind resource present significant challenges to grid integration of wind energy systems. These issues are rarely addressed in the literature of wind resource assessment in the Middle East due to sparse meteorological observations with varying record lengths. In this study, the wind field with consistent space–time resolution for over three decades at three hub heights (50m, 80m, 140m) over the whole Arabian Peninsula is constructed using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) dataset. The wind resource is assessed at a higher spatial resolution with metrics of temporal variations in the wind than in prior studies. Previously unrecognized locations of interest with high wind abundance and low variability and intermittency have been identified in this study and confirmed by recent on-site observations. In particular, the western mountains of Saudi Arabia experience more abundant wind resource than most Red Sea coastal areas. The wind resource is more variable in coastal areas along the Arabian Gulf than their Red Sea counterparts at a similar latitude. Persistent wind is found along the coast of the Arabian Gulf.

  3. South Baltic wind atlas. South Baltic offshore wind energy regions project

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Hahmann, A.; Hasager, C.B.; Bingoel, F.; Karagali, I.; Badger, J.; Badger, M.; Clausen, Niels-Erik

    2011-05-15

    A first version of a wind atlas for the South Baltic Sea has been developed using the WRF mesoscale model and verified by data from tall Danish and German masts. Six different boundary-layer parametrization schemes were evaluated by comparing the WRF results to the observed wind profiles at the masts. The WRF modeling was done in a nested domain of high spatial resolution for 4 years. In addition the long-term wind statistics using the NCAR-NCEP reanalysis data were performed during 30 years to provide basis for a long-term adjustment of the results and the final WRF results include a weighting for the long-term trends variability in the South Baltic Sea. Observations from Earth observing satellites were used to evaluate the spatial resolution of the WRF model results near the surface. The QuikSCAT and the WRF results compared well whereas the Envisat ASAR mean wind map showed some variation to the others. The long-term analysis revealed that the South Baltic Sea has a spatially highly variable wind climate during the 30-years. (Author)

  4. Market conditions for wind power and biofuel-based cogeneration

    International Nuclear Information System (INIS)

    1994-07-01

    The aim of this study is to analyze the prerequisites for biofuel-based cogeneration plants and for wind power, with special emphasis on following factors: 1/ The effect on the Swedish energy market of the opening of the power transmission networks for free competition within the electric power supply sector. 2/ A market model for the connection between the prices on fossil fuels, biomass fuels, electric power, and heating on the Swedish market. The analysis is made for three scenarios concerning carbon dioxide/energy taxation and the oil price development. The three scenarios are: A. Constant prices on heating oil and coal., B. An internationally uniform carbon dioxide tax, which successively is raised to SEK 0.40 per kilo carbon dioxide to the year 2010. In the year 2005 this will correspond to a doubling of the present prices on crude oil., C. An unilateral Swedish energy- and carbon dioxide tax of todays model (without exception for electric power generation), with constant import prices on heating oil and coal. The decisive factors for bio-cogeneration are construction- and operation costs, the costs of biofuels, and the sales price on electric power and heat. For wind power it is the construction- and operation costs that settle the conditions. 18 figs, 6 tabs

  5. Wind Penetration with different wind turbine technologies in a weak grid

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernandez, Miguel A.; Martínez García, Antonio

    2012-01-01

    The insertion of wind energy into electric network may provoke stability problems due to stochastic character of wind. The variation in the wind causes voltage variation in the Point of Common Coupling (PCC). In a weakest system that variation is high. Another important factor is wind turbine technology. The use of grid-connected fixed speed wind generator introduces a great consumption of reactive power that can be compensated using different devices as capacitors bank or static var compensator (SVC or STATCOM). In the other hand the variable speed wind turbine have an electronic converter to control the reactive consumption to maintain the PCC voltage more stable. In this paper a comparison between the different types of wind turbines technology is show. It's analyzing the impact in wind power limit for different wind turbine technologies in a weak system. (author)

  6. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  7. design of a small scale wind generator for low wind speed areas

    African Journals Online (AJOL)

    USER

    Most small scale level wind turbine generators are directly driven system, variable speed, and partially ... the best solutions for small-scale wind power plants. Low-speed multi-pole PM generators ..... Designs of the Same Magnet Structure for.

  8. In-Street Wind Direction Variability in the Vicinity of a Busy Intersection in Central London

    Science.gov (United States)

    Balogun, Ahmed A.; Tomlin, Alison S.; Wood, Curtis R.; Barlow, Janet F.; Belcher, Stephen E.; Smalley, Robert J.; Lingard, Justin J. N.; Arnold, Sam J.; Dobre, Adrian; Robins, Alan G.; Martin, Damien; Shallcross, Dudley E.

    2010-09-01

    We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk ) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction ( θ ref ) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique roof-top flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15- min mean θ ref of 5°-10°) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

  9. Wind Patterns of Coastal Tanzania: Their Variability and Trends ...

    African Journals Online (AJOL)

    Generally, the wind speeds were significantly correlated with the El-Niño Southern Oscillation and the Pacific Decadal Oscillation, while at Mtwara the winds were also correlated with the Indian Ocean Dipole. These correlations were higher during the SE Monsoon than during the NE Monsoon. Trends in the monthly mean ...

  10. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew; Muljadi, Eduard; Gevorgian, Vahan; Wang, Jianhui; Yan, Weihang; Zhang, Huaguang

    2017-10-18

    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.

  11. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    Science.gov (United States)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  12. Numerical simulations of thermospheric dynamics: divergence as a proxy for vertical winds

    Directory of Open Access Journals (Sweden)

    S. L. Cooper

    2009-06-01

    Full Text Available A local scale, time dependent three-dimensional model of the neutral thermosphere was used to test the applicability of two previously published empirical relations between thermospheric vertical wind and velocity divergence, i.e., those due to Burnside et al. (1981 and Brekke (1997. The model self-consistently solves for vertical winds driven by heat and momentum deposited into the neutral atmosphere by high latitude ion convection. The Brekke condition accurately mimicked the overall "shape" of the three-dimensional model vertical wind field although, as written, it consistently overestimated the vertical wind magnitude by a factor of approximately 5/3, for the heating scenarios that we considered. This same general behavior was observed regardless of whether the forcing was static or rapidly changing with time. We discuss the likely reason for the Brekke condition overestimating the magnitude of our vertical winds, and suggest an alternative condition that should better describe vertical winds that are driven by local heating. The applicability of the Burnside condition was, by contrast, quite variable. During static heating, both the magnitude and the sign of the model vertical winds were predicted reliably at heights above those of maximum energy and momentum deposition per unit mass. However, below the thermal forcing, the Burnside condition predicted vertical winds of the wrong sign. It also introduced significant artefacts into the predicted vertical wind field when the forcing changed suddenly with time. If these results are of general applicability (which seems likely, given the way these relations are derived then the Burnside condition could usually be used safely at altitudes above hmF2. But it should be avoided below this height at all times, and even at high altitudes during periods of dynamic forcing. While the Brekke condition (or our modified version of it could likely be used in all circumstances

  13. Field measurements in the wake of a model wind turbine

    International Nuclear Information System (INIS)

    Pol, Suhas; Taylor, Amelia; Doostalab, Ali; Novoa, Santiago; Castillo, Luciano; Bilbao, Argenis; Sheng, Jian; Giesselmann, Michael; Westergaard, Carsten; Hussain, Fazle; Ren, Beibei; Glauser, Mark

    2014-01-01

    As a first step to study the dynamics of a wind farm' we experimentally explored the flow field behind a single wind turbine of diameter 1.17 m at a hub height of 6.25 m. A 10 m tower upstream of the wind farm characterizes the atmospheric conditions and its influence on the wake evolution. A vertical rake of sonic anemometers is clustered around the hub height on a second tower' 6D downstream of the turbine. We present preliminary observations from a 1- hour block of data recorded in near-neutral atmospheric conditions. The ratio of the standard deviation of power to the inflow velocity is greater than three' revealing adverse effects of inflow turbulence on the power and load fluctuations. Furthermore' the wake defect and Reynolds stress and its gradient are pronounced at 6D. The flux of energy due to Reynolds stresses is similar to that reported in wind tunnel studies. The swirl and mixing produces a constant temperature wake which results in a density jump across the wake interface. Further field measurements will explore the dynamics of a model wind farm' including the effects of atmospheric variability

  14. Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Clausen, Niels-Erik

    2012-01-01

    Regional Climate Models. Additionally, internal (inherent) variability and initial conditions exert a strong impact on projected wind climates throughout the twenty-first century. Simulations of wind gusts by one of the RCMs (RCA3) indicate some evidence for increased magnitudes (of up to +10...... be used in interpreting this inference given the high degree of wind climate projection spread that derives from the specific AOGCM and RCM used in the downscaling....

  15. Great expectations: large wind turbines

    International Nuclear Information System (INIS)

    De Vries, E.

    2001-01-01

    This article focuses on wind turbine product development, and traces the background to wind turbines from the first generation 1.5 MW machines in 1995-6, plans for the second generation 3-5 MW class turbines to meet the expected boom in offshore wind projects, to the anticipated installation of a 4.5 MW turbine, and offshore wind projects planned for 2000-2002. The switch by the market leader Vestas to variable speed operation in 2000, the new product development and marketing strategy taken by the German Pro + Pro consultancy in their design of a 1.5 MW variable speed pitch control concept, the possible limiting of the size of turbines due to logistical difficulties, opportunities offered by air ships for large turbines, and the commissioning of offshore wind farms are discussed. Details of some 2-5 MW offshore wind turbine design specifications are tabulated

  16. Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Ghaderi; Hossein Tohidi; Behnam Khosrozadeh

    2017-01-01

    The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy.In this strategy,fhst,the rotor speed is set at an optimal point for different wind speeds.As a result of which,the tip speed ratio reaches an optimal point,mechanical power coefficient is maximized,and wind turbine produces its maximum power and mechanical torque.Then,the maximum mechanical torque is tracked using electromechanical torque.In this technique,tracking error integral of maximum mechanical torque,the error,and the derivative of error are used as state variables.During changes in wind speed,sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking (MPPT).In this method,the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal.The result of the second order integral in this model includes control signal integrity,full chattering attenuation,and prevention from large fluctuations in the power generator output.The simulation results,calculated by using MATLAB/m-file software,have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator (PMSG).

  17. Mechanistic Drifting Forecast Model for A Small Semi-Submersible Drifter Under Tide-Wind-Wave Conditions

    Science.gov (United States)

    Zhang, Wei-Na; Huang, Hui-ming; Wang, Yi-gang; Chen, Da-ke; Zhang, lin

    2018-03-01

    Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide-wind-wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5-6; while wind drag contributes mostly at wind scale 2-4.

  18. Development of an analytical Lagrangian model for passive scalar dispersion in low-wind speed meandering conditions

    Science.gov (United States)

    Stefanello, M. B.; Degrazia, G. A.; Mortarini, L.; Buligon, L.; Maldaner, S.; Carvalho, J. C.; Acevedo, O. C.; Martins, L. G. N.; Anfossi, D.; Buriol, C.; Roberti, D.

    2018-02-01

    Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.

  19. Control model design to limit DC-link voltage during grid fault in a dfig variable speed wind turbine

    Science.gov (United States)

    Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.

    2017-08-01

    This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.

  20. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  1. Market value of wind power

    NARCIS (Netherlands)

    Haan, de J.E.S.; Shoeb, M.A.; Lopes Ferreira, H.M.; Kling, W.L.

    2013-01-01

    Variability and predictability constraints of wind hinder the cost-efficient integration of wind power generation into power markets. Within the framework of EIT KIC INNOENERGY Offwindtech project, a ‘Market Value’ tool is developed. Here, the market value of wind power generation can be assessed

  2. Comparison of methods for the identification of mesoscale wind speed fluctuations

    Directory of Open Access Journals (Sweden)

    Anna Rieke Mehrens

    2017-06-01

    Full Text Available Mesoscale wind speed fluctuations influence the characteristics of offshore wind energy. These recurring wind speed changes on time scales between tens of minutes and six hours lead to power output fluctuations. In order to investigate the meteorological conditions associated with mesoscale wind speed fluctuations, a measure is needed to detect these situations in wind speed time series. Previous studies used the empirical Hilbert-Huang Transform to determine the energy in the mesoscale frequency range or calculated the standard deviation of a band-pass filtered wind speed time series. The aim of this paper is to introduce newly developed empirical mesoscale fluctuation measures and to compare them with existing measures in regard to their sensitivity to recurring wind speed changes. One of the methods is based on the Hilbert-Huang Transform, two on the Fast Fourier Transform and one on wind speed increments. It is found that despite various complexity of the methods, all methods can identify days with highly variable mesoscale wind speeds equally well.

  3. Optimization design of spar cap layup for wind turbine blade

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Based on the aerodynamic shape and structural form of the blade are fixed,a mathematical model of optimization design for wind turbine blade is established.The model is pursued with respect to minimum the blade mass to reduce the cost of wind turbine production.The material layup numbers of the spar cap are chosen as the design variables;while the demands of strength,stiffness and stability of the blade are employed as the constraint conditions.The optimization design for a 1.5 MW wind turbine blade is carried out by combing above objective and constraint conditions at the action of ultimate flapwise loads with the finite element software ANSYS.Compared with the original design,the optimization design result achieves a reduction of 7.2% of the blade mass,the stress and strain distribution of the blade is more reasonable,and there is no occurrence of resonance,therefore its effectiveness is verified.

  4. Offshore Wind Farms

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Hasager, Charlotte Bay; Courtney, Michael

    2015-01-01

    : the rotor, the nacelle, the tower, and the foundation. Further the determinations of the essential environmental conditions are treated: the wind field, the wave field, the sea current, and the soil conditions. The various options for grid connections, advantages, and disadvantages are discussed. Of special...... concern are the problems associated with locating the turbines close together in a wind farm and the problems of placing several large wind farms in a confined area. The environmental impacts of offshore wind farms are also treated, but not the supply chain, that is, the harbors, the installation vessels...

  5. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    Science.gov (United States)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  6. Impact of active and break wind spells on the demand-supply balance in wind energy in India

    Science.gov (United States)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-02-01

    With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.

  7. Proceedings of the Canadian Wind Energy Association's 2009 wind matters conference : wind and power systems

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for wind energy and electric power industry experts to discuss issues related to wind and power systems. An overview of wind integration studies and activities in Canada and the United States was provided. New tools and technologies for facilitating the integration of wind and improve market conditions for wind energy developers were presented. Methods of increasing wind penetration were evaluated, and technical issues related to wind interconnections throughout North America were reviewed. The conference was divided into the following 5 sessions: (1) experiences with wind integration, and lessons learned, (2) update on ongoing wind integration initiatives in Canada and the United States, (3) initiatives and tools to facilitate wind integration and market access, (4) developments in wind interconnection and grid codes, (5) wind energy and cold weather considerations, and (6) challenges to achieving the 20 per cent WindVision goal in Canada. The conference featured 21 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  8. Spatiotemporal variability of marine renewable energy resources in Norway

    NARCIS (Netherlands)

    Varlas, George; Christakos, Konstantinos; Cheliotis, Ioannis; Papadopoulos, A.; Steeneveld, G.J.

    2017-01-01

    Marine Renewable Energy (MRE) resources such as wind and wave energy depend on the complex behaviour of weather and climatic conditions which determine the development of MRE technologies, energy grid, supply and prices. This study investigates the spatiotemporal variability of MRE resources along

  9. Offshore wind turbine risk quantification/evaluation under extreme environmental conditions

    International Nuclear Information System (INIS)

    Taflanidis, Alexandros A.; Loukogeorgaki, Eva; Angelides, Demos C.

    2013-01-01

    A simulation-based framework is discussed in this paper for quantification/evaluation of risk and development of automated risk assessment tools, focusing on applications to offshore wind turbines under extreme environmental conditions. The framework is founded on a probabilistic characterization of the uncertainty in the models for the excitation, the turbine and its performance. Risk is then quantified as the expected value of some risk consequence measure over the probability distributions considered for the uncertain model parameters. Stochastic simulation is proposed for the risk assessment, corresponding to the evaluation of some associated probabilistic integral quantifying risk, as it allows for the adoption of comprehensive computational models for describing the dynamic turbine behavior. For improvement of the computational efficiency, a surrogate modeling approach is introduced based on moving least squares response surface approximations. The assessment is also extended to a probabilistic sensitivity analysis that identifies the importance of each of the uncertain model parameters, i.e. risk factors, towards the total risk as well as towards each of the failure modes contributing to this risk. The versatility and computational efficiency of the advocated approaches is finally exploited to support the development of standalone risk assessment applets for automated implementation of the probabilistic risk quantification/assessment. -- Highlights: ► A simulation-based risk quantification/assessment framework is discussed. ► Focus is on offshore wind turbines under extreme environmental conditions. ► Approach is founded on probabilistic description of excitation/system model parameters. ► Surrogate modeling is adopted for improved computational efficiency. ► Standalone risk assessment applets for automated implementation are supported

  10. Analysis of a wind farm's revenue in the British and Spanish markets

    International Nuclear Information System (INIS)

    Angarita-Marquez, Jorge L.; Hernandez-Aramburo, Carlos A.; Usaola-Garcia, Julio

    2007-01-01

    The composition of the revenue of a wind generation company (WGENCO) under two different European markets is estimated in this paper. The two markets under consideration (British and Spanish) have a very different structure; the Spanish market is a pool-based system while the British market encourages bilateral trading. These markets have also different ways to provide incentives to wind farms, and deal with the trading imbalances to which they are particularly susceptible given the variability of the resource. All these conditions are explained and accounted for in our study of a hypothetical WGENCO that can participate in the two markets. Real wind profiles, two wind-speed forecasting tools and market rules and conditions are used to estimate the WGENCO's revenue over a period of 3 months. Our results show that the net revenue would have been fairly similar under the two market structures; however, the composition of this revenue shows significant differences in terms of renewable incentives and generation revenue

  11. Feasibility study on the wind farm; Wind farm no kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For assessment of the possibility of the wind farm (collective wind power facility) in Japan, site conditions, business plans and various issues in development were arranged using some projects in a planning stage. The case study of a system design was also conducted for a typical site. Four sites were selected based on geographical conditions, topographic features and weather conditions. Scales of every site are as large as 1000-3000kW and 400- 750kW in wind turbine capacity. Every developer expects a subsidy, and governmental economic support is indispensable for the wind farm. In the case of Hisai city, Mie prefecture with the most favorable wind condition in Japan, the annual mean wind velocity of the site is valued at nearly 8m/s, suggesting that it is promising for the wind farm. From the planned scale of 750kWtimes4, the annual generated power and availability factor are valued at 9,800,000kWh/y and 37%, respectively. From the construction cost of 1 billion yen including a subsidy of its half, the generation cost is valued at 14.5 yen/kWh in durability of 15 years, and 12.2 yen/kWh in 20 years, and the profitability is dependent on the purchase price of a power company. 27 figs., 36 tabs.

  12. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    Directory of Open Access Journals (Sweden)

    Sonia Wharton

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is used to investigate choice of land surface model (LSM on the near surface wind profile, including heights reached by multi-megawatt (MW wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE Southern Great Plains (SGP Atmospheric Radiation Measurement Program (ARM Central Facility in Oklahoma, USA. Surface flux and wind profile measurements were available for validation. WRF was run for three, two-week periods covering varying canopy and meteorological conditions. The LSMs predicted a wide range of energy flux and wind shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil–plant–atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear were also sensitive to LSM choice and were partially related to energy flux accuracy. The variability of LSM performance was relatively high suggesting that LSM representation of energy fluxes in WRF remains a large source of model uncertainty for simulating wind turbine inflow conditions.

  13. Wind Power Plant Control Optimisation with Incorporation of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2015-01-01

    This paper addresses a detailed design and tuning of a wind power plant slope voltage control with reactive power contribution of wind turbines and STATCOMS. First, small-signal models of a single wind turbine and the whole wind power plant are developed, being appropriate for voltage control...... assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage controller results in a guidance, proposed for this particular control architecture. It provides qualitative...... outcomes regarding the impact of system delays, grid conditions and various operating conditions of the wind power plant, with and without incorporation of STATCOMS....

  14. Dynamic simulation of variable capacity refrigeration systems under abnormal conditions

    International Nuclear Information System (INIS)

    Liang Nan; Shao Shuangquan; Tian Changqing; Yan Yuying

    2010-01-01

    There are often abnormal working conditions at evaporator outlet of a refrigeration system, such as two-phase state in transient process, and it is essential to investigate such transient behaviours for system design and control strategy. In this paper, a dynamic lumped parameter model is developed to simulate the transient behaviours of refrigeration system with variable capacity in both normal and abnormal working conditions. The appropriate discriminant method is adopted to switch the normal and abnormal conditions smoothly and to eliminate the simulated data oscillation. In order to verify the dynamic model, we built a test system with variable frequency compressor, water-cooling condenser, evaporator and electronic expansion valve. Calculated values from the mathematical model show reasonable agreement with the experimental data. The simulation results show that the transient behaviours of the variable capacity refrigeration system in the abnormal working conditions can be calculated reliably with the dynamic model when the compressor rotary speed or the opening of electronic expansion valve changes abruptly.

  15. Sporulation of Bremia lactucae affected by temperature, relative humidity, and wind in controlled conditions

    NARCIS (Netherlands)

    Su, H.; Bruggen, van A.H.C.; Subbarao, K.V.; Scherm, H.

    2004-01-01

    The effects of temperature (5 to 25degreesC), relative humidity (81 to 100%), wind speed (0 to 1.0 in s(-1)), and their interactions on sporulation of Bremia lactucae on lettuce cotyledons were investigated in controlled conditions. Sporulation was affected significantly (P <0.0001) by

  16. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  17. Evaluating the capacity value of wind power considering transmission and operational constraints

    International Nuclear Information System (INIS)

    Gil, Esteban; Aravena, Ignacio

    2014-01-01

    Highlights: • Discussion of power system adequacy and the capacity value of wind power. • Method for estimating capacity value of wind power is proposed. • Monte Carlo simulation used to consider transmission and operational constraints. • Application of the method to the Chilean Northern Interconnected System (SING). - Abstract: This paper presents a method for estimating the capacity value of wind considering transmission and operational constraints. The method starts by calculating a metric for system adequacy by repeatedly simulating market operations in a Monte Carlo scheme that accounts for forced generator outages, wind resource variability, and operational conditions. Then, a capacity value calculation that uses the simulation results is proposed, and its application to the Chilean Northern Interconnected System (SING) is discussed. A comparison of the capacity value for two different types of wind farms is performed using the proposed method, and the results are compared with the method currently used in Chile and the method recommended by the IEEE. The method proposed in the paper captures the contribution of the variable generation resources to power system adequacy more accurately than the method currently employed in the SING, and showed capable of taking into account transmission and operational constraints

  18. Maximum wind energy extraction strategies using power electronic converters

    Science.gov (United States)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  19. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  20. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    , and with or without gearboxes, using the latest in power electronics, aerodynamics, and mechanical drive train designs [4]. The main differences between all wind turbine concepts developed over the years, concern their electrical design and control. Today, the wind turbines on the market mix and match a variety......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled......,6] and to implement modern control system strategies....

  1. Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Masoud Asgarpour

    2018-01-01

    Full Text Available Operation and maintenance costs are a major contributor to the Levelized Cost of Energy for electricity produced by offshore wind and can be significantly reduced if existing corrective actions are performed as efficiently as possible and if future corrective actions are avoided by performing sufficient preventive actions. This paper presents an applied and generic diagnostic model for fault detection and condition based maintenance of offshore wind components. The diagnostic model is based on two probabilistic matrices; first, a confidence matrix, representing the probability of detection using each fault detection method, and second, a diagnosis matrix, representing the individual outcome of each fault detection method. Once the confidence and diagnosis matrices of a component are defined, the individual diagnoses of each fault detection method are combined into a final verdict on the fault state of that component. Furthermore, this paper introduces a Bayesian updating model based on observations collected by inspections to decrease the uncertainty of initial confidence matrix. The framework and implementation of the presented diagnostic model are further explained within a case study for a wind turbine component based on vibration, temperature, and oil particle fault detection methods. The last part of the paper will have a discussion of the case study results and present conclusions.

  2. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Pedestrian wind environment around tall buildings

    NARCIS (Netherlands)

    Stathopoulos, T.; Blocken, B.; Tamura, Yukio; Yoshie, Ryuichiro

    2016-01-01

    Pedestrian-level wind conditions around tall buildings are described by examining the aerodynamics of the urban environment and the various wind comfort criteria established in the wind engineering field. Experimental and, possibly, computational assessment of pedestrian-level wind conditions in the

  4. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    The common practice regarding the modelling of large generation components has been to make use of models representing the performance of the individual components with a required level of accuracy and details. Owing to the rapid increase of wind power plants comprising large number of wind...... turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...... speed wind turbine models (type 3 and type 4) with a power plant controller is presented. The performance of the detailed benchmark wind power plant model and the aggregated model are compared by means of simulations for the specified test cases. Consequently, the results are summarized and discussed...

  5. Development of a Wireless System for Monitoring and Control of a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Cristhian M. Durán-Acevedo

    2013-11-01

    Full Text Available This article presents the use of a wireless communication technology through the ZigBee protocol, by implementing XBee S2B. Wireless communication was implemented on a wind turbine prototype (i.e. wind power generation in order to controlling variables automatically, such as: Direction of the wind, temperature, humidity and velocity engine. The XBee were conditioned using a Mega ADK Arduino card, which the signals generated were acquired by several sensors and subsequently sent wirelessly. The programming and monitoring of Arduino module with each of the variables was performed through Labview software. The study was also conducted in order to explore new technologies for wireless communication, which is useful in interoperable systems to monitor, control and automate different processes. As a result, the performance test with the wireless system was stable and data transmission was reliable.

  6. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Corbus, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  7. Impact of wind generation on the operation and development of the UK electricity systems

    International Nuclear Information System (INIS)

    Strbac, Goran; Shakoor, Anser; Pudjianto, Danny; Black, Mary; Bopp, Thomas

    2007-01-01

    Although penetration of wind generation may displace a significant amount of energy produced by large conventional plant, there are issues associated with the extent to which wind generation will be able to replace the capacity and flexibility of conventional generating plant. This is important since wind power is variable, so it will be necessary to retain a significant proportion of conventional plant to ensure security of supply especially under conditions of high demand and low wind. Hence, the capacity value of wind generation will be limited as it will not be possible to displace conventional generation capacity on a ''megawatt for megawatt'' basis. Wind power is variable and not easy to predict, hence various forms of additional reserves will be needed to maintain the balance between supply and demand at all times. Additionally, if the majority of wind generation plant is located in Scotland and the North of England, reinforcement of the transmission network will be needed to accommodate the increases in the north-south flow of electricity. In this paper an assessment of the costs and benefits of wind generation on the UK electricity system is carried out, assuming different levels of wind power capacity. Overall, it is concluded that the system will be able to accommodate significant increases in wind power generation with relatively small increases in overall costs of supply, about 5% of the current domestic electricity price in case of 20% energy produced by wind power. (author)

  8. Linear parameter varying control of wind turbines covering both partial load and full load conditions

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    2009-01-01

    operations tend to be ill-conditioned. The paper proposes a controller construction algorithm together with various remedies for improving the numerical conditioning the algorithm.The proposed algorithm is applied to the design of a LPV controller for wind turbines, and a comparison is made with a controller...... designed using classical techniques to conclude that an improvement in performance is obtained for the entire operating envelope....

  9. Fundamentals for remote condition monitoring of offshore wind turbines

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Larsen, Gunner Chr.; Sørensen, Bent F.

    In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis...... of the wind turbine blades that can integrate with existing SCADA tools to improve management of large offshore wind farms, and optimise the manual inspection/maintenance effort. Various sensor types, which have previously been identified as technically (and economically) capable of detecting the early...

  10. A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization

    Directory of Open Access Journals (Sweden)

    Mohammadreza Mohammadi

    2016-02-01

    Full Text Available Iran has a great potential for wind energy. This paper introduces optimization of 7 wind turbine blades for small and medium scales in a determined wind condition of Zabol site, Iran, where the average wind speed is considered 7 m /s. Considered wind turbines are 3 bladed and radius of 7 case study turbine blades are 4.5 m, 6.5 m, 8 m, 9 m, 10 m, 15.5 m and 20 m. As the first step, an initial design is performed using one airfoil (NACA 63-215 across the blade. In the next step, every blade is divided into three sections, while the 20 % of first part of the blade is considered as root, the 5% of last the part is considered as tip and the rest of the blade as mid part. Providing necessary input data, suitable airfoils for wind turbines including 43 airfoils are extracted and their experimental data are entered in optimization process. Three variables in this optimization problem would be airfoil type, attack angle and chord, where the objective function is maximum output torque. A MATLAB code was written for design and optimization of the blade, which was validated with a previous experimental work. In addition, a comparison was made to show the effect of optimization with two variables (airfoil type and attack angle versus optimization with three variables (airfoil type, attack angle and chord on output torque increase. Results of this research shows a dramatic increase in comparison to initial designed blade with one airfoil where two variable optimization causes 7.7% to 22.27 % enhancement and three variable optimization causes 17.91% up to 24.48% rise in output torque .Article History: Received Oct 15, 2015; Received in revised form January 2, 2016; Accepted January 14, 2016; Available online How to Cite This Article: Mohammadi, M., Mohammadi, A. and Farahat, S. (2016 A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization. Int. Journal of Renewable Energy Development, 5(1,1-8. http://dx.doi.org/10.14710/ijred.5.1.1-8

  11. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  12. Experimental data on load test and performance parameters of a LENZ type vertical axis wind turbine in open environment condition

    Directory of Open Access Journals (Sweden)

    Seralathan Sivamani

    2017-12-01

    Full Text Available Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s. Keywords: Vertical axis wind turbine, Lenz type, Performance, Two-stage, Open environment measurement

  13. Noise annoyances from wind power: Survey of the population living close to a wind power plant. Final report: Part 3 Main study

    International Nuclear Information System (INIS)

    Pedersen, Eja; Persson-Waye, K.

    2002-02-01

    To evaluate the occurrence of annoyance from wind turbines, a study was performed in Laholm in May 2000. The aim was to obtain dose response relationships between calculated sound levels and noise annoyance and appropriate sound description as well as analysing the influence of other variables on noise annoyance. A questionnaire survey was performed in 6 areas comprising 16 wind turbines, of which 14 had an effect of 600 kW. The purpose of the study was masked. Among questions on living conditions in the countryside, questions directly related to wind turbines were included. The study population (n=518) comprised one randomly selected subject between the ages of 18 to 75 years in each household living within a calculated wind turbine sound level of 25 to 40 dBA. The response rate was 68.7% (n=356). Calculated distributions of A-weighted sound level were performed for each area and plotted on geographical maps in 2.5 dBA steps. Each dwelling could thus be given a sound level within an interval of 2.5 dBA. The most frequently occurring source of noise annoyance was noise from rotor blades. The proportions of respondents annoyed by noise increased with calculated sound level. Among respondents exposed to sound levels of 35.0-37.5 dBA, 43% responded themselves to be rather or much annoyed. A-weighted sound level was only one variable explaining annoyance. Annoyance was correlated to a larger extent by the intrusiveness of the sound character swishing. Noise annoyance was interrelated to the respondents' opinion of the visual impact of wind turbines, while attitude towards wind power in general had no greater influence. Disturbance of spoilt view was reported to a similar degree as noise disturbance. Further investigations are needed to clarify factors of importance for the disturbance of view. All the wind turbines in the study had constant rotation speed. The greater wind turbines that are now erected often have variable speed, which may lead to a sound comprising

  14. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  15. Southern hemisphere low level wind circulation statistics from the Seasat scatterometer

    Science.gov (United States)

    Levy, Gad

    1994-01-01

    Analyses of remotely sensed low-level wind vector data over the Southern Ocean are performed. Five-day averages and monthly means are created and the month-to-month variability during the winter (July-September) of 1978 is investigated. The remotely sensed winds are compared to the Australian Bureau of Meteorology (ABM) and the National Meteorological Center (NMC) surface analyses. In southern latitudes the remotely sensed winds are stronger than what the weather services' analyses suggest, indicating under-estimation by ABM and NMC in these regions. The evolution of the low-level jet and the major stormtracks during the season are studied and different flow regimes are identified. The large-scale variability of the meridional flow is studied with the aid of empirical orthogonal function (EOF) analysis. The dominance of quasi-stationary wave numbers 3,4, and 5 in the winter flows is evident in both the EOF analysis and the mean flow. The signature of an exceptionally strong blocking situation is evident in July and the special conditions leading to it are discussed. A very large intraseasonal variability with different flow regimes at different months is documented.

  16. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  17. Wind power and the conditions at a liberalized power market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2003-01-01

    Wind power is undergoing a rapid development nationally as well as globally and in a number of countries covers an increasing part of the power supply. At the same time an ongoing liberalization of power markets is taking place and to an increasing extent the owners of wind power plants will themselves have to be responsible for trading the power at the spot market and financially handling the balancing. In the western part of Denmark (Jutland/Funen area), wind-generated power from time to time covers almost 100% of total power consumption. Therefore some examples are chosen from this area to analyse in more detail how well large amounts of wind power in the short-term are handled at the power spot market. It turns out that there is a tendency that more wind power in the system in the short run leads to relatively lower spot prices, while less wind power implies relatively higher spot prices, although, with the exception of December 2002, in general no strong relationship is found. A stronger relationship is found at the regulating market, where there is a fairly clear tendency that the more wind power produced, the higher is the need for down-regulation, and, correspondingly, the less wind power produced, the higher is the need for up-regulation. In general for the Jutland/Funen area the average cost of down-regulation is calculated as 1 2 c euros/kWh regulated for 2002, while the cost of up-regulation amounts to 0 7 c euros/kWh regulated. (author)

  18. A comparative study of various inflow boundary conditions and turbulence models for wind turbine wake predictions

    Science.gov (United States)

    Tian, Lin-Lin; Zhao, Ning; Song, Yi-Lei; Zhu, Chun-Ling

    2018-05-01

    This work is devoted to perform systematic sensitivity analysis of different turbulence models and various inflow boundary conditions in predicting the wake flow behind a horizontal axis wind turbine represented by an actuator disc (AD). The tested turbulence models are the standard k-𝜀 model and the Reynolds Stress Model (RSM). A single wind turbine immersed in both uniform flows and in modeled atmospheric boundary layer (ABL) flows is studied. Simulation results are validated against the field experimental data in terms of wake velocity and turbulence intensity.

  19. Numerical simulation of the effect of wind removing the corona space charge over grounded structures under thunderstorm conditions

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Holbøll, Joachim

    2015-01-01

    agrounded object under thunderstorm conditions. The electric fieldcreated by the charge distribution in the thundercloud above theobject, which is in first place enhanced by its geometry, leadsto the generation and secondly upward propagation of chargefrom the object. Recent investigations underline......Different types of tall structures are severely exposed to lightning discharges, including power lines, communicationtowers, buildings and wind turbines all over the world. Thepresent paper focuses on the numerical modelling and simulationof the effect of wind on the electric field developed over...... quantifies thedifference between static towers and rotating wind turbines whichare influenced by different resultant wind velocities. The voltagedistribution and ion drift velocities in the vicinity of the groundedstructures are illustrated. The results show a higher voltagegradient at the side of the object...

  20. Modeling and control of a variable-speed wind turbine equipped with permanent magnet synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, D.C.; Papathanassiou, S.A.; Papadopoulos, M.P.; Kladas, A.G. [Purdue University, Electrical and Computer Engineering, West Lafayette, IN (United States)

    2000-08-01

    In this paper the operation of a variable-speed, stall regulated wind turbine equipped with a permanent magnet synchronous generator (PMSG) is examined. The emphasis is placed on the analysis of the electric part of the system, i.e. the electrical generator, the power electronics converters and the control. The operational characteristics of the machine are investigated through a series of computer simulations and the speed control system is designed to maximize the power output and achieve a smooth torque and power profile. (orig.)