WorldWideScience

Sample records for variable slip induction

  1. Investigation of torque control using a variable slip induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossanyi, E A; Gamble, C R

    1991-07-01

    An investigation of the possibilities of using a variable slip induction generator to control wind turbine transmission torque has been carried out. Such a generator consists of a wound rotor induction generator with its rotor winding connected to an external variable resistance circuit. By controlling the external resistance, the torque-slip characteristic of the generator can be modified, allowing efficient, low-slip operation below rated wind speed and compliant, high-slip operation above rated, where the additional losses are of no consequence but the resulting compliance allows a much reduced duty to be specified for the transmission and gearbox. A number of hardware options have been investigated for the variable resistance rotor circuit, the main options being either a rectifier and DC chopper or an AC regulator. Both of these options use semiconductor switching devices, for which the relative merits of thyristors, MOSFETs, GTOs and transistors have been investigated. A favoured scheme consisting of an AC regulator using GTOs has been provisionally selected. This choice uses some non-standard equipment but is expected to give negligible problems with harmonics. A comprehensive simulation model has been set up and used to investigate the behaviour of the whole system. (author).

  2. Variable slip wind generator modeling for real-time simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, R.; Brochu, J.; Turmel, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ

    2006-07-01

    A model of a wind turbine using a variable slip wound-rotor induction machine was presented. The model was created as part of a library of generic wind generator models intended for wind integration studies. The stator winding of the wind generator was connected directly to the grid and the rotor was driven by the turbine through a drive train. The variable resistors was synthesized by an external resistor in parallel with a diode rectifier. A forced-commutated power electronic device (IGBT) was connected to the wound rotor by slip rings and brushes. Simulations were conducted in a Matlab/Simulink environment using SimPowerSystems blocks to model power systems elements and Simulink blocks to model the turbine, control system and drive train. Detailed descriptions of the turbine, the drive train and the control system were provided. The model's implementation in the simulator was also described. A case study demonstrating the real-time simulation of a wind generator connected at the distribution level of a power system was presented. Results of the case study were then compared with results obtained from the SimPowerSystems off-line simulation. Results showed good agreement between the waveforms, demonstrating the conformity of the real-time and the off-line simulations. The capability of Hypersim for real-time simulation of wind turbines with power electronic converters in a distribution network was demonstrated. It was concluded that hardware-in-the-loop (HIL) simulation of wind turbine controllers for wind integration studies in power systems is now feasible. 5 refs., 1 tab., 6 figs.

  3. Analytical method for determining breakdown slip of an induction motor based on of five parameters

    Directory of Open Access Journals (Sweden)

    Petrović Nenad

    2014-01-01

    Full Text Available The paper proposes an explicite formula for determining the critical slip value of an induction squirel cage motor based upon five parameters. Three of these parameters - rated slip, rated and breakdown torque are known by catalogue data. Two missing parameters are the arbitrary slip between the rated and critical slip value and the corresponding torque value. These two parameters are to be experimentaly obtained. The breakdown torque value given by catalogue data is usually less accurate than the rated torque value. The proposed formula gives the possibility of analysing the error distribution of the critical slip value obtained from catalogue and measured data in comparison with the values obtained from the mechanical characteristic based on the physical parameters of an induction motor.

  4. Scalable conditional induction variables (CIV) analysis

    KAUST Repository

    Oancea, Cosmin E.; Rauchwerger, Lawrence

    2015-01-01

    challenges to automatic parallelization. Because the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow

  5. The induction on a continuous variable

    International Nuclear Information System (INIS)

    Zhang Jingzhong.

    1989-06-01

    Mathematical induction is a useful tool. But it could be used to prove only the proposition with form P(n) for the natural number n. Could the natural number n be replaced by a continuous variable x? Yes, and then we have the continuous induction. The continuous induction is very easy to grasp by the students who have learned mathematical induction. And it can be used to prove many basic propositions in the elementary calculus. (author)

  6. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    Directory of Open Access Journals (Sweden)

    Yanjie Liu

    2016-03-01

    Full Text Available Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems.

  7. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    Science.gov (United States)

    Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio

    2016-01-01

    Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545

  8. Scalable conditional induction variables (CIV) analysis

    DEFF Research Database (Denmark)

    Oancea, Cosmin Eugen; Rauchwerger, Lawrence

    2015-01-01

    parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.......Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as filter, or stack operations and pose significant challenges to automatic parallelization. Because...... the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same...

  9. Scalable conditional induction variables (CIV) analysis

    KAUST Repository

    Oancea, Cosmin E.

    2015-02-01

    Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as Alter, or stack operations and pose significant challenges to automatic parallelization. Because the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same representation. Our technique requires no modifications of our dependence tests, which is agnostic to the original shape of the subscripts, and is more powerful than previously reported dependence tests that rely on the pairwise disambiguation of read-write references. We have implemented the CIV analysis in our parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.

  10. Performance analysis of a microcontroller based slip power recovery ...

    African Journals Online (AJOL)

    Slip power recovery wound rotor induction motor drives are used in high power, limited speed range applications where control of slip power provides the variable speed drive system. In this paper, the steady state performance analysis of conventional slip power recovery scheme using static line commutated inverter in the ...

  11. Documentation of programs that compute 1) static tilts for a spatially variable slip distribution, and 2) quasi-static tilts produced by an expanding dislocation loop with a spatially variable slip distribution

    Science.gov (United States)

    McHugh, Stuart

    1976-01-01

    The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.

  12. Inductance Calculations of Variable Pitch Helical Inductors

    Science.gov (United States)

    2015-08-01

    Electromagnetic Phenomena. July 2003;3:392–396. 2. Snow C. Formulas for computing capacitance and inductance. In: National bu- reau of standards circular 544...A PORWITZKY G THOMSON W UHLIG C WOLFE RDRL WMP C R MUDD RDRL WMP D J RUNYEON M KEELE N BRUCHEY R DONEY M

  13. State variable participation in the limit cycle of induction motor

    Indian Academy of Sciences (India)

    State variable participation in the limit cycle of induction ... 2National Institute of Technical Teachers' Training and Research, Kolkata 700 106, India ..... the phase plot shown in figure 10 would be very useful as it shows infinite loops, meaning.

  14. Reinforcement and Induction of Operant Variability

    Science.gov (United States)

    Neuringer, Allen

    2012-01-01

    The target paper by Barba (2012) raises issues that were the focus of the author's first two publications on operant variability. The author will describe the main findings in those papers and then discuss Barba's specific arguments. Barba has argued against the operant nature of variability. (Contains 2 figures.)

  15. Distance and Azimuthal Dependence of Ground‐Motion Variability for Unilateral Strike‐Slip Ruptures

    KAUST Repository

    Vyas, Jagdish Chandra

    2016-06-21

    We investigate near‐field ground‐motion variability by computing the seismic wavefield for five kinematic unilateral‐rupture models of the 1992 Mw 7.3 Landers earthquake, eight simplified unilateral‐rupture models based on the Landers event, and a large Mw 7.8 ShakeOut scenario. We include the geometrical fault complexity and consider different 1D velocity–density profiles for the Landers simulations and a 3D heterogeneous Earth structure for the ShakeOut scenario. For the Landers earthquake, the computed waveforms are validated using strong‐motion recordings. We analyze the simulated ground‐motion data set in terms of distance and azimuth dependence of peak ground velocity (PGV). Our simulations reveal that intraevent ground‐motion variability Graphic is higher in close distances to the fault (<20  km) and decreases with increasing distance following a power law. This finding is in stark contrast to constant sigma‐values used in empirical ground‐motion prediction equations. The physical explanation of a large near‐field Graphic is the presence of strong directivity and rupture complexity. High values of Graphic occur in the rupture‐propagation direction, but small values occur in the direction perpendicular to it. We observe that the power‐law decay of Graphic is primarily controlled by slip heterogeneity. In addition, Graphic, as function of azimuth, is sensitive to variations in both rupture speed and slip heterogeneity. The azimuth dependence of the ground‐motion mean μln(PGV) is well described by a Cauchy–Lorentz function that provides a novel empirical quantification to model the spatial dependency of ground motion. Online Material: Figures of slip distributions, residuals to ground‐motion prediction equations (GMPEs), distance and azimuthal dependence, and directivity predictor of ground‐motion variability for different source models.

  16. Statistical mechanical characteristics of slip-ring induction motors when direct current braking

    Energy Technology Data Exchange (ETDEWEB)

    Kedzior, W; Muchorowski, J; Pienkowski, K

    1980-09-01

    This paper evaluates methods of braking high capacity belt conveyors used in brown coal surface mines in Poland. Complications associated with belt conveyor braking, particularly when a conveyor moves down a slope, are analyzed. A method of calculating mechanical characteristics of wound-rotor induction motors during direct current braking taking into account saturation of magnetic circuit is presented. Characteristics of the SZUr motor with 630 kW power, used in brown coal mining, are also given. Analyses show that motor operation can be efficiently braked in two ways: 1. by changing additional resistance in rotor circuit (e.g. using thyristor controller); 2. by changing intensity of electric current supplied to stator winding (e.g. using a rectifier). (3 refs.) (In Polish)

  17. Wireless Monitoring of Induction Machine Rotor Physical Variables

    Directory of Open Access Journals (Sweden)

    Jefferson Doolan Fernandes

    2017-11-01

    Full Text Available With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s and value(s that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor’s shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20, as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  18. Wireless Monitoring of Induction Machine Rotor Physical Variables.

    Science.gov (United States)

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; Cipriano Maniçoba, Glauco George; Salazar, Andrés Ortiz; de Paiva, José Alvaro

    2017-11-18

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  19. Effect of preparation variables of plaster molds for slip casting of sanitary ware

    Directory of Open Access Journals (Sweden)

    Rafael E. Ochoa

    2017-11-01

    Full Text Available A full factorial design was used to evaluate the effect of various preparation conditions for making plaster molds for slip casting of sanitary ware. We investigated the relationships between the processing conditions, microstructure, and final properties of the plaster molds. The results showed that the rheological behavior, and hence, the time during which the plaster suspension is pourable for making the plaster molds (before an important increase in viscosity due to the precipitation of gypsum crystals were dependent on the preparation conditions. Variations in the chemical composition, pore size distribution, and microstructure explained the statistically significant effect of preparation variables (including the mixing time, water temperature, and water quality. Preparation conditions that promoted high initial viscosity of the plaster suspension (accelerative effect of the setting time developed less porous structure in the mold that principally increased the compressive strength (16%, deionized water instead of tap water and the casting rate (9%, water at 25 °C instead of 38 °C. According to the results are proposed optimum conditions to make the molds while avoiding unnecessary energy use. Resumen: Mediante un diseño factorial completo se evaluaron diferentes condiciones de preparación de moldes de yeso para colado tradicional de muebles sanitarios. Se investigó la relación entre procesamiento, microestructura y propiedades del molde. Los resultados mostraron que el comportamiento reológico y por lo tanto el tiempo durante el cual la suspensión de yeso se puede verter para conformar los moldes (antes de un incremento importante de viscosidad debido a la formación de cristales de yeso fueron dependientes de las condiciones de preparación. Variaciones en composición química, distribución de tamaño de poro y microestructura explicaron el efecto estadísticamente significativo de las variables de preparación (que incluyeron

  20. Intelligent Multiobjective Slip and Speed Ratio Control of a Novel Dual-Belt Continuously Variable Transmission for Automobiles

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie

    2014-01-01

    Full Text Available Van Doorne’s continuously variable transmission (CVT is the most popular CVT design for automotive transmission, but it is only applicable to low-power passenger cars because of its low torque capacity. To overcome this limitation of traditional single-belt CVT, a novel dual-belt Van Doorne’s CVT (DBVCVT system, which is applicable to heavy-duty vehicles, has been previously proposed by the authors. This paper, based on the published analytical model and test rig of DBVCVT, further proposes an intelligent multiobjective fuzzy controller for slip and speed ratio control of DBVCVT. The controller aims to safely control the clamping forces of both the primary and the secondary pulleys in order to improve the transmission efficiency, achieve the accurate speed ratio, and avoid the belt slip under different engine loads and vehicle speeds. The slip, speed ratio, and transmission efficiency dynamics of DBVCVT are firstly analyzed and modeled in this paper. With the aid of a flexible objective function, the analytical model, and fuzzy logic, a Pareto rule base for fuzzy controller is developed for multiobjective DBVCVT control. Experimental results show that the proposed controller for slip and speed ratio regulation of DBVCVT is effective and performs well under different user-defined weights.

  1. Nanoscale displacement sensing using microfabricated variable-inductance planar coils

    Science.gov (United States)

    Coskun, M. Bulut; Thotahewa, Kasun; Ying, York-Sing; Yuce, Mehmet; Neild, Adrian; Alan, Tuncay

    2013-09-01

    Microfabricated spiral inductors were employed for nanoscale displacement detection, suitable for use in implantable pressure sensor applications. We developed a variable inductor sensor consisting of two coaxially positioned planar coils connected in series to a measurement circuit. The devices were characterized by varying the air gap between the coils hence changing the inductance, while a Colpitts oscillator readout was used to obtain corresponding frequencies. Our approach shows significant advantages over existing methodologies combining a displacement resolution of 17 nm and low hysteresis (0.15%) in a 1 × 1 mm2 device. We show that resolution could be further improved by shrinking the device's lateral dimensions.

  2. Variable slip-rate and slip-per-event on a plate boundary fault: The Dead Sea fault in northern Israel

    Science.gov (United States)

    Wechsler, Neta; Rockwell, Thomas K.; Klinger, Yann

    2018-01-01

    We resolved displacement on buried stream channels that record the past 3400 years of slip history for the Jordan Gorge (JGF) section of the Dead Sea fault in Israel. Based on three-dimensional (3D) trenching, slip in the past millennium amounts to only 2.7 m, similar to that determined in previous studies, whereas the previous millennium experienced two to three times this amount of displacement with nearly 8 m of cumulative slip, indicating substantial short term variations in slip rate. The slip rate averaged over the past 3400 years, as determined from 3D trenching, is 4.1 mm/yr, which agrees well with geodetic estimates of strain accumulation, as well as with longer-term geologic slip rate estimates. Our results indicate that: 1) the past 1200 years appear to significantly lack slip, which may portend a significant increase in future seismic activity; 2) short-term slip rates for the past two millennia have varied by more than a factor of two and suggest that past behavior is best characterized by clustering of earthquakes. From these observations, the earthquake behavior of the Jordan Gorge fault best fits is a "weak segment model" where the relatively short fault section (20 km), bounded by releasing steps, fails on its own in moderate earthquakes, or ruptures with adjacent segments.

  3. Performance Evaluation and Slip Regulation Control of an Asymmetrical Parameter Type Two-Phase Induction Motor Drive Using a Three-Leg Voltage Source Inverter

    Science.gov (United States)

    Piyarat, Wekin; Kinnares, Vijit

    This paper presents a performance evaluation and a simple speed control method of an asymmetrical parameter type two-phase induction motor drive using a three-leg VSI (Voltage Source Inverter). The two-phase induction motor is adapted from an existing single-phase induction motor resulting in impedance unbalance between main and auxiliary windings. The unbalanced two-phase inverter outputs with orthogonal displacement based on a SPWM (Sinusoidal Pulse Width Modulation) method are controlled with appropriate amplitudes for improving the motor performance. Dynamic simulation of the proposed drive system is given. A simple speed controller based on a slip regulation method is designed. The overall system is implemented on a DSP (Digital Signal Processor) board. The validity of the proposed system is verified by simulation and experimental results.

  4. Stability of Marangoni Convection in a Fluid Layer with Variable Viscosity and deformable Free Surface under Free-Slip condition

    Directory of Open Access Journals (Sweden)

    Nurul Hafizah Zainal Abidin

    2009-01-01

    Full Text Available The steady marangoni convection is investigated in ahorizontal layer of fluid with a free-slip bottom heated frombelow and cooled from above. Since the viscosity is temperaturedependentthe consequences of relaxing oberbeck-boussinesqapproximation and free surface deformability are theoreticallyexamined by means of small disturbance analysis. Prediction forthe onset of convection are obtained from the analysis bynumerical technique. The effect of variable viscosity and surfacedeformation on the onset of fluid motion is investigated in detail.It is shown that the critical values of marangoni and wavenumber depend strongly on the viscosity variation and surfacedeformation.

  5. State variable participation in the limit cycle of induction motor

    Indian Academy of Sciences (India)

    2015-02-21

    Feb 21, 2015 ... The paper presents bifurcation behaviour of a single-phase induction motor. Study of bifurcation of a system gives the complete picture of its dynamical behaviour with the change in system's parameters. The system is mathematically described by a set of differential equations in the state space. Induction ...

  6. Model of Transient Process Where Three-Phase Transducer Feeds Induction Motor Equivalent as a Variable Active-Inductive Load

    Directory of Open Access Journals (Sweden)

    Nenad Marković

    2016-01-01

    Full Text Available The paper presents a new approach in the analysis of a transient state in a system where the feeding source is a transducer-IGBT inverter and load is introduced through the induction motor with its R-L parameters. Induction motors with different parameters of powers and power factors are tested. MATLAB simulation of the three-phase inverter that feeds the induction machine has replaced the missing lab equipment with which mathematical model of this system was verified. According to the selected parameters of the inverter and induction machine and through the simulation in the MATLAB program, the results are obtained in the form of diagrams that verify the model of a transient state of the induction machine operation when it operates as a motor which is presented as a variable R-L load. The transient process of the system three-phase bridge inverter whose active-inductive load is the induction machine in the conditions of the change of the load parameters is analyzed. The model of the transient process in the system formed by the inverter in PWM (Pulse Width Modulation converter and induction machine is developed in the time domain and phase coordinates.

  7. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar

    2017-07-01

    This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

  8. Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data

    Science.gov (United States)

    Murray, Jessica R.; Minson, Sarah E.; Svarc, Jerry L.

    2014-01-01

    Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.

  9. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  10. Distance and Azimuthal Dependence of Ground‐Motion Variability for Unilateral Strike‐Slip Ruptures

    KAUST Repository

    Vyas, Jagdish Chandra; Mai, Paul Martin; Galis, Martin

    2016-01-01

    We investigate near‐field ground‐motion variability by computing the seismic wavefield for five kinematic unilateral‐rupture models of the 1992 Mw 7.3 Landers earthquake, eight simplified unilateral‐rupture models based on the Landers event, and a

  11. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    DEFF Research Database (Denmark)

    Hansen, A.D.; Iov, F.; Sørensen, Poul Ejnar

    2004-01-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind tu......-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions....

  12. Influence of Variable Thermal Conductivity on MHD Boundary Layer Slip Flow of Ethylene-Glycol Based Cu Nanofluids over a Stretching Sheet with Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    N. Bhaskar Reddy

    2014-01-01

    Full Text Available An analysis is carried out to investigate the influence of variable thermal conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer flow of a nanofluid with Cu nanoparticles over a stretching sheet with convective boundary condition. Using similarity transformation, the governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations. Employing Runge-kutta fourth-order method along with shooting technique, the resultant system of equations is solved. The influence of various pertinent parameters such as nanofluid volume fraction parameter, the magnetic parameter, radiation parameter, thermal conductivity parameter, velocity slip parameter, Biot number, and suction or injection parameter on the velocity of the flow field and heat transfer characteristics is computed numerically and illustrated graphically. The present results are compared with the existing results for the case of regular fluid and found an excellent agreement.

  13. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Anca D.; Soerensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Iov, Florin; Blaabjerg, Frede [Aalborg Univ. (Denmark). Inst. of Energy Technology

    2004-07-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions.

  14. Flicker study on variable speed wind turbines with doubly fed induction generators

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    to a conclusion that the factors mentioned above have different influences on flicker emission compared with that in the case of the fixed speed wind turbine. Flicker mitigation is realized by output reactive power control of the variable speed wind turbine with doubly fed induction generator. Simulation results...... show the wind turbine output reactive power control provides an effective means for flicker mitigation regardless of mean wind speed, turbulence intensity and short circuit capacity ratio.......Grid connected wind turbines may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a doubly fed induction generator developed in the simulation tool of PSCAD/EMTDC. Flicker emission of variable speed wind turbines...

  15. Control of variable speed wind turbine with doubly-fed induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Iov, F.; Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology, Aalborg (Denmark)

    2004-07-01

    draIn this paper, a Control method suitable for a variable speed grid connected pitch-controlled wind turbine with doubly-fed induction generator (DFIG) is developed. The targets of the Control system are: 1) to Control the power drawn from the wind turbine in order to track the wind turbine optimum operation point 2) to limit the power in case of high wind speeds and 3) to Control the reactive power interchanged between the wind turbine generator and the grid. The considered configuration of DFIG is an induction generator with a wound rotor connected to the grid through a back-to-back power converter and a stator directly connected to the grid. The paper presents the overall Control system of the variable speed DFIG wind turbine, with focus on the Control strategies and algorithms applied at each hierarchical Control level of the wind turbine. There are two Control levels: a DFIG Control level and wind turbine Control level. The DFIG Control level contains a fast Control of the power converter and of the doubly-fed induction generator and it has as goal to Control the active and reactive power of the wind turbine independently. The wind turbine Control level supervises with Control signals both the DFIG Control level and the hydraulic pitch Control system of the wind turbine. The present Control method is designed for normal continuous operations. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT, which makes possible to investigate the dynamic performance of gid-connected wind turbines as a part of realistic electrical grid models. Several significant simulation results are performed With the overall Control-implemented algorithm applied on a variable speed, variable pitch wind turbine model. (au)

  16. Experimental Analysis of Linear Induction Motor under Variable Voltage Variable Frequency (VVVF Power Supply

    Directory of Open Access Journals (Sweden)

    Prasenjit D. Wakode

    2016-07-01

    Full Text Available This paper presents the complete analysis of Linear Induction Motor (LIM under VVVF. The complete variation of LIM air gap flux under ‘blocked Linor’ condition and starting force is analyzed and presented when LIM is given VVVF supply. The analysis of this data is important in further understanding of the equivalent circuit parameters of LIM and to study the magnetic circuit of LIM. The variation of these parameters is important to know the LIM response at different frequencies. The simulation and application of different control strategies such as vector control thus becomes quite easy to apply and understand motor’s response under such strategy of control.

  17. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  18. Very-low-speed variable-structure control of sensorless induction machine drives without signal injection

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2005-01-01

    A sensorless induction machine drive is presented, in which the principles of variable-structure control and direct torque control (DTC) are combined to ensure high-performance operation in the steady state and under transient conditions. The drive employs a new torque and flux controller......, the "linear and variable-structure control", which realizes accurate and robust control in a wide speed range. Conventional DTC transient merits are preserved, while the steady-state behavior is significantly improved. The full-order state observer is a sliding-mode one, which does not require the rotor speed...

  19. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  20. Control of variable speed wind turbines with doubly-fed induction generators

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2005-07-01

    The paper presents an overall control method for variable speed pitch controlled wind turbines with doubly-fed induction generators (DFIG). Emphasis is on control strategies and algorithms applied at each hierarchical control level of the wind turbine. The objectives of the control system are: 1) to control the power drawn from the wind turbine in order to track the wind turbine maximum power operation point, 2) to limit the power in case of large wind speeds, and 3) to control the reactive power interchanged between the wind turbine generator and the grid. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wide range of wind speeds. The model of the variable speed, variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DlgSILENT PowerFactory which allows investigation of the dynamic performance of grid-connected wind turbines within realistic electrical grid models. Simulation results are presented and analysed in different normal operating conditions. (author)

  1. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  2. Slip initiation in alternative and slip-resistant footwear.

    Science.gov (United States)

    Chander, Harish; Wade, Chip; Garner, John C; Knight, Adam C

    2017-12-01

    Slips occur as a result of failure of normal locomotion. The purpose of this study is to analyze the impact of alternative footwear (Crocs™, flip-flops) and an industry standard low-top slip-resistant shoe (SRS) under multiple gait trials (normal dry, unexpected slip, alert slip and expected slip) on lower extremity joint kinematics, kinetics and muscle activity. Eighteen healthy male participants (age: 22.28 ± 2.2 years; height: 177.66 ± 6.9 cm; mass: 79.27 ± 7.6 kg) completed the study. Kinematic, kinetic and muscle activity variables were analyzed using a 3(footwear) × 4(gait trials) repeated-measures analysis of variance at p = 0.05. Greater plantar flexion angles, lower ground reaction forces and greater muscle activity were seen on slip trials with the alternative footwear. During slip events, SRS closely resembled normal dry biomechanics, suggesting it to be a safer footwear choice compared with alternative footwear.

  3. Torque control of synchronous and induction generators for variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Ulen, E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    The aim of this paper is to investigate variable speed electrical systems. Synchronous generators with diode rectifiers and line-commutated thyristor converters are compared with induction generators with force commutated transistor converters and scalar control. The system characteristics are examined regarding possible speed of response (bandwidth) of the torque control, including the sensitivity to disturbances for the drive train and also the possibility to get damping of the drive train resonance. Analyses, simulations and laboratory tests with a 40 kW machine set-up have been performed. The investigation shows that the system with synchronous generator is well suited for wind power applications. A rapid standard DC-current regulator is included in the torque control and can be used for damping of the resonance. The torque control has a bandwidth up to about 3 Hz and the DC-voltage controller up to about 1 Hz. The system with induction generator with scalar control (no transformations) is more difficult to control. A linear approach is only possible up to about 1.5 Hz. In this region it turns out that the behaviour can be visualized as an added inertia on the generator side that can be rather big. 4 refs, 9 figs

  4. Changes in heart rate variability during anaesthesia induction using sevoflurane or isoflurane with nitrous oxide.

    Science.gov (United States)

    Nishiyama, Tomoki

    2016-01-01

    The purpose of this study was to compare cardiac sympathetic and parasympathetic balance using heart rate variability (HRV) during induction of anaesthesia between sevoflurane and isoflurane in combination with nitrous oxide. 40 individuals aged from 30 to 60 years, scheduled for general anaesthesia were equally divided into sevoflurane or isoflurane groups. After 100% oxygen inhalation for a few minutes, anaesthesia was induced with nitrous oxide 3 L min-1, oxygen 3 L min-1 and sevoflurane or isoflurane. Sevoflurane or isoflurane concentration was increased by 0.5% every 2 to 3 breaths until 5% was attained for sevoflurane, or 3% for isoflurane. Vecuronium was administered to facilitate tracheal intubation. After intubation, sevoflurane was set to 2% while isoflurane was set to 1% with nitrous oxide with oxygen (1:1) for 5 min. Both sevoflurane and isoflurane provoked a decrease in blood pressure, total power, the low frequency component (LF), and high frequency component (HF) of HRV. Although the heart rate increased during isoflurane anaesthesia, it decreased under sevoflurane. The power of LF and HF also decreased in both groups. LF was higher in the isoflurane group while HF was higher in the sevoflurane group. The LF/HF ratio increased transiently in the isoflurane group, but decreased in the sevoflurane group. Anaesthesia induction with isoflurane-nitrous oxide transiently increased cardiac sympathetic activity, while sevoflurane-nitrous oxide decreased both cardiac sympathetic and parasympathetic activities. The balance of cardiac parasympathetic/sympathetic activity was higher in sevoflurane anaesthesia.

  5. Vector Control Algorithm for Electric Vehicle AC Induction Motor Based on Improved Variable Gain PID Controller

    Directory of Open Access Journals (Sweden)

    Gang Qin

    2015-01-01

    Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.

  6. Transient Simulation Study of Slip-Frequency Vector Control for Variable Speed Doubly-Fed Brushless Motor with Magnetic Barrier Rotor

    Directory of Open Access Journals (Sweden)

    Jingxiong ZHANG

    2014-01-01

    Full Text Available In this paper, a transient simulation model of a variable speed doubly fed brushless motor (DFBM using back-to-back converter is described. Based on analysis of rotor flux oriented vector control theory of doubly fed induction motor, the control of the currents in DFBM that produce the magnetic flux and the torque is achieved by a digital controller, the speed is regulated by a PI controller which is tuned by a genetic algorithm. According to the state equation of DFBM and the control schemes, the system simulation module is established in MATLAB/ SIMULINK. An extensive simulation study is performed to examine the control characteristics of the machine-side converter under different operation conditions in variable-speed DFBM driver system.

  7. Two-Degrees of Freedom and Variable Structure Controllers for Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    ZAKY, M.

    2018-02-01

    Full Text Available This paper presents a two-degrees-of-Freedom (2DOF and variable structure control (VSC schemes for induction motor (IM drives. The designed VSC incorporates independent feedback and feedforward terms as 2DOF control principle. This structure improves the response of the proposed VSC under speed reference tracking and load disturbance changes. Stability of VSC using Lyapunov theory is discussed. Due to the variable nature of the switching function of VSC, two conditions to ensure Lyapunov stability candidate are derived based on the error signal. A design criterion for the parameters of VSC are introduced to guarantee the stability. The complete IM drive system with the proposed VSC controller is built using MATLAB/Simulink. A laboratory prototype is executed experimentally using DSP-DS1104 control board. All controllers are implemented practically. Simulation and experimental results are provided under different working conditions. Performance evaluation of classic control schemes and the proposed VSC approach is presented. The proposed VSC approach gives superior behavior under speed reference variations and torque disturbances. The disturbances using the proposed controller are strongly suppressed compared to classic 2DOF control scheme.

  8. Investigating the procedural variables that determine whether rats will display negative anticipatory contrast or positive induction.

    Science.gov (United States)

    Weatherly, Jeffrey N; Nurnberger, Jeri T; Hanson, Brent C

    2005-08-31

    Previous studies have demonstrated that consumption of a low-valued food substance may decrease if access to a high-valued substance will soon be available (negative anticipatory contrast). Research has also demonstrated that responding for a low-valued reinforcer may increase if responding for a high-valued reinforcer will soon be possible (positive induction). The present experiment employed rats to respond in a procedure similar to that typically used to produce negative anticipatory contrast. The goal was to determine what factors contribute to when a contrast or an induction effect will occur. Based on previous research, the influence of auditory cues, temporal delays, food deprivation, and location of substance delivery were investigated. Auditory cues and temporal delays did little to influence whether subjects increased or decreased their consumption of 1% sucrose when access to 32% sucrose was upcoming. The appearance of contrast or induction was related to level of deprivation, with deprivation promoting induction. Which effect occurred also depended on whether subjects consumed the two substances from one spout in one location (induction) or from two different spouts in two different locations (contrast). The present results help identify the procedural link(s) between these two effects. They also provide insight to why positive induction may occur (i.e., higher-order place conditioning).

  9. Genetic variability induction in the size of the size of rice plantules by combined irradiation and temperature treatments

    International Nuclear Information System (INIS)

    Garcia, D.; Gonzalez, L.M.; Gumberra, R.

    1993-01-01

    Induced variability in the size of rice plantules was determined using the heritability calculation in a narrow sense, by means of the progenitor-descendant regression. Progenitor stands for the original variety, whereas descendant stands for plant population from CO6 0 gamma-rays irradiated seeds (at 100-600 Gy doses), treated at different temperatures. Results obtained: show the possibility to increase efficiency in variability induction by a combined course of action of both factors. In this experience, the best combination turned out to be 300 Gy-0 celsius grated, which of all the changes that it caused, some 75 percent was of a genetic nature

  10. Stability Analysis of Static Slip-Energy Recovery Drive via ...

    African Journals Online (AJOL)

    The stability of the sub synchronous static slip energy recovery scheme for the speed control of slip-ring induction motor is presented. A set of nonlinear differential equations which describe the system dynamics are derived and linearized about an operating point using perturbation technique. The Eigenvalue analysis of the ...

  11. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    Science.gov (United States)

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  12. Analysis of Design Variables of Annular Linear Induction Electromagnetic Pump using an MHD Model

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    The generated force is affected by lots of factors including electrical input, hydrodynamic flow, geometrical shape, and so on. These factors, which are the design variables of an ALIP, should be suitably analyzed to optimally design an ALIP. Analysis on the developed pressure and efficiency of the ALIP according to the change of design variables is required for the ALIP satisfying requirements. In this study, the design variables of the ALIP are analyzed by using ideal MHD analysis model. Electromagnetic force and efficiency are derived by analyzing the main design variables such as pump core length, inner core diameter, flow gap and turns of coils. The developed pressure and efficiency of the ALIP were derived and analyzed on the change of the main variables such as pump core length, inner core diameter, flow gap, and turns of coils of the ALIP.

  13. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill; Kim, Jonghoon

    2017-05-11

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application. With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.

  14. Performance analysis of variable speed multiphase induction motor with pole phase modulation

    Directory of Open Access Journals (Sweden)

    Liu Huijuan

    2016-09-01

    Full Text Available The pole phase modulation (PPM technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM. The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

  15. Role of Slip Velocity in a Magneto-Micropolar Fluid Flow from a Radiative Surface with Variable Permeability: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Sharma B.K.

    2017-08-01

    Full Text Available An analysis is presented to describe the hydromagnetic mixed convection flow of an electrically conducting micropolar fluid past a vertical plate through a porous medium with radiation and slip flow regime. A uniform magnetic field has been considered in the study which absorbs the micropolar fluid with a varying suction velocity and acts perpendicular to the porous surface of the above plate. The governing non-linear partial differential equations have been transformed into linear partial differential equations, which are solved numerically by applying the explicit finite difference method. The numerical results are presented graphically in the form of velocity, micro-rotation, concentration and temperature profiles, the skin-friction coefficient, the couple stress coefficient, the rate of heat and mass transfers at the wall for different material parameters.

  16. Thermally activated phase slip and variable range hopping in Tm(Ba{sub 2-x}Pr{sub x})Cu{sub 3}O{sub 7+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Z.; Khosroabadi, H.; Akhavan, M. [Magnet Research Laboratory (MRL), Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran)

    2004-05-01

    The magnetoresistance measurement of single phase polycrystalline TmBa{sub 2-x}Pr{sub x}Cu{sub 3}O{sub 7+{delta}} samples have been analyzed by the Ambegaokar and Halperine (AH) phase slip model. The magnetic field dependence of pinning energy power factors increase with the increase of Pr doping. The derived critical current density from the AH theory decreases with increasing magnetic field and Pr-doping for all superconducting samples. It shows that the Pr-doping plays the role of weak link. We have also investigated the normal state resistivity with the hopping model. We have found a CG-VRH cross-over with the increase of Pr content near metal insulator transition. The deacrease of the localization length of the carriers show that Pr-doping strongly localizes the carriers, and finally causes the suppression of superconductivity. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Peak thrust operation of linear induction machines from parameter identification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Eastham, T.R.; Dawson, G.E. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31

    Various control strategies are being used to achieve high performance operation of linear drives. To maintain minimum volume and weight of the power supply unit on board the transportation vehicle, peak thrust per unit current operation is a desirable objective. True peak thrust per unit current through slip control is difficult to achieve because the parameters of linear induction machines vary during normal operation. This paper first develops a peak thrust per unit current control law based on the per-phase equivalent circuit for linear induction machines. The algorithm for identification of the variable parameters in induction machines is then presented. Application to an operational linear induction machine (LIM) demonstrates the utility of this algorithm. The control strategy is then simulated, based on an operational transit LIM, to show the capability of achieving true peak thrust operation for linear induction machines.

  18. Induction of mutation: Improvement of genetic variability of wheat (Triticum sp.)

    International Nuclear Information System (INIS)

    Parodi, P.C.P.

    1984-01-01

    The malnutrition problem in developing countries can be solved by increased production of foods with high proteic content. This paper discusses the application of mutagenesis by radiation in the development of an improved wheat variability with high content of proteins and amino acids. Wheat is the staple food of developing countries

  19. Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction.

    Science.gov (United States)

    Hsu, Che-Hao; Tsai, Ming-Ya; Huang, Go-Shine; Lin, Tso-Chou; Chen, Kuen-Pao; Ho, Shung-Tai; Shyu, Liang-Yu; Li, Chi-Yuan

    2012-03-01

    Beat-to-beat heart rate variability (HRV) is caused by the fluctuating balance of sympathetic and parasympathetic tone. The Poincaré plot has been used to evaluate HRV. In this study, we validate that this new method may qualitatively and quantitatively assess the sympathovagal fluctuation in patients during induction of anesthesia with sevoflurane. Twenty-eight young patients were allocated for the study. The patients received a tilt test and on the next day they sustained anesthesia induced with inhaled anesthetics. Electrocardiography signals from the patients were relayed to an analogue-digital converter. The Poincaré plot is quantified by measuring SD1, SD2, and SD1/SD2. Power spectral analyses were performed and LF, HF and HF/LF were calculated. The LF power and the SD2 of the Poincaré plot increased while subjects were tilt-up from the supine position. Additionally, a significant correlation were found between LF and SD2, HF and SD1 (p plot respectively. However, the LF, SD2 and LF/HF increased; the HF, SD1 and SD1/SD2 ratio decreased after intubation stimulation. Poincaré plot and power spectral analysis of HRV during tilt test and sevoflurane induction significantly correlate. Poincaré plot analysis is easier and more sensitive at evaluating the sympathovagal balance and observing the beat-to-beat HRV. Copyright © 2012. Published by Elsevier B.V.

  20. Mechanical fault diagnostics for induction motor with variable speed drives using Adaptive Neuro-fuzzy Inference System

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z. [Department of Electrical & amp; Computer Engineering, Queen' s University, Kingston, Ont. (Canada K7L 3N6); Sadeghian, A. [Department of Computer Science, Ryerson University, Toronto, Ont. (Canada M5B 2K3); Wu, B. [Department of Electrical & amp; Computer Engineering, Ryerson University, Toronto, Ont. (Canada M5B 2K3)

    2006-06-15

    A novel online diagnostic algorithm for mechanical faults of electrical machines with variable speed drive systems is presented in this paper. Using Wavelet Packet Decomposition (WPD), a set of feature coefficients, represented with different frequency resolutions, related to the mechanical faults is extracted from the stator current of the induction motors operating over a wide range of speeds. A new integrated diagnostic system for electrical machine mechanical faults is then proposed using multiple Adaptive Neuro-fuzzy Inference Systems (ANFIS). This paper shows that using multiple ANFIS units significantly reduces the scale and complexity of the system and speeds up the training of the network. The diagnostic algorithm is validated on a three-phase induction motor drive system, and it is proven to be capable of detecting rotor bar breakage and air gap eccentricity faults with high accuracy. The algorithm is applicable to a variety of industrial applications where either continuous on-line monitoring or off-line fault diagnostics is required. (author)

  1. Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator

    Directory of Open Access Journals (Sweden)

    Mohamed Zribi

    2017-05-01

    Full Text Available This paper deals with the control of a variable-speed wind energy conversion (WEC system using a squirrel cage induction generator (SCIG connected to the grid through a back-to-back three phase (AC-DC-AC power converter. The sliding mode control technique is used to control the WEC system. The objective of the controllers is to force the states of the system to track their desired states. One controller is used to regulate the generator speed and the flux so that maximum power is extracted from the wind. Another controller is used to control the grid side converter, which controls the DC bus voltage and the active and reactive powers injected into the grid. The performance of the controlled wind energy conversion system is verified through MATLAB simulations, which show that the controlled system performs well.

  2. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence.

    Science.gov (United States)

    Wiley, Christopher D; Flynn, James M; Morrissey, Christapher; Lebofsky, Ronald; Shuga, Joe; Dong, Xiao; Unger, Marc A; Vijg, Jan; Melov, Simon; Campisi, Judith

    2017-10-01

    Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. SLIP CASTING METHOD

    Science.gov (United States)

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  4. Slip control for LIM propelled transit vehicles

    Science.gov (United States)

    Wallace, A. K.; Parker, J. H.; Dawson, G. E.

    1980-09-01

    Short stator linear induction motors, with an iron-backed aluminum sheet reaction rail and powered by a controlled inverter, have been selected as the propulsion system for transit vehicles in an intermediate capacity system (12-20,000 pphpd). The linear induction motor is capable of adhesion independent braking and acceleration levels which permit safe, close headways. In addition, simple control is possible allowing moving block automatic train control. This paper presents a slip frequency control scheme for the LIM. Experimental results for motoring and braking obtained from a test vehicle are also presented. These values are compared with theoretical predictions.

  5. Variability in micronucleus induction with different mutagens applied to several species of fish

    Directory of Open Access Journals (Sweden)

    Cesar Koppe Grisolia

    2000-03-01

    Full Text Available Fish are often used for screening genotoxicity of water. For such programs, a knowledge of the sensitivity to clastogens, spontaneous micronucleus frequency and cell cycle kinetics of the target tissue is necessary. To investigate the pattern of inter-specific sensitivity to micronucleus induction three species of fish, Tilapia rendalli, Oreochromis niloticus and Cyprinus carpio, were exposed to the clastogens bleomycin (BLM, cyclophosphamide (CP, 5-fluorouracil (5-FU, and mitomycin C (MMC. The binucleate/mononucleate ratio in peripheral erythrocytes exposed to cytochalasin B was also used to evaluate the time-dependent response of micronucleus formation during hematopoesis in the kidney and the micronucleus peak in peripheral erythrocytes. Micronucleus frequencies induced by CP were significantly greater than their respective controls for the three fish species throughout all treatment periods. During the whole evaluation period (30 days CP was also the most effective clastogen. In general, until the 14th day of evaluation period T. rendalii was the most sensitive species to clastogens. No difference in micronucleus frequencies among species was observed in the 4th evaluation (at the 30th day. A micronucleus peak was observed at the 7th day after treatment. After the 14th day the frequencies were stabilized. The cytochalasin B experiment was carried out to demonstrate that micronuclei induced in the young kidney erythrocyte cells were detected in the circulating blood 2-4 days later.Este estudo fez uma avaliação da indução de micronúcleos em eritrócitos de sangue periférico de peixes Tilapia rendalli, Oreochromis niloticus e Cyprinus carpio após o tratamento com mitomicina C, ciclofosfamida, 5-fluorouracil e bleomicina. Foram colhidas amostras periódicas de sangue com 2, 7, 14 e 30 dias após o tratamento único. Os tratamentos com citocalasina B tiveram como objetivo analisar as proporções entre células binucleadas

  6. Effect of gamma rays and chemical mutagens on induction of polygenic variability in field bean (Dolichos lablab)

    International Nuclear Information System (INIS)

    Ramakanth, R.S.; Seetharam, A.; Patil, N.M.

    1977-01-01

    Polygenic variability induced for 3 quantitative characters viz., flowering time, seed yield and 100 grain weight was studied in one of the local varieties (L 1 ) following treatments with gamma rays, NMU and NMG in M 2 generation. In all there were 16 treatments, five each in gamma rays (10, 20, 30, 40 and 50 Krad), NMU(0.01, 0.02, 0.03, 0.04 and 0.05 percent) and NMG(0.002, 0.003, 0.004, 0.005 and 0.006 percent) and one control. A polygenic trail was laid out with all the 16 treatments in a randomised block deisgn with 4 replications. Mean and variance were calculated for all the 3 characters and the values were significantly different compared to control. Mean values were significantly higher than the control in several treatments for seed yield per plant and grain weight, besides flowering was also earlier in many treatments. Similarly variance was also found to be significantly higher in many treatments. Out of 15 treatments, 9 showed significantly higher variance value than control for seed yield and grain weight while 14 out of 15 treatments showed enlarged variance for flowering time. In case of gamma rays, variance was maximum at 30 Krad for seed yield and flowering time whereas for grain weight maximum variance was at 40 Krad. Among NMU treatments, maximum variance was induced at 0.04 and 0.05 percent treatments. With regard to NMG treatments 0.005 and 0.006 percent were the most effective. The results obtained in this study are suggestive of the fact that the field bean responds favourably for the induction of polyqenic variability. Since the induced variability is more towards the positive side there is a greater scope for selection and subsequent improvement of this crop species. (author)

  7. Asymmetrical slip propensity: required coefficient of friction.

    Science.gov (United States)

    Seo, Jung-suk; Kim, Sukwon

    2013-07-31

    Most studies in performing slips and falls research reported their results after the ipsilateral leg of subjects (either right foot or left foot) was guided to contact the contaminated floor surface although many studies indicated concerns for asymmetries of legs in kinematic or kinetic variables. Thus, the present study evaluated if dominant leg's slip tendency would be different from non-dominant leg's slip tendency by comparing the Required Coefficient of Friction (RCOF) of the two lower limbs. Forty seven health adults participated in the present study. RCOF was measured when left or right foot of subjects contacted the force platforms respectively. Paired t-test was performed to test if RCOF and heel velocity (HCV) of dominant legs was different from that of non-dominant legs. It was suggested that the asymmetry in RCOFs and HCV between the two lower limbs existed. The RCOFs of non-dominant legs were higher than that of dominant legs. The results indicated that asymmetry in slip propensity, RCOF, was existed in lower extremity. The results from the study suggested that it would be benefit to include a variable, such as asymmetry, in slips and falls research.

  8. Is frictional heating needed to cause dramatic weakening of nanoparticle gouge during seismic slip? Insights from friction experiments with variable thermal evolutions

    NARCIS (Netherlands)

    Yao, L.; Ma, S.; Niemeijer, A.R.; Shimamoto, T.; Platt, J.D.

    2016-01-01

    To examine whether faults can be lubricated by preexisting and newly formed nanoparticles, we perform high-velocity friction experiments on periclase (MgO) nanoparticles and on bare surfaces of Carrara marble cylinders/slices, respectively. Variable temperature conditions were simulated by using

  9. Two-Phase Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    Gholam Reza Arab Markadeh

    2010-10-01

    Full Text Available The lack of variable-speed drives for two (single induction motor is a reality. This article attempts mainly to investigate the reasons for this lack of variable – speed drives. This paper deals with literature survey of various existing converter topologies, which have been proposed for adjustable speed single phase induction motor drives. Various converter topologies have been compared in this paper. Among these converter topologies, the adjustable frequency PWM inverter is the best choice for single-phase induction motor drives. However, adjustable-frequency drives have not been widely used with single-phase Induction motors. The open-loop constant V/F control law cannot be used with the single-phase induction motor drives as it is used with three phase motors. The variation of the operating frequency at lower speed range with constant load torque causes variation in motor's slip. A constant V/F control is suitable only over the upper speed range.

  10. Unravelling the Mysteries of Slip Histories, Validating Cosmogenic 36Cl Derived Slip Rates on Normal Faults

    Science.gov (United States)

    Goodall, H.; Gregory, L. C.; Wedmore, L.; Roberts, G.; Shanks, R. P.; McCaffrey, K. J. W.; Amey, R.; Hooper, A. J.

    2017-12-01

    The cosmogenic isotope chlorine-36 (36Cl) is increasingly used as a tool to investigate normal fault slip rates over the last 10-20 thousand years. These slip histories are being used to address complex questions, including investigating slip clustering and understanding local and large scale fault interaction. Measurements are time consuming and expensive, and as a result there has been little work done validating these 36Cl derived slip histories. This study aims to investigate if the results are repeatable and therefore reliable estimates of how normal faults have been moving in the past. Our approach is to test if slip histories derived from 36Cl are the same when measured at different points along the same fault. As normal fault planes are progressively exhumed from the surface they accumulate 36Cl. Modelling these 36Cl concentrations allows estimation of a slip history. In a previous study, samples were collected from four sites on the Magnola fault in the Italian Apennines. Remodelling of the 36Cl data using a Bayesian approach shows that the sites produced disparate slip histories, which we interpret as being due to variable site geomorphology. In this study, multiple sites have been sampled along the Campo Felice fault in the central Italian Apennines. Initial results show strong agreement between the sites we have processed so far and a previous study. This indicates that if sample sites are selected taking the geomorphology into account, then 36Cl derived slip histories will be highly similar when sampled at any point along the fault. Therefore our study suggests that 36Cl derived slip histories are a consistent record of fault activity in the past.

  11. RETRAN dynamic slip model

    International Nuclear Information System (INIS)

    McFadden, J.H.; Paulsen, M.P.; Gose, G.C.

    1981-01-01

    A time dependent equation for the slip velocity in a two-phase flow condition has been incorporated into a developmental version of the RETRAN computer code. This model addition has been undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. In this paper, the development of the slip model is summarized and the corresponding constitutive equations are discussed. Comparisons of RETRAN analyses with steady-state void fraction data and data from the Semiscale S-02-6 small break test are also presented

  12. RETRAN dynamic slip model

    International Nuclear Information System (INIS)

    McFadden, J.H.; Paulsen, M.P.; Gose, G.C.

    1981-01-01

    Thermal-hydraulic codes in general use for system calculations are based on extensive analyses of loss-of-coolant accidents following the postulated rupture of a large coolant pipe. In this study, time-dependent equation for the slip velocity in a two-phase flow condition has been incorporated into the RETRAN-02 computer code. This model addition was undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. The dynamic slip equation was derived from a set of two-fluid conservation equations. 18 refs

  13. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE

    2010-12-10

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  14. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  15. Fluid Pressures at the Shoe-Floor-Contaminant Interface During Slips: Effects of Tread & Implications on Slip Severity

    Science.gov (United States)

    Beschorner, Kurt E.; Albert, Devon L.; Chambers, April J.; Redfern, Mark S.

    2018-01-01

    Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to 1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; 2) determine the effects of fluid pressure on slip severity; and 3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/−standard deviation) were significantly higher for the untreaded conditions (124 +/−75 kPa) than the treaded conditions (1.1 +/−0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r = 0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. PMID:24267270

  16. One Basin, One Stress Regime, One Orientation of Seismogenic Basement Faults, Variable Spatio-Temporal Slip Histories: Lessons from Fort Worth Basin Induced Earthquake Sequences

    Science.gov (United States)

    DeShon, H. R.; Brudzinski, M.; Frohlich, C.; Hayward, C.; Jeong, S.; Hornbach, M. J.; Magnani, M. B.; Ogwari, P.; Quinones, L.; Scales, M. M.; Stump, B. W.; Sufri, O.; Walter, J. I.

    2017-12-01

    Since October 2008, the Fort Worth basin in north Texas has experienced over 30 magnitude (M) 3.0+ earthquakes, including one M4.0. Five named earthquake sequences have been recorded by local seismic networks: DFW Airport, Cleburne-Johnson County, Azle, Irving-Dallas, and Venus-Johnson County. Earthquakes have occurred on northeast (NE)-southwest (SW) trending Precambrian basement faults and within the overlying Ellenburger limestone unit used for wastewater disposal. Focal mechanisms indicate primarily normal faulting, and stress inversions indicate maximum regional horizontal stress strikes 20-30° NE. The seismogenic sections of the faults in either the basement or within the Ellenburger appear optimally oriented for failure within the modern stress regime. Stress drop estimates range from 10 to 75 bars, with little variability between and within the named sequences, and the values are consistent with intraplate earthquake stress drops in natural tectonic settings. However, the spatio-temporal history of each sequence relative to wastewater injection data varies. The May 2015 M4.0 Venus earthquake, for example, is only the largest of what is nearly 10 years of earthquake activity on a single fault structure. Here, maximum earthquake size has increased with time and exhibits a log-linear relationship to cumulative injected volume from 5 nearby wells. At the DFW airport, where the causative well was shut-in within a few months of the initial earthquakes and soon after the well began operation, we document migration away from the injector on the same fault for nearly 6 km sporadically over 5 years. The Irving-Dallas and Azle sequences, like DFW airport, appear to have started rather abruptly with just a few small magnitude earthquakes in the weeks or months preceding the significant set of magnitude 3.5+ earthquakes associated with each sequence. There are no nearby (<10 km) injection operations to the Irving-Dallas sequence and the Azle linked wells operated for

  17. INVESTIGATION ON ESTABLISHED OPERATIONAL MODES OF FREQUENCY-CONTROLLED INDUCTION GENERATOR OF WIND POWER PLANTS

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2014-01-01

    Full Text Available The paper proposes an analytical expression for calculating a manipulated variable of stator voltage in a frequency-controlled induction generator with a cage rotor of a wind power plant while regulating a constant value of the absolute slip of the generator. Comparison of the calculated results by the proposed expression and full differential equations of the generator (an equation of state at steady state has confirmed a high accuracy of the analytical expression.

  18. No slip gravity

    Science.gov (United States)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  19. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  20. Effects of stellate ganglion block on cardiovascular reaction and heart rate variability in elderly patients during anesthesia induction and endotracheal intubation.

    Science.gov (United States)

    Chen, Yong-Quan; Jin, Xiao-Ju; Liu, Zhao-Fang; Zhu, Mei-Fang

    2015-03-01

    To investigate the effects of stellate ganglion block (SGB) on cardiovascular response and heart rate (HR) variability in elderly patients during anesthesia induction and endotracheal intubation. A randomized, double-blinded, and placebo-controlled study. University-affiliated teaching hospital. Eighty elderly patients (American Society of Anesthesiologists grades I and II) receiving elective surgery during general anesthesia. Right stellate ganglion injection (SGB) was performed in all patients using 10 mL of 1% lidocaine or normal saline. Systolic blood pressure (BP), diastolic BP, HR, and calculated rate pressure product. HR variability at the following time points: conscious status before induction (T0); immediately before intubation (T1); immediately after intubation (T2); and 1, 3, and 5 minutes postintubation (T3, T4, and T5). No significant differences in BP and HR were observed between the 2 groups. Rate pressure product values significantly increased in the control group compared with baseline and SGB group values. Low-frequency power (LF) and LF/high-frequency power (HF) significantly increased, and HF and normalized units of HF significantly decreased in the control group compared with baseline values. LF, normalized units of LF, and LF/HF in the SGB group significantly decreased compared with those of the control group. SGB protects the myocardium and effectively suppresses stress responses during anesthesia induction and tracheal intubation in elderly patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Simulating spontaneous aseismic and seismic slip events on evolving faults

    Science.gov (United States)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras

    2017-04-01

    the slip spectrum in our simulations to conventional RSF simulations (Liu and Rice, JGR, 2007). We further demonstrate the capability of simulating the evolution of a fault zone and simultaneous occurrence of slip transients. From small random initial distributions of the state variable in an otherwise homogeneous medium, deformation localizes and forms curved zones of reduced states. These spontaneously formed fault zones host slip transients, which in turn contribute to the growth of the fault zone.

  2. Entropy Stability and the No-Slip Wall Boundary Condition

    KAUST Repository

    Svä rd, Magnus; Carpenter, Mark H.; Parsani, Matteo

    2018-01-01

    We present an entropy stable numerical scheme subject to no-slip wall boundary conditions. To enforce entropy stability only the no-penetration boundary condition and a temperature condition are needed at a wall, and this leads to an L bound on the conservative variables. In this article, we take the next step and design a finite difference scheme that also bounds the velocity gradients. This necessitates the use of the full no-slip conditions.

  3. Entropy Stability and the No-Slip Wall Boundary Condition

    KAUST Repository

    Svärd, Magnus

    2018-01-18

    We present an entropy stable numerical scheme subject to no-slip wall boundary conditions. To enforce entropy stability only the no-penetration boundary condition and a temperature condition are needed at a wall, and this leads to an L bound on the conservative variables. In this article, we take the next step and design a finite difference scheme that also bounds the velocity gradients. This necessitates the use of the full no-slip conditions.

  4. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skoček, Jan

    2013-01-01

    The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...

  5. Effect of rotor rectifier on motor performance in slip recovery drives

    Energy Technology Data Exchange (ETDEWEB)

    Al Zahawi, B.A.T.; Jones, B.L.; Drury, W.

    1987-01-01

    The static Kramer system, comprising a slip-ring induction motor and a slip energy recovery circuit, is one of the simplest and most efficient forms of ac variable-speed drive. It is sometimes used to upgrade drives which had originally been designed for fixed speed operation, often with substantial energy savings. In such cases, it is important to know how the inclusion of a rectifier in the slip energy recovery circuit affects motor performance. A satisfactory model for the motor-rectifier combination is also needed to provide a sound basis for assessing alternative forms of recovery systems which aim to overcome the principal shortcomings of the drive, namely the magnitude and variability of its reactive power. Despite its simplicity, the Kramer drive presents a formidable analytical challenge. Rigorous analysis is particularly difficult and there is a need for a simpler form of analysis when calculating ratings and steady-state performance. The approach taken in this paper uses a transformer-type model for the motor, and largely analytical expressions for predicting torque, stator power, stator reactive power and rectifier output voltage. Motor resistances, diode characteristics, and the several possible rectifier overlap modes are included. It is shown that the rectifier has an adverse effect on stator reactive power, power factor, and peak torque, particularly at speeds well below synchronous, requiring some derating of motors designed for resistance control and also requiring additional power factor correction. While the analysis does not cater to variations caused by harmonics at some speeds, it does provide a quick, accurate method of predicting performance over most sections of the operating range. 12 refs., 11 figs.

  6. Stabilizing Stick-Slip Friction

    International Nuclear Information System (INIS)

    Capozza, Rosario; Barel, Itay; Urbakh, Michael; Rubinstein, Shmuel M.; Fineberg, Jay

    2011-01-01

    Even the most regular stick-slip frictional sliding is always stochastic, with irregularity in both the intervals between slip events and the sizes of the associated stress drops. Applying small-amplitude oscillations to the shear force, we show, experimentally and theoretically, that the stick-slip periods synchronize. We further show that this phase locking is related to the inhibition of slow rupture modes which forces a transition to fast rupture, providing a possible mechanism for observed remote triggering of earthquakes. Such manipulation of collective modes may be generally relevant to extended nonlinear systems driven near to criticality.

  7. Slips of the Pun

    DEFF Research Database (Denmark)

    Balle, Søren Hattesen

    ’ at the same time, the second one of which gets told as a result of a simple slip of a pun. If one story of the poem is the poet-speaker’s hermeneutic quest for the possible meaningfulness of a past love affair, the other – somewhat less conspicuously – introduces his attempt to remember and recover the bodily...... matter in the end. At any rate, the reader is left wondering how literally he ought to take the poet-speaker’s punning prediction that he and his lover “’ll/Stay in touch”. And what about the reader’s own attempt to ‘make sense’ of Ashbery’s puns? To which extent does he or she become engaged in a sexual...... relationship with them if one extends Ashbery’s playing with word to what goes one in the reader’s interpretive act? Ashbery’s friend and fellow poet Kenneth Koch once said of the former’s poetry that “it wants to go to bed with you”....

  8. SLIP VELOCITY IN PULSED DISC AND DOUGHNUT EXTRACTION COLUMN

    Directory of Open Access Journals (Sweden)

    Mohammad Outokesh

    2011-09-01

    Full Text Available In the present work, slip velocity has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for four different liquid-liquid systems. The effects of operating variables including pulsation intensity and dispersed and continuous phase flow rates on slip velocity have been investigated. The existence of three different operational regimes, namely mixersettler, transition, and emulsion regimes, was observed when the energy input was changed. Empirical correlations are derived for prediction of the slip velocity in terms of operating variables, physical properties of the liquid systems, and column geometry for different regimes. Good agreement between prediction and experiments was found for all operating conditions that were investigated.

  9. Slip of Spreading Viscoplastic Droplets.

    Science.gov (United States)

    Jalaal, Maziyar; Balmforth, Neil J; Stoeber, Boris

    2015-11-10

    The spreading of axisymmetric viscoplastic droplets extruded slowly on glass surfaces is studied experimentally using shadowgraphy and swept-field confocal microscopy. The microscopy furnishes vertical profiles of the radial velocity using particle image velocimetry (PIV) with neutrally buoyant tracers seeded in the fluid. Experiments were conducted for two complex fluids: aqueous solutions of Carbopol and xanthan gum. On untreated glass surfaces, PIV demonstrates that both fluids experience a significant amount of effective slip. The experiments were repeated on glass that had been treated to feature positive surface charges, thereby promoting adhesion between the negatively charged polymeric constituents of the fluids and the glass surface. The Carbopol and xanthan gum droplets spread more slowly on the treated surface and to a smaller radial distance. PIV demonstrated that this reduced spreading was associated with a substantial reduction in slip. For Carbopol, the effective slip could be eliminated entirely to within the precision of the PIV measurements; the reduction in slip was less effective for xanthan gum, with a weak slip velocity remaining noticeable.

  10. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J

    2009-01-01

    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  11. Slip flow in graphene nanochannels

    DEFF Research Database (Denmark)

    . Kannam, Sridhar; Billy, Todd; Hansen, Jesper Schmidt

    2011-01-01

    We investigate the hydrodynamic boundary condition for simple nanofluidic systems such as argon and methane flowing in graphene nanochannels using equilibrium molecular dynamics simulations (EMD) in conjunction with our recently proposed method [J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev....... E 84, 016313 (2011)10.1103/PhysRevE.84.016313]. We first calculate the fluid-graphene interfacial friction coefficient, from which we can predict the slip length and the average velocity of the first fluid layer close to the wall (referred to as the slip velocity). Using direct nonequilibrium...

  12. Slip rate and tremor genesis in Cascadia

    Science.gov (United States)

    Wech, Aaron G.; Bartlow, Noel M.

    2014-01-01

    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  13. Slip activity of persistent slip bands in polycrystalline nickel

    International Nuclear Information System (INIS)

    Weidner, A.; Beyer, R.; Blochwitz, C.; Holste, C.; Schwab, A.; Tirschler, W.

    2006-01-01

    The appearance of glide localizations after cyclic deformation in the saturation stage was investigated for polycrystalline nickel. It was shown that persistent slip bands (PSBs) are formed in a wide range of grain orientations. Concerning the grain size it was found, that the probability for the appearance of PSBs is higher for larger grains. The local slip activity of the formed PSBs was studied after half-cycle deformation using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The fraction of grains with glide-active PSBs and the glide-active PSB volume itself is very small after the half-cycle loading. The obtained local shear strain amplitudes are quite high and vary in the range of 0.2-5%. They are comparable with those found in nickel single crystals at the same loading procedure

  14. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.; Mai, Paul Martin; Thingbaijam, Kiran Kumar; Razafindrakoto, H. N. T.; Genton, Marc G.

    2014-01-01

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  15. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.

    2014-11-10

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  16. Limits of recovery against slip-induced falls while walking.

    Science.gov (United States)

    Yang, Feng; Bhatt, Tanvi; Pai, Yi-Chung

    2011-10-13

    Slip-induced falls in gait often have devastating consequences. The purposes of this study were 1) to select the determinants that can best discriminate the outcomes (recoveries or falls) of an unannounced slip induced in gait (and to find their corresponding threshold, i.e., the limits of recovery, which can clearly separate these two outcomes), and 2) to verify these results in a subset of repeated-slip trials. Based on the data collected from 69 young subjects during a slip induced in gait, nine different ways of combining the center of mass (COM) stability, the hip height, and its vertical velocity were investigated with the aid of logistic regression. The results revealed that the COM stability (s) and limb support (represented by the quotient of hip vertical velocity to hip height, S(hip)) recorded at the instant immediately prior to the recovery step touchdown were sufficiently sensitive to account for all (100%) variance in falls, and specific enough to account for nearly all (98.3%) variability in recoveries. This boundary (S(hip)=-0.22s-0.25), which quantifies the risk of falls in the stability-limb support quotient (s-S(hip)) domain, was fully verified using second-slip and third-slip trials (n=76) with classification of falls at 100% and recoveries at 98.6%. The severity of an actual fall is likely to be greater further below the boundary, while the likelihood of a fall diminishes above it. Finally, the slope of the boundary also indicates the tradeoff between the stability and limb support, whereby high stability can compensate for the insufficiency in limb support, or vice versa. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Predicting the probability of slip in gait: methodology and distribution study.

    Science.gov (United States)

    Gragg, Jared; Yang, James

    2016-01-01

    The likelihood of a slip is related to the available and required friction for a certain activity, here gait. Classical slip and fall analysis presumed that a walking surface was safe if the difference between the mean available and required friction coefficients exceeded a certain threshold. Previous research was dedicated to reformulating the classical slip and fall theory to include the stochastic variation of the available and required friction when predicting the probability of slip in gait. However, when predicting the probability of a slip, previous researchers have either ignored the variation in the required friction or assumed the available and required friction to be normally distributed. Also, there are no published results that actually give the probability of slip for various combinations of required and available frictions. This study proposes a modification to the equation for predicting the probability of slip, reducing the previous equation from a double-integral to a more convenient single-integral form. Also, a simple numerical integration technique is provided to predict the probability of slip in gait: the trapezoidal method. The effect of the random variable distributions on the probability of slip is also studied. It is shown that both the required and available friction distributions cannot automatically be assumed as being normally distributed. The proposed methods allow for any combination of distributions for the available and required friction, and numerical results are compared to analytical solutions for an error analysis. The trapezoidal method is shown to be highly accurate and efficient. The probability of slip is also shown to be sensitive to the input distributions of the required and available friction. Lastly, a critical value for the probability of slip is proposed based on the number of steps taken by an average person in a single day.

  18. Labor Induction

    Science.gov (United States)

    f AQ FREQUENTLY ASKED QUESTIONS FAQ154 LABOR, DELIVERY, AND POSTPARTUM CARE Labor Induction • What is labor induction? • Why is labor induced? • What is the Bishop score? • What is “ripening ...

  19. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  20. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  1. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro; Mai, Paul Martin; Yasuda, Tomohiro; Mori, Nobuhito

    2014-01-01

    In this study, we develop stochastic random-field slip models for the 2011 Tohoku earthquake and conduct a rigorous sensitivity analysis of tsunami hazards with respect to the uncertainty of earthquake slip and fault geometry. Synthetic earthquake slip distributions generated from the modified Mai-Beroza method captured key features of inversion-based source representations of the mega-thrust event, which were calibrated against rich geophysical observations of this event. Using original and synthesised earthquake source models (varied for strike, dip, and slip distributions), tsunami simulations were carried out and the resulting variability in tsunami hazard estimates was investigated. The results highlight significant sensitivity of the tsunami wave profiles and inundation heights to the coastal location and the slip characteristics, and indicate that earthquake slip characteristics are a major source of uncertainty in predicting tsunami risks due to future mega-thrust events.

  2. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro

    2014-09-01

    In this study, we develop stochastic random-field slip models for the 2011 Tohoku earthquake and conduct a rigorous sensitivity analysis of tsunami hazards with respect to the uncertainty of earthquake slip and fault geometry. Synthetic earthquake slip distributions generated from the modified Mai-Beroza method captured key features of inversion-based source representations of the mega-thrust event, which were calibrated against rich geophysical observations of this event. Using original and synthesised earthquake source models (varied for strike, dip, and slip distributions), tsunami simulations were carried out and the resulting variability in tsunami hazard estimates was investigated. The results highlight significant sensitivity of the tsunami wave profiles and inundation heights to the coastal location and the slip characteristics, and indicate that earthquake slip characteristics are a major source of uncertainty in predicting tsunami risks due to future mega-thrust events.

  3. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior

    Science.gov (United States)

    Barnhart, W. D.; Briggs, R.

    2015-12-01

    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  4. Slipping on pedestrian surfaces: methods for measuring and evaluating the slip resistance.

    Science.gov (United States)

    Wetzel, Christoph; Windhövel, Ulrich; Mewes, Detlef; Ceylan, Orhan

    2015-01-01

    Tripping, slipping and falling accidents are among the types of accident with a high incidence. This article describes the requirements concerning slip resistance, as well as the state of the art of slip resistance measurement standards in the European Community and the USA. The article also describes how risk assessment can be performed in the field.

  5. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    Science.gov (United States)

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  6. Inductive reasoning.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-02-26

    The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.

  8. Geodetically resolved slip distribution of the 27 August 2012 Mw=7.3 El Salvador earthquake

    Science.gov (United States)

    Geirsson, H.; La Femina, P. C.; DeMets, C.; Hernandez, D. A.; Mattioli, G. S.; Rogers, R.; Rodriguez, M.

    2013-12-01

    On 27 August 2012 a Mw=7.3 earthquake occurred offshore of Central America causing a small tsunami in El Salvador and Nicaragua but little damage otherwise. This is the largest magnitude earthquake in this area since 2001. We use co-seismic displacements estimated from episodic and continuous GPS station time series to model the magnitude and spatial variability of slip for this event. The estimated surface displacements are small (earthquake. We use TDEFNODE to model the displacements using two different modeling approaches. In the first model, we solve for homogeneous slip on free rectangular fault(s), and in the second model we solve for distributed slip on the main thrust, realized using different slab models. The results indicate that we can match the seismic moment release, with models indicating rupture of a large area, with a low magnitude of slip. The slip is at shallow-to-intermediate depths on the main thrust off the coast of El Salvador. Additionally, we observe a deeper region of slip to the east, that reaches towards the Gulf of Fonseca between El Salvador and Nicaragua. The observed tsunami additionally indicates near-trench rupture off the coast of El Salvador. The duration of the rupturing is estimated from seismic data to be 70 s, which indicates a slow rupture process. Since the geodetic moment we obtain agrees with the seismic moment, this indicates that the earthquake was not associated with aseismic slip.

  9. The role of water in slip casting

    Science.gov (United States)

    Mccauley, R. A.; Phelps, G. W.

    1984-01-01

    Slips and casting are considered in terms of physical and colloidal chemistry. Casting slips are polydisperse suspensions of lyophobic particles in water, whose degree of coagulation is controlled by interaction of flocculating and deflocculating agents. Slip casting rate and viscosity are functions of temperature. Slip rheology and response to deflocculating agents varies significantly as the kinds and amounts of colloid modifiers change. Water is considered as a raw material. Various concepts of water/clay interactions and structures are discussed. Casting is a de-watering operation in which water moves from slip to cast to mold in response to a potential energy termed moisture stress. Drying is an evaporative process from a free water surface.

  10. Electro-optical hybrid slip ring

    Science.gov (United States)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  11. Teacher induction

    NARCIS (Netherlands)

    Beijaard, D.; Buitink, J.; Kessels, C.; Peterson, P.; Baker, E.; McGraw, B.

    2010-01-01

    Teacher induction programs are intended to support the professional development of beginning teachers and thereby contribute to the reduction of teacher attrition during the early teaching years. Teacher induction programs are often based upon a deficit model with a focus on the better organization

  12. Implementation of Close Loop Speed Control with VVVF Control and Slip Regulation on LIM

    Directory of Open Access Journals (Sweden)

    K. Aditya

    2014-04-01

    Full Text Available Open loop VVVF control has the disadvantage of low output torque when working at low frequency and poor speed precision at different load conditions.Various performance-improving schemes have been proposed for the basic VVVF control by compensating slips occurring in the low frequency range and slips caused by changing loads. Numerous papers have been published on the close loop speed control of rotary induction motor. In this paper a close loop speed control with VVVF control and slip regulation has been implemented for LIM based conveyor belt test Rig which compensates the disadvantages of traditional Volts/Hz control. SIMULINK results are presented to validate the effectiveness of proposed scheme.

  13. Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion

    Science.gov (United States)

    Barcheck, C. Grace; Tulaczyk, Slawek; Schwartz, Susan Y.; Walter, Jacob I.; Winberry, J. Paul

    2018-03-01

    The Whillans Ice Plain (WIP) is unique among Antarctic ice streams because it moves by stick-slip. The conditions allowing stick-slip and its importance in controlling ice dynamics remain uncertain. Local basal seismicity previously observed during unstable slip is a clue to the mechanism of ice stream stick-slip and a window into current basal conditions, but the spatial extent and importance of this basal seismicity are unknown. We analyze data from a 2010-2011 ice-plain-wide seismic and GPS network to show that basal micro-seismicity correlates with large-scale patterns in ice stream slip behavior: Basal seismicity is common where the ice moves the least between unstable slip events, with small discrete basal micro-earthquakes happening within 10s of km of the central stick-slip nucleation area and emergent basal tremor occurring downstream of this area. Basal seismicity is largely absent in surrounding areas, where inter-slip creep rates are high. The large seismically active area suggests that a frictional sliding law that can accommodate stick-slip may be appropriate for ice stream beds on regional scales. Variability in seismic behavior over inter-station distances of 1-10 km indicates heterogeneity in local bed conditions and frictional complexity. WIP unstable slips may nucleate when stick-slip basal earthquake patches fail over a large area. We present a conceptual model in which basal seismicity results from slip-weakening frictional failure of over-consolidated till as it is eroded and mobilized into deforming till.

  14. Variable speed control for Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.

    A robust variable speed control for vertical axis wind turbine applications is implemented. It is a PI rotor speed controller based on an induction generator model operated at variable frequency. The generator dynamics are approximated by a first order differential equation with a prescribed slip....... In order to allow variability in the rotor speed an inverter is assumed which changes the nominal generator speed. Below rated power the optimum tip speed ratio is tracked, while above the power is constrained to rated. The wind speed which is needed in the control it is considered as a known signal...... the Inflow project. The investigation of the VAWT performance under different control parameters such as the PI gains has been performed by Christos Galinos. Deterministic and turbulent wind speed steps of 2 m/s from 6 m/s to 24 m/s and back to 12 m/s are applied. The controller gives smooth transient...

  15. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  16. Seismic slip on clay nano-foliation

    Science.gov (United States)

    Aretusini, S.; Pluemper, O.; Passelègue, F. X.; Spagnuolo, E.; Di Toro, G.

    2017-12-01

    Deformation processes active at seismic slip rates (ca. 1 m/s) on smectite-rich slipping zones are not well understood, although they likely control the mechanical behaviour of: i) subduction zone faults affected by tsunamigenic earthquakes (e.g. Japan Trench affected by Tohoku-Oki 2011 earthquake), ii) plate-boundary faults (e.g. San Andreas Fault), and iii) landslide decollements (e.g. 1963 Vajont landslide). Here we present a set of rotary experiments performed on water-dampened 2 mm thick clay-rich (70% wt. smectite and 30% wt. opal) gouge layers sheared at slip rates V ranging from 0.01 to 1.3 m/s, for 3 m of displacement under 5 MPa normal stress. Microstructural analyses were conducted on pre- and post-sheared gouges using focused ion beam scanning electron and transmission electron microscopy. All sheared gouges were slip weakening in the first 0.1 m of displacement, with friction coefficient decreasing from 0.3-0.45 to 0.5-0.15. Then, with progressive slip, gouges evolved to slip-strengthening (final friction coefficient of 0.35-0.48) at V ≤0.1 m/s and slip-neutral (final friction of 0.05) at V=1.3 m/s. Despite the large difference in the imposed slip rate and frictional behaviour, the slipping zone always consisted of a nano-foliation defined by sub-micrometric smectite crystals wrapping opal grains. The nano-foliated layer thickness decreased from 1.5 mm at V≤0.1 m/s to 0.15 mm at V=1.3 m/s. The presence of a similar nano-foliation in all the smectite-rich wet gouges suggests the activation of similar deformation processes, dominated by frictional slip on grain boundary and basal planes. The variation of deformed thickness with slip rate shows that dynamic weakening, occurring only at seismic slip rates, is controlled by strain localization.

  17. Slow slip events in Guerrero, Mexico, and consequences on strain accumulation over the past 15 years.

    Science.gov (United States)

    Radiguet, M.; Cotton, F.; Cavalié, O.; Pathier, E.; Kostoglodov, V.; Vergnolle, M.; Campillo, M.; Walpersdorf, A.; Cotte, N.; Santiago, J.; Franco, S.

    2012-12-01

    Continuous Global Positioning System (cGPS) time series in Guerrero, Mexico, reveal the widespread existence of large Slow Slip Events (SSEs) at the boundary between the Cocos and North American plates. The existence of these SSEs asks the question of how seismic and aseismic slips complement each other in subduction zones. We examined the last three SSEs that occurred in 2001/2002, 2006 and 2009/2010, and their impact on the strain accumulation along the Guerrero subduction margin. We use continuous cGPS time series and InSAR images to evaluate the surface displacement during SSEs and inter-SSE periods. The slip distributions on the plate interface associated with each SSE, as well as the inter-SSE (short-term) coupling rates are evaluated by inverting these surface displacements. Our results reveal that the three analyzed SSEs have equivalent moment magnitudes of around 7.5 and their lateral extension is variable.The slip distributions for the three SSEs show that in the Guerrero gap area, the slow slip occurs at shallower depth (updip limit around 15-20 km) than in surrounding regions. The InSAR data provide additional information for the 2006 SSE. The joint inversion of InSAR and cGPS data confirms the lateral variation of the slip distribution along the trench, with shallower slip in the Guerrero seismic gap, west of Acapulco, and deeper slip further east. Inversion of inter-SSE displacement rates reveal that during the inter-SSE time intervals, the interplate coupling is high in the area where the slow slip subsequently occurs. Over a 12 year period, corresponding to three cycles of SSEs, our results reveal that the accumulated slip deficit in the Guerrero gap area is only ¼ of the slip deficit accumulated on both sides of the gap. Moreover, the regions of large slip deficit coincide with the rupture areas of recent large earthquakes. We conclude that the SSEs account for a major portion of the overall moment release budget in the Guerrero gap. If large

  18. Practicing induction:

    DEFF Research Database (Denmark)

    Sprogøe, Jonas; Rohde, Nicolas

    2009-01-01

    We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning.......We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning....

  19. Slip-mediated dewetting of polymer microdroplets

    Science.gov (United States)

    McGraw, Joshua D.; Chan, Tak Shing; Maurer, Simon; Salez, Thomas; Benzaquen, Michael; Raphaël, Elie; Brinkmann, Martin; Jacobs, Karin

    2016-01-01

    Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slides against the solid, such an unphysical prediction is avoided. In this article, we present the results of experiments in which a contact line moves and where slip is a dominating and controllable factor. Spherical cap-shaped polystyrene microdroplets, with nonequilibrium contact angle, are placed on solid self-assembled monolayer coatings from which they dewet. The relaxation is monitored using in situ atomic force microscopy. We find that slip has a strong influence on the droplet evolutions, both on the transient nonspherical shapes and contact line dynamics. The observations are in agreement with scaling analysis and boundary element numerical integration of the governing Stokes equations, including a Navier slip boundary condition. PMID:26787903

  20. Nonequilibrium Chromosome Looping via Molecular Slip Links

    Science.gov (United States)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  1. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...

  2. Asynchronous slip-ring motor synchronized with permanent magnets

    Directory of Open Access Journals (Sweden)

    Glinka Tadeusz

    2017-03-01

    Full Text Available The electric LSPMSM motor presented in the paper differs from standard induction motor by rotor design. The insulated start-up winding is located in slots along the rotor circumference. The winding ends are connected to the slip-rings. The rotor core contains permanent magnets. The electromechanical characteristics for synchronous operation were calculated, as were the start-up characteristics for operation with a short-circuited rotor winding. Two model motors were used for the calculations, the V-shaped Permanent Magnet (VPM – Fig. 3, and the Linear Permanent Magnet (IPM – Fig. 4, both rated at 14.5 kW. The advantages of the investigated motor are demonstrated in the conclusions.

  3. Parametric analysis of the statistical model of the stick-slip process

    Science.gov (United States)

    Lima, Roberta; Sampaio, Rubens

    2017-06-01

    In this paper it is performed a parametric analysis of the statistical model of the response of a dry-friction oscillator. The oscillator is a spring-mass system which moves over a base with a rough surface. Due to this roughness, the mass is subject to a dry-frictional force modeled as a Coulomb friction. The system is stochastically excited by an imposed bang-bang base motion. The base velocity is modeled by a Poisson process for which a probabilistic model is fully specified. The excitation induces in the system stochastic stick-slip oscillations. The system response is composed by a random sequence alternating stick and slip-modes. With realizations of the system, a statistical model is constructed for this sequence. In this statistical model, the variables of interest of the sequence are modeled as random variables, as for example, the number of time intervals in which stick or slip occur, the instants at which they begin, and their duration. Samples of the system response are computed by integration of the dynamic equation of the system using independent samples of the base motion. Statistics and histograms of the random variables which characterize the stick-slip process are estimated for the generated samples. The objective of the paper is to analyze how these estimated statistics and histograms vary with the system parameters, i.e., to make a parametric analysis of the statistical model of the stick-slip process.

  4. Analytical approximations for stick-slip vibration amplitudes

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Fidlin, A.

    2003-01-01

    , the amplitudes, and the base frequencies of friction-induced stick¿slip and pure-slip oscillations. For stick¿slip oscillations, this is accomplished by using perturbation analysis for the finite time interval of the stick phase, which is linked to the subsequent slip phase through conditions of continuity...

  5. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments

    Science.gov (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.

    2017-12-01

    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  6. Training course on inductively coupled plasma spectrometry - Note

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    TRAINING COURSE ON INDUCTIVELY COUPLED PLASMA SPECTROMETRY In the present day geological, chemical, environmental and archaeological research activities, the Inductively Coupled Plasma (ICP) Spectrometry is established as a cost-effective multi... the knowledge and advances in the analytical tools and methodologies for the benefit of the research scholars as well as professionals. National Institute of Oceanography, A.B. VALSANGKAR Dona Paula - 403 004 slip tectonics playing a major role...

  7. Fuzzy – PI controller to control the velocity parameter of Induction Motor

    Science.gov (United States)

    Malathy, R.; Balaji, V.

    2018-04-01

    The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.

  8. Study of interference in power supply for induction motors by variable frequency drivers; Estudo de interferencias na alimentacao eletrica de motores de inducao por inversores de frequencia

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Andre Luis de Oliveira e; Silva, Marcos Morais da [Centro Universitario de Belo Horizonte (UniBH), MG (Brazil)], e-mails: alosousa@gmail.com, marcosmoraisdasilva@hotmail.com; Pires, Igor Amariz [Universidade Federal de Minas Gerais (PPGEE/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia de Eletronica], e-mail: iap@ufmg.br

    2012-07-01

    First of all, this work went into an exploratory study which shows the variety of factors that the induction motors are submitted for being driven by frequency inverters. It's target was to address the leading technical aspects of the induction motors cage, and also, to discuss the influences of the inverters about the motor characteristics such as reflection voltage, common mode of noise, rise-time, and so on. On the top of it, this work have had a deep study about the interferences from installation and the distance between the frequency inverter and electric motor such as the aggravation of these factors for both the inverter-motor system and for electrical systems. They are magnetically linked to this system by a bunch of wires and cables. Also, some solutions about electric motor's manufacturers are also showed. Inverters, wire's suppliers and insulation materials have sought in order to get a great interaction between the electric motor and frequency inverter to avoid disturbing the system. Not only for themselves but also for the adjacent systems. Once we had faced it's subject, we can define that the factors here presented can directly interfere with the engine's life or lead it into problems with the electrical systems, if installed next to the drive by a frequency inverter. As it is a kind of trigger that only had got the confidence of the industries recently, regarding to the replacement of DC motors, many companies that provide it, are not technically ready to correctly specify the whole set, in order avoid the interference generated as it was well showed in this work. (author)

  9. Magnetic resonance imaging at primary diagnosis cannot predict subsequent contralateral slip in slipped capital femoral epiphysis

    Energy Technology Data Exchange (ETDEWEB)

    Wensaas, Anders [Akershus University Hospital, Department of Orthopaedic Surgery, Loerenskog (Norway); Wiig, Ola; Terjesen, Terje [Oslo University Hospital, Department of Orthopaedic Surgery, Rikshospitalet (Norway); Castberg Hellund, Johan; Khoshnewiszadeh, Behzad [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Ullevaal (Norway)

    2017-12-15

    Prophylactic fixation of the contralateral hip in slipped capital femoral epiphysis (SCFE) is controversial, and no reliable method has been established to predict subsequent contralateral slip. The main purpose of this study was to evaluate if magnetic resonance imaging (MRI) performed at primary diagnosis could predict future contralateral slip. Twenty-two patients with unilateral SCFE were included, all had MRI of both hips taken before operative fixation. Six different parameters were measured on the MRI: the MRI slip angle, the greatest focal widening of the physis, the global widening of the physis measured at three locations (the midpoint of the physis and 1 cm lateral and medial to the midpoint), periphyseal (epiphyseal and metaphyseal) bone marrow edema, the presence of pathological joint effusion, and the amount of joint effusion measured from the lateral edge of the greater trochanter. Mean follow-up was 33 months (range, 16-63 months). Six patients were treated for contralateral slip during the follow-up time and a comparison of the MRI parameters of the contralateral hip in these six patients and in the 16 patients that remained unilateral was done to see if subsequent contralateral slip was possible to predict at primary diagnosis. All MRI parameters were significantly altered in hips with established SCFE compared with the contralateral hips. However, none of the MRI parameters showed any significant difference between patients who had a subsequent contralateral slip and those that remained unilateral. MRI taken at primary diagnosis could not predict future contralateral slip. (orig.)

  10. A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia

    Science.gov (United States)

    Schmidt, D. A.; Houston, H.

    2016-12-01

    We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed

  11. The prevention of slipping accidents: a review and discussion of work related to the methodology of measuring slip resistance

    OpenAIRE

    Leclercq , Sylvie

    1999-01-01

    International audience; The recommendations made after the analysis of accidents following an incident of slipping often include the use of anti-slip footwear and/or the installation of an anti-slip floor covering. Such recommendations make it necessary to study biomechanical and tribologic phenomena that occur during slipping, in particular in order to develop criteria for the evaluation of the slip resistance of footwear and floor surfaces. Consequently, research which deals with the preven...

  12. Induction practice -

    DEFF Research Database (Denmark)

    Rohde, Nicolas; Sprogøe, Jonas

    2007-01-01

    that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and the organization, what we call agenerative dance, ignites both kinds of learning. We focus on and describe the interplay , ignites both kinds...

  13. Constraining the roughness degree of slip heterogeneity

    KAUST Repository

    Causse, Mathieu

    2010-05-07

    This article investigates different approaches for assessing the degree of roughness of the slip distribution of future earthquakes. First, we analyze a database of slip images extracted from a suite of 152 finite-source rupture models from 80 events (Mw = 4.1–8.9). This results in an empirical model defining the distribution of the slip spectrum corner wave numbers (kc) as a function of moment magnitude. To reduce the “epistemic” uncertainty, we select a single slip model per event and screen out poorly resolved models. The number of remaining models (30) is thus rather small. In addition, the robustness of the empirical model rests on a reliable estimation of kc by kinematic inversion methods. We address this issue by performing tests on synthetic data with a frequency domain inversion method. These tests reveal that due to smoothing constraints used to stabilize the inversion process, kc tends to be underestimated. We then develop an alternative approach: (1) we establish a proportionality relationship between kc and the peak ground acceleration (PGA), using a k−2 kinematic source model, and (2) we analyze the PGA distribution, which is believed to be better constrained than slip images. These two methods reveal that kc follows a lognormal distribution, with similar standard deviations for both methods.

  14. Slip patterns and preferred dislocation boundary planes

    DEFF Research Database (Denmark)

    Winther, G.

    2003-01-01

    The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...

  15. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng

    2015-11-11

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  16. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng; Hainzl, Sebastian; Mai, Paul Martin

    2015-01-01

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  17. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf

    2015-01-01

    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault\\'s rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault\\'s offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of

  18. Modeling and Analyzing the Slipping of the Ball Screw

    Directory of Open Access Journals (Sweden)

    Nannan Xu

    Full Text Available AbstractThis paper aims to set up the ball systematic slipping model and analyze the slipping characteristics caused by different factors for a ball screw operating at high speeds. To investigate the ball screw slipping mechanism, transformed coordinate system should be established firstly. Then it is used to set up mathematical modeling for the ball slipping caused by the three main reasons and the speed of slipping can be calculated. Later, the influence of the contact angle, helix angle and screw diameter for ball screw slipping will be analyzed according to the ball slipping model and slipping speeds equation and the slipping analysis will be obtained. Finally, curve of slipping analysis and that of mechanical efficiency of the ball screw analysis by Lin are compared, which will indirectly verify the correctness of the slipping model. The slipping model and the curve of slipping analysis established in this paper will provide theory basis for reducing slipping and improving the mechanical efficiency of a ball screw operating at high speeds.

  19. Slipping slender bodies and enhanced flagellar locomotion

    Science.gov (United States)

    Man, Yi; Lauga, Eric

    2017-11-01

    In the biological world, many cells exploit slender appendages to swim, include numerous species of bacteria, algae and spermatozoa. A classical method to describe the flow field around such appendages is slender-body theory (SBT), which is often used to study flagellar motility in Newtonian fluids. However, biology environments are often rheologically complex due to the presence of polymers. These polymers generically phase-separate near rigid boundaries where low-viscosity fluid layers lead to effective slip on the surface. In this talk, we present an analytical derivation of SBT in the case where the no-slip boundary condition on the appendage is replaced by a Navier slip boundary condition. Our results demonstrate in particular a systematic reduction of the resistance coefficient of the slender filaments in their tangential direction, which leads to enhanced flagellar locomotion.

  20. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    , or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...... presents a combined numerical and experimental method for determination of appropriate/optimiged coil geometry and position in induction brazing tube-to-plate joints of different ratios between tube and plate thickness and different combinations of the materials stainless steel, brass and copper....... The method has proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel. A new design of an adjustable flux concentrator for induction heating tube-to-plate joints is proposed and tested on a variety...

  1. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  2. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non-Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  3. The Role of Near-Fault Relief in Creating and Maintaining Strike-Slip Landscape Features

    Science.gov (United States)

    Harbert, S.; Duvall, A. R.; Tucker, G. E.

    2016-12-01

    Geomorphic landforms, such as shutter ridges, offset river terraces, and deflected stream channels, are often used to assess the activity and slip rates of strike-slip faults. However, in some systems, such as parts of the Marlborough Fault System (South Island, NZ), an active strike-slip fault does not leave a strong landscape signature. Here we explore the factors that dampen or enhance the landscape signature of strike-slip faulting using the Channel-Hillslope Integrated Landscape Development model (CHILD). We focus on variables affecting the length of channel offsets, which enhance the signature of strike-slip motion, and the frequency of stream captures, which eliminate offsets and reduce this signature. We model a strike-slip fault that passes through a mountain ridge, offsetting streams that drain across this fault. We use this setup to test the response of channel offset length and capture frequency to fault characteristics, such as slip rate and ratio of lateral to vertical motion, and to landscape characteristics, such as relief contrasts controlled by erodibility. Our experiments show that relief downhill of the fault, whether generated by differential uplift across the fault or by an erodibility contrast, has the strongest effect on offset length and capture frequency. This relief creates shutter ridges, which block and divert streams while being advected along a fault. Shutter ridges and the streams they divert have long been recognized as markers of strike-slip motion. Our results show specifically that the height of shutter ridges is most responsible for the degree to which they create long channel offsets by preventing stream captures. We compare these results to landscape metrics in the Marlborough Fault System, where shutter ridges are common and often lithologically controlled. We compare shutter ridge length and height to channel offset length in order to assess the influence of relief on offset channel features in a real landscape. Based on our

  4. Imbricated slip rate processes during slow slip transients imaged by low-frequency earthquakes

    Science.gov (United States)

    Lengliné, O.; Frank, W.; Marsan, D.; Ampuero, J. P.

    2017-12-01

    Low Frequency Earthquakes (LFEs) often occur in conjunction with transient strain episodes, or Slow Slip Events (SSEs), in subduction zones. Their focal mechanism and location consistent with shear failure on the plate interface argue for a model where LFEs are discrete dynamic ruptures in an otherwise slowly slipping interface. SSEs are mostly observed by surface geodetic instruments with limited resolution and it is likely that only the largest ones are detected. The time synchronization of LFEs and SSEs suggests that we could use the recorded LFEs to constrain the evolution of SSEs, and notably of the geodetically-undetected small ones. However, inferring slow slip rate from the temporal evolution of LFE activity is complicated by the strong temporal clustering of LFEs. Here we apply dedicated statistical tools to retrieve the temporal evolution of SSE slip rates from the time history of LFE occurrences in two subduction zones, Mexico and Cascadia, and in the deep portion of the San Andreas fault at Parkfield. We find temporal characteristics of LFEs that are similar across these three different regions. The longer term episodic slip transients present in these datasets show a slip rate decay with time after the passage of the SSE front possibly as t-1/4. They are composed of multiple short term transients with steeper slip rate decay as t-α with α between 1.4 and 2. We also find that the maximum slip rate of SSEs has a continuous distribution. Our results indicate that creeping faults host intermittent deformation at various scales resulting from the imbricated occurrence of numerous slow slip events of various amplitudes.

  5. Bond–Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-01-01

    The objective of this paper was to explore the bond–slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond–slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond–slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond–slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond–slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond–slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results. PMID:29495383

  6. Estimated combined steady state tyre slip characteristics

    NARCIS (Netherlands)

    Fernandez, A.L.A.; Pauwelussen, J.P.

    2001-01-01

    Excessive behaviour of vehicles is often the subject of study, motivated by either the development of active safety systems uch as ESP, or the improvement of vehicle performance such as for racecars. In all of these cases, combined slip needs to be taken into account. In many cases however, the full

  7. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  8. Slip casting of thoria-10 mole per cent yttria solid electrolyte

    International Nuclear Information System (INIS)

    Ramanathan, S.; Rao, S.V.K.

    1990-01-01

    One end closed thoria-yttria solid electrolyte have been fabricated by the slip casting technique. A systematic study of the influence of the process parameters on the characteristics of the final bodies has been carried out. Slips of ThO 2 -10 mole % Y 2 O 3 were prepared; their fluidity and castability were studied as a function of concentration, pH and particle size. The bodies were sintered at 2000degC and the physical properties like density and microstructure were evaluated. Slip cast bodies of bulk densities around 95% T.D. with relatively inhomogenous but predominantly fine grained structure could be obtained by optimizing the process variables. (author). 5 figs., 10 refs

  9. Optimal fall indicators for slip induced falls on a cross-slope.

    Science.gov (United States)

    Domone, Sarah; Lawrence, Daniel; Heller, Ben; Hendra, Tim; Mawson, Sue; Wheat, Jonathan

    2016-08-01

    Slip-induced falls are among the most common cause of major occupational injuries in the UK as well as being a major public health concern in the elderly population. This study aimed to determine the optimal fall indicators for fall detection models which could be used to reduce the detrimental consequences of falls. A total of 264 kinematic variables covering three-dimensional full body model translation and rotational measures were analysed during normal walking, successful recovery from slips and falls on a cross-slope. Large effect sizes were found for three kinematic variables which were able to distinguish falls from normal walking and successful recovery. Further work should consider other types of daily living activities as results show that the optimal kinematic fall indicators can vary considerably between movement types. Practitioner Summary: Fall detection models are used to minimise the adverse consequences of slip-induced falls, a major public health concern. Optimal fall indicators were derived from a comprehensive set of kinematic variables for slips on a cross-slope. Results suggest robust detection of falls is possible on a cross-slope but may be more difficult than level walking.

  10. Next generation GNSS single receiver cycle slip reliability

    NARCIS (Netherlands)

    Teunissen, P.J.G.; De Bakker, P.F.

    2009-01-01

    In this contribution we study the multi-frequency, carrier-phase slip detection capabilities of a single receiver. Our analysis is based on an analytical expression that we present for themulti-frequencyminimal detectable carrier phase cycle slip.

  11. Development of compact slip detection sensor using dielectric elastomer

    Science.gov (United States)

    Choi, Jae-young; Hwang, Do-Yeon; Kim, Baek-chul; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon

    2015-04-01

    In this paper, we developed a resistance tactile sensor that can detect a slip on the surface of sensor structure. The presented sensor device has fingerprint-like structures that are similar with the role of the humans finger print. The resistance slip sensor that the novel developed uses acrylo-nitrile butadiene rubber (NBR) as a dielectric substrate and graphene as an electrode material. We can measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To manufacture our sensor, we developed a new imprint process. By using this process, we can produce sensor with micro unit structure. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip is successfully detected. We will discuss the slip detection properties.

  12. Navier slip model of drag reduction by Leidenfrost vapor layers

    KAUST Repository

    Berry, Joseph D.; Vakarelski, Ivan Uriev; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2017-01-01

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (102≤Re≤4×104) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  13. Navier slip model of drag reduction by Leidenfrost vapor layers

    KAUST Repository

    Berry, Joseph D.

    2017-10-17

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (102≤Re≤4×104) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  14. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran Kumar; Mai, Paul Martin

    2016-01-01

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  15. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran K. S.

    2016-07-13

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  16. Relation between boundary slip mechanisms and waterlike fluid behavior

    Science.gov (United States)

    Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C.

    2018-03-01

    The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.

  17. On thermal stability in incompressible slip flow

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper considers the classical problem of the stability of a layer of fluid heated from below, but in the case when the density is low and there is slip flow at the bounding walls. The eigenvalue problem which ensures is tackled by taking cognisance of the orthogonality of Bessel function of the first kind. It is observed that the Rayleigh number for the onset of instability, for the case of marginal stability, is increased by gas rarefication. (author). 2 refs

  18. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.; Amos, C. B.; Zielke, Olaf; Jayko, A. S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  19. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.

    2016-01-10

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  20. Slip processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Sinha, R.K.; Sinha, R.K.

    1991-01-01

    Slip-processing technique has been used to fabricate tapes and alumina-supported films of superconducting YBa 2 Cu 3 Osub(7-x). Good densification and connectivity are revealed by scanning electron microscopy. Both the tape and film show superconductivity well above the liquid nitrogen temperature with a transition range of 3deg and 5degK respectively. (author). 10 refs., 4 figs

  1. Dynamic slip of polydisperse linear polymers using partitioned plate

    Science.gov (United States)

    Ebrahimi, Marzieh; Konaganti, Vinod Kumar; Hatzikiriakos, Savvas G.

    2018-03-01

    The slip velocity of an industrial grade high molecular weight high-density polyethylene (HDPE) is studied in steady and dynamic shear experiments using a stress/strain controlled rotational rheometer equipped with a parallel partitioned plate geometry. Moreover, fluoroalkyl silane-based coating is used to understand the effect of surface energy on slip in steady and dynamic conditions. The multimode integral Kaye-Bernstein-Kearsley-Zapas constitutive model is applied to predict the transient shear response of the HDPE melt obtained from rotational rheometer. It is found that a dynamic slip model with a slip relaxation time is needed to adequately predict the experimental data at large shear deformations. Comparison of the results before and after coating shows that the slip velocity is largely affected by surface energy. Decreasing surface energy by coating increases slip velocity and decreases the slip relaxation time.

  2. Oscillatory Stokes Flow Past a Slip Cylinder

    Science.gov (United States)

    Palaniappan, D.

    2013-11-01

    Two-dimensional transient slow viscous flow past a circular cylinder with Navier slip boundary conditions is considered in the limit of low-Reynolds number. The oscillatory Stokes flow problem around a cylinder is solved using the stream function method leading to an analytic solution in terms of modified Bessel functions of the second kind. The corresponding steady-state behavior yields the familiar paradoxical result first detected by Stokes. It is noted that the two key parameters, viz., the frequency λ, and the slip coefficient ξ have a significant impact on the flow field in the vicinity of the cylinder contour. In the limit of very low frequency, the flow is dominated by a term containing a well-known biharmonic function found by Stokes that has a singular behavior at infinity. Local streamlines for small times show interesting flow patterns. Attached eddies due to flow separation - observed in the no-slip case - either get detached or pushed away from the cylinder surface as ξ is varied. Computed asymptotic results predict that the flow exhibits inviscid behavior far away from the cylinder in the frequency range 0 < λ << 1 . Although the frequency of oscillations is finite, our exact solutions reveal fairly rapid transitions in the flow domain. Research Enhancement grant, TAMUCC.

  3. Slip length crossover on a graphene surface

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhi, E-mail: liangz3@rpi.edu [Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Keblinski, Pawel, E-mail: keplip@rpi.edu [Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-04-07

    Using equilibrium and non-equilibrium molecular dynamics simulations, we study the flow of argon fluid above the critical temperature in a planar nanochannel delimited by graphene walls. We observe that, as a function of pressure, the slip length first decreases due to the decreasing mean free path of gas molecules, reaches the minimum value when the pressure is close to the critical pressure, and then increases with further increase in pressure. We demonstrate that the slip length increase at high pressures is due to the fact that the viscosity of fluid increases much faster with pressure than the friction coefficient between the fluid and the graphene. This behavior is clearly exhibited in the case of graphene due to a very smooth potential landscape originating from a very high atomic density of graphene planes. By contrast, on surfaces with lower atomic density, such as an (100) Au surface, the slip length for high fluid pressures is essentially zero, regardless of the nature of interaction between fluid and the solid wall.

  4. Slip cast coating of alumina crucibles

    International Nuclear Information System (INIS)

    Haroun, N.A.; El-Masry, M.A.A.

    1980-01-01

    The development of a process for coating alumina crucibles with MgO protective coat in a two-step slip casting operation is described. The best milling conditions for the alumina used were wet ball milling for 24 hr. MgO had to be calcined at 1200 0 C to minimize hydration. Optimum slip casting conditions for alumina and magnesia were found to be L/S I and pH 3-6 or 9-II for the former, and L/S 3 (alcohol) and pH 8.5-10 for the latter. Sintering of Al 2 O 3 and MgO in the temperature range 1150-500 0 C was investigated. Additions of NiO and MgO lowered the sintered densities at lower temperatures but improved the densification at 1500 0 C. Near theoretical density Al 2 O 3 and MgO crucibles were obtained. A two-step slip casting technique was developed to coat Al 2 O 3 with MgO. Certain slow firing schedules could eliminate the otherwise observed coat-crucible separation and cracks. (author)

  5. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy)

    Science.gov (United States)

    Viti, C.; Brogi, A.; Liotta, D.; Mugnaioli, E.; Spiess, R.; Dini, A.; Zucchi, M.; Vannuccini, G.

    2016-05-01

    This paper reports the first example of fault mirrors developed in an unusual protolith, consisting of tourmaline crystals with interstitial goethite. The deformation mechanisms active in the fault zone have been investigated from the outcrop to the nanoscale, aiming to identify possible traces of frictional heating at seismic slip rate, as observed for other fault mirrors in different protoliths. The investigation revealed the superposition of two main deformational stages. The first was dominated by brittle processes and produced a cataclastic/ultracataclastic principal slip zone, a few mm thick; the second was associated with seismic slip and produced a sharp discontinuity (the principal slip surface) within the cataclastic/ultracataclastic zone. The mirror-like coating, a few microns thick, occurs on the principal slip surface, and is characterized by 1) absence of interstitial goethite; 2) occurrence of truncated tourmaline crystals; 3) highly variable grain size, from 200 μm to 200 nm; 4) tourmaline close packing with interlobate grain boundaries, and 5) tourmaline random crystallographic orientation. Micro and nanostructural investigations indicate the occurrence of thermally-activated processes, involving both interstitial goethite and tourmaline. In particular, close to the principal slip surface, goethite is completely decomposed, and produced an amorphous porous material, with local topotactic recrystallization of hematite. Tourmaline clasts are typically characterized by strongly lobate boundaries, indicative of reaction and partial decomposition at grain boundaries. TEM observations revealed the occurrence of tourmaline nanograins, a few tens of nm in size, characterized by rounded shape and fading amorphous boundaries, that cannot be obtained by brittle processes. Lastly, the peculiar interlobate microstructure of the mirror surface is interpreted as the result of grain boundary recrystallization processes taking place by deformation at high

  6. Modeling of rock friction 2. Simulation of preseismic slip

    International Nuclear Information System (INIS)

    Dieterich, J.H.

    1979-01-01

    The constitutive relations developed in the companion paper are used to model detailed observations of preseismic slip and the onset of unstable slip in biaxial laboratory experiments. The simulations employ a deterministic plane strain finite element model to represent the interactions both within the sliding blocks and between the blocks and the loading apparatus. Both experiments and simulations show that preseismic slip controlled by initial inhomogeneity of shear stress along the sliding surface relative to the frictional strength. As a consequence of the inhomogeneity, stable slip begins at a point on the surface and the area of slip slowly expands as the external loading increases. A previously proposed correlation between accelerating rates of stable slip and growth of the area of slip is supported by the simulations. In the simulations and in the experiments, unstable slip occurs, shortly after a propagating slip event traverses the sliding surface and breaks out at the ends of the sample. In the model the breakout of stable slip causes a sudden acceleration of slip rates. Because of velocity dependency of the constitutive relationship for friction, the rapid acceleration of slip causes a decrease in frictional strength. Instability occurs when the frictional strength decreases with displacement at a rate that exceeds the intrinsic unloading characteristics of the sample and test machine. A simple slider-spring model that does not consider preseismic slip appears to approximate the transition adequately from stable sliding to unstable slip as a function of normal stress machine stiffness, and surface roughness for small samples. However, for large samples and for natural faults the simulations suggest that the simple model may be inaccurate because it does not take into account potentially large preseismic displacements that will alter the friction parameters prior to instability

  7. Stress and slip partitioning during oblique rifting: comparison between data from the Main Ethiopian Rift and laboratory experiments

    Science.gov (United States)

    Corti, G.; Philippon, M.; Sani, F.; Keir, D.

    2012-04-01

    Oblique rifting in the central and northern Main Ethiopian Rift (MER) has resulted in a complex structural pattern characterized by two differently oriented fault systems: a set of NE-SW-trending boundary faults and a system of roughly NNE-SSW-oriented fault swarms affecting the rift floor (Wonji faults). Boundary faults formed oblique to the regional extension vector, likely as a result of the oblique reactivation of a pre-existing deep-seated rheological anisotropy, whereas internal Wonji faults developed sub-orthogonal to the stretching direction. Previous works have successfully reconciled this rift architecture and fault distribution with the long-term plate kinematics; however, at a more local scale, fault-slip and earthquake data reveal significant variations in the orientation the minimum principal stress and related fault-slip direction across the rift valley. Whereas fault measurements indicate a roughly N95°E extension on the axial Wonji faults, a N105°E to N110°E directed minimum principal stress is observed along boundary faults. Both fault-slip data and analysis of seismicity indicate a roughly pure dip-slip motion on the boundary faults, despite their orientation (oblique to the regional extension vector) should result in an oblique displacement. To shed light on the process driving the variability of data derived from fault-slip (and seismicity) analysis we present crustal-scale analogue models of oblique rifting, deformed in a large-capacity centrifuge by using materials and boundary conditions described in several previous modeling works. As in these previous works, the experiments show the diachronous activation of two fault systems, boundary and internal, whose pattern strikingly resemble that observed in previous lithospheric-scale modeling, as well as that described in the MER. Internal faults arrange in two different, en-echelon segments connected by a transfer zone where strike-slip displacement dominates. Whereas internal faults develop

  8. Earthquake scaling laws for rupture geometry and slip heterogeneity

    Science.gov (United States)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  9. SLOW SLIP EVENTS: PARAMETERS, CONDITIONS OF OCCURRENCE, AND FUTURE RESEARCH PROSPECTS

    Directory of Open Access Journals (Sweden)

    G. G. Kocharyan

    2014-01-01

    propagation along the fault strike are variable from a few hundred metres to 20–30 km/day. Slip velocities tend to decrease with scale (Fig. 7.Various slip modes were realized in laboratory experiments with slider model. Main specific features of slow slip along faults were simulated in the laboratory conditions. Possibilities for implementation of different deformation regimes were mainly determined by structure of simulated fault gouge. At equal Coulombic strength, small variations of structural characteristics, such as granulometric composition, grain shape, presence of fluid and its viscosity, may critically impact the deformation mode (Fig. 12.As evidenced by the data consolidated and analysed in this article, conditionally stable regimes of deformation of crustal discontinuities are a common phenomenon. Studies of such transitional deformation regimes seem promising for establishment of regularities in generation and evolution of dynamic events, such earthquakes, tectonic rock bursts, and slope events.

  10. Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; El-Awady, J.A.; Parthasarathy, T.A.; Uchic, M.D.; Woodward, C.

    2010-01-01

    We extend our recent simulation studies where a screw dislocation in face-centered cubic (fcc) Ni was found to spontaneously attain a low energy partially cross-slipped configuration upon intersecting a forest dislocation. Using atomistic (molecular statics) simulations with embedded atom potentials, we evaluated the activation barrier for a dislocation to transform from fully residing on the glide plane to fully residing on a cross-slip plane intersecting a forest dislocation in both Ni and Cu. The activation energies were obtained by determining equilibrium configurations (energies) when variable pure tensile or compressive stresses were applied along the [1 1 1] direction on the partially cross-slipped state. We show that the activation energy is a factor of 2-5 lower than that for cross-slip in isolation via the Escaig process. The cross-slip activation energies obtained at the intersection in Cu were in reasonable accord with the experimentally determined cross-slip activation energy for Cu. Further, the activation barrier for cross-slip at these intersections was shown to be linearly proportional to (d/b)[ln(√(3)d/b)] 1/2 , as in the Escaig process, where d is the Shockley partial dislocation spacing and b is the Burgers vector of the screw dislocation. These results suggest that cross-slip should be preferentially observed at selected screw dislocation intersections in fcc materials.

  11. A terrestrial lidar-based workflow for determining three-dimensional slip vectors and associated uncertainties

    Science.gov (United States)

    Gold, Peter O.; Cowgill, Eric; Kreylos, Oliver; Gold, Ryan D.

    2012-01-01

    Three-dimensional (3D) slip vectors recorded by displaced landforms are difficult to constrain across complex fault zones, and the uncertainties associated with such measurements become increasingly challenging to assess as landforms degrade over time. We approach this problem from a remote sensing perspective by using terrestrial laser scanning (TLS) and 3D structural analysis. We have developed an integrated TLS data collection and point-based analysis workflow that incorporates accurate assessments of aleatoric and epistemic uncertainties using experimental surveys, Monte Carlo simulations, and iterative site reconstructions. Our scanning workflow and equipment requirements are optimized for single-operator surveying, and our data analysis process is largely completed using new point-based computing tools in an immersive 3D virtual reality environment. In a case study, we measured slip vector orientations at two sites along the rupture trace of the 1954 Dixie Valley earthquake (central Nevada, United States), yielding measurements that are the first direct constraints on the 3D slip vector for this event. These observations are consistent with a previous approximation of net extension direction for this event. We find that errors introduced by variables in our survey method result in <2.5 cm of variability in components of displacement, and are eclipsed by the 10–60 cm epistemic errors introduced by reconstructing the field sites to their pre-erosion geometries. Although the higher resolution TLS data sets enabled visualization and data interactivity critical for reconstructing the 3D slip vector and for assessing uncertainties, dense topographic constraints alone were not sufficient to significantly narrow the wide (<26°) range of allowable slip vector orientations that resulted from accounting for epistemic uncertainties.

  12. A Model for Low-Frequency Earthquake Slip in Cascadia

    Science.gov (United States)

    Chestler, S.; Creager, K.

    2017-12-01

    Low-Frequency Earthquakes (LFEs) are commonly used to identify when and where slow slip occurred, especially for slow slip events that are too small to be observed geodetically. Yet, an understanding of how slip occurs within an LFE family patch, or patch on the plate interface where LFEs repeat, is limited. How much slip occurs per LFE and over what area? Do all LFEs within an LFE family rupture the exact same spot? To answer these questions, we implement a catalog of 39,966 LFEs, sorted into 45 LFE families, beneath the Olympic Peninsula, WA. LFEs were detected and located using data from approximately 100 3-component stations from the Array of Arrays experiment. We compare the LFE family patch area to the area within the LFE family patch that slips through LFEs during Cascadia Episodic Tremor and Slip (ETS) events. Patch area is calculated from relative LFE locations, solved for using the double difference method. Slip area is calculated from the characteristic moment (mean of the exponential moment-frequency distribution) and number LFEs for each family and geodetically measured ETS slip. We find that 0.5-5% of the area within an LFE family patch slips through LFEs. The rest must deform in some other manner (e.g., ductile deformation). We also explore LFE slip patterns throughout the entire slow slip zone. Is LFE slip uniform? Does LFE slip account for all geodetically observed slow slip? Double difference relocations reveal that LFE families are 2 km patches where LFE are clustered close together. Additionally, there are clusters of LFE families with diameters of 4-15 km. There are gaps with no observable, repeating LFEs between LFE families in clusters and between clusters of LFE families. Based on this observation, we present a model where LFE slip is heterogeneous on multiple spatial scales. Clusters of LFE families may represent patches with higher strength than the surrounding areas. Finally, we find that LFE slip only accounts for a small fraction ( 0

  13. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    Science.gov (United States)

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  14. Characterization of Aftershock Sequences from Large Strike-Slip Earthquakes Along Geometrically Complex Faults

    Science.gov (United States)

    Sexton, E.; Thomas, A.; Delbridge, B. G.

    2017-12-01

    Large earthquakes often exhibit complex slip distributions and occur along non-planar fault geometries, resulting in variable stress changes throughout the region of the fault hosting aftershocks. To better discern the role of geometric discontinuities on aftershock sequences, we compare areas of enhanced and reduced Coulomb failure stress and mean stress for systematic differences in the time dependence and productivity of these aftershock sequences. In strike-slip faults, releasing structures, including stepovers and bends, experience an increase in both Coulomb failure stress and mean stress during an earthquake, promoting fluid diffusion into the region and further failure. Conversely, Coulomb failure stress and mean stress decrease in restraining bends and stepovers in strike-slip faults, and fluids diffuse away from these areas, discouraging failure. We examine spatial differences in seismicity patterns along structurally complex strike-slip faults which have hosted large earthquakes, such as the 1992 Mw 7.3 Landers, the 2010 Mw 7.2 El-Mayor Cucapah, the 2014 Mw 6.0 South Napa, and the 2016 Mw 7.0 Kumamoto events. We characterize the behavior of these aftershock sequences with the Epidemic Type Aftershock-Sequence Model (ETAS). In this statistical model, the total occurrence rate of aftershocks induced by an earthquake is λ(t) = λ_0 + \\sum_{i:t_i

  15. Surface slip during large Owens Valley earthquakes

    Science.gov (United States)

    Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, Angela S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  16. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation

    International Nuclear Information System (INIS)

    Yan-Yan, Chen; Hua-Bing, Li; Hou-Hui, Yi

    2008-01-01

    The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows

  17. Closed central slip injuries--a missed diagnosis?

    LENUS (Irish Health Repository)

    Nugent, N

    2011-09-01

    The extensor apparatus of the finger is a complex structure and injury can lead to significant digital dysfunction. Closed central slip injuries may be missed or diagnosis delayed because of lack of an open wound and often no radiographic abnormality, and can result in boutonniere deformities if untreated. This study aimed to quantify the number of patients attending with closed central slip injuries and to ascertain if the initial diagnosis was correct. The number of patients presenting to us over a 6 month period was recorded. The original diagnosis, time to diagnosis of central slip injury and the presence\\/absence of a boutonniere deformity were recorded. Ten patients were included in the study. Seven (70%) injuries were due to sport. Eight (80%) had a delayed diagnosis of central slip injury. Six (60%) had previously presented to general practitioners or emergency departments. Seven (70%) had boutonniere deformities. Closed central slip injuries can be missed. Simple clinical tests can diagnose central slip disruption.

  18. Progressive slip after removal of screw fixation in slipped capital femoral epiphysis: two case reports

    NARCIS (Netherlands)

    Engelsma, Y.; Morgenstern, P.; van der Sluijs, J.A.; Witbreuk, M.M.

    2012-01-01

    Introduction. In slipped capital femoral epiphysis the femoral neck displaces relative to the head due to weakening of the epiphysis. Early recognition and adequate surgical fixation is essential for a good functional outcome. The fixation should be secured until the closure of the epiphysis to

  19. EMG and Kinematic Responses to Unexpected Slips After Slip Training in Virtual Reality

    Science.gov (United States)

    Parijat, Prakriti; Lockhart, Thurmon E.

    2015-01-01

    The objective of the study was to design a virtual reality (VR) training to induce perturbation in older adults similar to a slip and examine the effect of the training on kinematic and muscular responses in older adults. Twenty-four older adults were involved in a laboratory study and randomly assigned to two groups (virtual reality training and control). Both groups went through three sessions including baseline slip, training, and transfer of training on slippery surface. The training group experienced twelve simulated slips using a visual perturbation induced by tilting a virtual reality scene while walking on the treadmill and the control group completed normal walking during the training session. Kinematic, kinetic, and EMG data were collected during all the sessions. Results demonstrated the proactive adjustments such as increased trunk flexion at heel contact after training. Reactive adjustments included reduced time to peak activations of knee flexors, reduced knee coactivation, reduced time to trunk flexion, and reduced trunk angular velocity after training. In conclusion, the study findings indicate that the VR training was able to generate a perturbation in older adults that evoked recovery reactions and such motor skill can be transferred to the actual slip trials. PMID:25296401

  20. Experimental investigation of flow and slip transition in nanochannels

    Science.gov (United States)

    Li, Zhigang; Li, Long; Mo, Jingwen

    2014-11-01

    Flow slip in nanochannels is sought in many applications, such as sea water desalination and molecular separation, because it can enhance fluid transport, which is essential in nanofluidic systems. Previous findings about the slip length for simple fluids at the nanoscale appear to be controversial. Some experiments and simulations showed that the slip length is independent of shear rate, which agrees with the prediction of classic slip theories. However, there is increasing work showing that slip length is shear rate dependent. In this work, we experimentally investigate the Poiseuille flows in nanochannels. It is found that the flow rate undergoes a transition between two linear regimes as the shear rate is varied. The transition indicates that the non-slip boundary condition is valid at low shear rate. When the shear rate is larger than a critical value, slip takes place and the slip length increases linearly with increasing shear rate before approaching a constant value. The results reported in this work can help advance the understanding of flow slip in nanochannels. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region under Grant Nos. 615710 and 615312. J. Mo was partially supported by the Postgraduate Scholarship through the Energy Program at HKUST.

  1. Slipped capital femoral epiphysis: A modern treatment protocol

    Directory of Open Access Journals (Sweden)

    Slavković Nemanja

    2009-01-01

    Full Text Available The treatment of a patient with slipped capital femoral epiphysis begins with an early diagnosis and accurate classification. On the basis of symptom duration, clinical findings and radiographs, slipped capital femoral epiphysis is classified as pre-slip, acute, acute-on-chronic and chronic. The long-term outcome of slipped capital femoral epiphysis is directly related to severity and the presence or absence of avascular necrosis and/or chondrolysis. Therefore, the first priority in the treatment of slipped capital femoral epiphysis is to avoid complications while securing the epiphysis from further slippage. Medical treatment of patients with acute and acute-on-chronic slipped capital femoral epiphysis, as well as those presented in pre-slip stage, is the safest, although time-consuming. Manipulations, especially forced and repeated, are not recommended due to higher avascular necrosis risk. The use of intraoperative fluoroscopy to assist in the placement of internal fixation devices has markedly increased the success of surgical treatment. Controversy remains as to whether the proximal femoral epiphysis in severe, chronic slipped capital femoral epiphysis should be realigned by extracapsular osteotomies or just fixed in situ. The management protocol for slipped capital femoral epiphysis depends on the experience of the surgeon, motivation of the patient and technical facilities.

  2. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    OpenAIRE

    Hu, Shan-chao; Tan, Yun-liang; Ning, Jian-guo; Guo, Wei-Yao; Liu, Xue-sheng

    2017-01-01

    Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-i...

  3. Stochastic Wheel-Slip Compensation Based Robot Localization and Mapping

    Directory of Open Access Journals (Sweden)

    SIDHARTHAN, R. K.

    2016-05-01

    Full Text Available Wheel slip compensation is vital for building accurate and reliable dead reckoning based robot localization and mapping algorithms. This investigation presents stochastic slip compensation scheme for robot localization and mapping. Main idea of the slip compensation technique is to use wheel-slip data obtained from experiments to model the variations in slip velocity as Gaussian distributions. This leads to a family of models that are switched depending on the input command. To obtain the wheel-slip measurements, experiments are conducted on a wheeled mobile robot and the measurements thus obtained are used to build the Gaussian models. Then the localization and mapping algorithm is tested on an experimental terrain and a new metric called the map spread factor is used to evaluate the ability of the slip compensation technique. Our results clearly indicate that the proposed methodology improves the accuracy by 72.55% for rotation and 66.67% for translation motion as against an uncompensated mapping system. The proposed compensation technique eliminates the need for extro receptive sensors for slip compensation, complex feature extraction and association algorithms. As a result, we obtain a simple slip compensation scheme for localization and mapping.

  4. Strike-slip tectonics during rift linkage

    Science.gov (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  5. Performance improvement of a slip energy recovery drive system by a voltage-controlled technique

    Energy Technology Data Exchange (ETDEWEB)

    Tunyasrirut, Satean [Department of Instrumentation Engineering, Faculty of Engineering, Pathumwan Institute of Technology, 833 Rama1 Road, Pathumwan, Bangkok 10330 (Thailand); Kinnares, Vijit [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Ngamwiwit, Jongkol [Department of Control Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2010-10-15

    This paper introduces the performance improvement of a slip energy recovery drive system for the speed control of a wound rotor induction motor by a voltage-controlled technique. The slip energy occurred in the rotor circuit is transferred back to ac mains supply through a reactor instead of a step up transformer. The objective of the voltage-controlled technique is to increase power factor of the system and to reduce low order harmonics of the input line current. The drive system is designed and implemented using a voltage source inverter in conjunction with a boost chopper for DC link voltage, instead of a conventional drive using a 6 pulse converter or a Scherbius system. The slip power is recovered by the help of a voltage source inverter (VSI) based on a space vector pulse width modulation (SVPWM) technique. In order to keep the speed of the wound rotor induction motor constant over a certain range of operating conditions, the servo state feedback controller designed by a linear quadratic regulator (LQR) is also introduced in this paper. The overall control system is implemented on DSP, DS1104'TMS320F240 controller board. The performance improvement of the proposed system is tested in comparison with the conventional Scherbius system and the modified conventional Scherbius system by a 12 pulse converter in conjunction with a chopper at steady state and at dynamic conditions. A 220 W wound motor is employed for testing. It is found that the motor speed can be controlled to be constant in the operating range of 450-1200 rpm at no load and full load. It is also found that the efficiency of the proposed system is remarkably increased since the harmonics of the input ac line current is reduced while the ac line input power factor is increased. (author)

  6. Application of factorial designs and Doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Ferreira, Sergio L.C.; Queiroz, Adriana S.; Fernandes, Marcelo S.; Santos, Hilda C. dos

    2002-01-01

    In the present paper a procedure for preconcentration and determination of vanadium and copper in seawater using inductively coupled plasma optical emission spectrometry (ICP OES) is proposed, which is based on solid-phase extraction of vanadium (IV), vanadium (V) and copper (II) ions as 1-(2-pyridylazo)-2-naphthol (PAN) complexes by active carbon. The optimization process was carried out using two-level full factorials and Doehlert matrix designs. Four variables (PAN mass, pH, active carbon mass and shaking time) were regarded as factors in the optimization. Results of the two-level full factorial design 2 4 with 16 runs for vanadium extraction, based on the variance analysis (ANOVA), demonstrated that the factors pH and active carbon mass, besides the interaction (pHxactive carbon mass), are statistically significant. For copper, the ANOVA revealed that the factors PAN mass, pH and active carbon mass and the interactions (PAN massxpH) and (pHxactive carbon mass) are statistically significant. Doehlert designs were applied in order to determine the optimum conditions for extraction. The procedure proposed allowed the determination of vanadium and copper with detection limits (3σ/S) of 73 and 94 ng l -1 , respectively. The precision, calculated as relative standard deviation (R.S.D.), was 1.22 and 1.37% for 12.50 μg l -1 of vanadium and copper, respectively. The preconcentration factor was 80. The recovery achieved for determination of vanadium and copper in the presence of several cations demonstrated that this procedure improved the selectivity required for seawater analysis. The procedure was applied to the determination of vanadium and copper in seawater samples collected in Salvador City, Brazil. Results showed good agreement with other data reported in the literature

  7. A Model for Low-Frequency Earthquake Slip

    Science.gov (United States)

    Chestler, S. R.; Creager, K. C.

    2017-12-01

    Using high-resolution relative low-frequency earthquake (LFE) locations, we calculate the patch areas (Ap) of LFE families. During episodic tremor and slip (ETS) events, we define AT as the area that slips during LFEs and ST as the total amount of summed LFE slip. Using observed and calculated values for AP, AT, and ST, we evaluate two end-member models for LFE slip within an LFE family patch. In the ductile matrix model, LFEs produce 100% of the observed ETS slip (SETS) in distinct subpatches (i.e., AT ≪ AP). In the connected patch model, AT = AP, but ST ≪ SETS. LFEs cluster into 45 LFE families. Spatial gaps (˜10 to 20 km) between LFE family clusters and smaller gaps within LFE family clusters serve as evidence that LFE slip is heterogeneous on multiple spatial scales. We find that LFE slip only accounts for ˜0.2% of the slip within the slow slip zone. There are depth-dependent trends in the characteristic (mean) moment and in the number of LFEs during both ETS events (only) and the entire ETS cycle (Mcets and NTets and Mcall and NTall, respectively). During ETS, Mc decreases with downdip distance but NT does not change. Over the entire ETS cycle, Mc decreases with downdip distance, but NT increases. These observations indicate that deeper LFE slip occurs through a larger number (800-1,200) of small LFEs, while updip LFE slip occurs primarily during ETS events through a smaller number (200-600) of larger LFEs. This could indicate that the plate interface is stronger and has a higher stress threshold updip.

  8. Prediction of fluid velocity slip at solid surfaces

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Todd, Billy; Daivis, Peter

    2011-01-01

    methods, it allows us to directly compute the intrinsic wall-fluid friction coefficient rather than an empirical friction coefficient that includes all sources of friction for planar shear flow. The slip length predicted by our method is in excellent agreement with the slip length obtained from direct...

  9. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    Directory of Open Access Journals (Sweden)

    Shan-chao Hu

    2017-01-01

    Full Text Available Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-induced stress and microseismic signals before the occurrence of fault-slip rock burst are proposed, and multiparameter integrated early warning methods including mining-induced stress and energy are established. Finally, pressure relief methods targeting large-diameter boreholes and coal seam infusion are presented in accordance with the occurrence mechanism of fault-slip rock burst. The research results have been successfully applied in working faces 2310 of the Suncun Coal Mine, and the safety of the mine has been enhanced. These research results improve the theory of fault-slip rock burst mechanisms and provide the basis for prediction and forecasting, as well as pressure relief, of fault-slip rock bursts.

  10. A Transformational Approach to Slip-Slide Factoring

    Science.gov (United States)

    Steckroth, Jeffrey

    2015-01-01

    In this "Delving Deeper" article, the author introduces the slip-slide method for solving Algebra 1 mathematics problems. This article compares the traditional method approach of trial and error to the slip-slide method of factoring. Tools that used to be taken for granted now make it possible to investigate relationships visually,…

  11. Earthquake source properties from instrumented laboratory stick-slip

    Science.gov (United States)

    Kilgore, Brian D.; McGarr, Arthur F.; Beeler, Nicholas M.; Lockner, David A.; Thomas, Marion Y.; Mitchell, Thomas M.; Bhat, Harsha S.

    2017-01-01

    Stick-slip experiments were performed to determine the influence of the testing apparatus on source properties, develop methods to relate stick-slip to natural earthquakes and examine the hypothesis of McGarr [2012] that the product of stiffness, k, and slip duration, Δt, is scale-independent and the same order as for earthquakes. The experiments use the double-direct shear geometry, Sierra White granite at 2 MPa normal stress and a remote slip rate of 0.2 µm/sec. To determine apparatus effects, disc springs were added to the loading column to vary k. Duration, slip, slip rate, and stress drop decrease with increasing k, consistent with a spring-block slider model. However, neither for the data nor model is kΔt constant; this results from varying stiffness at fixed scale.In contrast, additional analysis of laboratory stick-slip studies from a range of standard testing apparatuses is consistent with McGarr's hypothesis. kΔt is scale-independent, similar to that of earthquakes, equivalent to the ratio of static stress drop to average slip velocity, and similar to the ratio of shear modulus to wavespeed of rock. These properties result from conducting experiments over a range of sample sizes, using rock samples with the same elastic properties as the Earth, and scale-independent design practices.

  12. Slipping and rolling on an inclined plane

    International Nuclear Information System (INIS)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient (μ). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is 7/2 μ. If μ > 2/7 tan θ, for any arbitrary initial velocity and angular velocity, the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling, the centre of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  13. Analysis of slipped capital femoral epiphysis

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Sponseller, P.D.; Griffin, P.P.

    1988-01-01

    CT with multiplanar reconstruction (CT/MPR) was used to assess 25 adolescents with known or suspected slipped capital femoral epiphysis (SCFE). CT/MPR localizes the epiphysis in three planes, establishing its relationship to the acetabulum and the metaphyseal neck. MPR facilitates measurements of head-neck angles, residusal head-neck contact, and relative retrovision. CT/MPR may establish the true age of the epiphyseal failure and can reveal subtle SCFE in the face of normal plain films. Patients often present with confusing histories; clues to the true age of failure include subtle signs of healing, remodeling, or new bone buttressing. Characterization of acute versus chronic conditions influences preoperative planning. Postoperatively, CT/MPR confirms early results and follows epiphyseal fusion and remodelling. It also detects complications, such as pin or graft migration avascular necrosis (AVN), or chondrolysis

  14. Stick-slip substructure in rapid tape peeling

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2010-10-15

    The peeling of adhesive tape is known to proceed with a stick-slip mechanism and produces a characteristic ripping sound. The peeling also produces light and when peeled in a vacuum, even X-rays have been observed, whose emissions are correlated with the slip events. Here we present direct imaging of the detachment zone when Scotch tape is peeled off at high speed from a solid surface, revealing a highly regular substructure, during the slip phase. The typical 4-mm-long slip region has a regular substructure of transverse 220 μm wide slip bands, which fracture sideways at speeds over 300 m/s. The fracture tip emits waves into the detached section of the tape at ∼100 m/s, which promotes the sound, so characteristic of this phenomenon.

  15. Learning and Prediction of Slip from Visual Information

    Science.gov (United States)

    Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Perona, Pietro

    2007-01-01

    This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off-road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers.

  16. Axisymmetric Tornado Simulations with a Semi-Slip Boundary

    Directory of Open Access Journals (Sweden)

    Brian H. Fiedler

    2017-12-01

    Full Text Available The structure of natural tornadoes and simulated analogs are sensitive to the lower boundary condition for friction. Three-dimensional numerical simulations of storms require a choice for turbulence parameterizations and resolution of wind near the lower boundary. This article explores some of the consequences of choices of a surface drag coefficient on the structure of a mature simulated tornado, using a conventional axisymmetric model. The surface drag parameterization is explored over the range of the semi-slip condition, including the extremes of no-slip and free-slip. A moderate semi-slip condition allows for an extreme pressure deficit, but without the unrealistic vortex breakdown of the no-slip condition.

  17. Stick-slip substructure in rapid tape peeling

    KAUST Repository

    Thoroddsen, Sigurdur T; Nguyen, H. D.; Takehara, K.; Etoh, T. G.

    2010-01-01

    The peeling of adhesive tape is known to proceed with a stick-slip mechanism and produces a characteristic ripping sound. The peeling also produces light and when peeled in a vacuum, even X-rays have been observed, whose emissions are correlated with the slip events. Here we present direct imaging of the detachment zone when Scotch tape is peeled off at high speed from a solid surface, revealing a highly regular substructure, during the slip phase. The typical 4-mm-long slip region has a regular substructure of transverse 220 μm wide slip bands, which fracture sideways at speeds over 300 m/s. The fracture tip emits waves into the detached section of the tape at ∼100 m/s, which promotes the sound, so characteristic of this phenomenon.

  18. Slip flow coefficient analysis in water hydraulics gear pump for environmental friendly application

    International Nuclear Information System (INIS)

    Yusof, A A; Wasbari, F; Zakaria, M S; Ibrahim, M Q

    2013-01-01

    Water hydraulics is the sustainable option in developing fluid power systems with environmental friendly approach. Therefore, an investigation on water-based external gear pump application is being conducted, as a low cost solution in the shifting effort of using water, instead of traditional oil hydraulics in fluid power application. As the gear pump is affected by fluid viscosity, an evaluation has been conducted on the slip flow coefficient, in order to understand to what extent the spur gear pump can be used with water-based hydraulic fluid. In this paper, the results of a simulated study of variable-speed fixed displacement gear pump are presented. The slip flow coefficient varies from rotational speed of 250 RPM to 3500 RPM, and provides volumetric efficiency ranges from 9 % to 97% accordingly

  19. How informative are slip models for aftershock forecasting?

    Science.gov (United States)

    Bach, Christoph; Hainzl, Sebastian

    2013-04-01

    Coulomb stress changes (ΔCFS) have been recognized as a major trigger mechanism for earthquakes, in particular aftershock distributions and the spatial patterns of ΔCFS are often found to be correlated. However, the Coulomb stress calculations are based on slip inversions and the receiver fault mechanisms which both contain large uncertainties. In particular, slip inversions are usually non-unique and often differ strongly for the same earthquakes. Here we want to address the information content of those inversions with respect to aftershock forecasting. Therefore we compare the slip models to randomized fractal slip models which are only constrained by fault information and moment magnitude. The uncertainty of the aftershock mechanisms is considered by using many receiver fault orientations, and by calculating ΔCFS at several depth layers. The stress change is then converted into an aftershock probability map utilizing a clock advance model. To estimate the information content of the slip models, we use an Epidemic Type Aftershock Sequence (ETAS) model approach introduced by Bach and Hainzl (2012), where the spatial probability density of direct aftershocks is related to the ΔCFS calculations. Besides the directly triggered aftershocks, this approach also takes secondary aftershock triggering into account. We quantify our results by calculating the information gain of the randomized slip models relative to the corresponding published slip model. As case studies, we investigate the aftershock sequences of several well-known main shocks such as 1992 Landers, 1999 Hector Mine, 2004 Parkfield, 2002 Denali. First results show a huge difference in the information content of slip models. For some of the cases up to 90% of the random slip models are found to perform better than the originally published model, for some other cases only few random models are found performing better than the published slip model.

  20. PROCESSING OF CONCENTRATED AQUEOUS ZIRCONIA-BIOGLASS SLIPS BY SLIP CASTING

    Directory of Open Access Journals (Sweden)

    Beltina Leon

    2017-03-01

    Full Text Available 3 mol% yttria-partially stabilized zirconia (Y-TZP powder and a sol-gel derived CaO- P₂O₅- SiO₂ (64S bioglass, were used to produce Y-TZP- bioglass slip cast compacts. The rheological properties of concentrated aqueous Y-TZP- 64S suspensions prepared with two different glass contents: 10.5 vol% and 19.9 vol%, and ammonium polyacrylate (NH₄PA as dispersant, were investigated and compared with those of Y-TZP. The density of green cast samples was related to the degree of slip dispersion. The substitution of Y-TZP by 64S glass in the mixtures resulted in greater adsorption of NH₄PA; however, the viscosity and yield stress values of Y-TZP-64S slips were higher than those of Y-TZP ones for the solid loadings studied. The increase in the glass content from 10.5 to 19.9 vol% increased the viscosity and yield stress values. The presence of 64S glass in the mixtures resulted in a less dense packing of cast samples.

  1. Spatiotemporal evolution of premonitory fault slip prior to stick-slip instability: New insight into the earthquake preparation

    Science.gov (United States)

    Zhuo, Y. Q.; Liu, P.; Guo, Y.; Ji, Y.; Ma, J.

    2017-12-01

    Premonitory fault slip, which begins with quasistatic propagation followed by quasidynamic propagation, may be a key clue bridging the "stick" state and "slip" state of a fault. More attentions have been paid for a long time to the temporal resolution of measurement than the spatial resolution, leading to the incomplete interpretation for the spatial evolution of premonitory slip, particularly during the quasistatic phase. In the present study, measurement of the quasistatic propagation of premonitory slip is achieved at an ultrahigh spatial resolution via a digital image correlation method. Multiple premonitory slip zones are observed and found to be controlled spatially by the fault contact heterogeneity, particularly the strong contact patches that prevent the propagation of premonitory slip and accumulate strain. As a result, premonitory slip is accelerated within constrained week contact spaces and consequently triggers the breakout of quasidynamic propagation. The results provide new insights into the quasistatic propagation of premonitory slip and may offer new interpretations for the earthquake nucleation process. This work is fund by the National Natural Science Foundation of China (Grant No. 41572181), the Basic Scientific Funding of Chinese National Nonprofit Institutes (Grant No. IGCEA1415, IGCEA1525), and the Early-Stage Work of Key Breakthrough Plan in Seismology from China Earthquake Administration.

  2. Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip

    Science.gov (United States)

    Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.

    2008-12-01

    Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute

  3. Inductive Monitoring System (IMS)

    Data.gov (United States)

    National Aeronautics and Space Administration — IMS: Inductive Monitoring System The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to extract models of normal...

  4. Inductive Reasoning and Writing

    Science.gov (United States)

    Rooks, Clay; Boyd, Robert

    2003-01-01

    Induction, properly understood, is not merely a game, nor is it a gimmick, nor is it an artificial way of explaining an element of reasoning. Proper understanding of inductive reasoning--and the various types of reasoning that the authors term inductive--enables the student to evaluate critically other people's writing and enhances the composition…

  5. Velocity- and slip-dependent weakening on the Tohoku plate boundary fault: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Y.; Ikari, M.; Ujiie, K.; Kopf, A.

    2016-12-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate both the velocity- and slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc, and measuring the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 1 x 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1x10-6 m/s. In the Japan Trench region, two slow events were observed at the downdip edge of the mainshock coseismic slip zone (< 30 m) were observed. These are an episodic SSE with a slip velocity of 0.1 x 10-6, and afterslip after the largest foreshock with a slip velocity of 2 x 10-6 m/s. This suggests that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary fault of the Tohoku-Oki earthquake.

  6. Stick-slip friction and wear of articular joints

    Science.gov (United States)

    Lee, Dong Woog; Banquy, Xavier; Israelachvili, Jacob N.

    2013-01-01

    Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps—separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints. PMID:23359687

  7. Factors associated with worker slipping in limited-service restaurants.

    Science.gov (United States)

    Courtney, Theodore K; Verma, Santosh K; Huang, Yueng-Hsiang; Chang, Wen-Ruey; Li, Kai Way; Filiaggi, Alfred J

    2010-02-01

    Slips, trips and falls (STF) are responsible for a substantial injury burden in the global workplace. Restaurant environments are challenged by STF. This study assessed individual and work environment factors related to slipping in US limited-service restaurant workers. Workers in 10 limited-service restaurants in Massachusetts were recruited to participate. Workers' occupational slip and/or fall history within the past 4 weeks was collected by multilingual written questionnaires. Age, gender, job tenure, work hours per week and work shift were also collected. Shoe type, condition and gross shoe contamination were visually assessed. Floor friction was measured and each restaurant's overall mean coefficient of friction (COF) was calculated. The logistic generalised estimating equations model was used to compute adjusted odds ratios (OR). Of 125 workers, 42 reported one or more slips in the past 4 weeks with two reporting a resultant fall. Results from multivariable regression showed that higher restaurant mean COF was significantly associated with a decreased risk of self-reported slipping (OR 0.59, 95% CI 0.42 to 0.82). From the highest to the lowest COF restaurant, the odds of a positive slip history increased by a factor of more than seven. Younger age, male gender, lower weekly work hours and the presence of gross contamination on worker's shoe sole were also associated with increased odds of slip history. Published findings of an association between friction and slipping and falling in actual work environments are rare. The findings suggest that effective intervention strategies to reduce the risk of slips and falls in restaurant workers could include increasing COF and improving housekeeping practices.

  8. Perception of slipperiness and prospective risk of slipping at work

    Science.gov (United States)

    Courtney, Theodore K; Verma, Santosh K; Chang, Wen-Ruey; Huang, Yueng-Hsiang; Lombardi, David A; Brennan, Melanye J; Perry, Melissa J

    2013-01-01

    Objectives Falls are a leading cause of injury at work, and slipping is the predominant cause of falling. Prior research has suggested a modest correlation between objective measures (such as coefficient of friction, COF) and subjective measures of slipperiness (such as worker perceptions) in the workplace. However, the degree of association between subjective measures and the actual risk of slipping at the workplace is unknown. This study examined the association between perception of slipperiness and the risk of slipping. Methods 475 workers from 36 limited-service restaurants participated in a 12-week prospective cohort study. At baseline, demographic information was collected, participants rated floor slipperiness in eight areas of the restaurant, and work environment factors, such as COF, were measured. Restaurant-level and area-level mean perceptions of slipperiness were calculated. Participants then reported their slip experience at work on a weekly basis for the next 12 weeks. The associations between perception of slipperiness and the rate of slipping were assessed. Results Adjusting for age, gender, body mass index, education, primary language, mean COF, use of slip-resistant shoes, and restaurant chain, each 1-point increase in mean restaurant-level perception of slipperiness (4-point scale) was associated with a 2.71 times increase in the rate of slipping (95% CI 1.25 to 5.87). Results were similar for area-level perception within the restaurant (rate ratios (RR) 2.92, 95% CI 2.41 to 3.54). Conclusions Perceptions of slipperiness and the subsequent rate of slipping were strongly associated. These findings suggest that safety professionals, risk managers and employers could use aggregated worker perceptions of slipperiness to identify slipping hazards and, potentially, to assess intervention effectiveness. PMID:22935953

  9. Numerical Simulation of Methane Slip in Dual Fuel Marine Engines

    OpenAIRE

    Han, Jaehyun; Jensen, Michael Vincent; Pang, Kar Mun; Walther, Jens Honore; Schramm, Jesper; Bae, Choongsik

    2017-01-01

    The methane slip is the problematic issue for the engines using natural gas(NG). Because methane is more powerful greenhouse gas (GHG) than CO2, understanding of the methane slip during gas exchange process of the engines is essential. In this study, the influence of the gas pipe geometry and the valve timings on the methane slip was investigated. MAN L28/32DF engine was modeled to simulate the gas exchange process of the four stroke NG-diesel dual fuel engines. The mesh size of the model was...

  10. Frictional melting and stick-slip behavior in volcanic conduits

    Science.gov (United States)

    Kendrick, Jackie Evan; Lavallee, Yan; Hirose, Takehiro; di Toro, Giulio; Hornby, Adrian Jakob; Hess, Kai-Uwe; Dingwell, Donald Bruce

    2013-04-01

    Dome-building eruptions have catastrophic potential, with dome collapse leading to devastating pyroclastic flows with almost no precursory warning. During dome growth, the driving forces of the buoyant magma may be superseded by controls along conduit margins; where brittle fracture and sliding can lead to formation of lubricating cataclasite and gouge. Under extreme friction, pseudotachylyte may form at the conduit margin. Understanding the conduit margin processes is vital to understanding the continuation of an eruption and we postulate that pseudotachylyte generation could be the underlying cause of stick-slip motion and associated seismic "drumbeats", which are so commonly observed at dome-building volcanoes. This view is supported by field evidence in the form of pseudotachylytes identified in lava dome products at Soufrière Hills (Montserrat) and Mount St. Helens (USA). Both eruptions were characterised by repetitive, periodic seismicity and lava spine extrusion of highly viscous magma. High velocity rotary shear (HVR) experiments demonstrate the propensity for melting of the andesitic and dacitic material (from Soufrière Hills and Mount St. Helens respectively) at upper conduit stress conditions (HVR experiments which mimic rapid velocity fluctuations in stick-slip behavior demonstrate velocity-weakening behavior of melt, with a tendency for unstable slip. During ascent, magma may slip and undergo melting along the conduit margin. In the process the shear resistance of the slip zone is increased, acting as a viscous brake halting slip (the "stick" of stick-slip motion). Sufficient buoyancy-driven pressures from ascending magma below eventually overcome resistance to produce a rapid slip event (the "slip") along the melt-bearing slip zone, which is temporarily lubricated due to velocity-weakening. New magma below experiences the same slip event more slowly (as the magma decompresses) to produce a viscous brake and the process is repeated. This allows a

  11. Simulation of engine auxiliary drive V-belt slip motion. Part 1. Development of belt slip model; Engine hoki V belt slip kyodo no simulation. 1. Belt slip model no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, T [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    V-belts are widely used for driving auxiliary components of an engine. Inadequet design of such belt system sometimes results in troubles such as belt squeak, side rubber separation and/or bottom rubber crack. However, there has been no design tools which can predict belt slip quantitatively. The author developed a motion simulation program of Auxiliary Drive V-Belt System considering belt slip. The program showed good prediction accuracy for belt slip motion. This paper describes the simulation model. 1 ref., 12 figs.

  12. Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces

    International Nuclear Information System (INIS)

    Zhu, Yingxi; Granick, Steve

    2001-01-01

    Newtonian fluids were placed between molecularly smooth surfaces whose spacing was vibrated at spacings where the fluid responded as a continuum. Hydrodynamic forces agreed with predictions from the no-slip boundary condition only provided that flow rate (peak velocity normalized by spacing) was low, but implied partial slip when it exceeded a critical level, different in different systems, correlated with contact angle (surface wettability). With increasing flow rate and partially wetted surfaces, hydrodynamic forces became up to 2--4 orders of magnitude less than expected by assuming the no-slip boundary condition that is commonly stated in textbooks

  13. Detection of slip from multiple sites in an artificial finger

    Energy Technology Data Exchange (ETDEWEB)

    Muridan, N; Chappell, P H; Cranny, A; White, N M [Electronic Systems and Devices Group, School of Electronics and Computer Science, University of Southampton, SO17 1BJ (United Kingdom); Cotton, D P J, E-mail: nm07r@ecs.soton.ac.u [Nanoscience Centre, University of Cambridge, Cambridge (United Kingdom)

    2009-07-01

    A Piezoelectric thick-film sensor is a good candidate for the extraction of information from object slip in hand prosthesis. Five slip sensors were fabricated on different linkages of an artificial hand. The signals from each sensor were compared to the output from the sensor mounted on the fingertip. An analysis of the output signals from all the sensors indicates that the linkage sensors also produce similar output signals to the fingertip sensor. In the next phase of the research, velocity and acceleration of the slipped object will be considered in the analysis.

  14. Local void and slip model used in BODYFIT-2PE

    International Nuclear Information System (INIS)

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE

  15. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California

    Science.gov (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.

    1986-08-01

    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike-slip

  16. Nanomechanics of slip avalanches in amorphous plasticity

    Science.gov (United States)

    Cao, Penghui; Dahmen, Karin A.; Kushima, Akihiro; Wright, Wendelin J.; Park, Harold S.; Short, Michael P.; Yip, Sidney

    2018-05-01

    Discrete stress relaxations (slip avalanches) in a model metallic glass under uniaxial compression are studied using a metadynamics algorithm for molecular simulation at experimental strain rates. The onset of yielding is observed at the first major stress drop, accompanied, upon analysis, by the formation of a single localized shear band region spanning the entire system. During the elastic response prior to yielding, low concentrations of shear transformation deformation events appear intermittently and spatially uncorrelated. During serrated flow following yielding, small stress drops occur interspersed between large drops. The simulation results point to a threshold value of stress dissipation as a characteristic feature separating major and minor avalanches consistent with mean-field modeling analysis and mechanical testing experiments. We further interpret this behavior to be a consequence of a nonlinear interplay of two prevailing mechanisms of amorphous plasticity, thermally activated atomic diffusion and stress-induced shear transformations, originally proposed by Spaepen and Argon, respectively. Probing the atomistic processes at widely separate strain rates gives insight to different modes of shear band formation: percolation of shear transformations versus crack-like propagation. Additionally a focus on crossover avalanche size has implications for nanomechanical modeling of spatially and temporally heterogeneous dynamics.

  17. Laboratory study of electromagnetic initiation of slip

    Directory of Open Access Journals (Sweden)

    V. Chikhladze

    2002-06-01

    Full Text Available Recently Russian seismologists reported the triggering effect of MHD soundings on microseismic activity in the Central Asia test area.The paper focuses on an experimental test of the possibility of triggering the mechanical instability of a system that is close to critical state by a series of electromagnetic pulses.The mechanical system consisted of two pieces of rock;the upper piece can slip on the fixed supporting sample if the latter one is tilted up to the critical angle.In this state,the triggering of mechanical instability by some weak impact such as electrical pulse became more probable.The slope of support in the experiment is an analogue of tectonic stress in natural conditions.The preliminary experiments,carried out in a dry environment,at the humidity of atmosphere 30-50%,show that a strong EM-pulse induces sliding of a sample of rock (granite,basalt,labradoriteplaced on the supporting sample which is inclined at the slope close to,but less than,the critical angle with a probability 0.07.

  18. San Andreas-sized Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay. In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements. [figure removed for brevity, see original site] The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart. Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension opens the fault and

  19. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  20. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  1. Spectrum of Slip Processes on the Subduction Interface in a Continuum Framework Resolved by Rate-and State Dependent Friction and Adaptive Time Stepping

    Science.gov (United States)

    Herrendoerfer, R.; van Dinther, Y.; Gerya, T.

    2015-12-01

    To explore the relationships between subduction dynamics and the megathrust earthquake potential, we have recently developed a numerical model that bridges the gap between processes on geodynamic and earthquake cycle time scales. In a self-consistent, continuum-based framework including a visco-elasto-plastic constitutive relationship, cycles of megathrust earthquake-like ruptures were simulated through a purely slip rate-dependent friction, albeit with very low slip rates (van Dinther et al., JGR, 2013). In addition to much faster earthquakes, a range of aseismic slip processes operate at different time scales in nature. These aseismic processes likely accommodate a considerable amount of the plate convergence and are thus relevant in order to estimate the long-term seismic coupling and related hazard in subduction zones. To simulate and resolve this wide spectrum of slip processes, we innovatively implemented rate-and state dependent friction (RSF) and an adaptive time-stepping into our continuum framework. The RSF formulation, in contrast to our previous friction formulation, takes the dependency of frictional strength on a state variable into account. It thereby allows for continuous plastic yielding inside rate-weakening regions, which leads to aseismic slip. In contrast to the conventional RSF formulation, we relate slip velocities to strain rates and use an invariant formulation. Thus we do not require the a priori definition of infinitely thin, planar faults in a homogeneous elastic medium. With this new implementation of RSF, we succeed to produce consistent cycles of frictional instabilities. By changing the frictional parameter a, b, and the characteristic slip distance, we observe a transition from stable sliding to stick-slip behaviour. This transition is in general agreement with predictions from theoretical estimates of the nucleation size, thereby to first order validating our implementation. By incorporating adaptive time-stepping based on a

  2. Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kanghyun Nam

    2015-07-01

    Full Text Available In this paper, a robust wheel slip control system based on a sliding mode controller is proposed for improving traction-ability and reducing energy consumption during sudden acceleration for a personal electric vehicle. Sliding mode control techniques have been employed widely in the development of a robust wheel slip controller of conventional internal combustion engine vehicles due to their application effectiveness in nonlinear systems and robustness against model uncertainties and disturbances. A practical slip control system which takes advantage of the features of electric motors is proposed and an algorithm for vehicle velocity estimation is also introduced. The vehicle velocity estimator was designed based on rotational wheel dynamics, measurable motor torque, and wheel velocity as well as rule-based logic. The simulations and experiments were carried out using both CarSim software and an experimental electric vehicle equipped with in-wheel-motors. Through field tests, traction performance and effectiveness in terms of energy saving were all verified. Comparative experiments with variations of control variables proved the effectiveness and practicality of the proposed control design.

  3. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions

    Science.gov (United States)

    Mulchrone, Kieran F.; Meere, Patrick A.

    2015-09-01

    Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.

  4. Stick-slip and Torsional Friction Factors in Inclined Wellbores

    Directory of Open Access Journals (Sweden)

    Aarsnes Ulf Jakob F.

    2018-01-01

    The model is shown to have a good match with the surface and downhole behavior of two deviated wellbores for depths ranging from 1500 to 3000 meters. In particular, the model replicates the amplitude and period of the oscillations, in both the topside torque and the downhole RPM, as caused by the along-string stick slip. It is further shown that by using the surface behavior of the drill-string during rotational startup, an estimate of the static and dynamic friction factors along the wellbore can be obtained, even during stick-slip oscillations, if axial tension in the drillstring is considered. This presents a possible method to estimate friction factors in the field when off-bottom stick slip is encountered, and points in the direction of avoiding stick slip through the design of an appropriate torsional start-up procedure without the need of an explicit friction test.

  5. Wheel slip dump valve for railway braking system

    Science.gov (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  6. Non-slipping domains of a pulled spool

    International Nuclear Information System (INIS)

    Wagner, Clemens; Vaterlaus, Andreas

    2014-01-01

    We have investigated the pulled spool by considering pulling angles up to 360 ∘ . Our focus was on downward pulling forces with pulling angles in the range of 180 ∘ to 360 ∘ . In this range we have found a domain of pulling angles where the spool never starts to slip independent of the strength of the pulling force. The size of the domain depends on the static friction coefficient and on the moment of inertia of the spool. The non-slipping domain is mainly formed around the critical angle where the static friction force becomes zero. For low static friction the non-slipping domain decays into two different domains. We have determined the limiting angles of the non-slipping domains and explored the transitions from a single domain to two separated domains in parameter space. (paper)

  7. Assessment of slip factor models at off-design condition

    International Nuclear Information System (INIS)

    Yoon, Sung Ho; Baek, Je Hyun

    2000-01-01

    Slip factor is defined as an empirical factor being multiplied to theoretical energy transfer for the estimation of real work input of a centrifugal compressor. Researchers have tried to develop a simple empirical model, for a century, to predict a slip factor. However most these models were developed on the condition of design point assuming inviscid flow. So these models often fail to predict a correct slip factor at off-design condition. In this study, we summarized various slip factor models and compared these models with experimental and numerical data at off-design condition. As a result of this study, Wiesner's and Paeng and Chung's models are applicable for radial impeller, but all the models are not suitable for backswept impeller. Finally, the essential avenues for future study is discussed

  8. Foreshocks during the nucleation of stick-slip instability

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.

    2013-01-01

    We report on laboratory experiments which investigate interactions between aseismic slip, stress changes, and seismicity on a critically stressed fault during the nucleation of stick-slip instability. We monitor quasi-static and dynamic changes in local shear stress and fault slip with arrays of gages deployed along a simulated strike-slip fault (2 m long and 0.4 m deep) in a saw cut sample of Sierra White granite. With 14 piezoelectric sensors, we simultaneously monitor seismic signals produced during the nucleation phase and subsequent dynamic rupture. We observe localized aseismic fault slip in an approximately meter-sized zone in the center of the fault, while the ends of the fault remain locked. Clusters of high-frequency foreshocks (Mw ~ −6.5 to −5.0) can occur in this slowly slipping zone 5–50 ms prior to the initiation of dynamic rupture; their occurrence appears to be dependent on the rate at which local shear stress is applied to the fault. The meter-sized nucleation zone is generally consistent with theoretical estimates, but source radii of the foreshocks (2 to 70 mm) are 1 to 2 orders of magnitude smaller than the theoretical minimum length scale over which earthquake nucleation can occur. We propose that frictional stability and the transition between seismic and aseismic slip are modulated by local stressing rate and that fault sections, which would typically slip aseismically, may radiate seismic waves if they are rapidly stressed. Fault behavior of this type may provide physical insight into the mechanics of foreshocks, tremor, repeating earthquake sequences, and a minimum earthquake source dimension.

  9. Molecular Dynamics Simulations of Slip on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Ross D.A.

    2016-07-01

    Full Text Available We present Molecular Dynamics (MD simulations of liquid water confined within nanoscale geometries, including slit-like and cylindrical graphitic pores. These equilibrium results are used for calculating friction coefficients, which in turn can be used to calculate slip lengths. The slip length is a material property independent of the fluid flow rate. It is therefore a better quantity for study than the fluid velocity at the wall, also known as the slip velocity. Once the slip length has been found as a function of surface curvature, it can be used to parameterise Lattice Boltzmann (LB simulations. These larger scale simulations are able to tell us about how fluid transport is affected by slip in complex geometries; not just limited to single pores. Applications include flow and transport in nano-porous engine valve deposits and gas shales. The friction coefficient is found to be a function of curvature and is higher for fluid on convex surfaces and lower for concave surfaces. Both concave and convex surfaces approach the same value of the friction coefficient, which is constant above some critical radius of curvature, here found to be 7.4 ± 2.9 nm. The constant value of the friction coefficient is 10,000 ± 600 kg m−2 s−1, which is equivalent to a slip length of approximately 67 ± 4 nm.

  10. A flexible slip sensor using triboelectric nanogenerator approach

    Science.gov (United States)

    Wang, Xudong; Liang, Jiaming; Xiao, Yuxiang; Wu, Yichuan; Deng, Yang; Wang, Xiaohao; Zhang, Min

    2018-03-01

    With the rapid development of robotic technology, tactile sensors for robots have gained great attention from academic and industry researchers. Tactile sensors for slip detection are essential for human-like steady control in dexterous robot hand. In this paper, we propose and demonstrate a flexible slip sensor based on triboelectric nanogenerator with a seesaw structure. The sensor is composed of two porous PDMS layers separated by an inverted trapezoid structure with a height of 500 μm. In order to customize the sensitivity of the sensor, porous PDMS was fabricated by mixing PDMS with deionized water thoroughly and then removing water with heat. Laser-induced porous graphene and aluminium are served as the pair of contact materials. To detect slip from different directions, two sets of the electrode pair were used. Experimental results show a distinct difference between static state and the moment when a slip happens was detected. In addition, the output voltage of the sensors increased as the increase of slip velocity from 0.25 mm/s to 2.5 mm/s. The flexible slip sensor proposed here shows the potential applications in smart robotics and prosthesis.

  11. Development of roller type side slip tester; Roller shiki side slip tester no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, S [Hiroshima City Industrial Technology Institute, Hiroshima (Japan); Harada, S; Harada, K

    1997-10-01

    This paper presents a new development of roller type side slip tester (RTSSI). The test equipment consists of four parts, which are developed in this research. These are a roller part, a control part, a remote control part and a CRT part. In this study, we especially investigated the mechanism and performance between tire and roller. We analyzed the amount of side slip with various toe angles. The developed tester is examined under the conditions that is considered in industrial applications. We investigated the influences of toe angle, size of tire, pressure of tire, coefficient of friction between tire and roller, pushing force of tire, revolution velocity of roller, axle load and so on. The validity of the developed RTSST is confirmed under these conditions. It was found that the RTSST can be used in practical use. Some measurement results are presented in the form of parametric plots. And we also compared measurements data between the RTSST and that of flat type using several automobiles. 4 refs., 8 figs., 4 tabs.

  12. Induction Motors by Electric Measurements

    Directory of Open Access Journals (Sweden)

    Andrzej M. Trzynadlowski

    1999-01-01

    Full Text Available The paper gives an overview of the issues and means of detection of mechanical abnormalities in induction motors by electric measurements. If undetected and untreated, the worn or damaged bearings, rotor imbalance and eccentricity, broken bars of the rotor cage, and torsional and lateral vibration lead to roughly a half of all failures of induction motor drives. The detection of abnormalities is based on the fact that they cause periodic disturbance of motor variables, such as the speed, torque, current, and magnetic flux. Thus, spectral analysis of those or related quantities may yield a warning about an incipient failure of the drive system. Although the traditional non-invasive diagnostics has mostly been based on the signature analysis of the stator current, other media can also be employed. In particular, the partial instantaneous input power is shown, theoretically and experimentally, to offer distinct advantages under noisy operating conditions. Use of torque and flux estimates is also discussed.

  13. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf; Klinger, Yann; Arrowsmith, J. Ramon

    2015-01-01

    to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault's offset accumulation pattern from geomorphic evidence. We address

  14. Half-cycle slip activity of persistent slip bands at different stages of fatigue life of polycrystalline nickel

    Czech Academy of Sciences Publication Activity Database

    Weidner, A.; Man, Jiří; Tirschler, W.; Klapetek, P.; Blochwitz, C.; Polák, Jaroslav; Skrotzki, W.

    2008-01-01

    Roč. 492, č. 1-2 (2008), s. 118-127 ISSN 0921-5093 R&D Projects: GA ČR GA106/06/1096 Institutional research plan: CEZ:AV0Z20410507 Keywords : persistent slip band * slip activity * half-cycle deformation * atomic force microscopy * scanning electron microscopy * nickel Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.806, year: 2008

  15. Geodetic slip solutions for the Mw=7.4 Champerico (Guatemala) subduction earthquake of November 7 2012

    Science.gov (United States)

    Ellis, Andria; DeMets, Charles; Briole, Pierre; Molina, Enrique; Flores, Omar; Rivera, Jeffrey; Lasserre, Cécile; Lyon-Caen, Hélène; Lord, Neal

    2014-05-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past 50 years, the 7 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. Processing of continuous GPS measurements at 19 stations in Guatemala, El Salvador, and southern Mexico, and at 7 campaign points in Guatemala defines a highly consistent pattern of coseismic offsets during the earthquake, ranging from 47±5 mm of SW movement just inland from the earthquake epicenter to a few mm at sites located in northern Guatemala. Inversions of these offsets to find their best-fitting fault-slip solution in an elastic half space give a geodetic earthquake moment ranging between 0.75 and 1.1 x 1020 Nm, slightly smaller than the seismic estimates that range between 1.2 and 1.45 x 1020 Nm. Slip inversion using a constant slip model, assuming 293° and 29° for the fault azimuth and dip angle, indicates a nearly reverse slip of 2.8 m (rake 78°) on a fault plane 42 km-long and 20 km-wide, centered at 26 km depth. A variable slip inversion indicates that slip concentrated above depths of 40 km may have extended updip to the trench and reached a maximum of only 0.8 m, less than one-sixth the maximum slip indicated by a recent slip solution (5.3 m) obtained from waveform inversion of seismological data. Detailed model comparisons will be discussed. Transient postseismic displacements have been recorded at the nearby continuous GPS sites with amplitudes reaching 20-25 mm at some stations. The duration of the phenomenon is short: using an exponential-decay model, the estimated decay time is 90 ± 10 days. This postseismic signal is consistent with afterslip along a significantly broader area (+50%) of the subduction interface than ruptured coseismically

  16. What causes an icy fault to slip? Investigating strike-slip failure conditions on Ganymede at Dardanus and Tiamat Sulcus.

    Science.gov (United States)

    Cameron, M. E.; Smith-Konter, B. R.; Burkhard, L. M.; Collins, G. C.; Seifert, F.; Pappalardo, R. T.

    2015-12-01

    Ganymede exhibits two geologically distinct terrains known as dark and light (grooved) terrain. The mechanism for a transition from dark to light terrain remains unclear; however, inferences of strike-slip faulting and distributed shear zones suggest that strike-slip tectonism may be important to the structural development of Ganymede's surface and in this transition. Here we investigate the role of tidal stresses on Ganymede in the formation and evolution of strike-slip structures in both dark and grooved terrains. Using numerical code SatStress, we calculate both diurnal and non-synchronous rotation (NSR) tidal stresses at Ganymede's surface. Specifically, we investigate the role of fault friction and orbital eccentricity in the development of ~45 km of right-lateral offset at Dardanus Sulcus and a possible case of study with a detailed morphological mapping of strike-slip morphologies (en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) at Nun Sulcus and several other locations. These structures serve as example regions to provide improved constraints for global stress mechanisms responsible for strike-slip fault evolution on Ganymede.

  17. Slip transmission in bcc FeCr polycrystal

    Energy Technology Data Exchange (ETDEWEB)

    Patriarca, Luca, E-mail: luca.patriarca@polimi.it [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34, I-20156 Milano (Italy); Abuzaid, Wael; Sehitoglu, Huseyin [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206W. Green St., Urbana, IL 61801 (United States); Maier, Hans J. [Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen (Germany)

    2013-12-20

    Grain boundaries induce heterogeneities in the deformation response of polycrystals. Studying these local variations in response, measured through high resolution strain measurement techniques, is important and can improve our understanding of fatigue damage initiation in the vicinity of grain boundaries and material hardening. In this work, strain fields across grain boundaries were measured using advanced digital image correlation techniques. In conjunction with strain measurements, grain orientations from electron back-scattered diffraction were used to establish the dislocation reactions at each boundary, providing the corresponding residual Burgers vectors due to slip transmission across the interfaces. A close correlation was found between the magnitude of the residual Burgers vector and the local strain change across the boundary. When the residual Burgers vector magnitude (with respect to the lattice spacing) exceeds 1.0, the high strains on one side of the boundary are paired with low strains across the boundary, indicating the difficulties for slip dislocations to penetrate the grain interfaces. When the residual Burgers vector approaches zero, the strain fields vary smoothly across the boundary due to limited resistance to slip transmission. The results suggest that the residual Burgers vector magnitude, which relates to the GB (Grain Boundary) resistance to slip transmission, enables a quantitative analysis of the accumulation of strain at the microstructural level and the development of strain heterogeneities across grain boundaries. The results are presented for FeCr bcc alloy which exhibits single slip per grain making the measurements and dislocation reactions rather straightforward. The work points to the need to incorporate details of slip dislocation–grain boundary interaction (slip transmission) in modeling research.

  18. Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?

    International Nuclear Information System (INIS)

    Kattenhorn, Simon A.; Pollard, David D.

    1999-01-01

    Normal faults growing in the Earth's crust are subject to the effects of an increasing frictional resistance to slip caused by the increasing lithostatic load with depth. We use three-dimensional (3-D) boundary element method numerical models to evaluate these effects on planar normal faults with variable elliptical tip line shapes in an elastic solid. As a result of increasing friction with depth, normal fault slip maxima for a single slip event are skewed away from the fault center toward the upper fault tip. There is a correspondingly greater propagation tendency at the upper tip. However, the tall faults that would result from such a propagation tendency are generally not observed in nature. We show how mechanical interaction between laterally stepping fault segments significantly competes with the lithostatic loading effect in the evolution of a normal fault system, promoting lateral propagation and possibly segment linkage. Resultant composite faults are wider than they are tall, resembling both 3-D seismic data interpretations and previously documented characteristics of normal fault systems. However, this effect may be greatly complemented by the influence of a heterogeneous stratigraphy, which can control fault nucleation depth and inhibit fault propagation across the mechanical layering. Our models demonstrate that although lithostatic loading may be an important control on fault evolution in relatively homogeneous rocks, the contribution of lithologic influences and mechanical interaction between closely spaced, laterally stepping faults may predominate in determining the slip behavior and propagation tendency of normal faults in the Earth's crust. (c) 1999 American Geophysical Union

  19. Induction of labour in postdates pregnant women

    International Nuclear Information System (INIS)

    Haq, A.N.; Ahsan, S.; Sher, Z.

    2012-01-01

    Objective: To differentiate the effect of gestation on the mode of delivery by analysing the difference in the mode of induction, length of labour and the difference in parity or Bishop score and their effect on the mode of delivery of postdates women. Study Design: A cross-sectional observational study. Place and Duration of Study: PAEC General Hospital, Islamabad, from July 2006 to July 2008. Methodology:Patients were induced at 41 weeks (Group B) and > 40 weeks (Group A) of gestation. Tab misoprostol and PGE2 tablets were administered according to amniotic fluid index (AFI) and parity . Study variables included duration of gestation, mode of induction, length of labour, difference in parity and Bishop score assessed before induction in each group. The outcome was assessed by applying Chi-square test by comparing mode of delivery with the study variables in both groups. Results: A total of 78 patients were inducted in the study. They were divided in group B (n = 39) induced 41 weeks and group A (n = 39) induced at 40 weeks. Eighty four percent (n = 35) patients in group B delivered vaginally as compared to 71% (n = 28) in the 40 weeks group (p < 0.0001). The higher number of vaginal deliveries in 41 weeks group was independent of association between the induction agent, parity and mode of delivery. Conclusion: The mean length of gestation was the single most important factor among the studied variables in predicting a vaginal delivery. (author)

  20. Urofollitropin and ovulation induction

    NARCIS (Netherlands)

    van Wely, Madelon; Yding Andersen, Claus; Bayram, Neriman; van der Veen, Fulco

    2005-01-01

    Anovulation is a common cause of female infertility. Treatment for women with anovulation is aimed at induction of ovulation. Ovulation induction with follicle-stimulating hormone (FSH) is indicated in women with WHO type II anovulation in whom treatment with clomifene citrate (clomifene) has

  1. Relating stick-slip friction experiments to earthquake source parameters

    Science.gov (United States)

    McGarr, Arthur F.

    2012-01-01

    Analytical results for parameters, such as static stress drop, for stick-slip friction experiments, with arbitrary input parameters, can be determined by solving an energy-balance equation. These results can then be related to a given earthquake based on its seismic moment and the maximum slip within its rupture zone, assuming that the rupture process entails the same physics as stick-slip friction. This analysis yields overshoots and ratios of apparent stress to static stress drop of about 0.25. The inferred earthquake source parameters static stress drop, apparent stress, slip rate, and radiated energy are robust inasmuch as they are largely independent of the experimental parameters used in their estimation. Instead, these earthquake parameters depend on C, the ratio of maximum slip to the cube root of the seismic moment. C is controlled by the normal stress applied to the rupture plane and the difference between the static and dynamic coefficients of friction. Estimating yield stress and seismic efficiency using the same procedure is only possible when the actual static and dynamic coefficients of friction are known within the earthquake rupture zone.

  2. Numerical study of effects of accommodation coefficients on slip phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Jae; Kwon, Oh Joon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    An unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. The present flow solver was applied to the simulation of flows around an axisymmetric hollow cylinder in a Mach 10.4 free stream, known as Calspan-UB Research Center (CUBRC) Run 14 case, and the velocity slip and the temperature jump on the cylinder surface were investigated. The effect of tangential momentum and thermal accommodation coefficients used in the Maxwell condition was also investigated by adjusting their values. The results show that the reverse flow region is developed on the body surface due to the interaction between the shock and the boundary layer. Also, the shock impingement makes pressure high. The flow properties on the surface agree well with the experimental data, and the velocity slip and the temperature jump vary consistently with the local Knudsen number change. The accommodation coefficients affect the slip phenomena and the size of the flow region. The slip phenomena become larger when both tangential momentum and thermal accommodation coefficients are decreased. However, the range of the reverse flow region decreases when the momentum accommodation coefficient is decreased. The characteristics of the momentum and thermal accommodation coefficients also are overlapped when they are altered together.

  3. Technological control of slip casting by the method of PMR

    International Nuclear Information System (INIS)

    Rozental', O.M.; Toropov, Yu.S.; Sobolev, A.S.; Pliner, S.Yu.; Demina, T.E.; Permikina, I.M.

    1980-01-01

    The method of proton magnetic resonance (PMR) is suggested for operational chemico-technological control of slip casting made of oxides of metals in the technology of technical ceramics. PMR spectra of finely dispersed slip casting made of aluminium and zirconium oxides (0.9 mol. of the ZrO 2 shake + 0.1 V 2 O 3 ) are analysed. It is shown that the quality of slip casting out of aqueous suspensions of aluminium and zirconium oxides is abruptly reduced if dP/dW (P - parameter of the PMR line shape, W - humidity) decrease. It is established that slip casting made of zirconium oxide should not be kept in the air more than 5 days, and that of aluminium oxide, more than 3 days at room temperature and should not be exposed to high (> 105 deg C) temperatures. The quality of slip casting is reduced in the regime of too energetic electrosedimentation the optimum regime of electrosedimentation is approximately 5/3 under the conditions of the above experiment

  4. Dynamic Behavior of Fault Slip Induced by Stress Waves

    Directory of Open Access Journals (Sweden)

    Guang-an Zhu

    2016-01-01

    Full Text Available Fault slip burst is a serious dynamic hazard in coal mining. A static and dynamic analysis for fault slip was performed to assess the risk of rock burst. A numerical model FLAC3D was established to understand the stress state and mechanical responses of fault rock system. The results obtained from the analysis show that the dynamic behavior of fault slip induced by stress waves is significantly affected by mining depth, as well as dynamic disturbance intensity and the distance between the stope and the fault. The isolation effect of the fault is also discussed based on the numerical results with the fault angle appearing to have the strongest influence on peak vertical stress and velocity induced by dynamic disturbance. By taking these risks into account, a stress-relief technology using break-tip blast was used for fault slip burst control. This technique is able to reduce the stress concentration and increase the attenuation of dynamic load by fracturing the structure of coal and rock. The adoption of this stress-relief method leads to an effective reduction of fault slip induced rock burst (FSIRB occurrence.

  5. Dislocation cross-slip in fcc solid solution alloys

    International Nuclear Information System (INIS)

    Nöhring, Wolfram Georg; Curtin, W.A.

    2017-01-01

    Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. Here, the cross-slip transition path in solid solutions is calculated using atomistic methods for three representative systems of Ni-Al, Cu-Ni and Al-Mg over a range of solute concentrations. Studies using both true random alloys and their corresponding average-alloy counterparts allow for the independent assessment of the roles of (i) fluctuations in the spatial solute distribution in the true random alloy randomness and (ii) average alloy properties such as stacking fault energy. The results show that the solute fluctuations dominate the activation energy barrier, i.e. there are large sample-to-sample variations around the average activation barrier. The variations in activation barrier correlate linearly with the energy difference between the initial and final states. The distribution of this energy difference can be computed analytically in terms of the solute/dislocation interaction energies. Thus, the distribution of cross-slip activation energies can be accurately determined from a parameter-free analytic model. The implications of the statistical distribution of activation energies on the rate of cross-slip in real alloys are then identified.

  6. Seismic and Aseismic Slip on the Cascadia Megathrust

    Science.gov (United States)

    Michel, S. G. R. M.; Gualandi, A.; Avouac, J. P.

    2017-12-01

    Our understanding of the dynamics governing aseismic and seismic slip hinges on our ability to image the time evolution of fault slip during and in between earthquakes and transients. Such kinematic descriptions are also pivotal to assess seismic hazard as, on the long term, elastic strain accumulating around a fault should be balanced by elastic strain released by seismic slip and aseismic transients. In this presentation, we will discuss how such kinematic descriptions can be obtained from the analysis and modelling of geodetic time series. We will use inversion methods based on Independent Component Analysis (ICA) decomposition of the time series to extract and model the aseismic slip (afterslip and slow slip events). We will show that this approach is very effective to identify, and filter out, non-tectonic sources of geodetic strain such as the strain due to surface loads, which can be estimated using gravimetric measurements from GRACE, and thermal strain. We will discuss in particular the application to the Cascadia subduction zone.

  7. Soil slips and debris flows on terraced slopes

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.; Frattini, P.

    Terraces cover large areas along the flanks of many alpine and prealpine valleys. Soil slips and soil slips-debris flows are recurrent phenomena along terraced slopes. These landslides cause damages to people, settlements and cultivations. This study investigates the processes related to the triggering of soil slip-debris flows in these settings, analysing those occurred in Valtellina (Central Alps, Italy) on November 2000 after heavy prolonged rainfalls. 260 landslides have been recognised, mostly along the northern valley flank. About 200 soil slips and slumps occurred in terraced areas and a third of them evolved into debris flows. Field work allowed to recognise the settings at soil slip-debris flow source areas. Landslides affected up to 2.5 m of glacial, fluvioglacial and anthropically reworked deposits overlying metamorphic basement. Laboratory and in situ tests allowed to characterise the geotechnical and hydraulic properties of the terrains involved in the initial failure. Several stratigraphic and hydrogeologic factors have been individuated as significant in determining instabilities on terraced slopes. They are the vertical changes of physical soil properties, the presence of buried hollows where groundwater convergence occurs, the rising up of perched groundwater tables, the overflow and lateral infiltration from superficial drainage network, the runoff concentration by means of pathways and the insufficient drainage of retaining walls.

  8. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  9. Half Bridge Inductive Heater

    Directory of Open Access Journals (Sweden)

    Zoltán GERMÁN-SALLÓ

    2015-12-01

    Full Text Available Induction heating performs contactless, efficient and fast heating of conductive materials, therefore became one of the preferred heating procedure in industrial, domestic and medical applications. During induction heating the high-frequency alternating currents that heat the material are induced by means of electromagnetic induction. The material to be heated is placed inside the time-varying magnetic field generated by applying a highfrequency alternating current to an induction coil. The alternating electromagnetic field induces eddy currents in the workpiece, resulting resistive losses, which then heat the material. This paper describes the design of a power electronic converter circuit for induction heating equipment and presents the obtained results. The realized circuit is a low power half bridge resonant inverter which uses power MOS transistors and adequate driver circuits.

  10. Observing and modeling the spectrum of a slow slip event: Constraints on the scaling of slow slip and tremor

    Science.gov (United States)

    Hawthorne, J. C.; Bartlow, N. M.; Ghosh, A.

    2017-12-01

    We estimate the normalized moment rate spectrum of a slow slip event in Cascadia and then attempt to reproduce it. Our goal is to further assess whether a single physical mechanism could govern slow slip and tremor events, with durations that span 6 orders of magnitude, so we construct the spectrum by parameterizing a large slow slip event as the sum of a number of subevents with various durations. The spectrum estimate uses data from three sources: the GPS-based slip inversion of Bartlow et al (2011), PBO borehole strain measurements, and beamforming-based tremor moment estimates of Ghosh et al (2009). We find that at periods shorter than 1 day, the moment rate power spectrum decays as frequencyn, where n is between 0.7 and 1.4 when measured from strain and between 1.2 and 1.4 when inferred from tremor. The spectrum appears roughly flat at periods of 1 to 10 days, as both the 1-day-period strain and tremor data and the 6-day-period slip inversion data imply a moment rate power of 0.02 times the the total moment squared. We demonstrate one way to reproduce this spectrum: by constructing the large-scale slow slip event as the sum of a series of subevents. The shortest of these subevents could be interpreted as VLFEs or even LFEs, while longer subevents might represent the aseismic slip that drives rapid tremor reverals, streaks, or rapid tremor migrations. We pick the subevent magnitudes from a Gutenberg-Richter distribution and place the events randomly throughout a 30-day interval. Then we assign each subevent a duration that scales with its moment to a specified power. Finally, we create a moment rate function for each subevent and sum all of the moment rates. We compute the summed slow slip moment rate spectra with two approaches: a time-domain numerical computation and a frequency-domain analytical summation. Several sets of subevent parameters can allow the constructed slow slip event to match the observed spectrum. One allowable set of parameters is of

  11. Preliminary soil-slip susceptibility maps, southwestern California

    Science.gov (United States)

    Morton, Douglas M.; Alvarez, Rachel M.; Campbell, Russell H.; Digital preparation by Bovard, Kelly R.; Brown, D.T.; Corriea, K.M.; Lesser, J.N.

    2003-01-01

    This group of maps shows relative susceptibility of hill slopes to the initiation sites of rainfall-triggered soil slip-debris flows in southwestern California. As such, the maps offer a partial answer to one part of the three parts necessary to predict the soil-slip/debris-flow process. A complete prediction of the process would include assessments of “where”, “when”, and “how big”. These maps empirically show part of the “where” of prediction (i.e., relative susceptibility to sites of initiation of the soil slips) but do not attempt to show the extent of run out of the resultant debris flows. Some information pertinent to “when” the process might begin is developed. “When” is determined mostly by dynamic factors such as rainfall rate and duration, for which local variations are not amenable to long-term prediction. “When” information is not provided on the maps but is described later in this narrative. The prediction of “how big” is addressed indirectly by restricting the maps to a single type of landslide process—soil slip-debris flows. The susceptibility maps were created through an iterative process from two kinds of information. First, locations of sites of past soil slips were obtained from inventory maps of past events. Aerial photographs, taken during six rainy seasons that produced abundant soil slips, were used as the basis for soil slip-debris flow inventory. Second, digital elevation models (DEM) of the areas that were inventoried were used to analyze the spatial characteristics of soil slip locations. These data were supplemented by observations made on the ground. Certain physical attributes of the locations of the soil-slip debris flows were found to be important and others were not. The most important attribute was the mapped bedrock formation at the site of initiation of the soil slip. However, because the soil slips occur in surficial materials overlying the bedrocks units, the bedrock formation can only serve as

  12. Creep and slip: Seismic precursors to the Nuugaatsiaq landslide (Greenland)

    Science.gov (United States)

    Poli, Piero

    2017-09-01

    Precursory signals to material's failure are predicted by numerical models and observed in laboratory experiments or using field data. These precursory signals are a marker of slip acceleration on weak regions, such as crustal faults. Observation of these precursory signals of catastrophic natural events, such as earthquakes and landslides, is necessary for improving our knowledge about the physics of the nucleation process. Furthermore, observing such precursory signals may help to forecast these catastrophic events or reduce their hazard. I report here the observation of seismic precursors to the Nuugaatsiaq landslide in Greenland. Time evolution of the detected precursors implies that an aseismic slip event is taking place for hours before the landslide, with an exponential increase of slip velocity. Furthermore, time evolution of the precursory signals' amplitude sheds light on the evolution of the fault physics during the nucleation process.

  13. Slip-stick excitation and travelling waves excite silo honking

    Directory of Open Access Journals (Sweden)

    Warburton Katarzyna

    2017-01-01

    Full Text Available Silo honking is the harmonic sound generated by the discharge of a silo filled with a granular material. In industrial storage silos, the acoustic emission during discharge of PET-particles forms a nuisance for the environment and may ultimately result in structural failure. This work investigates the phenomenon experimentally using a laboratory-scale silo, and successfully correlates the frequency of the emitted sound with the periodicity of the mechanical motion of the grains. The key driver is the slip-stick interaction between the wall and the particles, characterized as a wave moving upwards through the silo. A quantitative correlation is established for the first time between the frequency of the sound, measured with an electret microphone, and the slip-frequency, measured with a high-speed camera. In the lower regions of the tube, both the slip-stick motion and the honking sound disappear.

  14. Slip analysis of squeezing flow using doubly stratified fluid

    Science.gov (United States)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-06-01

    The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.

  15. Numerical Simulation of Methane Slip in Dual Fuel Marine Engines

    DEFF Research Database (Denmark)

    Han, Jaehyun; Jensen, Michael Vincent; Pang, Kar Mun

    2017-01-01

    estimations. The simulations with various gas pipe geometries were conducted. It seemed that the effect of the change in injection direction is more dominant than the change in the gas hole configuration. The favorable injection direction for minimum amount of methane slip was discovered as the direction...... which helps developing the flow of methane far from the exhaust ports. The effects of various valve timing settings were also simulated. The advancement of the exhaust valve closing was more efficient than the retardation of the intake valve opening. A little retardation of the intake valve opening even......The methane slip is the problematic issue for the engines using natural gas(NG). Because methane is more powerful greenhouse gas (GHG) than CO2, understanding of the methane slip during gas exchange process of the engines is essential. In this study, the influence of the gas pipe geometry...

  16. Slip-stick excitation and travelling waves excite silo honking

    Science.gov (United States)

    Warburton, Katarzyna; Porte, Elze; Vriend, Nathalie

    2017-06-01

    Silo honking is the harmonic sound generated by the discharge of a silo filled with a granular material. In industrial storage silos, the acoustic emission during discharge of PET-particles forms a nuisance for the environment and may ultimately result in structural failure. This work investigates the phenomenon experimentally using a laboratory-scale silo, and successfully correlates the frequency of the emitted sound with the periodicity of the mechanical motion of the grains. The key driver is the slip-stick interaction between the wall and the particles, characterized as a wave moving upwards through the silo. A quantitative correlation is established for the first time between the frequency of the sound, measured with an electret microphone, and the slip-frequency, measured with a high-speed camera. In the lower regions of the tube, both the slip-stick motion and the honking sound disappear.

  17. Effects of Spine Motion on Foot Slip in Quadruped Bounding

    Directory of Open Access Journals (Sweden)

    Dongliang Chen

    2018-01-01

    Full Text Available Translation and bend of the spine in the sagittal plane during high-speed quadruped running were investigated. The effect of the two spine motions on slip between the foot and the ground was also explored. First, three simplified sagittal plane models of quadruped mammals were studied in symmetric bounding. The first model’s trunk allowed no relative motion, the second model allowed only trunk bend, and the third model allowed both bend and translation. Next, torque was introduced to equivalently replace spine motion and the possibility of foot slip of the three models was analyzed theoretically. The results indicate that the third model has the least possibility of slip. This conclusion was further confirmed by simulation experiments. Finally, the conclusion was verified by the reductive model crawling robot.

  18. Friction, slip and structural inhomogeneity of the buried interface

    International Nuclear Information System (INIS)

    Dong, Y; Wu, J; Martini, A; Li, Q

    2011-01-01

    An atomistic model of metallic contacts using realistic interatomic potentials is used to study the connection between friction, slip and the structure of the buried interface. Incommensurability induced by misalignment and lattice mismatch is modeled with contact sizes that are large enough to observe superstructures formed by the relative orientations of the surfaces. The periodicity of the superstructures is quantitatively related to inhomogeneous shear stress distributions in the contact area, and a reduced order model is used to clarify the connection between friction and structural inhomogeneity. Finally, the movement of atoms is evaluated before, during and after slip in both aligned and misaligned contacts to understand how the interfacial structure affects the mechanisms of slip and the corresponding frictional behavior

  19. Quantitative numerical method for analysing slip traces observed by AFM

    International Nuclear Information System (INIS)

    Veselý, J; Cieslar, M; Coupeau, C; Bonneville, J

    2013-01-01

    Atomic force microscopy (AFM) is used more and more routinely to study, at the nanometre scale, the slip traces produced on the surface of deformed crystalline materials. Taking full advantage of the quantitative height data of the slip traces, which can be extracted from these observations, requires however an adequate and robust processing of the images. In this paper an original method is presented, which allows the fitting of AFM scan-lines with a specific parameterized step function without any averaging treatment of the original data. This yields a quantitative and full description of the changes in step shape along the slip trace. The strength of the proposed method is established on several typical examples met in plasticity by analysing nano-scale structures formed on the sample surface by emerging dislocations. (paper)

  20. The Slip Behavior and Source Parameters for Spontaneous Slip Events on Rough Faults Subjected to Slow Tectonic Loading

    Science.gov (United States)

    Tal, Yuval; Hager, Bradford H.

    2018-02-01

    We study the response to slow tectonic loading of rough faults governed by velocity weakening rate and state friction, using a 2-D plane strain model. Our numerical approach accounts for all stages in the seismic cycle, and in each simulation we model a sequence of two earthquakes or more. We focus on the global behavior of the faults and find that as the roughness amplitude, br, increases and the minimum wavelength of roughness decreases, there is a transition from seismic slip to aseismic slip, in which the load on the fault is released by more slip events but with lower slip rate, lower seismic moment per unit length, M0,1d, and lower average static stress drop on the fault, Δτt. Even larger decreases with roughness are observed when these source parameters are estimated only for the dynamic stage of the rupture. For br ≤ 0.002, the source parameters M0,1d and Δτt decrease mutually and the relationship between Δτt and the average fault strain is similar to that of a smooth fault. For faults with larger values of br that are completely ruptured during the slip events, the average fault strain generally decreases more rapidly with roughness than Δτt.

  1. Back analysis of fault-slip in burst prone environment

    Science.gov (United States)

    Sainoki, Atsushi; Mitri, Hani S.

    2016-11-01

    In deep underground mines, stress re-distribution induced by mining activities could cause fault-slip. Seismic waves arising from fault-slip occasionally induce rock ejection when hitting the boundary of mine openings, and as a result, severe damage could be inflicted. In general, it is difficult to estimate fault-slip-induced ground motion in the vicinity of mine openings because of the complexity of the dynamic response of faults and the presence of geological structures. In this paper, a case study is conducted for a Canadian underground mine, herein called "Mine-A", which is known for its seismic activities. Using a microseismic database collected from the mine, a back analysis of fault-slip is carried out with mine-wide 3-dimensional numerical modeling. A back analysis is conducted to estimate the physical and mechanical properties of the causative fracture or shear zones. One large seismic event has been selected for the back analysis to detect a fault-slip related seismic event. In the back analysis, the shear zone properties are estimated with respect to moment magnitude of the seismic event and peak particle velocity (PPV) recorded by a strong ground motion sensor. The estimated properties are then validated through comparison with peak ground acceleration recorded by accelerometers. Lastly, ground motion in active mining areas is estimated by conducting dynamic analysis with the estimated values. The present study implies that it would be possible to estimate the magnitude of seismic events that might occur in the near future by applying the estimated properties to the numerical model. Although the case study is conducted for a specific mine, the developed methodology can be equally applied to other mines suffering from fault-slip related seismic events.

  2. Active strike-slip faulting in El Salvador, Central America

    Science.gov (United States)

    Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn

    2005-12-01

    Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.

  3. Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

    Directory of Open Access Journals (Sweden)

    In-Ju Kim

    2018-03-01

    Full Text Available Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents. Keywords: floor surface finishes, operational levels of floor surface roughness, slip resistance, wet, soapy and oily environments

  4. Factors associated with use of slip-resistant shoes in US limited-service restaurant workers.

    Science.gov (United States)

    Verma, Santosh K; Courtney, Theodore K; Corns, Helen L; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melanye J; Perry, Melissa J

    2012-06-01

    Slips and falls are a leading cause of injury at work. Several studies have indicated that slip-resistant shoes can reduce the risk of occupational slips and falls. Few studies, however, have examined the determinants of slip-resistant shoe use. This study examined the individual and workplace factors associated with slip-resistant shoe use. 475 workers from 36 limited-service restaurants in the USA participated in a study of workplace slipping. Demographic and job characteristic information about each participant was collected. Restaurant managers provided information on whether slip-resistant shoes were provided and paid for by the employer and whether any guidance was given regarding slip-resistant shoe use when they were not provided. Kitchen floor coefficient of friction was measured. Slip-resistant status of the shoes was determined by noting the presence of a 'slip-resistant' marking on the sole. Poisson regression with robust SE was used to calculate prevalence ratios. 320 participants wore slip-resistant shoes (67%). In the multivariate analysis, the prevalence of slip-resistant shoe use was lowest in 15-19-year age group. Women were more likely to wear slip-resistant shoes (prevalence ratio 1.18, 95% CI 1.07 to 1.31). The prevalence of slip-resistant shoe use was lower when no guidance regarding slip-resistant shoes was given as compared to when they were provided by the employer (prevalence ratio 0.66, 95% CI 0.55 to 0.79). Education level, job tenure and the mean coefficient of friction had no significant effects on the use of slip-resistant shoes. Provision of slip-resistant shoes was the strongest predictor of their use. Given their effectiveness and low cost, employers should consider providing slip-resistant shoes at work.

  5. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    Science.gov (United States)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  6. Case of slipped capital femoral epiphysis following radiation

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi; Usui, Hiroshi; Nakamura, Yutaka; Chiba, Masahiro; Yamaji, Shushin; Oba, Yoshihiro

    1987-06-01

    A 12-year-old boy presented with pain of the right hip joint and claudication. At the age of 7 months, the patient had received prophylactic irradiation of 30 Gy to the pelvic area including lumbar vertebrae and bilateral hip joints following extirpation of the right undescended testicle for embryonal carcinoma. Roentgenograph showed slipped capial femoral epiphysis. A review of the literature suggests that bone growth and hormonal changes in the early stage of puberty are involved, in addition to radiation damaged epiphyseal cartilage, in the pathophysiologic mechanisms of radiation induced slipped capital femoral epiphysis. (Namekawa, K.).

  7. Review of induction LINACS

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1981-10-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  8. Review of induction linacs

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1982-01-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of several kiloamps of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  9. Properties of inductive reasoning.

    Science.gov (United States)

    Heit, E

    2000-12-01

    This paper reviews the main psychological phenomena of inductive reasoning, covering 25 years of experimental and model-based research, in particular addressing four questions. First, what makes a case or event generalizable to other cases? Second, what makes a set of cases generalizable? Third, what makes a property or predicate projectable? Fourth, how do psychological models of induction address these results? The key results in inductive reasoning are outlined, and several recent models, including a new Bayesian account, are evaluated with respect to these results. In addition, future directions for experimental and model-based work are proposed.

  10. Transformation of fault slip modes in laboratory experiments

    Science.gov (United States)

    Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim

    2017-04-01

    Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random

  11. Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.

    Science.gov (United States)

    Trumper, Ricardo; Gelbman, Moshe

    2000-01-01

    Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)

  12. The influence of slip velocity and temperature on permeability during and after high-velocity fault slip

    Science.gov (United States)

    Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.

    2011-12-01

    Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism

  13. Pedestrians in wintertime-effects of using anti-slip devices.

    Science.gov (United States)

    Berggård, Glenn; Johansson, Charlotta

    2010-07-01

    Pedestrians slipping and falling is a major safety problem around the world, not least in countries with long winters such as Sweden. About 25000-30000 people need medical care every year for treatment of fall injuries in Sweden. Use of appropriate shoes and anti-slip devices are examples of individual measures that have been suggested to prevent slipping and falling. An intervention study was performed during the period February to April 2008. The study, which focused on healthy adults in northern Sweden, examined the effect of using anti-slip devices on daily walking journeys and prevention of slip and falls. The respondents were divided into three groups: an Intervention Group, a Control Group, with similar distribution of gender and age, and a Comparison Group. Four questionnaires were distributed: (1) background, (2) daily diary of distance walked and occurrence of incidents or accidents reported weekly, (3) detailed incident or fall report and (4) experiences of using anti-slip devices for those who used these devices during the trial period. Half of the respondents stated that they had previous experience of using anti-slip devices. In this study, 52% of the respondents used anti-slip devices. Anti-slip devices improve the walking capability during wintertime. Among those using appropriate anti-slip devices, the average daily walking distance was found to be statistically significantly longer compared to people not using anti-slip devices. This study indicates that an increase in daily walking distance can be made without increasing the risk of slips/falls when using anti-slip devices. The study also indicates that by using appropriate anti-slip devices and having information about when and where to use them, based on their design, people avoid having slips and falls. The respondents experienced in using anti-slip devices in this study will continue to use them and will also recommend others to use anti-slip devises. Copyright 2010 Elsevier Ltd. All rights

  14. Induction melter apparatus

    Science.gov (United States)

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  15. Role of retinal slip in the prediction of target motion during smooth and saccadic pursuit.

    Science.gov (United States)

    de Brouwer, S; Missal, M; Lefèvre, P

    2001-08-01

    Visual tracking of moving targets requires the combination of smooth pursuit eye movements with catch-up saccades. In primates, catch-up saccades usually take place only during pursuit initiation because pursuit gain is close to unity. This contrasts with the lower and more variable gain of smooth pursuit in cats, where smooth eye movements are intermingled with catch-up saccades during steady-state pursuit. In this paper, we studied in detail the role of retinal slip in the prediction of target motion during smooth and saccadic pursuit in the cat. We found that the typical pattern of pursuit in the cat was a combination of smooth eye movements with saccades. During smooth pursuit initiation, there was a correlation between peak eye acceleration and target velocity. During pursuit maintenance, eye velocity oscillated at approximately 3 Hz around a steady-state value. The average gain of smooth pursuit was approximately 0.5. Trained cats were able to continue pursuing in the absence of a visible target, suggesting a role of the prediction of future target motion in this species. The analysis of catch-up saccades showed that the smooth-pursuit motor command is added to the saccadic command during catch-up saccades and that both position error and retinal slip are taken into account in their programming. The influence of retinal slip on catch-up saccades showed that prediction about future target motion is used in the programming of catch-up saccades. Altogether, these results suggest that pursuit systems in primates and cats are qualitatively similar, with a lower average gain in the cat and that prediction affects both saccades and smooth eye movements during pursuit.

  16. Linear induction accelerator

    Science.gov (United States)

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  17. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  18. Deformation twinning in zinc-aluminium single crystals after slip

    International Nuclear Information System (INIS)

    Lukac, P.; Kral, F.; Trojanova, Z.; Kral, R.

    1993-01-01

    Deformation twinning in Zn-Al single crystals deformed by slip in the basal system is examined. The influence of temperature and the content of aluminium in zinc on the twinning stress is investigated in the temperature range from 198 to 373 K. It is shown that the twinning stress rises with increasing temperature and increases with the concentration of Al atoms. (orig.)

  19. Atomistic Determination of Cross-Slip Pathway and Energetics

    DEFF Research Database (Denmark)

    Rasmussen, Torben; Jacobsen, Karsten Wedel; Leffers, Torben

    1997-01-01

    plane. The transition state and activation energy for cross slip as well as the energies of the involved dislocation constrictions are determined. One constriction has a negative energy compared to parallel partials. The energy vs splitting width for recombination of parallel partials into a perfect...

  20. Analysis of slip flow heat transfer between two unsymmetrically

    Indian Academy of Sciences (India)

    This paper presents an analytical investigation to study the heat transfer and fluid flow characteristics in the slip flow region for hydrodynamically and thermally fully developed flow between parallel plates.Both upper and lower plates are subjected to asymmetric heat flux boundary conditions. The effect of first ordervelocity ...

  1. Simulating the Evolving Behavior of Secondary Slow Slip Fronts

    Science.gov (United States)

    Peng, Y.; Rubin, A. M.

    2017-12-01

    High-resolution tremor catalogs of slow slip events reveal secondary slow slip fronts behind the main front that repetitively occupy the same source area during a single episode. These repetitive fronts are most often observed in regions with high tremor density. Their recurrence intervals gradually increase from being too short to be tidally modulated (tens of minutes) to being close to tidal periods (about 12 or 24 hours). This could be explained by a decreasing loading rate from creep in the surrounding regions (with few or no observable tremor events) as the main front passes by. As the recurrence intervals of the fronts increase, eventually they lock in on the tidal periods. We attempt to simulate this numerically using a rate-and-state friction law that transitions from velocity-weakening at low slip speeds to velocity strengthening at high slip speeds. Many small circular patches with a cutoff velocity an order of magnitude higher than that of the background are randomly placed on the fault, in order to simulate the average properties of the high-density tremor zone. Preliminary results show that given reasonable parameters, this model produces similar propagation speeds of the forward-migrating main front inside and outside the high-density tremor zone, consistent with observations. We will explore the behavior of the secondary fronts that arise in this model, in relation to the local density of the small tremor-analog patches, the overall geometry of the tremor zone and the tides.

  2. Evidence Based Prevention of Occupational Slips, Trips and Falls

    DEFF Research Database (Denmark)

    Jensen, Olaf Chresten

    2009-01-01

    It is estimated that about one third of the compensated occupational injuries and half of the most serious occupational injuries in merchant seafaring are related to slips, trips and falls (STF)-events. Among the elderly, STF is the risk factor that causes the largest number of inpatient days...

  3. On the Modeling of Contact Interfaces with Frictional Slips

    Directory of Open Access Journals (Sweden)

    Ligia Munteanu

    2013-09-01

    Full Text Available The paper analyses the contact interfaces between the scatterers and the matrix into the sonic composites, in the presence of the frictional slips. The sonic composite is a sonic liner designed in order to provide suppression of unwanted noise for jet engines, with emphases on the nacelle of turbofan engines for commercial aircraft.

  4. Self-similar slip distributions on irregular shaped faults

    Science.gov (United States)

    Herrero, A.; Murphy, S.

    2018-06-01

    We propose a strategy to place a self-similar slip distribution on a complex fault surface that is represented by an unstructured mesh. This is possible by applying a strategy based on the composite source model where a hierarchical set of asperities, each with its own slip function which is dependent on the distance from the asperity centre. Central to this technique is the efficient, accurate computation of distance between two points on the fault surface. This is known as the geodetic distance problem. We propose a method to compute the distance across complex non-planar surfaces based on a corollary of the Huygens' principle. The difference between this method compared to others sample-based algorithms which precede it is the use of a curved front at a local level to calculate the distance. This technique produces a highly accurate computation of the distance as the curvature of the front is linked to the distance from the source. Our local scheme is based on a sequence of two trilaterations, producing a robust algorithm which is highly precise. We test the strategy on a planar surface in order to assess its ability to keep the self-similarity properties of a slip distribution. We also present a synthetic self-similar slip distribution on a real slab topography for a M8.5 event. This method for computing distance may be extended to the estimation of first arrival times in both complex 3D surfaces or 3D volumes.

  5. A temperature dependent slip factor based thermal model for friction ...

    Indian Academy of Sciences (India)

    thermal modelling of FSW process by assuming the slip factor as a function of any one of the parameters such as ... Normal load, Fn. 31138 N .... source was moved in discrete steps of 1 mm to simulate the linear motion of the tool. At each load.

  6. Wenchuan Ms8.0 earthquake coseismic slip distribution inversion

    Directory of Open Access Journals (Sweden)

    Hongbo Tan

    2015-05-01

    Full Text Available By using GPS and gravity data before and after the Wenchuan Ms8.0 earthquake and combining data from geological surveys and geophysical inversion studies, an initial coseismic fault model is constructed. The dip angle changes of the fault slip distribution on the fault plane are inversed, and the inversion results show that the shape of the fault resembles a double-shovel. The Yingxiu–Beichuan Fault is approximately 330 km long, the surface fault dip angle is 65.1°, which gradually reduces with increasing depth to 0° at the detachment layer at a depth of 19.62 km. The Guanxian–Jiangyou Fault is approximately 90 km long, and its dip angle at the surface is 55.3°, which gradually reduces with increasing depth; the fault joins the Yingxiu–Beichuan Fault at 13.75 km. Coseismic slip mainly occurs above a depth of 19 km. There are five concentrated rupture areas, Yingxiu, Wenchuan, Hanwang, Beichuan, and Pingwu, which are consistent with geological survey results and analyses of the aftershock distribution. The rupture mainly has a thrust component with a small dextral strike–slip component. The maximum slip was more than 10 m, which occurred near Beichuan and Hanwang. The seismic moment is 7.84 × 1020 Nm (Mw7.9, which is consistent with the seismological results.

  7. Break-Even Point for a Proof Slip Operation

    Science.gov (United States)

    Anderson, James F.

    1972-01-01

    Break-even analysis is applied to determine what magnitude of titles added per year is sufficient to utilize economically Library of Congress proof slips and a Xerox 914 copying machine in the cataloging operation of a library. A formula is derived, and an example of its use is given. (1 reference) (Author/SJ)

  8. Slip sliding away: Promoting ethical behaviours in soccer ...

    African Journals Online (AJOL)

    Slip sliding away: Promoting ethical behaviours in soccer. ... African Journal for Physical Activity and Health Sciences ... after the 2010 Soccer World Cup, has led to increased demands on sport organisations, coaches and players ... While the natural law steers individuals to act morally, a performance ethic motivates many ...

  9. A temperature dependent slip factor based thermal model for friction

    Indian Academy of Sciences (India)

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the ...

  10. Mechanical properties of very thin cover slip glass disk

    Indian Academy of Sciences (India)

    Unknown

    Mechanical properties of very thin cover slip glass disk. A SEAL, A K DALUI, M BANERJEE, A K MUKHOPADHYAY* and K K PHANI. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The biaxial flexural strength, Young's modulus, Vicker's microhardness and fracture toughness data for very ...

  11. Shear Stress-Relative Slip Relationship at Concrete Interfaces

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2016-01-01

    Full Text Available This study develops a simple and rational shear stress-relative slip model of concrete interfaces with monolithic castings or smooth construction joints. In developing the model, the initial shear cracking stress and relative slip amount at peak stress were formulated from a nonlinear regression analysis using test data for push-off specimens. The shear friction strength was determined from the generalized equations on the basis of the upper-bound theorem of concrete plasticity. Then, a parametric fitting analysis was performed to derive equations for the key parameters determining the shapes of the ascending and descending branches of the shear stress-relative slip curve. The comparisons of predictions and measurements obtained from push-off tests confirmed that the proposed model provides superior accuracy in predicting the shear stress-relative slip relationship of interfacial shear planes. This was evidenced by the lower normalized root mean square error than those in Xu et al.’s model and the CEB-FIB model, which have many limitations in terms of the roughness of the substrate surface along an interface and the magnitude of equivalent normal stress.

  12. Constraining slip rates and spacings for active normal faults

    Science.gov (United States)

    Cowie, Patience A.; Roberts, Gerald P.

    2001-12-01

    Numerous observations of extensional provinces indicate that neighbouring faults commonly slip at different rates and, moreover, may be active over different time intervals. These published observations include variations in slip rate measured along-strike of a fault array or fault zone, as well as significant across-strike differences in the timing and rates of movement on faults that have a similar orientation with respect to the regional stress field. Here we review published examples from the western USA, the North Sea, and central Greece, and present new data from the Italian Apennines that support the idea that such variations are systematic and thus to some extent predictable. The basis for the prediction is that: (1) the way in which a fault grows is fundamentally controlled by the ratio of maximum displacement to length, and (2) the regional strain rate must remain approximately constant through time. We show how data on fault lengths and displacements can be used to model the observed patterns of long-term slip rate where measured values are sparse. Specifically, we estimate the magnitude of spatial variation in slip rate along-strike and relate it to the across-strike spacing between active faults.

  13. Chaotic mixing in a planar, curved channel using periodic slip

    International Nuclear Information System (INIS)

    Garg, P.; Picardo, J. R.; Pushpavanam, S.

    2015-01-01

    We propose a novel strategy for designing chaotic micromixers using curved channels confined between two flat planes. The location of the separatrix between the Dean vortices, induced by centrifugal forces, is dependent on the location of the maxima of axial velocity. An asymmetry in the axial velocity profile can change the location of the separatrix. This is achieved physically by introducing slip alternatingly at the top and bottom walls. This leads to streamline crossing and Lagrangian chaos. An approximate analytical solution of the velocity field is obtained using perturbation theory. This is used to find the Lagrangian trajectories of fluid particles. Poincare sections taken at periodic locations in the axial direction are used to study the extent of chaos. We study two microchannel designs, called circlet and serpentine, in which the Dean vortices in adjacent half cells are co-rotating and counter-rotating, respectively. The extent of mixing, at low Re and low slip length, is shown to be greater in the serpentine case. Wide channels are observed to have much better mixing than tall channels; an important observation not made for separatrix flows till now. Eulerian indicators are used to gauge the extent of mixing, with varying slip length, and it is shown that an optimum slip length exists which maximizes the mixing in a particular geometry. Once the parameter space of relatively high mixing is identified, detailed variance computations are carried out to identify the detailed features

  14. Chaotic mixing in a planar, curved channel using periodic slip

    Science.gov (United States)

    Garg, P.; Picardo, J. R.; Pushpavanam, S.

    2015-03-01

    We propose a novel strategy for designing chaotic micromixers using curved channels confined between two flat planes. The location of the separatrix between the Dean vortices, induced by centrifugal forces, is dependent on the location of the maxima of axial velocity. An asymmetry in the axial velocity profile can change the location of the separatrix. This is achieved physically by introducing slip alternatingly at the top and bottom walls. This leads to streamline crossing and Lagrangian chaos. An approximate analytical solution of the velocity field is obtained using perturbation theory. This is used to find the Lagrangian trajectories of fluid particles. Poincare sections taken at periodic locations in the axial direction are used to study the extent of chaos. We study two microchannel designs, called circlet and serpentine, in which the Dean vortices in adjacent half cells are co-rotating and counter-rotating, respectively. The extent of mixing, at low Re and low slip length, is shown to be greater in the serpentine case. Wide channels are observed to have much better mixing than tall channels; an important observation not made for separatrix flows till now. Eulerian indicators are used to gauge the extent of mixing, with varying slip length, and it is shown that an optimum slip length exists which maximizes the mixing in a particular geometry. Once the parameter space of relatively high mixing is identified, detailed variance computations are carried out to identify the detailed features.

  15. Assemblage of strike-slip faults and tectonic extension and ...

    Indian Academy of Sciences (India)

    12

    the formation, evolution and distribution of these strike-slip faults have important. 80 ...... function of coal-derived gas study for natural gas industry development in China; .... Bohai-Zhangjiakou seismotectonic zone based on 3D visco-elastic ...

  16. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

    Science.gov (United States)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim

    2016-09-01

    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  17. Slip parameters on major thrusts at a convergent plate boundary: regional heterogeneity of potential slip distance at the shallow portion of the subducting plate

    Science.gov (United States)

    Mukoyoshi, Hideki; Kaneki, Shunya; Hirono, Tetsuro

    2018-03-01

    Understanding variations of slip distance along major thrust systems at convergent margins is an important issue for evaluation of near-trench slip and the potential generation of large tsunamis. We derived quantitative estimates of slip along ancient subduction fault systems by using the maturity of carbonaceous material (CM) of discrete slip zones as a proxy for temperature. We first obtained the Raman spectra of CM in ultracataclasite and pseudotachylyte layers in discrete slip zones at depths below the seafloor of 1-4 km and 2.5-5.5 km, respectively. By comparing the area-under-the-peak ratios of graphitic and disordered bands in those Raman spectra with spectra of experimentally heated CM from surrounding rocks, we determined that the ultracataclasite and pseudotachylyte layers had been heated to temperatures of up to 700 and 1300 °C, respectively. Numerical simulation of the thermal history of CM extracted from rocks near the two slip zones, taking into consideration these temperature constraints, indicated that slip distances in the ultracataclasite and pseudotachylyte layers were more than 3 and 7 m, respectively. Thus, potential distance of coseismic slip along the subduction-zone fault system could have regional variations even at shallow depth (≤ 5.5 km). The slip distances we determined probably represent minimum slips for subduction-zone thrusts and thus provide an important contribution to earthquake preparedness plans in coastal areas facing the Nankai and Sagami Troughs.

  18. Duration of slip-resistant shoe usage and the rate of slipping in limited-service restaurants: results from a prospective and crossover study.

    Science.gov (United States)

    Verma, Santosh K; Zhao, Zhe; Courtney, Theodore K; Chang, Wen-Ruey; Lombardi, David A; Huang, Yueng-Hsiang; Brennan, Melanye J; Perry, Melissa J

    2014-01-01

    Several studies have indicated that slip-resistant shoes may have a positive effect on reducing the risk of slips and falls, a leading cause of injury at work. Few studies, however, have examined how duration of shoe usage affects their slip-resistance properties. This study examined the association between the duration of slip-resistant shoes usage and the self-reported rate of slipping in limited-service restaurant workers. A total of 475 workers from 36 limited-service restaurants in the USA were recruited to participate in a 12-week prospective study of workplace slipping. Of the 475 participants, 83 reported changing to a new pair of shoes at least once during the 12-week follow-up. The results show that slip-resistant shoes worn for less than six months were moderately more effective than those worn for more than six months. Changing to a new pair of shoes among those wearing slip-resistant shoes at baseline was associated with a 55% reduction in the rate of slipping (RR = 0.45, 95% CI = 0.23-0.89). Further research is needed to develop criteria for the replacement of slip-resistant shoes.

  19. Investigation into slipping and falling accidents and materials handling in the South African mining industry.

    CSIR Research Space (South Africa)

    Schutte, PC

    2003-03-01

    Full Text Available The objective of this study was to analyze information on slipping and falling accidents and materials handling activities in the South African mining industry. Accident data pertaining to slipping, falling and materials handling accidents...

  20. Slip estimation methods for proprioceptive terrain classification using tracked mobile robots

    CSIR Research Space (South Africa)

    Masha, Ditebogo F

    2017-11-01

    Full Text Available Recent work has shown that proprioceptive measurements such as terrain slip can be used for terrain classification. This paper investigates the suitability of four simple slip estimation methods for differentiating between indoor and outdoor terrain...

  1. Triggered surface slips in the Salton Trough associated with the 1999 Hector Mine, California, earthquake

    Science.gov (United States)

    Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.

    2002-01-01

    Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip

  2. New constraints on slip rates and locking depths of the San Andreas Fault System from Sentinel-1A InSAR and GAGE GPS observations

    Science.gov (United States)

    Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.

    2017-12-01

    After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central

  3. Broken-Rotor-Bar Diagnosis for Induction Motors

    International Nuclear Information System (INIS)

    Wang Jinjiang; Gao, Robert X; Yan Ruqiang

    2011-01-01

    Broken rotor bar is one of the commonly encountered induction motor faults that may cause serious motor damage to the motor if not detected timely. Past efforts on broken rotor bar diagnosis have been focused on current signature analysis using spectral analysis and wavelet transform. These methods require accurate slip estimation to localize fault-related frequency. This paper presents a new approach to broken rotor bar diagnosis without slip estimation, based on the ensemble empirical mode decomposition (EEMD) and the Hilbert transform. Specifically, the Hilbert transform first extracts the envelope of the motor current signal, which contains broken rotor fault-related frequency information. Subsequently, the envelope signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by the EEMD algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the IMF selection. Numerical and experimental studies have confirmed that the proposed approach is effective in diagnosing broken rotor bar faults for improved induction motor condition monitoring and damage assessment.

  4. Slip and fall risk on ice and snow:identification, evaluation and prevention

    OpenAIRE

    Gao, Chuansi

    2004-01-01

    Slip and fall accidents and associated injuries on ice and snow are prevalent among outdoor workers and the general public in winter in many regions of the world. To understand and tackle this multi-factorial problem, a multidisciplinary approach was used to identify and evaluate slip and fall risks, and to propose recommendations for prevention of slips and falls on icy and snowy surfaces. Objectives were to present a systems perspective of slip and fall accidents and related risk factors; t...

  5. Paleomagnetic and structural evidence for oblique slip in a fault-related fold, Grayback monocline, Colorado

    Science.gov (United States)

    Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.

    2008-01-01

    Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.

  6. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  7. Leakage flow-induced vibration of an eccentric tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1985-08-01

    Eccentricity of a specific slip-joint design separating two cantilevered, telescoping tubes did not create any self-excited lateral vibrations that had not been observed previously for a concentric slip joint. In fact, the eccentricity made instabilities less likely to occur, but only marginally. Most important, design rules previously established to avoid instabilities for the concentric slip joint remain valid for the eccentric slip joint. 6 refs., 9 figs., 2 tabs

  8. Finite element models of earthquake cycles in mature strike-slip fault zones

    Science.gov (United States)

    Lynch, John Charles

    The research presented in this dissertation is on the subject of strike-slip earthquakes and the stresses that build and release in the Earth's crust during earthquake cycles. Numerical models of these cycles in a layered elastic/viscoelastic crust are produced using the finite element method. A fault that alternately sticks and slips poses a particularly challenging problem for numerical implementation, and a new contact element dubbed the "Velcro" element was developed to address this problem (Appendix A). Additionally, the finite element code used in this study was bench-marked against analytical solutions for some simplified problems (Chapter 2), and the resolving power was tested for the fault region of the models (Appendix B). With the modeling method thus developed, there are two main questions posed. First, in Chapter 3, the effect of a finite-width shear zone is considered. By defining a viscoelastic shear zone beneath a periodically slipping fault, it is found that shear stress concentrates at the edges of the shear zone and thus causes the stress tensor to rotate into non-Andersonian orientations. Several methods are used to examine the stress patterns, including the plunge angles of the principal stresses and a new method that plots the stress tensor in a manner analogous to seismic focal mechanism diagrams. In Chapter 4, a simple San Andreas-like model is constructed, consisting of two great earthquake producing faults separated by a freely-slipping shorter fault. The model inputs of lower crustal viscosity, fault separation distance, and relative breaking strengths are examined for their effect on fault communication. It is found that with a lower crustal viscosity of 1018 Pa s (in the lower range of estimates for California), the two faults tend to synchronize their earthquake cycles, even in the cases where the faults have asymmetric breaking strengths. These models imply that postseismic stress transfer over hundreds of kilometers may play a

  9. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes

    Science.gov (United States)

    Wetzler, Nadav; Lay, Thorne; Brodsky, Emily E.; Kanamori, Hiroo

    2018-01-01

    Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event–relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time. PMID:29487902

  10. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone

    Science.gov (United States)

    Rood, Dylan H.; Burbank, Douglas W.; Finkel, Robert C.

    2011-01-01

    Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 10 4-10 5 year timescales. At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year - 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/-0.1 mm year - 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/-0.3 mm year - 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year - 1 ). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection

  11. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...

  12. On the Rheology of Slow Slip Events Around Continental Moho

    Science.gov (United States)

    Gao, X.; Wang, K.; Wada, I.; He, J.

    2015-12-01

    Slow slip events (SSEs) occur in various tectonic settings but are the most abundant around the depth of upper-plate Moho in warm-slab subduction zones such as Cascadia and Nankai, accompanied with non-valcanic tremor. The paucity or absence of these near-Moho SSEs in many other subduction zones and the relationship of these SSEs with the megathrust seismogenic zone are intriguing questions of fundamental importance. We address these questions by examining Frictional-Viscous Transitions (FVTs) along subduction faults. Our key hypothesis is that there is a sharp decrease in the frictional stength of subduction faults across its intersection with the continental Moho for two reasons: (1) Enrichment of weak hydrous minerals such as talc due to the hydration of the base of the mantle wedge, and (2) elevated pore fluid pressure in the fault zone because of serpentine (antigorite) saturation of the mantle wedge corner which retards further fluid consumption and decreases permeability. Through thermal modelling using heat flow data as constraints, we found that for Cascadia, Nankai, and Hikurangi, there are two FVTs, with the first one being shallower than the Moho. At the Moho, the fault returns to the friction mode, but with slip behaviour affected by the presence of hydrous minerals and high fluid pressure. We propose this is where near-Moho SSEs occur. Farther downdip, the second FVT occurs and serves to limit the depth extent of the SSEs. Coseismic slip is limited to be shallower than the first FVT, such that frictional slip around the Moho occurs interseismically as SSEs. This mechanism also explains the occurrence of tremor, believed to represent very small SSEs, along the San Andreas fault around the Moho depth. In a way, this mechanism is akin to the "jelly-sandwich" rheology model of the continental lithosphere, but the onset of the lower slice of bread is due to a decrease in frictional strength as opposed to an increase in viscous strength. For the other

  13. Is Slow Slip a Cause or a Result of Tremor?

    Science.gov (United States)

    Luo, Y.; Ampuero, J. P.

    2017-12-01

    While various modeling efforts have been conducted to reproduce subsets of observations of tremor and slow-slip events (SSE), a fundamental but yet unanswered question is whether slow slip is a cause or a result of tremor. Tremor is commonly regarded as driven by SSE. This view is mainly based on observations of SSE without detected tremors and on (frequency-limited) estimates of total tremor seismic moment being lower than 1% of their concomitant SSE moment. In previous studies we showed that models of heterogeneous faults, composed of seismic asperities embedded in an aseismic fault zone matrix, reproduce quantitatively the hierarchical patterns of tremor migration observed in Cascadia and Shikoku. To address the title question, we design two end-member models of a heterogeneous fault. In the SSE-driven-tremor model, slow slip events are spontaneously generated by the matrix (even in the absence of seismic asperities) and drive tremor. In the Tremor-driven-SSE model the matrix is stable (it slips steadily in the absence of asperities) and slow slip events result from the collective behavior of tremor asperities interacting via transient creep (local afterslip fronts). We study these two end-member models through 2D quasi-dynamic multi-cycle simulations of faults governed by rate-and-state friction with heterogeneous frictional properties and effective normal stress, using the earthquake simulation software QDYN (https://zenodo.org/record/322459). We find that both models reproduce first-order observations of SSE and tremor and have very low seismic to aseismic moment ratio. However, the Tremor-driven-SSE model assumes a simpler rheology than the SSE-driven-tremor model and matches key observations better and without fine tuning, including the ratio of propagation speeds of forward SSE and rapid tremor reversals and the decay of inter-event times of Low Frequency Earthquakes. These modeling results indicate that, in contrast to a common view, SSE could be a result

  14. Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence

    Science.gov (United States)

    Meng, Lingsen; Huang, Hui; Bürgmann, Roland; Ampuero, Jean Paul; Strader, Anne

    2015-02-01

    The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A Mw 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of northern Chile. This event was preceded by a long foreshock sequence including a 2-week-long migration of seismicity initiated by a Mw 6.7 earthquake. Repeating earthquakes were found among the foreshock sequence that migrated towards the mainshock hypocenter, suggesting a large-scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence times of the repeating earthquakes highlight the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while repeaters that occurred both before and after the mainshock were in the area complementary to the mainshock rupture. The spatiotemporal distribution of the repeating earthquakes illustrates the essential role of propagating aseismic slip leading up to the mainshock and illuminates the distribution of postseismic afterslip. Various finite fault models indicate that the largest coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show an emergent onset of moment rate at low frequency ( 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the rupture expands in rich bursts along the rim of a semi-elliptical region with episodes of re-ruptures, suggesting delayed failure of asperities. The high-frequency rupture remains within an area of local high trench-parallel gravity anomaly (TPGA), suggesting the presence of

  15. Tactile detection of slip: surface microgeometry and peripheral neural codes.

    Science.gov (United States)

    Srinivasan, M A; Whitehouse, J M; LaMotte, R H

    1990-06-01

    1. The role of the microgeometry of planar surfaces in the detection of sliding of the surfaces on human and monkey fingerpads was investigated. By the use of a servo-controlled tactile stimulator to press and stroke glass plates on passive fingerpads of human subjects, the ability of humans to discriminate the direction of skin stretch caused by friction and to detect the sliding motion (slip) of the plates with or without micrometer-sized surface features was determined. To identify the associated peripheral neural codes, evoked responses to the same stimuli were recorded from single, low-threshold mechanoreceptive afferent fibers innervating the fingerpads of anesthetized macaque monkeys. 2. Humans could not detect the slip of a smooth glass plate on the fingerpad. However, the direction of skin stretch was perceived based on the information conveyed by the slowly adapting afferents that respond differentially to the stretch directions. Whereas the direction of skin stretch signaled the direction of impending slip, the perception of relative motion between the plate and the finger required the existence of detectable surface features. 3. Barely detectable micrometer-sized protrusions on smooth surfaces led to the detection of slip of these surfaces, because of the exclusive activation of rapidly adapting fibers of either the Meissner (RA) or the Pacinian (PC) type to specific geometries of the microfeatures. The motion of a smooth plate with a very small single raised dot (4 microns high, 550 microns diam) caused the sequential activation of neighboring RAs along the dot path, thus providing a reliable spatiotemporal code. The stroking of the plate with a fine homogeneous texture composed of a matrix of dots (1 microns high, 50 microns diam, and spaced at 100 microns center-to-center) induced vibrations in the fingerpad that activated only the PCs and resulted in an intensive code. 4. The results show that surprisingly small features on smooth surfaces are

  16. Surgical hip dislocation in treatment of slipped capital femoral epiphysis

    Directory of Open Access Journals (Sweden)

    Elmarghany Mohammed

    2017-01-01

    Full Text Available Background: Most surgeons advocate in situ fixation of the slipped epiphysis with acceptance of any persistent deformity in the proximal femur [Aronsson DD, Loder RT, Breur GJ, Weinstein SL (2006 Slipped capital femoral epiphysis: current concepts. J Am Acad Orthop Surg 14, 666–679]. This residual deformity can lead to osteoarthritis due to femoroacetabular cam impingement (FAI [Leunig M, Slongo T, Ganz R (2008 Subcapital realignment in slipped capital femoral epiphysis: surgical hip dislocation and trimming of the stable trochanter to protect the perfusion of the epiphysis. Instr Course Lect 57, 499–507]. Objective: The primary aim of our study was to report the results of the technique of capital realignment with Ganz surgical hip dislocation and its reproducibility to restore hip anatomy and function. Patients and methods: This prospective case series study included 30 patients (32 hips, 13 left (Lt hips, 19 right (Rt hips with stable chronic slipped capital femoral epiphysis (SCFE after surgical correction with a modified Dunn procedure. This study included 22 males and eight females. The mean age of our patients was 14 years (10–18 years. The mean follow-up period was 14.5 months (6–36 months. Results: Thirty hips had excellent and good clinical and radiographic outcomes with respect to hip function and radiographic parameters. Two patients had fair to poor clinical outcome including three patients who developed Avascular Necrosis (AVN. The difference between those who developed AVN and those who did not develop AVN was statistically significant in postoperative clinical scores (p = 0.0000. The mean slip angle of the femoral head was 52.5° ± 14.6 preoperatively and was corrected to a mean value of 5.6° ± 8.2° with mean correction of 46.85° ± 14.9° (p = 0.0000. The mean postoperative alpha angle was 51.15° ± 4.2° with mean correction of 46.70 ± 14.20 (p = 0.0000. In our series, the mean postoperative

  17. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  18. Slip-accumulation patterns and earthquake recurrences along the Talas-Fergana Fault - Contributions of high-resolution geomorphic offsets.

    Science.gov (United States)

    Rizza, M.; Dubois, C.; Fleury, J.; Abdrakhmatov, K.; Pousse, L.; Baikulov, S.; Vezinet, A.

    2017-12-01

    In the western Tien-Shan Range, the largest intracontinental strike-slip fault is the Karatau-Talas Fergana Fault system. This dextral fault system is subdivided into two main segments: the Karatau fault to the north and the Talas-Fergana fault (TFF) to the south. Kinematics and rates of deformation for the TFF during the Quaternary period are still debated and are poorly constrained. Only a few paleoseismological investigations are availabe along the TFF (Burtman et al., 1996; Korjenkov et al., 2010) and no systematic quantifications of the dextral displacements along the TFF has been undertaken. As such, the appraisal of the TFF behavior demands new tectonic information. In this study, we present the first detailed analysis of the morphology and the segmentation of the TFF and an offset inventory of morphological markers along the TFF. To discuss temporal and spatial recurrence patterns of slip accumulated over multiple seismic events, our study focused on a 60 km-long section of the TFF (Chatkal segment). Using tri-stereo Pleiades satellite images, high-resolution DEMs (1*1 m pixel size) have been generated in order to (i) analyze the fine-scale fault geometry and (ii) thoroughly measure geomorphic offsets. Photogrammetry data obtained from our drone survey on high interest sites, provide higher-resolution DEMs of 0.5 * 0.5 m pixel size.Our remote sensing mapping allows an unprecedented subdivision - into five distinct segments - of the study area. About 215 geomorphic markers have been measured and offsets range from 4.5m to 180 m. More than 80% of these offsets are smaller than 60 m, suggesting landscape reset during glacial maximum. Calculations of Cumulative Offset Probability Density (COPD) for the whole 60 km-long section as well as for each segments support distinct behavior from a segment to another and thus variability in slip-accumulation patterns. Our data argue for uniform slip model behavior along this section of the TFF. Moreover, we excavated a

  19. Slip experiment on a flat bottom cylindrical shell tank model; Hirazoko ento choso mokei no katsudo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, T.; Mentani, Y.; Komori, H.; Yoshihara, T. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1998-12-20

    Although large tank slip, as observed in Alaska in 1964, was not reported in the Hyogo Nanbu Earthquake, tank slip becomes a major concern in seismic engineering. In the case of a non-uplifting tank, ifs slip behavior can be accurately described by the simple analytical model which consists of a single degree of freedom on a potential sliding mass (SDOF slip model). Employing friction force during slip, the governing equations of the SDOF slip model are formulated as a discontinuous linear vibration system. From the analogies between the SDOF slip model and the tank, the physical quantities which correspond to the SDOF slip model are determined in accordance with the values which are specified by the seismic design code for the tank. Comparison of the experimental results of the model tank slip with the analytical results based on the SDOF slip model corroborates ifs applicability to the tank slip with sufficient accuracy. (author)

  20. Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu

    DEFF Research Database (Denmark)

    Lu, Qiuhong; You, Zesheng; Huang, Xiaoxu

    2017-01-01

    slip Mode I and II are active with dominance of Mode II. In structures deformed at 45° dislocations from slip Modes I, II and III are identified, where Mode III dislocations consist of partial dislocations moving along the TBs and full dislocations inside the twin lamellae gliding on the slip planes...... parallel to the twin plane. The analysis of the dislocation structures illustrate the strong correlation between active slip systems and the dislocation structure and the strong effect of slip mode anisotropy on both the flow stress and strain hardening rate of nanotwinned Cu....

  1. Drag on a slip spherical particle moving in a couple stress fluid

    Directory of Open Access Journals (Sweden)

    E.A. Ashmawy

    2016-06-01

    Full Text Available The creeping motion of a rigid slip sphere in an unbounded couple stress fluid is investigated. The linear slip boundary condition and the vanishing couple stress condition are applied on the surface of the sphere. A simple formula for the drag force acting on a slip sphere translating in an unbounded couple stress fluid is obtained. Special cases of the deduced drag formula are concluded and compared with analogous results in the literature. The normalized drag force experienced by the fluid on the slip sphere is represented graphically and the effects of slip parameter and viscosity coefficients are discussed.

  2. Numerical study of the effect of Navier slip on the driven cavity flow

    KAUST Repository

    He, Qiaolin

    2009-10-01

    We study the driven cavity flow using the Navier slip boundary condition. Our results have shown that the Navier slip boundary condition removes the corner singularity induced by the no-slip boundary condition. In the low Reynolds number case, the behavior of the tangential stress is examined and the results are compared with the analytic results obtained in [14]. For the high Reynolds number, we study the effect of the slip on the critical Reynolds number for Hopf bifurcation. Our results show that the first Hopf bifurcation critical Reynolds number is increasing with slip length. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Localization in the brittle field: the role of frictional properties and implications for earthquake slip

    Science.gov (United States)

    Tullis, T.

    2003-04-01

    Rotary shear friction experiments on layers of simulated gouge and on bare surfaces of rock that generate gouge, with displacements up to several meters, show that in some situations slip becomes localized. The two constitutive parameters that control whether slip localizes are the displacement and the velocity dependence of the shear strength. When slip-weakening and velocity-weakening both occur, slip localizes, since the overall resistance is reduced and less energy is dissipated. Similarly, when slip- and velocity-strengthening both occur, slip delocalizes, again because less energy is dissipated. If the variation of shear resistance with slip and velocity are of opposite sign, then the magnitude of the slip and rate dependencies and the amount and rate of slip determine whether localization or delocalization occur. In most laboratory experiments, the displacement dependence of the strength is minimal and the velocity dependence controls the tendency for localization. However, some experiments illustrate the situation in which the displacement dependence dominates. Regardless of their underlying causes, slip- and velocity-weakening result in unstable slip in compliant systems. Consequently unstable slip and localization are linked through these constitutive properties. This connection between unstable slip, displacement/velocity-weakening, and localization suggests that slip on faults that occurs primarily via earthquakes will be localized. However, localization is more complicated on natural faults because laboratory faults are geometrically simpler than natural ones. Laboratory faults are smooth at long wavelengths, whereas natural faults have approximately a self-similar surface roughness, the amplitude of irregularities being proportional to their wavelength. Thus, slip on a localized surface in a laboratory fault can continue indefinitely, whereas slip on natural faults is likely to require fracture of new wall rock as sufficient slip brings higher

  4. Slip Morphology of Elastic Strips on Frictional Rigid Substrates.

    Science.gov (United States)

    Sano, Tomohiko G; Yamaguchi, Tetsuo; Wada, Hirofumi

    2017-04-28

    The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.

  5. Velocity slip of gas mixtures in free jet expansions

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Talbot, L.; Coe, D.

    1976-11-01

    Velocity slip in gas mixtures of argon and helium in axisymmetric free jet expansions has been measured using a grating monochromator together with a computer-controlled Fabry-Perot interferometer to observe the fluorescence excited by an electron beam. The Doppler shift between the fluorescence observed parallel and perpendicular to the centerline of the free jet was used to measure the mean velocity of a particular species along the jet centerline, employing the 4880 A line for argon and the 5016 A line for helium. By alternately tracking the parallel and perpendicular fluorescence, the Doppler shift due to the mean velocity was measured directly with an accuracy of 1 percent. Flow field surveys have been made in the initial acceleration region where the flow becomes hypersonic and in the far field region. The differences between argon and helium mean velocities (velocity slip) are in good agreement with molecular beam data and show a correlation with an inverse Knudsen number

  6. Fast Slip Velocity in a High-Entropy Alloy

    Science.gov (United States)

    Rizzardi, Q.; Sparks, G.; Maaß, R.

    2018-04-01

    Due to fluctuations in nearest-neighbor distances and chemistry within the unit cell, high-entropy alloys are believed to have a much higher resistance to dislocation motion than pure crystals. Here, we investigate the coarse-grained dynamics of a number of dislocations being active during a slip event. We found that the time-resolved dynamics of slip is practically identical in Au and an Al0.3CoCrFeNi high-entropy alloy, but much faster than in Nb. Differences between the FCC-crystals are seen in the spatiotemporal velocity profile, with faster acceleration and slower velocity relaxation in the high-entropy alloy. Assessing distributions that characterize the intermittently evolving plastic flow reveals material-dependent scaling exponents for size, duration, and velocity-size distributions. The results are discussed in view of the underlying dislocation mobility.

  7. Analytical solutions for squeeze flow with partial wall slip

    DEFF Research Database (Denmark)

    Laun, HM; Rady, M; Hassager, Ole

    1999-01-01

    , respectively. The slip velocity at the plate increases linearly with the radius up to the rim slip velocity upsilon(s). For small Saps H, the resulting apparent Newtonian rim shear rate-measured for a constant rim shear stress, i.e. an imposed force increasing proportional to 1/H-yields a straight line...... if plotted versus 1/H. The slope of the straight line is equal to 6 upsilon(s) whereas the intersect with the ordinate yields the effective Newtonian rim shear rate to be converted into the true rim shear rate by means of the power law exponent. The advantage of the new technique is the separation of bulk...

  8. Dislocation pile-ups, slip-bands, ellipsoids, and cracks

    International Nuclear Information System (INIS)

    Brown, Lawrence M.

    2005-01-01

    The classic theories of dislocation pile-ups, initiated by Eshelby, Frank and Nabarro, and by Leibfried, can be greatly simplified if it is recognised that the dislocations in the pile-up will experience uniform stress if they are lodged in an ellipsoidal interface. Elementary algebra then produces the familiar results from continuum theory. It seems possible that the ellipsoid construction may represent physical reality if it is taken to represent a three-dimensional slip-band. If so, there are concentrated forces spreading the band perpendicular to the slip band as well as parallel to it. Such ellipsoids also represent Mode II and Mode III cracks, and give a method for dealing with the more complicated Mode I cracks

  9. Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Marta Ferrater

    2015-11-01

    Full Text Available Seismic hazard assessment of strike-slip faults is based partly on the identification and mapping of landforms laterally offset due to fault activity. The characterization of these features affected by slow-moving faults is challenging relative to studies emphasizing rapidly slipping faults. We propose a methodology for scoring fault offsets based on subjective and objective qualities. We apply this methodology to the Alhama de Murcia fault (SE Iberian Peninsula where we identify 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size Digital Elevation Model (DEM. The amount of offset, the uncertainty of the measurement, the subjective and objective qualities, and the parameters that affect objective quality are independent variables, suggesting that our methodological scoring approach is good. Based on the offset measurements and qualifications we calculate the Cumulative Offset Probability Density (COPD for the entire fault and for each fault segment. The COPD for the segments differ from each other. Tentative interpretation of the COPDs implies that the slip rate varies from one segment to the other (we assume that channels with the same amount of offset were incised synchronously. We compare the COPD with climate proxy curves (aligning using the very limited age control to test if entrenchment events are coincident with climatic changes. Channel incision along one of the traces in Lorca-Totana segment may be related to transitions from glacial to interglacial periods.

  10. Transformation of slip dislocation in ä3 grain boundary

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Juliana; Jacques, A.; Gemperle, Antonín; Zárubová, Niva

    2002-01-01

    Roč. 10, - (2002), s. 51-57 ISSN 0927-7056 R&D Projects: GA ČR GA202/98/1281; GA ČR GA202/01/0670 Institutional research plan: CEZ:AV0Z1010914 Keywords : in situ TEM * slip dislocations * grain boundary * grain boundary dislocations * plasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.767, year: 2002

  11. On the stabilization of viscoelastic laminated beams with interfacial slip

    Science.gov (United States)

    Mustafa, Muhammad I.

    2018-04-01

    In this paper, we consider a viscoelastic laminated beam model. This structure is given by two identical uniform layers on top of each other, taking into account that an adhesive of small thickness is bonding the two surfaces and produces an interfacial slip. We use viscoelastic damping with general assumptions on the relaxation function and establish explicit energy decay result from which we can recover the optimal exponential and polynomial rates. Our result generalizes the earlier related results in the literature.

  12. Variations in strength and slip rate along the san andreas fault system.

    Science.gov (United States)

    Jones, C H; Wesnousky, S G

    1992-04-03

    Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.

  13. Onset of aseismic creep on major strike-slip faults

    KAUST Repository

    Ç akir, Ziyadin; Ergintav, Semih; Ö zener, Haluk; Doǧan, Uǧur; Akoglu, Ahmet; Meghraoui, Mustapha; Reilinger, Robert E.

    2012-01-01

    Time series analysis of spaceborne synthetic aperture radar (SAR) data, GPS measurements, and fi eld observations reveal that the central section of the Izmit (Turkey) fault that slipped with a supershear rupture velocity in the A.D. 1999, Mw7.4, Izmit earthquake began creeping aseismically following the earthquake. Rapid initial postseismic afterslip decayed logarithmically with time and appears to have reached a steady rate comparable to the preearthquake full fault-crossing rate, suggesting that it may continue for decades and possibly until late in the earthquake cycle. If confi rmed by future monitoring, these observations identify postseismic afterslip as a mechanism for initiating creep behavior along strike-slip faults. Long-term afterslip and/or creep has signifi cant implications for earthquake cycle models, recurrence intervals of large earthquakes, and accordingly, seismic hazard estimation along mature strike-slip faults, in particular for Istanbul which is believed to lie adjacent to a seismic gap along the North Anatolian fault in the Sea of Marmara. © 2012 Geological Society of America.

  14. Squeal vibrations, glass sounds, and the stick-slip effect

    International Nuclear Information System (INIS)

    Patitsas, A.J.

    2010-01-01

    The origin of the squeal acoustic emissions when a chalk is rubbed on a blackboard or better on a ceramic plate, and those when a wet finger is rubbed on a smooth surface, such as a glass surface, is sought in the stick-slip effect between the rubbing surfaces. In the case of the squealing chalk, the stick-slip effect is anchored by shear modes of vibration in about a 0.3 mm thick chalk powder band at the rubbing interface, while in the case of the wet finger on glass, by such modes in a band comprising the finger skin. Furthermore, there are the interfacial bands at the contact areas that result in the decrease of the friction coefficient with relative velocity of slide, i.e., the condition for the stick-slip effect to occur. Such bands are basically composed of the asperities on the surface of the chalk band and of the epidermis ridges and the water layer, respectively. (author)

  15. Onset of aseismic creep on major strike-slip faults

    KAUST Repository

    Çakir, Ziyadin

    2012-10-02

    Time series analysis of spaceborne synthetic aperture radar (SAR) data, GPS measurements, and fi eld observations reveal that the central section of the Izmit (Turkey) fault that slipped with a supershear rupture velocity in the A.D. 1999, Mw7.4, Izmit earthquake began creeping aseismically following the earthquake. Rapid initial postseismic afterslip decayed logarithmically with time and appears to have reached a steady rate comparable to the preearthquake full fault-crossing rate, suggesting that it may continue for decades and possibly until late in the earthquake cycle. If confi rmed by future monitoring, these observations identify postseismic afterslip as a mechanism for initiating creep behavior along strike-slip faults. Long-term afterslip and/or creep has signifi cant implications for earthquake cycle models, recurrence intervals of large earthquakes, and accordingly, seismic hazard estimation along mature strike-slip faults, in particular for Istanbul which is believed to lie adjacent to a seismic gap along the North Anatolian fault in the Sea of Marmara. © 2012 Geological Society of America.

  16. Hydrodynamics beyond Navier-Stokes: the slip flow model.

    Science.gov (United States)

    Yudistiawan, Wahyu P; Ansumali, Santosh; Karlin, Iliya V

    2008-07-01

    Recently, analytical solutions for the nonlinear Couette flow demonstrated the relevance of the lattice Boltzmann (LB) models to hydrodynamics beyond the continuum limit [S. Ansumali, Phys. Rev. Lett. 98, 124502 (2007)]. In this paper, we present a systematic study of the simplest LB kinetic equation-the nine-bit model in two dimensions--in order to quantify it as a slip flow approximation. Details of the aforementioned analytical solution are presented, and results are extended to include a general shear- and force-driven unidirectional flow in confined geometry. Exact solutions for the velocity, as well as for pertinent higher-order moments of the distribution functions, are obtained in both Couette and Poiseuille steady-state flows for all values of rarefaction parameter (Knudsen number). Results are compared with the slip flow solution by Cercignani, and a good quantitative agreement is found for both flow situations. Thus, the standard nine-bit LB model is characterized as a valid and self-consistent slip flow model for simulations beyond the Navier-Stokes approximation.

  17. Modeling Induction Motor Imbalances

    DEFF Research Database (Denmark)

    Armah, Kabenla; Jouffroy, Jerome; Duggen, Lars

    2016-01-01

    This paper gives a study into the development of a generalized model for a three-phase induction motor that offers flexibility of simulating balanced and unbalanced parameter scenarios. By analyzing the interaction of forces within the motor, we achieve our main objective of deriving the system d...

  18. Estimation of the spatiotemporal evolution of slow slip events in the Tokai region, central Japan, during 1994 - 2016 using GNSS data

    Science.gov (United States)

    Sakaue, H.; Nishimura, T.; Fukuda, J.; Kato, T.

    2017-12-01

    In the Tokai region, central Japan, the long-term slow slip events (L-SSEs) observed on the subducting Philippine Sea Plate (PSP) from 2000 to 2005 and since 2013. Moreover, many short-term slow slip events (S-SSEs) have been observed in the Tokai region since 1996. Sakaue et al. (2017) reported that the spatiotemporal evolution of an L-SSE and S-SSEs on the PSP beneath the Tokai region from 2013 to 2015. This study is probably the first case that migration of slip for S-SSE (Mw GPS Research) in the Tokai region. It is well known that GNSS time series have many systematic signals that do not result from SSEs. These systematic signals include, for example, seasonal variations, cosiesmic and post-seismic deformation of the 2004 off Southeast Kii Peninsula eqrthquake and the 2011 Tohoku-oki earthquake (Mw. 9.0), crustal deformation of volcanic activity on Miyake-jima island and so on. After removing these systematic signals, we applied a modified Network Inversion Filter (NIF) [Fukuda et al., 2008]. The original NIF [Segall & Matthews, 1997] assumes a constant hyperparameter for the temporal smoothing of slip rates and thus often results in oversmoothing of slip rates. The modified NIF assumes a time-variable hyperparameter, so that changes in slip rates are effectively extracted from GNSS time series.The results indicate that not only the spatiotemporal evolutions of the 2000 Tokai L-SSE and the 2013 L-SSE but also the spatiotemporal evolution of S-SSEs are estimated. We will present a comparison of the spatiotemporal evolutions between the 2000 Tokai L-SSE and the 2013 L-SSE and possible dependence of the occurrence style of S-SSEs on the occurrence of the L-SSEs.

  19. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  20. Improved ceramic slip casting technique. [application to aircraft model fabrication

    Science.gov (United States)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  1. Smoothing of Fault Slip Surfaces by Scale Invariant Wear

    Science.gov (United States)

    Dascher-Cousineau, K.; Kirkpatrick, J. D.

    2017-12-01

    Fault slip surface roughness plays a determining role in the overall strength, friction, and dynamic behavior of fault systems. Previous wear models and field observations suggest that roughness decreases with increasing displacement. However, measurements have yet to isolate the effect of displacement from other possible controls, such as lithology or tectonic setting. In an effort to understand the effect of displacement, we present comprehensive qualitative and quantitative description of the evolution of fault slip surfaces in and around the San-Rafael Desert, S.E. Utah, United States. In the study area, faults accommodated regional extension at shallow (1 to 3 km) depth and are hosted in the massive, well-sorted, high-porosity Navajo and Entrada sandstones. Existing displacement profiles along with tight displacement controls readily measureable in the field, combined with uniform lithology and tectonic history, allowed us to isolate for the effect of displacement during the embryonic stages of faulting (0 to 60 m in displacement). Our field observations indicate a clear compositional and morphological progression from isolated joints or deformation bands towards smooth, continuous, and mirror-like fault slip surfaces with increasing displacement. We scanned pristine slip surfaces with a white light interferometer, a laser scanner, and a ground-based LiDAR. We produce and analyses more than 120 individual scans of fault slip surfaces. Results for the surfaces with the best displacement constraints indicate that roughness as defined by the power spectral density at any given length scale decreases with displacement according to a power law with an exponent of -1. Roughness measurements associated with only maximum constraints on displacements corroborate this result. Moreover, maximum roughness for any given fault is bounded by a primordial roughness corresponding to that of joint surfaces and deformation band edges. Building upon these results, we propose a

  2. Preliminary slip history of the 2002 Denali earthquake

    Science.gov (United States)

    Ji, C.; Helmberger, D.; Wald, D.

    2002-12-01

    Rapid slip histories for the 2002 Denali earthquake were derived from the IRIS global data before geologists arrived in the field. We were able to predict many of the features they observed. Three models were produced indicating a step-wise improvement in matching the waveform data applying a formalism discussed in Ji et al. (2002). The first model referred to as Phase I is essentially an automated solution where a simple fault plane (300 km long) is fixed agreeing with CMT (Harvard) solution (strike 298 dip =86) assuming the PDE epicenter. The fit to the initial P waves does not work since they do not display a strike-slip polarity pattern. Thus, to continue we added a thrusting event (Phase II) following roughly the fault geometry of the Denali fault based on DEM topography map. While this produced some improvements, major misfits still remained. Before proceeding with Phase III, we did some homework on a foreshock, the Mw=6.7 Nenana event. After modeling this strike-slip event as a distributed fault, we used this relatively simple event to calibrate paths where shifts in P-waves and SH-waves ranged up to 4 and 8 sec respectively. Applying these corrections revealed some discrepancies in the rupture initiation. To produce a consistent picture requires 4 fault segments A, B, C and D. A weak rupture may initiate on a strike-slip Denali fault branch A at a depth of 10 km where a low angle thrust fault plane B intersects A. After about 2 sec, a major event occurred on plane B (strike=221, dip=35) and dominated the rupture of next 8 sec. When rupture B reaches the surface at about 10 sec after initiation, the major portion of the Denali fault (segment C) ruptured eastward with a relatively fast velocity (3 km/sec) producing a large slip concentration (up to 9 m at a depth of 10 km). The surface slip is about 7 km at a 20 km long segment. This feature is near the intersection of the Denali fault and the Totichunda fault (branch D). The rupture on D is relatively

  3. A comparison of induction of anaesthesia using two different ...

    African Journals Online (AJOL)

    Background: Investigators have reported inter-patient variability with regard to propofol dosage for induction of anesthesia, since early dose finding studies. With the arrival of generic formulations of propofol, questions have arisen regarding further variability in dose requirements. Various studies have confirmed that generic ...

  4. Magnetohydrodynamic instability in annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.

    2006-01-01

    In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift

  5. Inductive Communication System Design Summary

    Science.gov (United States)

    1978-09-01

    The report documents the experience obtained during the design and development of the Inductive Communications System used in the Morgantown People Mover. The Inductive Communications System is used to provide wayside-to-vehicle and vehicle-to-waysid...

  6. Slip-dependent weakening on shallow plate boundary fault in the Japan subduction zone: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Yoshi; Ikari, Matt; Ujiie, Kohtaro; Kopf, Achim

    2017-04-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate the slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc , and also measure the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 3.7 × 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1 × 10-6 m/s. In the Japan Trench region, two slow events prior to the mainshock were observed in the mainshock area with a coseismic slip exceeding 30 m . One event is an episodic SSE with a slip velocity of 0.1 × 10-6 , and the other is afterslip after the largest Tohoku earthquake foreshock with a slip velocity exceeding 2 × 10-6 m/s. Our experiments show that slip-weakening friction should be expected at the afterslip rate, suggesting that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary

  7. Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments

    Science.gov (United States)

    Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.

    2017-12-01

    Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a

  8. Development of microsized slip sensors using dielectric elastomer for incipient slippage

    Science.gov (United States)

    Hwang, Do-Yeon; Kim, Baek-chul; Cho, Han-Jeong; Li, Zhengyuan; Lee, Youngkwan; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.

    2014-04-01

    A humanoid robot hand has received significant attention in various fields of study. In terms of dexterous robot hand, slip detecting tactile sensor is essential to grasping objects safely. Moreover, slip sensor is useful in robotics and prosthetics to improve precise control during manipulation tasks. In this paper, sensor based-human biomimetic structure is fabricated. We reported a resistance tactile sensor that enables to detect a slip on the surface of sensor structure. The resistance slip sensor that the novel developed uses acrylonitrile-butadiene rubber (NBR) as a dielectric substrate and carbon particle as an electrode material. The presented sensor device in this paper has fingerprint-like structures that are similar with the role of the human's finger print. It is possible to measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip was successfully detected. In this paper, we will discuss the slip detection properties so four sensor and detection principle.

  9. Predicting geometry of slip surfaces beneath landslides by fuzzy theory. Fuzzy riron wo riyoshita suberimen yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Ono, K [Mie Univ., Mie (Japan). Faculty of Biological and Resources

    1991-12-01

    In case a landslide occurs on a slope, grasping the area of influence (location and shape of the slip surface) is required to take a countermeasure against landslides. This paper describes a method developed by the author for predicting a slip surface by utilizing fuzzy theory. The method predicts a slip surface from observations on ground surface displacement vectors, and the validity of the method has been verified through slip experiments conducted on slopes with a centrifugal model experiment device. The developed method for predicting the location of a slip surface well matches the experiment results, indicating the validity of the method. It has been found that the difference between the predicted and observed locations of a slip surface mainly is due to the error of the prediction in the starting and ending locations of the slip surface. It is also pointed out that, in order to improve the prediction of the shape of a slip surface, the observation density must be increased at the location where the shape of the slip surface strongly varies, since the direction of the slip surface is determined by the direction of the ground surface displacement vectors. 4 refs., 7 figs.

  10. Induction technology optimization code

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-01-01

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  11. Glass manufacturing through induction

    International Nuclear Information System (INIS)

    Boen, R.; Paya, B.; Roscini, M.; Fautrelle, Y.; Tuaz, F.; Delage, D.

    1991-01-01

    Oxides and glasses are electrical and thermal insulators, but show the characteristic of being weakly conductors of electricity when they are melt. It is then possible to heat them through HF induction. This interesting property allows the development of a melting process in cold crucible induction furnace. The process is being studied and developed by a consortium made up of CFEI, CEA Marcoule, ELECTRICITE DE FRANCE and MADYLAM laboratory. The studies include 2 parts: a) One experimental part to develop the technology and research for satisfying configurations, through a small size platform (10 to 30 kg/h). The long run continuous pouring melting tests made on different kinds of glass allow to go-on with industrial range units. b) One theoretical part to understand the magneto-thermo-hydraulic phenomenon hardly in relation with the heavy dependence of the physical characteristics (electrical and heat conductivities, viscosity) according to temperature. 6 refs., 4 figs [fr

  12. Inductive energy storage commutator

    International Nuclear Information System (INIS)

    Gavrilov, I.M.

    1987-01-01

    An inductive energy storage commutator is described. The value of commutated current is up to 800 A, the voltage amplitude in the load is up to 50 kV, the working frequency is equal to 1-50 Hz, the commutated power is up to 40 MW. The commutating device comprises of the first stage commutator having two in-series connected modules of the BTSV - 800/235 high-voltage thyristor unit, the second stage commutator containing three GMI-43A parallel connected powerful pulsed triodes, a commutating capacitor, an induction coil, two supplementary high-voltage thyristor keys (20 in-series connected thyristors T2-300 (13 class)), load, control pulse shapers, thyristor keys, power supply

  13. Pulse induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, A S; Kachanov, B Y; Kogan, B V

    1993-12-31

    Induction heating and three types of pulse processes were studied. It was found that in pulse processes the frequency and pulse duration of heat treatments do not remain constant. High frequency pulse heat treatments can be used on sprayed coatings; such treatments will result in stronger surfaces with no cracks. For induction hardening, the rate of specific power was 1 to 1.5 kW/sq.cm, for forging it was 0.2 to 0.3 kW/sq.cm and for melting it was 0.05 to 0.1 kW/sq.cm. The application of pulse heating will result in higher rates of specific power.

  14. Gait adaptations to awareness and experience of a slip when walking on a cross-slope.

    Science.gov (United States)

    Lawrence, Daniel; Domone, Sarah; Heller, Ben; Hendra, Timothy; Mawson, Susan; Wheat, Jon

    2015-10-01

    Falls that occur as a result of a slip are one of the leading causes of injuries, particularly in the elderly population. Previous studies have focused on slips that occur on a flat surface. Slips on a laterally sloping surface are important and may be related to different mechanisms of balance recovery. This type of slip might result in different gait adaptations to those previously described on a flat surface, but these adaptations have not been investigated. The aim of this study was to assess whether, when walking on a cross-slope, young adults adapted their gait when made aware of a potential slip, and having experienced a slip. Gait parameters were compared for three conditions--(1) Normal walking; (2) Walking after being made aware of a potential slip (participants were told that a slip may occur); (3) Walking after experiencing a slip (Participants had already experienced at least one slip induced using a soapy contaminant). Gait parameters were only analysed for trials in which there was no slippery contaminant present on the walkway. Stride length and walking velocity were significantly reduced, and stance duration was significantly greater in the awareness and experience conditions compared to normal walking, with no significant differences in any gait parameters between the awareness and experience conditions. In addition, 46.7% of the slip trials resulted in a fall. This is higher than reported for slips induced on a flat surface, suggesting slips on a cross-slope are more hazardous. This would help explain the more cautious gait patterns observed in both the awareness and experience conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Inductive Reasoning: A Training Approach

    Science.gov (United States)

    Klauer, Karl Josef; Phye, Gary D.

    2008-01-01

    Researchers have examined inductive reasoning to identify different cognitive processes when participants deal with inductive problems. This article presents a prescriptive theory of inductive reasoning that identifies cognitive processing using a procedural strategy for making comparisons. It is hypothesized that training in the use of the…

  16. Lexicographic Path Induction

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Sarnat, Jeffrey

    2009-01-01

    Programming languages theory is full of problems that reduce to proving the consistency of a logic, such as the normalization of typed lambda-calculi, the decidability of equality in type theory, equivalence testing of traces in security, etc. Although the principle of transfinite induction......, and weak normalization for Gödel’s T follows indirectly; both have been formalized in a prototypical extension of Twelf....

  17. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  18. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  19. High-current pulses from inductive energy stores

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1981-01-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ

  20. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting

    Science.gov (United States)

    Uenishi, K.

    2010-12-01

    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland

  1. Seismic Slip on an Oblique Detachment Fault at Low Angles

    Science.gov (United States)

    Janecke, S. U.; Steely, A. N.; Evans, J. P.

    2008-12-01

    Pseudotachylytes are one of the few accepted indicators of seismic slip along ancient faults. Low-angle normal faults have produced few large earthquakes in historic times and low-angle normal faults (detachment faults) are typically severely misoriented relative to a vertical maximum compressive stress. As a result many geoscientists question whether low-angle normal faults produce earthquakes at low angles. Relationships in southern California show that a major low-angle normal-oblique fault slipped at low angles and produced large earthquakes. The exhumed Late Cenozoic West Salton detachment fault preserves spectacular fault- related pseudotachylytes along its fault plane and injected into its hanging wall and footwall. Composite pseudotachylyte zones are up to 1.25 m thick and persists over lateral distances of at least 10's of meters. Pseudotachylyte is common in most thin sections of damaged fault rocks with more than 20% (by volume) of cataclasite. We recognized the presence of original melt using numerous criteria: abundant spherulites in thin sections, injection structures at both the thin-section and outcrop scale, black aphanitic textures, quenched vein margins, variations in microcrystallite textures and/or size with respect to the vein margin, and glassy textures in hand sample. Multiple earthquakes are inferred to produce the layered "stratigraphy" in some exposures of pseudotachylytes. We infer that the West Salton detachment fault formed and slipped at low angles because it nearly perfectly reactivates a Cretaceous ductile thrust system at the half km scale and dips between 10 and 45 degrees. The about 30 degree NNE dip of the detachment fault on the north side of Yaqui Ridge is likely steeper than its dip during detachment slip because there is local steepening on the flanks of the Yaqui Ridge antiform in a contractional stepover of a crosscutting Quaternary San Felipe dextral fault zone. These relationships indicate a low dip on the detachment

  2. Interchange Slip-Running Reconnection and Sweeping SEP-Beams

    Science.gov (United States)

    Masson, S.; Aulanier, G.; Pariat, E.; Klein, K.-L.

    2011-01-01

    We present a new model to explain how particles, accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be travelling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radius, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth.

  3. Slip Potential of Faults in the Fort Worth Basin

    Science.gov (United States)

    Hennings, P.; Osmond, J.; Lund Snee, J. E.; Zoback, M. D.

    2017-12-01

    Similar to other areas of the southcentral United States, the Fort Worth Basin of NE Texas has experienced an increase in the rate of seismicity which has been attributed to injection of waste water in deep saline aquifers. To assess the hazard of induced seismicity in the basin we have integrated new data on location and character of previously known and unknown faults, stress state, and pore pressure to produce an assessment of fault slip potential which can be used to investigate prior and ongoing earthquake sequences and for development of mitigation strategies. We have assembled data on faults in the basin from published sources, 2D and 3D seismic data, and interpretations provided from petroleum operators to yield a 3D fault model with 292 faults ranging in strike-length from 116 to 0.4 km. The faults have mostly normal geometries, all cut the disposal intervals, and most are presumed to cut into the underlying crystalline and metamorphic basement. Analysis of outcrops along the SW flank of the basin assist with geometric characterization of the fault systems. The interpretation of stress state comes from integration of wellbore image and sonic data, reservoir stimulation data, and earthquake focal mechanisms. The orientation of SHmax is generally uniform across the basin but stress style changes from being more strike-slip in the NE part of the basin to normal faulting in the SW part. Estimates of pore pressure come from a basin-scale hydrogeologic model as history-matched to injection test data. With these deterministic inputs and appropriate ranges of uncertainty we assess the conditional probability that faults in our 3D model might slip via Mohr-Coulomb reactivation in response to increases in injected-related pore pressure. A key component of the analysis is constraining the uncertainties associated with each of the principal parameters. Many of the faults in the model are interpreted to be critically-stressed within reasonable ranges of uncertainty.

  4. Fault healing and earthquake spectra from stick slip sequences in the laboratory and on active faults

    Science.gov (United States)

    McLaskey, G. C.; Glaser, S. D.; Thomas, A.; Burgmann, R.

    2011-12-01

    Repeating earthquake sequences (RES) are thought to occur on isolated patches of a fault that fail in repeated stick-slip fashion. RES enable researchers to study the effect of variations in earthquake recurrence time and the relationship between fault healing and earthquake generation. Fault healing is thought to be the physical process responsible for the 'state' variable in widely used rate- and state-dependent friction equations. We analyze RES created in laboratory stick slip experiments on a direct shear apparatus instrumented with an array of very high frequency (1KHz - 1MHz) displacement sensors. Tests are conducted on the model material polymethylmethacrylate (PMMA). While frictional properties of this glassy polymer can be characterized with the rate- and state- dependent friction laws, the rate of healing in PMMA is higher than room temperature rock. Our experiments show that in addition to a modest increase in fault strength and stress drop with increasing healing time, there are distinct spectral changes in the recorded laboratory earthquakes. Using the impact of a tiny sphere on the surface of the test specimen as a known source calibration function, we are able to remove the instrument and apparatus response from recorded signals so that the source spectrum of the laboratory earthquakes can be accurately estimated. The rupture of a fault that was allowed to heal produces a laboratory earthquake with increased high frequency content compared to one produced by a fault which has had less time to heal. These laboratory results are supported by observations of RES on the Calaveras and San Andreas faults, which show similar spectral changes when recurrence time is perturbed by a nearby large earthquake. Healing is typically attributed to a creep-like relaxation of the material which causes the true area of contact of interacting asperity populations to increase with time in a quasi-logarithmic way. The increase in high frequency seismicity shown here

  5. Slipped upper femoral epiphysis: imaging of complications after treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tins, B. [Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Twmpath Lane, Oswestry, Shropshire (United Kingdom)], E-mail: bernhard.tins@rjah.nhs.uk; Cassar-Pullicino, V.; McCall, I. [Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Twmpath Lane, Oswestry, Shropshire (United Kingdom)

    2008-01-15

    Slipped upper femoral epiphysis (SUFE) is a multifactorial condition usually affecting adolescents. Obesity is one risk factor, and as this is increasing the incidence of SUFE is likely to rise. Diagnosis and treatment are usually straightforward and carried out by orthopaedic surgeons. However, the recognition of post-treatment complications poses a much greater challenge. This article focuses on possible complications of surgical treatment of SUFE particularly. Chondrolysis, avascular necrosis, as well as other complications of treatment and conditions leading to premature osteoarthritis are discussed. Checklists for a systematic approach to post-treatment imaging are provided.

  6. Dynamic contact with Signorini's condition and slip rate dependent friction

    Directory of Open Access Journals (Sweden)

    Kenneth Kuttler

    2004-06-01

    Full Text Available Existence of a weak solution for the problem of dynamic frictional contact between a viscoelastic body and a rigid foundation is established. Contact is modelled with the Signorini condition. Friction is described by a slip rate dependent friction coefficient and a nonlocal and regularized contact stress. The existence in the case of a friction coefficient that is a graph, which describes the jump from static to dynamic friction, is established, too. The proofs employ the theory of set-valued pseudomonotone operators applied to approximate problems and a priori estimates.

  7. Water slip and friction at a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Brigo, L; Pierno, M; Mammano, F; Sada, C; Fois, G; Pozzato, A; Zilio, S dal; Mistura, G [Dipartimento di Fisica G Galilei, Universita degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy); Natali, M [Istituto di Chimica Inorganica e delle Superfici (ICIS), CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Tormen, M [TASC-INFM, CNR, S S 14 km 163.5 Area Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: mistura@padova.infm.it

    2008-09-03

    A versatile micro-particle imaging velocimetry ({mu}-PIV) recording system is described, which allows us to make fluid velocity measurements in a wide range of flow conditions both inside microchannels and at liquid-solid interfaces by using epifluorescence and total internal reflection fluorescence excitation. This set-up has been applied to study the slippage of water over flat surfaces characterized by different degrees of hydrophobicity and the effects that a grooved surface has on the fluid flow inside a microchannel. Preliminary measurements of the slip length of water past various flat surfaces show no significant dependence on the contact angle.

  8. Effect of calcium hydroxide on slip casting behaviour

    OpenAIRE

    Şakar‐Deliormanlı, Aylin; Yayla, Zeliha

    2004-01-01

    The effect of calcium hydroxide addition on the casting performance of ceramic slips for sanitary ware was studied. Powder composed of feldspar (24 wt.%), quartz (24 wt.%), kaolin (35 wt.%) and ball clay (17 wt.%) was mixed with water to contain 65 wt.% of solids (specific density 1800 g/l). Either Ca(OH)2 or Na2CO3 was added at concentrations ranging between 0.060 and 0.085 wt.% and the slurries were dispersed by the optimum addition of sodium silicate. Calcium hydroxide in presence of sodiu...

  9. Effects of crystallographic orientation vs. grain interaction on slip systems

    DEFF Research Database (Denmark)

    Winther, Grethe

    . Such investigations reveal both similarities and differences. The present contribution gives an overview of a series of investigations, including transmission electron microscopy as well as three-dimensional x-ray diffraction on polycrystalline aluminium deformed to strains of 5-50%. The data are analysed focusing...... on the set of activated slip systems, more precisely whether the observed differences can be attributed to fluctuations in the relative activities of the same set of systems or whether activation of truly different systems is the origin of the variations between and within grains....

  10. Slip systems, dislocation boundaries and lattice rotations in deformed metals

    DEFF Research Database (Denmark)

    Winther, Grethe

    2009-01-01

    Metals are polycrystals and consist of grains, which are subdivided on a finer scale upon plastic deformation due to formation of dislocation boundaries. The crystallographic alignment of planar dislocation boundaries in face centred cubic metals, like aluminium and copper, deformed to moderate...... of the mechanical anisotropy of rolled sheets. The rotation of the crystallographic lattice in each grain during deformation also exhibits grain orientation dependence, originating from the slip systems. A combined analysis of dislocation boundaries and lattice rotations concludes that the two phenomena are coupled...

  11. Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2004-01-01

    Experimental results on the phase slip process in superconducting lead nanowires are presented under two different experimental conditions: constant applied current or constant voltage. Based on these experiments we established a simple model which gives us the condition of the appearance of phase...... slip centers in a quasi-one-dimensional wire. The competition between two relaxations times (relaxation time of the absolute value of the order parameter τ and relaxation time of the phase of the order parameter in the phase slip center τ) governs the phase slip process. Phase slips, as periodic...... oscillations in time of the order parameter, are only possible if the gradient of the phase grows faster than the value of the order parameter in the phase slip center, or equivalently if τ≤ τ....

  12. Inductive reasoning 2.0.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan

    2018-05-01

    Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.

  13. A taxonomy of inductive problems.

    Science.gov (United States)

    Kemp, Charles; Jern, Alan

    2014-02-01

    Inductive inferences about objects, features, categories, and relations have been studied for many years, but there are few attempts to chart the range of inductive problems that humans are able to solve. We present a taxonomy of inductive problems that helps to clarify the relationships between familiar inductive problems such as generalization, categorization, and identification, and that introduces new inductive problems for psychological investigation. Our taxonomy is founded on the idea that semantic knowledge is organized into systems of objects, features, categories, and relations, and we attempt to characterize all of the inductive problems that can arise when these systems are partially observed. Recent studies have begun to address some of the new problems in our taxonomy, and future work should aim to develop unified theories of inductive reasoning that explain how people solve all of the problems in the taxonomy.

  14. A new state-of-the-art tool to investigate rock friction under extreme slip velocities and accelerations: SHIVA

    Science.gov (United States)

    Niemeijer, André; di Toro, Giulio; Nielsen, Stefan; Scarlato, Piergiorgio; Romeo, Gianni; di Stefano, Giuseppe; Smith, Steven; di Felice, Fabio; Mariano, Sofia

    2010-05-01

    interseismic periods. Moreover, experiments will be run where we control the shear stress rather than the shear displacement. By doing so, we will be able to simulate the transient load variation expected during seismic failure on natural faults and measure the related dynamic weakening, frictional evolution and slip velocity on the sample. The characterization of rock frictional behavior under combined conditions of low to high slip velocity and extreme and rapidly variable load, is expected to provide important insights into the mechanics of earthquakes.

  15. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  16. Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-12-01

    Full Text Available The boundary layer flow of a viscous incompressible fluid toward a porous nonlinearly stretching sheet is considered in this analysis. Velocity slip is considered instead of no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equation corresponding to the momentum equation into nonlinear ordinary differential equation. Numerical solution of this equation is obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter.

  17. Leakage flow-induced vibration of an unconstricted tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1986-12-01

    The conditions are given for which the more flexible of two cantilevered, telescoping tubes conveying fluid can be self-excited by flow leaking from an unconstricted slip joint. Also, a physical explanation of the excitation mechanism is discussed, and a design rule to avoid the mechanism is presented. In addition, the results for the unconstricted slip joint are shown to be similar to those for slip joints having annulus constrictions at very short engagement lengths

  18. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    Science.gov (United States)

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  19. Linear stability analysis of laminar flow near a stagnation point in the slip flow regime

    Science.gov (United States)

    Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    The aim of the present contribution is to analyze the effect of slip parameter on the stability of a laminar incompressible flow near a stagnation point in the slip flow regime. The analysis is based on the traditional normal mode approach and assumes parallel flow approximation. The Orr-Sommerfeld equation that governs the infinitesimal disturbance of stream function imposed to the steady main flow, which is an exact solution of the Navier-Stokes equation satisfying slip boundary conditions, is obtained by using the powerful spectral Chebyshev collocation method. The results of the effect of slip parameter K on the hydrodynamic characteristics of the base flow, namely the velocity profile, the shear stress profile, the boundary layer, displacement and momentum thicknesses are illustrated and discussed. The numerical data for these characteristics, as well as those of the eigenvalues and the corresponding wave numbers recover the results of the special case of no-slip boundary conditions. They are found to be in good agreement with previous numerical calculations. The effects of slip parameter on the neutral curves of stability, for two-dimensional disturbances in the Reynolds-wave number plane, are then obtained for the first time in the slip flow regime for stagnation point flow. Furthermore, the evolution of the critical Reynolds number against the slip parameter is established. The results show that the critical Reynolds number for instability is significantly increased with the slip parameter and the flow turn out to be more stable when the effect of rarefaction becomes important.

  20. The phase slip factor of the electrostatic cryogenic storage ring CSR

    Science.gov (United States)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  1. Linear induction motor

    International Nuclear Information System (INIS)

    Barkman, W.E.; Adams, W.Q.; Berrier, B.R.

    1978-01-01

    A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation

  2. Physical characterization of porous hydroxyapatite prepared by slip casting route

    International Nuclear Information System (INIS)

    Rusnah Mustaffa; Idris Besar; Mohd Reusmaazran Yusof; Che Rohaida Che Hak

    2005-01-01

    Recent developments have led to an interest in the potential of porous hydroxyapatite (HA) as a synthetic bone graft. The starting material, that is HA powder, was prepared by the precipitation method using calcium hydroxide and ortho-phosporic acid. Through this route, the HA powder was first made into a slip by mixing with binder and then the slip was transferred into a mould. The binder was used as the porosifier where different ratios of HA to binder were studied. The material was then dried in oven followed by burning in furnace and finally the porous product was obtained and ready for characterization after sintering. The paper presents some characterization of porous HA products including chemical composition, density and macrostructure. The pore sizes obtained were in the range 200 mm to 400 mm diameters. From the different HA to binder ratios, variation in apparent densities were observed which is in the range of 2.63 to 2.76 g/cm 3 . The morphology of porous HA was observed by Scanning Electron Microscope (SEM) at 15 KV. The chemical structure and composition were also determined using Fourier Transform Infrared spectroscopy (FTIR) and the SEM EDAX, respectively, and the results will also be discussed. (Author)

  3. The odontoid synchondrotic slip: an injury unique to young children

    International Nuclear Information System (INIS)

    Connolly, B.; Emery, D.; Armstrong, D.

    1995-01-01

    We report seven children (three female, four male) diagnosed with traumatic synchrondrotic slip of the odontoid. The clinical records, plain films, and CT scans were evaluated retrospectively. The patients ranged in age between 3 and 5 years. Their injuries resulted from a motor vehicle accident in four cases and from a fall from a height in three. The injury was isolated in five; it was associated with a closed head injury in one and with facial and brachial plexus trauma in another. Radiographs showed anterior angulation with or without displacement in all seven cases. Axial CT with sagittal reformation and 3D reconstructions were performed in six cases. This confirmed the synchrondrotic slip and, in addition, identified a rotary component to the injury in three cases, with compromise of the canal in two. Other additional injuries were also noted. All cases were treated conservatively and the injuries healed. Only one child had a neurological deficit attributable to her head injury rather than to her cervical injury (MR of the cervical cord was normal). The presence of the synchondrosis between the dens and the body of C-2 makes this injury unique to children under 7 years of age; by the age of 7 the synchrondrosis has fused. (orig.)

  4. Fault Wear by Damage Evolution During Steady-State Slip

    Science.gov (United States)

    Lyakhovsky, Vladimir; Sagy, Amir; Boneh, Yuval; Reches, Ze'ev

    2014-11-01

    Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a "propagating damage front" and the evolution of a third-body layer.

  5. An Analytical Tire Model with Flexible Carcass for Combined Slips

    Directory of Open Access Journals (Sweden)

    Nan Xu

    2014-01-01

    Full Text Available The tire mechanical characteristics under combined cornering and braking/driving situations have significant effects on vehicle directional controls. The objective of this paper is to present an analytical tire model with flexible carcass for combined slip situations, which can describe tire behavior well and can also be used for studying vehicle dynamics. The tire forces and moments come mainly from the shear stress and sliding friction at the tread-road interface. In order to describe complicated tire characteristics and tire-road friction, some key factors are considered in this model: arbitrary pressure distribution; translational, bending, and twisting compliance of the carcass; dynamic friction coefficient; anisotropic stiffness properties. The analytical tire model can describe tire forces and moments accurately under combined slip conditions. Some important properties induced by flexible carcass can also be reflected. The structural parameters of a tire can be identified from tire measurements and the computational results using the analytical model show good agreement with test data.

  6. Slip Validation and Prediction for Mars Exploration Rovers

    Directory of Open Access Journals (Sweden)

    Jeng Yen

    2008-04-01

    Full Text Available This paper presents a novel technique to validate and predict the rover slips on Martian surface for NASA’s Mars Exploration Rover mission (MER. Different from the traditional approach, the proposed method uses the actual velocity profile of the wheels and the digital elevation map (DEM from the stereo images of the terrain to formulate the equations of motion. The six wheel speed from the empirical encoder data comprises the vehicle's velocity, and the rover motion can be estimated using mixed differential and algebraic equations. Applying the discretization operator to these equations, the full kinematics state of the rover is then resolved by the configuration kinematics solution in the Rover Sequencing and Visualization Program (RSVP. This method, with the proper wheel slip and sliding factors, produces accurate simulation of the Mars Exploration rovers, which have been validated with the earth-testing vehicle. This computational technique has been deployed to the operation of the MER rovers in the extended mission period. Particularly, it yields high quality prediction of the rover motion on high slope areas. The simulated path of the rovers has been validated using the telemetry from the onboard Visual Odometry (VisOdom. Preliminary results indicate that the proposed simulation is very effective in planning the path of the rovers on the high-slope areas.

  7. Constructing constitutive relationships for seismic and aseismic fault slip

    Science.gov (United States)

    Beeler, N.M.

    2009-01-01

    For the purpose of modeling natural fault slip, a useful result from an experimental fault mechanics study would be a physically-based constitutive relation that well characterizes all the relevant observations. This report describes an approach for constructing such equations. Where possible the construction intends to identify or, at least, attribute physical processes and contact scale physics to the observations such that the resulting relations can be extrapolated in conditions and scale between the laboratory and the Earth. The approach is developed as an alternative but is based on Ruina (1983) and is illustrated initially by constructing a couple of relations from that study. In addition, two example constitutive relationships are constructed; these describe laboratory observations not well-modeled by Ruina's equations: the unexpected shear-induced weakening of silica-rich rocks at high slip speed (Goldsby and Tullis, 2002) and fault strength in the brittle ductile transition zone (Shimamoto, 1986). The examples, provided as illustration, may also be useful for quantitative modeling.

  8. Preparation of Porcelanite Ceramic Filter by Slip Casting Technique

    Directory of Open Access Journals (Sweden)

    Majid Muhi Shukur

    2016-09-01

    Full Text Available This work is conducted to study producing solid block porcelanite filter from Iraqi porcelanite rocks and kaolin clay (as binder material by slip casting technique, and investigating its ability of removing contaminant (Pentachlorophenol from water via the adsorption mechanism. Four particle sizes (74, 88, 105 and 125 µm of porcelanite powder were used. Each batch of particle size was mixed with (30 wt. % kaolin as a binding material to improve the mechanical properties. After that, the mixtures were formed by slip casting to disk and cylindrical filter samples, and then fired at 500 and 700 °C to specify the effects of particle size of porcelanite, temperature and formation technique on porcelanite filter properties. Some physical, mechanical and chemical tests have been done on filter samples. Multi-experiments were carried out to evaluate the ability of porcelanite to form the filter. Porosity, permeability and maximum pore diameter were increased with increasing porcelanite particle size and decreased by increasing temperature, whereas the density shows the reverse behavior. In addition, bending, compressive and tensile strength of samples were increased by increasing temperature, and decreased with increasing porcelanite particle size. Efficiency of disk filter sample to remove pentachlorophenol was 95.41% at a temperature of 700°C using 74 µm particle size of porcelanite. While the efficiency of cylindrical filter sample was 97.57% at the same conditions.

  9. Valgus Slipped Capital Femoral Epiphysis in Patient with Hypopituitarism

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kotoura

    2017-01-01

    Full Text Available Slipped capital femoral epiphysis (SCFE is a common disease of adolescent and the epiphysis is positioned more posteromedially in relation to the femoral neck shaft with varus SCFE; however, posterolateral displacement of the capital epiphysis, valgus SCFE, occurs less frequently. We report a case of valgus SCFE in a 17-year-old boy with hypopituitarism. After falling down, he experienced difficulty in walking. The radiographs were inconclusive; however three-dimensional computed tomography images showed lateral displacement of the epiphysis on the right femoral head. Valgus SCFE was diagnosed. The patient underwent in situ pinning of both sides. In situ pinning on the left side was performed as a prophylactic pinning because of endocrine abnormalities. At the 1-year follow-up, he could walk without any difficulty and there were no signs of pain. The epiphysis is commonly positioned more posteromedially in relation to the femoral neck shaft with most SCFE, but, in this case, the epiphysis slipped laterally. Differential diagnosis included femoral neck fracture (Delbet-Colonna type 1; however, this was less likely due to the absence of other clinical signs. Therefore, we diagnosed the patient as SCFE. When children complain of leg pain and limp, valgus SCFE that may not be visualized on anteroposterior radiographs needs to be considered.

  10. Antibody induction versus corticosteroid induction for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, André; Wilson, Colin H

    2014-01-01

    BACKGROUND: Liver transplantation is an established treatment option for end-stage liver failure. To date, no consensus has been reached on the use of immunosuppressive T-cell specific antibody induction compared with corticosteroid induction of immunosuppression after liver transplantation....... OBJECTIVES: To assess the benefits and harms of T-cell specific antibody induction versus corticosteroid induction for prevention of acute rejection in liver transplant recipients. SEARCH METHODS: We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register...... to identify additional trials. SELECTION CRITERIA: We included all randomised clinical trials assessing immunosuppression with T-cell specific antibody induction versus corticosteroid induction in liver transplant recipients. Our inclusion criteria stated that participants within each included trial should...

  11. Perceived risks for slipping and falling at work during wintertime and criteria for a slip-resistant winter shoe among Swedish outdoor workers

    OpenAIRE

    Norlander, Anna; Miller, Michael; Gard, Gunvor

    2015-01-01

    The leading cause of work related accidents in Sweden is falls. Many slips and falls occur on icy and snowy surfaces, but there is limited knowledge about how to prevent accidents during outdoor work in winter conditions. The purpose of this study was to describe risk factors of slips and falls and criteria for slip-resistant winter shoes from a user perspective. The result is based on focus group interviews with 20 men and women working in mail delivery, construction and home care in Sweden....

  12. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  13. Regulation of ATM induction

    International Nuclear Information System (INIS)

    Clarke, R.A.; Fang, Z.M.; Kearsley, J.H.; Lee, C.S.; Sarris, M.; De Murrell, D.

    2000-01-01

    Full text: ATM, the tumour suppressor protein mutated in ataxia-telangiectasia, is of pivotal importance in controlling the cells primary response to ionising radiation (IR) induced DNA damage. Mutations in ATM which reduce the level of the ATM protein and/or compromise ATM functions are known to give rise to radiosensitivity and defective cell cycle checkpoint control. In response to DNA damage ATM kinase is rapidly activated and initiates downstream signalling to cell cycle control molecules including p53. To investigate additional mechanisms of ATM control we have employed ATM antisense expression in cultured cells, western analyses and immunohistochemistry in situ. We report that ATM can be up-regulated up to 10-fold following exposure to low levels of ionising radiation. ATM radiation-induction was radiation dose dependent while the rapidity of the response indicates a post translational pathway. The concurrent time frames for the radiation-induction of ATM levels and the activation of ATM kinase activity appear to be complimentary in boosting ATM's protective response to IR induced DNA damage, especially in ATM 'low expressing' systems. We also provide the first report of ATM misregulation in 2 cancer patients, indicating that ATM is not only radio-protective but has possible implications in cancer, particularly breast cancer. These results have particular importance in defining the regulation of the ATM protein as an: adaptive radio-response; radio-prognostic market in tumours and normal tissue, and breast cancer marker

  14. Testing Pixel Translation Digital Elevation Models to Reconstruct Slip Histories: An Example from the Agua Blanca Fault, Baja California, Mexico

    Science.gov (United States)

    Wilson, J.; Wetmore, P. H.; Malservisi, R.; Ferwerda, B. P.; Teran, O.

    2012-12-01

    approximately equal to that to the east. The ABF has varying kinematics along strike due to changes in trend of the fault with respect to the nearly east-trending displacement vector of the Ensenada Block to the north of the fault relative to a stable Baja Microplate to the south. These kinematics include nearly pure strike slip in the central portion of the ABF where the fault trends nearly E-W, and minor components of normal dip-slip motion on the NABF and eastern sections of the fault where the trends become more northerly. A pixel translation vector parallel to the trend of the ABF in the central segment (290 deg, 10.5 km) produces kinematics consistent with those described above. The block between the NABF and STF has a pixel translation vector parallel the STF (291 deg, 3.5 km). We find these vectors are consistent with the kinematic variability of the fault system and realign several major drainages and ridges across the fault. This suggests these features formed prior to faulting, and they yield preferred values of offset: 10.5 km on the ABF, 7 km on the NABF and 3.5 km on the STF. This model is consistent with the kinematic model proposed by Hamilton (1971) in which the ABF is a transform fault, linking extensional regions of Valle San Felipe and the Continental Borderlands.

  15. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    Science.gov (United States)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress

  16. RELATIONSHIP BETWEEN ROLLING AND SLIP RESISTANCE IN ROLLING BEARINGS

    Directory of Open Access Journals (Sweden)

    L. M. Bondarenko

    2016-06-01

    Full Text Available Purpose. About one of the causes of slip rolling is known from the second half of the 19th century, it was believed that the slip resistance appears at the place of contact due to different speeds on the arc of contact. Only in the mid-20th century it was proved that this resistance is negligible in rolling resistance. However (for some unknown reason it is ignored the fact that in practice in rolling bearings may rotate both the inner ring with a stationary outer one, and vice versa almost in equal relations. It is not taken into account the fact that the ball or roller in the rolling bearings runs the different distance along the roller path of the outer and inner bearing cages in one revolution. This fact is not taken into account in determining the calculated values for the friction coefficient of a rolling bearing reduced to the shaft. Therefore, the aim of this work is to determine the influence of path length on the track riding the outer and inner race of the bearing on the determination of the calculated value of the coefficient of friction of rolling bearings is given to the shaft. Methodology. The solution technique is based on the theory of plane motion of a rigid body, the theory of Hertzian contact deformation and the analytical dependencies for determination of coefficient of rolling friction. Findings. The obtained dependences on determination of rolling resistance of the balls or rollers along the bearing tracks of inner and outer bearing cages as well as path difference metering of the rolling on them allows to analytically obtain the rolling resistance and slipping for any size of bearings and different devices of bearing units. It is also possible at the design stage of rolling nodes to handle not only the design but also the content of the node. Originality. Using the analytical dependences for determination of the rolling resistance of bodies at point and line contacts, and also account for the difference in the path of the

  17. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  18. Mutation induction of protein variability in wheat and rice

    International Nuclear Information System (INIS)

    Narahari, P.; Bhatia, C.R.; Gopalakrishna, T.; Mitra, R.K.

    1976-01-01

    No high protein mutants of wheat have been obtained without depression of grain yield after screening a few thousand lines. The best wheat mutant identified in our programme so far is an erectoid mutant that has consistently shown about 1.5-2% points increase in protein over Kalyan sona for the last four years. Grain yield of the mutant is about 89% of the parent. No significant variation in amino composition is noted in the mutant. Preliminary analysis of over 200 macro mutants in three varieties of rice has resulted in identification of mutants with high protein content (10-22%) compared with 8.0 to 8.5% in the high yielding controls. The amino-acid composition of some of the mutant kernels do not show great deviation from the controls. All the high protein percentage mutants are lower in grain yield. Despite very high F 1 sterility in a cross involving the high protein genotype GMPR-51 and high yielding IR-8, several fertile F 2 plants resembling IR-8 have been isolated which on preliminary analysis have shown still higher protein content than GMPR-51, suggesting a transgressive mode of inheritance of this trait. (author)

  19. State variable participation in the limit cycle of induction motor

    Indian Academy of Sciences (India)

    2National Institute of Technical Teachers' Training and Research, Kolkata 700 106, India. ∗ ... nonsymmetrical two stator windings named as the main winding and the auxiliary wind- ... These qualitative changes in the system's dynamics.

  20. Viscoelastic Earthquake Cycle Simulation with Memory Variable Method

    Science.gov (United States)

    Hirahara, K.; Ohtani, M.

    2017-12-01

    There have so far been no EQ (earthquake) cycle simulations, based on RSF (rate and state friction) laws, in viscoelastic media, except for Kato (2002), who simulated cycles on a 2-D vertical strike-slip fault, and showed nearly the same cycles as those in elastic cases. The viscoelasticity could, however, give more effects on large dip-slip EQ cycles. In a boundary element approach, stress is calculated using a hereditary integral of stress relaxation function and slip deficit rate, where we need the past slip rates, leading to huge computational costs. This is a cause for almost no simulations in viscoelastic media. We have investigated the memory variable method utilized in numerical computation of wave propagation in dissipative media (e.g., Moczo and Kristek, 2005). In this method, introducing memory variables satisfying 1st order differential equations, we need no hereditary integrals in stress calculation and the computational costs are the same order of those in elastic cases. Further, Hirahara et al. (2012) developed the iterative memory variable method, referring to Taylor et al. (1970), in EQ cycle simulations in linear viscoelastic media. In this presentation, first, we introduce our method in EQ cycle simulations and show the effect of the linear viscoelasticity on stick-slip cycles in a 1-DOF block-SLS (standard linear solid) model, where the elastic spring of the traditional block-spring model is replaced by SLS element and we pull, in a constant rate, the block obeying RSF law. In this model, the memory variable stands for the displacement of the dash-pot in SLS element. The use of smaller viscosity reduces the recurrence time to a minimum value. The smaller viscosity means the smaller relaxation time, which makes the stress recovery quicker, leading to the smaller recurrence time. Second, we show EQ cycles on a 2-D dip-slip fault with the dip angel of 20 degrees in an elastic layer with thickness of 40 km overriding a Maxwell viscoelastic half

  1. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  2. Inductive circuit arrangements

    International Nuclear Information System (INIS)

    Mansfield, Peter; Coxon, R.J.

    1987-01-01

    A switched coil arrangement is connected in a bridge configuration of four switches S 1 , S 2 , S 3 and S 4 which are each shunted by diodes D 1 , D 2 , D 3 and D 4 so that current can flow in either direction through a coil L depending on the setting of the switches. A capacitor C is connected across the bridge through a switch S 5 to receive the inductive energy stored in coil L on breaking the current flow path through the coil. The electrostatic energy stored in capacitor C can then be used to supply current through the coil in the reverse direction either immediately or after a time delay. Coil L may be a superconductive coil. Losses in the circuit can be made up by a trickle charge of capacitor C from a separate supply V 2 . The device may be used in nuclear magnetic resonance imaging. (author)

  3. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  4. Induction heating using induction coils in series-parallel circuits

    Science.gov (United States)

    Matsen, Marc Rollo; Geren, William Preston; Miller, Robert James; Negley, Mark Alan; Dykstra, William Chet

    2017-11-14

    A part is inductively heated by multiple, self-regulating induction coil circuits having susceptors, coupled together in parallel and in series with an AC power supply. Each of the circuits includes a tuning capacitor that tunes the circuit to resonate at the frequency of AC power supply.

  5. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake

    Science.gov (United States)

    Ito, Yoshihiro; Hino, Ryota; Kido, Motoyuki; Fujimoto, Hiromi; Osada, Yukihito; Inazu, Daisuke; Ohta, Yusaku; Iinuma, Takeshi; Ohzono, Mako; Miura, Satoshi; Mishina, Masaaki; Suzuki, Kensuke; Tsuji, Takeshi; Ashi, Juichiro

    2013-07-01

    We describe two transient slow slip events that occurred before the 2011 Tohoku-Oki earthquake. The first transient crustal deformation, which occurred over a period of a week in November 2008, was recorded simultaneously using ocean-bottom pressure gauges and an on-shore volumetric strainmeter; this deformation has been interpreted as being an M6.8 episodic slow slip event. The second had a duration exceeding 1 month and was observed in February 2011, just before the 2011 Tohoku-Oki earthquake; the moment magnitude of this event reached 7.0. The two events preceded interplate earthquakes of magnitudes M6.1 (December 2008) and M7.3 (March 9, 2011), respectively; the latter is the largest foreshock of the 2011 Tohoku-Oki earthquake. Our findings indicate that these slow slip events induced increases in shear stress, which in turn triggered the interplate earthquakes. The slow slip event source area on the fault is also located within the downdip portion of the huge-coseismic-slip area of the 2011 earthquake. This demonstrates episodic slow slip and seismic behavior occurring on the same portions of the megathrust fault, suggesting that the faults undergo slip in slow slip events can also rupture seismically.

  6. Flows of Incompressible Fluids subject to Navier’s slip on the boundary

    Czech Academy of Sciences Publication Activity Database

    Hron, J.; Le Roux, C.; Málek, Josef; Rajagopal, K.R.

    2008-01-01

    Roč. 56, č. 8 (2008), s. 2128-2143 ISSN 0898-1221 R&D Projects: GA ČR GA101/05/2537 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary conditions * navier’s slip * no-slip Subject RIV: BK - Fluid Dynamics Impact factor: 0.997, year: 2008 http://www.sciencedirect.com

  7. Atomistic simulations of screw dislocation cross slip in copper and nickel

    DEFF Research Database (Denmark)

    Vegge, Tejs

    2001-01-01

    This paper presents calculations of screw dislocation cross slip in copper and nickel systems, using the nudged elastic band method and interatomic potentials based on the effective-medium theory. The validity of recent attempts to predict cross slip activation energies by ‘elastic scaling’ between...

  8. An improved particle population balance equation in the continuum-slip regime

    Directory of Open Access Journals (Sweden)

    Xie Mingliang

    2016-01-01

    Full Text Available An improved moment model is proposed to solve the population balance equation for Brownian coagulation in the continuum-slip regime, and it reduces to a known one in open literature when the non-linear terms in the slip correction factor are ignored. The present model shows same asymptotic behavior as that in the continuum regime.

  9. On a credit oscillatory system with the inclusion of stick-slip

    Directory of Open Access Journals (Sweden)

    Parovik Roman

    2016-01-01

    Full Text Available The work was a mathematical model that describes the effect of the sliding attachment (stick-slip, taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  10. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    Science.gov (United States)

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Effect of reactive compatibilization on the interfacial slip in Nylon-6/EPR blends

    NARCIS (Netherlands)

    Puyvelde, van P.C.J.; Oommen, Z.; Koets, P.P.; Groeninckx, G.; Moldenaers, P.

    2003-01-01

    The viscosity of uncompatibilized polymer blends often shows a negative deviation from a log-additivity rule at shear rates relevant to processing. This deviation has been attributed to interfacial slip, which is related to the loss of entanglements at the interface. In this work interfacial slip

  12. A structural equation modelling approach examining the pathways between safety climate, behaviour performance and workplace slipping

    Science.gov (United States)

    Swedler, David I; Verma, Santosh K; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melayne; Courtney, Theodore K

    2015-01-01

    Objective Safety climate has previously been associated with increasing safe workplace behaviours and decreasing occupational injuries. This study seeks to understand the structural relationship between employees’ perceptions of safety climate, performing a safety behaviour (ie, wearing slip-resistant shoes) and risk of slipping in the setting of limited-service restaurants. Methods At baseline, we surveyed 349 employees at 30 restaurants for their perceptions of their safety training and management commitment to safety as well as demographic data. Safety performance was identified as wearing slip-resistant shoes, as measured by direct observation by the study team. We then prospectively collected participants’ hours worked and number of slips weekly for the next 12 weeks. Using a confirmatory factor analysis, we modelled safety climate as a higher order factor composed of previously identified training and management commitment factors. Results The 349 study participants experienced 1075 slips during the 12-week follow-up. Confirmatory factor analysis supported modelling safety climate as a higher order factor composed of safety training and management commitment. In a structural equation model, safety climate indirectly affected prospective risk of slipping through safety performance, but no direct relationship between safety climate and slips was evident. Conclusions Results suggest that safety climate can reduce workplace slips through performance of a safety behaviour as well as suggesting a potential causal mechanism through which safety climate can reduce workplace injuries. Safety climate can be modelled as a higher order factor composed of safety training and management commitment. PMID:25710968

  13. Slip Torque Investigation and Magnetic Redesign of Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Frandsen, Tommy Vestergaard; Rasmussen, Peter Omand

    2015-01-01

    This paper presents an investigation of 20% difference between the measured and calculated slip torque of a Motor Integrated Permanent Magnet Gear (MIPMG) prototype. The High Speed (HS) side of the Magnetic Gear (MG) was fixed by loading the motor when conducting the slip torque measurement. Susp...

  14. Simulation and observation of line-slip structures in columnar structures of soft spheres

    Science.gov (United States)

    Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  15. "A Chance Child": Jill Paton Walsh and the Re-Invention of the Time Slip Story

    Science.gov (United States)

    Hall, Linda Marian

    2011-01-01

    In this study of Jill Paton Walsh's one time-slip novel, I attempt to show how she reinvents the genre by giving as much prominence to the dislocated present as she does to the sufferings of children caught up in the horrors of the Industrial Revolution. Where previous time-slip authors had concentrated on the past, she addresses clearly unwelcome…

  16. A prospective study of floor surface, shoes, floor cleaning and slipping in US limited-service restaurant workers.

    Science.gov (United States)

    Verma, Santosh K; Chang, Wen Ruey; Courtney, Theodore K; Lombardi, David A; Huang, Yueng-Hsiang; Brennan, Melanye J; Mittleman, Murray A; Ware, James H; Perry, Melissa J

    2011-04-01

    Slips and falls are a leading cause of injury at work. Few studies, however, have systematically examined risk factors of slipping outside the laboratory environment. This study examined the association between floor surface characteristics, slip-resistant shoes, floor cleaning frequency and the risk of slipping in limited-service restaurant workers. 475 workers from 36 limited-service restaurants from three major chains in six states in the USA were recruited to participate in a prospective cohort study of workplace slipping. Kitchen floor surface roughness and coefficient of friction (COF) were measured in eight working areas and then averaged within each restaurant. The use of slip-resistant shoes was determined by examining the participant's shoes and noting the presence of a 'slip-resistant' marking on the sole. Restaurant managers reported the frequency of daily kitchen floor cleaning. Participants reported their slip experience and work hours weekly for up to 12 weeks. The survey materials were made available in three languages: English, Spanish and Portuguese. The associations between rate of slipping and risk factors were assessed using a multivariable negative binomial generalised estimating equation model. The mean of individual slipping rate varied among the restaurants from 0.02 to 2.49 slips per 40 work hours. After adjusting for age, gender, BMI, education, primary language, job tenure and restaurant chain, the use of slip-resistant shoes was associated with a 54% reduction in the reported rate of slipping (95% CI 37% to 64%), and the rate of slipping decreased by 21% (95% CI 5% to 34%) for each 0.1 increase in the mean kitchen COF. Increasing floor cleaning frequency was significantly associated with a decreasing rate of slipping when considered in isolation but not after statistical adjustment for other factors. These results provide support for the use of slip-resistant shoes and measures to increase COF as preventive interventions to reduce slips

  17. Magma storage in a strike-slip caldera.

    Science.gov (United States)

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  18. Quantum phase slips and voltage fluctuations in superconducting nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Andrew G. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation); Zaikin, Andrei D. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, Moscow (Russian Federation); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2017-06-15

    We argue that quantum phase slips (QPS) may generate non-equilibrium voltage fluctuations in superconducting nanowires. In the low frequency limit we evaluate all cumulants of the voltage operator which obey Poisson statistics and show a power law dependence on the external bias. We specifically address quantum shot noise which power spectrum S{sub Ω} may depend non-monotonously on temperature. In the long wire limit S{sub Ω} decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T → 0. Our predictions can be directly tested in future experiments with superconducting nanowires. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. A Thermal Technique of Fault Nucleation, Growth, and Slip

    Science.gov (United States)

    Garagash, D.; Germanovich, L. N.; Murdoch, L. C.; Martel, S. J.; Reches, Z.; Elsworth, D.; Onstott, T. C.

    2009-12-01

    -Coulomb strength criterion with standard Byerlee parameters, a fault will initiate before the net tension occurs. After a new fault is created, hot fluid can be injected into the boreholes to increase the temperature and reverse the direction of fault slip. This process can be repeated to study the formation of gouge, and how the properties of gouge control fault slip and associated seismicity. Instrumenting the site with arrays of geophones, tiltmeters, strain gauges, and displacement transducers as well as back mining - an opportunity provided by the DUSEL project - can reveal details of the fault geometry and gouge. We also expect to find small faults (with cm-scale displacement) during construction of DUSEL drifts. The same thermal technique can be used to induce slip on one of them and compare the “man-made” and natural gouges. The thermal technique appears to be a relatively simple way to rapidly change the stress field and either create slip on existing fractures or create new faults at scales up to 10 m or more.

  20. D" anisotropy and slip systems in post-perovskite

    Science.gov (United States)

    Nowacki, Andy; Wookey, James; Kendall, J.-Michael

    2010-05-01

    The lowermost few hundred kilometres of the Earth's mantle-known as D″-form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a large (~2%) increase in S-wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (V S) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. The MgSiO3-post-perovskite mineral phase is the most compelling explanation for observations of anisotropy, though an outstanding question is how post-perovskite and other mineral phases may deform to produce this: different mechanisms are possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can determine the other with the seismic anisotropy which is created. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW > 5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained-only one azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The same but with a tilted axis is possible (TTI) and would be consistent with inclusions of seismically

  1. NONLINEAR ESTIMATION METHODS FOR AUTONOMOUS TRACKED VEHICLE WITH SLIP

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bo; HAN Jianda

    2007-01-01

    In order to achieve precise, robust autonomous guidance and control of a tracked vehicle, a kinematic model with longitudinal and lateral slip is established. Four different nonlinear filters are used to estimate both state vector and time-varying parameter vector of the created model jointly. The first filter is the well-known extended Kalman filter. The second filter is an unscented version of the Kalman filter. The third one is a particle filter using the unscented Kalman filter to generate the importance proposal distribution. The last one is a novel and guaranteed filter that uses a linear set-membership estimator and can give an ellipsoid set in which the true state lies. The four different approaches have different complexities, behavior and advantages that are surveyed and compared.

  2. Applying Game Thinking to Slips, Trips and Falls Prevention.

    Science.gov (United States)

    Dewick, Paul; Stanmore, Emma

    2017-01-01

    Gamification is about the way in which 'game thinking' can engage participants and change behaviours in real, non-game contexts. This paper explores how game thinking can be applied to help prevent slips, trips and falls (STF), which are the largest cause of accidental death in older people across Europe. The paper contributes to the assistive technology, digital health and computer science/human behaviour communities by responding to a gap in the literature for papers detailing the innovation process of developing interventions to improve health and quality of life. The aim of the paper is of interest to the many stakeholders involved in enabling older people to live independent, confident, healthy and safe lives in the community.

  3. Element free Galerkin formulation of composite beam with longitudinal slip

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad [Department of Civil Engineering, Universiti Selangor, Bestari Jaya, Selangor (Malaysia); Badli, Mohd Iqbal; Yassin, Airil Y. Mohd [Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor (Malaysia)

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after been verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.

  4. Programming list processes. SLIP: symmetric list processor - applications

    International Nuclear Information System (INIS)

    Broudin, Y.

    1966-06-01

    Modern aspects of programming languages are essentially turned towards list processing. The ordinary methods of sequential treatment become inadequate and we must substitute list processes for them, where the cells of a group have no neighbourhood connection, but where the address of one cell is contained in the preceding one. These methods are required in 'time sharing' solving problems. They also allow us to treat new problems and to solve others in the shortest time. Many examples are presented after an abstract of the most usual list languages and a detailed study of one of them : SLIP. Among these examples one should note: locating of words in a dictionary or in a card index, treatment of non numerical symbols, formal derivation. The problems are treated in Fortran II on an IBM 7094 machine. The subroutines which make up the language are presented in an appendix. (author) [fr

  5. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet

    Science.gov (United States)

    Gold, R.D.; Cowgill, E.; Arrowsmith, J.R.; Chen, X.; Sharp, W.D.; Cooper, K.M.; Wang, X.-F.

    2011-01-01

    The active, left-lateral Altyn Tagh fault defines the northwestern margin of the Tibetan Plateau in western China. To clarify late Quaternary temporal and spatial variations in slip rate along the central portion of this fault system (85??-90??E), we have more than doubled the number of dated offset markers along the central Altyn Tagh fault. In particular, we determined offset-age relations for seven left-laterally faulted terrace risers at three sites (Kelutelage, Yukuang, and Keke Qiapu) spanning a 140-km-long fault reach by integrating surficial geologic mapping, topographic surveys (total station and tripod-light detection and ranging [T-LiDAR]), and geochronology (radiocarbon dating of organic samples, 230Th/U dating of pedogenic carbonate coatings on buried clasts, and terrestrial cosmogenic radionuclide exposure age dating applied to quartz-rich gravels). At Kelutelage, which is the westernmost site (37.72??N, 86.67??E), two faulted terrace risers are offset 58 ?? 3 m and 48 ?? 4 m, and formed at 6.2-6.1 ka and 5.9-3.7 ka, respectively. At the Yukuang site (38.00??N, 87.87??E), four faulted terrace risers are offset 92 ?? 12 m, 68 ?? 6 m, 55 ?? 13 m, and 59 ?? 9 m and formed at 24.2-9.5 ka, 6.4-5.0 ka, 5.1-3.9 ka, and 24.2-6.4 ka, respectively. At the easternmost site, Keke Qiapu (38.08??N, 88.12??E), a faulted terrace riser is offset 33 ?? 6 m and has an age of 17.1-2.2 ka. The displacement-age relationships derived from these markers can be satisfied by an approximately uniform slip rate of 8-12 mm/yr. However, additional analysis is required to test how much temporal variability in slip rate is permitted by this data set. ?? 2011 Geological Society of America.

  6. Dynamic growth of slip surfaces in catastrophic landslides.

    Science.gov (United States)

    Germanovich, Leonid N; Kim, Sihyun; Puzrin, Alexander M

    2016-01-01

    This work considers a landslide caused by the shear band that emerges along the potential slip (rupture) surface. The material above the band slides downwards, causing the band to grow along the slope. This growth may first be stable (progressive), but eventually becomes dynamic (catastrophic). The landslide body acquires a finite velocity before it separates from the substrata. The corresponding initial-boundary value problem for a dynamic shear band is formulated within the framework of Palmer & Rice's ( Proc. R. Soc. Lond. A 332 , 527-548. (doi:10.1098/rspa.1973.0040)) approach, which is generalized to the dynamic case. We obtain the exact, closed-form solution for the band velocity and slip rate. This solution assesses when the slope fails owing to a limiting condition near the propagating tip of the shear band. Our results are applicable to both submarine and subaerial landslides of this type. It appears that neglecting dynamic (inertia) effects can lead to a significant underestimation of the slide size, and that the volumes of catastrophic slides can exceed the volumes of progressive slides by nearly a factor of 2. As examples, we consider the Gaviota and Humboldt slides offshore of California, and discuss landslides in normally consolidated sediments and sensitive clays. In particular, it is conceivable that Humboldt slide is unfinished and may still displace a large volume of sediments, which could generate a considerable tsunami. We show that in the case of submarine slides, the effect of water resistance on the shear band dynamics may frequently be limited during the slope failure stage. For a varying slope angle, we formulate a condition of slide cessation.

  7. Report on the Aseismic Slip, Tremor, and Earthquakes Workshop

    Science.gov (United States)

    Gomberg, Joan; Roeloffs, Evelyn; Trehu, Anne; Dragert, Herb; Meertens, Charles

    2008-01-01

    This report summarizes the discussions and information presented during the workshop on Aseismic Slip, Tremor, and Earthquakes. Workshop goals included improving coordination among those involved in conducting research related to these phenomena, assessing the implications for earthquake hazard assessment, and identifying ways to capitalize on the education and outreach opportunities presented by these phenomena. Research activities of focus included making, disseminating, and analyzing relevant measurements; the relationships among tremor, aseismic or 'slow-slip', and earthquakes; and discovering the underlying causative physical processes. More than 52 participants contributed to the workshop, held February 25-28, 2008 in Sidney, British Columbia. The workshop was sponsored by the U.S. Geological Survey, the National Science Foundation?s Earthscope Program and UNAVCO Consortium, and the Geological Survey of Canada. This report has five parts. In the first part, we integrate the information exchanged at the workshop as it relates to advancing our understanding of earthquake generation and hazard. In the second part, we summarize the ideas and concerns discussed in workshop working groups on Opportunities for Education and Outreach, Data and Instrumentation, User and Public Needs, and Research Coordination. The third part presents summaries of the oral presentations. The oral presentations are grouped as they were at the workshop in the categories of phenomenology, underlying physical processes, and implications for earthquake hazards. The fourth part contains the meeting program and the fifth part lists the workshop participants. References noted in parentheses refer to the authors of presentations made at the workshop, and published references are noted in square brackets and listed in the Reference section. Appendix A contains abstracts of all participant presentations and posters, which also have been posted online, along with presentations and author contact

  8. Influence of plastic slip localization on grain boundary stress fields and microcrack nucleation

    International Nuclear Information System (INIS)

    Sauzay, Maxime; Vor, Kokleang

    2013-01-01

    Slip localization is widely observed in metallic polycrystals after tensile deformation, cyclic deformation (persistent slip bands) or pre-irradiation followed by tensile deformation (channels). Such strong deformation localized in thin slip bands induces local stress concentrations in the quasi-elastic matrix around, at the intersections between slip bands and grain boundaries where microcracks are often observed. Since the work of Stroh, such stress fields have been modeled using the dislocation pile-up theory which leads to stress singularities similar to the LEFM ones. The Griffith criterion has then been widely applied, leading usually to strong underestimations of the macroscopic stress for microcrack nucleation. In fact, slip band thickness is finite: 50-1000 nm depending on material, temperature and loading conditions. Then, many slip planes are plastically activated through the thickness. Stress fields have probably been overestimated using the pile-up theory which assumes that all dislocations are located on the same atomic plane. To evaluate more realistic stress fields, crystalline finite element (FE) computations are carried out using microstructure inputs (slip band aspect ratio and spacing). Slip bands (low critical resolved shear stress) are embedded in an elastic matrix. The following results are obtained concerning grain boundary normal stress fields: - strong influence of slip band thickness close to the slip band corner, which is not accounted for by the pile-up theory. But far away, the thickness has a negligible effect and the predicted stress fields are close to the one predicted by the pile-up theory, - analytical formulae are deduced from the numerous FE computation results which allows the prediction of surface/bulk slips as well as grain boundary stress fields. Slip band plasticity parameters, slip band length and thickness, Schmid factor and remote stress are taken into account. The dependence with respect to the various parameters can

  9. Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator

    International Nuclear Information System (INIS)

    Li Qun-Hong; Chen Yu-Ming; Qin Zhi-Ying

    2011-01-01

    The stick-slip behavior in friction oscillators is very complicated due to the non-smoothness of the dry friction, which is the basic form of motion of dynamical systems with friction. In this paper, the stick-slip periodic solution in a single-degree-of-freedom oscillator with dry friction is investigated in detail. Under the assumption of kinetic friction being the Coulomb friction, the existence of the stick-slip periodic solution is considered to give out an analytic criterion in a class of friction systems. A two-parameter unfolding diagram is also described. Moreover, the time and states of motion on the boundary of the stick and slip motions are semi-analytically obtained in a single stick-slip period. (general)

  10. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shafique, Maryam [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Tanveer, A., E-mail: anum@math.qau.edu.pk [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects. - Highlights: • Peristalsis in the presence of Jeffery nanofluid is formulated. • Compliant properties of channel walls are addressed. • Impact of Hall and ion slip effects is outlined. • Influence of Joule heating and radiation is investigated. • Mixed convection for both heat and mass transfer is present.

  11. On the micromechanics of slip events in sheared, fluid-saturated fault gouge

    Science.gov (United States)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-06-01

    We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.

  12. Thermally activated phase slips of one-dimensional Bose gases in shallow optical lattices

    Science.gov (United States)

    Kunimi, Masaya; Danshita, Ippei

    2017-03-01

    We study the decay of superflow via thermally activated phase slips in one-dimensional Bose gases in a shallow optical lattice. By using the Kramers formula, we numerically calculate the nucleation rate of a thermally activated phase slip for various values of the filling factor and flow velocity in the absence of a harmonic trapping potential. Within the local density approximation, we derive a formula connecting the phase-slip nucleation rate with the damping rate of a dipole oscillation of the Bose gas in the presence of a harmonic trap. We use the derived formula to directly compare our theory with the recent experiment done by the LENS group [L. Tanzi et al., Sci. Rep. 6, 25965 (2016), 10.1038/srep25965]. From the comparison, the observed damping of dipole oscillations in a weakly correlated and small velocity regime is attributed dominantly to thermally activated phase slips rather than quantum phase slips.

  13. Stokes drag on a disc with a Navier slip condition near a plane wall

    International Nuclear Information System (INIS)

    Sherwood, J D

    2013-01-01

    The Stokes drag and couple acting on a disc moving through incompressible Newtonian fluid are investigated for the case when the fluid obeys a Navier slip condition, with slip length b, on the surface of the disc. The fluid is bounded by an infinite plane wall on which there is no slip. The disc, of zero thickness and radius a, is parallel to the wall and distance h from it. Analyses are presented for the limits h ≫ a and h ≪ a; results for intermediate values of the separation h are obtained numerically by means of Tranter's method. The resistance coefficients for translation normal to the disc surface, and for rotation about a diameter, are unaffected by slip when the disc lies in unbounded fluid, but all resistance coefficients depend upon the slip length b when the disc is close to the wall. Their dependence on h becomes weak when b ≫ a. (paper)

  14. A novel wireless piezoelectric tire sensor for the estimation of slip angle

    International Nuclear Information System (INIS)

    Erdogan, G; Alexander, L; Rajamani, R

    2010-01-01

    This paper introduces a simple approach for the analysis of tire deformation and proposes a new piezoelectric tire sensor for physically meaningful measurements of tire deformations. Tire deformation measurements in the contact patch can be used for the estimation of slip angle, tire forces, slip ratio and tire–road friction coefficient. The specific case of a wireless tire deformation sensor for the estimation of slip angle is taken up in this paper. A sensor in which lateral sidewall deformation can be decoupled from radial deformation is designed. The slope of the lateral deflection curve in the contact patch is used to calculate slip angle. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed sensor. Results show that the developed sensor can accurately estimate slip angles up to values of 5°

  15. Slip Control of Electric Vehicle Based on Tire-Road Friction Coefficient Estimation

    Directory of Open Access Journals (Sweden)

    Gaojian Cui

    2017-01-01

    Full Text Available The real-time change of tire-road friction coefficient is one of the important factors that influence vehicle safety performance. Besides, the vehicle wheels’ locking up has become an important issue. In order to solve these problems, this paper comes up with a novel slip control of electric vehicle (EV based on tire-road friction coefficient estimation. First and foremost, a novel method is proposed to estimate the tire-road friction coefficient, and then the reference slip ratio is determined based on the estimation results. Finally, with the reference slip ratio, a slip control based on model predictive control (MPC is designed to prevent the vehicle wheels from locking up. In this regard, the proposed controller guarantees the optimal braking torque on each wheel by individually controlling the slip ratio of each tire within the stable zone. Theoretical analyses and simulation show that the proposed controller is effective for better braking performance.

  16. An appraisal of subcooled boiling and slip ratio from measurements made in Lingen BWR

    International Nuclear Information System (INIS)

    Nash, G.

    1977-08-01

    Measurements of steam bubble velocities and voidage have been made in the relatively small Core B of Lingen BWR. The results of axial scanning in one radial position have produced experimental values of slip ratio, power (from a travelling incore probe), voidage and coolant mean density over the core height for this position. This one set of distributions has enabled us to test current UKAEA models of subcooled boiling and slip ratio against experiment. From the comparisons, it appears that we can predict the onset of voiding well, but the assumption that a constant fraction of the heat flux forms steam in the subcooled region needs modifying. Of four slip options tested, the current one used by HAMBO and JOSHUA III (Bankoff-Jones) predicts too high a slip ratio. A closer fit to experiment comes from the new Bryce flow-dependent slip option. Any changes in the modelling must be checked, however, with coupled thermal hydraulics-neutronics computations. (author)

  17. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip

    Science.gov (United States)

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A.; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 Mw (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes. PMID:29404404

  18. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    Science.gov (United States)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-01-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  19. Slip length measurement of confined air flow on three smooth surfaces.

    Science.gov (United States)

    Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid

    2013-04-02

    An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.

  20. Dislocation content of geometrically necessary boundaries aligned with slip planes in rolled aluminium

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Huang, Xiaoxu; Winther, Grethe

    2013-01-01

    Previous studies have revealed that dislocation structures in metals with medium-to-high stacking fault energy, depend on the grain orientation and therefore on the slip systems. In the present work, the dislocations in eight slip-plane-aligned geometrically necessary boundaries (GNBs) in three...... expected active dominate. The dislocations predicted inactive are primarily attributed to dislocation reactions in the boundary. Two main types of dislocation networks in the boundaries were identified: (1) a hexagonal network of the three dislocations in the slip plane with which the boundary was aligned......; two of these come from the active slip systems, the third is attributed to dislocation reactions (2) a network of three dislocations from both of the active slip planes; two of these react to form Lomer locks. The results indicate a systematic boundary formation process for the GNBs. Redundant...

  1. Does fault strengthening in laboratory rock friction experiments really depend primarily upon time and not slip?

    Science.gov (United States)

    Bhattacharya, Pathikrit; Rubin, Allan M.; Beeler, Nicholas M.

    2017-08-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law) or with time even without slip (Aging law). While rate stepping experiments show support for the Slip law, laboratory-observed frictional behavior near-zero slip rates has traditionally been inferred as supporting Aging law style time-dependent healing, in particular, from the slide-hold-slide experiments of Beeler et al. (1994). Using a combination of new analytical results and explicit numerical (Bayesian) inversion, we show instead that the slide-hold-slide data of Beeler et al. (1994) favor slip-dependent state evolution during holds. We show that, while the stiffness-independent rate of growth of peak stress (following reslides) with hold duration is a property shared by both the Aging and (under a more restricted set of parameter combinations) Slip laws, the observed stiffness dependence of the rate of stress relaxation during long holds is incompatible with the Aging law with constant rate-state parameters. The Slip law consistently fits the evolution of the stress minima at the end of the holds well, whether fitting jointly with peak stresses or otherwise. But neither the Aging nor Slip laws fit all the data well when a - b is constrained to values derived from prior velocity steps. We also attempted to fit the evolution of stress peaks and minima with the Kato-Tullis hybrid law and the shear stress-dependent Nagata law, both of which, even with the freedom of an extra parameter, generally reproduced the best Slip law fits to the data.

  2. Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan

    Science.gov (United States)

    Shelly, David R.; Beroza, Gregory C.; Ide, Satoshi

    2007-10-01

    Transient slip events, which occur more slowly than traditional earthquakes, are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or in space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as nonvolcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous subevents of smaller size and shorter duration. In addition to along-strike migration rates of ˜10 km/d observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/h over distances of up to ˜20 km. We observe such migration episodes in both the updip and downdip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.

  3. The complex evolution of transient slip revealed by precise tremor locations in western Shikoku, Japan

    Science.gov (United States)

    Shelly, D. R.; Beroza, G. C.; Ide, S.

    2007-12-01

    Transient slow slip events are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as non-volcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous sub-events of smaller size and shorter duration. In addition to along-strike migration rates of about 10 km/day observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/hour over distances of up to 20 km. We observe such migration episodes in both the up-dip and down-dip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.

  4. Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective

    Science.gov (United States)

    Du, Zhouwei; Fang, Hongbin; Zhan, Xiong; Xu, Jian

    2018-05-01

    Dry friction appears at the contact interface between two surfaces and is the source of stick-slip vibrations. Instead of being a negative factor, dry friction is essential for vibration-driven locomotion system to take effect. However, the dry-friction-induced stick-slip locomotion has not been fully understood in previous research, especially in terms of experiments. In this paper, we experimentally study the stick-slip dynamics of a vibration-driven locomotion system from a sliding bifurcation perspective. To this end, we first design and build a vibration-driven locomotion prototype based on an internal piezoelectric cantilever. By utilizing the mechanical resonance, the small piezoelectric deformation is significantly amplified to drive the prototype to achieve effective locomotion. Through identifying the stick-slip characteristics in velocity histories, we could categorize the system's locomotion into four types and obtain a stick-slip categorization diagram. In each zone of the diagram the locomotion exhibits qualitatively different stick-slip dynamics. Such categorization diagram is actually a sliding bifurcation diagram; crossing from one stick-slip zone to another corresponds to the triggering of a sliding bifurcation. In addition, a simplified single degree-of-freedom model is established, with the rationality of simplification been explained theoretically and numerically. Based on the equivalent model, a numerical stick-slip categorization is also obtained, which shows good agreement with the experiments both qualitatively and quantitatively. To the best of our knowledge, this is the first work that experimentally generates a sliding bifurcation diagram. The obtained stick-slip categorizations deepen our understanding of stick-slip dynamics in vibration-driven systems and could serve as a base for system design and optimization.

  5. Surgical results of the slipped medial rectus muscle after hang back recession surgery

    Directory of Open Access Journals (Sweden)

    Yasar Duranoglu

    2014-12-01

    Full Text Available AIM:To analyze the surgical results of a slipped medial rectus muscle (MRM after hang back recession surgery for esotropia.METHODS:Twenty-one patients who underwent re-exploration for diagnosed slipped muscle after hang back recession surgery were included in this retrospective study. Dynamic magnetic resonance imaging was performed to identify the location of the slipped muscle. Ocular motility was evaluated with assessment with prism and cover test in gaze at cardinal positions. The operations were performed by the same consultant. Intraoperative forced duction test was performed under general anesthesia. The empty sheath of the slipped MRM was resected and the muscle was advanced to the original insertion site in all patients.RESULTS:The average age of 21 patients who hadconsecutive exotropia with a slipped MRM at the time of presentation was 17.4±5.4y (5-50y. The average duration between the first operation and the diagnosis of the slipped muscle was 25mo (12 to 36mo. The mean follow up after the corrective surgery was 28mo. The mean preoperative adduction limitation in the field of action of the slipped muscle was -2.26 (ranging from -1 to -4. All patients had full adduction postoperatively.CONCLUSION:The diagnosis of the slipped muscle should be confirmed during the strabismus surgery. The slipped muscle may be caused due to insufficient suture and excessive rubbing of the eye. When divergent strabismus is observed after the recession of the MRM, a slipped muscle should be considered in the differential diagnosis.

  6. The role of bed-parallel slip in the development of complex normal fault zones

    Science.gov (United States)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  7. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory

    Science.gov (United States)

    Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J.

    2011-01-01

    We tested the hypothesis that the Slumgullion landslide is a useful natural laboratory for observing fault slip, specifically that slip along its basal surface and side-bounding strike-slip faults occurs with comparable richness of aseismic and seismic modes as along crustal- and plate-scale boundaries. Our study provides new constraints on models governing landslide motion. We monitored landslide deformation with temporary deployments of a 29-element prism array surveyed by a robotic theodolite and an 88-station seismic network that complemented permanent extensometers and environmental instrumentation. Aseismic deformation observations show that large blocks of the landslide move steadily at approximately centimeters per day, possibly punctuated by variations of a few millimeters, while localized transient slip episodes of blocks less than a few tens of meters across occur frequently. We recorded a rich variety of seismic signals, nearly all of which originated outside the monitoring network boundaries or from the side-bounding strike-slip faults. The landslide basal surface beneath our seismic network likely slipped almost completely aseismically. Our results provide independent corroboration of previous inferences that dilatant strengthening along sections of the side-bounding strike-slip faults controls the overall landslide motion, acting as seismically radiating brakes that limit acceleration of the aseismically slipping basal surface. Dilatant strengthening has also been invoked in recent models of transient slip and tremor sources along crustal- and plate-scale faults suggesting that the landslide may indeed be a useful natural laboratory for testing predictions of specific mechanisms that control fault slip at all scales.

  8. Probabilistic inductive inference: a survey

    OpenAIRE

    Ambainis, Andris

    2001-01-01

    Inductive inference is a recursion-theoretic theory of learning, first developed by E. M. Gold (1967). This paper surveys developments in probabilistic inductive inference. We mainly focus on finite inference of recursive functions, since this simple paradigm has produced the most interesting (and most complex) results.

  9. A Student Teamwork Induction Protocol

    Science.gov (United States)

    Kamau, Caroline; Spong, Abigail

    2015-01-01

    Faulty group processes have harmful effects on performance but there is little research about intervention protocols to pre-empt them in higher education. This naturalistic experiment compared a control cohort with an inducted cohort. The inducted cohort attended a workshop, consultations, elected a leader and used tools (a group log and group…

  10. Sampling Assumptions in Inductive Generalization

    Science.gov (United States)

    Navarro, Daniel J.; Dry, Matthew J.; Lee, Michael D.

    2012-01-01

    Inductive generalization, where people go beyond the data provided, is a basic cognitive capability, and it underpins theoretical accounts of learning, categorization, and decision making. To complete the inductive leap needed for generalization, people must make a key "sampling" assumption about how the available data were generated.…

  11. From Inductive Reasoning to Proof

    Science.gov (United States)

    Yopp, David A.

    2009-01-01

    Mathematical proof is an expression of deductive reasoning (drawing conclusions from previous assertions). However, it is often inductive reasoning (conclusions drawn on the basis of examples) that helps learners form their deductive arguments, or proof. In addition, not all inductive arguments generate more formal arguments. This article draws a…

  12. Covariation in Natural Causal Induction.

    Science.gov (United States)

    Cheng, Patricia W.; Novick, Laura R.

    1991-01-01

    Biases and models usually offered by cognitive and social psychology and by philosophy to explain causal induction are evaluated with respect to focal sets (contextually determined sets of events over which covariation is computed). A probabilistic contrast model is proposed as underlying covariation computation in natural causal induction. (SLD)

  13. Economic implications of labor induction.

    Science.gov (United States)

    Garcia-Simon, Raquel; Montañes, Antonio; Clemente, Jesús; Del Pino, María D; Romero, Manuel A; Fabre, Ernesto; Oros, Daniel

    2016-04-01

    To assess health service costs associated with labor induction according to different clinical situations in a tertiary-level hospital. In a prospective study, individual patient cost data were assessed for women admitted for induction of labor at a tertiary hospital in Spain between November 1, 2012, and August 31, 2013. The costs of labor induction were estimated according to maternal and neonatal outcomes, method of delivery, cervical condition at admission, and obstetric indication. Direct costs including professional fees, epidural, maternal stay, consumables, and drugs were calculated. Overall, 412 women were included in the final cost analysis. The mean total cost of labor induction was €3589.87 (95% confidence interval [CI] 3475.13-3704.61). Cesarean delivery after labor induction (€4830.45, 95% CI 4623.13-5037.58) was significantly more expensive than spontaneous delivery (€3037.45, 95% CI 2966.91-3179.99) and instrumental vaginal delivery (€3344.31, 95%CI 3151.69-3536.93). The total cost for patients with a very unfavorable cervix (Bishop score Labor induction for hypertensive disorders of pregnancy was the most expensive obstetric indication for induction of labor (€4347.32, 95% CI 3890.45-4804.18). Following the induction of labor, a number of patient- and treatment-related factors influence costs associated with delivery. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Variability Bugs:

    DEFF Research Database (Denmark)

    Melo, Jean

    . Although many researchers suggest that preprocessor-based variability amplifies maintenance problems, there is little to no hard evidence on how actually variability affects programs and programmers. Specifically, how does variability affect programmers during maintenance tasks (bug finding in particular......)? How much harder is it to debug a program as variability increases? How do developers debug programs with variability? In what ways does variability affect bugs? In this Ph.D. thesis, I set off to address such issues through different perspectives using empirical research (based on controlled...... experiments) in order to understand quantitatively and qualitatively the impact of variability on programmers at bug finding and on buggy programs. From the program (and bug) perspective, the results show that variability is ubiquitous. There appears to be no specific nature of variability bugs that could...

  15. Programming list processes. SLIP: symmetric list processor - applications; Le traitement de listes en programmation. SLIP: langage de listes symetrique - applications

    Energy Technology Data Exchange (ETDEWEB)

    Broudin, Y [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-06-01

    Modern aspects of programming languages are essentially turned towards list processing. The ordinary methods of sequential treatment become inadequate and we must substitute list processes for them, where the cells of a group have no neighbourhood connection, but where the address of one cell is contained in the preceding one. These methods are required in 'time sharing' solving problems. They also allow us to treat new problems and to solve others in the shortest time. Many examples are presented after an abstract of the most usual list languages and a detailed study of one of them : SLIP. Among these examples one should note: locating of words in a dictionary or in a card index, treatment of non numerical symbols, formal derivation. The problems are treated in Fortran II on an IBM 7094 machine. The subroutines which make up the language are presented in an appendix. (author) [French] La programmation moderne ne se satisfait plus des methodes classiques de traitement sequentiel ni des tableaux a positions de memoire contigues. Elle tend a generaliser les methodes de listes ou les cellules d'un groupe n'ont pas de relation de voisinage, mais sont enchainees en listes, l'une donnant l'adresse machine de l'autre. Ces methodes sont indispensables en 'partage de temps' et dans les traitements en 'temps reel'. De plus, elles permettent de traiter des problemes nouveaux et d'optimiser le temps de traitement de nombreux autres. De nombreux exemples sont traites, apres un resume des langages les plus utilises et une etude plus precise d'un langage de listes: SLIP. Parmi les exemples traites signalons la recherche lexicographique, le traitement de symboles alphanumeriques, la derivation formelle. Probleme traite en Fortran II sur IBM 7094. Les sous-programmes constitutifs du langage sont fournis en annexe. (auteur)

  16. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk

    Science.gov (United States)

    Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-04-01

    Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.

  17. Interferon induction by adenoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Beladi, I; Bakay, M; Pusztai, R; Mucsi, I; Tarodi, B [University Medical School, Szeged (Hungary). Inst. of Microbiology

    1979-02-01

    All human, simian, bovine and avian adenovirus types tested so far and the canine hepatitis virus induce interferon production in chick cells. This finding indicated this property to be characteristic for viruses belonging to the adenovirus group. Trypsin treatment, which had no effect upon the infectivity, diminished or eliminated the interferon-inducing abilities of crude adenoviruses, and thus the need for a trypsin-sensitive protein in interferon induction was suggested. T antigen and interferon were formed simultaneously in chick embryo fibroblast cells infected with human adenovirus type 12, and there-fore the adenovirus-specific T antigen was resitant to the action of endogenous interferon synthetized by the same cells. In chicks inoculated with human types, the appearance of interferon was biphasic: an 'early' and a 'late' interferon could be demonstrated with maximum titre 4 and 10 hr, respectively, after virus infection. In chicks infected with adenoviruses, first interferon production and then a decreased primary immune response to sheep red blood cells was observed. It was assumed that in adenovirus-infected chicks the interferon produced by viral stimulus resulted in a transient immunosuppression.

  18. Shear-induced Fracture Slip and Permeability Change. Implications for Long-term Performance of a Deep Geological Repository

    International Nuclear Information System (INIS)

    Min, Ki-Bok; Stephansson, Ove

    2009-03-01

    Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in jointed rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this project are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. The first part of the study is about the evolution of thermal stresses in the rock during the lifetime of the repository. Critical sections of heat generated stresses around the repository are selected and classified. Fracture data from Forsmark is used to establish fracture network models (DFN) and the models are subjected to the sum of virgin stress and thermal stresses and the shear slip and related permeability change are studied. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the corners of the repository. In the

  19. Shear-induced Fracture Slip and Permeability Change. Implications for Long-term Performance of a Deep Geological Repository

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ki-Bok (School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Adelaide (Australia)); Stephansson, Ove (Steph Rock Consulting AB, Berlin (Germany))

    2009-03-15

    Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in jointed rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this project are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. The first part of the study is about the evolution of thermal stresses in the rock during the lifetime of the repository. Critical sections of heat generated stresses around the repository are selected and classified. Fracture data from Forsmark is used to establish fracture network models (DFN) and the models are subjected to the sum of virgin stress and thermal stresses and the shear slip and related permeability change are studied. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the corners of the repository. In the

  20. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  1. Inductive line energy storage generator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The inductive energy storage (IES) generator has long been considered to be the most efficient system for energy usage in large pulsed power system at the MA level. A number of parameters govern the efficiency of energy transfer between the storage capacitors and the load, and the level of current deliverable to the load. For high power system, the energy storage capacitors are arranged as a Marx generator. The primary constraints are the inductances in the various parts of the circuit, in particular, the upstream inductance between the Marx and the POS, and the downstream inductance between the POS and the load. This paper deals with the effect of replacing part of the upstream inductance with a transmission line and introduces the new concept of an inductive line for energy storage (ILES). Extensive parametric scans were carried out on circuit simulations to investigate the effect of this upstream transmission line. A model was developed to explain the operation of the ILES design based on the data obtained. Comparison with an existing IES generator shows that the ILES design offers a significant improvement in the maximum current and hence energy delivered to an inductive load. (author). 5 figs., 1 ref.

  2. Experimental tests on slip factor in friction joints: comparison between European and American Standards

    Directory of Open Access Journals (Sweden)

    Emanuele Maiorana

    2018-01-01

    Full Text Available Friction joints are used in steel structures submitted to cyclic loading such as, for example, in steel and composite bridges, in overhead cranes, and in equipment subjected to fatigue. Slip-critical steel joints with preloaded bolts are characterized by high rigidity and good performance against fatigue and vibrational phenomena. The most important parameter for the calculation of the bolt number in a friction connection is the slip factor, depending on the treatment of the plane surfaces inside the joint package. The paper focuses on the slip factor values reported in European and North American Specifications, and in literature references. The differences in experimental methods of slip test and evaluation of them for the mentioned standards are discussed. The results from laboratory tests regarding the assessment of the slip factor related to only sandblasted and sandblasted and coated surfaces are reported. Experimental data are compared with other results from the literature review to find the most influent parameters that control the slip factor in friction joint and differences between the slip tests procedures

  3. Activity of pyramidal I and II slip in Mg alloys as revealed by texture development

    Science.gov (United States)

    Zecevic, Miroslav; Beyerlein, Irene J.; Knezevic, Marko

    2018-02-01

    Due to the geometry of the hexagonal close-packed (HCP) lattice, there are two types of pyramidal slip modes: { 10 1 bar 1 } 〈 11 2 bar 3 bar 〉 or type I and { 1 bar 1 bar 22 } 〈 11 2 bar 3 〉 or type II in HCP crystalline materials. Here we use crystal plasticity to examine the importance of crystallographic slip by pyramidal type I and type II on texture evolution. The study is applied to an Mg-4%Li alloy. An elastic-plastic polycrystal model is employed to elucidate the reorientation tendencies of these two slip modes in rolling of a textured polycrystal. Comparisons with experimental texture measurements indicate that both pyramidal I and II type slip were active during rolling deformation, with pyramidal I being the dominant mode. A single-slip-mode analysis is used to identify the orientations that prefer pyramidal I vs. II type slip when acting alone in a crystal. The analysis applies not only to Mg-4%Li, but identifies the key texture components in HCP crystals that would help distinguish the activity of pyramidal I from pyramidal II slip in rolling deformation.

  4. An Improved Optimal Slip Ratio Prediction considering Tyre Inflation Pressure Changes

    Directory of Open Access Journals (Sweden)

    Guoxing Li

    2015-01-01

    Full Text Available The prediction of optimal slip ratio is crucial to vehicle control systems. Many studies have verified there is a definitive impact of tyre pressure change on the optimal slip ratio. However, the existing method of optimal slip ratio prediction has not taken into account the influence of tyre pressure changes. By introducing a second-order factor, an improved optimal slip ratio prediction considering tyre inflation pressure is proposed in this paper. In order to verify and evaluate the performance of the improved prediction, a cosimulation platform is developed by using MATLAB/Simulink and CarSim software packages, achieving a comprehensive simulation study of vehicle braking performance cooperated with an ABS controller. The simulation results show that the braking distances and braking time under different tyre pressures and initial braking speeds are effectively shortened with the improved prediction of optimal slip ratio. When the tyre pressure is slightly lower than the nominal pressure, the difference of braking performances between original optimal slip ratio and improved optimal slip ratio is the most obvious.

  5. Lattice Boltzmann study of slip flow over structured surface with transverse slots

    Science.gov (United States)

    Chen, Wei; Wang, Kai; Wang, Lei; Hou, Guoxiang; Leng, Wenjun

    2018-04-01

    Slip flow over structured superhydrophobic surface with transverse slots is investigated by the lattice Boltzmann method. The Shan-Chen multiphase model is employed to simulate the flow over gas bubbles in the slots. The Carnahan-Starling equation of state is applied to obtain large density ratio. The interface thickness of the multiphase model is discussed. We find that the Cahn number Cn should be smaller than 0.02 when the temperature T = 0.5T c to restrict the influence of interface thickness on slip length. Influences of slot fraction on slip length is then studied, and the result is compared with single LB simulation of which the interface is treated as free-slip boundary. The slip length obtained by the multiphase model is a little smaller. After that, the shape of the liquid-gas interface is considered, and simulations with different initial protrusion angles and capillary numbers are performed. Effective slip length as a function of initial protrusion angle is obtained. The result is in qualitative agreement with a previous study and main features are reproduced. Furthermore, the influence of Capillary number Ca is studied. Larger Ca causes larger interface deformation and smaller slip length. But when the interface is concaving into the slot, this influence is less obvious.

  6. Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy

    International Nuclear Information System (INIS)

    Zhou, Na; Zhang, Zhenyan; Jin, Li; Dong, Jie; Chen, Bin; Ding, Wenjiang

    2014-01-01

    Highlights: • A high elongation of ∼33% was achieved for magnesium alloy through common extrusion. • Basal slip and extension twinning are the dominant deformation modes for the high ductility. • Non-basal slip, contraction twinning and twin-slip interaction also contribute to the ductility. - Abstract: An extruded Mg-3.0Y alloy with non-basal texture of 〈42 ¯ 2 ¯ 3〉 component was fabricated by common extrusion and exhibited a high elongation of ∼33%. The deformation modes and microstructure evolution of the extruded Mg-3.0Y alloy during the tensile test at room temperature were investigated to explore the reasons for the high ductility by transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The results suggested that texture changed from 〈42 ¯ 2 ¯ 3〉 to 〈101 ¯ 0〉 component during the tensile deformation, which is attributed the slip and twinning activity. Basal slip and extension twinning are the dominant deformation modes for the high ductility. Meanwhile, the activation of non-basal slip, contraction twinning and twin–slip interaction also contributes to the good ductility of Mg-3.0Y alloy

  7. Ultra-thin clay layers facilitate seismic slip in carbonate faults.

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico

    2017-04-06

    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  8. Slip resistance of casual footwear: implications for falls in older adults.

    Science.gov (United States)

    Menz, H B; Lord, S T; McIntosh, A S

    2001-01-01

    A large proportion of falls in older people are caused by slipping. Previous occupational safety research suggests that inadequate footwear may contribute to slipping accidents; however, no studies have assessed the slip resistance of casual footwear. To evaluate the slip resistance of different types of casual footwear over a range of common household surfaces. The slip resistance of men's Oxford shoes and women's fashion shoes with different heel configurations was determined by measuring the dynamic coefficient of friction (DCoF) at heel contact (in both dry and wet conditions) on a bathroom tile, concrete, vinyl flooring and a terra cotta tile using a specially-designed piezoelectric force plate apparatus. Analysis of variance revealed significant shoe, surface, and shoe-surface interaction effects. Men's Oxford shoes exhibited higher average DCoF values than the women's fashion shoes, however, none of the shoes could be considered safe on wet surfaces. Application of a textured sole material did not improve slip resistance of any of the shoes on wet surfaces. Heel geometry influences the slip resistance of casual footwear on common household surfaces. The suboptimal performance of all of the test shoes on wet surfaces suggests that a safety standard for casual footwear is required to assist in the development of safe footwear for older people. Copyright 2001 S. Karger AG, Basel

  9. Shoe sole tread designs and outcomes of slipping and falling on slippery floor surfaces.

    Directory of Open Access Journals (Sweden)

    Li-Wen Liu

    Full Text Available A gait experiment was conducted under two shoe sole and three floor conditions. The shoe soles and floors were characterized by the tread and groove designs on the surface. The coefficients of friction (COF on the floor in the target area were measured. The subjects were required to walk on a walkway and stepping on a target area covered with glycerol. The motions of the feet of the subjects were captured. Gait parameters were calculated based on the motion data. Among the 240 trials, there were 37 no-slips, 81 microslips, 45 slides, and 77 slips. It was found that the condition with shoe sole and floor had both tread grooves perpendicular to the walking direction had the highest COF, the shortest slip distance, and the lowest percentages of slide and slip. The condition with shoe sole and floor had both tread grooves parallel to the walking direction had the lowest COF and the longest slip distance among all experimental conditions. The Pearson's correlation coefficients between slip distance and slip velocity, time to foot flat, foot angle, and compensatory step length were 0.82 (p<0.0001, 0.33 (p<0.0001, -0.54 (p<0.0001, and -0.51 (p<0.0001, respectively.

  10. Influence of fault steps on rupture termination of strike-slip earthquake faults

    Science.gov (United States)

    Li, Zhengfang; Zhou, Bengang

    2018-03-01

    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  11. Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments

    Science.gov (United States)

    Mclaskey, G.

    2017-12-01

    The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.

  12. Numerical Simulations of Slow Stick Slip Events with PFC, a DEM Based Code

    Science.gov (United States)

    Ye, S. H.; Young, R. P.

    2017-12-01

    Nonvolcanic tremors around subduction zone have become a fascinating subject in seismology in recent years. Previous studies have shown that the nonvolcanic tremor beneath western Shikoku is composed of low frequency seismic waves overlapping each other. This finding provides direct link between tremor and slow earthquakes. Slow stick slip events are considered to be laboratory scaled slow earthquakes. Slow stick slip events are traditionally studied with direct shear or double direct shear experiment setup, in which the sliding velocity can be controlled to model a range of fast and slow stick slips. In this study, a PFC* model based on double direct shear is presented, with a central block clamped by two side blocks. The gauge layers between the central and side blocks are modelled as discrete fracture networks with smooth joint bonds between pairs of discrete elements. In addition, a second model is presented in this study. This model consists of a cylindrical sample subjected to triaxial stress. Similar to the previous model, a weak gauge layer at a 45 degrees is added into the sample, on which shear slipping is allowed. Several different simulations are conducted on this sample. While the confining stress is maintained at the same level in different simulations, the axial loading rate (displacement rate) varies. By varying the displacement rate, a range of slipping behaviour, from stick slip to slow stick slip are observed based on the stress-strain relationship. Currently, the stick slip and slow stick slip events are strictly observed based on the stress-strain relationship. In the future, we hope to monitor the displacement and velocity of the balls surrounding the gauge layer as a function of time, so as to generate a synthetic seismogram. This will allow us to extract seismic waveforms and potentially simulate the tremor-like waves found around subduction zones. *Particle flow code, a discrete element method based numerical simulation code developed by

  13. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy.

    Science.gov (United States)

    Brooks, Benjamin A; Minson, Sarah E; Glennie, Craig L; Nevitt, Johanna M; Dawson, Tim; Rubin, Ron; Ericksen, Todd L; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-07-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth's surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  14. Geodetic Slip Solution for the Mw=7.4 Champerico (Guatemala) Earthquake of 07 November 2012

    Science.gov (United States)

    Ellis, A. P.; DeMets, C.; Briole, P.; Molina, E.; Flores, O.; Rivera, J.; Lasserre, C.; Lyon-Caen, H.; Lord, N. E.

    2014-12-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past several decades, the 07 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. We use measurements at 19 continuous GPS sites in Guatemala, El Salvador, and Mexico to estimate the coseismic slip and post-seismic deformation of the November 2012 Champerico (Guatemala) earthquake. Coseismic offsets range from ~47 mm near the epicenter to El Salvador. An inversion of the geodetic data indicate that that up to ~2 m of coseismic slip occurred on a ~30 km by 30 km rupture area between ~10 and 30 km depth, encouragingly close to the global CMT epicenter. The geodetic moment of 13 x 1019 N·m and corresponding magnitude of 7.4 both agree well with independent seismological estimates. An inversion for the postseismic fault afterslip shows that the transient postseismic motions recorded at 11 GPS sites are well fit with a logarithmically decaying function. More than 70 per cent of the postseismic slip occurred at the same depth or directly downdip from the main shock epicenter. At the upper limit, afterslip that occurred within 6 months of the earthquake released energy equivalent to only ~20 per cent of the coseismic moment. The seismologically derived slip solution from Ye et al. (2012), which features more highly concentrated slip than our own, fits our GPS offsets reasonably well provided that we translate their slip centroid ~51 km to the west to a position close to our own slip centroid. The geodetic and seismologic slip solutions thus suggest bounds of 2-5 m for the peak slip along a region of the interface no larger than 30 x 30 km and possibly much smaller.

  15. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy

    Science.gov (United States)

    Brooks, Benjamin A.; Minson, Sarah E.; Glennie, Craig L.; Nevitt, Johanna M.; Dawson, Tim; Rubin, Ron; Ericksen, Todd L.; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-01-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests. PMID:28782026

  16. Overview of Bearingless Induction Motors

    Directory of Open Access Journals (Sweden)

    Xiaodong Sun

    2014-01-01

    Full Text Available Bearingless induction motors combining functions of both torque generation and noncontact magnetic suspension together have attracted more and more attention in the past decades due to their definite advantages of compactness, simple structure, less maintenance, no wear particles, high rotational speed, and so forth. This paper overviews the key technologies of the bearingless induction motors, with emphasis on motor topologies, mathematical models, and control strategies. Particularly, in the control issues, the vector control, independent control, direct torque control, nonlinear decoupling control, sensorless control, and so forth are investigated. In addition, several possible development trends of the bearingless induction motors are also discussed.

  17. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Mukhopadhyay, Swati; Layek, G. C.

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate. (fundamental areas of phenomenology(including applications))

  18. Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids

    Science.gov (United States)

    Wang, Xiaoping; Qi, Haitao; Yu, Bo; Xiong, Zhen; Xu, Huanying

    2017-09-01

    This work investigates the unsteady electroosmotic slip flow of viscoelastic fluid through a parallel plate micro-channel under combined influence of electroosmotic and pressure gradient forcings with asymmetric zeta potentials at the walls. The generalized second grade fluid with fractional derivative was used for the constitutive equation. The Navier slip model with different slip coefficients at both walls was also considered. By employing the Debye-Hückel linearization and the Laplace and sin-cos-Fourier transforms, the analytical solutions for the velocity distribution are derived. And the finite difference method for this problem was also given. Finally, the influence of pertinent parameters on the generation of flow is presented graphically.

  19. Spatial organization of plastic deformation in single crystals with different structure of slip dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Kunitsyna, T. S.; Teplyakova, L. A., E-mail: lat168@mail.ru; Koneva, N. A. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Poltaranin, M. A. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    It is established that different structure of slip dislocation at the end of the linear hardening stage results in different distribution of dislocation charges in the volume of a single crystal. In the alloy with a near atomic order the slip of single dislocations leads to formation of planar structures—layers with the excess density of dislocations. In the alloy with long-range atomic order the slip of superdislocations brings the formation of the system of parallel rod-like charged dislocation linking.

  20. Development of a slip sensor using separable bilayer with Ecoflex-NBR film

    Science.gov (United States)

    Kim, Sung Joon; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon

    2017-04-01

    Polymer film-type slip sensor is presented by using novel working principle rather than measuring micro-vibration. The sensor is comprised of bilayer with Ecoflex and NBR(acrylonitrile butadiene rubber) films divided by di-electric. When slip occur on surface, bilayer have relative displacement from each other because friction-induced vibration make a clearance between two layers. This displacement can be obtained by capacitance difference. CNT(carbon nanotube) was employed for electrode because of flexible and stretchable characteristics. Also normal and shear force can be decoupled by the working principle. To verify developed sensor, slip test apparatus was designed and experiments were conducted.

  1. Effects of Velocity-Slip and Viscosity Variation in Squeeze Film Lubrication of Two Circular Plates

    Directory of Open Access Journals (Sweden)

    R.R. Rao

    2013-03-01

    Full Text Available A generalized form of Reynolds equation for two symmetrical surfaces is taken by considering velocity-slip at the bearing surfaces. This equation is applied to study the effects of velocity-slip and viscosity variation for the lubrication of squeeze films between two circular plates. Expressions for the load capacity and squeezing time obtained are also studied theoretically for various parameters. The load capacity and squeezing time decreases due to slip. They increase due to the presence of high viscous layer near the surface and decrease due to low viscous layer.

  2. Theory of coherent quantum phase slips in Josephson junction chains with periodic spatial modulations

    Science.gov (United States)

    Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.

    2018-03-01

    We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

  3. Phase slip process and charge density wave dynamics in a one dimensional conductor

    Science.gov (United States)

    Habiballah, N.; Zouadi, M.; Arbaoui, A.; Qjani, M.; Dumas, J.

    In this paper, we study the phase slip effect on the charge density wave (CDW) dynamics in a one-dimensional conductor in the weak pinning limit. A considerable enhancement of JCDW is observed in the presence of phase slips. In addition, a spatial dependence of the CDW current density JCDW is also studied showing that a decrease of JCDW with distance from the current contact occurs. The results are discussed in terms the relationship between additional phase slips and the mobility of phase dislocations nucleated at electrical contacts.

  4. The Effects of Obesity and Age on Balance Recovery After Slipping

    OpenAIRE

    Allin, Leigh Jouett

    2014-01-01

    Falls due to slipping are a serious occupational concern. Slipping is estimated to cause 40-50% of all fall-related injuries. In 2011, falls resulted in 22% of injuries requiring days away from work. Epidemiological data indicates that older and obese adults experience more falls than young, non-obese individuals. An increasingly heavier and older workforce may be exacerbating the problem of slip-induced falls in the workplace. The purpose of this study was to examine the effects of obesity a...

  5. Origin and structure of major orogen-scale exhumed strike-slip

    Science.gov (United States)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San

  6. Stopping times in cessation flows of Bingham plastics with slip at the wall

    Science.gov (United States)

    Philippou, Maria; Damianou, Yiolanda; Kaoullas, George; Georgiou, Georgios C.

    2012-09-01

    We solve numerically the cessation of axisymmetric Poiseuille flow of a Bingham plastic assuming that slip occurs along the wall. A power-law expression is used to relate the wall shear stress to the slip velocity. The numerical results show that the velocity becomes and remains uniform before complete cessation and that the stopping time is finite only when the exponent sBingham number and the volumetric flow rate decays exponentially. When s>1, the decay is much slower, i.e. polynomial. The asymptotic expressions for the volumetric flow rate in the case of full-slip are also derived.

  7. Re-investigation of slip rate along the southern part of the Sumatran Fault Zone using SuMo GPS network

    Science.gov (United States)

    Hermawan, I.; Lubis, A. M.; Sahputra, R.; Hill, E.; Sieh, K.; Feng, L.; Salman, R.; Hananto, N.

    2015-12-01

    The Sumatran Fault Zone (SFZ) accommodates a significant component of the strike-slip motion of oblique convergence along the Sumatra subduction zone. Previous studies have suggested that the slip rates of the SFZ increase from south to north. However, recent work shows that the slip rates may not vary along the SFZ [Bradley et al., 2015]. New data are needed to help confirm these results, and to assess slip-rate variability and fault segmentation in more detail. This information is vital for seismic hazard assessment for the region. We have therefore installed and operated the SuMo (Sumatran Fault Monitoring) network, a dense GPS campaign network focused around the SFZ. From 2013-2015 we selected and installed 32 GPS monuments over the southern part of the SFZ. The network comprises of three transects. The first transect is around the location of the great 1900 earthquake, at the Musi segment. Two transects cover the Manna segment, which saw its last great earthquake in 1893, and the Kumering segment, which saw two great earthquakes in 1933 (M 7.5) and 1994 (M 7.0). We have now conducted three GPS campaign surveys for these stations (3-4 days of measurement for each occupation site), and established 5 semi-permanent cGPS stations in the area. The processed data show that the campaigns sites are still too premature to be used for estimating slip rates, but from the preliminary results for the semi-permanent stations we may see our first signal of deformation. More data from future survey campaigns will help us to estimated revised slip rates. In addition to the science goals for our project, we are this year starting a project called "SuMo Goes to School," which will aim to disseminate information on our science to the schools that house the SuMo GPS stations. The SuMo project also achieves capacity building by training students from Bengkulu University in geodesy and campaign GPS survey techniques.

  8. Pore Pressure Evolution in Shallow Subduction Earthquake Sequences and Effects on Aseismic Slip Transients -- Numerical Modeling With Rate and State Friction

    Science.gov (United States)

    Liu, Y.; Rice, J. R.

    2005-12-01

    In 3D modeling of long tectonic loading and earthquake sequences on a shallow subduction fault [Liu and Rice, 2005], with depth-variable rate and state friction properties, we found that aseismic transient slip episodes emerge spontaneously with only a simplified representation of effects of metamorphic fluid release. That involved assumption of a constant in time but uniformly low effective normal stress in the downdip region. As suggested by observations in several major subduction zones [Obara, 2002; Rogers and Dragert, 2003; Kodaira et al, 2004], the presence of fluids, possibly released from dehydration reactions beneath the seismogenic zone, and their pressurization within the fault zone may play an important role in causing aseismic transients and associated non-volcanic tremors. To investigate the effects of fluids in the subduction zone, particularly on the generation of aseismic transients and their various features, we develop a more complete physical description of the pore pressure evolution (specifically, pore pressure increase due to supply from dehydration reactions and shear heating, decrease due to transport and dilatancy during slip), and incorporate that into the rate and state based 3D modeling. We first incorporated two important factors, dilatancy and shear heating, following Segall and Rice [1995, 2004] and Taylor [1998]. In the 2D simulations (slip varies with depth only), a dilatancy-stabilizing effect is seen which slows down the seismic rupture front and can prevent rapid slip from extending all the way to the trench, similarly to Taylor [1998]. Shear heating increases the pore pressure, and results in faster coseismic rupture propagation and larger final slips. In the 3D simulations, dilatancy also stabilizes the along-strike rupture propagation of both seismic and aseismic slips. That is, aseismic slip transients migrate along the strike faster with a shorter Tp (the characteristic time for pore pressure in the fault core to re

  9. Antibody induction versus placebo, no induction, or another type of antibody induction for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, André; Wilson, Colin H

    2014-01-01

    . All 19 trials were with high risk of bias. Of the 19 trials, 16 trials were two-arm trials, and three trials were three-arm trials. Hence, we found 25 trial comparisons with antibody induction agents: interleukin-2 receptor antagonist (IL-2 RA) versus no induction (10 trials with 1454 participants....... Furthermore, serum creatinine was statistically significantly higher when T-cell specific antibody induction was compared with no induction (MD 3.77 μmol/L, 95% CI 0.33 to 7.21; low-quality evidence), as well as when polyclonal T-cell specific antibody induction was compared with no induction, but this small...... T-cell specific antibody induction, drug-related adverse events were less common among participants treated with interleukin-2 receptor antagonists (RR 0.23, 95% CI 0.09 to 0.63; low-quality evidence), but this was caused by the results from one trial, and trial sequential analysis could not exclude...

  10. Development of a Predictive Model for Induction Success of Labour

    Directory of Open Access Journals (Sweden)

    Cristina Pruenza

    2018-03-01

    Full Text Available Induction of the labour process is an extraordinarily common procedure used in some pregnancies. Obstetricians face the need to end a pregnancy, for medical reasons usually (maternal or fetal requirements or less frequently, social (elective inductions for convenience. The success of induction procedure is conditioned by a multitude of maternal and fetal variables that appear before or during pregnancy or birth process, with a low predictive value. The failure of the induction process involves performing a caesarean section. This project arises from the clinical need to resolve a situation of uncertainty that occurs frequently in our clinical practice. Since the weight of clinical variables is not adequately weighted, we consider very interesting to know a priori the possibility of success of induction to dismiss those inductions with high probability of failure, avoiding unnecessary procedures or postponing end if possible. We developed a predictive model of induced labour success as a support tool in clinical decision making. Improve the predictability of a successful induction is one of the current challenges of Obstetrics because of its negative impact. The identification of those patients with high chances of failure, will allow us to offer them better care improving their health outcomes (adverse perinatal outcomes for mother and newborn, costs (medication, hospitalization, qualified staff and patient perceived quality. Therefore a Clinical Decision Support System was developed to give support to the Obstetricians. In this article, we had proposed a robust method to explore and model a source of clinical information with the purpose of obtaining all possible knowledge. Generally, in classification models are difficult to know the contribution that each attribute provides to the model. We had worked in this direction to offer transparency to models that may be considered as black boxes. The positive results obtained from both the

  11. Modified Euler integration based control of a five-phase induction ...

    African Journals Online (AJOL)

    phase machines. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the speed sensor, information of the rotor speed is extracted from ...

  12. Slip weakening, strain and short-termpreseismic disturbances

    Directory of Open Access Journals (Sweden)

    V. A. Morgounov

    2004-06-01

    Full Text Available The problem of short-term earthquake precursors is discussed. In contrast to the increasing number of reports on short-lived precursors of various types, direct strain measurements cannot detect clearly expressed preseismic anomalies, as follows from the aseismic nucleation mechanism. Based on previously published data and the assumption that the attenuation of the stress-strain field is proportional to r- 3, a possible scenario of the final stage of earthquake nucleation process is proposed on the basis of the slip weakening mechanism in the source and the associated mosaic pattern of precursors on the Earth?s surface. The formulas for estimating the maximum distance of precursor detection and minimum duration of the final stage of inelastic deformation preceding brittle failure of rocks are derived. The data of electromagnetic precursors are interpreted in terms of a skin-layer model. A considerable increase in strain rates at the final stage of the earthquake nucleation provides an opportunity to explain teleseismic effects before strong earthquakes in terms of normalized epicenter distance. The modeling results are compared with in situ observations.

  13. Effective slip over partially filled microcavities and its possible failure

    Science.gov (United States)

    Ge, Zhouyang; Holmgren, Hanna; Kronbichler, Martin; Brandt, Luca; Kreiss, Gunilla

    2018-05-01

    Motivated by the emerging applications of liquid-infused surfaces (LIS), we study the drag reduction and robustness of transverse flows over two-dimensional microcavities partially filled with an oily lubricant. Using separate simulations at different scales, characteristic contact line velocities at the fluid-solid intersection are first extracted from nanoscale phase field simulations and then applied to micronscale two-phase flows, thus introducing a multiscale numerical framework to model the interface displacement and deformation within the cavities. As we explore the various effects of the lubricant-to-outer-fluid viscosity ratio μ˜2/μ˜1 , the capillary number Ca, the static contact angle θs, and the filling fraction of the cavity δ , we find that the effective slip is most sensitive to the parameter δ . The effects of μ˜2/μ˜1 and θs are generally intertwined but weakened if δ 1 ), however, are immune to such failure due to their generally larger contact line velocity.

  14. Supernova 1987A Interpreted through the SLIP Pulsar Model

    Science.gov (United States)

    Middleditch, John

    2010-01-01

    The model of pulsar emission through superluminally induced polarization currents (SLIP) predicts that pulsations produced by such currents, induced by a rotating, magnetized body at many light cylinder radii, as would be the case for a neutron star born within any star of >1.5 solar masses, will drive pulsations close to the axis of rotation. Such highly collimated pulsations (), and later, in less collimated form, the bipolarity of SN 1987A itself. The pulsations and jet interacted with circumstellar material (CM), to produce features observed in the very early light curve which correspond to: 1) the entry of the pulsed beam into the CM; 2) the entry of the 0.95 c particles into the CM; 3) the exit of the pulsed beam from the CM (with contributions in the B and I bands -- the same as later inferred/observed for its 2.14 ms pulsations); and 4) the exit of the fastest particles from the CM. Because of the energy requirements of the jet in these early stages, the spindown required of its pulsar could exceed 1e-5 Hz/s at a rotation rate of 500 Hz. There is no reason to suggest that this mechanism is not universally applicable to all SNe with gaseous remnants remaining, and thus SN 1987A is the Rosetta Stone for 99% of SNe, gamma-ray bursts, and millisecond pulsars. This work was supported in part by the Department of Energy through the Los Alamos Directed Research Grant DR20080085.

  15. Imaging phase slip dynamics in micron-size superconducting rings

    Science.gov (United States)

    Polshyn, Hryhoriy; Naibert, Tyler R.; Budakian, Raffi

    2018-05-01

    We present a scanning probe technique for measuring the dynamics of individual fluxoid transitions in multiply connected superconducting structures. In these measurements, a small magnetic particle attached to the tip of a silicon cantilever is scanned over a micron-size superconducting ring fabricated from a thin aluminum film. We find that near the superconducting transition temperature of the aluminum, the dissipation and frequency of the cantilever changes significantly at particular locations where the tip-induced magnetic flux penetrating the ring causes the two lowest-energy fluxoid states to become nearly degenerate. In this regime, we show that changes in the cantilever frequency and dissipation are well-described by a stochastic resonance (SR) process, wherein small oscillations of the cantilever in the presence of thermally activated phase slips (TAPS) in the ring give rise to a dynamical force that modifies the mechanical properties of the cantilever. Using the SR model, we calculate the average fluctuation rate of the TAPS as a function of temperature over a 32-dB range in frequency, and we compare it to the Langer-Ambegaokar-McCumber-Halperin theory for TAPS in one-dimensional superconducting structures.

  16. Influence of magnetic saturation effects on the fault detection of induction motors

    Directory of Open Access Journals (Sweden)

    Drozdowski Piotr

    2014-09-01

    Full Text Available In this paper, the influence of impact damage to the induction motors on the zero-sequence voltage and its spectrum is presented. The signals detecting the damages result from a detailed analysis of the formula describing this voltage component which is induced in the stator windings due to core magnetic saturation and the discrete displacement of windings. Its course is affected by the operation of both the stator and the rotor. Other fault detection methods, are known and widely applied by analysing the spectrum of stator currents. The presented method may be a complement to other methods because of the ease of measurements of the zero voltage for star connected motors. Additionally, for converter fed motors the zero sequence voltage eliminates higher time harmonics displaced by 120 degrees. The results of the method application are presented through measurements and explained by the use of a mathematical model of the slip-ring induction motor

  17. Model of the double-rotor induction motor in terms of electromagnetic differential

    Directory of Open Access Journals (Sweden)

    Adamczyk Dominik

    2016-12-01

    Full Text Available The paper presents a concept, a construction, a circuit model and experimental results of the double-rotor induction motor. This type of a motor is to be implemented in the concept of the electromagnetic differential. At the same time it should fulfill the function of differential mechanism and the vehicle drive. One of the motor shafts is coupled to the direction changing mechanical transmission. The windings of the external rotor are powered by slip rings and brushes. The inner rotor has the squirrel-cage windings. The circuit model parameters were calculated based on the 7.5 kW real single-rotor induction motor (2p = 4. Experimental verification of the model was based on comparison between the mentioned single-rotor motor and double-rotor model with the outer rotor blocked. The presented results showed relatively good compliance between the model and real motor.

  18. Fault diagnosis of induction motors

    CERN Document Server

    Faiz, Jawad; Joksimović, Gojko

    2017-01-01

    This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

  19. Diagnosis of voltage collapse due to induction motor stalling using static analysis

    International Nuclear Information System (INIS)

    Karbalaei, F.; Kalantar, M.; Kazemi, A.

    2008-01-01

    Induction motor stalling is one of the important reasons for voltage collapse. This paper presents that, for induction motor stalling diagnosis, it is not necessary to use a third or first order dynamic model of induction motors. Instead, a method is presented based on algebraic calculations for which the steady state model of the induction motor considering different kinds of mechanical loads (constant and variable torque) is added to the power flow equations. Simulation results for a simple system confirm the correctness of the proposed method as compared to dynamic simulation results

  20. Effects of Second-Order Slip and Viscous Dissipation on the Analysis of the Boundary Layer Flow and Heat Transfer Characteristics of a Casson Fluid

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rahman

    2016-11-01

    Full Text Available The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter  Prandtl number  and the Eckert number  using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.