WorldWideScience

Sample records for variable thermal regime

  1. Thermal power plant operating regimes in future British power systems with increasing variable renewable penetration

    International Nuclear Information System (INIS)

    Edmunds, Ray; Davies, Lloyd; Deane, Paul; Pourkashanian, Mohamed

    2015-01-01

    Highlights: • This work investigates thermal power operating regimes in future power systems. • Gas plants have low utilisation in the scenarios considered. • Ramping intensity increases for gas plants and pumped storage. • Coal plants frequently operate at minimum stable levels and start-ups increase. • Grid emission intensity and total emission production remains substantial. - Abstract: This work investigates the operational requirements of thermal power plants in a number of potential future British power systems with increasing variable renewable penetration. The PLEXOS Integrated Energy Model has been used to develop the market models, with PLEXOS employing mixed integer programming to solve the unit commitment and economic dispatch problem, subject to a number of constraints. Initially, a model of the British power system was developed and validated. Subsequently, a 2020 test model was developed to analyse a number of future system structures with differing fuel and carbon prices and generation mixes. The study has found that in three of the four scenarios considered, the utilisation of gas power plants will be relatively low, but remains fundamental to the security of supply. Also, gas plants will be subject to more intense ramping. The findings have consequent implications for energy policy as expensive government interventions may be required to prevent early decommissioning of gas capacity, should the prevailing market conditions not guarantee revenue adequacy.

  2. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes

    Science.gov (United States)

    Meeuwig, M.H.; Dunham, J.B.; Hayes, J.P.; Vinyard, G.L.

    2004-01-01

    The effects of constant (12, 18, and 24 A?C) and cyclical (daily variation of 15a??21 and 12a??24 A?C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24 A?C) and more variable daily temperatures (i.e., 12a??24 A?C daily cycle) negatively affected growth rates. As fish mass increased (from 0.24 to 15.52 g) the effects of different thermal regimes on mass growth became more pronounced. Following 14 days exposure to the thermal regimes, feeding rates of individual fish were assessed during acute exposure (40 min) to test temperatures of 12, 18, and 24 A?C. Feeding rate was depressed during acute exposure to 24 A?C, but was not significantly affected by the preceding thermal regime. Our results indicate that even brief daily exposure to higher temperatures (e.g., 24 A?C) can have considerable sublethal effects on cutthroat trout, and that fish size should be considered when examining the effects of temperature.

  3. Thermal radiation effects on magnetohydrodynamic free convection heat and mass transfer from a sphere in a variable porosity regime

    KAUST Repository

    Prasad, Vallampati Ramachandra Ramachandra

    2012-02-01

    A mathematical model is presented for multiphysical transport of an optically-dense, electrically-conducting fluid along a permeable isothermal sphere embedded in a variable-porosity medium. A constant, static, magnetic field is applied transverse to the cylinder surface. The non-Darcy effects are simulated via second order Forchheimer drag force term in the momentum boundary layer equation. The surface of the sphere is maintained at a constant temperature and concentration and is permeable, i.e. transpiration into and from the boundary layer regime is possible. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite difference scheme. Increasing porosity (ε) is found to elevate velocities, i.e. accelerate the flow but decrease temperatures, i.e. cool the boundary layer regime. Increasing Forchheimer inertial drag parameter (Λ) retards the flow considerably but enhances temperatures. Increasing Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. Thermal radiation is seen to reduce both velocity and temperature in the boundary layer. Local Nusselt number is also found to be enhanced with increasing both porosity and radiation parameters. © 2011 Elsevier B.V.

  4. Thermal radiation effects on magnetohydrodynamic free convection heat and mass transfer from a sphere in a variable porosity regime

    KAUST Repository

    Prasad, Vallampati Ramachandra Ramachandra; Vasu, Buddakkagari; Bé g, Osman Anwar; Parshad, Rana

    2012-01-01

    A mathematical model is presented for multiphysical transport of an optically-dense, electrically-conducting fluid along a permeable isothermal sphere embedded in a variable-porosity medium. A constant, static, magnetic field is applied transverse

  5. Envisioning, quantifying, and managing thermal regimes on river networks

    Science.gov (United States)

    Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.

  6. Effective thermal conductivity of superfluid helium: laminar, turbulent and ballistic regimes

    Directory of Open Access Journals (Sweden)

    Sciacca Michele

    2016-06-01

    Full Text Available In this paper we extend previous results on the effective thermal conductivity of liquid helium II in cylindrical channels to rectangular channels with high aspect ratio. The aim is to compare the results in the laminar regime, the turbulent regime and the ballistic regime, all of them obtained within a single mesoscopic formalism of heat transport, with heat flux as an independent variable.

  7. Modeling Coast Redwood Variable Retention Management Regimes

    Science.gov (United States)

    John-Pascal Berrill; Kevin O' Hara

    2007-01-01

    Variable retention is a flexible silvicultural system that provides forest managers with an alternative to clearcutting. While much of the standing volume is removed in one harvesting operation, residual stems are retained to provide structural complexity and wildlife habitat functions, or to accrue volume before removal during subsequent stand entries. The residual...

  8. Vegetation management with fire modifies peatland soil thermal regime.

    Science.gov (United States)

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (management effects. Temperatures measured in soil plots burned vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe

    Science.gov (United States)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei

    2018-03-01

    The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.

  10. Typification of the thermal regime of the air in Nicaragua

    International Nuclear Information System (INIS)

    Lecha Estela, Luis; Hernandez Perez, Vidal; Prado Zambrana, Carmen

    1994-01-01

    In this work it is applied the method of thermal regime classification in order to evaluate the heat resources of the country, as a first step to know and to employ, rationally, the national climatic resources. It is analyzed the interaction between the spatio-temporal distribution of the thermal regime and the main climatic factors, showing the differences encountered between each geographic zone of the country and, moreover, they vertical structure. The results have applied utility in several branches of the national economy and they were included in the work to prepare the Climatic Atlas of Nicaragua

  11. Calculation of the thermal regime of a stepped combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Baskarev, B.N.; Gilevich, D.D.; Ostras, V.N.; Shvarts, IU.G.

    1985-01-01

    The effective-length method is used to calculate the heat-transfer characteristics and thermal regime of the walls of a stepped scramjet combustor. Based on this method, a formula is proposed for calculating heat transfer between the transition boundary layer and a nonporous surface. 13 references.

  12. Influence of vegetation cover on thermal regime of mountainous catchments

    Czech Academy of Sciences Publication Activity Database

    Tesař, Miroslav; Šír, Miloslav; Lichner, Ľ.; Zelenková, E.

    2006-01-01

    Roč. 61, Suppl. 19 (2006), S311-S314 ISSN 1335-6372 R&D Projects: GA ČR GA205/05/2312 Institutional research plan: CEZ:AV0Z20600510 Keywords : climate * plant transpiration * thermal regime Subject RIV: DA - Hydrology ; Limnology

  13. Temperature structure function in the Bolgiano regime of thermal convection

    Czech Academy of Sciences Publication Activity Database

    Skrbek, Ladislav; Niemela, J. J.; Sreenivasan, K. R.; Donnelly, J.

    2002-01-01

    Roč. 66, č. 3 (2002), 036303/1-036303/6 ISSN 1063-651X Institutional research plan: CEZ:AV0Z1010914 Keywords : thermal convection * temperature fluctuations * Bolgiano regime Subject RIV: BK - Fluid Dynamics Impact factor: 2.397, year: 2002

  14. Assessment of Global Variability in UTBB MOSFETs in Subthreshold Regime

    Directory of Open Access Journals (Sweden)

    Sergej Makovejev

    2014-07-01

    Full Text Available The global variability of ultra-thin body and buried oxide (UTBB MOSFETs in subthreshold and off regimes of operation is analyzed. The variability of the off-state drain current, subthreshold slope, drain-induced barrier lowering (DIBL, gate leakage current, threshold voltage and their correlations are considered. Two threshold voltage extraction techniques were used. It is shown that the transconductance over drain current (gm/Id method is preferable for variability studies. It is demonstrated that the subthreshold drain current variability in short channel devices cannot be described by threshold voltage variability. It is suggested to include the effective body factor incorporating short channel effects in order to properly model the subthreshold drain current variability.

  15. Thermal spin pumping mediated by magnons in the semiclassical regime

    International Nuclear Information System (INIS)

    Nakata, Kouki

    2012-01-01

    We microscopically analyze thermal spin pumping mediated by magnons, at the interface between a ferromagnetic insulator and a non-magnetic metal, in the semiclassical regime. The generation of a spin current is discussed by calculating the thermal spin transfer torque, which breaks the spin conservation law for conduction electrons and operates the coherent magnon state. Inhomogeneous thermal fluctuations between conduction electrons and magnons induce a net spin current, which is pumped into the adjacent non-magnetic metal. The pumped spin current is proportional to the temperature difference. When the effective temperature of magnons is lower than that of conduction electrons, localized spins lose spin angular momentum by emitting magnons and conduction electrons flip from down to up by absorbing all the emitted momentum, and vice versa. Magnons at the zero mode cannot contribute to thermal spin pumping because they are eliminated by the spin-flip condition. Consequently thermal spin pumping does not cost any kind of applied magnetic fields

  16. The Thermal Regime Around Buried Submarine High-Voltage Cables

    Science.gov (United States)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  17. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America

    Science.gov (United States)

    Arismendi, Ivan; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy

    2013-01-01

    1. Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year. 2. To more completely describe thermal regimes, we developed several descriptors of magnitude, variability, frequency, duration and timing of thermal events throughout a year. We evaluated how these descriptors change over time using long-term (1979–2009), continuous temperature data from five relatively undisturbed cold-water streams in western Oregon, U.S.A. In addition to trends for each descriptor, we evaluated similarities among them, as well as patterns of spatial coherence, and temporal synchrony. 3. Using different groups of descriptors, we were able to more fully capture distinct aspects of the full range of variability in thermal regimes across space and time. A subset of descriptors showed both higher coherence and synchrony and, thus, an appropriate level of responsiveness to examine evidence of regional climatic influences on thermal regimes. Most notably, daily minimum values during winter–spring were the most responsive descriptors to potential climatic influences. 4. Overall, thermal regimes in streams we studied showed high frequency and low variability of cold temperatures during the cold-water period in winter and spring, and high frequency and high variability of warm temperatures during the warm-water period in summer and autumn. The cold and warm periods differed in the distribution of events with a higher frequency and longer duration of warm events in summer than cold events in winter. The cold period exhibited lower variability in the duration of events, but showed more variability in timing. 5. In conclusion, our results highlight the importance of a year-round perspective in identifying the most responsive

  18. Variable Thermal Conductivity on Compressible Boundary Layer ...

    African Journals Online (AJOL)

    In this paper, variable thermal conductivity on heat transfer over a circular cylinder is presented. The concept of assuming constant thermal conductivity on materials is however not efficient. Hence, the governing partial differential equation is reduced using non-dimensionless variables into a system of coupled non-linear ...

  19. Thermal regimes, nonnative trout, and their influences on native Bull Trout in the Upper Klamath River Basin, Oregon

    Science.gov (United States)

    Benjamin, Joseph R.; Heltzel, Jeannie; Dunham, Jason B.; Heck, Michael; Banish, Nolan P.

    2016-01-01

    The occurrence of fish species may be strongly influenced by a stream’s thermal regime (magnitude, frequency, variation, and timing). For instance, magnitude and frequency provide information about sublethal temperatures, variability in temperature can affect behavioral thermoregulation and bioenergetics, and timing of thermal events may cue life history events, such as spawning and migration. We explored the relationship between thermal regimes and the occurrences of native Bull Trout Salvelinus confluentus and nonnative Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta across 87 sites in the upper Klamath River basin, Oregon. Our objectives were to associate descriptors of the thermal regime with trout occurrence, predict the probability of Bull Trout occurrence, and estimate upper thermal tolerances of the trout species. We found that each species was associated with a different suite of thermal regime descriptors. Bull Trout were present at sites that were cooler, had fewer high-temperature events, had less variability, and took longer to warm. Brook Trout were also observed at cooler sites with fewer high-temperature events, but the sites were more variable and Brook Trout occurrence was not associated with a timing descriptor. In contrast, Brown Trout were present at sites that were warmer and reached higher temperatures faster, but they were not associated with frequency or variability descriptors. Among the descriptors considered, magnitude (specifically June degree-days) was the most important in predicting the probability of Bull Trout occurrence, and model predictions were strengthened by including Brook Trout occurrence. Last, all three trout species exhibited contrasting patterns of tolerating longer exposures to lower temperatures. Tolerance limits for Bull Trout were lower than those for Brook Trout and Brown Trout, with contrasts especially evident for thermal maxima. Our results confirm the value of exploring a suite of thermal

  20. Thermal Evolution and Crystallisation Regimes of the Martian Core

    Science.gov (United States)

    Davies, C. J.; Pommier, A.

    2015-12-01

    Though it is accepted that Mars has a sulfur-rich metallic core, its chemical and physical state as well as its time-evolution are still unconstrained and debated. Several lines of evidence indicate that an internal magnetic field was once generated on Mars and that this field decayed around 3.7-4.0 Gyrs ago. The standard model assumes that this field was produced by a thermal (and perhaps chemical) dynamo operating in the Martian core. We use this information to construct parameterized models of the Martian dynamo in order to place constraints on the thermochemical evolution of the Martian core, with particular focus on its crystallization regime. Considered compositions are in the FeS system, with S content ranging from ~10 and 16 wt%. Core radius, density and CMB pressure are varied within the errors provided by recent internal structure models that satisfy the available geodetic constraints (planetary mass, moment of inertia and tidal Love number). We also vary the melting curve and adiabat, CMB heat flow and thermal conductivity. Successful models are those that match the dynamo cessation time and fall within the bounds on present-day CMB temperature. The resulting suite of over 500 models suggest three possible crystallization regimes: growth of a solid inner core starting at the center of the planet; freezing and precipitation of solid iron (Fe- snow) from the core-mantle boundary (CMB); and freezing that begins midway through the core. Our analysis focuses on the effects of core properties that are expected to be constrained during the forthcoming Insight mission.

  1. Optimizing Wellfield Operation in a Variable Power Price Regime.

    Science.gov (United States)

    Bauer-Gottwein, Peter; Schneider, Raphael; Davidsen, Claus

    2016-01-01

    Wellfield management is a multiobjective optimization problem. One important objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m(3) ). However, power systems in most countries are moving in the direction of deregulated markets and price variability is increasing in many markets because of increased penetration of intermittent renewable power sources. In this context the relevant management objective becomes minimizing the cost of electric energy used for pumping and distribution of groundwater from wells rather than minimizing energy use itself. We estimated EFP of pumped water as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP-Q relationship was subsequently used in a Stochastic Dynamic Programming (SDP) framework to minimize total cost of operating the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include storage capacity and hourly water demand fulfilment. The SDP was solved for a baseline situation and for five scenario runs representing different EFP-Q relationships and different maximum wellfield pumping rates. Savings were quantified as differences in total cost between the scenario and a constant-rate pumping benchmark. Minor savings up to 10% were found in the baseline scenario, while the scenario with constant EFP and unlimited pumping rate resulted in savings up to 40%. Key factors determining potential cost savings obtained by flexible wellfield operation under a variable power price regime are the shape of the EFP-Q relationship, the maximum feasible pumping rate and the capacity of available storage facilities. © 2015 The Authors. Groundwater published by Wiley

  2. Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)

    Science.gov (United States)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2012-04-01

    hydrogeological characteristics hardly permit forced convection in the deep aquifer. Thus, we argue that thermal convection could be the driving mechanism of water flow in the carbonate reservoir. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. A relatively low permeability is required for thermal convection to occur. The carbonate reservoir can be thus envisaged as a hydrothermal convection system of large thickness and extension having a large over-heat ratio. Lateral variation of hydrothermal regime was also tested by using temperature data representing the reservoir thermal conditions. We found that thermal convection is of variable intensity and may more likely occur at an area (Ferrara structural high) where widespread fracturing due to tectonism is expected yielding a local increase in permeability.

  3. THERMAL REGIME OF MASSIVE CONCRETE DAMS WITH AIR CAVITIES IN THE SEVERE CLIMATE

    Directory of Open Access Journals (Sweden)

    Aniskin Nikolay Alekseevich

    2012-12-01

    The thermal regime of the concrete dam with an air cavity can be adjustable by simple structural elements, including a heat-insulating wall and artificial heating of cavities. The required intensity and duration of heating are to be identified. Final conclusions about the most favorable thermal regime pattern will be made upon completion of fundamental calculations of the thermal stress state of the dam to be performed in the next phase of the research.

  4. New insights into the ground thermal regime of talus slopes with permafrost below the timberline

    Science.gov (United States)

    Schwindt, Daniel; Kneisel, Christof

    2013-04-01

    In the central Alps permafrost can be expected above 2400 m a.s.l., at altitudes where mean annual air temperatures are below -1° C. However, isolated permafrost occurrences are present in north-exposed talus slopes, far below the timberline, where mean annual air temperatures are positive. Driving factors are assumed to be a low income of solar radiation, a thick organic layer with high insulation capacities as well as the thermally induced chimney effect (Wakonigg, 1996). Investigated are three talus slopes with permafrost in the Swiss Alps that differ with regard to elevation level, talus material, humus characteristics and vegetation composition as well as the mean annual air temperatures. Aim is to achieve a deeper understanding of the factors determining the site-specific thermal regime, as well as the spatially limited and temporally highly variable permafrost occurrences in vegetated talus slopes. Focus is not solely on the question of why permafrost exists at these sites, but also why permafrost does not exist in the immediate surroundings. To detect the temporal variability and spatial heterogeneity of the permafrost occurrences, electrical resistivity tomography monitoring, seismic refraction tomography monitoring, and quasi-3D ERT were applied. To determine the ground thermal regime, air-, ground surface-, and humus temperatures, as well as temperatures within vents of the chimneys were recorded. Furthermore, humus characteristics (thickness, -temperature and -moisture) were mapped in permafrost-affected slope areas and in the immediate surroundings. To test the correlation between solar radiation, permafrost distribution, and humus/vegetation composition, digital elevation models were used to calculate the income of solar radiation. The areal extent of the permafrost bodies coincide precisely with slope sections where the organic layer is thickest, a consistent moss cover is present, and where temperatures at the transition between humus layer and

  5. Ion thermal conductivity and ion distribution function in the banana regime

    International Nuclear Information System (INIS)

    Taguchi, Masayoshi

    1988-01-01

    A method for calculating the ion thermal conductivity and the ion distribution function in the banana regime is formulated for an axisymmetric toroidal plasma of arbitrary aspect ratio. A simple expression for this conductivity is also derived. (author)

  6. A New Regime of Nanoscale Thermal Transport: Collective Diffusion Increases Dissipation Efficiency

    Science.gov (United States)

    2015-04-21

    different regimes of thermal transport. The laser-induced thermal expansion and subsequent cooling of the nanogratings is probed using coherent extreme UV ...technique compared with previously reported MFP spectros - copy techniques. First, our approach that combines nanoheaters with the phase sensitivity of

  7. Fire-regime variability impacts forest carbon dynamics for centuries to millennia

    Science.gov (United States)

    Hudiburg, Tara W.; Higuera, Philip E.; Hicke, Jeffrey A.

    2017-08-01

    Wildfire is a dominant disturbance agent in forest ecosystems, shaping important biogeochemical processes including net carbon (C) balance. Long-term monitoring and chronosequence studies highlight a resilience of biogeochemical properties to large, stand-replacing, high-severity fire events. In contrast, the consequences of repeated fires or temporal variability in a fire regime (e.g., the characteristic timing or severity of fire) are largely unknown, yet theory suggests that such variability could strongly influence forest C trajectories (i.e., future states or directions) for millennia. Here we combine a 4500-year paleoecological record of fire activity with ecosystem modeling to investigate how fire-regime variability impacts soil C and net ecosystem carbon balance. We found that C trajectories in a paleo-informed scenario differed significantly from an equilibrium scenario (with a constant fire return interval), largely due to variability in the timing and severity of past fires. Paleo-informed scenarios contained multi-century periods of positive and negative net ecosystem C balance, with magnitudes significantly larger than observed under the equilibrium scenario. Further, this variability created legacies in soil C trajectories that lasted for millennia. Our results imply that fire-regime variability is a major driver of C trajectories in stand-replacing fire regimes. Predicting carbon balance in these systems, therefore, will depend strongly on the ability of ecosystem models to represent a realistic range of fire-regime variability over the past several centuries to millennia.

  8. Fluid temperatures: Modeling the thermal regime of a river network

    Science.gov (United States)

    Rhonda Mazza; Ashley Steel

    2017-01-01

    Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...

  9. Optimizing wellfield operation in a variable power price regime

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Schneider, Raphael; Davidsen, Claus

    Wellfield management is a multi-objective optimization problem. One important management objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m3). However, power systems in most countries are moving in the direction of deregulated power...... use itself. We estimated energy footprint as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP-Q relationship was subsequently used in a stochastic dynamic programming framework to minimize total cost of operating...... the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include storage...

  10. Optimizing Wellfield Operation in a Variable Power Price Regime

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Schneider, Raphael; Davidsen, Claus

    2016-01-01

    Wellfield management is a multiobjective optimization problem. One important objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m3). However, power systems in most countries are moving in the direction of deregulated markets and price...... itself. We estimated EFP of pumped water as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP-Q relationship was subsequently used in a Stochastic Dynamic Programming (SDP) framework to minimize total cost...... of operating the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include...

  11. Analysis of electrical circuits with variable load regime parameters projective geometry method

    CERN Document Server

    Penin, A

    2015-01-01

    This book introduces electric circuits with variable loads and voltage regulators. It allows to define invariant relationships for various parameters of regime and circuit sections and to prove the concepts characterizing these circuits. Generalized equivalent circuits are introduced. Projective geometry is used for the interpretation of changes of operating regime parameters. Expressions of normalized regime parameters and their changes are presented. Convenient formulas for the calculation of currents are given. Parallel voltage sources and the cascade connection of multi-port networks are d

  12. Evaluation of laser radiation regimes at thermal tissue destruction

    Science.gov (United States)

    Ivanov, Anatoly; Kazaryan, Mishik A.; Molodykh, E. I.; Shchetinkina, T. A.

    1996-01-01

    The existing methods of laser destruction of biotissues, widely spread in surgery and coagulation action, are based on local heat emission in the tissues after light absorption. Here we present the results of the simulation of tissues heat destruction, taking into account the influence of blood and lymph circulation on the processes of heat transfer. The problem is adapted to the case of liver tissue with tumor. A liver is considered as a capillary-porous body with internal blood circulation. Heatconductivity and tissue-blood heat transfer are considered. Heat action is assumed to be implemented with contact laser scalpel. The mathematical model consists of two inhomogeneous nonlinear equations of heatconductivity with spherical symmetry. Nonstationary temperature fields of tissue and blood are determined and the main parameters are: (1) coefficients of heatconductivity and capacitance of blood and tissue, (2) blood and tissue density, (3) total metabolic energy, (4) volume coefficient accounting for heat-exchange between tissue and blood, and (5) blood circulation velocity. The power of laser radiation was taken into account in boundary conditions set for the center of coagulated tissue volume. We also took into account the process connected with changing of substance phase (vaporization). The original computer programs allow one to solve the problem varying in a wide range of the main parameters. Reasonable agreement was found between the calculation results and the experimental data for operations on microsamples and on test animals. It was demonstrated, in particular, that liver tissue coagulation regime is achieved at 10 W laser power during 25 s. The coagulation radius of 0.7 cm with the given tumor radius of 0.5 cm corresponds to the real clinical situation in case of metastasis liver affection.

  13. Effects of time-variable exposure regimes of the insecticide chlorpyrifos on freshwater invertebrate communities in microcosms

    NARCIS (Netherlands)

    Zafar, M.I.; Wijngaarden, van R.; Roessink, I.; Brink, van den P.J.

    2011-01-01

    The present study compared the effects of different time-variable exposure regimes having the same time-weighted average (TWA) concentration of the organophosphate insecticide chlorpyrifos on freshwater invertebrate communities to enable extrapolation of effects across exposure regimes. The

  14. A variable thickness window: Thermal and structural analyses

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.

    1994-01-01

    In this paper, the finite difference formulations for variable thickness thermal analysis and variable thickness plane stress analysis are presented. In heat transfer analysis, radiation effects and temperature-dependent thermal conductivity are taken into account. While in thermal stress analysis, the thermal expansion coefficient is considered as temperature dependent. An application of the variable thickness window to an Advanced Photon Source beamline is presented

  15. Quantum interference magnetoconductance of polycrystalline germanium films in the variable-range hopping regime

    Science.gov (United States)

    Li, Zhaoguo; Peng, Liping; Zhang, Jicheng; Li, Jia; Zeng, Yong; Zhan, Zhiqiang; Wu, Weidong

    2018-06-01

    Direct evidence of quantum interference magnetotransport in polycrystalline germanium films in the variable-range hopping (VRH) regime is reported. The temperature dependence of the conductivity of germanium films fulfilled the Mott VRH mechanism with the form of ? in the low-temperature regime (?). For the magnetotransport behaviour of our germanium films in the VRH regime, a crossover, from negative magnetoconductance at the low-field to positive magnetoconductance at the high-field, is observed while the zero-field conductivity is higher than the critical value (?). In the regime of ?, the magnetoconductance is positive and quadratic in the field for some germanium films. These features are in agreement with the VRH magnetotransport theory based on the quantum interference effect among random paths in the hopping process.

  16. Application of thermal sterilization regimes simulation for improvement of canned foods quality factors

    Directory of Open Access Journals (Sweden)

    Stolyanov A.V.

    2015-03-01

    Full Text Available Results of comparison of optimization methods of thermal sterilization temperature-time regimes have been described. It has been shown that due to simulation the final canned foods’ quality factors are significantly improved, sterilization process time is decreased and energy consumption is reduced without sacrificing actual final lethality value

  17. Apparent relationship between thermal regime in Antarctic waters and Indian summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Menon, H.B.; RameshBabu, V.; Sastry, J.S.

    ) charts for the Indian Ocean sector of the Southern Ocean during 2 contrasting years (1977 and 1979) of summer monsoon over India. The results suggest an apparent relationship between the thermal regimes in the Antarctic waters of the Indian Ocean sector...

  18. Photosynthetic plasticity of populations of Heliotropium curassavicum L. originating from differing thermal regimes.

    Science.gov (United States)

    Mooney, H A

    1980-01-01

    Plants of the widely distributed species Heliotropium curassavicum L. have a large photosynthetic acclimation potential to temperature. There are, however, some differences among the acclimation potentials of populations occupying dissimilar thermal regimes. Plants of populations originating from a cool maritime climate have a greater acclimation potential than plants of populations originating from a desert habitat, which is characterized by large seasonal changes in temperature.

  19. Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes

    Czech Academy of Sciences Publication Activity Database

    Lalouette, L.; Košťál, Vladimír; Colinet, H.; Gagneul, D.; Renault, D.

    2007-01-01

    Roč. 274, č. 7, (2007), s. 1759-1767 ISSN 1742-464X Grant - others:Biodiversity Research Centre of the Université Catholique de Louvain(BE) BRC 111 Institutional research plan: CEZ:AV0Z50070508 Keywords : amino acid * fluctuating thermal regime * insect Subject RIV: ED - Physiology Impact factor: 3.396, year: 2007

  20. Numerical Modelling of Tailings Dam Thermal-Seepage Regime Considering Phase Transitions

    Directory of Open Access Journals (Sweden)

    Aniskin Nikolay Alekseevich

    2017-01-01

    Full Text Available Statement of the Problem. The article describes the problem of combined thermal-seepage regime for earth dams and those operated in the permafrost conditions. This problem can be solved using the finite elements method based on the local variational formulation. Results. A thermal-seepage regime numerical model has been developed for the “dam-foundation” system in terms of the tailings dam. The effect of heat-and-mass transfer and liquid phase transition in soil interstices on the dam state is estimated. The study with subsequent consideration of these factors has been undertaken. Conclusions. The results of studying the temperature-filtration conditions of the structure based on the factors of heat-and-mass transfer and liquid phase transition have shown that the calculation results comply with the field data. Ignoring these factors or one of them distorts the real situation of the dam thermal-seepage conditions.

  1. Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska

    Science.gov (United States)

    Daanen, R. P.; Liljedahl, A. K.

    2017-12-01

    Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.

  2. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America

    Science.gov (United States)

    Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty

    2013-01-01

    1. Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year.2. To more...

  3. Investigation of thermal effects on FinFETs in the quasi-ballistic regime

    Science.gov (United States)

    Yin, Longxiang; Shen, Lei; Di, Shaoyan; Du, Gang; Liu, Xiaoyan

    2018-04-01

    In this work, the thermal effects of FinFETs in the quasi-ballistic regime are investigated using the Monte Carlo method. Bulk Si nFinFETs with the same fin structure and two different gate lengths L g = 20 and 80 nm are investigated and compared to evaluate the thermal effects on the performance of FinFETs in the quasi-ballistic regime. The on current of the 20 nm FinFET with V gs = 0.7 V does not decrease with increasing lattice temperature (T L) at a high V ds. The electrostatic properties in the 20 nm FinFET are more affected by T L than those in the 80 nm FinFET. However, the electron transport in the 20 nm FinFET is less affected by T L than that in the 80 nm FinFET. The electrostatic properties being more sensitive and the electron transport being less sensitive to thermal effects in the quasi-ballistic regime than in the diffusive regime should be considered for effective device modeling and design.

  4. The impact of macroeconomic and conventional stock market variables on Islamic index returns under regime switching

    Directory of Open Access Journals (Sweden)

    Slah Bahloul

    2017-03-01

    Full Text Available The objective of this paper is to study the impact of conventional stock market return and volatility and various macroeconomic variables (including inflation rate, short-term interest rate, the slope of the yield curve and money supply on Islamic stock markets returns for twenty developed and emerging markets using Markov switching regression models. The empirical results for the period 2002–2014 show that both developed and emerging Islamic stock indices are influenced by conventional stock indices returns and money supply for both the low and high volatility regimes. However, the other macroeconomic variables fail to explain the dynamics of Islamic stock indices especially in the high volatility regime. Similar conclusions are obtained by using the MS-VAR model.

  5. Impacts of Interannual Variability in Biogenic VOC Emissions near Transitional Ozone Production Regimes

    Science.gov (United States)

    Geddes, J.

    2017-12-01

    Due to successful NOx emission controls, summertime ozone production chemistry in urban areas across North America is transitioning from VOC-limited to increasingly NOx-limited. In some regions where ozone production sensitivity is in transition, interannual variability in surrounding biogenic VOC emissions could drive fluctuations in the prevailing chemical regime and modify the impact of anthropogenic emission changes. I use satellite observations of HCHO and NO2 column density, along with a long-term simulation of atmospheric chemistry, to investigate the impact of interannual variability in biogenic isoprene sources near large metro areas. Peak emissions of isoprene in the model can vary by up to 20-60% in any given year compared to the long term mean, and this variability drives the majority of the variability in simulated local HCHO:NO2 ratios (a common proxy for ozone production sensitivity). The satellite observations confirm increasingly NOx-limited chemical regimes with large interannual variability. In several instances, the model and satellite observations suggest that variability in biogenic isoprene emissions could shift summertime ozone production from generally VOC- to generally NOx- sensitive (or vice versa). This would have implications for predicting the air quality impacts of anthropogenic emission changes in any given year, and suggests that drivers of biogenic emissions need to be well understood.

  6. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    International Nuclear Information System (INIS)

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-01-01

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF 6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  7. Thermal transport in Si and Ge nanostructures in the 'confinement' regime.

    Science.gov (United States)

    Kwon, Soonshin; Wingert, Matthew C; Zheng, Jianlin; Xiang, Jie; Chen, Renkun

    2016-07-21

    Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.

  8. Rainfall variability and its influence on surface flow regimes. Examples from the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Osman, M. [Debre Zeit (Ethiopia); Sauerborn, P. [Seminar fuer Geographie und ihre Didaktik, Univ. zu Koeln, Koeln (Germany)

    2002-07-01

    The article shows results of an international and interdisciplinary project with the title 'Rainfall and its Erosivity in Ethiopia'. Rainfall variability affects the water resource management of Ethiopia. The influence of rainfall variability on flow regimes was investigated using five gauging stations with data availability from 1982-1997. It was confirmed that the variability in rainfall has a direct implication for surface runoff. Surface runoff declined at most of the gauging stations investigated. Therefore, effective water resource management is recommended for the study area. Future research should focus on watershed management which includes land-use and land cover. The question posed here is whether the variability in rainfall significantly affected surface flow in the study area. (orig.)

  9. Variable Surface Area Thermal Radiator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Due to increased complexity of spacecraft and longer expected life, more sophisticated and complex thermal management schemes are needed that will be capable of...

  10. Early Life-Stage Responses of a Eurythemal Estuarine Fish, Mummichog (Fundulus hetereoclitus) to Fixed and Fluctuating Thermal Regimes

    Science.gov (United States)

    Shaifer, J.

    2016-02-01

    The mummichog (Fundulus hetereoclitus) is an intertidal spawning fish that ranges from the Gulf of St. Lawrence to northeastern Florida. A notoriously hardy species, adults can tolerate a wide range of temperature typical of inshore, estuarine waters. This experiment assessed how a wide range of constant and fluctuating temperatures affect the survival, development, and condition of embryos and young larvae. Captive adults were provided nightly with spawning substrates that were inspected each morning for fertilized eggs. Young ( 8 hr post-fertilization) embryos (N = 25 per population) were assigned to either one of a wide range of constant temperatures (8 to 34 °C) generated by a thermal gradient block (TGB), or to one of 10 daily oscillating temperature regimes that spanned the TGB's mid temperature (21 °C). Water was changed and populations inspected for mortalities and hatching at 12-hr intervals. Hatch dates and mortalities were recorded, and larvae were either anesthetized and measured for size by analyzing digital images, or evaluated for persistence in a food-free environment. Mummichog embryos withstood all but the coldest constant regimes and the entire range of fluctuating ones although age at hatching varied substantially within and among experimental populations. Embryos incubated at warmer temperatures hatched out earlier and at somewhat smaller sizes than those experiencing cooler temperatures. Temperatures experienced by embryos had an inverse effect on persistence of larvae relying on yolk nutrition alone. Mummichog exhibited an especially plastic response to thermal challenges which reflects the highly variable nursery habitat used by this species.

  11. Quasiparticle explanation of ``weak thermalization'' regime under quench in a non-integrable quantum spin chain

    Science.gov (United States)

    Lin, Cheng-Ju; Motrunich, Olexei

    Eigenstate Thermalization Hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Banuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2011)] of a nonintegrable quantum Ising model with longitudinal field under such quench setting found different behaviors under different initial quantum states. One particular case termed ``weak thermalization'' regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We use perturbation theory near the ground state of the model, and identify the oscillation frequency as the quasiparticle mass. With this quasiparticle picture, we can then address the long-time behavior of the oscillations.

  12. Monitoring of thermal regime of permafrost in the coastal zone of Western Yamal

    Science.gov (United States)

    Vasiliev, A.

    2009-04-01

    Data on thermal regime of permafrost are required for estimation of the climate change influence on permafrost dynamics. Monitoring of thermal regime of permafrost was arranged in the area of weather station "Marre-Sale", western Yamal. In terms of geomorphology, the area of our observations belongs to the second and third marine terraces; the surface of these terraces has been partly modified by recent cryogenic processes. The elevation varies from 10 to 30 m a.s.l. Marine clays lie at the base of the geological section of the coastal deposits. Their upper part was eroded and uneven surface of marine sediments is overlain by continental sandy sediments. Marine clays are saline. In the southern part of study area, low accumulative islands are forming. Their heights above sea level do not exceed 0.5 meters, and during high tides their surface is covered by sea water. The sediments accumulating at these islands are saline silty clays. Western Yamal region is located within continuous permafrost zone with thickness of 150 to 200 meters. Study of thermal regime in the on-shore zone has been performed since 1979 using the 10-12-m-deep boreholes. In 2007, five boreholes were included in the work program of the Thermal State of Permafrost (TSP) project developed as a part of IPY scientific activities. According to TSP program, temperature sensors were installed at depths 2, 3, 5, and 10 meters; measurements have been performed every six hours. In this presentation, results of our observations related to climate change are discussed. For different terrain units, increase of mean annual permafrost temperature during the last 30 years has reached 0.6 to 1.5 deg. C. In the transit zone, monitoring of thermal regime have been performed since 2006. Sensors were installed at depths 0, 0.25, 0.6, 0.75, 1.25, 1.75, and 2.25 meters. The active layer depth here reaches 1.9 meters, thus the 2.25-m-sensor is located within permafrost. Monitoring data show the sharp increase in mean

  13. On the simplifications for the thermal modeling of tilting-pad journal bearings under thermoelastohydrodynamic regime

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Fillon, Michel; Santos, Ilmar

    2012-01-01

    formulation for inclusion of the heat transfer effects between oil film and pad surface. Such simplified approach becomes necessary when modeling the behavior of tilting-pad journal bearings operating on controllable lubrication regime. Three different simplified heat transfer models are tested, by comparing...... are strongly dependent on the Reynolds number for the oil flow in the bearing. For bearings operating in laminar regime, the decoupling of the oil film energy equation solving procedure, with no heat transfer terms included, with the pad heat conduction problem, where the oil film temperature is applied......The relevance of calculating accurately the oil film temperature build up when modeling tilting-pad journal bearings is well established within the literature on the subject. This work studies the feasibility of using a thermal model for the tilting-pad journal bearing which includes a simplified...

  14. Large-k exciton dynamics in GaN epilayers: Nonthermal and thermal regimes

    Science.gov (United States)

    Vinattieri, Anna; Bogani, Franco; Cavigli, Lucia; Manzi, Donatella; Gurioli, Massimo; Feltin, Eric; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas

    2013-02-01

    We present a detailed investigation performed at low temperature (T<50 K) concerning the exciton dynamics in GaN epilayers grown on c-plane sapphire substrates, focusing on the exciton formation and the transition from the nonthermal to the thermal regime. The time-resolved kinetics of longitudinal-optical-phonon replicas is used to address the energy relaxation in the excitonic band. From picosecond time-resolved spectra, we bring evidence for a long lasting nonthermal excitonic distribution, which accounts for the first 50 ps. Such a behavior is confirmed in different experimental conditions when both nonresonant and resonant excitations are used. At low excitation power density, the exciton formation and their subsequent thermalization are dominated by impurity scattering rather than by acoustic phonon scattering. The estimate of the average energy of the excitons as a function of delay after the excitation pulse provides information on the relaxation time, which describes the evolution of the exciton population to the thermal regime.

  15. Variable thermal resistor based on self-powered Peltier effect

    OpenAIRE

    Min, Gao; Yatim, N. M.

    2008-01-01

    Heat flow through a thermoelectric material or device can be varied by an electrical resistor connected in parallel to it. This phenomenon is exploited to design a novel thermal component-variable thermal resistor. The theoretical background to this novel application is provided and an experimental result to demonstrate its feasibility is reported.

  16. Variable thermal resistor based on self-powered Peltier effect

    International Nuclear Information System (INIS)

    Min Gao; Yatim, N Md

    2008-01-01

    Heat flow through a thermoelectric material or device can be varied by an electrical resistor connected in parallel to it. This phenomenon is exploited to design a novel thermal component-variable thermal resistor. The theoretical background to this novel application is provided and an experimental result to demonstrate its feasibility is reported. (fast track communication)

  17. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime

    International Nuclear Information System (INIS)

    Weiss, K-P; Bagrets, N; Lange, C; Goldacker, W; Wohlgemuth, J

    2015-01-01

    Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime. (paper)

  18. A method for calorimetric analysis in variable conditions heating; Methode d'analyse calorimetrique en regime variable

    Energy Technology Data Exchange (ETDEWEB)

    Berthier, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    By the analysis of the thermal transition conditions given by the quenching of a sample in a furnace maintained at a high temperature, it is possible to study the thermal diffusivity of some materials and those of solid state structure transformation on a qualitative as well as a quantitative standpoint. For instance the transformation energy of {alpha}-quartz into {beta}-quartz and the Wigner energy stored within neutron-irradiated beryllium oxide have been measured. (author) [French] L'analyse du regime thermique transitoire, obtenu par la trempe d'un echantillon dans l'enceinte d'un four maintenu a tres haute temperature, peut permettre l'etude de la diffusivite thermique de certains materiaux et celle des transformations structurales en phase solide, tant du point de vue qualitatif que du point de vue quantitatif (mesure de l'energie de transformation du quartz {alpha} en quartz {beta} et determination de l'energie Wigner emmagasinee par l'oxyde de beryllium irradie aux neutrons). (auteur)

  19. Quasiparticle explanation of the weak-thermalization regime under quench in a nonintegrable quantum spin chain

    Science.gov (United States)

    Lin, Cheng-Ju; Motrunich, Olexei I.

    2017-02-01

    The eigenstate thermalization hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Bañuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2007), 10.1103/PhysRevLett.106.050405] of a nonintegrable quantum Ising model with longitudinal field under such a quench setting found different behaviors for different initial quantum states. One particular case called the "weak-thermalization" regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We note that the corresponding initial state has low energy density relative to the ground state of the model. We then use perturbation theory near the ground state and identify the oscillation frequency as essentially a quasiparticle gap. With this quasiparticle picture, we can then address the long-time behavior of the oscillations. Upon making additional approximations which intuitively should only make thermalization weaker, we argue that the oscillations nevertheless decay in the long-time limit. As part of our arguments, we also consider a quench from a BEC to a hard-core boson model in one dimension. We find that the expectation value of a single-boson creation operator oscillates but decays exponentially in time, while a pair-boson creation operator has oscillations with a t-3 /2 decay in time. We also study dependence of the decay time on the density of bosons in the low-density regime and use this to estimate decay time for oscillations in the original spin model.

  20. Effect of selective withdrawal on the annual thermal regime of a deep water body

    International Nuclear Information System (INIS)

    Bocharov, O.B.; Zinov'ev, A.T.

    1993-01-01

    The construction of any large hydraulic structure leads to the occurrence of new ecosystems in the upper and lower pools of the hydro development. A study of scenarios of the development of these ecosystems and an investigation of the possibilities of minimizing the negative ecological consequences of waterpower engineering by means of mathematical modeling in many respects determine the quality of developing the scientific and technical project. For high-head hydroelectric stations, an effective tool for controlling the water quality in the upper and lower pools is the withdrawal of water form different horizons of the upper pool reservoir. Temperature stratification of a deep sluggish water body is modeled in a one-dimensional vertical approximation with the use of an improved method of describing fluid outflow. The effect of selective withdrawal on the annual thermal regime and temperature of the outflowing water was studied. The results obtained permit estimating the effect of selective withdrawal on the thermal regime of the upper pool of the planned hydro development and temperature of the water being discharged into the lower pool on the possibility, in principle, of the water temperature in the lower pool approaching the natural both in winter and summer

  1. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  2. Thermal and water regime of green roof segments filled with Technosol

    Science.gov (United States)

    Jelínková, Vladimíra; Šácha, Jan; Dohnal, Michal; Skala, Vojtěch

    2016-04-01

    Artificial soil systems and structures comprise appreciable part of the urban areas and are considered to be perspective for number of reasons. One of the most important lies in contribution of green roofs and facades to the heat island effect mitigation, air quality improvement, storm water reduction, etc. The aim of the presented study is to evaluate thermal and water regime of the anthropogenic soil systems during the first months of the construction life cycle. Green roof test segments filled with two different anthropogenic soils were built to investigate the benefits of such systems in the temperate climate. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the soil substrates provided basis for detailed analysis of thermal and hydrological regime. Water balance of green roof segments was calculated for available vegetation seasons and individual rainfall events. On the basis of an analysis of individual rainfall events rainfall-runoff dependency was found for green roof segments. The difference between measured actual evapotranspiration and calculated potential evapotranspiration was discussed on period with contrasting conditions in terms of the moisture stress. Thermal characteristics of soil substrates resulted in highly contrasting diurnal variation of soils temperatures. Green roof systems under study were able to reduce heat load of the roof construction when comparing with a concrete roof construction. Similarly, received rainfall was significantly reduced. The extent of the rainfall reduction mainly depends on soil, vegetation status and experienced weather patterns. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  3. The plasma wake field excitation: Recent developments from thermal to quantum regime

    Science.gov (United States)

    Fedele, Renato; Tanjia, Fatema; de Nicola, Sergio; Jovanović, Dušan; Jovanović

    2013-12-01

    To describe the transverse nonlinear and collective self-consistent interaction of a long relativistic electron or positron beam with an unmagnetized plasma, a pair of coupled nonlinear differential equations were proposed by Fedele and Shukla in 1992 (Fedele, R. and Shukla, P. K. 1992a Phys. Rev. A 45, 4045). They were obtained within the quantum-like description provided by the thermal wave model and the theory of plasma wake field excitation. The pair of equations comprises a 2D Schrödinger-like equation for a complex wave function (whose squared modulus is proportional to beam density) and a Poisson-like equation for the plasma wake potential. The dispersion coefficient of the Schrödinger-like equation is proportional to the beam thermal emittance. More recently, Fedele-Shukla equations have been further applied to magnetized plasmas, and solutions were found in the form of nonlinear vortex states and ring solitons. They have been also applied to plasma focusing problems and extended from thermal to quantum regimes. We present here a review of the original approach, and subsequent developments.

  4. Trends and variability in the hydrological regime of the Mackenzie River Basin

    Science.gov (United States)

    Abdul Aziz, Omar I.; Burn, Donald H.

    2006-03-01

    Trends and variability in the hydrological regime were analyzed for the Mackenzie River Basin in northern Canada. The procedure utilized the Mann-Kendall non-parametric test to detect trends, the Trend Free Pre-Whitening (TFPW) approach for correcting time-series data for autocorrelation and a bootstrap resampling method to account for the cross-correlation structure of the data. A total of 19 hydrological and six meteorological variables were selected for the study. Analysis was conducted on hydrological data from a network of 54 hydrometric stations and meteorological data from a network of 10 stations. The results indicated that several hydrological variables exhibit a greater number of significant trends than are expected to occur by chance. Noteworthy were strong increasing trends over the winter month flows of December to April as well as in the annual minimum flow and weak decreasing trends in the early summer and late fall flows as well as in the annual mean flow. An earlier onset of the spring freshet is noted over the basin. The results are expected to assist water resources managers and policy makers in making better planning decisions in the Mackenzie River Basin.

  5. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes.

    Science.gov (United States)

    Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R

    2018-01-01

    Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.

  6. The influence of thermal regime on gasoline direct injection engine performance and emissions

    Science.gov (United States)

    Leahu, C. I.; Tarulescu, S.

    2016-08-01

    This paper presents the experimental research regarding to the effects of a low thermal regime on fuel consumption and pollutant emissions from a gasoline direct injection (GDI) engine. During the experimental researches, the temperature of the coolant and oil used by the engine were modified 4 times (55, 65, 75 and 85 oC), monitoring the effects over the fuel consumption and emissions (CO2, CO and NOx). The variations in temperature of the coolant and oil have been achieved through AVL coolant and oil conditioning unit, integrated in the test bed. The obtained experimental results reveals the poor quality of exhaust gases and increases of fuel consumption for the gasoline direct injection engines that runs outside the optimal ranges for coolant and oil temperatures.

  7. Numerical modeling of thermal regime in inland water bodies with field measurement data

    Science.gov (United States)

    Gladskikh, D.; Sergeev, D.; Baydakov, G.; Soustova, I.; Troitskaya, Yu.

    2018-01-01

    Modification of the program complex LAKE, which is intended to compute the thermal regimes of inland water bodies, and the results of its validation in accordance with the parameters of lake part of Gorky water reservoir are reviewed in the research. The modification caused changing the procedure of input temperature profile assignment and parameterization of surface stress on air-water boundary in accordance with the consideration of wind influence on mixing process. Also the innovation consists in combined methods of gathering meteorological parameters from files of global meteorological reanalysis and data of hydrometeorological station. Temperature profiles carried out with CTD-probe during expeditions in the period 2014-2017 were used for validation of the model. The comparison between the real data and the numerical results and its assessment based on time and temperature dependences in control points, correspondence of the forms of the profiles and standard deviation for all performed realizations are provided. It is demonstrated that the model reproduces the results of field measurement data for all observed conditions and seasons. The numerical results for the regimes with strong mixing are in the best quantitative and qualitative agreement with the real profiles. The accuracy of the forecast for the ones with strong stratification near the surface is lower but all specificities of the forms are correctly reproduced.

  8. In-Situ Spatial Variability Of Thermal Conductivity And Volumetric ...

    African Journals Online (AJOL)

    Studies of spatial variability of thermal conductivity and volumetric water content of silty topsoil were conduct-ed on a 0.6 ha site at Abeokuta, South-Western Nigeria. The thermal conductivity (k) was measured at depths of up to 0.06 m along four parallel profiles of 200 m long and at an average temperature of 25 C, using ...

  9. Long-lasting floods buffer the thermal regime of the Pampas

    Science.gov (United States)

    Houspanossian, Javier; Kuppel, Sylvain; Nosetto, Marcelo; Di Bella, Carlos; Oricchio, Patricio; Barrucand, Mariana; Rusticucci, Matilde; Jobbágy, Esteban

    2018-01-01

    The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape ( 2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.

  10. Thermal electron transport in regimes with low and negative magnetic shear in Tore Supra

    International Nuclear Information System (INIS)

    Voitsekhovitch, I.; Litaudon, X.; Moreau, D.; Aniel, T.; Becoulet, A.; Erba, M.; Joffrin, E.; Kazarian-Vibert, F.; Peysson, Y.

    1997-01-01

    The magnetic shear effect on thermal electron transport is studied in a large variety of non-inductive plasmas in Tore Supra. An improved confinement in the region of low and negative shear was observed and quantified with an exponential dependence on the magnetic shear (Litaudon, et al., Fusion Energy 1996 (Proc. 16th Int. Conf. Montreal, 1996), Vol. 1, IAEA, Vienna (1997) 669). This is interpreted as a consequence of a decoupling of the global modes (Romanelli and Zonca, Phys. Fluids B 5 (1993) 4081) that are thought to be responsible for anomalous transport. This dependence is proposed in order to complete the Bohm-like L mode local electron thermal diffusivity so as to describe the transition from Bohm-like to gyroBohm transport in the plasma core. The good agreement between the predictive simulations of the different Tore Supra regimes (hot core lower hybrid enhanced performance, reversed shear plasmas and combined lower hybrid current drive and fast wave electron heating) and experimental data provides a basis for extrapolation of this magnetic shear dependence in the local transport coefficients to future machines. As an example, a scenario for non-inductive current profile optimization and control in ITER is presented. (author)

  11. THERMAL CONSOLIDATION OF LAYERED POROUS HALF-SPACE TO VARIABLE THERMAL LOADING

    Institute of Scientific and Technical Information of China (English)

    BAI Bing

    2006-01-01

    An analytical method was derived for the thermal consolidation of layered,saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, thc thermo-osmosis effect has an obvious influence on thermal responses.

  12. Entropy generation by nanofluid with variable thermal conductivity ...

    African Journals Online (AJOL)

    The entropy generation by nanofluid with variable thermal conductivity and viscosity of assisted convective flow across a riser pipe of a horizontal flat plate solar collector is investigated numerically. The water based nanofluid with copper nanoparticles is used as the working fluid inside the fluid passing riser pipe.

  13. Hermite- Padé projection to thermal radiative and variable ...

    African Journals Online (AJOL)

    The combined effect of variable thermal conductivity and radiative heat transfer on steady flow of a conducting optically thin viscous fluid through a channel with sliding wall and non-uniform wall temperatures under the influence of an externally applied homogeneous magnetic field are analyzed in the present study.

  14. Thermal ignition in a reactive variable viscosity Poiseuille flow ...

    African Journals Online (AJOL)

    In this paper, we investigate the thermal ignition in a strongly exothermic reaction of a variable viscosity combustible material flowing through a channel with isothermal walls under Arrhenius kinetics, neglecting the consumption of the material. Analytical solutions are constructed for the governing nonlinear boundary-value ...

  15. Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California

    Science.gov (United States)

    Clor, L. E.; Hurwitz, S.; Howle, J.

    2015-12-01

    Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.

  16. Influence of natural inshore and offshore thermal regimes on egg development and time of hatch in American lobsters, Homarus americanus.

    Science.gov (United States)

    Goldstein, Jason S; Watson, Winsor H

    2015-02-01

    Some egg-bearing (ovigerous) American lobsters (Homarus americanus) make seasonal inshore-to-offshore movements, subjecting their eggs to different thermal regimes than those of eggs carried by lobsters that do not make these movements. Our goal was to determine if differences in thermal regimes influence the rate of egg development and the subsequent time of hatch. We subjected ovigerous lobsters to typical inshore or offshore water temperatures from September to August in the laboratory (n=8 inshore and 8 offshore, each year) and in the field (n=8 each, inshore and offshore), over 2 successive years. Although the rate of egg development did not differ significantly between treatments in the fall (P∼0.570), eggs exposed to inshore thermal regimes developed faster in the spring (Plobsters exposed to offshore thermal regimes accumulated more GDD in the winter than did eggs carried by inshore lobsters, while eggs exposed to inshore temperatures acquired them more rapidly in the spring. Results suggest that seasonal movements of ovigerous lobsters influence the time and location of hatching, and thus the transport and recruitment of larvae to coastal and offshore locations. © 2015 Marine Biological Laboratory.

  17. Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach

    Czech Academy of Sciences Publication Activity Database

    Colinet, H.; Renault, D.; Javal, M.; Berková, Petra; Šimek, Petr; Košťál, Vladimír

    2016-01-01

    Roč. 1861, č. 11 (2016), s. 1736-1745 ISSN 1388-1981 R&D Projects: GA ČR GA13-18509S Institutional support: RVO:60077344 Keywords : cold stress * fluctuating thermal regimes * recovery Subject RIV: ED - Physiology Impact factor: 5.547, year: 2016 http://www.sciencedirect.com/science/article/pii/S1388198116302281

  18. Phosphorus mobilization in rewetted peat and sand at variable flow rate and redox regimes

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heiberg, Lisa; Jensen, Henning S.

    2012-01-01

    the upward percolation of groundwater with variable O2 content and flow rate, we investigated the hydro-biogeochemical Fe and P dynamics in intact cores of a carbon rich peat and carbon poor sand. Percolation of deionized water with high, low or no O2 supply at 10 °C caused markedly different in situ redox...... rates from 7.6 to 11 mg P m−2 day−1. Organic or particulate P contributed to 40–45% of total P losses from the peat. In contrast, the high O2 supply during high flow rate kept the peat oxic and lowered TP release rates to 6.7 mg P m−2 day−1. The carbon poor sand demonstrated that this soil type...... regimes in the two soils during 21 or 67 days of continuous percolation at either 1 or 4 mm h−1. Anoxic conditions occurred in the peat soil at both low oxygen supply and anoxic infiltration, causing reductive Fe(III) dissolution with high Fe(II) and P effluent concentrations and total P (TP) release...

  19. Heat pipes with variable thermal conductance property for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)

    2017-06-15

    The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.

  20. Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2018-02-01

    We present 2D simulations using the Lattice Boltzmann Method (LBM) of a fluid in a rectangular box being heated from below, and cooled from above. We observe plumes, hot narrow upwellings from the base, and down-going cold chutes from the top. We have varied both the Rayleigh numbers and the Prandtl numbers respectively from Ra = 1000 to Ra =1010 , and Pr = 1 through Pr = 5 ×104 , leading to Rayleigh-Bénard convection cells at low Rayleigh numbers through to vigorous convection and unstable plumes with pronounced vortices and eddies at high Rayleigh numbers. We conduct simulations with high Prandtl numbers up to Pr = 50, 000 to simulate in the inertial regime. We find for cases when Pr ⩾ 100 that we obtain a series of narrow plumes of upwelling fluid with mushroom heads and chutes of downwelling fluid. We also present simulations at a Prandtl number of 0.7 for Rayleigh numbers varying from Ra =104 through Ra =107.5 . We demonstrate that the Nusselt number follows power law scaling of form Nu ∼Raγ where γ = 0.279 ± 0.002 , which is consistent with published results of γ = 0.281 in the literature. These results show that the LBM is capable of reproducing results obtained with classical macroscopic methods such as spectral methods, and demonstrate the great potential of the LBM for studying thermal convection and plume dynamics relevant to geodynamics.

  1. Thermal regime of the lithosphere and prediction of seismic hazard in the Caspian region

    International Nuclear Information System (INIS)

    Levin, L.E.; Solodilov, L.N.; Kondorskaya, N.V.; Gasanov, A.G; Panahi, B.M.

    2002-01-01

    Full text : Prediction of seicmicity is one of elements of ecology hazard warning. In this collective research, it is elaborated in three directions : quantitative estimate of regional faults by level of seismic activity; ascertainment of space position of earthquake risk zones, determination of high seismic potential sites for the period of the next 3-5 years. During elaboration of prediction, it takes into account that peculiar feature all over the is determined by relationship of about 90 percent of earthquake hypocenters and released energy of seismic waves with elactic-brittle ayer of the lithosphere. Concetration of earthquakes epicenters is established predominantly in zones of complex structure of elastic-brittle layer where gradient of it thickness is 20-30 km. Directions of hypocenters migration in the plastic-viscous layer reveal a space position of seismic dangerous zones. All this provides a necessity for generalization of data on location of earthquakes epicenters; determination of their magnitudes, space position of regional faults and heat flow with calculation of thermal regime being made for clarification of the lithosphere and elastic-brittle thickness variations separately. General analysis includes a calculation of released seismic wave energy and determination of peculiar features of its distribution in the entire region and also studies of hypocenters migration in the plastic-viscous layer of the litosphere in time.

  2. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)

    2017-05-20

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  3. Caliper variable sonde for thermal conductivity measurements in situ

    Energy Technology Data Exchange (ETDEWEB)

    Oelsner, C; Leischner, H; Pischel, S

    1968-01-01

    For the measurement of the thermal conductivity of the formations surrounding a borehole, a sonde having variable diameter (consisting of an inflatable rubber cylinder with heating wires embedded in its wall) is described. The conditions for the usual sonde made of metal are no longer fulfilled, but the solution to the problem of determining the thermal conductivity from the temperature rise is given, based on an approach by Carslaw and Jaeger, which contains the Bessel functions of the second kind. It is shown that a simpler solution for large values of time can be obtained through the Laplace transformation, and the necessary series developments for computer application are also given. The sonde and the necessary measuring circuitry are described. Tests measurements have indicated that the thermal conductivity can be determined with this sonde with a precision of + 10%.

  4. Thermal Regime of A Deep Temperate Lake and Its Response to Climate Change: Lake Kuttara, Japan

    Directory of Open Access Journals (Sweden)

    Kazuhisa A. Chikita

    2018-02-01

    Full Text Available A deep temperate lake, Lake Kuttara, Hokkaido, Japan (148 m deep at maximum was completely ice-covered every winter in the 20th century. However, ice-free conditions of the lake over winter occurred three times in the 21st century, which is probably due to global warming. In order to understand how thermal regime of the lake responds to climate change, a change in lake mean water temperature from the heat storage change was calculated by integrating observed water temperature over water depths and by numerical calculation of heat budget components based on hydrometeorological data. As a result, a temporal variation of lake mean water temperature from the heat budget calculation was very reasonable to that from the observed water temperature (determination coefficient R2 = 0.969. The lowest lake mean temperature for non-freeze was then evaluated at −1.87 °C, referring to the zero level at 6.80 °C. The 1978–2017 data at a meteorological station near Kuttara indicated that there are significant (less than 5% level long-term trends for air temperature (+0.024 °C/year and wind speed (−0.010 m/s/year. In order to evaluate the effects of climate change on freeze-up patterns, a sensitivity analysis was carried out for the calculated lake mean water temperature. It is noted that, after two decades, the lake could be ice-free once per every two years.

  5. COMPARATIVE DYNAMICS OF PROTEIN DESTRUCTION IN CANNED FOODS IN SAUCE AT DIFFERENT THERMAL TREATMENT REGIMES AND SUBSEQUENT STORAGE

    OpenAIRE

    V. B. Krylova; T. V. Gustova

    2017-01-01

    In the course of investigations, the structural changes in proteins were established, which were associated with the preliminary treatment of meat ingredients, a pH level of the system and parameters of thermal treatment.The pasteurization regimes allowed retaining a protein nitrogen proportion up to 94% by the end of canned food storage duration. Upon sterilization, the losses in protein nitrogen were two times higher. A negative effect of more acidic sauce on preservation of the protein nitr...

  6. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    Science.gov (United States)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.

  7. Long term variability of the annual hydrological regime and sensitivity to temperature phase shifts in Saxony/Germany

    Science.gov (United States)

    Renner, M.; Bernhofer, C.

    2011-01-01

    The timing of the seasons strongly effects ecosystems and human activities. Recently, there is increasing evidence of changes in the timing of the seasons, such as earlier spring seasons detected in phenological records, advanced seasonal timing of surface temperature, earlier snow melt or streamflow timing. For water resources management there is a need to quantitatively describe the variability in the timing of hydrological regimes and to understand how climatic changes control the seasonal water budget of river basins on the regional scale. In this study, changes of the annual cycle of hydrological variables are analysed for 27 river basins in Saxony/Germany. Thereby monthly series of basin runoff ratios, the ratio of runoff and basin precipitation are investigated for changes and variability of their annual periodicity over the period 1930-2009. Approximating the annual cycle by the means of harmonic functions gave acceptable results, while only two parameters, phase and amplitude, are required. It has been found that the annual phase of runoff ratio, representing the timing of the hydrological regime, is subject to considerable year-to-year variability, being concurrent with basins in similar hydro-climatic conditions. Two distinct basin classes have been identified, whereby basin elevation has been found to be the delimiting factor. An increasing importance of snow on the basin water balance with elevation is apparent and mainly governs the temporal variability of the annual timing of hydrological regimes. Further there is evidence of coincident changes in trend direction (change points in 1971 and 1988) in snow melt influenced basins. In these basins the timing of the runoff ratio is significantly correlated with the timing of temperature, and effects on runoff by temperature phase changes are even amplified. Interestingly, temperature effects may explain the low frequent variability of the second change point until today. However, the first change point can

  8. Optimal ranking regime analysis of intra- to multidecadal U.S. climate variability. Part I: Temperature

    Science.gov (United States)

    The Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output – a time series’ most significant non-overlapping periods of high o...

  9. Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA

    Science.gov (United States)

    Jessica L. Hudec; David L. Peterson

    2012-01-01

    Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...

  10. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    Science.gov (United States)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  11. Identification of two-phase flow regimes under variable gravity conditions

    International Nuclear Information System (INIS)

    Kamiel S Gabriel; Huawei Han

    2005-01-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  12. Identification of two-phase flow regimes under variable gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiel S Gabriel [University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON L1H 7K4 (Canada); Huawei Han [Mechanical Engineering Department, University of Saskatchewan 57 Campus Dr., Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2005-07-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  13. Resilient Governance of Water Regimes in Variable Climates: Lessons from California’s Hydro-Ecological Zones

    Directory of Open Access Journals (Sweden)

    Jeff Romm

    2018-02-01

    Full Text Available Highly variable water regimes, such as California’s, contain distinctive problems in the pursuit of secure timing, quantities and distributions of highly variable flows. Their formal and informal systems of water control must adapt rapidly to forceful and unpredictable swings on which the survival of diversified ecosystems, expansive settlement patterns and market-driven economies depends. What constitutes resilient water governance in these high-variability regimes? Three bodies of theory—state resource government, resilience and social mediation—inform our pursuit of governance that adapts effectively to these challenges. Using evidence drawn primarily from California research and participation in the policy and practice of water governance, we identify two stark barriers to learning, adaptation and resilience in high-variability conditions: (1 the sharp divide between modes of governance for ecological (protective and for social (distributive resilience and (2 the separation between predominant paradigms of water governance in “basins” (shared streamflow and in “plains” (minimized social risk. These sources of structural segregation block adaptive processes and diminish systemic resilience, creating need for mediating spaces that increase permeability, learning and adaptation across structural barriers. We propose that the magnitude and diversity of need are related directly to the degree of hydro-climatic variability.

  14. Detecting the Benefits of Shade Management in the Thermal Regime of an Upland River Under Positive and Negative Phases of the NAO

    Science.gov (United States)

    Wilby, R.; Johnson, M. F.

    2017-12-01

    Water temperature is an important determinant of river ecosystem function and health. Hence, there is growing concern about rising surface water temperatures as a consequence of global warming and human modifications to river regimes. Some agencies are advocating riparian shade management as a means of `keeping rivers cool'. As appealing as this policy might seem, there are a host of practical considerations such as which species to plant, where to plant, and how much to plant? Moreover, there can be unintended consequences for groundwater recharge, flood risk and nutrient fluxes through the buffer zone. The thermal benefits of tree-planting may also be hard to detect amidst the integrated, downstream effects of landscape shade and flows from springs. Yet, to truly evaluate shade management as an adaptation to climate change, clear evidence is needed of the costs and benefits of this local intervention. What has this got to do with natural modes of climate variability? Continental scale, hydrological impacts of ENSO, the PDO and NAO have been widely reported - these periodic variations in ocean-atmosphere circulations are often blamed for floods, droughts, wildfire, crop failures, and the like. But there is emerging evidence that such phenomena also drive inter-annual variations in the heat flux of rivers. This matters because the underlying signal can confound field and model experiments intended to test adaptation options. Here, we present evidence of NAO signatures in the water temperature regime of the River Dove, UK. We compare the amplitude of these thermal variations with the expected benefit of tree planting. We demonstrate that the difference in maximum summer water temperature between strongly positive and strongly negative NAO phases can be about 2.5°C. This is equivalent to the thermal benefit of more than 2 km of riparian shade for the river studied. So, whilst modes of climate variability undoubtedly have a global footprint, let us not forget that

  15. Thermal barriers constrain microbial elevational range size via climate variability.

    Science.gov (United States)

    Wang, Jianjun; Soininen, Janne

    2017-08-01

    Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector

    Science.gov (United States)

    Madonna, E.; Li, C.; Grams, C. M.; Woollings, T.

    2017-12-01

    Understanding the variability of the North Atlantic eddy-driven jet is key to unravelling the dynamics, predictability and climate change response of extratropical weather in the region. This study aims to 1) reconcile two perspectives on wintertime variability in the North Atlantic-European sector and 2) clarify their link to atmospheric blocking. Two common views of wintertime variability in the North Atlantic are the zonal-mean framework comprising three preferred locations of the eddy-driven jet (southern, central, northern), and the weather regime framework comprising four classical North Atlantic-European regimes (Atlantic ridge AR, zonal ZO, European/Scandinavian blocking BL, Greenland anticyclone GA). We use a k-means clustering algorithm to characterize the two-dimensional variability of the eddy-driven jet stream, defined by the lower tropospheric zonal wind in the ERA-Interim reanalysis. The first three clusters capture the central jet and northern jet, along with a new mixed jet configuration; a fourth cluster is needed to recover the southern jet. The mixed cluster represents a split or strongly tilted jet, neither of which is well described in the zonal-mean framework, and has a persistence of about one week, similar to the other clusters. Connections between the preferred jet locations and weather regimes are corroborated - southern to GA, central to ZO, and northern to AR. In addition, the new mixed cluster is found to be linked to European/Scandinavian blocking, whose relation to the eddy-driven jet was previously unclear. The results highlight the necessity of bridging from weather to climate scales for a deeper understanding of atmospheric circulation variability.

  17. VARIABILITY OF THE SiO THERMAL LINE EMISSION TOWARD THE YOUNG L1448-mm OUTFLOW

    International Nuclear Information System (INIS)

    Jimenez-Serra, I.; MartIn-Pintado, J.; RodrIguez-Franco, A.; Winters, J.-M.; Caselli, P.

    2011-01-01

    The detection of narrow SiO thermal emission toward young outflows has been proposed to be a signature of the magnetic precursor of C-shocks. Recent modeling of the SiO emission across C-shocks predicts variations in the SiO line intensity and line shape at the precursor and intermediate-velocity regimes in only a few years. We present high angular resolution (3.''8 x 3.''3) images of the thermal SiO J = 2→1 emission toward the L1448-mm outflow in two epochs (2004 November-2005 February, 2009 March-April). Several SiO condensations have appeared at intermediate velocities (20-50 km s -1 ) toward the redshifted lobe of the outflow since 2005. Toward one of the condensations (clump D), systematic differences of the dirty beams between 2005 and 2009 could be responsible for the SiO variability. At higher velocities (50-80 km s -1 ), SiO could also have experienced changes in its intensity. We propose that the SiO variability toward L1448-mm is due to a real SiO enhancement by young C-shocks at the internal working surface between the jet and the ambient gas. For the precursor regime (5.2-9.2 km s -1 ), several narrow and faint SiO components are detected. The narrow SiO components tend to be compact, transient and show elongated (bow-shock) morphologies perpendicular to the jet. We speculate that these features are associated with the precursor of C-shocks appearing at the interface of the new SiO components seen at intermediate velocities.

  18. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  19. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    OpenAIRE

    Maksimov Vyacheslav I.; Nagornova Tatiana A.; Glazyrin Viktor P.; Shestakov Igor A.

    2016-01-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity – the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that character...

  20. RESEARCH OF INFLUENCE OF THE HIGH-SPEED THERMAL PROCESSING REGIMES ON STRUCTURE AND MECHANICAL PROPERTIES OF PIPE STEEL 32G2

    Directory of Open Access Journals (Sweden)

    A. I. Gordienko

    2012-01-01

    Full Text Available Researches on influence of high-speed heating temperature, regimes of cooling and temperature of abatement on structure and mechanical properties of pipe steel 32G2 are carried out. Recommendations on the regimes of high-speed thermal processing of steel 32G2 which can be used at manufacturing of seamless pipes are given.

  1. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  2. VARIABILITY OF THE THERMAL CONTINENTALITY INDEX IN CENTRAL EUROPE

    Directory of Open Access Journals (Sweden)

    CIARANEK1 DOMINIKA

    2014-03-01

    Full Text Available The paper presents the spatial and temporal variability of thermal continentality in Central Europe. Gorczyński’s and Johansson-Ringleb’s formulae were used to derive the continentality index. The study also looked at the annual patterns of air temperature amplitude (A, a component of both of these formulae, and D; the difference between the average temperatures of autumn (Sep.-Nov. and spring (Mar.-May. Records of six weather stations representing the climate of Central Europe were included in the study covering the period 1775-2012 (Potsdam, Drezden, Prague, Vienna, Krakow, Debrecen. The highest continentality index was found in Debrecen and the lowest in Potsdam. The continentality index fluctuated with time with two pronounced dips at the turn of the 19th century and in the second half of the 20th century. The highest continentality index values were recorded during the 1930s and 1940s.

  3. Longwave thermal infrared spectral variability in individual rocks

    Energy Technology Data Exchange (ETDEWEB)

    Balick, Lee K [Los Alamos National Laboratory; Gillespie, Alan [UN. WASHINGTON; French, Andrew [USDA-ARS; Danilina, Iryna [UN. WASHINGTON

    2008-01-01

    A hyperspectral imaging spectrometer measuring in the longwave thermal infrared (7.6-11.6 {micro}m) with a spatial resolution less than 4 mm was used in the field to observe the variability of emissivity spectra within individual rocks. The rocks were obtained commercially, were on the order of 20 cm in size and were selected to have distinct spectral features: they include alabaster (gypsum), soapstone (steatite with talc), obsidian (volcanic glass), norite (plagioclase and orthopyroxene), and 'jasper' (silica with iron oxides). The advantages of using an imaging spectrometer to spectrally characterize these rocks are apparent. Large spectral variations were observed within individual rocks that may be attributed to roughness, surface geometry, and compositional variation. Non-imaging spectrometers would normally miss these variations as would small samples used in laboratory measurements, spatially averaged spectra can miss the optimum spectra for identification materials and spatially localized components of the rock can be obscured.

  4. Thermal characterization of European ant communities along thermal gradients and its implications for community resilience to temperature variability

    Directory of Open Access Journals (Sweden)

    Xavier eArnan

    2015-12-01

    Full Text Available Ecologists are increasingly concerned about how climate change will affect biodiversity yet have mostly addressed the issue at the species level. Here, we present a novel framework that accounts for the full range and complementarity of thermal responses present in a community; it may help reveal how biological communities will respond to climatic (i.e., thermal variability. First, we characterized the thermal niches of 147 ant species from 342 communities found along broad temperature gradients in western Europe. Within each community, species’ mean thermal breadth and the difference among species’ thermal optima (thermal complementarity were considered to define community thermal niche breadth—our proxy for community thermal resilience. The greater the range of thermal responses and their complementarity within a community, the greater the likelihood that the community could cope with novel conditions. Second, we used simulations to calculate how robust community thermal resilience was to random species extinctions. Community resilience was considered to be robust when random species extinctions largely failed to constrict initial community thermal breadth. Our results indicate that community thermal resilience was negatively and positively correlated with mean temperature and temperature seasonality, respectively. The pattern was reversed for robustness. While species richness did not directly affect community resilience to thermal variability, it did have a strong indirect effect because it determined community resilience robustness. Consequently, communities in warm, aseasonal regions are the most vulnerable to temperature variability, despite their greater number of species and resultant greater resilience robustness.

  5. Thermal tolerance ranges and climate variability : A comparison between bivalves from differing climates

    NARCIS (Netherlands)

    Compton, Tanya J.; Rijkenberg, Micha J. A.; Drent, Jan; Piersma, Theunis

    2007-01-01

    The climate variability hypothesis proposes that in variable temperate climates poikilothermic animals have wide thermal tolerance windows, whereas in constant tropical climates they have small thermal tolerance windows. In this study we quantified and compared the upper and lower lethal thermal

  6. Variability in population abundance is associated with thresholds between scaling regimes

    Science.gov (United States)

    Wardwell, D.; Allen, Craig R.

    2009-01-01

    Discontinuous structure in landscapes may result in discontinuous, aggregated species body-mass patterns, reflecting the scales of structure available to animal communities within a landscape. The edges of these body-mass aggregations reflect transitions between available scales of landscape structure. Such transitions, or scale breaks, are theoretically associated with increased biological variability. We hypothesized that variability in population abundance is greater in animal species near the edge of body-mass aggregations than it is in species that are situated in the interior of body-mass aggregations. We tested this hypothesis by examining both temporal and spatial variability in the abundance of species in the bird community of the Florida Everglades sub-ecoregion, USA. Analyses of both temporal and spatial variability in population abundance supported our hypothesis. Our results indicate that variability within complex systems may be non-random, and is heightened where transitions in scales of process and structure occur. This is the first explicit test of the hypothetical relationship between increased population variability and scale breaks. ?? 2009 by the author(s).

  7. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Frieling, Joost; Reichart, Gert-Jan; Middelburg, Jack J.; Röhl, Ursula; Westerhold, Thomas; Bohaty, Steven M.; Sluijs, Appy

    2018-01-01

    The Paleocene-Eocene Thermal Maximum (PETM, 56 Ma) was a phase of rapid global warming associated with massive carbon input into the ocean-atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP) Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst) assemblage analysis. The PETM at Site 959 was previously found to be marked by a ˜ 3.8 ‰ negative carbon isotope excursion (CIE) and a ˜ 4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which ˜ 1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply sustained export production, likely driven by prokaryotes. In

  8. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum

    Directory of Open Access Journals (Sweden)

    J. Frieling

    2018-01-01

    Full Text Available The Paleocene–Eocene Thermal Maximum (PETM, 56 Ma was a phase of rapid global warming associated with massive carbon input into the ocean–atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst assemblage analysis. The PETM at Site 959 was previously found to be marked by a  ∼  3.8 ‰ negative carbon isotope excursion (CIE and a  ∼  4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which  ∼  1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply

  9. Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Alkeskjold, Thomas Tanggaard

    2012-01-01

    Power scaling of fiber laser systems requires the development of innovative active fibers, capable of providing high pump absorption, ultralarge effective area, high-order mode suppression, and resilience to thermal effects. Thermally induced refractive index change has been recently appointed...... as one major limitation to the achievable power, causing degradation of the modal properties and preventing to obtain stable diffraction-limited output beam. In this paper, the effects of thermally induced refractive index change on the guiding properties of a double-cladding distributed modal filtering...

  10. Operational Constraints on Hydropeaking and its Effects on the Hydrologic and Thermal Regime of a River in Central Chile

    Science.gov (United States)

    Olivares, M. A.; Guzman, C.; Rossel, V.; De La Fuente, A.

    2013-12-01

    Hydropower accounts for about 44% of installed capacity in Chile's Central Interconnected System, which serves most of the Chilean population. Hydropower reservoir projects can affect ecosystems by changing the hydrologic regime and water quality. Given its volumen regulation capacity, low operation costs and fast response to demand fluctuations, reservoir hydropower plants commonly operate on a load-following or hydropeaking scheme. This short-term operational pattern produces alterations in the hydrologic regime downstream the reservoir. In the case of thermally stratified reservoirs, peaking operations can affect the thermal structure of the reservoir, as well as the thermal regime downstream. In this study, we assessed the subdaily hydrologic and thermal alteration donwstream of Rapel reservoir in Central Chile for alternative operational scenarios, including a base case and several scenarios involving minimum instream flow (Qmin) and maximum hourly ramping rates (ΔQmax). Scenarios were simulated for the stratification season of summer 2009-2012 in a grid-wide short-term economic dispatch model which prescribes hourly power production by every power plant on a weekly horizon. Power time series are then translated into time series of turbined flows at each hydropower plants. Indicators of subdaily hydrologic alteration (SDHA) were computed for every scenario. Additionally, turbined flows were used as input data for a three-dimensional hydrodynamic model (CWR-ELCOM) of the reservoir which simulated the vertical temperature profile in the reservoir and the outflow temperature. For the time series of outflow temperatures we computed several indicators of subdaily thermal alteration (SDTA). Operational constraints reduce the values of both SDHA and SDTA indicators with respect to the base case. When constraints are applied separately, the indicators of SDHA decrease as each type of constraint (Qmin or ΔQmax) becomes more stringent. However, ramping rate

  11. Sharp transition between thermal and quantum tunneling regimes in magnetization relaxation processes

    Science.gov (United States)

    Tejada, J.; Zhang, X. X.; Barbara, B.

    1993-03-01

    In this paper we describe experiments involving measurements of the dependence on time of the thermoremanence magnetization of 2-dimensional random magnets. The low temperature values for the magnetic viscosity agree well with both current theories of tunneling of the magnetization vector (Chudnovsky et al.) and the work of Grabert et al. who predicted that the transition from classical to quantum regime is rather sharp for undamped systems.

  12. Simulated juvenile salmon growth and phenology respond to altered thermal regimes and stream network shape

    Science.gov (United States)

    Context. Thermally diverse habitats may afford fish protection from climate change by providing opportunities to behaviorally optimize growing conditions. However, it is unclear what role the spatial properties of river networks will play in determining risk. Objectives. We hypot...

  13. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    Directory of Open Access Journals (Sweden)

    Dhananjay K. Ravikumar

    2017-09-01

    Full Text Available Brookhaven National Laboratory (BNL has proposed to build an electron ion collider (EIC as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC. A part of the new design is to use superconducting radio frequency (SRF cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  14. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    Science.gov (United States)

    Ravikumar, Dhananjay K.; Than, Yatming; Xu, Wencan; Longtin, Jon

    2017-09-01

    Brookhaven National Laboratory (BNL) has proposed to build an electron ion collider (EIC) as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC). A part of the new design is to use superconducting radio frequency (SRF) cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM) of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  15. A quasi-one-dimensional velocity regime of super-thermal electron stream propagation through the solar corona

    International Nuclear Information System (INIS)

    Levin, B.N.

    1984-01-01

    The propagation of an inhomogeneous stream of fast electrons through the corona - the type III radio burst source - is considered. It is shown, that the angular spectrum width of plasma waves excited by the stream is defined both by Landau damping by particles of the diffuse component and by damping (in the region of large phase velocities) by particles of the stream itself having large pitch angles. The regime of quasi-one-dimensional diffusion in the velocity space is realized only in the presence of a sufficiently dense diffuse component of super-thermal particles and only for a sufficiently large inhomogeneity scale of the stream. A large scale of the stream space profile is formed, evidently, close to the region of injection of super-thermal particles. It is the result of 'stripping' of part of the electrons from the stream front to its slower part due to essential non-one-dimensionality of the particle diffusion in velocity space. Results obtained may explain, in particular, the evolution of a stream particle angular spectrum in the generation region of type III radio bursts observed by spacecrafts (Lin et al., 1981). For the relatively low energetic part of the stream, the oblique plasma wave stabilization by a diffuse component results in a quasi-one-dimensional regime of diffusion. The latter conserves the beam-like structure of this part of the stream. (orig.)

  16. Productivity and species composition of algal mat communities exposed to a fluctuating thermal regime

    International Nuclear Information System (INIS)

    Tison, D.L.; Wilde, E.W.; Pope, D.H.; Fliermans, C.B.

    1981-01-01

    Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45 0 C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to 14 C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their abiity to survive large temperature fluctuations and are similar to those of natural hot springs

  17. Tools for Assessing the Impacts of Climate Variability and Change on Wildfire Regimes in Forests

    Directory of Open Access Journals (Sweden)

    Hety Herawati

    2015-04-01

    Full Text Available Fire is an intrinsic element of many forest ecosystems; it shapes their ecological processes, determines species composition and influences landscape structure. However, wildfires may: have undesirable effects on biodiversity and vegetation coverage; produce carbon emissions to the atmosphere; release smoke affecting human health; and cause loss of lives and property. There have been increasing concerns about the potential impacts of climate variability and change on forest fires. Climate change can alter factors that influence the occurrence of fire ignitions, fuel availability and fuel flammability. This review paper aims to identify tools and methods used for gathering information about the impacts of climate variability and change on forest fires, forest fuels and the probability of fires. Tools to assess the impacts of climate variability and change on forest fires include: remote sensing, dynamic global vegetation and landscape models, integrated fire-vegetation models, fire danger rating systems, empirical models and fire behavior models. This review outlines each tool in terms of its characteristics, spatial and temporal resolution, limitations and applicability of the results. To enhance and improve tool performance, each must be continuously tested in all types of forest ecosystems.

  18. IAS15 inflation adjustments and EVA: empirical evidence from a highly variable inflation regime

    Directory of Open Access Journals (Sweden)

    Pierre Erasmus

    2011-08-01

    Full Text Available Inflation can have a pronounced effect on the financial performance of a firm. This study makes inflation adjustments to a firm’s cost of sales, depreciation, level of gearing and assets in line with International Accounting Standard 15 (IAS15 in order to calculate an inflation-adjusted version of the economic value added (EVA measure. The study was conducted using data from South African industrial firms during a period characterised by highly variable inflation levels (1991-2005. The results indicate that during this period there were significant differences between the nominal and real values of the firms’ EVAs

  19. Modeling thermal structure, ice cover regime and sensitivity to climate change of two regulated lakes - a Norwegian case study

    Science.gov (United States)

    Gebre, Solomon; Boissy, Thibault; Alfredsen, Knut

    2013-04-01

    A great number of river and lakes in Norway and the Nordic region at large are regulated for water management such as hydropower production. Such regulations have the potential to alter the thermal and hydrological regimes in the lakes and rivers downstream impacting on river environment and ecology. Anticipated changes as a result of climate change in meteorological forcing data such as air temperature and precipitation cause changes in the water balance, water temperature and ice cover duration in the reservoirs. This may necessitate changes in operational rules as part of an adaptation strategy for the future. In this study, a one dimensional (1D) lake thermodynamic and ice cover model (MyLake) has been modified to take into account the effect of dynamic outflows in reservoirs and applied to two small but relatively deep regulated lakes (reservoirs) in Norway (Follsjøen and Tesse). The objective was to assess climate change impacts on the seasonal thermal characteristics, the withdrawal temperatures, and the reservoir ice cover dynamics with current operational regimes. The model solves the vertical energy balance on a daily time-step driven by meteorological and hydrological forcings: 2m air temperature, precipitation, 2m relative humidity, 10m wind speed, cloud cover, air pressure, solar insolation, inflow volume, inflow temperature and reservoir outflows. Model calibration with multi-seasonal data of temperature profiles showed that the model performed well in simulating the vertical water temperature profiles for the two study reservoirs. The withdrawal temperatures were also simulated reasonably well. The comparison between observed and simulated lake ice phenology (which were available only for one of the reservoirs - Tesse) was also reasonable taking into account the uncertainty in the observational data. After model testing and calibration, the model was then used to simulate expected changes in the future (2080s) due to climate change by considering

  20. Thermal regime of the State 2-14 well, Salton Sea Scientific Drilling Project

    Science.gov (United States)

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-01-01

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2-14). The purpose of these logs was to assist in identifying zones of fluid loss or gain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Thermal gradients decrease from about 250 mK m-1 in the upper few hundred meters to just below 200 mK m-1 near the base of the conductive cap. Using one interpretation, thermal conductivities increase with depth (mainly because of decreasing porosity), resulting in component heat flows that agree reasonably well with the mean of about 450 mW m-2. This value agrees well with heat flow data from the shallow wells within the Salton Sea geothermal field. A second interpretation, in which measured temperature coefficients of quartz- and carbonate-rich rocks are used to correct thermal conductivity, results in lower mean conductivities that are roughly constant with depth and, consequently, systematically decreasing heat flux averaging about 350 mW m-2 below 300 m. This interpretation is consistent with the inference (from fluid inclusion studies) that the rocks in this part of the field were once several tens of degrees Celsius hotter than they are now. The age of this possible disturbance is estimated at a few thousand years. -from Authors

  1. Consequences of an uncertain mass mortality regime triggered by climate variability on giant clam population management in the Pacific Ocean.

    Science.gov (United States)

    Van Wynsberge, Simon; Andréfouët, Serge; Gaertner-Mazouni, Nabila; Remoissenet, Georges

    2018-02-01

    Despite actions to manage sustainably tropical Pacific Ocean reef fisheries, managers have faced failures and frustrations because of unpredicted mass mortality events triggered by climate variability. The consequences of these events on the long-term population dynamics of living resources need to be better understood for better management decisions. Here, we use a giant clam (Tridacna maxima) spatially explicit population model to compare the efficiency of several management strategies under various scenarios of natural mortality, including mass mortality due to climatic anomalies. The model was parameterized by in situ estimations of growth and mortality and fishing effort, and was validated by historical and new in situ surveys of giant clam stocks in two French Polynesia lagoons. Projections on the long run (100 years) suggested that the best management strategy was a decrease of fishing pressure through quota implementation, regardless of the mortality regime considered. In contrast, increasing the minimum legal size of catch and closing areas to fishing were less efficient. When high mortality occurred due to climate variability, the efficiency of all management scenarios decreased markedly. Simulating El Niño Southern Oscillation event by adding temporal autocorrelation in natural mortality rates increased the natural variability of stocks, and also decreased the efficiency of management. These results highlight the difficulties that managers in small Pacific islands can expect in the future in the face of global warming, climate anomalies and new mass mortalities. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Investigation of Two-Phase Flow Regime Maps for Development of Thermal-Hydraulic Analysis Codes

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Kim, Byoung Jae; Lee, Seong Wook

    2010-04-01

    This reports is a literature survey on models and correlations for determining flow pattern that are used to simulate thermal-hydraulics in nuclear reactors. Determination of flow patterns are a basis for obtaining physical values of wall/interfacial friction, wall/interfacial heat transfer, and droplet entrainment/de-entrainment. Not only existing system codes, such as RELAP5-3D, TRAC-M, MARS, TRACE, CATHARE) but also up-to-date researches were reviewed to find models and correlations

  3. Steady state model for the thermal regimes of shells of airships and hot air balloons

    Science.gov (United States)

    Luchev, Oleg A.

    1992-10-01

    A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.

  4. Microtopographic control on the ground thermal regime in ice wedge polygons

    Science.gov (United States)

    Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.

    2018-06-01

    The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.

  5. Relationships between copepod community structure, rainfall regimes, and hydrological variables in a tropical mangrove estuary (Amazon coast, Brazil)

    Science.gov (United States)

    Magalhães, André; Pereira, Luci Cajueiro Carneiro; da Costa, Rauquírio Marinho

    2015-03-01

    The influence of rainfall and hydrological variables on the abundance and diversity of the copepod community was investigated on a monthly basis over an annual cycle in the Taperaçu mangrove estuary. In general, the results show that there were no clear spatial or tidal patterns in any biological variables during the study period, which was related to the reduced horizontal gradient in abiotic parameters, determined mainly by the morphological and morphodynamic features of the estuary. Nevertheless, seasonal and monthly trends were recorded in both the hydrological data and the abundance of the dominant copepod species. In particular, Pseudodiaptomus marshi (6,004.6 ± 22,231.6 ind m-3; F = 5.0, p < 0.05) and Acartia tonsa (905.6 ± 2,400.9 ind m-3; F = 14.6, p < 0.001) predominated during the rainy season, whereas Acartia lilljeborgii (750.8 ± 808.3 ind m-3; U = 413.0, p < 0.01) was the most abundant species in the dry season. A distinct process of succession was observed in the relative abundance of these species, driven by the shift in the rainfall regime, which affected hydrological, in particular salinity, and consequently the abundance of copepod species. We suggest that this may be a general pattern governing the dynamics of copepod populations in the estuaries of the Brazilian Amazonian region.

  6. Variable Emissive Smart Radiator for Dynamic Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Trending towards reduced power and mass budget on satellites with a longer mission life, there is a need for a reliable thermal control system that is more efficient...

  7. Estimation of the effect of thermal convection and casing on the temperature regime of boreholes: a review

    International Nuclear Information System (INIS)

    Eppelbaum, L V; Kutasov, I M

    2011-01-01

    In a vertical borehole, free heat convection arises when the temperature gradient equals or exceeds the so-called critical gradient. The critical temperature gradient is expressed through the critical Rayleigh number and depends on two parameters: (a) the ratio of formation (casings) to fluid (gas) conductivities (λ f /λ) and (b) the convective parameter of the fluid. Both these parameters depend on the temperature (depth). An empirical equation for the critical Rayleigh number as a function of the ratio λ f /λ is suggested. For the 0–100 °C range, empirical equations for convective parameters of water and air are proposed. The analysis of the published results of field investigations in deep boreholes and modelling shows that the temperature disturbances caused by thermal convection do not exceed 0.01–0.05 °C. Thus, in deep wells the temperature deviations due to thermal convection are usually within the accuracy of the temperature surveys. However, due to convection cells the geothermal gradient cannot be determined with sufficient accuracy for short well sections. In shallow boreholes the effect of thermal convection is more essential (up to 3–5 °C). To reduce the effect of convection on the temperature regime in shallow observational wells, it is necessary to reduce the diameter of the wellbores and use well fillers (fluids and gases) with low values of the convective parameters. The field observations and numerical calculations indicate that the distorting effect due to casing pipes is small and its influence is localized to the ends of the pipes, and this effect is independent of time. (topical review)

  8. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    Science.gov (United States)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.; Shestakov, Igor A.

    2016-02-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity - the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  9. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2016-01-01

    Full Text Available Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG. The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables “vorticity – the stream function”. Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  10. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  11. Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites (Western Alps): New constraints into melt migration processes at cold thermal regimes

    Science.gov (United States)

    Sanfilippo, Alessio; Tribuzio, Riccardo; Ottolini, Luisa; Hamada, Morihisa

    2017-10-01

    Replacive mantle dunites are considered to be shallow pathways for extraction of mantle melts from their source region. Dunites offer a unique possibility to unravel the compositional variability of the melts produced in the upper mantle, before mixing and crystal fractionation modify their original signature. This study includes a quantification of H2O, Li and trace elements (Ni, Mn, Co, Sc, V, Ti, Zr, Y and HREE) in olivine from large replacive dunite bodies (>20 m) within a mantle section exposed in the Western Italian Alps (Lanzo South ophiolite). On the basis of olivine, clinopyroxene and spinel compositions, these dunites were previously interpreted to be formed by melts with a MORB signature. Variations in Ni, Mn, Co and Ca contents in olivine from different dunite bodies suggested formation by different melt batches. The variable H2O and Li contents of these olivines agree with this idea. Compared to olivine from residual peridotites and olivine phenocrysts in MORB (both having H2O 1 ppm), the Lanzo South dunite olivine has high H2O (18-40 ppm) and low Li (0.35-0.83 ppm) contents. Geochemical modelling suggests that the dunite-forming melts were produced by low melting degrees of a mixed garnet-pyroxenite-peridotite mantle source, with a contribution of a garnet pyroxenite component variable from 20 to 80%. The Lanzo dunites experienced migration of melts geochemically enriched and mainly produced in the lowermost part of the melting region. Extraction of enriched melts through dunite channels are probably characteristic of cold thermal regimes, where low temperatures and a thick mantle lithosphere inhibit mixing with melts produced at shallower depths.

  12. Effects of variable thermal diffusivity on the structure of convection

    Science.gov (United States)

    Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.

    2018-03-01

    The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.

  13. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  14. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    Science.gov (United States)

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  15. The thermal regime and species composition of fish and invertebrates in Kelly Warm Spring, Grand Teton National Park, Wyoming

    Science.gov (United States)

    Harper, David; Farag, Aida

    2017-01-01

    We evaluated the thermal regime and relative abundance of native and nonnative fish and invertebrates within Kelly Warm Spring and Savage Ditch, Grand Teton National Park, Wyoming. Water temperatures within the system remained relatively warm year-round with mean temperatures >20 °C near the spring source and >5 °C approximately 2 km downstream of the source. A total of 7 nonnative species were collected: Convict/Zebra Cichlid (Cichlasoma nigrofasciatum), Green Swordtail (Xiphophorus hellerii), Tadpole Madtom (Noturus gyrinus), Guppy (Poecilia reticulata), Goldfish (Carassius auratus), red-rimmed melania snail (Melanoides tuberculata), and American bullfrog tadpoles (Lithobates catesbeianus). Nonnative fish (Zebra Cichlids and Green Swordtails), red-rimmed melania snails, and bullfrog tadpoles dominated the upper 2 km of the system. Abundance estimates of the Zebra Cichlid exceeded 12,000 fish/km immediately downstream of the spring source. Relative abundance of native species increased movingdownstream as water temperatures attenuated with distance from the thermally warmed spring source; however, nonnative species were captured 4 km downstream from the spring. Fish diseases were prevalent in both native and nonnative fish from the Kelly Warm Spring pond. Clinostomum marginatum, a trematode parasite, was found in native species samples, and the tapeworm Diphyllobothrium dendriticum was present in samples from nonnative species. Diphyllobothrium dendriticum is rare in Wyoming. Salmonella spp. were also found in some samples of nonnative species. These bacteria are associated with aquarium fish and aquaculture and are generally not found in the wild.

  16. Spin dynamics of Mn12-acetate in the thermally activated tunneling regime: ac susceptibility and magnetization relaxation

    Science.gov (United States)

    Pohjola, Teemu; Schoeller, Herbert

    2000-12-01

    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(ω) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(ω). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.

  17. Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons

    Science.gov (United States)

    Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.

    2017-10-01

    This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.

  18. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata

    NARCIS (Netherlands)

    Tilstra, Arjen; Wijgerde, Tim; Dini-Andreote, Francisco; Eriksson, Britas Klemens; Salles, Joana Falcão; Pen, Ido; Osinga, Ronald; Wild, Christian

    2017-01-01

    Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal

  19. Addressing Thermal and Performance Variability Issues in Dynamic Processors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Kazutomo [Argonne National Lab. (ANL), Argonne, IL (United States); Llopis, Pablo [Univ. Carlos III de Madrid (Spain); Zhang, Kaicheng [Northwestern Univ., Evanston, IL (United States); Luo, Yingyi [Northwestern Univ., Evanston, IL (United States); Ogrenci-Memik, Seda [Northwestern Univ., Evanston, IL (United States); Memik, Gokhan [Northwestern Univ., Evanston, IL (United States); Sankaran, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Beckman, Pete [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    As CMOS scaling nears its end, parameter variations (process, temperature and voltage) are becoming a major concern. To overcome parameter variations and provide stability, modern processors are becoming dynamic, opportunistically adjusting voltage and frequency based on thermal and energy constraints, which negatively impacts traditional bulk-synchronous parallelism-minded hardware and software designs. As node-level architecture is growing in complexity, implementing variation control mechanisms only with hardware can be a challenging task. In this paper we investigate a software strategy to manage hardwareinduced variations, leveraging low-level monitoring/controlling mechanisms.

  20. Habitat pollution and thermal regime modify molecular stress responses to elevated temperature in freshwater mussels (Anodonta anatina: Unionidae)

    International Nuclear Information System (INIS)

    Falfushynska, H.; Gnatyshyna, L.; Yurchak, I.; Ivanina, A.; Stoliar, O.; Sokolova, I.

    2014-01-01

    Elevated temperature and pollution are common stressors in freshwater ecosystems. We study cellular stress response to acute warming in Anodonta anatina (Unionidae) from sites with different thermal regimes and pollution levels: a pristine area and an agriculturally polluted site with normal temperature regimes (F and A, respectively) and a polluted site with elevated temperature (N) from the cooling pond of an electrical power plant. Animals were exposed to different temperatures for 14 days and stress response markers were measured in gills, digestive gland and hemocytes. Mussels from site N and A had elevated background levels of lactate dehydrogenase activity indicating higher reliance on anaerobic metabolism for ATP production and/or redox maintenance. Exposure to 25 °C and 30 °C induced oxidative stress (indicated by elevated levels of lipid peroxidation products) in digestive gland and gills of mussels from A and F sites, while in mussels from N sites elevated oxidative stress was only apparent at 30 °C. Temperature-induced changes in levels of antioxidants (superoxide dismutase, metallothioneins and glutathione) were tissue- and population-specific. Acute warming led to destabilization of lysosomal membranes and increased frequencies of nuclear lesions in mussels from F and A sites but not in their counterparts from N site. Elevated temperature led to an increase in the frequency of micronuclei in hemocytes in mussels from F and A sites at 25 °C and 30 °C and in mussels from N site at 30 °C. The mussels from N site also demonstrated better survival at elevated temperature (30 °C) than their counterparts from the F and A sites. Taken together, these data indicate that long-term acclimation and/or adaptation of A. anatina to elevated temperatures result in increased thermotolerance and alleviate stress response to moderate temperature rise. In contrast, extreme warming (30 °C) is harmful to mussels from all populations indicating limit to this induced

  1. Habitat pollution and thermal regime modify molecular stress responses to elevated temperature in freshwater mussels (Anodonta anatina: Unionidae)

    Energy Technology Data Exchange (ETDEWEB)

    Falfushynska, H.; Gnatyshyna, L.; Yurchak, I. [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, 46027 Ternopil (Ukraine); Ivanina, A. [Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Stoliar, O. [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, 46027 Ternopil (Ukraine); Sokolova, I., E-mail: isokolov@uncc.edu [Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States)

    2014-12-01

    Elevated temperature and pollution are common stressors in freshwater ecosystems. We study cellular stress response to acute warming in Anodonta anatina (Unionidae) from sites with different thermal regimes and pollution levels: a pristine area and an agriculturally polluted site with normal temperature regimes (F and A, respectively) and a polluted site with elevated temperature (N) from the cooling pond of an electrical power plant. Animals were exposed to different temperatures for 14 days and stress response markers were measured in gills, digestive gland and hemocytes. Mussels from site N and A had elevated background levels of lactate dehydrogenase activity indicating higher reliance on anaerobic metabolism for ATP production and/or redox maintenance. Exposure to 25 °C and 30 °C induced oxidative stress (indicated by elevated levels of lipid peroxidation products) in digestive gland and gills of mussels from A and F sites, while in mussels from N sites elevated oxidative stress was only apparent at 30 °C. Temperature-induced changes in levels of antioxidants (superoxide dismutase, metallothioneins and glutathione) were tissue- and population-specific. Acute warming led to destabilization of lysosomal membranes and increased frequencies of nuclear lesions in mussels from F and A sites but not in their counterparts from N site. Elevated temperature led to an increase in the frequency of micronuclei in hemocytes in mussels from F and A sites at 25 °C and 30 °C and in mussels from N site at 30 °C. The mussels from N site also demonstrated better survival at elevated temperature (30 °C) than their counterparts from the F and A sites. Taken together, these data indicate that long-term acclimation and/or adaptation of A. anatina to elevated temperatures result in increased thermotolerance and alleviate stress response to moderate temperature rise. In contrast, extreme warming (30 °C) is harmful to mussels from all populations indicating limit to this induced

  2. MHD natural convection from a heated vertical wavy surface with variable viscosity and thermal conductivity

    International Nuclear Information System (INIS)

    Choudhury, M.; Hazarika, G.C.; Sibanda, P.

    2013-01-01

    We investigate the effects of temperature dependent viscosity and thermal conductivity on natural convection flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface. The flow is permeated by uniform transverse magnetic field. The fluid viscosity and thermal conductivity are assumed to vary as inverse linear functions of temperature. The coupled non-linear systems of partial differential equations are solved using the finite difference method. The effects of variable viscosity parameter, variable thermal conductivity parameter and magnetic parameter on the flow field and the heat transfer characteristics are discussed and shown graphically. (author)

  3. COMPARATIVE DYNAMICS OF PROTEIN DESTRUCTION IN CANNED FOODS IN SAUCE AT DIFFERENT THERMAL TREATMENT REGIMES AND SUBSEQUENT STORAGE

    Directory of Open Access Journals (Sweden)

    V. B. Krylova

    2017-01-01

    Full Text Available In the course of investigations, the structural changes in proteins were established, which were associated with the preliminary treatment of meat ingredients, a pH level of the system and parameters of thermal treatment.The pasteurization regimes allowed retaining a protein nitrogen proportion up to 94% by the end of canned food storage duration. Upon sterilization, the losses in protein nitrogen were two times higher. A negative effect of more acidic sauce on preservation of the protein nitrogen fraction in canned foods was established.An accumulation of the peptide nitrogen fraction in the canned foods in tomato sauce aſter pasteurization was two times more intensive. In the sterilized canned foods, the processes of accumulation of the low molecular weight nitrogenous compounds were more intensive, which suggests a depth of destruction of the protein and peptide nitrogen fraction. It was shown that an accumulation of amino-ammonia nitrogen during canned food storage was on average 12.4% irrespective of the pH value in the used sauces and the type of thermal treatment.A shiſt in the pH value of the canned foods toward the acid side upon pasteurization was noticed. With that, a degree of the shiſt in the canned foods in tomato sauce was 2.5 times higher than the pH value of the canned foods in sour cream sauce. When sterilizing canned foods, another dynamics of the pH values was observed: a pH value declined by 0.39 units in the canned foods in tomato sauce and grew by 0.22 units in the canned foods in sour cream sauce. During storage, the tendency of more intense pH decline was revealed for the canned foods in tomato sauce aſter pasteurization compared to the canned foods aſter sterilization. Another character of the pH value dynamics was found in the canned foods in sour cream sauce: an insignificant increase (by 0.7% of the pH value in the pasteurized canned foods and a significant decrease (by 8.4% in the sterilized canned foods

  4. Late Miocene volcanic sequences in northern Victoria Land, Antarctica: products of glaciovolcanic eruptions under different thermal regimes

    Science.gov (United States)

    Smellie, J. L.; Rocchi, S.; Armienti, P.

    2011-01-01

    Late Miocene (c. 13-5 Ma) volcanic sequences of the Hallett Volcanic Province (HVP) crop out along >250 km of western Ross Sea coast in northern Victoria Land. Eight primary volcanic and six sedimentary lithofacies have been identified, and they are organised into at least five different sequence architectures as a consequence of different combinations of eruptive and/or depositional conditions. The volcanoes were erupted in association with a Miocene glacial cover and the sequences are overwhelmingly glaciovolcanic. The commonest and most representative are products of mafic aa lava-fed deltas, a type of glaciovolcanic sequence that has not been described before. It is distinguished by (1) a subaerially emplaced relatively thin caprock of aa lavas lying on and passing down-dip into (2) a thicker association of chaotic to crudely bedded hyaloclastite breccias, water-chilled lava sheets and irregular lava masses, collectively called lobe-hyaloclastite. A second distinctive sequence type present is characterised by water-cooled lavas and associated sedimentary lithofacies (diamictite (probably glacigenic) and fluvial sands and gravels) similar to some mafic glaciovolcanic sheet-like sequences (see Smellie, Earth-Science Reviews, 74, 241-268, 2008), but including (for the first time) examples of likely sheet-like sequences with felsic compositions. Other sequence types in the HVP are minor and include tuff cones, cinder cones and a single ice-marginal lacustrine sequence. The glacial thermal regime varied from polar, characterised by sequences lacking glacial erosion, glacigenic sediments or evidence for free water, to temperate or sub-polar for sequences in which all of these features are conspicuously developed.

  5. An epidemic model for the interactions between thermal regime of rivers and transmission of Proliferative Kidney Disease in salmonid fish

    Science.gov (United States)

    Carraro, Luca; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Strepparava, Nicole; Hartikainen, Hanna; Rinaldo, Andrea

    2015-04-01

    Proliferative kidney disease (PKD) affects salmonid populations in European and North-American rivers. It is caused by the endoparasitic myxozoan Tetracapsuloides bryosalmonae, which exploits freshwater bryozoans (Fredericella sultana) and salmonids as primary and secondary hosts, respectively. Incidence and mortality, which can reach up to 90-100%, are known to be strongly related to water temperature. PKD has been present in brown trout population for a long time but has recently increased rapidly in incidence and severity causing a decline in fish catches in many countries. In addition, environmental changes are feared to cause PKD outbreaks at higher latitude and altitude regions as warmer temperatures promote disease development. This calls for a better comprehension of the interactions between disease dynamics and the thermal regime of rivers, in order to possibly devise strategies for disease management. In this perspective, a spatially explicit model of PKD epidemiology in riverine host metacommunities is proposed. The model aims at summarizing the knowledge on the modes of transmission of the disease and the life-cycle of the parasite, making the connection between temperature and epidemiological parameters explicit. The model accounts for both local population and disease dynamics of bryozoans and fish and hydrodynamic dispersion of the parasite spores and hosts along the river network. The model is time-hybrid, coupling inter-seasonal and intra-seasonal dynamics, the former being described in a continuous time domain, the latter seen as time steps of a discrete time domain. In order to test the model, a case study is conducted in river Wigger (Cantons of Aargau and Lucerne, Switzerland), where data about water temperature, brown trout and bryozoan populations and PKD prevalence are being collected.

  6. Computational thermal-fluid dynamics analysis of the laminar flow regime in the meander flow geometry characterizing the heat exchanger used in high temperature superconducting current leads

    International Nuclear Information System (INIS)

    Rizzo, Enrico; Heller, Reinhard; Richard, Laura Savoldi; Zanino, Roberto

    2013-01-01

    Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters

  7. Computational thermal-fluid dynamics analysis of the laminar flow regime in the meander flow geometry characterizing the heat exchanger used in high temperature superconducting current leads

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Enrico, E-mail: enrico.rizzo@kit.edu [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Heller, Reinhard [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Richard, Laura Savoldi; Zanino, Roberto [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)

    2013-11-15

    Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters.

  8. Quantifying Variability in Growth and Thermal Inactivation Kinetics of Lactobacillus plantarum.

    Science.gov (United States)

    Aryani, D C; den Besten, H M W; Zwietering, M H

    2016-08-15

    The presence and growth of spoilage organisms in food might affect the shelf life. In this study, the effects of experimental, reproduction, and strain variabilities were quantified with respect to growth and thermal inactivation using 20 Lactobacillus plantarum strains. Also, the effect of growth history on thermal resistance was quantified. The strain variability in μmax was similar (P > 0.05) to reproduction variability as a function of pH, aw, and temperature, while being around half of the reproduction variability (P plantarum strains, and the pHmin was between 3.2 and 3.5, the aw,min was between 0.936 and 0.953, the [HLamax], at pH 4.5, was between 29 and 38 mM, and the Tmin was between 3.4 and 8.3°C. The average D values ranged from 0.80 min to 19 min at 55°C, 0.22 to 3.9 min at 58°C, 3.1 to 45 s at 60°C, and 1.8 to 19 s at 63°C. In contrast to growth, the strain variability in thermal resistance was on average six times higher than the reproduction variability and more than ten times higher than the experimental variability. The strain variability was also 1.8 times higher (P 10-log10 differences after thermal treatment. Accurate control and realistic prediction of shelf life is complicated by the natural diversity among microbial strains, and limited information on microbiological variability is available for spoilage microorganisms. Therefore, the objectives of the present study were to quantify strain variability, reproduction (biological) variability, and experimental variability with respect to the growth and thermal inactivation kinetics of Lactobacillus plantarum and to quantify the variability in thermal resistance attributed to growth history. The quantitative knowledge obtained on experimental, reproduction, and strain variabilities can be used to improve experimental designs and to adequately select strains for challenge growth and inactivation tests. Moreover, the integration of strain variability in prediction of microbial growth and

  9. The thermal-mechanical behavior of fuel pins during power's maneuvering regime at stationary core loading on 2nd unit of KHNPP

    International Nuclear Information System (INIS)

    Ieremenko, M.; Ovdiyenko, Y.; Khalimonchuk, V.

    2007-01-01

    Results of thermal-mechanical behaviour of fuel pins during daily power's maneuvering regime that were proposed for second unit of Khmelnitsky NPP are presented. Calculations were performed for campaign's moments 100 and 160 fpd and for different type of regulation. Additionally calculations were performed for campaign 7. It is the design variant of the campaign and reactor core contains the high burnt fuel. Calculations of macro-core parameters (Kq, Kv) was performed by spatial computer code DYN3D. Calculations of micro-core parameters (fuel pin power) was performed by computer code DERAB. Calculations of thermal-mechanical behaviour of fuel pins was performed by computer code TRANSURANUS (Authors)

  10. Continuum Regime Motion of a Growing Droplet in Opposing Thermo-Diffusiophoretic and Gravitational Fields of a Thermal Diffusion Cloud Chamber

    Czech Academy of Sciences Publication Activity Database

    Bakanov, S. P.; Smolík, Jiří; Zaripov, S. K.; Ždímal, Vladimír

    2001-01-01

    Roč. 32, č. 3 (2001), s. 341-350 ISSN 0021-8502 R&D Projects: GA ČR GA104/97/1198 Grant - others:RFBR(RU) 99-01-00-169 Institutional research plan: CEZ:AV0Z4072921 Keywords : thermal diffusion cloud chamber * droplet growth * continuum regime Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.605, year: 2001

  11. Development and Testing of a Variable Conductance Thermal Acquisition, Transport, and Switching System

    Science.gov (United States)

    Bugby, David C.; Farmer, Jeffery T.; Stouffer, Charles J.

    2013-01-01

    This paper describes the development and testing of a scalable thermal management architecture for instruments, subsystems, or systems that must operate in severe space environments with wide variations in sink temperature. The architecture involves a serial linkage of one or more hot-side variable conductance heat pipes (VCHPs) to one or more cold-side loop heat pipes (LHPs). The VCHPs provide wide area heat acquisition, limited distance thermal transport, modest against gravity pumping, concentrated LHP startup heating, and high switching ratio variable conductance operation. The LHPs provide localized heat acquisition, long distance thermal transport, significant against gravity pumping, and high switching ratio variable conductance operation. The single-VCHP, single-LHP system described herein was developed to maintain thermal control of a small robotic lunar lander throughout the lunar day-night thermal cycle. It is also applicable to other variable heat rejection space missions in severe environments. Operationally, despite a 60-70% gas blocked VCHP condenser during ON testing, the system was still able to provide 2-4 W/K ON conductance, 0.01 W/K OFF conductance, and an end-to-end switching ratio of 200-400. The paper provides a detailed analysis of VCHP condenser performance, which quantified the gas blockage situation. Future multi-VCHP/multi-LHP thermal management system concepts that provide power/transport length scalability are also discussed.

  12. Numerical Simulations of the Natural Thermal Regime and Enhanced Geothermal Systems in the St. Lawrence Lowlands Basin, Quebec, Canad

    Science.gov (United States)

    Nowamooz, A.; Therrien, R.; Molson, J. W. H.; Gosselin, L.; Mathieu-Potvin, F.; Raymond, J.; Malo, M.; Comeau, F. A.; Bedard, K.

    2017-12-01

    An enhanced geothermal system (EGS) consists of injecting water into deep sedimentary or basement rocks, which have been hydraulically stimulated, and withdrawing this water for heat extraction. In this work, the geothermal potential of the St. Lawrence Lowlands Basin (SLLB), Quebec, Canada, is evaluated using numerical heat transport simulations. A 3D conceptual model was first developed based on a detailed geological model of the basin and using realistic ranges of hydrothermal properties of the geological formations. The basin thermal regime under natural conditions was simulated with the HydroGeoSphere model assuming non-isothermal single-phase flow, while the hydrothermal properties of the formations were predicted using the PEST parameter estimation package. The simulated basin temperatures were consistent with the measured bottom-hole temperatures (RMSE = 9%). The calibrated model revealed that the areas in the basin with EGS potential, where temperature exceeds 120 °C, are located at depths ranging from 3.5 to 5.5 km. In the second step of the work, the favorable areas are investigated in detail by conducting simulations in a discrete fracture network similar to the one proposed in the literature for the Rosemanowes geothermal site, UK. Simulations consider 4 main horizontal fractures having each an extent of 1000 m × 180 m, and 10 vertical fractures having each an extent of 1000 m × 45 m. The fracture spacing and aperture are uniform and equal to 15 m and 250 μm, respectively. Simulations showed that a commercial project in the SLLB, with conditions similar to those of the Rosemanowes site, would not feasible. However, sensitivity analyses have demonstrated that it would be possible to extract sufficient heat for a period of at least 20 years from a fractured reservoir in this basin under the following conditions: (1) a flow circulation rate below the desired target value (10 L/s instead of 50 L/s), which would require a flexible power plant; (2) an

  13. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  14. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2018-04-01

    Full Text Available The combined effects of thermal stratification, applied electric and magnetic fields, thermal radiation, viscous dissipation and Joules heating are numerically studied on a boundary layer flow of electrical conducting nanofluid over a nonlinearly stretching sheet with variable thickness. The governing equations which are partial differential equations are converted to a couple of ordinary differential equations with suitable similarity transformation techniques and are solved using implicit finite difference scheme. The electrical conducting nanofluid particle fraction on the boundary is passively rather than actively controlled. The effects of the emerging parameters on the electrical conducting nanofluid velocity, temperature, and nanoparticles concentration volume fraction with skin friction, heat transfer characteristics are examined with the aids of graphs and tabular form. It is observed that the variable thickness enhances the fluid velocity, temperature, and nanoparticle concentration volume fraction. The heat and mass transfer rate at the surface increases with thermal stratification resulting to a reduction in the fluid temperature. Electric field enhances the nanofluid velocity which resolved the sticking effects caused by a magnetic field which suppressed the profiles. Radiative heat transfer and viscous dissipation are sensitive to an increase in the fluid temperature and thicker thermal boundary layer thickness. Comparison with published results is examined and presented. Keywords: MHD nanofluid, Variable thickness, Thermal radiation, Similarity solution, Thermal stratification

  15. Charting thermal emission variability at Pele, Janus Patera and Kanehekili Fluctus with the Galileo NIMS Io Thermal Emission Database (NITED)

    Science.gov (United States)

    Davies, Ashley Gerard; Veeder, Glenn J.; Matson, Dennis L.; Johnson, Torrence V.

    2012-09-01

    Using the NIMS Io Thermal Emission Database (NITED), a collection of over 1000 measurements of radiant flux from Io’s volcanoes (Davies, A.G. et al. [2012]. Geophys. Res. Lett. 39, L01201. doi:10.1029/2011GL049999), we have examined the variability of thermal emission from three of Io’s volcanoes: Pele, Janus Patera and Kanehekili Fluctus. At Pele, the 5-μm thermal emission as derived from 28 night time observations is remarkably steady at 37 ± 10 GW μm-1, re-affirming previous analyses that suggested that Pele an active, rapidly overturning silicate lava lake. Janus Patera also exhibits relatively steady 5-μm thermal emission (≈20 ± 3 GW μm-1) in the four observations where Janus is resolved from nearby Kanehekili Fluctus. Janus Patera might contain a Pele-like lava lake with an effusion rate (QF) of ≈40-70 m3 s-1. It should be a prime target for a future mission to Io in order to obtain data to determine lava eruption temperature. Kanehekili Fluctus has a thermal emission spectrum that is indicative of the emplacement of lava flows with insulated crusts. Effusion rate at Kanehekili Fluctus dropped by an order of magnitude from ≈95 m3 s-1 in mid-1997 to ≈4 m3 s-1 in late 2001.

  16. The Effects of Constant and Fluctuating Thermal Regimes for Reducing Chill Injuries During Cold Storage of Late-Instar Larva of Lysiphlebus fabarum (Hym., Braconidae

    Directory of Open Access Journals (Sweden)

    Hossein Mahi

    2016-09-01

    Full Text Available Introduction: Mass production of natural enemies has been considered a necessity for biological control programs. Most beneficial insects have a relatively short shelf-life, so suppliers do not have a sufficient number of biocontrol agents. The development of storage techniques for biocontrol agents provides flexibility and efficiency in mass production. Cold storage by prolonging insect development times provides a steady and sufficient supply of insects and synchronizes a desired developmental stage of biocontrol agents with times of pest outbreaks; so it reduces the cost of biocontrol programs by enlarging the production period over several months. Cold storage is usually associated with major fitness costs. Even if the insects remain alive after cold storage, a reduction of fitness may be observed, so the production of high quality natural enemies must be ensured. Developing effective methods is necessary in mass-producing. It has been reported that using fluctuating thermal regimes (FTR (i.e. cold exposure interrupted by periodic short pulses of high temperature versus constant thermal regimes (CTR can progress the quality of biological control agents and significantly reduce rates of mortality. In this study, the impact of fluctuating thermal regimes versus constant low temperatures on the emergence rate, sex ratio, post-storage development time, adult size, egg load and egg size of the parasitoid wasp, Lysiphlebus fabarum (Marshall was studied. The test was examined in three cold storage periods (1, 2, or 3 weeks. Lysiphlebus fabarum is an aphidiine parasitoid which attacks more than 70 species of aphids. Although both sexual (arrhenotokous and asexual (thelytokous populations of L. fabarum have been reported in Iran, the former population has been studied in this research. Materials and Methods: A stock colony of black bean aphid, Aphis fabae Scopoli (Hemi., Aphididae was established from material collected in bean fields in Khuzestan

  17. The thermal regime in the resurgent dome of Long Valley Caldera, California: Inferences from precision temperature logs in deep wells

    Science.gov (United States)

    Hurwitz, S.; Farrar, C.D.; Williams, C.F.

    2010-01-01

    Long Valley Caldera in eastern California formed 0.76Ma ago in a cataclysmic eruption that resulted in the deposition of 600km3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~290MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40MWe. The RD in the center of the caldera was uplifted by ~80cm between 1980 and 1999 and was explained by most models as a response to magma intrusion into the shallow crust. This unrest has led to extensive research on geothermal resources and volcanic hazards in the caldera. Here we present results from precise, high-resolution, temperature-depth profiles in five deep boreholes (327-1,158m) on the RD to assess its thermal state, and more specifically 1) to provide bounds on the advective heat transport as a guide for future geothermal exploration, 2) to provide constraints on the occurrence of magma at shallow crustal depths, and 3) to provide a baseline for future transient thermal phenomena in response to large earthquakes, volcanic activity, or geothermal production. The temperature profiles display substantial non-linearity within each profile and variability between the different profiles. All profiles display significant temperature reversals with depth and temperature gradients <50??C/km at their bottom. The maximum temperature in the individual boreholes ranges between 124.7??C and 129.5??C and bottom hole temperatures range between 99.4??C and 129.5??C. The high-temperature units in the three Fumarole Valley boreholes are at the approximate same elevation as the high-temperature unit in borehole M-1 in Casa Diablo indicating lateral or sub-lateral hydrothermal flow through the resurgent dome. Small differences in temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to segments of the measured temperature profiles, we calculate

  18. Time-saving method of orbital thermal regime calculations of nanosatellites as exemplified by a 3U CubeSat

    Directory of Open Access Journals (Sweden)

    Gorev Vasily

    2018-01-01

    Full Text Available A time-saving approach to perform technical calculations of thermal conditions of orbital motion of 3U CubeSat nanosatellite was applied, which made it possible to make the thermal calculations of a satellite with simple structure geometry using MatLab and SolidWorks Simulation. Passive thermal regulation facilities are sufficient for a 3U CubeSat to provide thermal conductivity of the case’s structural elements and to remove heat from the lighted surface and internal components to the satellite’s shadowed surface. Application of spectrally selective coatings allows narrowing the range of surface temperatures of 3U CubeSat.

  19. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    Science.gov (United States)

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  20. Modeling ground thermal regime of an ancient buried ice body in Beacon Valley, Antarctica using a 1-D heat equation with latent heat effect

    Science.gov (United States)

    Liu, L.; Sletten, R. S.; Hallet, B.; Waddington, E. D.; Wood, S. E.

    2013-12-01

    regime well. Detailed temperature comparison suggests that the 1-D thermal diffusion model results closely approximate the measured temperature at all depths with the average square root of the mean squared error (SRMSE) of 0.15oC; a linear correlation between modeled and measured temperatures yields an average R2 value of 0.9997. Prominent seasonal temperature variations diminish with depth, and it equilibrates to mean annual temperature at about 21.5 m depth. The amount of heat generated/consumed by ice condensation/sublimation is insufficient to significantly impact the thermal regime.

  1. Gravel bar thermal variability and its potential consequences for CO2 evasion from Alpine coldwater streams

    Science.gov (United States)

    Boodoo, Kyle; Battin, Tom; Schelker, Jakob

    2017-04-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore

  2. Numerical Investigation of the Thermal Regime of Underground Channel Heat Pipelines Under Flooding Conditions with the Use of a Conductive-Convective Heat Transfer Model

    Science.gov (United States)

    Polovnikov, V. Yu.

    2018-05-01

    This paper presents the results of numerical analysis of thermal regimes and heat losses of underground channel heating systems under flooding conditions with the use of a convective-conductive heat transfer model with the example of the configuration of the heat pipeline widely used in the Russian Federation — a nonpassage ferroconcrete channel (crawlway) and pipelines insulated with mineral wool and a protective covering layer. It has been shown that convective motion of water in the channel cavity of the heat pipeline under flooding conditions has no marked effect on the intensification of heat losses. It has been established that for the case under consideration, heat losses of the heat pipeline under flooding conditions increase from 0.75 to 52.39% due to the sharp increase in the effective thermal characteristics of the covering layer and the heat insulator caused by their moistening.

  3. Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato.

    Science.gov (United States)

    Brener-Raffalli, Kelly; Clerissi, Camille; Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Bonhomme, François; Pratlong, Marine; Aurelle, Didier; Mitta, Guillaume; Toulza, Eve

    2018-02-20

    Although the term holobiont has been popularized in corals with the advent of the hologenome theory of evolution, the underlying concepts are still a matter of debate. Indeed, the relative contribution of host and environment and especially thermal regime in shaping the microbial communities should be examined carefully to evaluate the potential role of symbionts for holobiont adaptation in the context of global changes. We used the sessile, long-lived, symbiotic and environmentally sensitive reef-building coral Pocillopora damicornis to address these issues. We sampled Pocillopora damicornis colonies corresponding to two different mitochondrial lineages in different geographic areas displaying different thermal regimes: Djibouti, French Polynesia, New Caledonia, and Taiwan. The community composition of bacteria and the algal endosymbiont Symbiodinium were characterized using high-throughput sequencing of 16S rRNA gene and internal transcribed spacer, ITS2, respectively. Bacterial microbiota was very diverse with high prevalence of Endozoicomonas, Arcobacter, and Acinetobacter in all samples. While Symbiodinium sub-clade C1 was dominant in Taiwan and New Caledonia, D1 was dominant in Djibouti and French Polynesia. Moreover, we also identified a high background diversity (i.e., with proportions world.

  4. A statistical-dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: weather regimes as predictors for ocean surface variables

    Energy Technology Data Exchange (ETDEWEB)

    Cassou, Christophe; Minvielle, Marie; Terray, Laurent [CERFACS/CNRS, Climate Modelling and Global Change Team, Toulouse (France); Perigaud, Claire [JPL-NASA, Ocean Science Element, Pasadena, CA (United States)

    2011-01-15

    The links between the observed variability of the surface ocean variables estimated from reanalysis and the overlying atmosphere decomposed in classes of large-scale atmospheric circulation via clustering are investigated over the Atlantic from 1958 to 2002. Daily 500 hPa geopotential height and 1,000 hPa wind anomaly maps are classified following a weather-typing approach to describe the North Atlantic and tropical Atlantic atmospheric dynamics, respectively. The algorithm yields patterns that correspond in the extratropics to the well-known North Atlantic-Europe weather regimes (NAE-WR) accounting for the barotropic dynamics, and in the tropics to wind classes (T-WC) representing the alteration of the trades. 10-m wind and 2-m temperature (T2) anomaly composites derived from regime/wind class occurrence are indicative of strong relationships between daily large-scale atmospheric circulation and ocean surface over the entire Atlantic basin. High temporal correlation values are obtained basin-wide at low frequency between the observed fields and their reconstruction by multiple linear regressions with the frequencies of occurrence of both NAE-WR and T-WC used as sole predictors. Additional multiple linear regressions also emphasize the importance of accounting for the strength of the daily anomalous atmospheric circulation estimated by the combined distances to all regimes centroids in order to reproduce the daily to interannual variability of the Atlantic ocean. We show that for most of the North Atlantic basin the occurrence of NAE-WR generally sets the sign of the ocean surface anomaly for a given day, and that the inter-regime distances are valuable predictors for the magnitude of that anomaly. Finally, we provide evidence that a large fraction of the low-frequency trends in the Atlantic observed at the surface over the last 50 years can be traced back, except for T2, to changes in occurrence of tropical and extratropical weather classes. All together, our

  5. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  6. Thermal condensation mode in a dusty plasma

    Indian Academy of Sciences (India)

    We find that the charge variability of the grain reduces the growth rate ..... Thus, in the short wavelength regime, thermal conductivity has stabilizing effect .... dynamics is retained, and the reason being that the momentum exchange of the grain ...

  7. Thermal effects of variable material properties and metamorphic reactions in a three-component subducting slab

    DEFF Research Database (Denmark)

    Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd

    2015-01-01

    We explore the effects of variable material properties, phase transformations, and metamorphic devolatilization reactions on the thermal structure of a subducting slab using thermodynamic phase equilibrium calculations combined with a thermal evolution model. The subducting slab is divided...... into three layers consisting of oceanic sediments, altered oceanic crust, and partially serpentinized or anhydrous harzburgite. Solid-fluid equilibria and material properties are computed for each layer individually to illustrate distinct thermal consequences when chemical and mechanical homogenization...... indicate that subducting sediments and oceanic crust warm by 40 and 70°C, respectively, before the effect of wedge convection and heating is encountered at 1.7 GPa. Retention of fluid in the slab pore space plays a negligible role in oceanic crust and serpentinized peridotites. By contrast, the large...

  8. Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity

    Science.gov (United States)

    Hayat, Tasawar; Javed, Mehwish; Imtiaz, Maria; Alsaedi, Ahmed

    2018-03-01

    This paper presents the study of Jeffrey fluid flow by a rotating disk with variable thickness. Energy equation is constructed by using Cattaneo-Christov heat flux model with variable thermal conductivity. A system of equations governing the model is obtained by applying boundary layer approximation. Resulting nonlinear partial differential system is transformed to ordinary differential system. Homotopy concept leads to the convergent solutions development. Graphical analysis for velocities and temperature is made to examine the influence of different involved parameters. Thermal relaxation time parameter signifies that temperature for Fourier's heat law is more than Cattaneo-Christov heat flux. A constitutional analysis is made for skin friction coefficient and heat transfer rate. Effects of Prandtl number on temperature distribution and heat transfer rate are scrutinized. It is observed that larger Reynolds number gives illustrious temperature distribution.

  9. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata

    Directory of Open Access Journals (Sweden)

    Arjen Tilstra

    2017-10-01

    Full Text Available Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal tolerance. As thermal anomalies are predicted to become common in the upcoming future, intraspecific variation may be key to the survival of coral populations. In order to study light-history based thermal stress responses on individual colonies, we developed a preliminary microcosm experiment where three randomly chosen, aquacultured colonies of the model coral Stylophora pistillata were exposed to two irradiance treatments (200 and 400 μmol photons m−2 s−1 for 31 days, followed by artificially induced heat stress (∼33.4 °C. We found different responses to occur at both the intraspecific and the intracolonial levels, as indicated by either equal, less severe, delayed, and/or even non-necrotic responses of corals previously exposed to the irradiance of 400 compared to 200 μmol photons m−2 s−1. In addition, all individual colonies revealed light-enhanced calcification. Finally, elevated irradiance resulted in a lower chlorophyll a concentration in one colony compared to the control treatment, and the same colony displayed more rapid bleaching compared to the other ones. Taken together, this study highlights the potential importance of intra-individual variability in physiological responses of scleractinian corals and provides recommendations for improving methodological designs for future studies.

  10. THE VARIABILITY OF RAINFALL REGIME, INDUCED BY CLIMATE CHANGES, IN DOLJ COUNTY AND IT IMPACT ON THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    MIREA ADRIAN

    2016-03-01

    Full Text Available Climate change is now widely recognized as an actual fact: temperatures are rising, rainfall patterns are changing, glaciers and snow melts, and average global sea level rises. We expect these changes to continue and extreme weather conditions that lead to risks like floods and droughts to become more frequent and increase their intensity. Drought and phenomena associated with it, namely aridization (lowering excessive groundwater level and desertification (reduced area of ground covered by vegetation and a considerable depletion and soil erosion represents, after pollution, the second largest problem facing humanity, currently affecting all regions of the globe. In Dolj County, the area between Calafat-Poiana Mare-Sadova-Bechet- Dăbuleni and the Danube, covering about 104 600 hectares, represents the most typical aspect of semi-arid zone with accents of aridity and even desertification in Romania, the phenomenon being favored by the presence of sandy soils. In Dolj County, there may be seen an important manifestation of climate change on the rainfall regime: increasing linear trend especially in the northern part of the county compared to the extreme south of the country, where atmospheric circulation interaction with local relief conditions,often causes diminishing rainfall.

  11. Participation of nuclear power plants in variable operation regimes under conditions of combined electric power and heat generation

    International Nuclear Information System (INIS)

    Rydzi, S.

    1988-01-01

    The incorporation of nuclear power units in the control of the output of an electric power system is affected by technical and economic factors as well as by the manner of heat take-off from the nuclear power unit for heating purposes. The effect was therefore studied of the technological solution of converting the heat output of WWER-440 units to operating parameters of turbines in nonrated regimes of operation. Some results of the study are graphically represented. An analysis was also made of limitations preventing WWER-440 units from supplying heat with regard to their incorporation in the electric power transmission system. The results show that using nuclear power units for district heating will in the future strictly determine the seasonal shut-down of nuclear units for fuel exchange and overhauls. This could interfere with the considered concept of the 1.5 year duty time of WWER-440 reactors. With regard to the economy of operation of the nuclear power system and reduced demands on weekend unloading it will be necessary to incorporate in the power system pumped-storage power plants with one-week pumped-storage systems. (Z.M.). 5 figs., 2 tabs., 6 refs

  12. Application of multi-pass high pressure homogenization under variable temperature regimes to induce autolysis of wine yeasts.

    Science.gov (United States)

    Comuzzo, Piergiorgio; Calligaris, Sonia; Iacumin, Lucilla; Ginaldi, Federica; Voce, Sabrina; Zironi, Roberto

    2017-06-01

    The effects of the number of passes and processing temperature management (controlled vs. uncontrolled) were investigated during high pressure homogenization-induced autolysis of Saccharomyces bayanus wine yeasts, treated at 150MPa. Both variables were able to affect cell viability, and the release of soluble molecules (free amino acids, proteins and glucidic colloids), but the effect of temperature was more important. S. bayanus cells were completely inactivated in 10 passes without temperature control (corresponding to a processing temperature of 75°C). The two processing variables also affected the volatile composition of the autolysates produced: higher temperatures led to a lower concentration of volatile compounds. The management of the operating conditions may allow the compositional characteristics of the products to be modulated, making them suitable for different winemaking applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: Role of ion homeostasis

    Czech Academy of Sciences Publication Activity Database

    Košťál, Vladimír; Renault, D.; Mehrabianová, A.; Bastl, J.

    2007-01-01

    Roč. 147, č. 1, (2007), s. 231-238 ISSN 1095-6433 R&D Projects: GA ČR GA206/03/0099 Institutional research plan: CEZ:AV0Z50070508 Keywords : Insecta * cold hardiness * thermal fluctuations Subject RIV: ED - Physiology Impact factor: 1.863, year: 2007

  14. Impacts of projected mid-century temperatures on thermal regimes for select specialty and fieldcrops common to the southwestern U.S.

    Science.gov (United States)

    Elias, E.; Lopez-Brody, N.; Dialesandro, J.; Steele, C. M.; Rango, A.

    2015-12-01

    The impacts of projected temperature increases in agricultural ecosystems are complex, varyingby region, cropping system, crop growth stage and humidity. We analyze the impacts of mid-century temperature increases on crops grown in five southwestern states: Arizona, California,New Mexico, Nevada and Utah. Here we present a spatial impact assessment of commonsouthwestern specialty (grapes, almonds and tomatoes) and field (alfalfa, cotton and corn)crops. This analysis includes three main components: development of empirical temperaturethresholds for each crop, classification of predicted future climate conditions according to thesethresholds, and mapping the probable impacts of these climatic changes on each crop. We use30m spatial resolution 2012 crop distribution and seasonal minimum and maximumtemperature normals (1970 to 2000) to define the current thermal envelopes for each crop.These represent the temperature range for each season where 95% of each crop is presentlygrown. Seasonal period change analysis of mid-century temperatures changes downscaled from20 CMIP5 models (RCP8.5) estimate future temperatures. Change detection maps representareas predicted to become more or less suitable, or remain unchanged. Based upon mid-centurytemperature changes, total regional suitable area declined for all crops except cotton, whichincreased by 20%. For each crop there are locations which change to and from optimal thermalenvelope conditions. More than 80% of the acres currently growing tomatoes and almonds willshift outside the present 95% thermal range. Fewer acres currently growing alfalfa (14%) andcotton (20%) will shift outside the present 95% thermal range by midcentury. Crops outsidepresent thermal envelopes by midcentury may adapt, possibly aided by adaptation technologiessuch as misters or shade structures, to the new temperature regime or growers may elect togrow alternate crops better suited to future thermal envelopes.

  15. Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity

    International Nuclear Information System (INIS)

    Sadri, Somayyeh; Raveshi, Mohammad Reza; Amiri, Shayan

    2012-01-01

    In this study, one type of applicable analytical method, differential transformation method (DTM), is used to evaluate the efficiency and behavior of a straight fin with variable thermal conductivity and heat transfer coefficient. Fins are widely used to enhance heat transfer between primary surface and the environment in many industrial applications. The performance of such a surface is significantly affected by variable thermal conductivity and heat transfer coefficient, particularly for large temperature differences. General heat transfer equation related to the fin is derived and dimensionalized. The concept of differential transformation is briefly introduced, and then this method is employed to derive solutions of nonlinear equations. Results are evaluated for several cases such as: laminar film boiling or condensation, forced convection, laminar natural convection, turbulent natural convection, nucleate boiling, and radiation. The obtained results from DTM are compared with the numerical solution to verify the accuracy of the proposed method. The effects of design parameters on temperature and efficiency are evaluated by some figures. The major aim of the present study, which is exclusive for this article, is to find the effect of the modes of heat transfer on fin efficiency. It has been shown that for radiation heat transfer, thermal efficiency reaches its maximum value

  16. Investigation of phase-change coatings for variable thermal control of spacecraft

    Science.gov (United States)

    Kelliher, W. C.; Young, P. R.

    1972-01-01

    An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.

  17. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    Science.gov (United States)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  18. Variable flaw shape analysis for a reactor vessel under pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Yang, C.Y.; Bamford, W.H.

    1984-01-01

    A study has been conducted to characterize the response of semi-elliptic surface flaws to thermal shock conditions which can result from safety injection actuation in nuclear reactor vessels. A methodology was developed to predict the behavior of a flaw during sample pressurized thermal shock events. The effects of a number of key variables on the flaw propagation were studied, including fracture toughness of the material and its gradient through the thickness, irradiation effects, effects of warm prestressing, and effects of the stainless steel cladding. The results of these studies show that under thermal shock loading conditions the flaw always tends to elongate along the vessel inside surface from the initial aspect ratio. However, the flaw shape always remains finite rather than becoming continuously long, as has often been assumed in earlier analyses. The final shape and size of the flaws were found to be rather strongly dependent on the effects of warm prestressing and the distribution of neutron flux. The improved methodology results in a more accurate and more realistic treatment of flaw shape changes during thermal shock events and provides the potential for quantifying additional margins for reactor vessel integrity analyses

  19. ENSURING THERMAL REGIME FOR THE SUPPLY DISTRIBUTED DEVICES IN THE COMPOSITION OF THE SHIP'S SECONDARY POWER SUPPLY SYSTEMS ON THE BASE OF THE STANDARDIZED UNITS

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2016-01-01

    Full Text Available Aim. The article deals with the problem of constructing the power supply devices in the composition of the ship's secondary power systems based on standardized blocks and securing their thermal regime.Methods. It is stated that with the advent of modern power electronics multifunctional components the secondary power supply developers got possibilities to improve the quality of secondary power supply and to upgrade the existing systems.Results. The advantages of unified power units, having a function of parallel operation are revealed. Heat transfer processes in a vertical channel with free convection, and the calculation of the minimum width of the channel, which provides efficient heat removal have been analyzed.Conclusion.A model is proposed for determining the minimum distance between the blocks without deterioration of heat transfer in the channel formed by the walls of adjacent blocks.

  20. Exact solution of thermal radiation on vertical oscillating plate with variable temperature and mass flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2010-01-01

    Full Text Available Thermal radiation effects on unsteady flow past an infinite vertical oscillating plate in the presence of variable temperature and uniform mass flux is considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with time and the mass is diffused from the plate to the fluid at an uniform rate. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, concentration and temperature are studied for different physical parameters like the phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing phase angle ωt.

  1. The interaction of thermal radiation on vertical oscillating plate with variable temperature and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an infinite vertical oscillating plate with variable temperature and mass diffusion has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with respect to time and the concentration level near the plate is also raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature and concentration are studied for different parameters like phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are studied. It is observed that the velocity increases with decreasing phase angle ωt. .

  2. Thermal regime at the Upper Stillwater dam site, Uinta mountains, Utah: Implications for terrain, microclimate and structural corrections in heat flow studies

    Science.gov (United States)

    Bauer, Michael S.; Chapman, David S.

    1986-08-01

    A detailed study of the subsurface thermal regime at the Upper Stillwater dam site, Uinta Mountains, northeast Utah, has been made. Temperature measurements were made in 36 drillholes located within a 1 km 2 area and ranging in depth from 20 to 97 m. Holes less than about 40 m deep were used only to obtain information about spatial variations in mean annual surface temperature. Several holes in or near talus slopes at the sides of the canyons have temperature minima approaching 0°C between 10 and 20 m indicating the presence of year-round ice at the base of the talus. Another set of holes show transient thermal effects of surface warming resulting from clearing of a construction site 3.5 years prior to our measurements. Most of the remaining holes show conductive behavior and have gradients ranging from 13° to 17°C km -1. Measurements made on 44 core samples yield a thermal conductivity of 5.6 (std. dev. 0.35) W m -1 K -1 for the Precambrian quartzite present. Surface heat flow estimates for these holes range from 70 to 100 mW m -2. However, the local disturbance of the thermal field by topography and microclimate is considerable. A finite difference method used to model these effects yielded a locally corrected Upper Stillwater heat flow of about 75 mW m -2. A final correction to account for the effects of refraction of heat from the low conductivity sedimentary rocks in the Uinta Basin into the high conductivity quartzite at the dam site, produced a regionally corrected Upper Stillwater heat flow between 60 and 65 mW m -2. This value is consistent with the observed heat flow of 60 mW m -2 in the Green River Basin to the north and the Uinta Basin to the south.

  3. Regime shift of Indian summer monsoon rainfall to a persistent arid state: external forcing versus internal variability

    Science.gov (United States)

    Srivastava, Ankur; Pradhan, Maheswar; Goswami, B. N.; Rao, Suryachandra A.

    2017-11-01

    The high propensity of deficient monsoon rainfall over the Indian sub-continent in the recent 3 decades (seven deficient monsoons against 3 excess monsoon years) compared to the prior 3 decades has serious implications on the food and water resources in the country. Motivated by the need to understand the high occurrence of deficient monsoon during this period, we examine the change in predictability of the Indian summer monsoon (ISM) and its teleconnections with Indo-Pacific sea surface temperatures between the two periods. The shift in the tropical climate in the late 1970s appears to be one of the major reasons behind this. We find an increased predictability of the ISM in the recent 3 decades owing to reduced `internal' interannual variability (IAV) due to the high-frequency modes, while the `external' IAV arising from the low-frequency modes has remained largely the same. The Indian Ocean Dipole-ISM teleconnection has become positive during the monsoon season in the recent period thereby compensating for the weakened ENSO-ISM teleconnection. The central Pacific El-Niño and the Indian Ocean (IO) warming during the recent 3 decades are working together to realise enhanced ascending motion in the equatorial IO between 70°E and 100°E, preconditioning the Indian monsoon system prone to a deficient state.

  4. Intraindividual Variability and Long-Term Changes of Thermal Quantitative Sensory Testing

    DEFF Research Database (Denmark)

    Krøigård, Thomas; Sothynathan, Isaivani; Sindrup, Søren H

    2015-01-01

    Thermal threshold examinations are widely used in the clinical setting and in studies to assess the function of the peripheral sensory nervous system. Little is known about the variation from one side of the body to the other and the long-term temporal changes and variability. In this study, 134...... and foot. Bilateral stimulations resulted in relative intertrial variations ranging from 19% to 40%. There was no significant temporal change for repeated measures. Analysis of the individual measurements of each subject at baseline and at 26 weeks, however, resulted in relatively large intertrial...

  5. Seasonal variability of thermal fronts in the northern South China Sea from satellite data

    Science.gov (United States)

    Wang, Dongxiao; Liu, Yun; Qi, Yiquan; Shi, Ping

    The 8-year (1991-1998) Pathfinder sea surface temperature data have been applied here to produce the objectively derived seasonality of the oceanic thermal fronts in the northern South China Sea from 17°N to 25°N. Several fronts have been clearly distinguished, namely, Fujian and Guangdong Coastal Water, Pear River Estuary Coastal, Taiwan Bank, Kuroshio Intrusion, Hainan Island East Coast and Tonkin Gulf Coastal fronts. The frontal patterns in winter, spring and summer are quite similar, whereas individual fronts display different modes of seasonal variability due to different mechanisms favoring those fronts.

  6. Combined effect of thermal dispersion and variable viscosity of non-darcy convection heat transfer in a fluidsaturated porous medium

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; El-Amin, Ammaarah A.; Gorla, Rama Subba Reddy

    2013-01-01

    In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension

  7. Possible efficiency improvement by application of various operating regimes for the cooling water pump station at thermal power plant - Bitola

    Directory of Open Access Journals (Sweden)

    Mijakovski Vladimir

    2012-01-01

    Full Text Available Thermal power plant (TPP - Bitola is the largest electricity producer in the Republic of Macedonia with installed capacity of 691 MW. It is a lignite fired power plant, in operation since 1982. Most of the installed equipment is of Russian origin. Power plant's cold end comprised of a condenser, pump station and cooling tower is depicted in the article. Possible way to raise the efficiency of the cold end by changing the operating characteristics of the pumps is presented in the article. Diagramic and tabular presentation of the working characteristics of the pumps (two pumps working in paralel for one block with the pipeline, as well as engaged power for their operation are also presented in this article.

  8. Magmatic tectonic effects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model

    Science.gov (United States)

    Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé

    2000-11-01

    High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies

  9. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  10. The stretching amplitude and thermal regime of the lithosphere in the nonvolcanic passive margin of Antarctica in the Mawson Sea region

    Science.gov (United States)

    Galushkin, Yu. I.; Leitchenkov, G. L.; Guseva, Yu. B.; Dubinin, E. P.

    2018-01-01

    The burial history and thermal evolution of the lithosphere within the passive nonvolcanic Antarctic margin in the region of the Mawson Sea are numerically reconstructed for the margin areas along the seismic profile 5909 with the use of the GALO basin modeling system. The amplitudes of the lithosphere stretching at the different stages of continental rifting which took place from 160 to 90 Ma ago are calculated from the geophysical estimates of the thickness of the consolidated crust and the tectonic analysis of the variations in the thickness of the sedimentary cover and sea depths during the evolution of the basin. It is hypothesized that the formation of the recent sedimentary section sequence in the studied region of the Antarctic margin began 140 Ma ago on a basement that was thinned by a factor of 1.6 to 4.5 during the first episode of margin stretching (160-140 Ma) under a fairly high heat flux. The reconstruction of the thermal regime of the lithosphere has shown that the mantle rocks could occur within the temperature interval of serpentinization and simultaneously within the time interval of lithospheric stretching (-160 serpentinization could take place in these areas as in the other margin segments at the stage of presedimentation ultra slow basement stretching.

  11. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  12. Estimation of the temperature spatial variability in confined spaces based on thermal imaging

    Science.gov (United States)

    Augustyn, Grzegorz; Jurasz, Jakub; Jurczyk, Krzysztof; Korbiel, Tomasz; Mikulik, Jerzy; Pawlik, Marcin; Rumin, Rafał

    2017-11-01

    In developed countries the salaries of office workers are several times higher than the total cost of maintaining and operating the building. Therefore even a small improvement in human work productivity and performance as a result of enhancing the quality of their work environment may lead to a meaningful economic benefits. The air temperature is the most commonly used indicator in assessing the indoor environment quality. What is more, it is well known that thermal comfort has the biggest impact on employees performance and their ability to work efficiently. In majority of office buildings, indoor temperature is managed by heating, ventilation and air conditioning (HVAC) appliances. However the way how they are currently managed and controlled leads to the nonhomogeneous distribution of temperature in certain space. An approach to determining the spatial variability of temperature in confined spaces was introduced based on thermal imaging temperature measurements. The conducted research and obtained results enabled positive verification of the method and creation of surface plot illustrating the temperature variability.

  13. Estimation of the temperature spatial variability in confined spaces based on thermal imaging

    Directory of Open Access Journals (Sweden)

    Augustyn Grzegorz

    2017-01-01

    Full Text Available In developed countries the salaries of office workers are several times higher than the total cost of maintaining and operating the building. Therefore even a small improvement in human work productivity and performance as a result of enhancing the quality of their work environment may lead to a meaningful economic benefits. The air temperature is the most commonly used indicator in assessing the indoor environment quality. What is more, it is well known that thermal comfort has the biggest impact on employees performance and their ability to work efficiently. In majority of office buildings, indoor temperature is managed by heating, ventilation and air conditioning (HVAC appliances. However the way how they are currently managed and controlled leads to the nonhomogeneous distribution of temperature in certain space. An approach to determining the spatial variability of temperature in confined spaces was introduced based on thermal imaging temperature measurements. The conducted research and obtained results enabled positive verification of the method and creation of surface plot illustrating the temperature variability.

  14. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.

    Science.gov (United States)

    Kohl, Kathryn P; Singh, Nadia D

    2018-04-01

    Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. Cyclical environmental conditions have also been shown to yield evolved increases in recombination frequency. Here, we use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate and/or increased recombination rate in response to temperature. In contrast to expectation, we find no evidence for either enhanced plasticity in recombination or increased rates of recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  15. Thermal Variability in Gravel Bars and its Potential Consequences for CO2 Evasion from Alpine Coldwater Streams

    Science.gov (United States)

    Boodoo, K. S.; Schelker, J.; Battin, T. J.

    2016-12-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. During warm summer months, diurnal vertical temperature patterns were most pronounced and were detected throughout all one-meter-depth profiles. Furthermore, permanently wetted GB sediment (-56 cm depth) temperatures above that of stream and groundwater occurred 17% of the year, particularly during summer. This is further evidence for downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB temperatures were associated with increased CO2 evasion fluxes; the strength of the relationship increased with depth (max. r2 = 0.61 at -100cm depth). This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn and winter, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. The importance of these processes is likely to increase, particularly in cold-water streams, due to the occurrence of more frequent and intense warm

  16. Ion thermal conductivity and convective energy transport in JET hot-ion regimes and H-modes

    International Nuclear Information System (INIS)

    Tibone, F.; Balet, B.; Cordey, J.G.

    1989-01-01

    Local transport in a recent series of JET experiments has been studied using interpretive codes. Auxiliary heating, mainly via neutral beam injection, was applied on low-density target plasmas confined in the double-null X-point configuration. This has produced two-component plasmas with high ion temperature and neutron yield and, above a threshold density, H-modes characterised by peak density and power deposition profiles. H-mode confinement was also obtained for the first time with 25 MW auxiliary power, of which 10 MW was from ion cyclotron resonance heating. We have used profile measurements of electron temperature T e from electron cyclotron emission and LIDAR Thomson scattering, ion temperature T i from charge-exchange recombination spectroscopy (during NBI), electron density n e from LIDAR and Abel-inverted interferometer measurements. Only sparse information is, however, available to date concerning radial profiles of effective ionic charge and radiation losses. Deuterium depletion due to high impurity levels is an important effect in these discharges, and our interpretation of thermal ion energy content, neutron yield and ion particle fluxes needs to be confirmed using measured Z eff -profiles. (author) 4 refs., 4 figs

  17. Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.

    1987-01-01

    A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

  18. Flow regimes

    International Nuclear Information System (INIS)

    Kh'yuitt, G.

    1980-01-01

    An introduction into the problem of two-phase flows is presented. Flow regimes arizing in two-phase flows are described, and classification of these regimes is given. Structures of vertical and horizontal two-phase flows and a method of their identification using regime maps are considered. The limits of this method application are discussed. The flooding phenomena and phenomena of direction change (flow reversal) of the flow and interrelation of these phenomena as well as transitions from slug regime to churn one and from churn one to annular one in vertical flows are described. Problems of phase transitions and equilibrium are discussed. Flow regimes in tubes where evaporating liquid is running, are described [ru

  19. Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows

    Science.gov (United States)

    Degraff, James M.; Long, Philip E.; Aydin, Atilla

    1989-09-01

    Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part

  20. Thermal regime of a continental permafrost associated gas hydrate occurrence a continuous temperature profile record after drilling

    Science.gov (United States)

    Henninges, J.; Huenges, E.; Mallik Working Group

    2003-04-01

    Both the size and the distribution of natural methane hydrate occurrences, as well as the release of gaseous methane through the dissociation of methane hydrate, are affected by the subsurface pressure and temperature conditions. During a field experiment, which was carried out in the Mackenzie Delta, NWT, Canada, within the framework of the Mallik 2002 Production Research Well Program*, the variation of temperature within three 40 m spaced, 1200 m deep wells was measured deploying the Distributed Temperature Sensing (DTS) technology. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions. A special feature is the placement of the fibre-optic sensor cable inside the cement annulus between the casing and the wall of the borehole. Temperature profiles were recorded with a sampling interval of 0.25 m and 5 min, and temperatures can be determined with a resolution of 0.3 °C. The observed variation of temperature over time shows the decay of the thermal disturbances caused by the drilling and construction of the wells. An excellent indicator for the location of the base of the ice-bonded permafrost layer, which stands out as a result of the latent heat of the frozen pore fluid, is a sharp rise in temperature at 604 m depth during the period of equilibration. A similar effect can be detected in the depth interval between 1105 m and 1110 m, which is interpreted as an indicator for the depth to the base of the methane hydrate stability zone. Nine months after the completion of the wells the measured borehole temperatures are close to equilibrium. The mean temperature gradient rises from 9.4 K/km inside the permafrost to 25.4 K/km in the ice-free sediment layers underneath. The zone of the gas hydrate occurrences between 900 m and 1100 m shows distinct variations of the geothermal gradient, which locally rises up to 40 K/km. At the lower

  1. Numerical investigation of CO{sub 2} emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe of variable thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Lebelo, Ramoshweu Solomon, E-mail: sollyl@vut.ac.za [Department of Mathematics, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1911 (South Africa)

    2014-10-24

    In this paper the CO{sub 2} emission and thermal stability in a long cylindrical pipe of combustible reactive material with variable thermal conductivity are investigated. It is assumed that the cylindrical pipe loses heat by both convection and radiation at the surface. The nonlinear differential equations governing the problem are tackled numerically using Runge-Kutta-Fehlberg method coupled with shooting technique method. The effects of various thermophysical parameters on the temperature and carbon dioxide fields, together with critical conditions for thermal ignition are illustrated and discussed quantitatively.

  2. Crosswinds Effect on the Thermal Performance of Wet Cooling Towers Under Variable Operating Conditions

    Science.gov (United States)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    In order to quantitatively analyze the influence of the variable operating parameters on the cooling performance of natural draft wet cooling towers (NDWCTs), a hot model test system was set up with adjustable ambient temperature and humidity, circulating water flowrate and temperature. In order to apply the hot model test results to the real tower, the crosswind Froude number is defined. The results show that the crosswind has a negative effect on the thermal performance of the cooling tower, and there is a critical crosswind velocity corresponding to the lowest cooling efficiency. According to the crosswind Froude number similarity, when the ambient temperature decreases, or the circulating water flowrate and temperature increase, the cooling tower draft force will increase, and the critical crosswind velocity will increase correspondingly.

  3. Spatio-Temporal Analysis of Vegetation Dynamics in Relation to Shifting Inundation and Fire Regimes: Disentangling Environmental Variability from Land Management Decisions in a Southern African Transboundary Watershed

    Directory of Open Access Journals (Sweden)

    Narcisa G. Pricope

    2015-07-01

    Full Text Available Increasing temperatures and wildfire incidence and decreasing precipitation and river runoff in southern Africa are predicted to have a variety of impacts on the ecology, structure, and function of semi-arid savannas, which provide innumerable livelihood resources for millions of people. This paper builds on previous research that documents change in inundation and fire regimes in the Chobe River Basin (CRB in Namibia and Botswana and proposes to demonstrate a methodology that can be applied to disentangle the effect of environmental variability from land management decisions on changing and ecologically sensitive savanna ecosystems in transboundary contexts. We characterized the temporal dynamics (1985–2010 of vegetation productivity for the CRB using proxies of vegetation productivity and examine the relative importance of shifts in flooding and fire patterns to vegetation dynamics and effects of the association of phases of the El Niño—Southern Oscillation (ENSO on vegetation greenness. Our results indicate that vegetation in these semi-arid environments is highly responsive to climatic fluctuations and the long-term trend is one of increased but heterogeneous vegetation cover. The increased cover and heterogeneity during the growing season is especially noted in communally-managed areas of Botswana where long-term fire suppression has been instituted, in contrast to communal areas in Namibia where heterogeneity in vegetation cover is mostly increasing primarily outside of the growing season and may correspond to mosaic early dry season burns. Observed patterns of increased vegetation productivity and heterogeneity may relate to more frequent and intense burning and higher spatial variability in surface water availability from both precipitation and regional inundation patterns, with implications for global environmental change and adaptation in subsistence-based communities.

  4. Flow regimes

    International Nuclear Information System (INIS)

    Liles, D.R.

    1982-01-01

    Internal boundaries in multiphase flow greatly complicate fluid-dynamic and heat-transfer descriptions. Different flow regimes or topological configurations can have radically dissimilar interfacial and wall mass, momentum, and energy exchanges. To model the flow dynamics properly requires estimates of these rates. In this paper the common flow regimes for gas-liquid systems are defined and the techniques used to estimate the extent of a particular regime are described. Also, the current computer-code procedures are delineated and introduce a potentially better method is introduced

  5. Optimizing x-ray mirror thermal performance using variable length cooling for second generation FELs

    Science.gov (United States)

    Hardin, Corey L.; Srinivasan, Venkat N.; Amores, Lope; Kelez, Nicholas M.; Morton, Daniel S.; Stefan, Peter M.; Nicolas, Josep; Zhang, Lin; Cocco, Daniele

    2016-09-01

    The success of the LCLS led to an interest across a number of disciplines in the scientific community including physics, chemistry, biology, and material science. Fueled by this success, SLAC National Accelerator Laboratory is developing a new high repetition rate free electron laser, LCLS-II, a superconducting linear accelerator capable of a repetition rate up to 1 MHz. Undulators will be optimized for 200 to 1300 eV soft X-rays, and for 1000 to 5000 eV hard X-rays. To absorb spontaneous radiation, higher harmonic energies and deflect the x-ray beam to various end stations, the transport and diagnostics system includes grazing incidence plane mirrors on both the soft and Hard X-ray beamline. To deliver the FEL beam with minimal power loss and wavefront distortion, we need mirrors of height errors below 1nm rms in operational conditions. We need to mitigate the thermal load effects due to the high repetition rate. The absorbed thermal profile is highly dependent on the beam divergence, and this is a function of the photon energy. To address this complexity, we developed a mirror cradle with variable length cooling and first order curve correction. Mirror figure error is minimized using variable length water-cooling through a gallium-indium eutectic bath. Curve correction is achieved with an off-axis bender that will be described in details. We present the design features, mechanical analysis and results from optical and mechanical tests of a prototype assembly, with particular regards to the figure sensitivity to bender corrections.

  6. Gradual plasticity alters population dynamics in variable environments: thermal acclimation in the green alga Chlamydomonas reinhartdii.

    Science.gov (United States)

    Kremer, Colin T; Fey, Samuel B; Arellano, Aldo A; Vasseur, David A

    2018-01-10

    Environmental variability is ubiquitous, but its effects on populations are not fully understood or predictable. Recent attention has focused on how rapid evolution can impact ecological dynamics via adaptive trait change. However, the impact of trait change arising from plastic responses has received less attention, and is often assumed to optimize performance and unfold on a separate, faster timescale than ecological dynamics. Challenging these assumptions, we propose that gradual plasticity is important for ecological dynamics, and present a study of the plastic responses of the freshwater green algae Chlamydomonas reinhardtii as it acclimates to temperature changes. First, we show that C. reinhardtii 's gradual acclimation responses can both enhance and suppress its performance after a perturbation, depending on its prior thermal history. Second, we demonstrate that where conventional approaches fail to predict the population dynamics of C. reinhardtii exposed to temperature fluctuations, a new model of gradual acclimation succeeds. Finally, using high-resolution data, we show that phytoplankton in lake ecosystems can experience thermal variation sufficient to make acclimation relevant. These results challenge prevailing assumptions about plasticity's interactions with ecological dynamics. Amidst the current emphasis on rapid evolution, it is critical that we also develop predictive methods accounting for plasticity. © 2018 The Author(s).

  7. Unsteady Flow of Reactive Viscous, Heat Generating/Absorbing Fluid with Soret and Variable Thermal Conductivity

    Directory of Open Access Journals (Sweden)

    I. J. Uwanta

    2014-01-01

    Full Text Available This study investigates the unsteady natural convection and mass transfer flow of viscous reactive, heat generating/absorbing fluid in a vertical channel formed by two infinite parallel porous plates having temperature dependent thermal conductivity. The motion of the fluid is induced due to natural convection caused by the reactive property as well as the heat generating/absorbing nature of the fluid. The solutions for unsteady state temperature, concentration, and velocity fields are obtained using semi-implicit finite difference schemes. Perturbation techniques are used to get steady state expressions of velocity, concentration, temperature, skin friction, Nusselt number, and Sherwood number. The effects of various flow parameters such as suction/injection (γ, heat source/sinks (S, Soret number (Sr, variable thermal conductivity δ, Frank-Kamenetskii parameter λ, Prandtl number (Pr, and nondimensional time t on the dynamics are analyzed. The skin friction, heat transfer coefficients, and Sherwood number are graphically presented for a range of values of the said parameters.

  8. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  9. Modelling of air flow supply in a room at variable regime by using both K - E and spalart - allmaras turbulent model

    Science.gov (United States)

    Korbut, Vadim; Voznyak, Orest; Sukholova, Iryna; Myroniuk, Khrystyna

    2017-12-01

    The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT). Calculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it's possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.

  10. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    Science.gov (United States)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  11. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; RameshBabu, V.; Chandramohan, P.

    relaxing event helps in the development of a strong layered thermal structure while convective mixing due to winter inversions during November to February causes weak thermal gradients in the water column...

  12. Experimental study of the permeability of concrete under variable thermal and hydric conditions

    International Nuclear Information System (INIS)

    Chen, W.

    2011-01-01

    The main objective of this study is to evaluate the variable thermal and hydric effect, with fissuration effect on the hydraulic behaviour of two concretes. Many experimental tests (saturation and permeability measurements, uniaxial and triaxial compressions tests) were carried out in order to investigate the temperature and saturation influence on the behaviour hydraulic on sound and micro-cracked concrete. Moreover, an experimental device for permeability measurement on macro-cracked concrete was realized, it allows to study the behaviour of macro-cracked of concrete confined and subjected to dry gas flow or very moist air at different temperatures. Multiaxial mechanical tests are coupled to the permeability measurements of sound concrete and micro-cracked by freezing and thawing, which allow to measuring the permeability under deviatoric load-unload with the effect of pre-cracking under stress. We also effectuated a test of relative permeability of concrete as a function of water saturation, subjected to drying and re-saturation, conditioning by the different relative humidity imposed. (author)

  13. PHOTOMETRIC VARIABILITY OF THE DISK-INTEGRATED THERMAL EMISSION OF THE EARTH

    International Nuclear Information System (INIS)

    Gómez-Leal, I.; Selsis, F.; Pallé, E.

    2012-01-01

    Here we present an analysis of the global-integrated mid-infrared emission flux of the Earth based on data derived from satellite measurements. We have studied the photometric annual, seasonal, and rotational variability of the thermal emission of the Earth to determine which properties can be inferred from the point-like signal. We find that the analysis of the time series allows us to determine the 24 hr rotational period of the planet for most observing geometries, due to large warm and cold areas, identified with geographic features, which appear consecutively in the observer's planetary view. However, the effects of global-scale meteorology can effectively mask the rotation for several days at a time. We also find that orbital time series exhibit a seasonal modulation, whose amplitude depends strongly on the latitude of the observer but weakly on its ecliptic longitude. As no systematic difference of brightness temperature is found between the dayside and the nightside, the phase variations of the Earth in the infrared range are negligible. Finally, we also conclude that the phase variation of a spatially unresolved Earth-Moon system is dominated by the lunar signal.

  14. On Thermally Interacting Multiple Boreholes with Variable Heating Strength: Comparison between Analytical and Numerical Approaches

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-08-01

    Full Text Available The temperature response in the soil surrounding multiple boreholes is evaluated analytically and numerically. The assumption of constant heat flux along the borehole wall is examined by coupling the problem to the heat transfer problem inside the borehole and presenting a model with variable heat flux along the borehole length. In the analytical approach, a line source of heat with a finite length is used to model the conduction of heat in the soil surrounding the boreholes. In the numerical method, a finite volume method in a three dimensional meshed domain is used. In order to determine the heat flux boundary condition, the analytical quasi-three-dimensional solution to the heat transfer problem of the U-tube configuration inside the borehole is used. This solution takes into account the variation in heating strength along the borehole length due to the temperature variation of the fluid running in the U-tube. Thus, critical depths at which thermal interaction occurs can be determined. Finally, in order to examine the validity of the numerical method, a comparison is made with the results of line source method.

  15. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  16. Regime change?

    International Nuclear Information System (INIS)

    Pilat, Joseph F.; Budlong-Sylvester, K.W.

    2004-01-01

    Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?

  17. One Basin, One Stress Regime, One Orientation of Seismogenic Basement Faults, Variable Spatio-Temporal Slip Histories: Lessons from Fort Worth Basin Induced Earthquake Sequences

    Science.gov (United States)

    DeShon, H. R.; Brudzinski, M.; Frohlich, C.; Hayward, C.; Jeong, S.; Hornbach, M. J.; Magnani, M. B.; Ogwari, P.; Quinones, L.; Scales, M. M.; Stump, B. W.; Sufri, O.; Walter, J. I.

    2017-12-01

    Since October 2008, the Fort Worth basin in north Texas has experienced over 30 magnitude (M) 3.0+ earthquakes, including one M4.0. Five named earthquake sequences have been recorded by local seismic networks: DFW Airport, Cleburne-Johnson County, Azle, Irving-Dallas, and Venus-Johnson County. Earthquakes have occurred on northeast (NE)-southwest (SW) trending Precambrian basement faults and within the overlying Ellenburger limestone unit used for wastewater disposal. Focal mechanisms indicate primarily normal faulting, and stress inversions indicate maximum regional horizontal stress strikes 20-30° NE. The seismogenic sections of the faults in either the basement or within the Ellenburger appear optimally oriented for failure within the modern stress regime. Stress drop estimates range from 10 to 75 bars, with little variability between and within the named sequences, and the values are consistent with intraplate earthquake stress drops in natural tectonic settings. However, the spatio-temporal history of each sequence relative to wastewater injection data varies. The May 2015 M4.0 Venus earthquake, for example, is only the largest of what is nearly 10 years of earthquake activity on a single fault structure. Here, maximum earthquake size has increased with time and exhibits a log-linear relationship to cumulative injected volume from 5 nearby wells. At the DFW airport, where the causative well was shut-in within a few months of the initial earthquakes and soon after the well began operation, we document migration away from the injector on the same fault for nearly 6 km sporadically over 5 years. The Irving-Dallas and Azle sequences, like DFW airport, appear to have started rather abruptly with just a few small magnitude earthquakes in the weeks or months preceding the significant set of magnitude 3.5+ earthquakes associated with each sequence. There are no nearby (<10 km) injection operations to the Irving-Dallas sequence and the Azle linked wells operated for

  18. Competition Regime

    Directory of Open Access Journals (Sweden)

    Danilo Icaza Ortiz

    2013-01-01

    Full Text Available This paper is a review of the competition regime works of various authors, published under the auspices of the University of the Hemispheres and the Corporation for Studies and Publications. Analyzes the structure, the general concepts, case law taken for development. Includes comments on the usefulness of this work for the study of competition law and the contribution to the lawyers who want to practice in this branch of economic law.

  19. NON-THERMAL EMISSION FROM CATACLYSMIC VARIABLES: IMPLICATIONS ON ASTROPARTICLE PHYSICS

    Directory of Open Access Journals (Sweden)

    Vojtech Šimon

    2013-12-01

    Full Text Available We review the lines of evidence that some cataclysmic variables (CVs are the sources of non-thermal radiation. It was really observed in some dwarf novae in outburst, a novalike CV in the high state, an intermediate polar, polars, and classical novae (CNe during outburst. The detection of this radiation suggests the presence of highly energetic particles in these CVs. The conditions for the observability of this emission depend on the state of activity, and the system parameters. We review the processes and conditions that lead to the production of this radiation in various spectral bands, from gamma-rays including TeV emission to radio. Synchrotron and cyclotron emissions suggest the presence of strong magnetic fields in CV. In some CVs, e.g. during some dwarf nova outbursts, the magnetic field generated in the accretion disk leads to the synchrotron jets radiating in radio. The propeller effect or a shock in the case of the magnetized white dwarf (WD can lead to a strong acceleration of the particles that produce gamma-ray emission via pi0 decay; even Cherenkov radiation is possible. In addition, a gamma-ray production via pi0 decay was observed in the ejecta of an outburst of a symbiotic CN. Nuclear reactions during thermonuclear runaway in the outer layer of the WD undergoing CN outburst lead to the production of radioactive isotopes; their decay is the source of gamma-ray emission. The production of accelerated particles in CVs often has episodic character with a very small duty cycle; this makes their detection and establishing the relation of the behavior in various bands difficult.

  20. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions

    Directory of Open Access Journals (Sweden)

    R. Kandasamy

    2016-03-01

    Full Text Available The objective of the present work was to investigate theoretically the effect of single walled carbon nanotubes (SWCNTs in the presence of water and seawater with variable stream condition due to solar radiation energy. The conclusion is drawn that the flow motion and the temperature field for SWCNTs in the presence of base fluid are significantly influenced by magnetic field, convective radiation and thermal stratification. Thermal boundary layer of SWCNTs-water is compared to that of Cu-water, absorbs the incident solar radiation and transits it to the working fluid by convection.

  1. Variability in Rock Thermal Properties in the Late Archean Crust of the Kapuskasing Structural Zone and Implications for its Thermal Structure and Metamorphic History.

    Science.gov (United States)

    Merriman, J. D.; Whittington, A. G.; Hofmeister, A. M.

    2017-12-01

    The thermal properties of rocks such as internal heat production and thermal diffusivity (α) play a key role in determining the thermal structure of the lithosphere, and consequently, the rates and styles of metamorphism within the crust. Over the last decade, measurements of α using the method laser flash analysis have shown the ability of a rock to conduct heat can vary by as much as a factor of 5 between common rock types, and decrease by up to a factor of 10 for the same rock between 25-1000°C. Here we present a preliminary model for the variability in rock throughout the crust based on measurements of the α of a suite of 100 samples from late Archean crust exposed in and around the Kapuskasing Structural Zone in Ontario, Canada. Preliminary results suggest that α is controlled primarily by mineralogy, and can vary not only between different rock types as described above, but also within the same rock by a factor of 1.5 (or more). Thermal diffusivity results were combined with heat producing element concentrations measured with ICP-MS to create a thermal model of the Kapuskasing Structural Zone prior its uplift and exposure. To provide additional constraints for P-T conditions within the pre-uplift KSZ crust, a combination of trace-element and pseudosection thermobarometry was used to estimate metamorphic temperatures during an extended period of crustal stability at the end of the Archean. Preliminary results were compared to finite-difference numerical models of the steady-state geothermal gradient using heat production back-calculated to 2.6 Ga. Results suggest a minimum thickness of the continental lithosphere during the late Archean of at least 150 km. To test the response of the crust to the effects of large thermal events such as pluton emplacement, we also performed time-dependent models of the thermal structure of the pre-uplift KSZ crust. These models suggest that heat from thermal events in the upper and middle crust result in a more insulating

  2. Influence of agronomic variables on the macronutrient and micronutrient contents and thermal behavior of mate tea leaves (Ilex paraguariensis).

    Science.gov (United States)

    Jacques, Rosângela A; Arruda, Eduardo J; de Oliveira, Lincoln C S; de Oliveira, Ana P; Dariva, Cláudio; de Oliveira, J Vladimir; Caramão, Elina B

    2007-09-05

    The influence of agronomic variables (light intensity, age of leaves, and fertilization type) on the content of macronutrients and micronutrients (potassium, calcium, sodium, magnesium, manganese, iron, zinc, and copper) of tea leaves was assessed by acid digestion, followed by flame atomic absorption spectrometry (FAAS). The thermal behavior of mate tea leaves (Ilex paraguariensis) was also studied in this work. Samples of mate (Ilex paraguariensis) were collected in an experiment conducted under agronomic control at Erva-Mate Barão Commerce and Industry LTD (Brazil). The results showed that the mineral content in mate is affected by the agronomic variables investigated. In general, the content of mineral compounds analyzed is higher for younger leaves and for plants cultivated in shadow. Thermal analysis of samples indicated a similar behavior, with three typical steps of decomposition: loss of water, degradation of low-molecular weight compounds, and degradation of residual materials.

  3. Effects of variable thermal conductivity on Stokes' flow of a thermoelectric fluid with fractional order of heat transfer

    International Nuclear Information System (INIS)

    Ezzat, M.A.; El-Bary, A.A.

    2016-01-01

    In this study, the constitutive relation for the heat flux vector is derived to be the Fourier's law of heat conduction with a variable thermal conductivity and time-fractional order. The Stokes' flow of unsteady incompressible thermoelectric fluid due to a moving plate in the presence of a transverse magnetic field is molded. Stokes' first problem is solved by applying Laplace transform with respect to time variable and evaluating the inverse transform integrals by using a numerical approach. Numerical results for the temperature and the velocity distributions are given and illustrated graphically for given problem. The results indicate that the thermal conductivity and time-fractional order play a major role in the temperature and velocity distributions. (authors)

  4. Global warming influence on climatic variables and thermal comfort index in Paraíba state, Brazil

    OpenAIRE

    Silva, Gustavo de Assis; Instituto Agronômico de Pernambuco; Souza, Bonifácio Benicio de; Universidade Federal Campina Grande; Silva, Elisângela Maria Nunes da; UFCG

    2015-01-01

    The increase in the concentration of greenhouse gases originated from burning fossil fuels, along with breeding, been appointed as the main causes of global climate change resulting from global warming in earth's atmosphere. These changes can cause serious impacts on the lives and livestock production mainly in tropical regions. Therefore, the aim with this work was to evaluate the effect of global warming on the climatological variables, thermal comfort index and animal production in the sta...

  5. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    International Nuclear Information System (INIS)

    Arregui-Mena, José David; Margetts, Lee; Griffiths, D.V.; Lever, Louise; Hall, Graham; Mummery, Paul M.

    2015-01-01

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  6. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    Energy Technology Data Exchange (ETDEWEB)

    Arregui-Mena, José David, E-mail: jose.arreguimena@postgrad.manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Margetts, Lee, E-mail: lee.margetts@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Griffiths, D.V., E-mail: d.v.griffiths@mines.edu [Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); Lever, Louise, E-mail: louise.lever@manchester.ac.uk [Research Computing, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Hall, Graham, E-mail: graham.n.hall@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Mummery, Paul M., E-mail: paul.m.mummery@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2015-10-15

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  7. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie

    2016-01-01

    porous media transport properties, key transport parameters such as thermal conductivity and gas diffusivity are particularly important to describe temperature-induced heat transport and diffusion-controlled gas transport processes, respectively. Despite many experimental and numerical studies focusing...... transport models (thermal conductivity, saturated hydraulic conductivity, and gas diffusivity). An existing thermal conductivity model was improved to describe the distinct three-region behavior in observed thermal conductivity–water saturation relations. Applying widely used parametric models for saturated......Detailed characterization of partially saturated porous media is important for understanding and predicting vadose zone transport processes. While basic properties (e.g., particle- and pore-size distributions and soil-water retention) are, in general, essential prerequisites for characterizing most...

  8. A maize introgression library reveals ample genetic variability for root architecture, water use efficiency and grain yield under different water regimes

    OpenAIRE

    Salvi, S.; Giuliani, S.; Cané, M.; Sciara, G.; Bovina, R.; Welcker, Claude; Cabrera Bosquet, Llorenç; Grau, Antonin; Tardieu, Francois; Meriggi, P.

    2015-01-01

    The genetic dissection of root system architecture (RSA) provides valuable opportunities towards a better understanding of its role in determining yield under different water regimes. To this end, a maize introgression library comprised of 75 BC5 lines derived from the cross between Gaspé Flint (an early line; donor parent) and B73 (an elite line; recurrent parent) were evaluated in two experiments conducted under well-watered and water-deficit conditions (WW and WD, respectively) in order to...

  9. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    Science.gov (United States)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  10. On the regimes of premixing

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, S.; Theofanous, T.G.; Yuen, W.W. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

    1998-01-01

    The conditions of the MAGICO-2000 experiment are extended to more broadly investigate the regimes of premixing, and the corresponding internal structures of mixing zones. With the help of the data and numerical simulations using the computer code PM-ALPHA, we can distinguish extremes of behavior dominated by inertia and thermal effects - we name these the inertia and thermal regimes, respectively. This is an important distinction that should guide future experiments aimed at code verification in this area. Interesting intermediate behaviors are also delineated and discussed. (author)

  11. Thermal power generation and the environment. I. Hydrothermal and hydrochemical regime studies of the cooling reservoir of the Lithuanian SSR Central Steam Power Station. Teploenergetika i okruzhayushchaya sreda i gidrotermicheskii i gidrokhinicheskii rezhim vodokhranilishcha okhzaditelya intovskoi gres

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Studies were of the physico-geographical conditions (relief, soil, vegetation, etc.) of a water-collection basin and their effect on the processes taking place in a reservoir. An analysis is made of the elements that make up the input and outflow segments of a reservoir's water balance, particularly the evaporation of heated waters from the surface of the reservoir. Data are given on long-term measurements of the thermal regime of a reservoir-coolant, heat-exchange processes and their connection with the efficient operation of a thermal power station. The thermal balance of a reservoir is defined. A study was made of the effect that the Lithuaniam central power steam station has on atmospheric sediments, the physico-chemical regime of the reservoir-coolant, river drainage, and ground water. A description is given of the chemical composition of the surface bottom deposits, the intensity of modern sedimentation processes and sediment accumulation in the reservoir. 126 references, 70 figures, 36 tables.

  12. The Benefit of Variable-Speed Turbine Operation for Low Temperature Thermal Energy Power Recovery

    OpenAIRE

    Brasz, Joost J.

    2014-01-01

    This paper analyzes, given the large variation in turbine discharge pressure with changing ambient temperatures, whether variable-speed radial-inflow turbine operation has a similar benefit for Organic Rankine Cycle (ORC) power recovery systems as variable-speed centrifugal compression has for chiller applications. The benefit of variable-speed centrifugal compression over fixed-speed operation is a reduction in annual electricity consumption of almost 40 %. Air-conditioning systems are by ne...

  13. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation.

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Cornelissen, J.H.C.; van Bodegom, P.M.

    2013-01-01

    Bryophytes cover large territories in cold biomes, where they control soil temperature regime, and therefore permafrost, carbon and nutrient dynamics. The mechanisms of this control remain unclear. We quantified the dependence of soil temperature fluctuations under bryophyte mats on the interplay of

  14. Controlling thermal deformation by using composite materials having variable fiber volume fraction

    International Nuclear Information System (INIS)

    Bouremana, M.; Tounsi, A.; Kaci, A.; Mechab, I.

    2009-01-01

    In application, many thin structural components such as beams, plates and shells experience a through-thickness temperature variation. This temperature variation can produce both an in-plane expansion and an out-of-plane (bending) curvature. Given that these thin components interact with or connect to other components, we often wish to minimize the thermal deformation or match the thermal deformation of another component. This is accomplished by using a composite whose fibers have a negative axial thermal expansion coefficient. By varying the fiber volume fraction within a symmetric laminated beam to create a functionally graded material (FGM), certain thermal deformations can be controlled or tailored. Specifically, a beam can be designed which does not curve under a steady-state through-thickness temperature variation. Continuous gradation of the fiber volume fraction in the FGM layer is modelled in the form of a mth power polynomial of the coordinate axis in thickness direction of the beam. The beam results are independent of the actual temperature values, within the limitations of steady-state heat transfer and constant material properties. The influence of volume fiber fraction distributions are studied to match or eliminate an in-plane expansion coefficient, or to match a desired axial stiffness. Combining two fiber types to create a hybrid FGM can offer desirable increase in axial and bending stiffness while still retaining the useful thermal deformation behavior.

  15. Titanium contacts to graphene: process-induced variability in electronic and thermal transport

    Science.gov (United States)

    Freedy, Keren M.; Giri, Ashutosh; Foley, Brian M.; Barone, Matthew R.; Hopkins, Patrick E.; McDonnell, Stephen

    2018-04-01

    Contact resistance (R C) is a major limiting factor in the performance of graphene devices. R C is sensitive to the quality of the interface and the composition of the contact, which are affected by the graphene transfer process and contact deposition conditions. In this work, a linear correlation is observed between the composition of Ti contacts, characterized by x-ray photoelectron spectroscopy, and the Ti/graphene contact resistance measured by the transfer length method. We find that contact composition is tunable via deposition rate and base pressure. Reactor base pressure is found to effect the resultant contact resistance. The effect of contact deposition conditions on thermal transport measured by time-domain thermoreflectance is also reported. Interfaces with higher oxide composition appear to result in a lower thermal boundary conductance. Possible origins of this thermal boundary conductance change with oxide composition are discussed.

  16. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  17. Primary productivity, heterotrophy, metabolic indicators of stress and interactions in algal-bacterial mat communities affected by a fluctuating thermal regime

    International Nuclear Information System (INIS)

    Tison, D.L.

    1980-01-01

    Thermal habitats in effluent cooling waters from production nuclear reactors at the Savannah River Plant are unlike natural thermal habitats in that reactor operations are periodically halted, exposing the organisms growing in these thermal habitats to ambient temperatures for unpredictable lengths of time. Rates of primary production, glucose heterotrophy, and the composition of algal-bacterial mat communities growing along a thermal gradient from about 50 to 35 0 C during periods of reactor operation were studied. Cyanobacteria were the only photoautotrophs in mat communities above 40 0 C while cyanobacteria and eucaryotic algae comprised the photoautotrophic component of mat communities below 40 0 C. The heterotrophic component of these communities above 40 0 C was made up of stenothermic and eurythermic thermophilic bacteria while both eurythermic thermophiles and mesophilic bacteria were found in communities below 40 0 C. Net CO 2 -fixation rates during thermal conditions dropped after initial exposure to ambient temperatures. After prolonged exposure of the thermal communities to ambient temperatures, adaptation and colonization by mesophilic algae occurred. Rates of glucose utilization under varying degrees of thermal influence suggested that the heterotrophic component may not have been optimally adapted to thermal conditions. During periods of changing thermal conditions, an increase in the percentage extracellular release of photosynthetically fixed 14 CO 2 by cyanobacteria and algae and an increase in the percentage of glucose mineralized (respired) by the heterotrophic component of the mat communities was observed. Results of temperature shift experiments indicated that the short-term response of the photoautotrophic component of these communities to thermal stress was an increase in the percentage of photosynthate released extracellularly

  18. Effect of personal and microclimatic variables on observed thermal sensation from a field study in southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Eduardo L.; Rossi, Francine A. [Universidade Tecnologica Federal do Parana, Curitiba PR (Brazil)

    2011-03-15

    Urban climate, which is influenced by land use patterns, heat-generating activities, and the physical texture of urban fabric, has a great impact on outdoor comfort as well as on a building's energy consumption. A climate-responsive urban planning can provide optimal, comfortable thermal conditions not only for the permanence of humans in outdoor spaces but also reducing the need of air conditioning systems in buildings. The purpose of this article is to present results of an outdoor comfort research with passers-by in downtown Curitiba, Brazil (25 31'S, 917m elevation). Urban locations have been monitored regarding standard comfort variables: air temperature and humidity, wind speed and globe temperature. Alongside the quantitative assessment of comfort conditions, a survey of pedestrian's thermal comfort perception according to ISO 10551 was carried out on each monitoring campaign by means of questionnaires with the local population. As a whole, from fourteen monitoring campaigns using a couple of weather stations, beginning on January 9 through August 12, 1654 valid comfort votes were obtained. In this paper, we perform a data consistency check, evaluating the relationship between personal (gender and age of respondents) and objective, microclimatic (comfort variables) factors on observed thermal sensation. (author)

  19. A Variable Thermal Conductivity Flow of A Micropolar Fluid Over A ...

    African Journals Online (AJOL)

    We revisited the paper of Mahmoud et al, on the hydromagnetic boundary layer micropolar fluid flow over a stretching surface embedded in a non-Darcian porous medium with radiation.We show that even when the thermal conductivity depends linearly or quadratically on temperature the problem still has a unique solution.

  20. Energy saving in the auxiliaries consumption for circulation water pumps optimizing the thermal regime; Ahorro en el consumo de auxiliares por bombas de agua de circulacion optimando el regimen termico

    Energy Technology Data Exchange (ETDEWEB)

    Orozco Martinez, Roni [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1999-12-31

    A methodology is proposed that should be followed in any thermal electric power plant to determine the load value at which a unit requires a second circulation water pump without affecting the thermal regime and avoiding an excessive auxiliaries consumption in partial loads. In applying this method the power plant would have an energy saving equivalent to the auxiliaries consumption during an hour, when the unit as operating at full load. [Espanol] Se propone una metodologia que debe seguirse en cualquier central termoelectrica para determinar el valor de la carga en la cual una unidad requiere de la segunda bomba de agua de circulacion sin afectar el regimen termico y evitadose un excesivo consumo de auxiliares en cargas parciales. Al aplicar este metodo la central tendria un ahorro de energia equivalente al consumo de auxiliares durante una hora cuando la unidad esta generando su maxima carga.

  1. Energy saving in the auxiliaries consumption for circulation water pumps optimizing the thermal regime; Ahorro en el consumo de auxiliares por bombas de agua de circulacion optimando el regimen termico

    Energy Technology Data Exchange (ETDEWEB)

    Orozco Martinez, Roni [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    A methodology is proposed that should be followed in any thermal electric power plant to determine the load value at which a unit requires a second circulation water pump without affecting the thermal regime and avoiding an excessive auxiliaries consumption in partial loads. In applying this method the power plant would have an energy saving equivalent to the auxiliaries consumption during an hour, when the unit as operating at full load. [Espanol] Se propone una metodologia que debe seguirse en cualquier central termoelectrica para determinar el valor de la carga en la cual una unidad requiere de la segunda bomba de agua de circulacion sin afectar el regimen termico y evitadose un excesivo consumo de auxiliares en cargas parciales. Al aplicar este metodo la central tendria un ahorro de energia equivalente al consumo de auxiliares durante una hora cuando la unidad esta generando su maxima carga.

  2. Combined effect of thermal dispersion and variable viscosity of non-darcy convection heat transfer in a fluidsaturated porous medium

    KAUST Repository

    El-Amin, Mohamed

    2013-01-01

    In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension is employed in the flow equation to express the non-Darcy model. The fluid viscosity varies as an inverse linear function of temperature. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. Similarity solutions of the governing equations, for an isothermally heated plate, are obtained. Effects of the physical parameters, which govern the problem, on the rate of heat transfer in terms of Nusselt number, the slip velocity, and the boundary layer thickness, for the two cases Darcy and non-Darcy, are shown on graphs or entered in tables. © 2013 by Begell House, Inc.

  3. A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

    Science.gov (United States)

    Ciancio, Vincenzo; Palumbo, Annunziata

    2018-04-01

    In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.

  4. Endogenous Monetary Policy Regime Change

    OpenAIRE

    Troy Davig; Eric M. Leeper

    2006-01-01

    This paper makes changes in monetary policy rules (or regimes) endogenous. Changes are triggered when certain endogenous variables cross specified thresholds. Rational expectations equilibria are examined in three models of threshold switching to illustrate that (i) expectations formation effects generated by the possibility of regime change can be quantitatively important; (ii) symmetric shocks can have asymmetric effects; (iii) endogenous switching is a natural way to formally model preempt...

  5. Control Strategy: Wind Energy Powered Variable Chiller with Thermal Ice Storage

    Science.gov (United States)

    2014-12-01

    of the DOD facilities. A. RENEWABLE ENERGY The United States Department of Energy (DOE) defines renewable energy as being obtained from...include arrays of solar PV cells, solar thermal cells, wind turbines, or biogas digestors. Energy storage devices could consist of one or more of the...At Hachinohe, Japan, the Aomori Project obtains up to 100 kW of power from PV cells and wind turbines (WTs). The New Energy and Industrial Technology

  6. Generalized computational model for high-pressure metal hydrides with variable thermal properties

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2015-01-01

    This study considers a detailed 1D fueling model applied to a metal hydride system, with Ti1.1CrMn as the absorbing alloy, to predict the weight fraction of the absorbed hydrogen and the solid bed temperature. Dependencies of thermal conductivity and specific heat capacity upon pressure...... is estimated to be approximately 10%. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  7. Research on the supercapacitor support schemes for LVRT of variable-frequency drive in the thermal power plant

    Science.gov (United States)

    Han, Qiguo; Zhu, Kai; Shi, Wenming; Wu, Kuayu; Chen, Kai

    2018-02-01

    In order to solve the problem of low voltage ride through(LVRT) of the major auxiliary equipment’s variable-frequency drive (VFD) in thermal power plant, the scheme of supercapacitor paralleled in the DC link of VFD is put forward, furthermore, two solutions of direct parallel support and voltage boost parallel support of supercapacitor are proposed. The capacitor values for the relevant motor loads are calculated according to the law of energy conservation, and they are verified by Matlab simulation. At last, a set of test prototype is set up, and the test results prove the feasibility of the proposed schemes.

  8. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    Science.gov (United States)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  9. Numerical solution of problems concerning the thermal convection of a variable-viscosity liquid

    Science.gov (United States)

    Zherebiatev, I. F.; Lukianov, A. T.; Podkopaev, Iu. L.

    A stabilizing-correction scheme is constructed for integrating the fourth-order equation describing the dynamics of a viscous incompressible liquid. As an example, a solution is obtained to the problem of the solidification of a liquid in a rectangular region with allowance for convective energy transfer in the liquid phase as well as temperature-dependent changes of viscosity. It is noted that the proposed method can be used to study steady-state problems of thermal convection in ingots obtained through continuous casting.

  10. Novel variable structure control for the temperature of PEM fuel cell stack based on the dynamic thermal affine model

    International Nuclear Information System (INIS)

    Li Xi; Deng Zhonghua; Wei Dong; Xu Chunshan; Cao Guangyi

    2011-01-01

    Highlights: → The affine state space control-oriented model is designed and realized for the variant structure control (VSC) strategy. → The VSC with rapid-smooth reaching law and rapid-convergent sliding mode is presented for the PEMFC stack temperature. → Numerical results show that the method can control the operating temperature to reach the target value satisfactorily. - Abstract: Dynamic thermal management of proton exchange membrane fuel cell stack (PEMFC) is a very important aspect, which plays an important role on electro-reaction. Its variation also has a significant influence on the performance and lifespan of PEMFC stack. The temperature of stack should be controlled efficiently, which has great impacts on the performance of PEMFC due to the thermal variation. Based on the control-oriented dynamic thermal affine model identified by optimization algorithm, a novel variable structures control (VSC) with rapid-smooth reaching law (RSRL) and rapid-convergent sliding mode (FCSM) is presented for the temperature control system of PEMFC stack. Numerical test results show that the method can control the operating temperature to reach the target value satisfactorily, which proves the effectiveness and robustness of the algorithm.

  11. Research of thermal dynamic characteristics for variable load single screw refrigeration compressor with different capacity control mechanism

    International Nuclear Information System (INIS)

    Wang, Zengli; Wang, Zhenbo; Wang, Jun; Jiang, Wenchun; Feng, Quanke

    2017-01-01

    Highlights: • Theoretical models of SSRC under part-load condition have been established. • The experiment of SSRC performance under part-load condition was conducted. • Thermal dynamic characteristic of SSRC under part-load condition was gained. • Economy and reliability of SSRC under part-load condition was analyzed. - Abstract: In the single screw refrigeration compressor (SSRC), the capacity control mechanism is normally employed to meet the actual required cooling capacity under different load conditions. In this paper, theoretical calculation models describing the working process of the SSRC with the single slide valve capacity control mechanism (SVCCM) and SSRC with the frequency conversion regulating mechanism (FCRM) are established to research the thermal dynamic characteristics for variable load SSRC under part-load conditions. Experimental investigation on a SSRC under part-load conditions is also carried out to verify the theoretical calculation models. By using these validated models, the thermodynamic performances and dynamic characteristics of the SSRC with different capacity control mechanism under part-load conditions have been analyzed and compared. Through the comparison, the economical efficiency and reliability of the SSRC with different capacity control mechanism were obtained. All of these works can provide the basis for the later optimization design for the variable load single screw refrigeration compressor.

  12. Correction for variable moderation and multiplication effects associated with thermal neutron coincidence counting

    International Nuclear Information System (INIS)

    Baron, N.

    1978-01-01

    A correction is described for multiplication and moderation when doing passive thermal neutron coincidence counting nondestructive assay measurements on powder samples of PuO 2 mixed arbitrarily with MgO, SiO 2 , and moderating material. The multiplication correction expression is shown to be approximately separable into the product of two independent terms; F/sub Pu/ which depends on the mass of 240 Pu, and F/sub αn/ which depends on properties of the matrix material. Necessary assumptions for separability are (1) isotopic abundances are constant, and (2) fission cross sections are independent of incident neutron energy: both of which are reasonable for the 8% 240 Pu powder samples considered here. Furthermore since all prompt fission neutrons are expected to have nearly the same energy distributions, variations among different samples can be due only to the moderating properties of the samples. Relative energy distributions are provided by a thermal neutron well counter having two concentric rings of 3 He proportional counters placed symmetrically about the well. Measured outer-to-inner ring ratios raised to an empirically determined power for coincidences, (N/sup I//N/sup O/)/sup Z/, and singles, (T/sup O//T/sup I/)/sup delta/, provide corrections for moderation and F/sub αn/ respectively, and F/sub Pu/ is approximated by M 240 /sup X//M 240 . The exponents are calibration constants determined by a least squares fitting procedure using standards' data. System calibration is greatly simplified using the separability principle. Once appropriate models are established for F/sub Pu/ and F/sub αn/, only a few standards are necessary to determine the calibration constants associated with these terms. Since F/sub Pu/ is expressed as a function of M 240 , correction for multiplication in a subsequent assay demands only a measurement of F/sub αn/

  13. Investigating heat and temperature regime of the combustion chamber furnace screen of the TP 100A steam generator in the Varna thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mikhlevski, A; Buchinski, B; Dashkiev, Yu; Radzievski, V; Petkov, Kh [Kievski Politekhnicheski Institut (USSR)

    1988-01-01

    In the course of 10 year operation of six TP 100A steam generators 72 emergency operation interruptions occurred due to the piercing of screen pipes in the combustion chamber. According to investigations carried out by the NPO, CKT, VTI, KPI and Soyuzenergo institutes, the damage occurred mainly because of the destructive influence of external gas corrosion processes, overheating and fatigue of metallic pipes, as well as unstable heat and temperature regime in the combustion chamber. Large-scale measurements of the main thermodynamic parameters of the combustion chamber of the TP-100A steam generator were carried out in order to increase service life of screen pipes. It was found that the temperature of screen pipes increases 2.5 C/month because of deposition of sediments. Regular cleaning of screen pipes in intervals of 18 months is recommended as a very efficient means of prolonging their service life. 1 ref.

  14. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar

    2017-07-01

    This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

  15. Beyond the mean: the role of variability in predicting ecological effects of stream temperature on salmon

    Science.gov (United States)

    E. Ashley Steel; Abby Tillotson; Donald A. Larson; Aimee H. Fullerton; Keith P. Denton; Brian R. Beckman

    2012-01-01

    Alterations in variance of riverine thermal regimes have been observed and are predicted with climate change and human development. We tested whether changes in daily or seasonal thermal variability, aside from changes in mean temperature, could have biological consequences by exposing Chinook salmon (Oncorhynchus tshawytscha) eggs to eight...

  16. Does thermal variability experienced at the egg stage influence life history traits across life cycle stages in a small invertebrate?

    Directory of Open Access Journals (Sweden)

    Kun Xing

    Full Text Available Although effects of thermal stability on eggs have often been considered in vertebrates, there is little data thermal stability in insect eggs even though these eggs are often exposed in nature to widely fluctuating ambient conditions. The modularity of development in invertebrates might lead to compensation across life cycle stages but this remains to be tested particularly within the context of realistic temperature fluctuations encountered in nature. We simulated natural temperate fluctuations on eggs of the worldwide cruciferous insect pest, the diamondback moth (DBM, Plutella xylostella (L., while maintaining the same mean temperature (25°C±0°C, 25±4°C, 25±6°C, 25±8°C, 25±10°C, 25±12°C and assessed egg development, survival and life history traits across developmental stages. Moderate fluctuations (25±4°C, 25±6°C did not influence performance compared to the constant temperature treatment, and none of the treatments influenced egg survival. However the wide fluctuating temperatures (25±10°C, 25±12°C slowed development time and led to an increase in pre-pupal mass, although these changes did not translate into any effects on longevity or fecundity at the adult stage. These findings indicate that environmental effects can extend across developmental stages despite the modularity of moth development but also highlight that there are few fitness consequences of the most variable thermal conditions likely to be experienced by Plutella xylostella.

  17. ‘Domesticating’ low carbon thermal technologies: Diversity, multiplicity and variability in older person, off grid households

    International Nuclear Information System (INIS)

    Wrapson, Wendy; Devine-Wright, Patrick

    2014-01-01

    The uptake of low carbon heating technologies forms an important part of government strategies to reduce carbon emissions. Yet our understanding of why such technologies are adopted and how they are engaged with post-adoption, particularly by older adults living in off-grid areas, is limited. Drawing on a contextualised, socio-technical approach to domestic heating, we present findings from 51 in-depth interviews with a sample of 17 older person households in the South West of England, with ages ranging from 60 to 89 years. Diverse and multiple configurations of heating devices and fuels were found that varied considerably, with some households using five different fuels. The design of the study ensured that approximately half the sample used some form of low carbon thermal technology, such as heat pumps and biomass boilers. Many factors were reported to influence the adoption of low carbon heating; environmental motives were not primary influences and the avoidance of financial risks associated with ‘peak oil’ was expressed. Low carbon thermal technologies were typically integrated into rather than replaced existing heating systems so that valued services provided by conventional technologies could be retained. Implications of the findings for policies to reduce carbon emissions, particularly in older adult, off-grid households, are discussed. - Highlights: • We interviewed 17 households with conventional/low carbon thermal technologies (LCTTs) in South West England. • Older adult, off grid households commonly use multiple, diverse and variable heating technologies and fuels. • Reducing fuel costs was a key reason for installing LCTTs. • LCTTs more commonly were integrated with, rather than replaced, conventional technologies. • Expected reductions in domestic carbon emissions due to LCTTs may not be realised

  18. Drought Conditions Maximize the Impact of High-Frequency Flow Variations on Thermal Regimes and Biogeochemical Function in the Hyporheic Zone.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-01

    Anthropogenic activities, such as dam operations, often induce larger and more frequent stage fluctuations than those occurring in natural rivers. However, the long-term impact of such flow variations on thermal and biogeochemical dynamics of the associated hyporheic zone (HZ) is poorly understood. A heterogeneous, two-dimensional thermo-hydro-biogeochemical model revealed an important interaction between high-frequency flow variations and watershed-scale hydrology. High-frequency stage fluctuations had their strongest thermal and biogeochemical impacts when the mean river stage was low during fall and winter. An abnormally thin snowpack in 2015, however, created a low river stage during summer and early fall, whereby high frequency stage fluctuations caused the HZ to be warmer than usual. This study provided the scientific basis to assess the potential ecological consequences of the high-frequency flow variations in a regulated river, as well as guidance on how to maximize the potential benefits—or minimize the drawbacks—of river regulation to river ecosystems.

  19. Seismic activity and thermal regime of low temperature fumaroles at Mt. Vesuvius in 2004-2011: distinguishing among seismic, volcanic and hydrological signals

    Directory of Open Access Journals (Sweden)

    Paola Cusano

    2013-11-01

    Full Text Available Seismological, soil temperature and hydrological data from Mt. Vesuvius are collected to characterize the present-day activity of the volcanic/hydrothermal system and to detect possible unrest-related phenomena. We present patterns of seismicity and soil temperature in the crater area during the period February 2004-December 2011. The temporal distribution of number and depth of Volcano-Tectonic earthquakes and the energy release are considered. Hourly data of soil temperature have been acquired since January 2004 in different locations along the rim and within the crater. The observed changes of temperature are studied to establish a temporal-based correlation with the volcanic activity and/or with external forcing, as variations of the regional and local stress field acting on the volcano or meteorological phenomena. The comparison between seismic activity and temperature data highlights significant variations possibly related to changes in fluid circulation in the hydrothermal system of the volcano. The common continuous observations start just before a very shallow earthquake occurred in August 2005, which was preceded by a thermal anomaly. This coincidence has been interpreted as related to fluid-driven rock fracturing, as observed in other volcanoes. For the successive temporal patterns, the seismicity rate and energy release are characterized by slight variations accompanied by changes in temperature. This evidence of reactivity of the fumarole thermal field to seismic strain can be used to discriminate between tectonic and volcanic signals at Mt. Vesuvius.

  20. Influence of litter layer removal on the soil thermal regime of a pine forest in a mediterranean climate Influência da manta morta no regime térmico de um solo sob pinus num clima do tipo mediterrâneo

    Directory of Open Access Journals (Sweden)

    José Alexandre Varanda Andrade

    2010-10-01

    Full Text Available The removal of the litter layer in Portuguese pine forests would reduce fire hazard, but on the other hand this practice would influence the thermal regime of the soil, hence affecting soil biological activity, litter decomposition and nutrient dynamics. Temperature profiles of a sandy soil (Haplic Podzol under a pine forest were measured with thermocouples at depths to 16 cm, with and without litter layer. The litter layer acted as a thermal insulator, reducing the amplitude of the periodic temperature variation in the mineral soil underneath and increasing damping depths, particularly at low soil water contents. At the mineral soil surface the reduction of amplitudes was about 2.5 ºC in the annual cycle and 5 to 6.7 ºC in the daily cycle, depending on the soil water content. When soil was both cold and wet, mean daily soil temperatures were higher (about 1 - 1.5 ºC under the litter layer. Improved soil thermal conditions under the litter layer recommend its retention as a forest management practice to follow in general.A remoção da manta morta nos pinhais portugueses pode reduzir o risco de incêndio florestal, mas essa prática pode influenciar o regime térmico do solo, alterando dessa forma a atividade biológica, a decomposição da manta morta e a dinâmica de nutrientes. Num solo arenoso (Haplic Podzol sob pinus foram medidos perfis térmicos com termopares a várias profundidades até 16 cm, com ou sem manta morta. A manta morta atuou como um isolador térmico, reduzindo a amplitude da variação periódica da temperatura na camada de solo subjacente e aumentando as profundidades de amortecimento, sobretudo em teores baixos de umidade do solo. Na superfície do solo mineral a redução das amplitudes foi de cerca de 2,5 ºC no ciclo anual e de 5 a 6,7 ºC no ciclo diário, dependendo da umidade do solo. A manta morta aumentou em cerca de 1-1,5 ºC as temperaturas médias diárias do solo mineral quando este se encontrava mais frio

  1. Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads

    International Nuclear Information System (INIS)

    Bayat, Mehdi; Saleem, M.; Sahari, B.B.; Hamouda, A.M.S.; Mahdi, E.

    2009-01-01

    Rotating disks have many applications in the aerospace industry such as gas turbines and gears. These disks normally work under thermo mechanical loads. Minimizing the weight of such components can help reduce the overall payload in aerospace industry. For this purpose, a rotating functionally graded (FG) disk with variable thickness under a steady temperature field is considered in this paper. Thermo elastic solutions and the weight of the disk are related to the material grading index and the geometry of the disk. It is found that a disk with parabolic or hyperbolic convergent thickness profile has smaller stresses and displacements compared to a uniform thickness disk. Maximum radial stress due to centrifugal load in the solid disk with parabolic thickness profile may not be at the center unlike uniform thickness disk. Functionally graded disk with variable thickness has smaller stresses due to thermal load compared to those with uniform thickness. It is seen that for a given value of grading index, the FG disk having concave thickness profile is the lightest in weight whereas the FG disk with uniform thickness profile is the heaviest. Also for any given thickness profile, the weight of the FG disk lies in between the weights of the all-metal and the all-ceramic disks.

  2. Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant "Hanhikivi-1" on the local thermal regime

    Science.gov (United States)

    Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Eremina, Tatjana R.; Isaev, Alexey V.; Sein, Dmitry V.

    2017-04-01

    The results of the study aimed to assess the influence of future nuclear power plant Hanhikivi-1 upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.

  3. Variability of nutrient and thermal structure in surface waters between New Zealand and Antarctica, October 2004–January 2005

    Directory of Open Access Journals (Sweden)

    Alessandra Campanelli

    2011-04-01

    Full Text Available We describe the upper ocean thermal structure and surface nutrient concentrations between New Zealand and Antarctica along five transects that cross the Subantarctic Front, the Polar Front (PF and the southern Antarctic Circumpolar Current (ACC front. The surface water thermal structure is coupled with variations in surface nutrient concentrations, making water masses identifiable by both temperature and nutrient ranges. In particular, a strong latitudinal gradient in orthosilicate concentration is centred at the PF. On the earlier sections that extend south-west from the Campbell Plateau, orthosilicate increases sharply southward from 10–15 to 50–55 µmol l−1 between 58° S and 60° S, while surface temperature drops from 7°C to 2°C. Nitrate increases more regularly toward the south, with concentrations ranging from 10–12 µmol l−1 at 54° S to 25–30 µmol l−1 at 66° S. The same features are observed during the later transects between New Zealand and the Ross Sea, but the sharp silica and surface temperature gradients are shifted between 60° S and 64° S. Both temporal and spatial factors may influence the observed variability. The January transect suggests an uptake of silica, orthophosphate and nitrate between 63° S and 70° S over the intervening month, with an average depletion near 37%, 44% and 29%, respectively. An N/P (nitrite + nitrate/orthophosphate apparent drawdown ratio of 8.8±4.1 and an Si/N (silicic acid/nitrite + nitrate apparent drawdown ratio >1 suggest this depletion results from a seasonal diatom bloom. A southward movement of the oceanic fronts between New Zealand and the Ross Sea relative to prior measurements is consistent with reports of recent warming and changes in the ACC.

  4. Thermal and hydrodynamic variability within a gravel bar of an Alpine stream and its link to hyporheic carbon cycling

    Science.gov (United States)

    Boodoo, Kyle; Schelker, Jakob; Fasching, Christina; Ulseth, Amber; Battin, Tom

    2015-04-01

    In-stream bodies of fluvial sediment such as gravel bars (GB), form an active interface between streamwater and the adjacent groundwater body. The hydrodynamic exchange, that is, the varying contributions of different water sources to this mixing zone, control the GB physical and biogeochemical conditions, including water temperature, as well as nutrient and carbon availability, likely impacting carbon turnover. We present high frequency data for hydraulic head and water temperature in addition to event based measurements of electric conductivity, nutrients and dissolved organic carbon (DOC) concentration and composition within a GB of an Alpine cold water stream (Oberer Seebach, Austria) for a range of different flow conditions. The highest vertical temperature differences and hydraulic head variability occurred at the head and shoulder - largest raised area perpendicular to surface water flow (downwelling) and tail (upwelling) of the gravel bar. At baseflow, high spatial variability of temperature (up to 4° C difference among sites within the same horizontal plane) and hydraulic head was observed within the GB. In contrast, floods resulted in markedly lower overall hyporheic zone temperatures (average 2° C difference among sites within the same horizontal plane) and spatial hydraulic head variability, compared to baseflow conditions. Similarly, the relative difference between surface water and GB nutrient and DOC concentrations and the overall spatial variability within the GB decreased with increasing surface water discharge. For example, at baseflow surface water average DOC and nitrate (NO3) concentrations were 1.40 mgL-1and 810 μgL-1respectively, and 1.97 mgL-1 and 779 μgL-1 respectively at intermediate flow. Meanwhile, DOC and NO3 concentrations in the GB ranged from 1.40 - 3.60 mgL-1 and 150 - 950 μgL-1respectively during baseflow and 1.48 -2.25 mgL-1 and 560 -840 μgL-1 respectively during moderate flows. Furthermore, DOC and NH4 concentrations

  5. Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress

    Science.gov (United States)

    Wang, Jie; Russell, Bayden D.; Ding, Meng-Wen; Dong, Yun-Wei

    2018-05-01

    Understanding physiological responses of organisms to warming and ocean acidification is the first step towards predicting the potential population- and community-level ecological impacts of these stressors. Increasingly, physiological plasticity is being recognized as important for organisms to adapt to the changing microclimates. Here, we evaluate the importance of physiological plasticity for coping with ocean acidification and elevated temperature, and its variability among individuals, of the intertidal limpet Cellana toreuma from the same population in Xiamen. Limpets were collected from shaded mid-intertidal rock surfaces. They were acclimated under combinations of different pCO2 concentrations (400 and 1000 ppm, corresponding to a pH of 8.1 and 7.8) and temperatures (20 and 24 °C) in a short-term period (7 days), with the control conditions (20 °C and 400 ppm) representing the average annual temperature and present-day pCO2 level at the collection site. Heart rates (as a proxy for metabolic performance) and expression of genes encoding inducible and constitutive heat-shock proteins (hsp70 and hsc70) at different heat-shock temperatures (26, 30, 34, and 38 °C) were measured. Hsp70 and Hsc70 play important roles in protecting cells from heat stresses, but have different expression patterns, with Hsp70 significantly increased in expression during stress and Hsc70 constitutively expressed and only mildly induced during stress. Analysis of heart rate showed significantly higher temperature coefficients (Q10 rates) for limpets at 20 °C than at 24 °C and post-acclimation thermal sensitivity of limpets at 400 ppm was lower than at 1000 ppm. Expression of hsp70 linearly increased with the increasing heat-shock temperatures, with the largest slope occurring in limpets acclimated under a future scenario (24 °C and 1000 ppm pCO2). These results suggested that limpets showed increased sensitivity and stress response under future conditions. Furthermore, the

  6. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes.

    Science.gov (United States)

    Nizzoli, Daniele; Carraro, Elisa; Nigro, Valentina; Viaroli, Pierluigi

    2010-05-01

    We analyzed benthic fluxes of inorganic nitrogen, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) rates in hypolimnetic sediments of lowland lakes. Two neighbouring mesotrophic (Ca' Stanga; CS) and hypertrophic (Lago Verde; LV) lakes, which originated from sand and gravel mining, were considered. Lakes are affected by high nitrate loads (0.2-0.7 mM) and different organic loads. Oxygen consumption, dissolved inorganic carbon, methane and nitrogen fluxes, denitrification and DNRA were measured under summer thermal stratification and late winter overturn. Hypolimnetic sediments of CS were a net sink of dissolved inorganic nitrogen (-3.5 to -4.7 mmol m(-2)d(-1)) in both seasons due to high nitrate consumption. On the contrary, LV sediments turned from being a net sink during winter overturn (-3.5 mmol m(-2)d(-1)) to a net source of dissolved inorganic nitrogen under summer conditions (8.1 mmol m(-2)d(-1)), when significant ammonium regeneration was measured at the water-sediment interface. Benthic denitrification (0.7-4.1 mmol m(-2)d(-1)) accounted for up to 84-97% of total NO(3)(-) reduction and from 2 to 30% of carbon mineralization. It was mainly fuelled by water column nitrate. In CS, denitrification rates were similar in winter and in summer, while in LV summer rates were 4 times lower. DNRA rates were generally low in both lakes (0.07-0.12 mmol m(-2)d(-1)). An appreciable contribution of DNRA was only detected in the more reducing sediments of LV in summer (15% of total NO(3)(-) reduction), while during the same period only 3% of reduced NO(3)(-) was recycled into ammonium in CS. Under summer stratification benthic denitrification was mainly nitrate-limited due to nitrate depletion in hypolimnetic waters and parallel oxygen depletion, hampering nitrification. Organic enrichment and reducing conditions in the hypolimnetic sediment shifted nitrate reduction towards more pronounced DNRA, which resulted in the inorganic nitrogen recycling and

  7. Numerical analysis of unsteady 3D flow of Carreau nanofluid with variable thermal conductivity and heat source/sink

    Science.gov (United States)

    Irfan, M.; Khan, M.; Khan, W. A.

    Inspired by modern deeds of nanotechnology and nanoscience and their abundant applications in the field of science and engineering, we establish a mathematical relation for unsteady 3D forced convective flow of Carreau nanofluid over a bidirectional stretched surface. Heat transfer phenomena of Carreau nanofluid is inspected through the variable thermal conductivity and heat generation/absorption impact. Furthermore, this research paper presents a more convincing approach for heat and mass transfer phenomenon of nanoliquid by utilizing new mass flux condition. Practically, zero mass flux condition is more adequate because in this approach we assume nanoparticle amends itself accordingly on the boundaries. Now the features of Buongiorno's relation for Carreau nanofluid can be applied in a more efficient way. An appropriate transformation is vacant to alter the PDEs into ODEs and then tackled numerically by employing bvp4c scheme. The numerous consequence of scheming parameters on the Carreau nanoliquid velocity components, temperature and concentration fields are portrayed graphically and deliberated in detail. The numerical outcomes for local skin friction and the wall temperature gradient for nanoliquid are intended and vacant through tables. The outcomes conveyed here manifest that impact of Brownian motion parameter Nb on the rate of heat transfer for nanoliquids becomes negligible for the recently recommended revised relation. Addationally, for authentication of the present relation, the achieved results are distinguished with earlier research works in specific cases and marvelous agreement has been noted.

  8. Regime identification in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Giannone, L; Sips, A C C; Kardaun, O; Spreitler, F; Suttrop, W

    2004-01-01

    The ability to recognize the transition from the L-mode to the H-mode or from the H-mode to the improved H-mode reliably from a conveniently small number of measurements in real time is of increasing importance for machine control. Discriminant analysis has been applied to regime identification of plasma discharges in the ASDEX Upgrade tokamak. An observation consists of a set of plasma parameters averaged over a time slice in a discharge. The data set consists of all observations over different discharges and time slices. Discriminant analysis yields coefficients allowing the classification of a new observation. The results of a frequentist and a formal Bayesian approach to discriminant analysis are compared. With five plasma variables, a failure rate of 1.3% for predicting the L-mode and the H-mode confinement regime was achieved. With five plasma variables, a failure rate of 5.3% for predicting the H-mode and the improved H-mode confinement regime was achieved. The coefficients derived by discriminant analysis have been applied subsequently to discharges to illustrate the operation of regime identification in a real time control system

  9. Transforming Image-Objects into Multiscale Fields: A GEOBIA Approach to Mitigate Urban Microclimatic Variability within H-Res Thermal Infrared Airborne Flight-Lines

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-10-01

    Full Text Available In an effort to minimize complex urban microclimatic variability within high-resolution (H-Res airborne thermal infrared (TIR flight-lines, we describe the Thermal Urban Road Normalization (TURN algorithm, which is based on the idea of pseudo invariant features. By assuming a homogeneous road temperature within a TIR scene, we hypothesize that any variation observed in road temperature is the effect of local microclimatic variability. To model microclimatic variability, we define a road-object class (Road, compute the within-Road temperature variability, sample it at different spatial intervals (i.e., 10, 20, 50, and 100 m then interpolate samples over each flight-line to create an object-weighted variable temperature field (a TURN-surface. The optimal TURN-surface is then subtracted from the original TIR image, essentially creating a microclimate-free scene. Results at different sampling intervals are assessed based on their: (i ability to visually and statistically reduce overall scene variability and (ii computation speed. TURN is evaluated on three non-adjacent TABI-1800 flight-lines (~182 km2 that were acquired in 2012 at night over The City of Calgary, Alberta, Canada. TURN also meets a recent GEOBIA (Geospatial Object Based Image Analysis challenge by incorporating existing GIS vector objects within the GEOBIA workflow, rather than relying exclusively on segmentation methods.

  10. Análise espacial das condições térmicas do ambiente pré-ordenha de bovinos leiteiros sob regimes de climatização Spatial analysis of thermal conditions of the pre-milking dairy cattle under climatization regimes

    Directory of Open Access Journals (Sweden)

    Irenilson M. da Silva

    2012-08-01

    Full Text Available Propõe-se, com este trabalho, caracterizar a variabilidade espacial da temperatura do ar na sala de pré-ordenha a partir de diferentes tempos de operação do sistema de resfriamento adiabático evaporativo automatizado. A variável temperatura do ar foi registrada em 35 pontos equidistantes 1 m, na forma de malha, para o estudo da variabilidade espacial e a construção de mapas por krigagem. Foram considerados diferentes tempos de exposição dos animais a climatização no curral de espera, 20, 30, 40 min e controle (0 min. Por meio dos resultados obtidos foi possível verificar que o uso da geoestatística possibilitou definir áreas com diferentes variabilidades espaciais para temperatura do ar, definindo áreas específicas na sala de pré-ordenha que apresentaram valores acima do recomendado para o conforto térmico animal. O sistema de climatização garantiu melhor acondicionamento térmico no tempo de exposição de 40 min, obtendo temperatura média dentro da condição de conforto térmico para vacas em lactação.The objective of this study was to characterize the spatial variability of air temperature in pre-milking room for different operation times of the automated adiabatic evaporative cooling system. The air temperature was monitored at 35 points, in regular intervals of 1 m, as a grid, to study the spatial variability and construction of kriging maps. Different times of exposure of the animals to the cooling system in the waiting room (20, 30, 40 min and control - 0 min were considered. Through the results, it was observed that use of geostatistics enabled to define areas with different spatial variability for temperature, identifying specific areas in the pre-milking room that showed values above the recommended levels for the thermal comfort. The cooling system ensured the better thermal condition with the 40 min exposure, obtaining on average temperature within the thermal comfort condition for lactating cows.

  11. Impacts of variable thermal conductivity on stagnation point boundary layer flow past a Riga plate with variable thickness using generalized Fourier's law

    Science.gov (United States)

    Shah, S.; Hussain, S.; Sagheer, M.

    2018-06-01

    This article explores the problem of two-dimensional, laminar, steady and boundary layer stagnation point slip flow over a Riga plate. The incompressible upper-convected Maxwell fluid has been considered as a rheological fluid model. The heat transfer characteristics are investigated with generalized Fourier's law. The fluid thermal conductivity is assumed to be temperature dependent in this study. A system of partial differential equations governing the flow of an upper-convected Maxwell fluid, heat and mass transfer using generalized Fourier's law is developed. The main objective of the article is to inspect the impacts of pertinent physical parameters such as the stretching ratio parameter (0 ⩽ A ⩽ 0.3) , Deborah number (0 ⩽ β ⩽ 0.6) , thermal relaxation parameter (0 ⩽ γ ⩽ 0.5) , wall thickness parameter (0.1 ⩽ α ⩽ 3.5) , slip parameter (0 ⩽ R ⩽ 1.5) , thermal conductivity parameter (0.1 ⩽ δ ⩽ 1.0) and modified Hartmann number (0 ⩽ Q ⩽ 3) on the velocity and temperature profiles. Suitable local similarity transformations have been used to get a system of non-linear ODEs from the governing PDEs. The numerical solutions for the dimensionless velocity and temperature distributions have been achieved by employing an effective numerical method called the shooting method. It is seen that the velocity profile shows the reduction in the velocity for the higher values of viscoelastic parameter and the thermal relaxation parameter. In addition, to enhance the reliability at the maximum level of the obtained numerical results by shooting method, a MATLAB built-in solver bvp4c has also been utilized.

  12. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  13. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  14. A new method for testing thermal shock resistance properties of soapstone – Effects of microstructures and mineralogical variables

    Directory of Open Access Journals (Sweden)

    A. Huhta

    2016-09-01

    Full Text Available Soapstone industry utilizes different types of soapstone mainly as a construction material for fireplaces. In this application soapstone has to meet different temperature requirements in different parts of fireplaces. Mineralogical and structural information is needed for placing an appropriate type of soapstone in an appropriate position in the fireplace construction. This allows employment of higher temperatures resulting in more particulate-free combustion, which makes it possible for soapstone industry to develop more efficient and environmentally friendly fireplaces. Of many soapstone types, which differ from each other in their chemical composition and thermal properties, carbonate soapstone and its microstructural variations were investigated in this study. A new method was developed to measure thermal shock resistant of natural stones. By exposing carbonate soapstone samples of different textural types to rapid temperature changes, it was possible to determine the parameters that affect the capacity of the rock to resist thermal shock. The results indicate that the type of microtexture is an important factor in controlling the thermal shock resistance of carbonate soapstone. The soapstone samples with a high thermal shock resistance show deformation textures, such as crenulation cleavage and S/C mylonite. A strong negative correlation was observed between the thermal shock resistance and length of cleavage domains in foliated rocks. Also a slight elevation in the iron concentration of talc and magnesite was discovered to improve the thermal shock resistance of carbonate soapstone. Attention should especially be paid to the length and planarity of cleavage domains of spaced foliation.

  15. Experimental Determination of Effect of Variable Resistance on Lead ZirconateTitanate (PZT-5A4Eunder various Thermal and Frequency Conditions

    Directory of Open Access Journals (Sweden)

    Hassan Elahi

    2014-12-01

    Full Text Available A specially designed apparatus and circuit working on the principle of inverse piezoelectricity due to the effect of polarization was used to find the relationship between resistance and peak to peak voltage of Lead Zirconate Titanate (PZT-5A4E by shocking it at variable frequencies and at variable resistances under various thermal conditions within Curie temperature limit using equivalent circuit method. It was found that by increasing temperature, peak to peak voltage increases and similarly by increasing frequency, peak to peak voltage decreases and with the increase in resistance peak to peak voltage decreases.

  16. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope.

    Science.gov (United States)

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  17. Sustainable urban regime adjustments

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Jensen, Jens Stissing; Elle, Morten

    2013-01-01

    The endogenous agency that urban governments increasingly portray by making conscious and planned efforts to adjust the regimes they operate within is currently not well captured in transition studies. There is a need to acknowledge the ambiguity of regime enactment at the urban scale. This direc...

  18. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  19. Effect of input data variability on estimations of the equivalent constant temperature time for microbial inactivation by HTST and retort thermal processing.

    Science.gov (United States)

    Salgado, Diana; Torres, J Antonio; Welti-Chanes, Jorge; Velazquez, Gonzalo

    2011-08-01

    Consumer demand for food safety and quality improvements, combined with new regulations, requires determining the processor's confidence level that processes lowering safety risks while retaining quality will meet consumer expectations and regulatory requirements. Monte Carlo calculation procedures incorporate input data variability to obtain the statistical distribution of the output of prediction models. This advantage was used to analyze the survival risk of Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) and Clostridium botulinum spores in high-temperature short-time (HTST) milk and canned mushrooms, respectively. The results showed an estimated 68.4% probability that the 15 sec HTST process would not achieve at least 5 decimal reductions in M. paratuberculosis counts. Although estimates of the raw milk load of this pathogen are not available to estimate the probability of finding it in pasteurized milk, the wide range of the estimated decimal reductions, reflecting the variability of the experimental data available, should be a concern to dairy processors. Knowledge of the C. botulinum initial load and decimal thermal time variability was used to estimate an 8.5 min thermal process time at 110 °C for canned mushrooms reducing the risk to 10⁻⁹ spores/container with a 95% confidence. This value was substantially higher than the one estimated using average values (6.0 min) with an unacceptable 68.6% probability of missing the desired processing objective. Finally, the benefit of reducing the variability in initial load and decimal thermal time was confirmed, achieving a 26.3% reduction in processing time when standard deviation values were lowered by 90%. In spite of novel technologies, commercialized or under development, thermal processing continues to be the most reliable and cost-effective alternative to deliver safe foods. However, the severity of the process should be assessed to avoid under- and over

  20. Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation

    Science.gov (United States)

    M. Salem, A.; Rania, Fathy

    2012-05-01

    The effect of variable viscosity and thermal conductivity on steady magnetohydrodynamic (MHD) heat and mass transfer flow of viscous and incompressible fluid near a stagnation point towards a permeable stretching sheet embedded in a porous medium are presented, taking into account thermal radiation and internal heat genberation/absorbtion. The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing fundamental equations are first transformed into a system of ordinary differential equations using a scaling group of transformations and are solved numerically by using the fourth-order Rung—Kutta method with the shooting technique. A comparison with previously published work has been carried out and the results are found to be in good agreement. The results are analyzed for the effect of different physical parameters, such as the variable viscosity and thermal conductivity, the ratio of free stream velocity to stretching velocity, the magnetic field, the porosity, the radiation and suction/injection on the flow, and the heat and mass transfer characteristics. The results indicate that the inclusion of variable viscosity and thermal conductivity into the fluids of light and medium molecular weight is able to change the boundary-layer behavior for all values of the velocity ratio parameter λ except for λ = 1. In addition, the imposition of fluid suction increases both the rate of heat and mass transfer, whereas fluid injection shows the opposite effect.

  1. Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation

    International Nuclear Information System (INIS)

    Salem, A. M.; Fathy, Rania

    2012-01-01

    The effect of variable viscosity and thermal conductivity on steady magnetohydrodynamic (MHD) heat and mass transfer flow of viscous and incompressible fluid near a stagnation point towards a permeable stretching sheet embedded in a porous medium are presented, taking into account thermal radiation and internal heat genberation/absorbtion. The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing fundamental equations are first transformed into a system of ordinary differential equations using a scaling group of transformations and are solved numerically by using the fourth-order Rung—Kutta method with the shooting technique. A comparison with previously published work has been carried out and the results are found to be in good agreement. The results are analyzed for the effect of different physical parameters, such as the variable viscosity and thermal conductivity, the ratio of free stream velocity to stretching velocity, the magnetic field, the porosity, the radiation and suction/injection on the flow, and the heat and mass transfer characteristics. The results indicate that the inclusion of variable viscosity and thermal conductivity into the fluids of light and medium molecular weight is able to change the boundary-layer behavior for all values of the velocity ratio parameter λ except for λ = 1. In addition, the imposition of fluid suction increases both the rate of heat and mass transfer, whereas fluid injection shows the opposite effect. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Cloud regimes as phase transitions

    Science.gov (United States)

    Stechmann, Samuel; Hottovy, Scott

    2017-11-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes - open versus closed cells - fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells (POCs) as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. Similar viewpoints of deep convection and self-organized criticality will also be discussed. With these new conceptual viewpoints, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions. The research of S.N.S. is partially supported by a Sloan Research Fellowship, ONR Young Investigator Award N00014-12-1-0744, and ONR MURI Grant N00014-12-1-0912.

  3. Influence of curing regimes on compressive strength of ultra high

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  4. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope

    Czech Academy of Sciences Publication Activity Database

    Hanzelka, Pavel; Vonka, J.; Musilová, Věra

    2013-01-01

    Roč. 84, č. 8 (2013), 085103:1-6 ISSN 0034-6748 R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : Thermal conductiviy * Scanning tunneling microscope Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.584, year: 2013

  5. Water regime of steam power plants

    International Nuclear Information System (INIS)

    Oesz, Janos

    2011-01-01

    The water regime of water-steam thermal power plants (secondary side of pressurized water reactors (PWR); fossil-fired thermal power plants - referred to as steam power plants) has changed in the past 30 years, due to a shift from water chemistry to water regime approach. The article summarizes measures (that have been realised by chemists of NPP Paks) on which the secondary side of NPP Paks has become a high purity water-steam power plant and by which the water chemistry stress corrosion risk of heat transfer tubes in the VVER-440 steam generators was minimized. The measures can also be applied to the water regime of fossil-fired thermal power plants with super- and subcritical steam pressure. Based on the reliability analogue of PWR steam generators, water regime can be defined as the harmony of construction, material(s) and water chemistry, which needs to be provided in not only the steam generators (boiler) but in each heat exchanger of steam power plant: - Construction determines the processes of flow, heat and mass transfer and their local inequalities; - Material(s) determines the minimal rate of general corrosion and the sensitivity for local corrosion damage; - Water chemistry influences the general corrosion of material(s) and the corrosion products transport, as well as the formation of local corrosion environment. (orig.)

  6. The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs

    International Nuclear Information System (INIS)

    Sogut, Oguz Salim; Ust, Yasin; Sahin, Bahri

    2006-01-01

    A thermo-ecological performance analysis of an irreversible intercooled and regenerated closed Brayton heat engine exchanging heat with variable-temperature thermal reservoirs is presented. The effects of intercooling and regeneration are given special emphasis and investigated in detail. A comparative performance analysis considering the objective functions of an ecological coefficient of performance, an ecological function proposed by Angulo-Brown and power output is also carried out. The results indicate that the optimal total isentropic temperature ratio and intercooling isentropic temperature ratio at the maximum ecological coefficient of performance conditions (ECOP max ) are always less than those of at the maximum ecological function ( E-dot max ) and the maximum power output conditions ( W-dot max ) leading to a design that requires less investment cost. It is also concluded that a design at ECOP max conditions has the advantage of higher thermal efficiency and a lesser entropy generation rate, but at the cost of a slight power loss

  7. Influence of Variable Thermal Conductivity on MHD Boundary Layer Slip Flow of Ethylene-Glycol Based Cu Nanofluids over a Stretching Sheet with Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    N. Bhaskar Reddy

    2014-01-01

    Full Text Available An analysis is carried out to investigate the influence of variable thermal conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer flow of a nanofluid with Cu nanoparticles over a stretching sheet with convective boundary condition. Using similarity transformation, the governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations. Employing Runge-kutta fourth-order method along with shooting technique, the resultant system of equations is solved. The influence of various pertinent parameters such as nanofluid volume fraction parameter, the magnetic parameter, radiation parameter, thermal conductivity parameter, velocity slip parameter, Biot number, and suction or injection parameter on the velocity of the flow field and heat transfer characteristics is computed numerically and illustrated graphically. The present results are compared with the existing results for the case of regular fluid and found an excellent agreement.

  8. 'CANDLE' burnup regime after LWR regime

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Nagata, Akito

    2008-01-01

    CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) burnup strategy can derive many merits. From safety point of view, the change of excess reactivity along burnup is theoretically zero, and the core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. About 40% of natural or depleted uranium undergoes fission without the conventional reprocessing and enrichment. If the LWR produced energy of X Joules, the CANDLE reactor can produce about 50X Joules from the depleted uranium left at the enrichment facility for the LWR fuel. If we can say LWRs have produced energy sufficient for full 20 years, we can produce the energy for 1000 years by using the CANDLE reactors with depleted uranium. We need not mine any uranium ore, and do not need reprocessing facility. The burnup of spent fuel becomes 10 times. Therefore, the spent fuel amount per produced energy is also reduced to one-tenth. The details of the scenario of CANDLE burnup regime after LWR regime will be presented at the symposium. (author)

  9. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966-2015

    Science.gov (United States)

    Tomczyk, Arkadiusz M.; Szyga-Pluta, Katarzyna

    2018-03-01

    The aim of the study was to identify the thermal and precipitation conditions and their changes in the growing season in Poland in the years 1966-2015. Data on average daily air temperature and daily precipitation totals for 30 stations from the period of 1966-2015 were used. The data were obtained from the collections of the Institute of Meteorology and Water Management—National Research Institute. The growing season was defined as the period of average daily air temperature ≥ 5 °C. The mathematical formulas proposed by Gumiński (1948) were used to determine its start and end dates. In the growing season in Poland in the years 1966-2015, there were more significant changes in the thermal conditions than there were in the precipitation conditions. In terms of long-term trends over the study period, thermal conditions during the growing season are characterised by an increase in mean air temperature, an increase in the sum of air temperatures and an increasing occurrence of seasons classified as above-normal seasons. Precipitation conditions of the growing season show large temporal and spatial variations in precipitation and a predominance of normal conditions. The changes in precipitation were not statistically significant, except for Świnoujście.

  10. THE NON-THERMAL, TIME-VARIABLE RADIO EMISSION FROM Cyg OB2 no. 5: A WIND-COLLISION REGION

    International Nuclear Information System (INIS)

    Ortiz-Leon, Gisela N.; Loinard, Laurent; RodrIguez, Luis F.; Dzib, Sergio A.; Mioduszewski, Amy J.

    2011-01-01

    The radio emission from the well-studied massive stellar system Cyg OB2 no. 5 is known to fluctuate with a period of 6.7 years between a low-flux state, when the emission is entirely of free-free origin, and a high-flux state, when an additional non-thermal component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system and that of an unseen companion on a somewhat eccentric orbit with a 6.7 year period and a 5-10 mas semimajor axis. Together with the previously reported wind-collision region located about 0.''8 to the northeast of the contact binary, so far Cyg OB2 no. 5 appears to be the only multiple system known to harbor two radio-imaged wind-collision regions.

  11. A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyring nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape

    Science.gov (United States)

    Jamshed, Wasim; Aziz, Asim

    2018-06-01

    The efficiency of any nanofluid based thermal solar system depend on the thermophysical properties of the operating fluids, type and shape of nanoparticles, nanoparticles volumetric concentration in the base fluid and the geometry/length of the system in which fluid is flowing. The recent research in the field of thermal solar energy has been focused to increase the efficiency of solar thermal collector systems. In the present research a simplified mathematical model is studied for inclusion in the thermal solar systems with the aim to improve the overall efficiency of the system. The flow of Powell-Eyring nanofluid is induced by non-uniform stretching of porous horizontal surface with fluid occupying a space over the surface. The thermal conductivity of the nanofluid is to vary as a linear function of temperature and the thermal radiation is to travel a short distance in the optically thick nanofluid. Numerical scheme of Keller box is implemented on the system of nonlinear ordinary differential equations, which are resultant after application of similarity transformation to governing nonlinear partial differential equations. The impact of non dimensional physical parameters appearing in the system have been observed on velocity and temperature profiles along with the entropy of the system. The velocity gradient (skin friction coefficient) and the strength of convective heat exchange (Nusselt number) are also investigated.

  12. Neoclassical transport in ERS regime

    International Nuclear Information System (INIS)

    Lin, Z.; Tang, W.; Lee, W.W.

    1996-01-01

    The core ion thermal conductivity has been observed to fall below the standard neoclassical level in recent TFTR reversed magnetic shear discharges. Due to the combination of high central q and small local inverse aspect ratio, the ion poloidal gyroradius can be larger than the minor radius and comparable to the pressure gradient scale length in this ERS regime. It is then expected that finite orbit width effects play a key role in modifying the standard picture of neoclassical transport. Specifically, both the trapped particle fraction and the banana orbit width axe reduced by the finite minor radius and possibly by the pressure-gradient-driven radial electric field. In addition, the steep pressure gradient can generate neoclassical poloidal flows which, in turn, could reduce the particle and heat transports. Results from analytic estimates as well as those from full toroidal gyrokinetic neoclassical simulations will be presented

  13. THE INFLUENCED FLOW REGIMES

    Directory of Open Access Journals (Sweden)

    Gavril PANDI

    2011-03-01

    Full Text Available The influenced flow regimes. The presence and activities ofhumanity influences the uniform environmental system, and in this context, therivers water resources. In concordance with this, the natural runoff regime suffersbigger and deeper changes. The nature of these changes depending on the type anddegree of water uses. The multitude of the use cause different types of influence,whit different quantitative aspects. In the same time, the influences havequalitative connotations, too, regarding to the modifications of the yearly watervolume runoff. So the natural runoff regime is modified. After analyzing thedistribution laws of the monthly runoff, there have been differenced four types ofinfluenced runoff regimes. In the excess type the influenced runoff is bigger thanthe natural, continuously in the whole year. The deficient type is characterized byinverse rapports like the first type, in the whole year. In the sinusoidal type, theinfluenced runoff is smaller than the natural in the period when the water isretained in the lake reservoirs, and in the depletion period the situation inverts. Atthe irregular type the ratio between influenced and natural runoff is changeable ina random meaner monthly. The recognition of the influenced regime and the gradeof influence are necessary in the evaluation and analysis of the usable hydrologicalriver resources, in the flood defence activities, in the complex scheme of thehydrographic basins, in the environment design and so on.

  14. Variable viscosity and thermal conductivity effects on MHD flow and heat transfer in viscoelastic fluid over a stretching sheet

    International Nuclear Information System (INIS)

    Salem, Ahmed M.

    2007-01-01

    The problem of flow and heat transfer of an electrically conducting viscoelastic fluid over a continuously stretching sheet in the presence of a uniform magnetic field is analyzed for the case of power-law variation in the sheet temperature. The fluid viscosity and thermal conductivity are assumed to vary as a function of temperature. The basic equations comprising the balance laws of mass, linear momentum, and energy modified to include the electromagnetic force effect, the viscous dissipation, internal heat generation or absorption and work due to deformation are solved numerically

  15. Supply regimes in fisheries

    DEFF Research Database (Denmark)

    Nielsen, Max

    2006-01-01

    Supply in fisheries is traditionally known for its backward bending nature, owing to externalities in production. Such a supply regime, however, exist only for pure open access fisheries. Since most fisheries worldwide are neither pure open access, nor optimally managed, rather between the extremes......, the traditional understanding of supply regimes in fisheries needs modification. This paper identifies through a case study of the East Baltic cod fishery supply regimes in fisheries, taking alternative fisheries management schemes and mesh size limitations into account. An age-structured Beverton-Holt based bio......-economic supply model with mesh sizes is developed. It is found that in the presence of realistic management schemes, the supply curves are close to vertical in the relevant range. Also, the supply curve under open access with mesh size limitations is almost vertical in the relevant range, owing to constant...

  16. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: michele.sciacca@unipa.it [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: ant.sellitto@gmail.com [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: david.jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2014-07-04

    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  17. Performance analysis and optimization of radiating fins with a step change in thickness and variable thermal conductivity by homotopy perturbation method

    Science.gov (United States)

    Arslanturk, Cihat

    2011-02-01

    Although tapered fins transfer more rate of heat per unit volume, they are not found in every practical application because of the difficulty in manufacturing and fabrications. Therefore, there is a scope to modify the geometry of a constant thickness fin in view of the less difficulty in manufacturing and fabrication as well as betterment of heat transfer rate per unit volume of the fin material. For the better utilization of fin material, it is proposed a modified geometry of new fin with a step change in thickness (SF) in the literature. In the present paper, the homotopy perturbation method has been used to evaluate the temperature distribution within the straight radiating fins with a step change in thickness and variable thermal conductivity. The temperature profile has an abrupt change in the temperature gradient where the step change in thickness occurs and thermal conductivity parameter describing the variation of thermal conductivity has an important role on the temperature profile and the heat transfer rate. The optimum geometry which maximizes the heat transfer rate for a given fin volume has been found. The derived condition of optimality gives an open choice to the designer.

  18. An evaluation of the statistical variability in thermal expansion properties of steam generator tubesheet (SA-508) and tubing (Alloy-600TT)

    International Nuclear Information System (INIS)

    Riccardella, P.C.; Staples, J.F.; Kandra, J.T.

    2009-01-01

    Inspections of steam generator tubing are performed in U.S. PWRs as part of the Steam Generator Management Program. Westinghouse has recently completed a technical justification demonstrating that in steam generators with thermally treated Ni-Cr Alloy (Alloy 600TT) tubes that are hydraulically expanded into low alloy steel (SA-508) tubesheets, flaws in the region of the tubes below a certain distance from the top of the tubesheet, denoted H * , will not result in reactor coolant pressure boundary breach nor unacceptable primary-to-secondary leakage. This is because, even if a flaw in this region were to result in complete tube sever, if the length of undegraded tube in the tubesheet exceeds H*, neither operating nor accident loadings create sufficient pull-out forces to overcome the frictional forces between the tube and tubesheet. One key component of this technical justification is the differential thermal expansion between the tube and tubesheet, since a significant portion of the pullout strength of the hydraulically expanded tube-to-tubesheet joint is due to mechanical interference resulting from the larger expansion of the tubing relative to the tubesheet at a given temperature. To address this phenomenon, a detailed statistical evaluation of coefficient of thermal expansion (CTE) data for the tubesheet material (SA-508) and the tube material (thermally treated Alloy-600) was performed. Data used in the evaluation included existing test results obtained from a number of sources as well as extensive new laboratory data developed specifically for this purpose. The evaluation resulted in recommended statistical distributions of this property for the two materials including their means and probabilistic variability. In addition, it was determined that the CTE values reported in the ASME Code (Section II) represent reasonably conservative mean values for both the tubesheet and tubing material. (author)

  19. Effects of design variables predicted by a steady - state thermal performance analysis model of a loop heat pipe

    International Nuclear Information System (INIS)

    Jung, Eui Guk; Boo, Joon Hong

    2008-01-01

    This study deals with a mathematical modeling for the steady-state temperature characteristics of an entire loop heat pipe. The lumped layer model was applied to each node for temperature analysis. The flat type evaporator and condenser in the model had planar dimensions of 40 mm (W) x 50 mm (L). The wick material was a sintered metal and the working fluid was methanol. The molecular kinetic theory was employed to model the phase change phenomena in the evaporator and the condenser. Liquid-vapor interface configuration was expressed by the thin film theories available in the literature. Effects of design factors of loop heat pipe on the thermal performance were investigated by the modeling proposed in this study

  20. Cargo liability regimes

    Science.gov (United States)

    2001-01-01

    There are at present at least three international regimes of maritime cargo liability in force in different countries of the world - the original Hague rules (1924), the updated version known as the Hague-Visby rules (1968, further amended 1979), and...

  1. Trust in regulatory regimes

    NARCIS (Netherlands)

    Six, Frédérique; Verhoest, Koen

    2017-01-01

    Within political and administrative sciences generally, trust as a concept is contested, especially in the field of regulatory governance. This groundbreaking book is the first to systematically explore the role and dynamics of trust within regulatory regimes. Conceptualizing, mapping and analyzing

  2. East Asian welfare regime

    DEFF Research Database (Denmark)

    Abrahamson, Peter

    2017-01-01

    The paper asks if East Asian welfare regimes are still productivist and Confucian? And, have they developed public care policies? The literature is split on the first question but (mostly) confirmative on the second. Care has to a large, but insufficient extent, been rolled out in the region...

  3. International Food Regime

    Directory of Open Access Journals (Sweden)

    A. V. Malov

    2018-01-01

    Full Text Available The review article reveals the content of the concept of Food Regime, which is little-known in the Russian academic reference. The author monitored and codified the semantic dynamic of the terminological unit from its original interpretations to modern formulations based on the retrospective analysis. The rehabilitation of the academic merits of D. Puchala and R. Hopkins — authors who used the concept Food Regime for a few years before its universally recognized origin and official scientific debut, was accomplished with help of historical and comparative methods. The author implemented the method of ascension from the abstract to the concrete to demonstrating the classification of Food Regimes compiled on the basis of geopolitical interests in the sphere of international production, consumption, and distribution of foodstuffs. The characteristic features of historically formed Food Regime were described in the chronological order, as well as modern tendencies possessing reformist potential were identified. In particular, it has been established that the idea of Food Sovereignty (which is an alternative to the modern Corporate Food Regime is the subject for acute academic disputes. The discussion between P. McMichael P. and H. Bernstein devoted to the “peasant question” — mobilization frame of the Food Sovereignty strategy was analyzed using the secondary data processing method. Due to the critical analysis, the author comes to the conclusion that it is necessary to follow the principles of the Food Sovereignty strategy to prevent the catastrophic prospects associated with ecosystem degradation, accelerated erosion of soils, the complete disappearance of biodiversity and corporate autoc racy successfully. The author is convinced that the idea of Food Sovereignty can ward off energetic liberalization of nature, intensive privatization of life and rapid monetization of unconditioned human reflexes.

  4. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon

    Science.gov (United States)

    Sparks, Morgan M.; Westley, Peter A. H.; Falke, Jeffrey A.; Quinn, Thomas P.

    2017-01-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and amongtreatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could

  5. Floating Exchange Rate Regime

    OpenAIRE

    Quader, Syed Manzur

    2004-01-01

    In recent years, many developing countries having a history of high inflation, unfavorable balance of payment situation and a high level of foreign currencies denominated debt, have switched or are in the process of switching to a more flexible exchange rate regime. Therefore, the stability of the exchange rate and the dynamics of its volatility are more crucial than before to prevent financial crises and macroeconomic disturbances. This paper is designed to find out the reasons behind Bangla...

  6. Preparation and Characterization of a Small Library of Thermally-Labile End-Caps for Variable-Temperature Triggering of Self-Immolative Polymers.

    Science.gov (United States)

    Taimoory, S Maryamdokht; Sadraei, S Iraj; Fayoumi, Rose Anne; Nasri, Sarah; Revington, Matthew; Trant, John F

    2018-04-20

    The reaction between furans and maleimides has increasingly become a method of interest as its reversibility makes it a useful tool for applications ranging from self-healing materials, to self-immolative polymers, to hydrogels for cell culture and for the preparation of bone repair. However, most of these applications have relied on simple monosubstituted furans and simple maleimides and have not extensively evaluated the potential thermal variability inherent in the process that is achievable through simple substrate modification. A small library of cycloadducts suitable for the above applications was prepared, and the temperature dependence of the retro-Diels-Alder processes was determined through in situ 1 H NMR analyses complemented by computational calculations. The practical range of the reported systems ranges from 40 to >110 °C. The cycloreversion reactions are more complex than would be expected based on simple trends expected based on frontier molecular orbital analyses of the materials.

  7. Operational analysis of the coupling between a multi-effect distillation unit with thermal vapor compression and a Rankine cycle power block using variable nozzle thermocompressors

    International Nuclear Information System (INIS)

    Ortega-Delgado, Bartolomé; Cornali, Matteo; Palenzuela, Patricia; Alarcón-Padilla, Diego C.

    2017-01-01

    Highlights: •Variable nozzle steam ejectors are used for operation flexibility of MED plants. •The power block breaking points have been investigated by simulations in Thermoflex. •An operational model of the MED-TVC process is developed for part load operation. •Efficiency and fresh water production are studied at nominal and partial loads. -- Abstract: In Multi-Effect Distillation with Thermal Vapor Compression (MED-TVC) plants, fixed steam ejectors are usually designed for constant motive steam pressures. When these distillation units are integrated into Concentrating Solar Power (CSP) plants, the available motive steam pressure is normally lower than the design value (due to the partial load operation of the power cycle under different solar radiation conditions), being the efficiency of the steam ejectors drastically reduced. Also, it has a negative impact on the fresh water production from the desalination plant because of a decrease in the mass flow of the motive steam. All this can be avoided by using variable nozzle steam ejectors, which can adjust the mass flow rate of steam according to the variable pressure so that they are always operating with the maximum efficiency and therefore they can maintain the freshwater production of the desalination plant near to the nominal value. This work presents a study of the coupling between CSP plants and MED-TVC units using variable nozzle steam ejectors in a wide range of operating conditions (on and off-design). For this purpose, simulations of a Rankine cycle power block in a typical commercial CSP plant have been firstly performed at different thermal loads to investigate the operational limits that allow keeping the motive steam mass flow rates constant. Then, the efficiency and fresh water production of an MED-TVC unit coupled to the different extractions available at the CSP plant have been studied in a wide range of operating conditions, covering both nominal and partial loads. To this end, an

  8. Variability in climate and productivity during the Paleocene-Eocene Thermal Maximum in the western Tethys (Forada section)

    Science.gov (United States)

    Giusberti, L.; Boscolo Galazzo, F.; Thomas, E.

    2016-02-01

    The Forada section (northeastern Italy) provides a continuous, expanded deep-sea record of the Paleocene-Eocene Thermal Maximum (PETM) in the central-western Tethys. We combine a new, high-resolution, benthic foraminiferal assemblage record with published calcareous plankton, mineralogical and biomarker data to document climatic and environmental changes across the PETM, highlighting the benthic foraminiferal extinction event (BEE). The onset of the PETM, occurring ˜ 30 kyr after a precursor event, is marked by a thin, black, barren clay layer, possibly representing a brief pulse of anoxia and carbonate dissolution. The BEE occurred within the 10 cm interval including this layer. During the first 3.5 kyr of the PETM, several agglutinated recolonizing taxa show rapid species turnover, indicating a highly unstable, CaCO3-corrosive environment. Calcareous taxa reappeared after this interval, and the next ˜9 kyr were characterized by rapid alternation of peaks in abundance of various calcareous and agglutinated recolonizers. These observations suggest that synergistic stressors, including deepwater CaCO3 corrosiveness, low oxygenation, and high environmental instability caused the extinction. Combined faunal and biomarker data (BIT index, higher plant n-alkane average chain length) and the high abundance of the mineral chlorite suggest that erosion and weathering increased strongly at the onset of the PETM, due to an overall wet climate with invigorated hydrological cycle, which led to storm flood events carrying massive sediment discharge into the Belluno Basin. This interval was followed by the core of the PETM, characterized by four precessionally paced cycles in CaCO3 %, hematite %, δ13C, abundant occurrence of opportunistic benthic foraminiferal taxa, and calcareous nannofossil and planktonic foraminiferal taxa typical of high-productivity environments, radiolarians, and lower δDn-alkanes. We interpret these cycles as reflecting alternation between an overall

  9. Benthic foraminifera at the Paleocene/Eocene thermal maximum in the western Tethys (Forada section): variability in climate and productivity

    Science.gov (United States)

    Giusberti, L.; Boscolo Galazzo, F.; Thomas, E.

    2015-09-01

    The Forada section (northeastern Italy) provides a continuous, expanded deep-sea record of the Paleocene/Eocene thermal maximum (PETM) in the central-western Tethys. We combine a new, high resolution, benthic foraminiferal assemblage record with published calcareous plankton, mineralogical and biomarker data to document climatic and environmental changes across the PETM, highlighting the benthic foraminiferal extinction event (BEE). The onset of the PETM, occurring ~ 30 kyr after a precursor event, is marked by a thin, black, barren clay layer, possibly representing a brief pulse of anoxia and carbonate dissolution. The BEE occurred within the 10 cm interval including this layer. During the first 3.5 kyr of the PETM several agglutinated recolonizing taxa show rapid species turnover, indicating a highly unstable, CaCO3-corrosive environment. Calcareous taxa reappeared after this interval, and the next ~ 9 kyr were characterized by rapid alternation of peaks in abundance of various calcareous and agglutinant recolonizers. These observations suggest that synergistic stressors including deep water CaCO3-corrosiveness, low oxygenation, and high environmental instability caused the extinction. Combined faunal and biomarker data (BIT index, higher plant n-alkane average chain length) and the high abundance of the mineral chlorite suggest that erosion and weathering increased strongly at the onset of the PETM, due to an overall wet climate with invigorated hydrological cycle, which led to storm flood-events carrying massive sediment discharge into the Belluno Basin. This interval was followed by the core of the PETM, characterized by four precessionally paced cycles in CaCO3%, hematite%, δ13C, abundant occurrence of opportunistic benthic foraminiferal taxa, as well as calcareous nannofossil and planktonic foraminiferal taxa typical of high productivity environments, radiolarians, and lower δDn-alkanes. We interpret these cycles as reflecting alternation between an

  10. Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation

    OpenAIRE

    Kiverin, A. D.; Kassoy, D. R.; Ivanov, M. F.; Liberman, M. A.

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source, and the size of the hot spot. The main parameters which define regimes of the combustion wave...

  11. Numerical modeling of the autumnal thermal bar

    Science.gov (United States)

    Tsydenov, Bair O.

    2018-03-01

    The autumnal riverine thermal bar of Kamloops Lake has been simulated using atmospheric data from December 1, 2015, to January 4, 2016. The nonhydrostatic 2.5D mathematical model developed takes into account the diurnal variability of the heat fluxes and wind on the lake surface. The average values for shortwave and longwave radiation and latent and sensible heat fluxes were 19.7 W/m2, - 95.9 W/m2, - 11.8 W/m2, and - 32.0 W/m2 respectively. Analysis of the wind regime data showed prevailing easterly winds and maximum speed of 11 m/s on the 8th and 19th days. Numerical experiments with different boundary conditions at the lake surface were conducted to evaluate effects of variable heat flux and wind stress. The results of modeling demonstrated that the variable heat flux affects the process of thermal bar evolution, especially during the lengthy night cooling. However, the wind had the greatest impact on the behavior of the autumnal thermal bar: The easterly winds contributed to an earlier appearance of the thermal bar, but the strong winds generating the intensive circulations (the velocity of the upper lake flow increased to 6 cm/s) may destroy the thermal bar front.

  12. Weather and Tourism: Thermal Comfort and Zoological Park Visitor Attendance

    Directory of Open Access Journals (Sweden)

    David R. Perkins

    2016-03-01

    Full Text Available Weather events have the potential to greatly impact business operations and profitability, especially in outdoor-oriented economic sectors such as Tourism, Recreation, and Leisure (TRL. Although a substantive body of work focuses on the macroscale impacts of climate change, less is known about how daily weather events influence attendance decisions, particularly relating to the physiological thermal comfort levels of each visitor. To address this imbalance, this paper focuses on ambient thermal environments and visitor behavior at the Phoenix and Atlanta zoos. Daily visitor attendances at each zoo from September 2001 to June 2011, were paired with the Physiologically Equivalent Temperature (PET to help measure the thermal conditions most likely experienced by zoo visitors. PET was calculated using hourly atmospheric variables of temperature, humidity, wind speed, and cloud cover from 7 a.m. to 7 p.m. at each zoological park location and then classified based on thermal comfort categories established by the American Society of Heating and Air Conditioning Engineers (ASHRAE. The major findings suggested that in both Phoenix and Atlanta, optimal thermal regimes for peak attendance occurred within “slightly warm” and “warm” PET-based thermal categories. Additionally, visitors seemed to be averse to the most commonly occurring thermal extreme since visitors appeared to avoid the zoo on excessively hot days in Phoenix and excessively cold days in Atlanta. Finally, changes in the daily weather impacted visitor attendance as both zoos experienced peak attendance on days with dynamic changes in the thermal regimes and depressed attendances on days with stagnant thermal regimes. Building a better understanding of how weather events impact visitor demand can help improve our assessments of the potential impacts future climate change may have on tourism.

  13. Supersonic free jet, molecular free regime

    International Nuclear Information System (INIS)

    Sanna, G.; Tomassetti, G.

    1999-01-01

    The structure of the free jet emitted by a converging nozzle as obtained by the method of characteristics by Ashkenas and Sherman is described in details. In particular the dependence of the field variable by the distance from the nozzle is given. The transition from continuum to molecular free regime is then considered and the sudden freeze approximation is introduced. The processing of monoatomic and polyatomic gasses is also considered [it

  14. Dynamic Regime of Ignition of Solid Propellant

    Directory of Open Access Journals (Sweden)

    Zolotorev Nikolay

    2016-01-01

    Full Text Available This article presents a dynamic regime of exposure of the radiant flux on the sample of gun-cotton. Obtained time the ignition of gun-cotton in the heating conditions of increasing heat flux in the range from 0.2 W/cm2 to 22 W/cm2. A comparison of the delay times of the ignition when heated variable and constant heat flux.

  15. REGIME SWITCHING DETERMINANTS OF SOVEREIGN CDS SPREADS: EVIDENCE FROM TURKEY

    Directory of Open Access Journals (Sweden)

    Umurcan Polat

    2017-12-01

    Full Text Available In this study, it is assessed the main determinants of sovereign CDS spreads in Turkey from January 2006 to December 2015. Before delving into the nonlinear Markov regime-switching model estimation, a conventional one-state linear model is estimated answering to what extent the sovereign credit risk is affected in between global and country-specific market variables and by credit ratings announcement changes. In broad strokes, the regime-switching analysis reveals that among domestic variables, it is the foreign exchange rate that affects the sovereign credit risk more in more volatile periods and among global variables, the indicators standing for global volatility risk premiums and international liquidity primarily influence the changes in the sovereign CDS spread in turbulent regimes whereas proxies for global risk free rate are significant more in tranquil regimes.

  16. Study and optimization of operating regimes of NPP district heating system

    International Nuclear Information System (INIS)

    Bunin, V.S.; Vasil'ev, M.K.; Kudryavtsev, A.A.; Gorbashev, Yu.B.; Gadzhij, V.M.

    1980-01-01

    Thermal tests of the system with two reactors and four turbines have been carried out for the purpose of verification of operating regimes of the NPP district heating system with boiling single-curcuit RBMK-1000 reactors and K-500-65/3000 turbines. The system is designed for heat supply of habitable settlement and industrial site. The data processing have been carried out by the BESM-6 computer representing distributions of heat flow, steam, water and their parameters and determining the main energy indices of the system. Calculations of the system operating regime variables during the year have been carried out with the help of this program. It has been expected that the system provided heat consumption of 232 MW at calculated regime of thermal loading of the district, temperature regime of the system water of 130/170 deg C, relative load of hot water supply of 0.2 and duration of heating period of 4800 h. Calculations demonstrated that distric heat supply by NPP allowed one to supplant about 85 thous. of reference fuel/year of organic fuel. About 63 thous. of reference fuel/year are required for compensation of decrease of electric energy production in a condensation cycle. It has been also shown, that replacing the four-stroke system heaters by one-stroke heaters permits to drop system water underheating 1.5 times and, respectively, electric energy underproduction to 72 mln Mj (20 mln, kWxh). It produces additional economy of 6.6 thous. reference fuel/year. Calculations of its heat system have been conducted in order to determine the influence of water consumption in an intermediate circuit on the system efficiency. It has been shown that with the increase of water consumption energy power losses decrease. Thus, the above studied have demonstrated that the use of the single-circuit NPP district heating systems leads to considerable economy of fuel

  17. Characteristics of regulatory regimes

    Directory of Open Access Journals (Sweden)

    Noralv Veggeland

    2013-03-01

    Full Text Available The overarching theme of this paper is institutional analysis of basic characteristics of regulatory regimes. The concepts of path dependence and administrative traditions are used throughout. Self-reinforcing or positive feedback processes in political systems represent a basic framework. The empirical point of departure is the EU public procurement directive linked to OECD data concerning use of outsourcing among member states. The question is asked: What has caused the Nordic countries, traditionally not belonging to the Anglo-Saxon market-centred administrative tradition, to be placed so high on the ranking as users of the Market-Type Mechanism (MTM of outsourcing in the public sector vs. in-house provision of services? A thesis is that the reason may be complex, but might be found in an innovative Scandinavian regulatory approach rooted in the Nordic model.

  18. European welfare regimes: Political orientations versus poverty

    Directory of Open Access Journals (Sweden)

    Josifidis Kosta

    2011-01-01

    Full Text Available This inquiry analyzes how political orientations shape welfare states and labour market institutions when seeking to reduce poverty. In order to identify effects of these two key variables, we conduct a panel regression analysis that includes two poverty measures: poverty rates before and after social spending. This inquiry considers 14 EU countries, and in the period from 1995 to 2008, which are grouped according to welfare state regimes. We consider Social Democratic, Corporatist, Mediterranean and Liberal welfare state regimes. Panel regression results indicate that political orientation engenders no significant statistically measurable effects on poverty rates before social spending. Effects register, however, as significant when considering poverty rates after social spending. With respect to the first set of results, we advance two key explanations. First, we note a longer period of time is necessary in order to observe actual effects of political orientation on market generated poverty. Second, political parties with their respective programs do not register as influential enough to solve social problems related to income distribution when taken alone. Influences register as indirect and are expressed through changes in employment rates and social spending. The second set of results support the hypothesis that a selected political regime does indeed contribute to poverty reduction. In sum, political orientation and political regime does indeed affect poverty through welfare state institutions, as well as through labour market institutions.

  19. Simulating the transient regime for main condensate system at Cernavoda NPP

    International Nuclear Information System (INIS)

    Nita, Iulian; Gheorghiu, Mihai; Prisecaru, Ilie; Dupleac, Daniel

    2005-01-01

    The purpose of this project is to make a Thermal Hydraulic Analysis of Main Condensate System for getting real-time answer of installation during regimes occurring during normal and abnormal operation. To obtain the analyses the MMS code was used. The boundaries of the systems analysis are extended to Main Feedwater System in order to get a realistic response of Deaerator equipment which are situated between those two systems and have entrances from both systems. In this way we made a complex analysis with main condenser and steam generators as boundaries. We obtained a model for the entire chain of condensate and feedwater preheater with interface just turbine bleed steam. From that we could reduce the number of assumptions necessary to make the analysis. The analyses consist in hydraulics and thermal hydraulics analyses, respectively. For the first case analysed are: - the nominal operation regime with main condensate pumps; - start-up regime with total circulate of condensate to condenser; - 25% MCR (Maximum Continuous Rate) regime (this regime was used in designing the condensate regulating valves at low flow; - 40% MCR regime (with circulate of some condensate flow to condenser); - operating regime of 60% MCR with one main condensate pump operating; - operating regime with auxiliary condensate pump; - operating regime with discharging a condensate flow to condensate storage tank. The thermal hydraulic analyses deal with normal and abnormal operating regimes, respectively. In the first case analysed are the following regimes: - nominal operating regime with main condensate pump operating 100% MCR; - transient regime, 100-80% MCR; - transient regime, 100-80-60% MCR with two pumps in operation and 60 % MCR with one main condensate pump in operation; - transient regime, 100-80-60-60-40 % MCR; - shut-down regime; - start-up regime from Hot zero power to rated power regime. Finally, for the abnormal operating regimes the analyses concerned: - transient regime 100

  20. Inter-Seasonal and Annual Co-Variation of Smallholder Production Portfolios, Volumes and Incomes with Rainfall and Flood Levels in the Amazon Estuary: Implications for Building Livelihood Resilience to Increasing Variability of Hydro-Climatic Regimes

    Science.gov (United States)

    Vogt, N. D.; Fernandes, K.; Pinedo-Vasquez, M.; Brondizio, E. S.; Almeida, O.; Rivero, S.; Rabelo, F. R.; Dou, Y.; Deadman, P.

    2014-12-01

    In this paper we investigate inter-seasonal and annual co-variations of rainfall and flood levels with Caboclo production portfolios, and proportions of it they sell and consume, in the Amazon Estuary from August 2012 to August 2014. Caboclos of the estuary maintain a diverse and flexible land-use portfolio, with a shift in dominant use from agriculture to agroforestry and forestry since WWII (Vogt et al., 2014). The current landscape is configured for acai, shrimp and fish production. In the last decade the frequency of wet seasons with anomalous flood levels and duration has increased primarily from changes in rainfall and discharge from upstream basins. Local rainfall, though with less influence on extreme estuarine flood levels, is reported to be more sporadic and intense in wet season and variable in both wet and dry seasons, for yet unknown reasons. The current production portfolio and its flexibility are felt to build resilience to these increases in hydro-climatic variability and extreme events. What is less understood, for time and costliness of daily measures at household levels, is how variations in flood and rainfall levels affect shifts in the current production portfolio of estuarine Caboclos, and the proportions of it they sell and consume. This is needed to identify what local hydro-climatic thresholds are extreme for current livelihoods, that is, that most adversely affect food security and income levels. It is also needed identify the large-scale forcings driving those extreme conditions to build forecasts for when they will occur. Here we present results of production, rainfall and flood data collected daily in households from both the North and South Channel of the Amazon estuary over last two years to identify how they co-vary, and robustness of current production portfolio under different hydro-climatic conditions.

  1. Static converters power supply: transient regimes; Alimentation par convertisseurs statiques: regimes transitoires

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, G. [Ecole Superieure d`Electricite (France)

    1997-08-01

    Direct current motors, asynchronous and variable speed synchronous motors are generally supplied with static converters. Speed variation is obtained by voltage variation in DC motors and by frequency variation in AC motors. In these conditions, these motors are running continuously in transient regimes: the DC motors current is not direct and the AC motors current is not sinusoidal. This situation leads to pulsing couples in the shaft line and to an increase of Joule effect losses. The aim of this paper is to present the methods of study of the electric motors functioning using the shape of the power voltages given by converters and mathematical models of these machines. The synchronous machines are rapidly described while the asynchronous machines are studied using Ku`s transformation instead of Park`s transformation for simplification. For each type of machine, calculation methods allow to determine their current, additional losses and couple characteristics. The transient regimes considered are those remaining when the motor is running at a constant speed and defined regime (supply voltages are periodical functions of time). These transient regimes are identically reproducing with a frequency which is a multiple of the converters supply frequency. Transient regimes due to functioning changes of the motor, such as resisting couple or power supply frequency variations, are not considered in this study. (J.S.) 9 refs.

  2. Dune growth under multidirectional wind regimes

    Science.gov (United States)

    Gadal, C.; Rozier, O.; Claudin, P.; Courrech Du Pont, S.; Narteau, C.

    2017-12-01

    Under unidirectional wind regimes, flat sand beds become unstable to produce periodic linear dunes, commonly called transverse dunes because their main ridges are oriented perpendicular to the air flow. In areas of low sediment availability, the same interactions between flow, transport and topography produce barchan dunes, isolated sand-pile migrating over long distances with a characteristic crescentic shape. For the last fifteen years, barchan dunes and the instability at the origin of transverse dunes have been the subject of numerous studies that have identified a set of characteristic length and time scales with respect to the physical properties of both grains and fluid. This is not the case for dunes developing under multidirectional wind regimes. Under these conditions, dune orientation is measured with respect to the direction of the resultant sand flux. Depending on the wind regime, dunes do not always line up perpendicularly to the resultant sand flux, but can also be at an oblique angle or even parallel to it. These oblique and longitudinal dunes are ubiquitous in all deserts on Earth and planetary bodies because of the seasonal variability of wind orientation. They are however poorly constrained by observations and there is still no complete theoretical framework providing a description of their orientation and initial wavelength. Here, we extend the linear stability analysis of a flat sand of bed done in two dimensions for a unidirectional flow to three dimensions and multidirectional flow regimes. We are able to recover transitions from transverse to oblique or longitudinal dune patterns according to changes in wind regimes. We besides give a prediction for the initial dune wavelength. Our results compare well to previous theory of dune orientation and to field, experimental and numerical data.

  3. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected

  4. JT-60U high performance regimes

    International Nuclear Information System (INIS)

    Ishida, S.

    1999-01-01

    High performance regimes of JT-60U plasmas are presented with an emphasis upon the results from the use of a semi-closed pumped divertor with W-shaped geometry. Plasma performance in transient and quasi steady states has been significantly improved in reversed shear and high- βp regimes. The reversed shear regime elevated an equivalent Q DT eq transiently up to 1.25 (n D (0)τ E T i (0)=8.6x10 20 m-3·s·keV) in a reactor-relevant thermonuclear dominant regime. Long sustainment of enhanced confinement with internal transport barriers (ITBs) with a fully non-inductive current drive in a reversed shear discharge was successfully demonstrated with LH wave injection. Performance sustainment has been extended in the high- bp regime with a high triangularity achieving a long sustainment of plasma conditions equivalent to Q DT eq ∼0.16 (n D (0)τ E T i (0)∼1.4x10 20 m -3 ·s·keV) for ∼4.5 s with a large non-inductive current drive fraction of 60-70% of the plasma current. Thermal and particle transport analyses show significant reduction of thermal and particle diffusivities around ITB resulting in a strong Er shear in the ITB region. The W-shaped divertor is effective for He ash exhaust demonstrating steady exhaust capability of τ He */τ E ∼3-10 in support of ITER. Suppression of neutral back flow and chemical sputtering effect have been observed while MARFE onset density is rather decreased. Negative-ion based neutral beam injection (N-NBI) experiments have created a clear H-mode transition. Enhanced ionization cross- section due to multi-step ionization processes was confirmed as theoretically predicted. A current density profile driven by N-NBI is measured in a good agreement with theoretical prediction. N-NBI induced TAE modes characterized as persistent and bursting oscillations have been observed from a low hot beta of h >∼0.1-0.2% without a significant loss of fast ions. (author)

  5. Water-chemical regime of a fast reactor ower complex

    International Nuclear Information System (INIS)

    Musikhin, R.N.; Piskunov, E.M.; Samarkin, A.A.; Yurchenko, D.S.

    1983-01-01

    Some peculiarities of water-chemical regime of a power compleX in Shevchenko are considered. The complex comprises a desalination unit, a gas-masout heating-and-power plant and the BN-350 reactor. The compleX is used for the production of electric and thermal energy and fresh water. The power complex peculiarity is the utilization of disalinated seawater in a technological cycle along with highly mineralized seawater with a total salt content of 13.5 g/l (for cooling) in heat exchanges. A regime of ammoniacal correction of feed water was used as a basic water-chemical regime in the initial period of the BN-350 steam generator operation. Deposits composed mainly of iron oxide slime were observed on steam generator surfaces during the operation under these conditions. A conclusion is made that the regime with chelating agent providing steam generator safe operation without chemical cleaning is the most expedient one

  6. The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream

    Directory of Open Access Journals (Sweden)

    I. A. Malcolm

    2004-01-01

    Full Text Available The spatio-temporal variability of stream water temperatures was investigated at six locations on the Girnock Burn (30km2 catchment, Cairngorms, Scotland over three hydrological years between 1998 and 2002. The key site-specific factors affecting the hydrology and climatology of the sampling points were investigated as a basis for physical process inference. Particular emphasis was placed on assessing the effects of riparian forest in the lower catchment versus the heather moorland riparian zones that are spatially dominant in the upper catchment. The findings were related to river heat budget studies that provided process detail. Gross changes in stream temperature were affected by the annual cycle of incoming solar radiation and seasonal changes in hydrological and climatological conditions. Inter-annual variation in these controlling variables resulted in inter-annual variability in thermal regime. However, more subtle inter-site differences reflected the impact of site-specific characteristics on various components of the river energy budget. Inter-site variability was most apparent at shorter time scales, during the summer months and for higher stream temperatures. Riparian woodland in the lower catchment had a substantial impact on thermal regime, reducing diel variability (over a period of 24 hours and temperature extremes. Observed inter-site differences are likely to have a substantial effect on freshwater ecology in general and salmonid fish in particular. Keywords: temperature, thermal regime, forest, salmon, hydrology, Girnock Burn, Cairngorm

  7. Optical and Hall conductivities of a thermally disordered two-dimensional spin-density wave: two-particle response in the pseudogap regime of electron-doped high-Tc superconductors

    International Nuclear Information System (INIS)

    Lin, J.; Millis, A.J.

    2011-01-01

    We calculate the frequency-dependent longitudinal (σ xx ) and Hall (σ xy ) conductivities for two-dimensional metals with thermally disordered antiferromagnetism using a generalization of a theoretical model, involving a one-loop quasistatic fluctuation approximation, which was previously used to calculate the electron self-energy. The conductivities are calculated from the Kubo formula, with current vertex function treated in a conserving approximation satisfying the Ward identity. In order to obtain a finite dc limit, we introduce phenomenologically impurity scattering, characterized by a relaxation time τ. σ xx ((Omega)) satisfies the f-sum rule. For the infinitely peaked spin-correlation function, χ(q)∝(delta)(q-Q), we recover the expressions for the conductivities in the mean-field theory of the ordered state. When the spin-correlation length ζ is large but finite, both σ xx and σ xy show behaviors characteristic of the state with long-range order. The calculation runs into difficulty for (Omega) ∼ xx ((Omega)) and σ xy ((Omega)) are qualitatively consistent with data on electron-doped cuprates when (Omega) > 1/τ.

  8. Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant ''Hanhikivi-1'' on the local thermal regime

    Energy Technology Data Exchange (ETDEWEB)

    Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Isaev, Alexey V. [Russian Academy of Sciences, St. Petersburg (Russian Federation). P.P. Shirshov Inst. of Oceanology; Eremina, Tatjana R. [Russian State Hydrometeorological Univ., St. Petersburg (Russian Federation); Sein, Dmitry V. [Helmholtz Centre for Polar and Marine Research, Bremerhaven (Germany). Alfred Wegener Inst.

    2017-07-01

    The results of the study aimed to assess the influence of future nuclear power plant ''Hanhikivi-1'' upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.

  9. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    International Nuclear Information System (INIS)

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-01-01

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime

  10. Predicted median July stream/river temperature regime in New England

    Data.gov (United States)

    U.S. Environmental Protection Agency — This shapefile includes the predicted thermal regime for all NHDPlus version 1 stream and river reaches in New England within the model domain based on the spatial...

  11. Manipulating continuous variable photonic entanglement

    International Nuclear Information System (INIS)

    Plenio, M.B.

    2005-01-01

    I will review our work on photonic entanglement in the continuous variable regime including both Gaussian and non-Gaussian states. The feasibility and efficiency of various entanglement purification protocols are discussed this context. (author)

  12. Current US nuclear liability regime

    International Nuclear Information System (INIS)

    Brown, O.F.

    2000-01-01

    The Price-Anderson Act Adopted by US Congress in 1957 as the world's first national nuclear liability regime. It is a comprehensive, complicated and unique system and stems from special features of US legal regime and federal system of government. It differs from other systems by providing for 'economic', not legal; channeling of liability to facility operator and not recommended as model for other states, but most features adopted by other states and international conventions

  13. Totalitäre Regimes

    OpenAIRE

    Merkel, Wolfgang

    2004-01-01

    "The development of the term and the analytical concept of totalitarianism have gone through several stages since the 1920s. However, even in its most sophisticated form, the version seen in Friedrich/ Brzezinski, the concept exhibits substantial systematic classification problems and analytical weaknesses. This article attempts to frame the type of totalitarian regime within a general typology of political regimes. Special attention is dedicated to the problem of distinguishing autocra...

  14. Lumped parameter modeling of a two-phase thermal-hydraulic channel with interface tracking

    International Nuclear Information System (INIS)

    Jo, J.H.; Kaufman, J.M.; Ruger, C.J.; Stein, S.

    1978-01-01

    A nonhomogenous, thermal nonequilibrium model for one-dimensional two-phase flow in a heated channel has been formulated in lumped parameter form. The channel is divided into a variable number of flow regimes separated by moving interfaces. The model can be used to predict the behavior of a LWR core and both primary and secondary sides of a steam generator under transient conditions. (author)

  15. Method and device for thermal control of biological and chemical reactions using magnetic particles or magnetic beads and variable magnetic fields

    OpenAIRE

    Zilch, C.; Gerdes, W.; Bauer, J.; Holschuh, K.

    2009-01-01

    The invention relates to a method for the thermal control of at least one temperature-dependent enzymatic reaction in the presence of magnetic particles, particularly nanoparticles, or magnetic beads, in vitro by heating the magnetic beads or magnetic particles to at least one defined target temperature using alternating magnetic fields. The thermally controllable enzymatic reaction carried out with the method according to the invention is preferably a PCR reaction or another reaction for elo...

  16. The effect of allometric scaling in coral thermal microenvironments.

    Directory of Open Access Journals (Sweden)

    Robert H Ong

    Full Text Available A long-standing interest in marine science is in the degree to which environmental conditions of flow and irradiance, combined with optical, thermal and morphological characteristics of individual coral colonies, affects their sensitivity of thermal microenvironments and susceptibility to stress-induced bleaching within and/or among colonies. The physiological processes in Scleractinian corals tend to scale allometrically as a result of physical and geometric constraints on body size and shape. There is a direct relationship between scaling to thermal stress, thus, the relationship between allometric scaling and rates of heating and cooling in coral microenvironments is a subject of great interest. The primary aim of this study was to develop an approximation that predicts coral thermal microenvironments as a function of colony morphology (shape and size, light or irradiance, and flow velocity or regime. To do so, we provided intuitive interpretation of their energy budgets for both massive and branching colonies, and then quantified the heat-size exponent (b* and allometric constant (m using logarithmic linear regression. The data demonstrated a positive relationship between thermal rates and changes in irradiance, A/V ratio, and flow, with an interaction where turbulent regime had less influence on overall stress which may serve to ameliorate the effects of temperature rise compared to the laminar regime. These findings indicated that smaller corals have disproportionately higher stress, however they can reach thermal equilibrium quicker. Moreover, excellent agreements between the predicted and simulated microscale temperature values with no significant bias were observed for both the massive and branching colonies, indicating that the numerical approximation should be within the accuracy with which they could be measured. This study may assist in estimating the coral microscale temperature under known conditions of water flow and irradiance

  17. Transition from weak wave turbulence regime to solitonic regime

    Science.gov (United States)

    Hassani, Roumaissa; Mordant, Nicolas

    2017-11-01

    The Weak Turbulence Theory (WTT) is a statistical theory describing the interaction of a large ensemble of random waves characterized by very different length scales. For both weak non-linearity and weak dispersion a different regime is predicted where solitons propagate while keeping their shape unchanged. The question under investigation here is which regime between weak turbulence or soliton gas does the system choose ? We report an experimental investigation of wave turbulence at the surface of finite depth water in the gravity-capillary range. We tune the wave dispersion and the level of nonlinearity by modifying the depth of water and the forcing respectively. We use space-time resolved profilometry to reconstruct the deformed surface of water. When decreasing the water depth, we observe a drastic transition between weak turbulence at the weakest forcing and a solitonic regime at stronger forcing. We characterize the transition between both states by studying their Fourier Spectra. We also study the efficiency of energy transfer in the weak turbulence regime. We report a loss of efficiency of angular transfer as the dispersion of the wave is reduced until the system bifurcates into the solitonic regime. This project has recieved funding from the European Research Council (ERC, Grant Agreement No. 647018-WATU).

  18. Multiple climate regimes in an idealized lake-ice-atmosphere model

    Science.gov (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  19. Weather regimes in past climate atmospheric general circulation model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, M.; Ramstein, G. [CEA Saclay, Gif-sur-Yvette (France). Lab. des Sci. du Climat et de l' Environnement; D' Andrea, F.; Vautard, R. [Laboratoire de Meteorologie Dynamique, Ecole Normale Superieure, Paris (France); Valdes, P.J. [Department of Meteorology, University of Reading (United Kingdom)

    1999-10-01

    We investigate the climates of the present-day, inception of the last glaciation (115000 y ago) and last glacial maximum (21000 y ago) in the extratropical north Atlantic and Europe, as simulated by the laboratoire de Meteorologie dynamique atmospheric general circulation model. We use these simulations to investigate the low-frequency variability of the model in different climates. The aim is to evaluate whether changes in the intraseasonal variability, which we characterize using weather regimes, can help describe the impact of different boundary conditions on climate and give a better understanding of climate change processes. Weather regimes are defined as the most recurrent patterns in the 500 hPa geopotential height, using a clustering algorithm method. The regimes found in the climate simulations of the present-day and inception of the last glaciation are similar in their number and their structure. It is the regimes' populations which are found to be different for these climates, with an increase of the model's blocked regime and a decrease in the zonal regime at the inception of the last glaciation. This description reinforces the conclusions from a study of the differences between the climatological averages of the different runs and confirms the northeastward shift to the tail of the Atlantic storm-track, which would favour more precipitation over the site of growth of the Fennoscandian ice-sheet. On the other hand, the last glacial maximum results over this sector are not found to be classifiable, showing that the change in boundary conditions can be responsible for severe changes in the weather regime and low-frequency dynamics. The LGM Atlantic low-frequency variability appears to be dominated by a large-scale retrogressing wave with a period 40 to 50 days. (orig.)

  20. Variability of water regime in the forested experimental catchments

    Czech Academy of Sciences Publication Activity Database

    Buchtele, Josef; Tesař, Miroslav; Krám, P.

    2009-01-01

    Roč. 4, Spec. 2 (2009), S93-S101 ISSN 1801-5395 R&D Projects: GA MŽP SP/1A6/151/07 Grant - others:EU(XE) FP6 IP NeWater 511179-2 Institutional research plan: CEZ:AV0Z20600510 Keywords : rainfall- runoff modeling * evapotranspiration modeling * vegetation change * land use * climate change Subject RIV: DA - Hydrology ; Limnology

  1. Weathering of plagioclase across variable flow and solute transport regimes

    NARCIS (Netherlands)

    Pacheco, F.A.L.; Weijden, C.H. van der

    2012-01-01

    The study area is situated in a fault zone with fractured granites and metasediments. In a conceptual model, infiltrating water first passes the bedrock cover of soil and saprolite and then partly enters the fractures. Weathering reactions of minerals occur in small pores and fissures in the bedrock

  2. Monsoon regime in the Indian Ocean and zooplankton variability

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    and the estuaries in order to show how the monsoon exerts its influence on zooplankton from different types of environment. In the open ocean, the semi-annually reversing system of currents exert profound influence on the shifting of zooplankton populations and its...

  3. Pulse regime in formation of fractal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gas flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10{sup –3}–10{sup –4} for transient metals under consideration. A typical energy flux (~10{sup 6} W/cm{sup 2}), a typical surface temperature (~3000 K), and a typical pulse duration (~1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.

  4. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...

  5. Regime shifts, resilience and recovery of a cod stock

    DEFF Research Database (Denmark)

    Lindegren, Martin; Diekmann, Rabea; Möllmann, Christian

    2010-01-01

    In the North and Baltic seas Atlantic cod Gadus morhua stocks collapsed as part or one of the major factors inducing large-scale ecosystem regime shifts. Determining the relative contribution of overfishing and climate variability in causing these shifts has proven difficult. While facing similar...

  6. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  7. Effect of variable thermal conductivity and specific heat capacity on the calculation of the critical metal hydride thickness for Ti1.1CrMn

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2014-01-01

    model is applied to the metal hydride system, with Ti 1.1 CrMn as the absorbing alloy, to predict the weight fraction of absorbed hydrogen and solid bed temperat ure . Dependencies of thermal conductivity and specific heat capacity upon pressure and hydrogen content respectively , are accounted for...

  8. Do family policy regimes matter for children's well-being?

    Science.gov (United States)

    Engster, Daniel; Stensöta, Helena Olofsdotter

    2011-01-01

    Researchers have studied the impact of different welfare state regimes, and particularly family policy regimes, on gender equality. Very little research has been conducted, however, on the association between different family policy regimes and children's well-being. This article explores how the different family policy regimes of twenty OECD countries relate to children's well-being in the areas of child poverty, child mortality, and educational attainment and achievement. We focus specifically on three family policies: family cash and tax benefits, paid parenting leaves, and public child care support. Using panel data for the years 1995, 2000, and 2005, we test the association between these policies and child well-being while holding constant for a number of structural and policy variables. Our analysis shows that the dual-earner regimes, combining high levels of support for paid parenting leaves and public child care, are strongly associated with low levels of child poverty and child mortality. We find little long-term effect of family policies on educational achievement, but a significant positive correlation between high family policy support and higher educational attainment. We conclude that family policies have a significant impact on improving children's well-being, and that dual-earner regimes represent the best practice for promoting children's health and development.

  9. Triggered dynamics in a model of different fault creep regimes.

    Science.gov (United States)

    Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina

    2014-06-23

    The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale.

  10. Land degradation and property regimes

    Science.gov (United States)

    Paul M. Beaumont; Robert T. Walker

    1996-01-01

    This paper addresses the relationship between property regimes and land degradation outcomes, in the context of peasant agriculture. We consider explicitly whether private property provides for superior soil resource conservation, as compared to common property and open access. To assess this we implement optimization algorithms on a supercomputer to address resource...

  11. Monetary regimes in open economies

    NARCIS (Netherlands)

    Korpos, A.

    2006-01-01

    This thesis presents a two-country open economy framework for the analysis of strategic interactions among monetary authorities and wage bargaining institutions. From this perspective, the thesis investigates the economic consequences of replacing flexible and fixed exchange rate regimes with a

  12. MCNP/X TRANSPORT IN THE TABULAR REGIME

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES, H. GRADY [Los Alamos National Laboratory

    2007-01-08

    The authors review the transport capabilities of the MCNP and MCNPX Monte Carlo codes in the energy regimes in which tabular transport data are available. Giving special attention to neutron tables, they emphasize the measures taken to improve the treatment of a variety of difficult aspects of the transport problem, including unresolved resonances, thermal issues, and the availability of suitable cross sections sets. They also briefly touch on the current situation in regard to photon, electron, and proton transport tables.

  13. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy

    Science.gov (United States)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2013-05-01

    Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.

  14. The influence of variable operating conditions on the design and exploitation of fly ash pneumatic transport systems in thermal power plants

    Directory of Open Access Journals (Sweden)

    M. Stanojević

    2008-12-01

    Full Text Available The efficiency of an air-slide pneumatic conveying system depends, first of all, on several basic elements chosen or calculated during the design of a plant: air-slide design parameters, air mover characteristics, as well as the physical and chemical properties of the material to be transported. However, during the exploitation of this type of system which is used for handling ash in thermal-power plants, either gradual and/or sudden changes in the operating conditions can arise. This may be due to changes both in the proportion of ash content, and in the flow characteristics of the porous membrane. The consequences of changes in these conditions on the performance of the ash handling system are analyzed, based upon the results of the experimental work carried out on the test rig at the Faculty of Mechanical Engineering in Belgrade, and upon the on-site measurements at the thermal-power plant "Nikola Tesla B".

  15. Numerical investigation of the variable nozzle effect on the mixed flow turbine performance characteristics

    Science.gov (United States)

    Meziri, B.; Hamel, M.; Hireche, O.; Hamidou, K.

    2016-09-01

    There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.

  16. Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study

    OpenAIRE

    Frank, Yulia A.; Kadnikov, Vitaly V.; Gavrilov, Sergey N.; Banks, David; Gerasimchuk, Anna L.; Podosokorskaya, Olga A.; Merkel, Alexander Y.; Chernyh, Nikolai A.; Mardanov, Andrey V.; Ravin, Nikolai V.; Karnachuk, Olga V.; Bonch-Osmolovskaya, Elizaveta A.

    2016-01-01

    The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of five years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a tempera...

  17. Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Science.gov (United States)

    Guest, James R.; Baird, Andrew H.; Maynard, Jeffrey A.; Muttaqin, Efin; Edwards, Alasdair J.; Campbell, Stuart J.; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Background Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Methodology/Principal Findings Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pSingapore, where only 5% and 12% of colonies died. Conclusions/Significance The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments. PMID:22428027

  18. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    Science.gov (United States)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  19. Life history theory predicts fish assemblage response to hydrologic regimes.

    Science.gov (United States)

    Mims, Meryl C; Olden, Julian D

    2012-01-01

    The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.

  20. Exchange rate regimes and monetary arrangements

    Directory of Open Access Journals (Sweden)

    Ivan Ribnikar

    2005-06-01

    Full Text Available There is a close relationship between a country’s exchange rate regime and monetary arrangement and if we are to examine monetary arrangements then exchange rate regimes must first be analysed. Within the conventional and most widely used classification of exchange rate regimes into rigid and flexible or into polar regimes (hard peg and float on one side, and intermediate regimes on the other there, is a much greater variety among intermediate regimes. A more precise and, as will be seen, more useful classification of exchange rate regimes is the first topic of the paper. The second topic is how exchange rate regimes influence or determine monetary arrangements and monetary policy or monetary policy regimes: monetary autonomy versus monetary nonautonomy and discretion in monetary policy versus commitment in monetary policy. Both topics are important for countries on their path to the EU and the euro area

  1. Detecting spatial regimes in ecosystems

    Science.gov (United States)

    Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.

    2017-01-01

    Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.

  2. Is frictional heating needed to cause dramatic weakening of nanoparticle gouge during seismic slip? Insights from friction experiments with variable thermal evolutions

    NARCIS (Netherlands)

    Yao, L.; Ma, S.; Niemeijer, A.R.; Shimamoto, T.; Platt, J.D.

    2016-01-01

    To examine whether faults can be lubricated by preexisting and newly formed nanoparticles, we perform high-velocity friction experiments on periclase (MgO) nanoparticles and on bare surfaces of Carrara marble cylinders/slices, respectively. Variable temperature conditions were simulated by using

  3. Regime dependence of photo-darkening-induced modal degradation in high power fiber amplifier (Conference Presentation)

    Science.gov (United States)

    Boullet, Johan; Vincont, Cyril; Jolly, Alain; Pierre, Christophe

    2017-03-01

    Thermally induced transverse modal instabilities (TMI) have attracted these five years an intense research efforts of the entire fiber laser development community, as it represents the current most limiting effect of further power scaling of high power fiber laser. Anyway, since 2014, a few publications point out a new limiting thermal effect: fiber modal degradation (FMD). It is characterized by a power rollover and simultaneous increase of the cladding light at an average power far from the TMI threshold together with a degraded beam which does not exhibit temporal fluctuations, which is one of the main characteristic of TMI. We report here on the first systemic experimental study of FMD in a high power photonic crystal fiber. We put a particular emphasis on the dependence of its average power threshold on the regime of operation. We experimentally demonstrate that this dependence is intrinsically linked to regime-dependent PD-saturated losses, which are nearly three times higher in CW regime than in short pulse picosecond regime. We make the hypothesis that the existence of these different PD equilibrium states between CW regime and picosecond QCW pulsed regime is due to a partial photo-bleaching of color centers in picosecond regime thanks to a higher probability of multi-photon process induced photobleaching (PB) at high peak power. This hypothesis is corroborated by the demonstration of the reversibility of the FMD induced in CW regime by simply switching the seed CW 1064 nm light by a short pulse, picosecond oscillator.

  4. Modeling Thermal Ignition of Energetic Materials

    National Research Council Canada - National Science Library

    Gerri, Norman J; Berning, Ellen

    2004-01-01

    This report documents an attempt to computationally simulate the mechanics and thermal regimes created when a threat perforates an armor envelope and comes in contact with stowed energetic material...

  5. A Duration Hidden Markov Model for the Identification of Regimes in Stock Market Returns

    DEFF Research Database (Denmark)

    Ntantamis, Christos

    This paper introduces a Duration Hidden Markov Model to model bull and bear market regime switches in the stock market; the duration of each state of the Markov Chain is a random variable that depends on a set of exogenous variables. The model not only allows the endogenous determination...... of the different regimes and but also estimates the effect of the explanatory variables on the regimes' durations. The model is estimated here on NYSE returns using the short-term interest rate and the interest rate spread as exogenous variables. The bull market regime is assigned to the identified state...... with the higher mean and lower variance; bull market duration is found to be negatively dependent on short-term interest rates and positively on the interest rate spread, while bear market duration depends positively the short-term interest rate and negatively on the interest rate spread....

  6. Impacts of changing climate and snow cover on the flow regime of Jhelum River, Western Himalayas

    KAUST Repository

    Azmat, Muhammad; Liaqat, Umar Waqas; Qamar, Muhammad Uzair; Awan, Usman Khalid

    2016-01-01

    This study examines the change in climate variables and snow cover dynamics and their impact on the hydrological regime of the Jhelum River basin in Western Himalayas. This study utilized daily streamflow records from Mangla dam, spanning a time

  7. The influence of variable operating conditions on the design and exploitation of fly ash pneumatic transport systems in thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stanojevic, M.; Radic, D.; Jovovic, A. (and others) [University of Belgrade, Belgrade (Serbia). Dept. of Processing Engineering

    2008-10-15

    The efficiency of an air-slide pneumatic conveying system depends, first of all, on several basic elements chosen or calculated during the design of a plant: air-slide design parameters, air mover characteristics, as well as the physical and chemical properties of the material to be transported. However, during the exploitation of this type of system which is used for handling ash in thermal-power plants, either gradual and/or sudden changes in the operating conditions can arise. This may be due to changes both in the proportion of ash content and in the flow characteristics of the porous membrane. The consequences of changes in these conditions on the performance of the ash handling system are analyzed, based upon the results of the experimental work carried out on the test rig at the Faculty of Mechanical Engineering in Belgrade, and upon the on-site measurements at the thermal-power plant 'Nikola Tesla B'. 5 refs., 8 figs., 4 tabs.

  8. Thermal infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal stress levels discrimination in rice

    Science.gov (United States)

    Zhang, Biyao; Liu, Xiangnan; Liu, Meiling; Wang, Dongmin

    2017-04-01

    This paper addresses the assessment and interpretation of the canopy-air temperature difference (Tc-Ta) distribution as an indicator for discriminating between heavy metal stress levels. Tc-Ta distribution is simulated by coupling the energy balance equation with modified leaf angle distribution. Statistical indices including average value (AVG), standard deviation (SD), median, and span of Tc-Ta in the field of view of a digital thermal imager are calculated to describe Tc-Ta distribution quantitatively and, consequently, became the stress indicators. In the application, two grains of rice growing sites under "mild" and "severe" stress level were selected as study areas. A total of 96 thermal images obtained from the field measurements in the three growth stages were used for a separate application of a theoretical variation of Tc-Ta distribution. The results demonstrated that the statistical indices calculated from both simulated and measured data exhibited an upward trend as the stress level becomes serious because heavy metal stress would only raise a portion of the leaves in the canopy. Meteorological factors could barely affect the sensitivity of the statistical indices with the exception of the wind speed. Among the statistical indices, AVG and SD were demonstrated to be better indicators for stress levels discrimination.

  9. Thermal- and pH-Dependent Size Variable Radical Nanoparticles and Its Water Proton Relaxivity for Metal-Free MRI Functional Contrast Agents.

    Science.gov (United States)

    Morishita, Kosuke; Murayama, Shuhei; Araki, Takeru; Aoki, Ichio; Karasawa, Satoru

    2016-09-16

    For development of the metal-free MRI contrast agents, we prepared the supra-molecular organic radical, TEMPO-UBD, carrying TEMPO radical, as well as the urea, alkyl group, and phenyl ring, which demonstrate self-assembly behaviors using noncovalent bonds in an aqueous solution. In addition, TEMPO-UBD has the tertiary amine and the oligoethylene glycol chains (OEGs) for the function of pH and thermal responsiveness. By dynamic light scattering and transmission electron microscopy imaging, the resulting self-assembly was seen to form the spherical nanoparticles 10-150 nm in size. On heating, interestingly, the nanoparticles showed a lower critical solution temperature (LCST) behavior having two-step variation. This double-LCST behavior is the first such example among the supra-molecules. To evaluate of the ability as MRI contrast agents, the values of proton ((1)H) longitudinal relaxivity (r1) were determined using MRI apparatus. In conditions below and above CAC at pH 7.0, the distinguishable r1 values were estimated to be 0.17 and 0.21 mM(-1) s(1), indicating the suppression of fast tumbling motion of TEMPO moiety in a nanoparticle. Furthermore, r1 values became larger in the order of pH 7.0 > 9.0 > 5.0. Those thermal and pH dependencies indicated the possibility of metal-fee MRI functional contrast agents in the future.

  10. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    Science.gov (United States)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this

  11. Stochastic dynamical models for ecological regime shifts

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Carstensen, Jacob; Madsen, Henrik

    the physical and biological knowledge of the system, and nonlinearities introduced here can generate regime shifts or enhance the probability of regime shifts in the case of stochastic models, typically characterized by a threshold value for the known driver. A simple model for light competition between...... definition and stability of regimes become less subtle. Ecological regime shifts and their modeling must be viewed in a probabilistic manner, particularly if such model results are to be used in ecosystem management....

  12. Technical efficiency under alternative environmental regulatory regimes: The case of Dutch horticulture

    International Nuclear Information System (INIS)

    Van der Vlist, Arno J.; Withagen, Cees; Folmer, Henk

    2007-01-01

    We consider the performance of small and medium sized enterprises in Dutch horticulture under different environmental policy regimes across time. We address the question whether technical performance differs under these alternative regulatory regimes to test Porter's hypothesis that stricter environmental regulation reduces technical inefficiency. For this purpose, we use a stochastic production frontier framework allowing for inclusion of policy variables to measure the effect of alternative environmental policy regimes on firms' performance. The main result is that stricter environmental policy regimes have indeed reduced technical inefficiencies in Dutch horticulture. The estimation results indicate amongst others that the 1997 agreement on energy, nutrient and pesticides use enhances technical efficiency. Firms under the strict environmental policy regime are found to be more technically efficient than those under a lax regime, thereby supporting the claims by Porter and Van der Linde (Porter, M., Van der Linde, C., 1995. Green and Competitive: Ending the stalemate. Harvard Business Review 73, pp. 120-137) concerning Dutch horticulture. (author)

  13. Methodology for local verification of flow regimes in fuel assemblies charts

    International Nuclear Information System (INIS)

    Igor, Sharaevsky; Elena, Sharaevskaya; Domashev, E.D.; Alexander, Arkhypov; Vladimir, Kolochko

    2003-01-01

    The best estimate thermal hydraulic codes describe adequately two-phase flows in nuclear energy facilities if there is proper system of closed relations. It could be obtained from the reliable information on structure forms of two-phase flows, its boundaries and reliable regime charts. In the paper the methodology of automatic recognition of the boundaries of the main types of two phase flows for rod fuel assemblies is presented. The methodology is based on definition of thermal hydraulic parameters distribution in experimental fuel assembly. The measurements were carried out using ASD signals of acoustic noise. In the paper data on two-phase flow regimes boundaries recognition especially low boundaries of bubble flow are summarized for experimental fuel assembly. The methodology of flow regimes charts applied to recognition of upper boundaries of boiling crisis regime was verificated. The satisfactory coincidence with experimental results have been shown. (author)

  14. Predicting weather regime transitions in Northern Hemisphere datasets

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashov, D. [University of California, Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, Los Angeles, CA (United States); Shen, J. [UCLA, Department of Statistics, Los Angeles, CA (United States); Berk, R. [UCLA, Department of Statistics, Los Angeles, CA (United States); University of Pennsylvania, Department of Criminology, Philadelphia, PA (United States); D' Andrea, F.; Ghil, M. [Ecole Normale Superieure, Departement Terre-Atmosphere-Ocean and Laboratoire de Meteorologie Dynamique (CNRS and IPSL), Paris Cedex 05 (France)

    2007-10-15

    A statistical learning method called random forests is applied to the prediction of transitions between weather regimes of wintertime Northern Hemisphere (NH) atmospheric low-frequency variability. A dataset composed of 55 winters of NH 700-mb geopotential height anomalies is used in the present study. A mixture model finds that the three Gaussian components that were statistically significant in earlier work are robust; they are the Pacific-North American (PNA) regime, its approximate reverse (the reverse PNA, or RNA), and the blocked phase of the North Atlantic Oscillation (BNAO). The most significant and robust transitions in the Markov chain generated by these regimes are PNA {yields} BNAO, PNA {yields} RNA and BNAO {yields} PNA. The break of a regime and subsequent onset of another one is forecast for these three transitions. Taking the relative costs of false positives and false negatives into account, the random-forests method shows useful forecasting skill. The calculations are carried out in the phase space spanned by a few leading empirical orthogonal functions of dataset variability. Plots of estimated response functions to a given predictor confirm the crucial influence of the exit angle on a preferred transition path. This result points to the dynamic origin of the transitions. (orig.)

  15. Alberta oil sands royalty regime

    International Nuclear Information System (INIS)

    Asgarpour, S.

    2004-01-01

    The long term objective of the Oil Sands Business Unit of Alberta Energy is to pave the way for Alberta's bitumen production to reach 3 million barrels per day by 2020. This presentation described the national government's role in resource development. It was emphasized that since the Crown is the owner of the oil sands resource, it would benefit by providing strategic leadership and by generating a larger royalty base. The oil sands fiscal regime was described with reference to generic royalty, risk sharing, investment, and project economics. Business rule principles were also outlined along with criteria for project expansions. Both upstream and downstream challenges and opportunities were listed. 4 figs

  16. Multi-fluid modeling of low-recycling divertor regimes

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Pigarov, A.Yu.; Krasheninnikov, S.I.; Rognlien, T.D.; Soukhanovskii, V.A.; Rensink, M.E.; Maingi, R.; Skinner, C.H.; Stotler, D.P.; Bell, R.E.; Kugel, H.W.

    2010-01-01

    The low-recycling regimes of divertor operation in a single-null NSTX magnetic configuration are studied using computer simulations with the edge plasma transport code UEDGE. The edge plasma transport properties pertinent to the low-recycling regimes are demonstrated. These include the flux-limited character of the parallel heat transport and the high plasma temperatures with the flattened profiles in the scrape-off-layer. It is shown that to maintain the balance of particle fluxes at the core interface the deuterium gas puffing rate should increase as the divertor recycling coefficient decreases. The radial profiles of the heat load to the outer divertor plate, the upstream radial plasma profiles, and the effects of the cross-field plasma transport in the low-recycling regimes are discussed. It is also shown that recycling of lithium impurities evaporating from the divertor plate at high surface temperatures can reverse the low-recycling divertor operational regime to the high-recycling one and may cause thermal instability of the divertor plate (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Multi-Fluid Modeling of Low-Recycling Divertor Regimes

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Pigarov, A.Y.; Krasheninnikov, S.I.; Rognlien, T.D.; Soukhanovskii, V.A.; Rensink, M.E.; Maingi, R.; Skinner, C.H.; Stotler, D.P.; Bell, R.E.; Kugel, H.W.

    2010-01-01

    The low-recycling regimes of divertor operation in a single-null NSTX magnetic configuration are studied using computer simulations with the edge plasma transport code UEDGE. The edge plasma transport properties pertinent to the low-recycling regimes are demonstrated. These include the flux-limited character of the parallel heat transport and the high plasma temperatures with the flattened profiles in the scrape-off-layer. It is shown that to maintain the balance of particle fluxes at the core interface the deuterium gas puffing rate should increase as the divertor recycling coefficient decreases. The radial profiles of the heat load to the outer divertor plate, the upstream radial plasma profiles, and the effects of the cross-field plasma transport in the low-recycling regimes are discussed. It is also shown that recycling of lithium impurities evaporating from the divertor plate at high surface temperatures can reverse the low-recycling divertor operational regime to the high-recycling one and may cause thermal instability of the divertor plate.

  18. A linear stability analysis of thermal convection in spherical shells with variable radial gravity based on the Tau-Chebyshev method

    International Nuclear Information System (INIS)

    Avila, Ruben; Cabello-González, Ares; Ramos, Eduardo

    2013-01-01

    Highlights: • The Tau-Chebyshev method solves the linear fluid flow equations in spherical shells. • The fluid motion is driven by a central force proportional to the radial position. • The full Navier–Stokes equations are solved by the spectral element method. • The linear results are verified with the solution of the Navier–Stokes equations. • The solution of the linear problems is used to initiate non-linear calculations. -- Abstract: The onset of thermal convection in a non-rotating spherical shell is investigated using linear theory. The Tau-Chebyshev spectral method is used to integrate the linearized equations. We investigate the onset of thermal convection by considering two cases of the radial gravitational field (i) a local acceleration, acting radially inward, that is proportional to the distance from the center r, and (ii) a radial gravitational central force that is proportional to r −n . The former case has been widely analyzed in the literature, because it constitutes a simplified model that is usually used, in astrophysics and geophysics, and is studied here to validate the numerical method. The latter case was analyzed since the case n = 5 has been experimentally realized (by means of the dielectrophoretic effect) under microgravity condition, in the experimental container called GeoFlow, inside the International Space Station. Our study is aimed to clarify the role of (i) a radially inward central force (either proportional to r or to r −n ), (ii) a base conductive temperature distribution provided by either a uniform heat source or an imposed temperature difference between outer and inner spheres, and (iii) the aspect ratio η (ratio of the radii of the inner and outer spheres), on the critical Rayleigh number. In all cases the surface of the spheres has been assumed to be rigid. The results obtained with the linear theory based on the Tau-Chebyshev spectral method are compared with those of the integration of the full non

  19. Adaptation in Collaborative Governance Regimes

    Science.gov (United States)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  20. Human influence on California fire regimes.

    Science.gov (United States)

    Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B

    2007-07-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  1. Measuring the effectiveness of international environmental regimes

    Energy Technology Data Exchange (ETDEWEB)

    Helm, C.; Sprinz, D.F.

    1999-05-01

    While past research has emphasized the importance of international regimes for international governance, systematic assessments of regime effects are missing. This article derives a standardized measurement concept for the effectiveness of international environmental regimes by developing an operational rational choice calculus to evaluate actual policy simultaneously against a non-regime counterfactual and a collective optimum. Subsequently, the empirical feasibility of the measurement instrument is demonstrated by way of two international treaties regulating transboundary air pollution in Europe. The results demonstrate that the regimes indeed show positive effects - but fall substantially short of the collective optima. (orig.)

  2. Sensitivity to spatial and temporal scale and fire regime inputs in deriving fire regime condition class

    Science.gov (United States)

    Linda Tedrow; Wendel J. Hann

    2015-01-01

    The Fire Regime Condition Class (FRCC) is a composite departure measure that compares current vegetation structure and fire regime to historical reference conditions. FRCC is computed as the average of: 1) Vegetation departure (VDEP) and 2) Regime (frequency and severity) departure (RDEP). In addition to the FRCC rating, the Vegetation Condition Class (VCC) and Regime...

  3. Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system

    Science.gov (United States)

    Weidinger, Simon; Knap, Michael

    We study the regimes of heating in the periodically driven O (N) -model, which represents a generic model for interacting quantum many-body systems. By computing the absorbed energy with a non-equilibrium Keldysh Green's function approach, we establish three dynamical regimes: at short times a single-particle dominated regime, at intermediate times a stable Floquet prethermal regime in which the system ceases to absorb, and at parametrically late times a thermalizing regime. Our simulations suggest that in the thermalizing regime the absorbed energy grows algebraically in time with an the exponent that approaches the universal value of 1 / 2 , and is thus significantly slower than linear Joule heating. Our results demonstrate the parametric stability of prethermal states in a generic many-body system driven at frequencies that are comparable to its microscopic scales. This paves the way for realizing exotic quantum phases, such as time crystals or interacting topological phases, in the prethermal regime of interacting Floquet systems. We acknowledge support from the Technical University of Munich - Institute for Advanced Study, funded by the German Excellence Initiative and the European Union FP7 under Grant agreement 291763, and from the DFG Grant No. KN 1254/1-1.

  4. Endoreversible quantum heat engines in the linear response regime.

    Science.gov (United States)

    Wang, Honghui; He, Jizhou; Wang, Jianhui

    2017-07-01

    We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.

  5. Spectator Effects during Leptogenesis in the Strong Washout Regime

    CERN Document Server

    Garbrecht, Bjorn

    2014-01-01

    By including spectator fields into the Boltzmann equations for Leptogenesis, we show that partially equilibrated spectator interactions can have a significant impact on the freeze-out value of the asymmetry in the strong washout regime. The final asymmetry is typically increased, since partially equilibrated spectators "hide" a part of the asymmetry from washout. We study examples with leptonic and non-leptonic spectator processes, assuming thermal initial conditions, and find up to 50% enhanced asymmetries compared to the limit of fully equilibrated spectators. Together with a comprehensive overview of the equilibration temperatures for various Standard Model processes, the numerical results indicate the ranges when the limiting cases of either fully equilibrated or negligible spectator fields are applicable and when they are not. Our findings also indicate an increased sensitivity to initial conditions and finite density corrections even in the strong washout regime.

  6. Fire regime in Mediterranean ecosystem

    Science.gov (United States)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in

  7. Inter-annual variability in the thermal structure of an oceanic time series station off Ecuador (1990-2003) associated with El Niño events

    Science.gov (United States)

    Garcés-Vargas, José; Schneider, Wolfgang; Abarca del Río, Rodrigo; Martínez, Rodney; Zambrano, Eduardo

    2005-10-01

    Previously unpublished data (1990-2003) from a marine station located 20 km off the coast of Ecuador (Station La Libertad, 02°12'S, 080°55'W) are employed to investigate oceanic inter-annual variability in the far eastern equatorial Pacific, and its relation to the central-eastern equatorial Pacific. La Libertad is the only time series station between the Galapagos Islands and the South American coast, the region most affected by El Niño events (El Niño 2 region, 0-5°S, 90°W-80°W). Although configured and serviced differently, station La Libertad can be looked at as an eastern extension of the TAO/TRITON monitoring system, whose easternmost mooring is located at 95°W, 1550 km offshore. This study of El Niño's impact on the thermocline and its relationship to sea surface temperature revealed anomalies in the thermocline at station La Libertad some 2-4 months before their appearance at the sea surface. Inter-annual variability, namely quasi-biennial and quasi-quadrennial oscillations, accounts for roughly 80% of the total variance in temperature anomalies observed in the water column at station La Libertad. The coincidence in both phase and amplitude of these inter-annual oscillations explains the strength of El Niño events in the water column off La Libertad. We further show that anomalies in heat content appear 8-9 weeks earlier at 140°W in the equatorial Pacific (6550 km away from the coast) than at the coast itself. The arrival of El Niño, which has important regional social consequences as well as those for local fisheries, could therefore be predicted in the sub-surface waters off Ecuador by using these anomalies as a complementary index. In addition, the speed of the eastward propagation of these El Niño-associated anomalies' suggests the possible participation of higher-order baroclinic mode Kelvin waves and associated interaction processes in the eastern Pacific, which should be further investigated.

  8. Unitary Housing Regimes in Transition

    DEFF Research Database (Denmark)

    Bengtsson, Bo; Jensen, Lotte

    2013-01-01

    Path dependence is strong in housing institutions and policy. In both Denmark and Sweden, today’s universal and ‘unitary’ (Kemeny) housing regimes can be traced back to institutions that were introduced fifty years back in history or more. Recently, universal and unitary housing systems...... in Scandinavia, and elsewhere, are under challenge from strong political and economic forces. These challenges can be summarized as economic cutbacks, privatization and Europeanization. Although both the Danish and the Swedish housing system are universal and unitary in character, they differ considerably...... in institutional detail. Both systems have corporatist features, however in Denmark public housing is based on local tenant democracy and control, and in Sweden on companies owned and controlled by the municipalities, combined with a centralized system of rent negotiations. In the paper the present challenges...

  9. Reassessing the nuclear liability regime

    International Nuclear Information System (INIS)

    Havinh Phuong

    1985-01-01

    The nuclear liability regime was thoroughly reviewed by nuclear plant operators, officials of regulatory authorities, and legal and insurance experts at the Symposium on Nuclear Third Party Liability and Insurance, held in September 1984 in Munich, Federal Republic of Germany. The symposium highlighted specific areas where adjustments or improvements would be needed in order to cope with practical problems encountered or emerging issues. By focusing on questions of legitimate concern to the public, it also sought to promote confidence in a compensation system for public protection that is in many ways unique. Topics addressed included the following: greater harmonization of the compensation amounts for nuclear damage established in different countries and in territorial scope; the concept of unlimited liability; the time limitation for compensation claims; the problem of proving causation; the concept of nuclear damage; and insurance coverage

  10. Hall effect in hopping regime

    International Nuclear Information System (INIS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-01-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  11. Hall effect in hopping regime

    Energy Technology Data Exchange (ETDEWEB)

    Avdonin, A., E-mail: avdonin@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Skupiński, P. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Grasza, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa (Poland)

    2016-02-15

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  12. Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2015-08-01

    Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater-surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.

  13. Microcanonical Szilárd engines beyond the quasistatic regime

    Science.gov (United States)

    Acconcia, Thiago V.; Bonança, Marcus V. S.

    2017-12-01

    We discuss the possibility of extracting energy from a single thermal bath using microcanonical Szilárd engines operating in finite time. This extends previous works on the topic which are restricted to the quasistatic regime. The feedback protocol is implemented based on linear response predictions of the excess work. It is claimed that the underlying mechanism leading to energy extraction does not violate Liouville's theorem and preserves ergodicity throughout the cycle. We illustrate our results with several examples including an exactly solvable model.

  14. Accommodating human values in the climate regime

    Directory of Open Access Journals (Sweden)

    Rosalind Cook

    2008-12-01

    Full Text Available The climate regime addresses one of the most important challenges facing humankind today. However, while the environmental and economic sides of the problem are well represented, it lacks the inclusion of social and human aspects. The human rights regime, in contrast, is a regime which has been established precisely to implement human values. This article ex-plains the problems of climate change in terms of human values and argues that some proce-dures from the human rights regime offer possibilities for improvement. It is submitted that through the inclusion of human rights instruments, such as individual communication, pro-gressive realisation and authoritative interpretation, the inclusion of human values into the climate regime will be facilitated. This article presents these instruments and discusses their potential for inclusion in the climate regime.

  15. De Facto Regimes in International Law

    OpenAIRE

    Essen, Jonte van

    2012-01-01

    The ambiguous position of de facto regimes in international law has long been the subject of scholarly debate and a source of political conflict. An assessment of the current standing of these regimes in international law and the consequences of actions by international actors on this status has, however, been long overdue. The manner in which de facto regimes are regarded internationally has serious consequences for the individuals under the influence of this legal grey area. Therefore, the ...

  16. Proliferation Control Regimes: Background and Status

    National Research Council Canada - National Science Library

    Nikitin, Mary B; Kerr, Paul; Bowman, Steve; Hildreth, Steven A

    2008-01-01

    .... national security interests. Multilateral regimes were established to restrict trade in nuclear, chemical, and biological weapons and missile technologies, and to monitor their civil applications...

  17. Proliferation Control Regimes: Background and Status

    National Research Council Canada - National Science Library

    Squassoni, Sharon; Bowman, Steve; Hildreth, Steven A

    2006-01-01

    .... national security interests. Multilateral regimes were established to restrict trade in nuclear, chemical, and biological weapons and missile technologies, and to monitor their civil applications...

  18. ECOLOGICAL ANALYSIS OF HYDROLOGIC DISTURBANCE REGIMES IN STREAMS OF NORTH AND SOUTH DAKOTA

    Science.gov (United States)

    Streamflow variability is an important component of physical disturbance in streams, and is likely to be a major organizing feature of habitat for stream fishes. The disturbance regime in streams is frequently described by the variability in streamflow from both floods and prolo...

  19. Understanding Brown Dwarf Variability

    Science.gov (United States)

    Marley, Mark S.

    2013-01-01

    Surveys of brown dwarf variability continue to find that roughly half of all brown dwarfs are variable. While variability is observed amongst all types of brown dwarfs, amplitudes are typically greatest for L-T transition objects. In my talk I will discuss the possible physical mechanisms that are responsible for the observed variability. I will particularly focus on comparing and contrasting the effects of changes in atmospheric thermal profile and cloud opacity. The two different mechanisms will produce different variability signatures and I will discuss the extent to which the current datasets constrain both mechanisms. By combining constraints from studies of variability with existing spectral and photometric datasets we can begin to construct and test self-consistent models of brown dwarf atmospheres. These models not only aid in the interpretation of existing objects but also inform studies of directly imaged giant planets.

  20. Final flotation waste kinetics of sintering at different heating regimes

    Directory of Open Access Journals (Sweden)

    Cocić Mira

    2016-01-01

    Full Text Available In the copper extraction, especially during the process of flotation enrichment and the pyrometallurgical processing, the waste materials that represent huge polluters of environment are being generated. In order to examine the application of Final flotation waste (FFW in the manufacturing of new materials from the glass-ceramic group phase and mineral composition were examined as well as thermal properties. FFW kinetics of sintering has been tested at different dyamics (1°C/min, 29°C/min and 43°C/min, in order to find the optimum conditions for sintering with a minimum amount of energy and time consumption. The samples were examined using: X-ray diffraction, X-ray fluorescence analysis, SEM (Scanning Electron Microscopy and thermal microscopy. The best results for the production of glass ceramic materials were obtained during the sintering at heating regime of 29°C/min. [Projekat Ministarstva nauke Republike Srbije, br. 176010

  1. Flow regimes and heat transfer in vertical narrow annuli

    International Nuclear Information System (INIS)

    Ulke, A.; Goldberg, I.

    1993-01-01

    In shell side boiling heat exchangers narrow crevices that are formed between the tubes and the tube support structure provide areas for local thermal-hydraulic conditions which differ significantly from bulk fluid conditions. Understanding of the processes of boiling and dryout in flow restricted crevices can help in designing of tube support geometries to minimize the likelihood of tube support plate and tube corrosion observed in commercial power plant steam generators. This paper describes a one dimensional thermal-hydraulic model of a vertical crevice between a tube and a support plate with cylindrical holes. The annulus formed by the support plate hole and an eccentrically located tube has been represented by vertical strips. The formation, growth and collapse of a steam bubble in each strip has been determined. Based on the bubble history, and flow regimes characterized by ''isolated'' bubbles, ''coalesced'' bubbles and liquid deficient regions have been defined

  2. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress.

    Science.gov (United States)

    Guest, James R; Baird, Andrew H; Maynard, Jeffrey A; Muttaqin, Efin; Edwards, Alasdair J; Campbell, Stuart J; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pBleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died. The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments.

  3. Thermalized axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ricardo Z.; Notari, Alessio, E-mail: rferreira@icc.ub.edu, E-mail: notari@ub.edu [Departament de Física Quàntica i Astrofísica i Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona (Spain)

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton φ to gauge fields of the form φ F F-tilde / f , as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= φ-dot /(2 fH ), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H , due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξ∼>2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξ∼>3.4; however, observations require ξ∼>6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of T {sub eq} ≅ ξ H / g-bar where g-bar is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if φ is thermal and find that the tensor to scalar ratio is suppressed by H /(2 T ), if tensors do not thermalize.

  4. Thermalized axion inflation

    Science.gov (United States)

    Ferreira, Ricardo Z.; Notari, Alessio

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton phi to gauge fields of the form phi F tilde F/f, as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= dot phi/(2fH), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H, due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξgtrsim2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξgtrsim3.4 however, observations require ξgtrsim6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of Teq simeq ξ H/bar g where bar g is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if phi is thermal and find that the tensor to scalar ratio is suppressed by H/(2T), if tensors do not thermalize.

  5. Anthropogenic Water Uses and River Flow Regime Alterations by Dams

    Science.gov (United States)

    Ferrazzi, M.; Botter, G.

    2017-12-01

    Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.

  6. Fire regime characterization in Mediterranean ecosystems of Southern Italy

    Science.gov (United States)

    Lanorte, A.; Lasaponara, R.

    2009-04-01

    This paper addresses the wildfire regime in Mediterranean ecosystems of Southern Italy. Fire regimes refer to average fire conditions (including fire size, fire density, fire frequency, fire seasonality, fire intensity, fire severity, fire thresholds, etc.) occurring over a long period of time. Information on spatial pattern of forest fire locations is a key point in the study of the dynamics of fire disturbance, and allows us to improve the knowledge of past and current role of fire. Historical evidence clearly shows what did happen and this can fruitfully help to understand what is happening and what could happen in the next future. Mapping fire regimes is very challenging, because fire ocurrence features are the expression of the interactions between climate, fire, vegetation, topography, social factors. The main objective of this work is to provide a comprehensive characterization of the fire regime in Italy based on a recently updated national wildfire database. Fire data were obtained from the Italian National Forestry Service. This national database is comprised of information contained in individual fire reports completed for every fire that occurs on public lands in the Italian peninsula. Complete data were only available for 1996-2006 at the time we accessed the database, which determined the years we analysed. The primary fire history variables that we reported were number of fires, area burned, burning time and duration, and fire size (average size of individual fires) The wildfire records (wildfire area, location, time, vegetation) were analysed with other environmental (fuel availability and type), topographic features, and meteorological/climatological data. Results of our analysis could help better understand the different factors on the wildfire regime in Mediterranean ecosystems of Southern Italy.

  7. Capacitance densitometer for flow regime identification

    International Nuclear Information System (INIS)

    Shipp, R.L. Jr.

    1978-01-01

    This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid

  8. TARIFFS AND REGIMES OF POWER CONSUMPTION

    Directory of Open Access Journals (Sweden)

    S. V. Batsova

    2010-01-01

    Full Text Available Analysis of regimes of electro-consumption at RUP «BMZ» is carried out. It is shown that in conditions of rapid growth of prices for electric power one of the conditions of reduction of production expenses is to be the increase of efficiency of the electro-consumption regimes control.

  9. Strengthening the nuclear non-proliferation regime

    International Nuclear Information System (INIS)

    Carlson, J.

    2003-01-01

    Although the nuclear non-proliferation regime has enjoyed considerable success, today the regime has never been under greater threat. Three states have challenged the objectives of the NPT, and there is a technology challenge - the spread of centrifuge enrichment technology and know-how. A major issue confronting the international community is, how to deal with a determined proliferator? Despite this gloomy scenario, however, the non-proliferation regime has considerable strengths - many of which can be developed further. The regime comprises complex interacting and mutually reinforcing elements. At its centre is the NPT - with IAEA safeguards as the Treaty's verification mechanism. Important complementary elements include: restraint in the supply and the acquisition of sensitive technologies; multilateral regimes such as the CTBT and proposed FMCT; various regional and bilateral regimes; the range of security and arms control arrangements outside the nuclear area (including other WMD regimes); and the development of proliferation-resistant technologies. Especially important are political incentives and sanctions in support of non-proliferation objectives. This paper outlines some of the key issues facing the non-proliferation regime

  10. Synergies between nonproliferation regimes: A pragmatic approach

    International Nuclear Information System (INIS)

    Findlay, Trevor; Meier, Oliver

    2001-01-01

    Full text: With the recent progress in establishing international nonproliferation regimes, the question of synergies between different verification and monitoring regimes is becoming more acute. Three multilateral and universal nonproliferation organisations covering safeguards on civil nuclear materials, nuclear testing, and chemical weapons are up and running. A regime on biological weapons is under negotiation. Several regional organisations concerned with monitoring nonproliferation commitments in the nuclear field are in place; others are being established. Past discussions on synergies between these regimes have suffered from being too far-reaching. These discussions often have not reflected adequately the political difficulties of cooperation between regimes with different membership, scope and institutional set-up. This paper takes a pragmatic look at exploiting synergies and identifies some potential and real overlaps in the work between different verification regimes. It argues for a bottom-up approach and identifies building blocks for collaboration between verification regimes. By realising such, more limited potential for cooperation, the ground could be prepared for exploiting other synergies between these regimes. (author)

  11. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a

  12. Crustal stress regime in Italy

    Directory of Open Access Journals (Sweden)

    M. Cesaro

    1997-06-01

    Full Text Available In order to obtain a reliable map of the present-day stress field in Italy, needed to better understand the active tectonic processes and to contribute to the assessment of seismic hazard, in 1992 we started to collect and analyze new data from borehole breakouts in deep oil and geothermal wells and focal mechanisms of earthquakes (2.5 < M <5 occurred in Italy between 1988 and 1995. From about 200 deep wells and 300 focal mechanisms analyzed to date, we infer that: the internal (SW sector of the Northern Apenninic arc is extending with minimum compressional stress (Shmin oriented ? ENE, while the external front is thrusting over the Adriatic foreland (Shmin ? NW-SE. The entire Southern Apennine is extending in NE direction (from the Tyrrhenian margin to the Apulian foreland and compression (in the foredeep is no longer active at the outer (NE thrust front. Between these two arcs, an abrupt change in the tectonic regime is detected with directions of horizontal stress changing by as much as 90º in the external front, around latitude 430N. Along the Ionian side of the Calabrian arc the stress directions inferred from breakouts and focal mechanisms are scattered with a hint of rotation from N-S Shmin close to the Southern Apennines, to ~ E-W directions in the Messina Strait. In Sicily, a NW-SE direction of SHmax is evident in the Hyblean foreland, parallel to the direction of plate motion between Africa and Europe. A more complex pattern of stress directions is observed in the thrust belt zone, with rotations from the regional trend (NW í directed SHmax to NE oriented SHmax. A predominant NW direction of SHmax is also detected in mainland Sicily from earthquake focal mechanisms, but no well data are available in this region. In the northern part of Sicily (Aeolian Islands a ~N-S direction of SHmax is observed.

  13. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    Science.gov (United States)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  14. Low-temperature thermal transport and thermopower of monolayer transition metal dichalcogenide semiconductors

    Science.gov (United States)

    Sengupta, Parijat; Tan, Yaohua; Klimeck, Gerhard; Shi, Junxia

    2017-10-01

    We study the low temperature thermal conductivity of single-layer transition metal dichalcogenides (TMDCs). In the low temperature regime where heat is carried primarily through transport of electrons, thermal conductivity is linked to electrical conductivity through the Wiedemann-Franz law (WFL). Using a k.p Hamiltonian that describes the K and K{\\prime} valley edges, we compute the zero-frequency electric (Drude) conductivity using the Kubo formula to obtain a numerical estimate for the thermal conductivity. The impurity scattering determined transit time of electrons which enters the Drude expression is evaluated within the self-consistent Born approximation. The analytic expressions derived show that low temperature thermal conductivity (1) is determined by the band gap at the valley edges in monolayer TMDCs and (2) in presence of disorder which can give rise to the variable range hopping regime, there is a distinct reduction. Additionally, we compute the Mott thermopower and demonstrate that under a high frequency light beam, a valley-resolved thermopower can be obtained. A closing summary reviews the implications of results followed by a brief discussion on applicability of the WFL and its breakdown in context of the presented calculations.

  15. A computational study of operating regimes for poloidal divertors

    International Nuclear Information System (INIS)

    Petravic, M.; Heifetz, D.; Post, D.

    1982-01-01

    We have identified three theoretical operating regimes for poloidal divertors. These regimes are determined by the geometry of the divertor and the input energy and particle fluxes, and are characterized by the divertor plasma density and temperature. A fully self-consistent two-dimensional model for the plasma and neutral atom and molecule transport was used to study poloidal divertor operation. Extensions of our previous calculations important to this study were the inclusion of parallel electron and ion thermal conduction. We find that the key physics in divertor operation is the neutral recycling near the neutralizer plate. This can be parametrized by R = GAMMAsub(P)/GAMMAsub(O), the ratio of particle flux striking the neutralizer plate to the particle flux entering the divertor. Values of R approx. equal to 1 can be produced by large pumping rates near the neutralizer plates resulting in low neutral recycling and a high temperature, low density divertor plasma. By decreasing the pumping near the neutralizer plate, R can be raised to an intermediate value of 5-10, the plasma temperature lowered by the same factor, and the density raised by a factor of 10-30. In this regime, escape of the neutrals back to the main plasma is virtually blocked. By further restricting the pumping, R can be raised to twenty or more, thereby lowering the temperature by a factor of twenty or more and raising the density by a factor of ninety or more. Such high density regimes have been observed on D-III and appear to offer the most promise for impurity control and particle control on large reactor experiments such as INTOR or FED. In this paper, we explore the range 3 < R < 16. (orig.)

  16. Abrupt climate-independent fire regime changes

    Science.gov (United States)

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  17. De Facto Regimes in International Law

    Directory of Open Access Journals (Sweden)

    Jonte van Essen

    2012-02-01

    Full Text Available The ambiguous position of de facto regimes in international law has long been the subject of scholarly debate and a source of political conflict. An assessment of the current standing of these regimes in international law and the consequences of actions by international actors on this status has, however, been long overdue. The manner in which de facto regimes are regarded internationally has serious consequences for the individuals under the influence of this legal grey area. Therefore, the study into this problem and possible solutions is of great significance. The 2011 developments in Northern Africa underline the need of contemporary research into this area. This essay aims to clarify the position of de facto regimes in international law and the influence on their status by actions of international actors. The author first argues that de facto regimes have rights and obligations under international law, which provide them with (some form of international legal personality. He then pleads for a reconsideration of the contemporary legal treatment of these regimes. The author argues against the current system of government recognition and proposes a system that better addresses the needs of both de facto regimes and the international community. 

  18. Balancing Europe's wind power output through spatial deployment informed by weather regimes.

    Science.gov (United States)

    Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini

    2017-08-01

    As wind and solar power provide a growing share of Europe's electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's wind power and can help guide new deployment pathways which minimise this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimising the negative impacts of output variability.

  19. Flow Regime Classification and Hydrological Characterization: A Case Study of Ethiopian Rivers

    Directory of Open Access Journals (Sweden)

    Belete Berhanu

    2015-06-01

    Full Text Available The spatiotemporal variability of a stream flow due to the complex interaction of catchment attributes and rainfall induce complexity in hydrology. Researchers have been trying to address this complexity with a number of approaches; river flow regime is one of them. The flow regime can be quantified by means of hydrological indices characterizing five components: magnitude, frequency, duration, timing, and rate of change of flow. Similarly, this study aimed to understand the flow variability of Ethiopian Rivers using the observed daily flow data from 208 gauging stations in the country. With this process, the Hierarchical Ward Clustering method was implemented to group the streams into three flow regimes (1 ephemeral, (2 intermittent, and (3 perennial. Principal component analysis (PCA is also applied as the second multivariate analysis tool to identify dominant hydrological indices that cause the variability in the streams. The mean flow per unit catchment area (QmAR and Base flow index (BFI show an incremental trend with ephemeral, intermittent and perennial streams. Whereas the number of mean zero flow days ratio (ZFI and coefficient of variation (CV show a decreasing trend with ephemeral to perennial flow regimes. Finally, the streams in the three flow regimes were characterized with the mean and standard deviation of the hydrological variables and the shape, slope, and scale of the flow duration curve. Results of this study are the basis for further understanding of the ecohydrological processes of the river basins in Ethiopia.

  20. Feasibility of a dual regime gyrotron

    International Nuclear Information System (INIS)

    Sawant, Ashwini; Jain, Prerit; Kartikeyan, M.V.

    2012-01-01

    The design concept of a 42/84 GHz, 500 kW, CW, dual-regime gyrotron for ECRH of plasma in an experimental Tokamak will be presented in this paper. Operation at 42 GHz is fundamental where as that in 84 GHz will be second harmonic so that a similar guidance system will be retained for dual regime operation. In this paper, the mode competition and mode selection procedures are presented for such a dual regime operation. Cold cavity design and self-consistent calculations will be carried out for power and efficiencies. (author)

  1. Can Old Regimes Handle New Wars?

    DEFF Research Database (Denmark)

    Henningsen, Troels

    Research on New Wars argues that since the 1980s states and regimes have become more vulnerable to violence from non-state actors. Two developments in the Sahel region support the New Wars thesis: an increase in Islamist radicalization and new access to the global black market, both of which......, the paper finds that regimes in the Sahel region are still able to cope with the rise in non-state threats. The paper first shortly compares the longevity of the present regimes in the Sahel region to all previous ones, second examines in-depth how Chad and Mali fight the insurgents. Findings are that since...

  2. Framing of regimes and transition strategies

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing

    2012-01-01

    This article suggests that transition strategies are always formulated in the context of specific representations of the regime and the challenges it faces. It is argued that the framing of a regime affects the envisioning of transition strategies. An analysis of the current development agenda...... for the housing construction sector in Denmark reveals the relevance and impacts of different regime framings. It is proposed that the ability to cope with framing issues as situated and political processes is at the core of the governance of transitions....

  3. FEL in transverse optical klystron regime

    International Nuclear Information System (INIS)

    Scarlat, F.; Baltateanu, N.

    1994-01-01

    Among all operational regimes of free electron laser (FEL), the transverse optical regime (TOK) requires the least stringent electron beam parameters. The device associated to this regime, also defined as FEL with two or more components, consists of two or more identical interaction sections separated by one or more drift distances among themselves. Starting from the motion equations which describe the interaction between an electron and the radiation inside the undulator, one can obtain some practical expressions for the calculation of the efficiency of the energy transfer from the electron to the radiation, and the gain of the external coherent radiation for a FEL in TOK with three cavities. (Author)

  4. Variability Bugs:

    DEFF Research Database (Denmark)

    Melo, Jean

    . Although many researchers suggest that preprocessor-based variability amplifies maintenance problems, there is little to no hard evidence on how actually variability affects programs and programmers. Specifically, how does variability affect programmers during maintenance tasks (bug finding in particular......)? How much harder is it to debug a program as variability increases? How do developers debug programs with variability? In what ways does variability affect bugs? In this Ph.D. thesis, I set off to address such issues through different perspectives using empirical research (based on controlled...... experiments) in order to understand quantitatively and qualitatively the impact of variability on programmers at bug finding and on buggy programs. From the program (and bug) perspective, the results show that variability is ubiquitous. There appears to be no specific nature of variability bugs that could...

  5. The Two Regimes of Postwar Shipping

    DEFF Research Database (Denmark)

    Iversen, Martin Jes; Tenold, Stig

    2014-01-01

    the bargaining that accompanied the shift from the national regime to the competitive regime. Specifically, we show that the new regime primarily accommodated the interests of private actors such as shipping companies, rather than the interests of the authorities and the trade unions.......The aim of this article is to illustrate the most important changes in the regulatory framework of the shipping sector from the 1960s to 2010, and to analyse the basis for, and effects of, these changes. In order to explain how the transformation has occurred, we use two traditional maritime...... nations—Denmark and Norway—as case studies. First, we introduce the two regimes of Danish and Norwegian shipping: ‘the national regime’ from the early 1960s to the mid-1970s; and ‘the competitive regime’, which was fully established by the middle of the 1990s and still persists. Then, we briefly sketch...

  6. The international climate regime: towards consolidation collapse

    International Nuclear Information System (INIS)

    Berthaud, P.; Cavard, D.; Criqui, P.

    2003-10-01

    This article deals with the different modalities that exist to manage a problem of collective action in the field of climate negotiation. It uses two concepts of the International Political Economy (IPE): the concept of International Regime (IR) and the concept of Hegemony and / or Leadership. The course the international negotiation has taken between 1992 (Rio Convention) and march 2001 (the US rejection of the Kyoto Protocol of 1997) leads us, first, to question the conditions of existence as well as the viability of a non-hegemonic International Regime (Part One). Then, we discuss the perspectives for the 'post - Kyoto' era. After having examined the preferences of the three most active actors in the negotiation (USA, Europe, G77 + China) combined with the leadership capacities they possess, we identify three scenarios for the future: i) anarchy, ii) an international regime under the American hegemony, iii) an international regime under the European leadership (Part Two). (author)

  7. The CTBT regime, significance and potential benefits

    International Nuclear Information System (INIS)

    Chang, Hong-Lae

    2002-01-01

    This presentation briefly outlines the CTBT's background, describes the activities of the Preparatory Commission, the verification regime, the role of the National Data Centres and international coopereation. The objectives of the Nairobi workshop are listed

  8. Improving the taxation regime for electric power

    International Nuclear Information System (INIS)

    Fjermeros, Morten; Ilstad, Kristine

    2003-01-01

    In Norway, the present taxation regime for electric power is very complex. The power companies are currently charged with ordinary tax on profits, tax on economic rent, tax on natural resources and land tax. In addition there are the rules about licence fees, yield of power due to concession conditions, and reversion. The Norwegian Electricity Industry Association (EBL), assisted by a firm of lawyers, has proposed an improvement over the current taxation regime

  9. Brazil in the global anticorruption regime

    Directory of Open Access Journals (Sweden)

    Marcos Tourinho

    2018-03-01

    Full Text Available Abstract Brazilian anticorruption law and institutions were significantly transformed in recent decades. This article traces those transformations and explains how the international anticorruption and money laundering regimes contributed to their development. It argues that those international regimes were internalised in the Brazilian system through three mechanisms: inspiration and legitimation, coercion, and implementation support, and were critical to the transformation of Brazilian institutions.

  10. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  11. Do discriminatory pay regimes unleash antisocial behavior?

    OpenAIRE

    Grosch, Kerstin; Rau, Holger A.

    2017-01-01

    In this paper, we analyze how pay-regime procedures affect antisocial behavior at the workplace. In a real-effort experiment we vary two determinants of pay regimes: discrimination and justification of payments by performance. In our Discrimination treatment half of the workforce is randomly selected and promoted and participate in a tournament (high-income workers) whereas the other half receives no payment (lowincome workers). Afterwards, antisocial behavior is measured by a Joy-of-Destruct...

  12. Geothermal regime of Tarim basin, NW China: insights from borehole temperature logging

    Science.gov (United States)

    Liu, S.; Lei, X.

    2013-12-01

    Geothermal regime of sedimentary basin is vital for understanding basin (de)formation process, hydrocarbon generation status and assessing the resource potential. Located at the Precambrian craton block, the Tarim basin is the largest intermountain basin in China, which is also the ongoing target of oil and gas exploration. Previous knowledge of thermal regime of this basin is from limited oil exploration borehole testing temperature, the inherent deficiency of data of this type makes accurate understanding of its thermal regime impossible. Here we reported our latest steady temperature logging results in this basin and analyze its thermal regime as well. In this study, 10 temperature loggings are conducted in the northern Tarim basin where the major oil and gas fields are discovered. All the boreholes for temperature logging are non-production wells and are shut in at least more than 2~3 years, ensuring the temperature equilibrium after drilling. The derived geothermal gradient varies from 20.2 to 26.1 degree/km, with a mean of 22.0 degree/km. However, some previous reported gradients in this area are obviously lower than our results; for example, the previous gradient of THN2 well is 13.2 degree/km but 23.2 degree/km in this study, and not enough equilibrium time in previous logging accounts for this discrepancy. More important, it is found that high gradients usually occur in the gas field and the gradients of the gas fields are larger than those in other oil fields, indicating higher thermal regime in gas field. The cause of this phenomenon is unclear, and the upward migration of hot fluid along fault conduit is speculated as the possible mechanism for this high geothermal anomaly in the oil and gas fields. Combined with measured thermal conductivity data, 10 new heat flow values are also achieved, and the heat flow of the Tarim basin is between 38mW/m2 and 52mW/m2, with a mean of 43 mW/m2. This relatively low heat flow is coincident with that of typical

  13. State Structure and Political Regime Structure

    Directory of Open Access Journals (Sweden)

    Paul – Iulian Nedelcu

    2012-05-01

    Full Text Available The political regime is the concrete form of organization and functioning of political system andtherefore, the regime means the concrete way of organize, institutionalize and function a political systemand of the exercise of political power by a social-political force in a social community or global socialistem. The political regime is not limited to institutions and state bodies, but it covers the entire politicalsystem. Form of expression in social practice plan is the result of balance of forces between classes ofcitizens, organizations, between them and civil society and politics.Designates the concrete form ofgovernment formation and organization, of state bodies, in aspect of their characteristics and principles, therelations between them and other state bodies, and also as the relationship between them and otherinstitutionalized forms of political systems. Instead, the political regime is an explicit realization ofaxiological operations, a specific hierarchy of values, in general and political values, in particular. Even ifsome elements of the political regime overlap to some extent and in some respects, those of form orstructure of guvernamnt state, thus they dissolve his identity, distinct quality of being specific traits of thepolitical regime.

  14. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  15. The effects of crude oil shocks on stock market shifts behaviour A regime switching approach

    Energy Technology Data Exchange (ETDEWEB)

    Aloui, Chaker; Jammazi, Rania [International Finance Group-Tunisia, Faculty of Management and Economic Sciences of Tunis, Boulevard du 7 novembre, El Manar University, B.P. 248, C.P. 2092, Tunis Cedex (Tunisia)

    2009-09-15

    In this paper we develop a two regime Markov-switching EGARCH model introduced by Henry [Henry, O., 2009. Regime switching in the relationship between equity returns and short-term interest rates. Journal of Banking and Finance 33, 405-414.] to examine the relationship between crude oil shocks and stock markets. An application to stock markets of UK, France and Japan over the sample period January 1989 to December 2007 illustrates plausible results. We detect two episodes of series behaviour one relative to low mean/high variance regime and the other to high mean/low variance regime. Furthermore, there is evidence that common recessions coincide with the low mean/high variance regime. In addition, we allow both real stock returns and probability of transitions from one regime to another to depend on the net oil price increase variable. The findings show that rises in oil price has a significant role in determining both the volatility of stock returns and the probability of transition across regimes. (author)

  16. The effects of crude oil shocks on stock market shifts behaviour A regime switching approach

    International Nuclear Information System (INIS)

    Aloui, Chaker; Jammazi, Rania

    2009-01-01

    In this paper we develop a two regime Markov-switching EGARCH model introduced by Henry [Henry, O., 2009. Regime switching in the relationship between equity returns and short-term interest rates. Journal of Banking and Finance 33, 405-414.] to examine the relationship between crude oil shocks and stock markets. An application to stock markets of UK, France and Japan over the sample period January 1989 to December 2007 illustrates plausible results. We detect two episodes of series behaviour one relative to low mean/high variance regime and the other to high mean/low variance regime. Furthermore, there is evidence that common recessions coincide with the low mean/high variance regime. In addition, we allow both real stock returns and probability of transitions from one regime to another to depend on the net oil price increase variable. The findings show that rises in oil price has a significant role in determining both the volatility of stock returns and the probability of transition across regimes. (author)

  17. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  18. Inter-population thermal variability and physiological response in the intertidal fish Scartichthys viridis (Blenniidae Variabilidad térmica intrapoblacional y respuesta fisiológica en el pez intermareal Scartichthys viridis (Blenniidae

    Directory of Open Access Journals (Sweden)

    JOSÉ M PULGAR

    2007-12-01

    Full Text Available Determining habitat conditions that generate individual physiological variability represents key basic knowledge to understand the direction of animal's responses to habitat change. The coastal fish Scartichthys viridis inhabits low intertidal pools along the Chilean coast. Because seawater in the low intertidal is renewed during every tidal cycle, this zone is characterized by a low thermal variation and abundant food within and between localities. We evaluated whether seawater thermal conditions and food availability of low intertidal pools registered in three localities of Chilean coast are sufficient to generate physiological and energetic differences in individuals of S. viridis captured from three geographic separate populations spanning approximately 1,200 km. Southern fishes acclimatized to 25 °C showed higher metabolic rates than those from other localities and thermal treatments. On the other hand, southern fishes in natural conditions showed higher condition factor than northern fishes. This evidence is sufficient to indicate that slight latitudinal differences in tidepool seawater temperature associated to differential food availability induced an energetic constraint in this species. Moreover, southern population of S. viridis may suffer important effects on energetic allocation if seawater temperature increases slightly, with repercussions on its geographic distribution in southern Pacific OceanDeterminar las condiciones del ambiente que generan variabilidad fisiológica, representa un conocimiento básico para comprender el sentido de la respuesta de los animales a los cambios en su habitat. El pez costero Scartichthys viridis habita las pozas bajas del intermareal a lo largo de la costa chilena. Debido a que el agua de mar se renueva en cada ciclo de marea en las pozas bajas, esta zona está caracterizada por una baja variación térmica y abundante alimento entre localidades. Nosotros evaluamos si las condiciones térmicas y la

  19. Multiple growth regimes: Insights from unified growth theory

    OpenAIRE

    Galor, Oded

    2007-01-01

    Unified Growth Theory uncovers the forces that contributed to the existence of multiple growth regimes and the emergence of convergence clubs. It suggests that differential timing of take-offs from stagnation to growth segmented economies into three fundamental regimes: slow growing economies in a Malthusian regime, fast growing countries in a sustained growth regime, and economies in the transition between these regimes. In contrast to existing research that links regime switching thresholds...

  20. Causas estruturais e consequências dos regimes internacionais: regimes como variáveis intervenientes

    OpenAIRE

    Krasner, Stephen D.

    2012-01-01

    Os regimes internacionais são definidos como princípios, normas, regras e procedimentos de tomada de decisões ao redor dos quais as expectativas dos atores convergem em uma dada área-tema. Como ponto de partida, os regimes são conceituados como variáveis intervenientes, estando entre fatores causais básicos e os resultados e comportamentos relacionados. Há três visões a respeito da importância dos regimes: as orientações estruturais convencionais desvalorizam os regimes como sendo, na melhor ...

  1. Local quantum thermal susceptibility

    Science.gov (United States)

    de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-09-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.

  2. Local quantum thermal susceptibility

    Science.gov (United States)

    De Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-01-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions. PMID:27681458

  3. Ultrafast Thermal Transport at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, David [Univ. of Illinois, Champaign, IL (United States); Murphy, Catherine [Univ. of Illinois, Champaign, IL (United States); Martin, Lane [Univ. of Illinois, Champaign, IL (United States)

    2014-10-21

    Our research program on Ultrafast Thermal Transport at Interfaces advanced understanding of the mesoscale science of heat conduction. At the length and time scales of atoms and atomic motions, energy is transported by interactions between single-particle and collective excitations. At macroscopic scales, entropy, temperature, and heat are the governing concepts. Key gaps in fundamental knowledge appear at the transitions between these two regimes. The transport of thermal energy at interfaces plays a pivotal role in these scientific issues. Measurements of heat transport with ultrafast time resolution are needed because picoseconds are the fundamental scales where the lack of equilibrium between various thermal excitations becomes a important factor in the transport physics. A critical aspect of our work has been the development of experimental methods and model systems that enabled more precise and sensitive investigations of nanoscale thermal transport.

  4. Ecosystem regime shifts disrupt trophic structure.

    Science.gov (United States)

    Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K

    2018-01-01

    Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological

  5. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  6. Measuring Thermal Characteristics of Urban Landscapes

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.

    1999-01-01

    The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville, Alabama were performed in September 1994 and over Atlanta, Georgia in May 1997. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace, what the benefits are of the urban forest in both mitigating the urban heat island effect, in making cities more aesthetically pleasing and more habitable environments, and in overall cooling of the community. In this presentation we will examine the techniques of analyzing remotely sensed data for measuring the effect of various urban surfaces on their contribution to the urban heat island effect.

  7. Analysis of possibilities for functional capacity for work rise of reactor fuel elements at nuclear engine regime

    International Nuclear Information System (INIS)

    Deryavko, I.I.; Perepelkin, I.G.; Pivovarov, O.S.; Storozhenko, A.N.; Tarasov, V.I.

    2000-01-01

    The principle results of carbide fuel rods testing during series of IVG.1 reactor starts up at regime simulating nuclear engine regime of nuclear moving power unit are given. Considerable degradation of initial fuel elements status increasing from start up to start up and which could resulted fail of separate technological channels is shown. Origin case of extreme degradation of fuel elements status are insufficient thermal strength of fuel elements operation in the field brittle state of sintered carbide material, Possible ways of artificial reinforce of fuel elements of low temperature sections, increasing its thermal strength up to required level

  8. Negative mobility of a Brownian particle: Strong damping regime

    Science.gov (United States)

    Słapik, A.; Łuczka, J.; Spiechowicz, J.

    2018-02-01

    We study impact of inertia on directed transport of a Brownian particle under non-equilibrium conditions: the particle moves in a one-dimensional periodic and symmetric potential, is driven by both an unbiased time-periodic force and a constant force, and is coupled to a thermostat of temperature T. Within selected parameter regimes this system exhibits negative mobility, which means that the particle moves in the direction opposite to the direction of the constant force. It is known that in such a setup the inertial term is essential for the emergence of negative mobility and it cannot be detected in the limiting case of overdamped dynamics. We analyse inertial effects and show that negative mobility can be observed even in the strong damping regime. We determine the optimal dimensionless mass for the presence of negative mobility and reveal three mechanisms standing behind this anomaly: deterministic chaotic, thermal noise induced and deterministic non-chaotic. The last origin has never been reported. It may provide guidance to the possibility of observation of negative mobility for strongly damped dynamics which is of fundamental importance from the point of view of biological systems, all of which in situ operate in fluctuating environments.

  9. Low-temperature operating regime of the tokamak evacuating limiter

    International Nuclear Information System (INIS)

    Tokar', M.Z.

    1987-01-01

    The conditions for realizing the regime of strong recycling of a cold dense plasma of an evacuating limiter were determined based on a previously proposed model for describing the limiter layer of a tokamak. The scaling for the dependence of the gas pressure in the evacuation system on the average plasma density in the limiter layer was found, and agreed quantitatively with the results of measurements on the Alcator and ISX-B tokamaks. For the tokamak reactor of the INTOR scale the calculations show that the low-temperature operating regime of the evacuating limiter can be realized with a quite low pumping rate. It has the advantages of reduced erosion of the limiter and small fluxes of impurities into the working volume of the reactor. In addition, the relative concentration of the helium ash in the limiter layer does not exceed 2-3%, but the density of the main plasma is comparable to the proposed average density in the reactor. The concept of a stochastic limiter is of interest for lowering the plasma density in the limiter layer and lowering the thermal loads on the limiter

  10. Thermal Management and Thermal Protection Systems

    Science.gov (United States)

    Hasnain, Aqib

    2016-01-01

    During my internship in the Thermal Design Branch (ES3), I contributed to two main projects: i) novel passive thermal management system for future human exploration, ii) AVCOAT undercut thermal analysis. i) As NASA prepares to further expand human and robotic presence in space, it is well known that spacecraft architectures will be challenged with unprecedented thermal environments. Future exploration activities will have the need of thermal management systems that can provide higher reliability, mass and power reduction and increased performance. In an effort to start addressing the current technical gaps the NASA Johnson Space Center Passive Thermal Discipline has engaged in technology development activities. One of these activities was done through an in-house Passive Thermal Management System (PTMS) design for a lunar lander. The proposed PTMS, functional in both microgravity and gravity environments, consists of three main components: a heat spreader, a novel hybrid wick Variable Conductance Heat Pipe (VCHP), and a radiator. The aim of this PTMS is to keep electronics on a vehicle within their temperature limits (0 and 50 C for the current design) during all mission phases including multiple lunar day/night cycles. The VCHP was tested to verify its thermal performance. I created a thermal math model using Thermal Desktop (TD) and analyzed it to predict the PTMS performance. After testing, the test data provided a means to correlate the thermal math model. This correlation took into account conduction and convection heat transfer, representing the actual benchtop test. Since this PTMS is proposed for space missions, a vacuum test will be taking place to provide confidence that the system is functional in space environments. Therefore, the model was modified to include a vacuum chamber with a liquid nitrogen shroud while taking into account conduction and radiation heat transfer. Infrared Lamps were modelled and introduced into the model to simulate the sun

  11. Progress towards a global nuclear liability regime

    International Nuclear Information System (INIS)

    2014-01-01

    During its April 2014 meeting, the Steering Committee for Nuclear Energy held a policy debate on 'Progress towards a Global Nuclear Liability Regime'. The Steering Committee heard presentations from several experts on nuclear liability issues. To prepare the delegates to the Steering Committee for the policy debate, the NEA Secretariat prepared a background note on the status of the nuclear liability regimes, as well as on current issues and challenges in implementing the regimes. This article is based on the background note and is intended to provide basic information on the relevant international conventions and an overview of recent developments to enhance the understanding of the legal framework in which policy-makers and practitioners are engaging to respond to the call for broader adherence to the international liability instruments. (authors)

  12. Determination of the Hall Thruster Operating Regimes

    International Nuclear Information System (INIS)

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-04-01

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile

  13. Stochastic Parametrisations and Regime Behaviour of Atmospheric Models

    Science.gov (United States)

    Arnold, Hannah; Moroz, Irene; Palmer, Tim

    2013-04-01

    The presence of regimes is a characteristic of non-linear, chaotic systems (Lorenz, 2006). In the atmosphere, regimes emerge as familiar circulation patterns such as the El-Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Scandinavian Blocking events. In recent years there has been much interest in the problem of identifying and studying atmospheric regimes (Solomon et al, 2007). In particular, how do these regimes respond to an external forcing such as anthropogenic greenhouse gas emissions? The importance of regimes in observed trends over the past 50-100 years indicates that in order to predict anthropogenic climate change, our climate models must be able to represent accurately natural circulation regimes, their statistics and variability. It is well established that representing model uncertainty as well as initial condition uncertainty is important for reliable weather forecasts (Palmer, 2001). In particular, stochastic parametrisation schemes have been shown to improve the skill of weather forecast models (e.g. Berner et al., 2009; Frenkel et al., 2012; Palmer et al., 2009). It is possible that including stochastic physics as a representation of model uncertainty could also be beneficial in climate modelling, enabling the simulator to explore larger regions of the climate attractor including other flow regimes. An alternative representation of model uncertainty is a perturbed parameter scheme, whereby physical parameters in subgrid parametrisation schemes are perturbed about their optimal value. Perturbing parameters gives a greater control over the ensemble than multi-model or multiparametrisation ensembles, and has been used as a representation of model uncertainty in climate prediction (Stainforth et al., 2005; Rougier et al., 2009). We investigate the effect of including representations of model uncertainty on the regime behaviour of a simulator. A simple chaotic model of the atmosphere, the Lorenz '96 system, is used to study

  14. Causas estruturais e consequências dos regimes internacionais: regimes como variáveis intervenientes

    Directory of Open Access Journals (Sweden)

    Stephen D. Krasner

    2012-06-01

    Full Text Available Os regimes internacionais são definidos como princípios, normas, regras e procedimentos de tomada de decisões ao redor dos quais as expectativas dos atores convergem em uma dada área-tema. Como ponto de partida, os regimes são conceituados como variáveis intervenientes, estando entre fatores causais básicos e os resultados e comportamentos relacionados. Há três visões a respeito da importância dos regimes: as orientações estruturais convencionais desvalorizam os regimes como sendo, na melhor das hipóteses, ineficazes; as orientações grocianas vêem os regimes como componentes íntimos do sistema internacional; as perspectivas estruturalistas modificadas vêem os regimes como significativos somente em certas condições restritas. Para os argumentos grociano e estruturalista modificado - que concordam com a visão de que os regimes podem influenciar resultados e comportamentos - , o desenvolvimento de regimes é visto como uma função de cinco variáveis causais básicas: auto-interesse egoísta; poder político; normas e princípios difusos; usos e costumes; conhecimento.

  15. Pulsating variables

    International Nuclear Information System (INIS)

    1989-01-01

    The study of stellar pulsations is a major route to the understanding of stellar structure and evolution. At the South African Astronomical Observatory (SAAO) the following stellar pulsation studies were undertaken: rapidly oscillating Ap stars; solar-like oscillations in stars; 8-Scuti type variability in a classical Am star; Beta Cephei variables; a pulsating white dwarf and its companion; RR Lyrae variables and galactic Cepheids. 4 figs

  16. Using neutral models to identify constraints on low-severity fire regimes.

    Science.gov (United States)

    Donald McKenzie; Amy E. Hessl; Lara-Karena B. Kellogg

    2006-01-01

    Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire is modeled as a stochastic process, for which each fire history is only one realization, a simulation approach is necessary to understand baseline variability, thereby identifying constraints, or forcing functions, that affect fire regimes...

  17. Restoring oak forest, woodlands and savannahs using modern silvicultural analogs to historic cultural fire regimes

    Science.gov (United States)

    Daniel C. Dey; Richard P. Guyette; Callie J. Schweitzer; Michael C. Stambaugh; John M. Kabrick

    2015-01-01

    Variability in historic fire regimes in eastern North America resulted in an array of oak savannahs, woodlands and forests that were dominant vegetation types throughout the region. In the past century, once abundant savannahs and woodlands have become scarce due to conversion to agriculture, or development of forest structure in the absence of fire. In addition, the...

  18. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  19. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  20. WELFARE REGIMES IN LATIN AMERICA AND CARIBBEAN

    Directory of Open Access Journals (Sweden)

    Melisa Campana-Alabarce

    2015-06-01

    Full Text Available This article provides a characterization of Latin American and Caribbean Welfare regimes in historiographical perspective. Firstly, it makes a review of the emergence conditions of Welfare States in Western Europe and its core features, with particular emphasis on its role as a method to regulate inequalities in industrial capitalism. Dialoguing with it, then stops in the specific configurations that welfare regimes have taken in Latin America during the course of the twentieth century. Finally, it provides a map of its contemporary features and the major challenges that the States of the region face in his capacity as right guarantors for the future.

  1. What is the New Chinese Currency Regime?

    OpenAIRE

    Shah, Ajay; Zeileis, Achim; Patnaik, Ila

    2005-01-01

    The revaluation of the yuan in July 2005 was described by the Chinese central bank as a change in the currency regime, rather than merely a changed level of the exchange rate. The reform was said to involve a shift away from the fixed exchange rate, a gradual movement towards greater flexibility, and a peg to a basket of currencies. This paper closely examines the post-July Chinese currency regime utilising contemporary ideas in the econometrics of structural change. We find that the yuan has...

  2. The oil tax regime of Azerbaijan

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gerard

    1998-07-01

    Azerbaijan has a long history in the oil business and a chance of a spectacular future. To understand why the oil tax regime evolved into its present form and how it is likely to develop, it is necessary to know something of the country's history and the commercial environment. Consequently the presentation begins by discussing these items. It then outlines the Production Sharing Agreement regime in Azerbaijan and then deals with the Kazakh and Georgian Tax Codes, as these are likely to be the basis of a new general tax law in Azerbaijan from 1999. The presentation includes comments on the New Draft Tax Code of 1998.

  3. The oil tax regime of Azerbaijan

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gerard

    1998-07-01

    Azerbaijan has a long history in the oil business and a chance of a spectacular future. To understand why the oil tax regime evolved into its present form and how it is likely to develop, it is necessary to know something of the country's history and the commercial environment. Consequently the presentation begins by discussing these items. It then outlines the Production Sharing Agreement regime in Azerbaijan and then deals with the Kazakh and Georgian Tax Codes, as these are likely to be the basis of a new general tax law in Azerbaijan from 1999. The presentation includes comments on the New Draft Tax Code of 1998.

  4. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...... particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator....

  5. Flocking regimes in a simple lattice model.

    Science.gov (United States)

    Raymond, J R; Evans, M R

    2006-03-01

    We study a one-dimensional lattice flocking model incorporating all three of the flocking criteria proposed by Reynolds [Computer Graphics 21, 4 (1987)]: alignment, centering, and separation. The model generalizes that introduced by O. J. O'Loan and M. R. Evans [J. Phys. A. 32, L99 (1999)]. We motivate the dynamical rules by microscopic sampling considerations. The model exhibits various flocking regimes: the alternating flock, the homogeneous flock, and dipole structures. We investigate these regimes numerically and within a continuum mean-field theory.

  6. Legal Regimes of Official Information in Ukraine

    Directory of Open Access Journals (Sweden)

    Serhii Yesimov

    2018-04-01

    Full Text Available In the article on the basis of the methodology of system analysis the legal nature and sources of legal regulation of the legal regime of official information in Ukraine in the conditions of adaptation of Ukrainian legislation to the legislation of the European Union are considered. A comparative legal analysis of official information in the public-law and private-law spheres in the context of legal regimes of restricted information, confidential information and information classified as state secrets has been conducted.

  7. Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations

    KAUST Repository

    Pal, Pinaki

    2016-07-27

    Auto-ignition characteristics of compositionally homogeneous reactant mixtures in the presence of thermal non-uniformities and turbulent velocity fluctuations were computationally investigated. The main objectives were to quantify the observed ignition characteristics and numerically validate the theory of the turbulent ignition regime diagram recently proposed by Im et al. 2015 [29] that provides a framework to predict ignition behavior . a priori based on the thermo-chemical properties of the reactant mixture and initial flow and scalar field conditions. Ignition regimes were classified into three categories: . weak (where deflagration is the dominant mode of fuel consumption), . reaction-dominant strong, and . mixing-dominant strong (where volumetric ignition is the dominant mode of fuel consumption). Two-dimensional (2D) direct numerical simulations (DNS) of auto-ignition in a lean syngas/air mixture with uniform mixture composition at high-pressure, low-temperature conditions were performed in a fixed volume. The initial conditions considered two-dimensional isotropic velocity spectrums, temperature fluctuations and localized thermal hot spots. A number of parametric test cases, by varying the characteristic turbulent Damköhler and Reynolds numbers, were investigated. The evolution of the auto-ignition phenomena, pressure rise, and heat release rate were analyzed. In addition, combustion mode analysis based on front propagation speed and computational singular perturbation (CSP) was applied to characterize the auto-ignition phenomena. All results supported that the observed ignition behaviors were consistent with the expected ignition regimes predicted by the theory of the regime diagram. This work provides new high-fidelity data on syngas ignition characteristics over a broad range of conditions and demonstrates that the regime diagram serves as a predictive guidance in the understanding of various physical and chemical mechanisms controlling auto

  8. Cognitive Variability

    Science.gov (United States)

    Siegler, Robert S.

    2007-01-01

    Children's thinking is highly variable at every level of analysis, from neural and associative levels to the level of strategies, theories, and other aspects of high-level cognition. This variability exists within people as well as between them; individual children often rely on different strategies or representations on closely related problems…

  9. Statistics of exchange rate regimes in Nigeria | Iwueze | Global ...

    African Journals Online (AJOL)

    The three distinct exchange rate regimes of Nigeria were subjected to Autoregressive Integrated Moving Average (ARIMA) modeling in order to compare them with respect to model structure. It was found that the three regimes admit different models. Regime one admits Moving average model of order 2, Regime two admits ...

  10. Thermal Characteristics of Urban Landscapes

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.

    1998-01-01

    Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., less than 15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for Huntsville, AL.

  11. The relationships between income inequality, welfare regimes and aggregate health: a systematic review.

    Science.gov (United States)

    Kim, Ki-Tae

    2017-06-01

    : When analysing the relationships between income inequality, welfare regimes and aggregate health at the cross-national level, previous primary articles and systematic reviews reach inconsistent conclusions. Contrary to theoretical expectations, equal societies or the Social Democratic welfare regime do not always have the best aggregate health when compared with those of other relatively unequal societies or other welfare regimes. This article will shed light on the controversial subjects with a new decomposition systematic review method. The decomposition systematic review method breaks down an individual empirical article, if necessary, into multiple findings based on an article's use of the following four components: independent variable, dependent variable, method and dataset. This decomposition method extracts 107 findings from the selected 48 articles, demonstrating the dynamics between the four components. 'The age threshold effect' is recognized over which the hypothesized relations between income inequality, welfare regimes and aggregate health reverse. The hypothesis is supported mainly for younger infant and child health indicators, but not for adult health or general health indicators such as life expectancy. Further three threshold effects (income, gender and period) have also been put forward. The negative relationship between income inequality and aggregate health, often termed as the Wilkinson Hypothesis, was not generally observed in all health indicators except for infant and child mortality. The Scandinavian welfare regime reveals worse-than-expected outcomes in all health indicators except infant and child mortality. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  12. Technological regimes and sources of entrepreneurship

    NARCIS (Netherlands)

    Marsili, O.

    2002-01-01

    This paper concerns the technological determinants of entrepreneurial behaviour. By applying a typology of technological regimes, which describes the nature of the technological environment in which firms operate, this paper examines the sources and obstacles to entrepreneurial entry related to the

  13. Searching for an Appropriate Exchange Rate Regime

    Directory of Open Access Journals (Sweden)

    Yunjong Wang

    2001-06-01

    Full Text Available This paper attempts to survey current debates on the choice of exchange rate regime in emerging market economies. The issue of choosing an appropriate exchange rate regime is being actively discussed since the recent Asian crisis. As a lesson from the recent crises, one widely shared conclusion is that soft peg exchange rate regimes are extremely vulnerable in a world of volatile capital movements. Consequently, new orthodoxy based on the impossible trinity hypothesis favours two corner solutions ― greater flexibility or credible institutional assurance, like a currency board system or dollarization. Nevertheless, questions whether such corner solutions are adequate for developing countries are rising of late. "Fear of floating" is still conspicuous in many developing countries having adopted nominally a free-floating exchange rate regime. Developing countries are sensitive to exchange rate fluctuations because the cost of exchange rate volatility is greater than the benefit when compared to developed countries. Monitoring bands is a compromise solution, but it still needs further enhancement of estimation techniques for fundamental equilibrium exchange rates in order to make those estimation results more workable in practice. Other alternatives include the creation of soft peg of the G-3 currencies. Despite counterarguments, the stability of G-3 currencies could prove to be beneficial to emerging market economies.

  14. Negotiating a regime to control global warming

    International Nuclear Information System (INIS)

    Sebenius, J.K.

    1991-01-01

    For purposes of analysis, this paper has uncritically maintained that the prospect of a serious climate problem exists and has only lightly examined the broader advantages and drawbacks of various proposed policy and institutional responses. Crucial as they are to a full treatment of the issues, these underlying substantive and policy questions enter the analysis primarily insofar as they affect the likely outcomes of pending and potential negotiations. To an advocate of a new greenhouse control regime, the fundamental negotiating task is to craft and sustain a meaningful winning coalition of countries backing such a regime. Two centrally necessary conditions for the fundamental task are: (1) that each member of the coalition see enough gain in the regime relative to the alternatives to adhere and (2) the potential and actual blocking coalitions of interests opposed to the regime be prevented from forming and from being acceptably accommodated or otherwise neutralized. The analysis of this paper is organized around key questions whose answers will influence whether and how these two necessary conditions might (or might not) be met

  15. Yukon's common oil and gas regime

    International Nuclear Information System (INIS)

    Love, B.

    1998-01-01

    The Yukon's common oil and gas regime was developed in partnership with First Nations and it sets out the rules that will apply throughout the Yukon and on Yukon and First Nation lands. While separate and distinct, it conforms with and is compatible with other government systems and regimes. The major elements of the common regime include the Oil and Gas Act, regulations, policies, processes and agreements. The specific opportunities that are available in each phase of oil and gas development in the Yukon are described, with a map showing all basins, reserves and sites of current oil and gas activity. The Yukon has eight potential oil and gas basins: North Coast, Old Crow, Kandik, Eagle Plain, Peel Plateau, Bonnet Plume, Whitehorse Trough, and Liard Plateau. Only three of the eight, the Liard Plateau, Whitehorse Trough and Eagle Plain, have been explored. No wells have been drilled in several of Yukon's basins. Factors influencing economic opportunities in the Territory are also described, including: (1) international events and energy markets, (2) North American gas markets, (3) environmental factors, (4) competitiveness of the Yukon regime, and (5) the commitment of industry resources. 4 figs

  16. Technological regimes and sources of entrepreneurship

    NARCIS (Netherlands)

    Marsili, O.

    2000-01-01

    This paper concerns the technological detenninants of entrepreneurial behaviour. By applying a typology of technological regimes, which describes the nature of the technological environment in which finns operate, this paper examines the sources and obstacle to entrepreneurial entry related to the

  17. Comprehensive review of the maritime safety regimes.

    NARCIS (Netherlands)

    S. Knapp (Sabine); Ph.H.B.F. Franses (Philip Hans)

    2007-01-01

    textabstractThis report presents a comprehensive review of the maritime safety regimes and provides recommendations on how to improve the system. The results show a complex legal framework which generates a high amount of inspections and overlapping of inspection areas where no cross-recognition is

  18. Plugging regime in the pump limiter throat

    International Nuclear Information System (INIS)

    Ghendrih, P.; Grosman, A.; Samain, A.; Capes, H.; Morera, J.P.

    1988-08-01

    The plugging regime -with no outstreaming neutral flux- is studied for a closed configuration pump limiter (throat). We derive the plugging length and the neutral density build-up at the neutralizer plate. The analytical expressions are supported by numerical evidence. We find an improved efficiency related to the throat effect mainly due to neutral-sidewall interactions

  19. Early detection of ecosystem regime shifts

    DEFF Research Database (Denmark)

    Lindegren, Martin; Dakos, Vasilis; Groeger, Joachim P.

    2012-01-01

    methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face...

  20. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  1. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  2. The Forex Regime and EMU Expansion

    NARCIS (Netherlands)

    P.W. van Foreest; C.G. de Vries (Casper)

    2002-01-01

    textabstractThis paper provides empirical evidence that, irrespective of the foreign exchange rate regime, countries with high monetary volatility have lower relative output growth rates. It is argued that due to the forward looking nature of the foreign exchange market, exchange rate stability

  3. Trust in regulatory regimes: scoping the field

    NARCIS (Netherlands)

    Six, F.E.; Verhoest, Koen

    2017-01-01

    This edited volume is the first endeavour to systematically investigate the role of trust in the different relations within regulatory regimes. Trust as a multifaceted concept is contested within public administration and political science in general and especially within the relation between

  4. Optimal dividend distribution under Markov regime switching

    NARCIS (Netherlands)

    Jiang, Z.; Pistorius, M.

    2012-01-01

    We investigate the problem of optimal dividend distribution for a company in the presence of regime shifts. We consider a company whose cumulative net revenues evolve as a Brownian motion with positive drift that is modulated by a finite state Markov chain, and model the discount rate as a

  5. A Comparative Typology of Pension Regimes

    NARCIS (Netherlands)

    Arjan Soede; Cok Vrooman

    2008-01-01

    This report presents an empirical typology of pension regimes in the European Union, the US, Canada, Australia and Norway. The categorisation is based on 34 quantitative and qualitative characteristics of the mandatory parts of the pension systems in these countries. The empirical analysis shows

  6. Regime Shifts and Resilience in Fisheries Management

    NARCIS (Netherlands)

    Li, Chuan Zhong; Villasante, Sebastian; Zhu, Xueqin

    2016-01-01

    We investigate the role of potential regime shifts in Argentinean hake fishery and the inter-linkage between ecological and economic resilience. We develop a theoretical model incorporated with the hazard function for resource management under alternative conditions, and derive the corrective

  7. An emissions trading regime for Canada

    International Nuclear Information System (INIS)

    Smith, S.L.

    2001-01-01

    In 1998, over twelve papers were published on emissions trading regimes in Canada by the National Round Table on the Environment and the Economy (NRTEE), a federal government agency whose members represent stakeholders as varied as business, environmental groups, academics, aboriginal groups and others. One of the recommendations that emerged was for the computer modelling of the possibilities that had been identified for a domestic trading regime in Canada for greenhouse gases. It is unclear whether the modelling was ever performed as the file was taken over by the Finance Department under the umbrella of a special emission trading table that examined Canada's commitment under the Kyoto Protocol. The author examined questions pertaining to whether a domestic trading regime is essential, and what its characteristics should be in case it was deemed essential or advisable to have one. The upstream versus downstream application was looked at, as well as grand-fathering versus auction. Provincial issues were then addressed, followed by meshing with a credit system. International systems were reviewed. Early action was discussed, whereby an emitter seeks credit for action taken toward reductions since the original reference year of 1990. The case of emitters having bought or sold permits since the original reference years will also want those trades recognized under a trading regime. The author indicated that it seems probable that an emission trading system will eventually be implemented and that a debate on the issue should be initiated early

  8. EUROPEAN INFLUENCE ON ETHIOPIAN ANTITRUST REGIME:

    African Journals Online (AJOL)

    eliasn

    Introduction. Despite a noticeable European influence on the Ethiopian competition legal regime, some aspects of Ethiopia's 2003 Trade Practice Proclamation are still inadequate to appropriately deal with certain competition problems. The limitations of the rules need to be put right since achievement of the very goals of ...

  9. [The "specific" liability regime for blood products].

    Science.gov (United States)

    Byk, Christian

    2017-10-13

    Based on the system of liability for defective products as organized by the European Directive of 25 July 1985, responsibility for blood products does not therefore constitute a genuine specific regime. However, European law leaves States a margin of discretion in the implementation of the Directive with regard to health products. This is the case in particular with the exemption for development risk.

  10. Evidence of political yardstick competition in France using a two-regime spatial Durbin model with fixed effects

    NARCIS (Netherlands)

    Elhorst, J. Paul; Freret, Sandy

    2009-01-01

    This research proposes a two-regime spatial Durbin model with spatial and time-period fixed effects to test for political yardstick competition and exclude any other explanation that might produce spatial interaction effects among the dependent variable, the independent variables, or the error term.

  11. Transient Thermal Stability of Polymer Nanocomposites

    Science.gov (United States)

    2012-08-01

    modified Montmorillonite, Nanocor masterbatch ) 1 wt % carbon black (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O Multiwalled Carbon Nanotubes (Nanocyl... masterbatch ) Twin screw extrusion (190C) Slow Heating Regime Thermogravimetric Analysis Nanospecies improve thermal stability as expected Laser

  12. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  13. Extremes of 2d Coulomb gas: universal intermediate deviation regime

    Science.gov (United States)

    Lacroix-A-Chez-Toine, Bertrand; Grabsch, Aurélien; Majumdar, Satya N.; Schehr, Grégory

    2018-01-01

    In this paper, we study the extreme statistics in the complex Ginibre ensemble of N × N random matrices with complex Gaussian entries, but with no other symmetries. All the N eigenvalues are complex random variables and their joint distribution can be interpreted as a 2d Coulomb gas with a logarithmic repulsion between any pair of particles and in presence of a confining harmonic potential v(r) \\propto r2 . We study the statistics of the eigenvalue with the largest modulus r\\max in the complex plane. The typical and large fluctuations of r\\max around its mean had been studied before, and they match smoothly to the right of the mean. However, it remained a puzzle to understand why the large and typical fluctuations to the left of the mean did not match. In this paper, we show that there is indeed an intermediate fluctuation regime that interpolates smoothly between the large and the typical fluctuations to the left of the mean. Moreover, we compute explicitly this ‘intermediate deviation function’ (IDF) and show that it is universal, i.e. independent of the confining potential v(r) as long as it is spherically symmetric and increases faster than \\ln r2 for large r with an unbounded support. If the confining potential v(r) has a finite support, i.e. becomes infinite beyond a finite radius, we show via explicit computation that the corresponding IDF is different. Interestingly, in the borderline case where the confining potential grows very slowly as v(r) ∼ \\ln r2 for r \\gg 1 with an unbounded support, the intermediate regime disappears and there is a smooth matching between the central part and the left large deviation regime.

  14. The global safety regime - Setting the stage

    International Nuclear Information System (INIS)

    Meserve, R.A.

    2005-01-01

    The existing global safety regime has arisen from the exercise of sovereign authority, with an overlay of voluntary international cooperation from a network of international and regional organizations and intergovernmental agreements. This system has, in the main, served us well. For several reasons, the time is ripe to consider the desired shape of a future global safety regime and to take steps to achieve it. First, every nation's reliance on nuclear power is hostage to some extent to safety performance elsewhere in the world because of the effects on public attitudes and hence there is an interest in ensuring achievement of common standards. Second, the world is increasingly interdependent and the vendors of nuclear power plants seek to market their products throughout the globe. Efficiency would arise from the avoidance of needless differences in approach that require custom modifications from country to country. Finally, we have much to learn from each other and a common effort would strengthen us all. Such an effort might also serve to enhance public confidence. Some possible characteristics of such a regime can be identified. The regime should reflect a global consensus on the level of safety that should be achieved. There should be sufficient standardization of approach so that expertise and equipment can be used everywhere without significant modification. There should be efforts to ensure a fundamental commitment to safety and the encouragement of a safety culture. And there should be efforts to adopt more widely the best regulatory practices, recognizing that some modifications in approach may be necessary to reflect each nation's legal and social culture. At the same type, the regime should have the characteristics of flexibility, transparency, stability, practicality, and encouragement of competence. (author)

  15. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  16. Zero-G two phase flow regime modeling in adiabatic flow

    International Nuclear Information System (INIS)

    Reinarts, T.R.; Best, F.R.; Wheeler, M.; Miller, K.M.

    1993-01-01

    Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow regime analysis. The data come from a recent sets of experiments. The experiments were funded by NASA Johnson Space Center (JSC) and conducted by NASA JSC with Texas A ampersand M University. The experiment was on loan to NASA JSC from Foster-Miller, Inc., who constructed it with funding from the Air Force Phillips Laboratory. The experiment used R12 as the working fluid. A Foster-Miller two phase pump was used to circulate the two phase mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown 19 times for 577 parabolas aboard the NASA KC-135 aircraft which simulates zero-G conditions by its parabolic flight trajectory. Test conditions included bubbly, slug and annular flow regimes in 0-G. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes and several flow regime transition predictions. None of the predictions completely describe the transitions as indicated by the data

  17. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services

    Science.gov (United States)

    Seidl, Rupert; Spies, Thomas A.; Peterson, David L.; Stephens, Scott L.; Hicke, Jeffrey A.

    2016-01-01

    Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resilience-based stewardship is advocated to address these changes in ecosystem management, but its operational implementation has remained challenging. 2. We review observed and expected changes in disturbance regimes and their potential impacts on provisioning, regulating, cultural and supporting ecosystem services, concentrating on temperate and boreal forests. Subsequently, we focus on resilience as a powerful concept to quantify and address these changes and their impacts, and present an approach towards its operational application using established methods from disturbance ecology. 3. We suggest using the range of variability concept – characterizing and bounding the long-term behaviour of ecosystems – to locate and delineate the basins of attraction of a system. System recovery in relation to its range of variability can be used to measure resilience of ecosystems, allowing inferences on both engineering resilience (recovery rate) and monitoring for regime shifts (directionality of recovery trajectory). 4. It is important to consider the dynamic nature of these properties in ecosystem analysis and management decision-making, as both disturbance processes and mechanisms of resilience will be subject to changes in the future. Furthermore, because ecosystem services are at the interface between natural and human systems, the social dimension of resilience (social adaptive capacity and range of variability) requires consideration in responding to changing disturbance regimes in forests. 5. Synthesis and applications. Based on examples from temperate and boreal forests we synthesize principles and pathways for fostering resilience to changing disturbance regimes in ecosystem management. We

  18. Tropical convection regimes in climate models: evaluation with satellite observations

    Science.gov (United States)

    Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.

    2018-04-01

    High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  19. Thermal pollution of rivers and reservoirs by discharges of heated water from thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Makarov, I.

    1974-12-01

    The problems are discussed of the thermal pollution of rivers and water reservoirs by discharges of heated water from thermal and nuclear power plants. The problems concerned are quantitative and qualitative changes in biocenoses, the disturbance or extinction of flora and fauna, physiological changes in organisms and changes in the hydrochemical regime. (Z.M.)

  20. Salix response to different flow regimes in controlled experiments: first results

    Science.gov (United States)

    Gorla, Lorenzo; Signarbieux, Constant; Buttler, Alexandre; Perona, Paolo

    2013-04-01

    Dams and water management for hydropower production, agriculture and other human activities alter the natural flow regime of rivers. The new river hydrograph components depend on the type of impoundment and the policy of regulation but such a different flow regime will likely affect the riparian environment. The main challenge in order to define sustainable flow releases is to quantify hydrological effects in terms of geomorphology and ecosystem response. A considerable lack of knowledge still affects the link hydrology-ecology and inadequate flow rules (e.g., minimal or residual flows) are consequently still widespread: further research in this direction is urgently required. We present an experiment, which aims to investigate the effects of different water stage regimes on riparian vegetation (salix Viminalis cuttings) development in a temperate region (Switzerland). This work describes the installation setup, together with the first results concerning the first of the two scheduled seasons of campaign. Sixty Salix cuttings were planted in non-cohesive sandy-gravel sediment within 1 meter tall plastic pots installed outside in the EPFL campus. After grouping them in three batteries, the water level within them has been varying following three river regimes simulated by adjusting the water level within the pots by means of an automatic hydraulic system. The three water level regimes reproduce a natural flow regime, a minimum residual flow policy, which only conserves peaks during flooding conditions, and an artificial regime conserving only low frequencies (e.g., seasonality) of the natural dynamic. The natural flow regime of the first battery has been applied for two months to the entire system; the three regimes above said started in June 2012. This triggered a plant response transitory regime, which we monitored by measuring plant growth, soil and atmospheric variables. Particularly, measures concern with branches development leaves photosynthesis and