WorldWideScience

Sample records for variable flow conditions

  1. Scalable conditional induction variables (CIV) analysis

    KAUST Repository

    Oancea, Cosmin E.; Rauchwerger, Lawrence

    2015-01-01

    challenges to automatic parallelization. Because the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow

  2. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  3. Identification of two-phase flow regimes under variable gravity conditions

    International Nuclear Information System (INIS)

    Kamiel S Gabriel; Huawei Han

    2005-01-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  4. Identification of two-phase flow regimes under variable gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiel S Gabriel [University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON L1H 7K4 (Canada); Huawei Han [Mechanical Engineering Department, University of Saskatchewan 57 Campus Dr., Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2005-07-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  5. A fundamental study of a variable critical nozzle flow

    International Nuclear Information System (INIS)

    Kim, Jea Hyung; Kim, Heuy Dong; Park, Kyung Am

    2003-01-01

    The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle

  6. Scalable conditional induction variables (CIV) analysis

    DEFF Research Database (Denmark)

    Oancea, Cosmin Eugen; Rauchwerger, Lawrence

    2015-01-01

    parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.......Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as filter, or stack operations and pose significant challenges to automatic parallelization. Because...... the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same...

  7. Variable Selection for Regression Models of Percentile Flows

    Science.gov (United States)

    Fouad, G.

    2017-12-01

    degree of multicollinearity, possibly illustrating the co-evolution of climatic and physiographic conditions. Given the ineffectiveness of many variables used here, future work should develop new variables that target specific processes associated with percentile flows.

  8. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    Science.gov (United States)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  9. Scalable conditional induction variables (CIV) analysis

    KAUST Repository

    Oancea, Cosmin E.

    2015-02-01

    Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as Alter, or stack operations and pose significant challenges to automatic parallelization. Because the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same representation. Our technique requires no modifications of our dependence tests, which is agnostic to the original shape of the subscripts, and is more powerful than previously reported dependence tests that rely on the pairwise disambiguation of read-write references. We have implemented the CIV analysis in our parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.

  10. Magnetic studies of archaeological obsidian: Variability of eruptive conditions within obsidian flows is key to high-resolution artifact sourcing (Invited)

    Science.gov (United States)

    Feinberg, J. M.; Frahm, E.; Muth, M.

    2013-12-01

    Previous studies have endeavored to use petrophysical traits of obsidian, particularly its magnetic properties, as an alternative to conventional geochemical sourcing, one of the greatest successes in archaeological science. Magnetic approaches, however, have not seen widespread application due to their mixed success. In a time when geochemical analyses can be conducted non-destructively, in the field, and in a minute or two, magnetic measurements of obsidian must offer novel archaeological insights to be worthwhile, not merely act as a less successful version of geochemistry. To this end, we report the findings of a large-scale study of obsidian magnetism, which includes 912 geological obsidian specimens and 97 artifacts measured for six simple magnetic parameters. Based on these results, we propose, rather than using magnetic properties to source artifacts to a particular obsidian flow (inter-flow sourcing), these properties are best used to differentiate quarrying sites within an individual flow (intra-flow sourcing). The magnetic properties within an individual flow are highly variable, due to the fact that a single flow experiences a wide array of cooling rates, absolute temperatures, viscosities, deformation, and oxidation. These conditions affect the concentrations, compositions, size distributions, shapes, and spatial arrangements of magnetic grains within an obsidian specimen and, thus, its intrinsic magnetic properties. This variability decreases dramatically at spatial scales of individual outcrops, and decreases even further at scales of hand samples. Thus, magnetic data appear to shift the scale of obsidian sourcing from flows to quarries and, in turn, enable new insights into raw-material procurement strategies, group mobility, lithic technology, and the organization of space and production. From a geologic perspective, the magnetic variability of obsidian can be broadly interpreted within the context of the igneous processes that were active during

  11. Flow variability and hillslope hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Huff, D D; O' Neill, R V; Emanuel, W R; Elwood, J W; Newbold, J D

    1982-01-01

    Examination of spatial variability of streamflow in headwater areas can provide important insight about factors that influence hillslope hydrology. Detailed observations of variations in stream channel input, based on a tracer experiment, indicate that topography alone cannot explain flow variability. However, determination of changes in channel input on a small spatial scale can provide valuable clues to factors, such as structural geology that control subsurface flows.

  12. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions

    Directory of Open Access Journals (Sweden)

    R. Kandasamy

    2016-03-01

    Full Text Available The objective of the present work was to investigate theoretically the effect of single walled carbon nanotubes (SWCNTs in the presence of water and seawater with variable stream condition due to solar radiation energy. The conclusion is drawn that the flow motion and the temperature field for SWCNTs in the presence of base fluid are significantly influenced by magnetic field, convective radiation and thermal stratification. Thermal boundary layer of SWCNTs-water is compared to that of Cu-water, absorbs the incident solar radiation and transits it to the working fluid by convection.

  13. Bedform response to flow variability

    Science.gov (United States)

    Nelson, J.M.; Logan, B.L.; Kinzel, P.J.; Shimizu, Y.; Giri, S.; Shreve, R.L.; McLean, S.R.

    2011-01-01

    Laboratory observations and computational results for the response of bedform fields to rapid variations in discharge are compared and discussed. The simple case considered here begins with a relatively low discharge over a flat bed on which bedforms are initiated, followed by a short high-flow period with double the original discharge, during which the morphology of the bedforms adjusts, followed in turn by a relatively long period of the original low discharge. For the grain size and hydraulic conditions selected, the Froude number remains subcritical during the experiment, and sediment moves predominantly as bedload. Observations show rapid development of quasi-two-dimensional bedforms during the initial period of low flow with increasing wavelength and height over the initial low-flow period. When the flow increases, the bedforms rapidly increase in wavelength and height, as expected from other empirical results. When the flow decreases back to the original discharge, the height of the bedforms quickly decreases in response, but the wavelength decreases much more slowly. Computational results using an unsteady two-dimensional flow model coupled to a disequilibrium bedload transport model for the same conditions simulate the formation and initial growth of the bedforms fairly accurately and also predict an increase in dimensions during the high-flow period. However, the computational model predicts a much slower rate of wavelength increase, and also performs less accurately during the final low-flow period, where the wavelength remains essentially constant, rather than decreasing. In addition, the numerical results show less variability in bedform wavelength and height than the measured values; the bedform shape is also somewhat different. Based on observations, these discrepancies may result from the simplified model for sediment particle step lengths used in the computational approach. Experiments show that the particle step length varies spatially and

  14. Simulating variable-density flows with time-consistent integration of Navier-Stokes equations

    Science.gov (United States)

    Lu, Xiaoyi; Pantano, Carlos

    2017-11-01

    In this talk, we present several features of a high-order semi-implicit variable-density low-Mach Navier-Stokes solver. A new formulation to solve pressure Poisson-like equation of variable-density flows is highlighted. With this formulation of the numerical method, we are able to solve all variables with a uniform order of accuracy in time (consistent with the time integrator being used). The solver is primarily designed to perform direct numerical simulations for turbulent premixed flames. Therefore, we also address other important elements, such as energy-stable boundary conditions, synthetic turbulence generation, and flame anchoring method. Numerical examples include classical non-reacting constant/variable-density flows, as well as turbulent premixed flames.

  15. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  16. Modeling variability in porescale multiphase flow experiments

    Science.gov (United States)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  17. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. User manual of the multicompenent variably - saturated flow and transport model HP1

    International Nuclear Information System (INIS)

    Jacques, D.; Simunek, J.

    2005-06-01

    This report describes a new comprehensive simulation tool HP1 (HYDRUS1D-PHREEQC) that was obtained by coupling the HYDRUS-1D one-dimensional variably-saturated water flow and solute transport model with the PHREEQC geochemical code. The HP1 code incorporates modules simulating (1) transient water flow in variably-saturated media, (2) transport of multiple components, and (3) mixed equilibrium/kinetic geochemical reactions. The program numerically solves the Richards equation for variably-saturated water flow and advection-dispersion type equations for heat and solute transport. The flow equation incorporates a sink term to account for water uptake by plant roots. The heat transport equation considers transport due to conduction and convection with flowing water. The solute transport equations consider advective-dispersive transport in the liquid phase. The program can simulate a broad range of low-temperature biogeochemical reactions in water, soil and ground water systems including interactions with minerals, gases, exchangers, and sorption surfaces, based on thermodynamic equilibrium, kinetics, or mixed equilibrium-kinetic reactions. The program may be used to analyze water and solute movement in unsaturated, partially saturated, or fully saturated porous media. The flow region may be composed of nonuniform soils or sediments. Flow and transport can occur in the vertical, horizontal, or a generally inclined direction. The water flow part of the model can deal with prescribed head and flux boundaries, boundaries controlled by atmospheric conditions, as well as free drainage boundary conditions. The governing flow and transport equations were solved numerically using Galerkin-type linear finite element schemes. To test the accuracy of the coupling procedures implemented in HP1, simulation results were compared with (i) HYDRUS-1D for transport problems of multiple components subject to sequential first-order decay, (ii) PHREEQC for steady-state flow conditions, and

  19. Impact analysis of flow variability in sizing kanbans

    Directory of Open Access Journals (Sweden)

    Isaac Pergher

    2014-02-01

    Full Text Available The aim of this paper is to analyze the effects of variability flow, advocated by Factory Physics, in sizing Kanban production systems. The variability of flow presupposes that the variability of activities performed by a process is dissipated throughout the productive flow system, causing variations in the lead time, the work-in-process levels and the equipment availability, among others. To conduct the research, we created a didactic model of discrete event computer simulation. The proposed model aims to present the possible impacts caused by the variability flow in a production system regarding the sizing of the number of Kanbans cards, by using the results supplied by two different investigated scenarios. The main results of the research allow concluding that, by comparing the two scenarios developed in the model, the presence of variability in the production system caused an average increase of 32% in the number of Kanban cards (p=0,000. This implies that, in real productive systems, the study of Kanban sizing should consider the variability of individual operations, a fact often relegated as an assumption in the formulation from classical literature on the definition of the number of Kanbans, thus providing opportunities for the development of future research.

  20. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  1. The `Henry Problem' of `density-driven' groundwater flow versus Tothian `groundwater flow systems' with variable density: A review of the influential Biscayne aquifer data.

    Science.gov (United States)

    Weyer, K. U.

    2017-12-01

    Coastal groundwater flow investigations at the Biscayne Bay, south of Miami, Florida, gave rise to the concept of density-driven flow of seawater into coastal aquifers creating a saltwater wedge. Within that wedge, convection-driven return flow of seawater and a dispersion zone were assumed by Cooper et al. (1964) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program must be able to simulate to be considered acceptable. Both, `density-driven flow' and Tothian `groundwater flow systems' (with or without variable density conditions) are driven by gravitation. The difference between the two are the boundary conditions. 'Density-driven flow' occurs under hydrostatic boundary conditions while Tothian `groundwater flow systems' occur under hydrodynamic boundary conditions. Revisiting the Cooper et al. (1964) publication with its record of piezometric field data (heads) showed that the so-called sea water wedge has been caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be supported by head data as energy indicators of flow fields

  2. Probabilistic Power Flow Method Considering Continuous and Discrete Variables

    Directory of Open Access Journals (Sweden)

    Xuexia Zhang

    2017-04-01

    Full Text Available This paper proposes a probabilistic power flow (PPF method considering continuous and discrete variables (continuous and discrete power flow, CDPF for power systems. The proposed method—based on the cumulant method (CM and multiple deterministic power flow (MDPF calculations—can deal with continuous variables such as wind power generation (WPG and loads, and discrete variables such as fuel cell generation (FCG. In this paper, continuous variables follow a normal distribution (loads or a non-normal distribution (WPG, and discrete variables follow a binomial distribution (FCG. Through testing on IEEE 14-bus and IEEE 118-bus power systems, the proposed method (CDPF has better accuracy compared with the CM, and higher efficiency compared with the Monte Carlo simulation method (MCSM.

  3. Regional regression models of percentile flows for the contiguous United States: Expert versus data-driven independent variable selection

    Directory of Open Access Journals (Sweden)

    Geoffrey Fouad

    2018-06-01

    New hydrological insights for the region: A set of three variables selected based on an expert assessment of factors that influence percentile flows performed similarly to larger sets of variables selected using a data-driven method. Expert assessment variables included mean annual precipitation, potential evapotranspiration, and baseflow index. Larger sets of up to 37 variables contributed little, if any, additional predictive information. Variables used to describe the distribution of basin data (e.g. standard deviation were not useful, and average values were sufficient to characterize physical and climatic basin conditions. Effectiveness of the expert assessment variables may be due to the high degree of multicollinearity (i.e. cross-correlation among additional variables. A tool is provided in the Supplementary material to predict percentile flows based on the three expert assessment variables. Future work should develop new variables with a strong understanding of the processes related to percentile flows.

  4. TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER

    Directory of Open Access Journals (Sweden)

    N. JIPA

    2012-03-01

    Full Text Available TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER. In the context of climate change at global and regional scale, this study intends to identify the trends in variability of the annual and monthly flow of Teleajen river. The study is based on processing the series of mean, maximum and minimum flows at Cheia and Moara Domnească hydrometric stations (these data were taken from the National Institute of Meteorology and Hydrology. The period of analysis is 1966-1998, statistical methods beeing mostly used, among which the Mann – Kendall test, that identifies the liniar trend and its statistic significance, comes into focus. The trends in the variability of water annual and monthly flows are highlighted. The results obtained show downward trends for the mean and maximum annual flows, and for the minimum water discharge, a downward trend for Cheia station and an upward trend for Moara Domnească station. Knowing the trends in the variability of the rivers’ flow is important empirically in view of taking adequate administration measures of the water resources and managment measures for the risks lead by extreme hidrologic events (floods, low-water, according to the possible identified changes.

  5. Influence of Variable Thermal Conductivity on MHD Boundary Layer Slip Flow of Ethylene-Glycol Based Cu Nanofluids over a Stretching Sheet with Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    N. Bhaskar Reddy

    2014-01-01

    Full Text Available An analysis is carried out to investigate the influence of variable thermal conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer flow of a nanofluid with Cu nanoparticles over a stretching sheet with convective boundary condition. Using similarity transformation, the governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations. Employing Runge-kutta fourth-order method along with shooting technique, the resultant system of equations is solved. The influence of various pertinent parameters such as nanofluid volume fraction parameter, the magnetic parameter, radiation parameter, thermal conductivity parameter, velocity slip parameter, Biot number, and suction or injection parameter on the velocity of the flow field and heat transfer characteristics is computed numerically and illustrated graphically. The present results are compared with the existing results for the case of regular fluid and found an excellent agreement.

  6. Variability of sap flow on forest hillslopes: patterns and controls

    Science.gov (United States)

    Hassler, Sibylle; Blume, Theresa

    2013-04-01

    Sap flow in trees is an essential variable in integrated studies of hydrologic fluxes. It gives indication of transpiration rates for single trees and, with a suitable method of upscaling, for whole stands. This information is relevant for hydrologic and climate models, especially for the prediction of change in water fluxes in the soil-plant-atmosphere continuum under climate change. To this end, we do not only need knowledge concerning the response of sapflow to atmospheric forcing but also an understanding of the main controls on its spatial variability. Our study site consists of several subcatchments of the Attert basin in Luxembourg underlain by schists of the Ardennes massif. Within these subcatchments we measure sap flow in more than 20 trees on a range of forested hillslopes covered by a variety of temperate deciduous tree species such as beech, oak, hornbeam and maple as well as conifers such as firs. Our sap flow sensors are based on the heat pulse velocity method and consist of three needles, one needle acting as the heating device and the other two holding three thermistors each, enabling us to simultaneously measure sap flow velocity at three different depths within the tree. In close proximity to the trees we collect additional data on soil moisture, matric potential and groundwater levels. First results show that the sensor design seems promising for an upscaling of the measured sap flow velocities to sap flow at the tree level. The maximum depth of actively used sapwood as well as the decrease in sap flow velocity with increasing depth in the tree can be determined by way of the three thermistors. Marked differences in sap flow velocity profiles are visible between the different species, resulting in differences in sap flow for trees of similar diameter. We examine the range of tree sap flow values and variation due to species, size class, slope position and exposition and finally relate them to the dynamics of soil moisture conditions with the

  7. Tracer responses and control of vessels with variable flow and volume

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1990-01-01

    Continuous flow vessels which are subject to variation of flow and volume are characterized by time-variable parameters. It is shown that their residence time distributions and weighting functions obtained by tracer testing are made invariant with regard to the integrated flow variables which are introduced. Under variable flow but constant volume, one such integrated variable is sufficient. Under variable volume, two different variables are suggested for the residence time distribution and weighting function, while the appropriate variable of the perfect mixer differs distinctly from that of vessels with a distinct velocity profile. It is shown through a number of example cases, that an agreement with their mathematical models is reached. The approach is extended to include also arbitrary, non-analytic response functions obtained by tracer measurements. Applications of the derived models and their incorporation in automatic control algorithms is discussed. (orig.) [de

  8. Diurnal variability of inner-shelf circulation in the lee of a cape under upwelling conditions

    Science.gov (United States)

    Lamas, L.; Peliz, A.; Dias, J.; Oliveira, P. B.; Angélico, M. M.; Castro, J. J.; Fernandes, J. N.; Trindade, A.; Cruz, T.

    2017-07-01

    The nearshore circulation in the lee of a cape under upwelling conditions was studied using in-situ data from 3 consecutive summers (2006-2008). Focus was given to a period between 20 July and 04 August 2006 to study the diurnal variability of the cross-shelf circulation. This period was chosen because it had a steady upwelling-favourable wind condition modulated by a diurnal cycle much similar to sea breeze. The daily variability of the observed cross-shelf circulation consisted of three distinct periods: a morning period with a 3-layer vertical structure with onshore velocities at mid-depth, a mid-day period where the flow is reversed and has a 2-layer structure with onshore velocities at the surface and offshore flow below, and, lastly, in the evening, a 2-layer period with intensified offshore velocities at the surface and onshore flow at the bottom. The observed cross-shelf circulation showed a peculiar vertical shape and diurnal variability different from several other systems described in literature. We hypothesize that the flow reversal of the cross-shelf circulation results as a response to the rapid change of the wind magnitude and direction at mid-day with the presence of the cape north of the mooring site influencing this response. A numerical modelling experiment exclusively forced by winds simulated successfully most of the circulation at the ADCP site, especially the mid-day reversal and the evening's upwelling-type structure. This supports the hypothesis that the cross-shelf circulation at diurnal timescales is mostly wind-driven. By analysing the 3D circulation in the vicinity of Cape Sines we came to the conclusion that the diurnal variability of the wind and the flow interaction with topography are responsible for the circulation variability at the ADCP site, though only a small region in the south of the cape showed a similar diurnal variability. The fact that the wind diurnally undergoes relaxation and intensification strongly affects the

  9. Independent variable complexity for regional regression of the flow duration curve in ungauged basins

    Science.gov (United States)

    Fouad, Geoffrey; Skupin, André; Hope, Allen

    2016-04-01

    The flow duration curve (FDC) is one of the most widely used tools to quantify streamflow. Its percentile flows are often required for water resource applications, but these values must be predicted for ungauged basins with insufficient or no streamflow data. Regional regression is a commonly used approach for predicting percentile flows that involves identifying hydrologic regions and calibrating regression models to each region. The independent variables used to describe the physiographic and climatic setting of the basins are a critical component of regional regression, yet few studies have investigated their effect on resulting predictions. In this study, the complexity of the independent variables needed for regional regression is investigated. Different levels of variable complexity are applied for a regional regression consisting of 918 basins in the US. Both the hydrologic regions and regression models are determined according to the different sets of variables, and the accuracy of resulting predictions is assessed. The different sets of variables include (1) a simple set of three variables strongly tied to the FDC (mean annual precipitation, potential evapotranspiration, and baseflow index), (2) a traditional set of variables describing the average physiographic and climatic conditions of the basins, and (3) a more complex set of variables extending the traditional variables to include statistics describing the distribution of physiographic data and temporal components of climatic data. The latter set of variables is not typically used in regional regression, and is evaluated for its potential to predict percentile flows. The simplest set of only three variables performed similarly to the other more complex sets of variables. Traditional variables used to describe climate, topography, and soil offered little more to the predictions, and the experimental set of variables describing the distribution of basin data in more detail did not improve predictions

  10. Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    Science.gov (United States)

    Hejranfar, Kazem; Parseh, Kaveh

    2017-09-01

    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.

  11. Transient burnout under rapid flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    1987-01-01

    Burnout characteristics were experimentally studied using uniformly heated tube and annular test sections under rapid flow reduction conditions. Observations indicated that the onset of burnout under a flow reduction transient is caused by the dryout of a liquid film on the heated surface. The decrease in burnout mass velocity at the channel inlet with increasing flow reduction rate is attributed to the fact that the vapor flow rate continues to increase and sustain the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. This is because the movement of the boiling boundary cannot keep up with the rapid reduction of inlet flow rate. A burnout model for the local condition could be applied to the burnout phenomena with the flow reduction under pressures of 0.5 ∼ 3.9 MPa and flow reduction rates of 0.6 ∼ 35 %/s. Based on this model, a method to predict the burnout time under a flow reduction condition was presented. The calculated burnout times agreed well with experimental results obtained by some investigators. (author)

  12. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction. Keywords: Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Power-law surface velocity, Convective condition, Heat generation/absorption, Nonlinear radiation

  13. Influence of the initial conditions for the numerical simulation of two-phase slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Pachas Napa, Alex A.; Morales, Rigoberto E.M.; Medina, Cesar D. Perea

    2010-07-01

    Multiphase flows in pipelines commonly show several patterns depending on the flow rate, geometry and physical properties of the phases. In oil production, the slug flow pattern is the most common among the others. This flow pattern is characterized by an intermittent succession in space and time of an aerated liquid slug and an elongated gas bubble with a liquid film. Slug flow is studied through the slug tracking model described as one-dimensional and Lagrangian frame referenced. In the model, the mass and the momentum balance equations are applied in control volumes constituted by the gas bubble and the liquid slug. Initial conditions must be determined, which need to reproduce the intermittence of the flow pattern. These initial conditions are given by a sequence of flow properties for each unit cell. Properties of the unit cell in initial conditions should reflect the intermittence, for which they can be analyzed in statistical terms. Therefore, statistical distributions should be obtained for the slug flow variables. Distributions are complemented with the mass balance and the bubble design model. The objective of the present work is to obtain initial conditions for the slug tracking model that reproduce a better adjustment of the fluctuating properties for different pipe inclinations (horizontal, vertical or inclined). The numerical results are compared with experimental data obtained by PFG/FEM/UNICAMP for air-water flow at 0 deg, 45 deg and 90 deg and good agreement is observed. (author)

  14. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  15. Effect of flow conditions on flow accelerated corrosion in pipe bends

    International Nuclear Information System (INIS)

    Mazhar, H.; Ching, C.Y.

    2015-01-01

    Flow Accelerated Corrosion (FAC) in piping systems is a safety and reliability problem in the nuclear industry. In this study, the pipe wall thinning rates and development of surface roughness in pipe bends are compared for single phase and two phase annular flow conditions. The FAC rates were measured using the dissolution of test sections cast from gypsum in water with a Schmidt number of 1280. The change in location and levels of maximum FAC under single phase and two phase flow conditions are examined. The comparison of the relative roughness indicates a higher effect for the surface roughness in single phase flow than in two phase flow. (author)

  16. MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available This research explores the magnetohydrodynamic (MHD boundary layer flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness. An electrically conducting fluid is considered under the characteristics of magnetic field applied transverse to the sheet. The mathematical expressions are accomplished via boundary layer access, Brownian motion and thermophoresis phenomena. The flow analysis is subjected to a recently established conditions requiring zero nanoparticles mass flux. Adequate transformations are implemented for the reduction of partial differential systems to the ordinary differential systems. Series solutions for the governing nonlinear flow of momentum, temperature and nanoparticles concentration have been executed. Physical interpretation of numerous parameters is assigned by graphical illustrations and tabular values. Moreover the numerical data of drag coefficient and local heat transfer rate are executed and discussed. It is investigated that higher wall thickness parameter results in the reduction of velocity distribution. Effects of thermophoresis parameter on temperature and concentration profiles are qualitatively similar. Both the temperature and concentration profiles are enhanced for higher values of thermophoresis parameter. Keywords: MHD, Variable thicked surface, Powell-Eyring nanofluid, Zero mass flux conditions

  17. Numerical investigation of the variable nozzle effect on the mixed flow turbine performance characteristics

    Science.gov (United States)

    Meziri, B.; Hamel, M.; Hireche, O.; Hamidou, K.

    2016-09-01

    There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.

  18. Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, M., E-mail: m.hatami@tue.nl [Esfarayen University of Technology, Mechanical Engineering Department, Esfarayen, North Khorasan (Iran, Islamic Republic of); Jing, Dengwei; Song, Dongxing [International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi' an 710049 (China); Sheikholeslami, M.; Ganji, D.D. [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2015-12-15

    In this study, effect of variable magnetic field on nanofluid flow and heat transfer analysis between two parallel disks is investigated. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy perturbation method. The analytical investigation is carried out for different governing parameters namely: squeeze number, suction parameter, Hartmann number, Brownian motion parameter, thermophrotic parameter and Lewis number. Results show that Nusselt number has direct relationship with Brownian motion parameter and thermophrotic parameter but it is a decreasing function of squeeze number, suction parameter, Hartmann number and Lewis number. - Highlights: • Heat and mass transfer of nanofluids between parallel plates investigated. • A variable magnetic field is applied on the plates. • Governing equations are solved analytically. • Effects of physical parameters are discussed on the Nusselt number.

  19. Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM

    International Nuclear Information System (INIS)

    Hatami, M.; Jing, Dengwei; Song, Dongxing; Sheikholeslami, M.; Ganji, D.D.

    2015-01-01

    In this study, effect of variable magnetic field on nanofluid flow and heat transfer analysis between two parallel disks is investigated. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy perturbation method. The analytical investigation is carried out for different governing parameters namely: squeeze number, suction parameter, Hartmann number, Brownian motion parameter, thermophrotic parameter and Lewis number. Results show that Nusselt number has direct relationship with Brownian motion parameter and thermophrotic parameter but it is a decreasing function of squeeze number, suction parameter, Hartmann number and Lewis number. - Highlights: • Heat and mass transfer of nanofluids between parallel plates investigated. • A variable magnetic field is applied on the plates. • Governing equations are solved analytically. • Effects of physical parameters are discussed on the Nusselt number

  20. Statistical evaluation of the effects of fall and winter flows on the spring condition of rainbow and brown trout in the green river downstream of Flaming Gorge Dam.

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

    2009-01-09

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. In recent years, single peak releases each day or steady flows have been the operational pattern during the winter period. A double-peak pattern (two flow peaks each day) was implemented during the winter of 2006-2007 by Reclamation. Because there is no recent history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on the body condition of trout in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from double-peaking operations during winter months. Along with other tasks, the study plan identified the need to conduct a statistical analysis of existing data on trout condition and macroinvertebrate abundance to evaluate potential effects of hydropower operations. This report presents the results of this analysis. We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam and (2) to evaluate the degree to which flow characteristics (i.e., flow volumes and flow variability) and benthic macroinvertebrate abundance affect the condition of trout in this area. This information, together with further analyses of size-stratified trout data, may also serve as baseline data to which the effects of potential future double-peaking flows can be compared. The condition (length, weight and/or relative weight) of rainbow trout (Oncorhynchus mykiss) at two sites in the Green River downstream of Flaming Gorge Dam (Tailrace and Little Hole) and weight of brown trout (Salmo trutta) at the Little Hole site has been decreasing since 1990 while the abundance of brown trout has been increasing at the two sites. At

  1. Statistical evaluation of the effects of fall and winter flows on the spring condition of rainbow and brown trout in the Green River downstream of Flaming Gorge Dam

    International Nuclear Information System (INIS)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.

    2009-01-01

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. In recent years, single peak releases each day or steady flows have been the operational pattern during the winter period. A double-peak pattern (two flow peaks each day) was implemented during the winter of 2006-2007 by Reclamation. Because there is no recent history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on the body condition of trout in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from double-peaking operations during winter months. Along with other tasks, the study plan identified the need to conduct a statistical analysis of existing data on trout condition and macroinvertebrate abundance to evaluate potential effects of hydropower operations. This report presents the results of this analysis. We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam and (2) to evaluate the degree to which flow characteristics (i.e., flow volumes and flow variability) and benthic macroinvertebrate abundance affect the condition of trout in this area. This information, together with further analyses of size-stratified trout data, may also serve as baseline data to which the effects of potential future double-peaking flows can be compared. The condition (length, weight and/or relative weight) of rainbow trout (Oncorhynchus mykiss) at two sites in the Green River downstream of Flaming Gorge Dam (Tailrace and Little Hole) and weight of brown trout (Salmo trutta) at the Little Hole site has been decreasing since 1990 while the abundance of brown trout has been increasing at the two sites. At the

  2. Future-dependent Flow Policies with Prophetic Variables

    DEFF Research Database (Denmark)

    Li, Ximeng; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    future-dependent flow policies- policies that can depend on not only the current values of variables, but also their final values. The final values are referred to using what we call prophetic variables, just as the initial values can be referenced using logical variables in Hoare logic. We develop...... and enforce a notion of future-dependent security for open systems, in the spirit of "non-deducibility on strategies". We also illustrate our approach in scenarios where future-dependency has advantages over present-dependency and avoids mixtures of upgradings and downgradings....

  3. Numerical simulation of water flow and Nitrate transport through variably saturated porous media in laboratory condition using HYDRUS 2D

    Science.gov (United States)

    Jahangeer, F.; Gupta, P. K.; Yadav, B. K.

    2017-12-01

    Due to the reducing availability of water resources and the growing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by several methods like drip irrigation, is a demanding concern for agricultural experts. The understanding of the water and contaminants flow through the subsurface is needed for the sustainable irrigation water management, pollution assessment, polluted site remediation and groundwater recharge. In this study, the Windows-based computer software package HYDRUS-2D, which numerically simulates water and solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water and Nitrate in the sand tank. The laboratory and simulation experiments were conducted to evaluate the role of drainage, recharge flux, and infiltration on subsurface flow condition and subsequently, on nitrate movement in the subsurface. The water flow in the unsaturated zone model by Richards' equation, which was highly nonlinear and its parameters were largely dependent on the moisture content and pressure head of the partially saturated zone. Following different cases to be considered to evaluate- a) applying drainage and recharge flux to study domains, b) transient infiltration in a vertical soil column and c) subsequently, nitrate transport in 2D sand tank setup. A single porosity model was used for the simulation of water and nitrate flow in the study domain. The results indicate the transient water table position decreases as the time increase significantly by applying drainage flux at the bottom. Similarly, the water table positions in study domains increasing in the domain by applying recharge flux. Likewise, the water flow profile shows the decreasing water table elevation with increasing water content in the vertical domain. Moreover, the nitrate movement was dominated by advective flux and highly affected by the recharge flux in the vertical direction. The

  4. The Parabolic Variational Inequalities for Variably Saturated Water Flow in Heterogeneous Fracture Networks

    Directory of Open Access Journals (Sweden)

    Zuyang Ye

    2018-01-01

    Full Text Available Fractures are ubiquitous in geological formations and have a substantial influence on water seepage flow in unsaturated fractured rocks. While the matrix permeability is small enough to be ignored during the partially saturated flow process, water seepage in heterogeneous fracture systems may occur in a non-volume-average manner as distinguished from a macroscale continuum model. This paper presents a systematic numerical method which aims to provide a better understanding of the effect of fracture distribution on the water seepage behavior in such media. Based on the partial differential equation (PDE formulations with a Signorini-type complementary condition on the variably saturated water flow in heterogeneous fracture networks, the equivalent parabolic variational inequality (PVI formulations are proposed and the related numerical algorithm in the context of the finite element scheme is established. With the application to the continuum porous media, the results of the numerical simulation for one-dimensional infiltration fracture are compared to the analytical solutions and good agreements are obtained. From the application to intricate fracture systems, it is found that water seepage flow can move rapidly along preferential pathways in a nonuniform fashion and the variably saturated seepage behavior is intimately related to the geometrical characteristics orientation of fractures.

  5. Load flow analysis for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede

    2009-01-01

    factors such as the different wind farm configurations, the control of wind turbines and the power losses of pulse width modulation converters are considered. The DC/DC converter model is proposed and integrated into load flow algorithm by modifying the Jacobian matrix. Two iterative methods are proposed...... and integrated into the load flow algorithm: one takes into account the control strategy of converters and the other considers the power losses of converters. In addition, different types of variable speed wind turbine systems with different control methods are investigated. Finally, the method is demonstrated......A serial AC-DC integrated load flow algorithm for variable speed offshore wind farms is proposed. It divides the electrical system of a wind farm into several local networks, and different load flow methods are used for these local networks sequentially. This method is fast, more accurate, and many...

  6. Burnout characteristics under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagai, Toshiyuki

    1982-01-01

    Burnout characteristics in a uniformly heated, vertically oriented tube, under flow reduction condition, were experimentally studied. Test pressures ranged 0.5 -- 3.9 MPa and flow reduction rates 0.6 -- 35%/s. An analytical method was developed to obtain the local mass velocity during a transient condition. The local mass velocity at the burnout location with an increasing flow reduction rate was slightly different from that measured in steady state tests. The system pressure had a significant effect on the difference. An empirical correlation was presented to give the ratio between the transient and steady state burnout mass velocities at the burnout location as a function of the steam-water density ratio and the flow reduction rate. Experimental results of previous work were compared with this correlation. (author)

  7. AC-DC integrated load flow calculation for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  8. Study of transient burnout under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    1986-09-01

    Transient burnout characteristics of a fuel rod under a rapid flow reduction condition of a light water reactor were experimentally and analytically studied. The test sections were uniformly heated vertical tube and annulus with the heated length of 800 mm. Test pressures ranged 0.5 ∼ 3.9 MPa, heat fluxes 2,160 ∼ 3,860 KW/m 2 , and flow reduction rates 0.44 ∼ 770 %/s. The local flow condition during flow reduction transients were calculated with a separate flow model. The two-fluid/three-field thermal-hydraulic code, COBRA/TRAC, was also used to investigate the liquid film behavior on the heated surface. The major results obtained in the present study are as follows: The onset of burnout under a rapid flow reduction condition was caused by a liquid film dryout on the heated surface. With increasing flow reduction rate beyond a threshold, the burnout mass velocity at the inlet became lower than the steady-state burnout mass velocity. This is explained by the fact that the vapor flow rate continues to increase due to the delay of boiling boundary movement and the resultant high vapor velocity sustains the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. The ratio of inlet burnout mass velocities between flow reduction transient and steady-state became smaller with increasing system pressure because of the lower vapor velocity due to the lower vapor specific volume. Flow reduction burnout occurred when the outlet quality agreed with the steady-state burnout quality within 10 %, suggesting that the local condition burnout model can be used for flow reduction transients. Based on this model, a method to predict the time to burnout under a flow reduction condition in a uniformly heated tube was developed. The calculated times to burnout agreed well with some experimental results obtained by the Author, Cumo et al., and Moxon et al. (author)

  9. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    Science.gov (United States)

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  10. Investigation on output capacity control strategy of variable refrigerant flow air conditioning system with multi-compressor

    International Nuclear Information System (INIS)

    Tu, Qiu; Zou, Deqiu; Deng, Chenmian; Zhang, Jie; Hou, Lifeng; Yang, Min; Nong, Guicai; Feng, Yuhai

    2016-01-01

    Highlights: • The control model of compressor output capacity has been built. • The control strategy of compressor switching has been presented. • The switching process of standard compressor has been described. • The characteristics of EER and noise have been presented. • The control strategy and model have been proved by experiments. - Abstract: A set of 14 HP variable refrigerant flow air conditioning system (VRF AC) with multi-compressor has been designed, and the output capacity control strategy of compressor(s) including the switching control model of standard compressor has been built. In the output capacity control model, a certain suction pressure is used as the pressure control target to adjust the output capacity of compressors, and a little pressure fluctuation is taken into account to amend the target pressure. Furthermore, in the compressor switching control model, the most favorable operation frequency region is determined on base of the energy efficiency characteristic and noise characteristic of the compressor. And, in order to solve the large fluctuation problem of the system running and frequent ON-OFF action of the standard compressor, the equal output capacity switching principle can be used to determine the thermo-on and thermo-off switched frequency points, and control the switching process of the compressor. Experiments demonstrate the feasibility of this control strategy to ensure the stability and reliability, improve the energy efficiency and reduce the compressor noise.

  11. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift

    Science.gov (United States)

    Liu, Daming; Wang, Tianyou; Jia, Ming; Wang, Gangde

    2012-09-01

    In spark ignition engines, cycle-to-cycle variation (CCV) limits the expansion of the operating range because it induces the load variations and the occurrence of misfire and/or knock. Variable valve actuation (VVA) or variable valve lift (VVL) has been widely used in SI engines to improve the volumetric efficiency or to reduce the pumping losses. It is necessary to investigate the CCV of in-cylinder gas motion and mixing processes in SI engines with VVA/VVL system. This study is aimed to analyze the CCV of the tumble flow in a gasoline direct injection (GDI) engine when VVL is employed. Cycle-resolved digital particle image velocimetry (CRD-PIV) data were acquired for the in-cylinder flow field of a motored four-stroke multi-valve GDI optical engine. The CCV of in-cylinder gas motion with a series of valve profiles and different maximum valve lift (MVL) was analyzed, including cyclic variation characteristics of bulk flow (tumble centre and tumble ratio), large- and small-scale fluctuation, total kinetic energy, and circulation. The results show that the CCV of the in-cylinder flow is increased with reduced MVL. With lower MVLs, stable tumble flow cannot be formed in the cylinder, and the ensemble-averaged tumble ratio decreases to zero before the end of the compression stroke due to violent variation. In addition, the evolution of the circulation shows larger variation with lower MVLs that indicates the `spin' of the small-scale eddy in the flow field presents violent fluctuation from one cycle to another, especially at the end of the compression stroke. Moreover, the analyze of the kinetic energy indicates the total energy of the flow field with lower MVLs increases significantly comparing with higher MVL conditions due to the intake flow jet at the intake valve seat in the intake stroke. However, the CCV of the in-cylinder flow becomes more violent under lower MVL conditions, especially for the low-frequency fluctuation kinetic energy. Thus, present strong

  12. A hydrothermal flow-through apparatus to simulate leaching of nuclear waste forms under quasi-dynamic conditions

    International Nuclear Information System (INIS)

    Heimann, R.B.

    1985-03-01

    A hydrothermal flow-through apparatus has been designed that will allow the testing of individual waste package components, as well as combinations of these, under a wide range of environmental conditions. The maximum permissible temperature is 700 degrees C, while the maximum pressure is 300 MPa. Flow rates can be adjusted by sequential operation of a pneumatically operated valve with preset pause and working cycles. The main applications of the apparatus to nuclear fuel waste management research are: (i) the study of migration of ionic species through a rock column at specified hydraulic head, and (ii) the study of the rate of leaching of radionuclides from waste forms under disposal vault conditions in the presence of groundwater with variable flow rates

  13. Hydraulic conditions of flood flows in a Polish Carpathian river subjected to variable human impacts

    Science.gov (United States)

    Radecki-Pawlik, Artur; Czech, Wiktoria; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Ruiz-Villanueva, Virginia

    2016-04-01

    Channel morphology of the Czarny Dunajec River, Polish Carpathians, has been considerably modified as a result of channelization and gravel-mining induced channel incision, and now it varies from a single-thread, incised or regulated channel to an unmanaged, multi-thread channel. We investigated effects of these distinct channel morphologies on the conditions for flood flows in a study of 25 cross-sections from the middle river course where the Czarny Dunajec receives no significant tributaries and flood discharges increase little in the downstream direction. Cross-sectional morphology, channel slope and roughness of particular cross-section parts were used as input data for the hydraulic modelling performed with the 1D steady-flow HEC-RAS model for discharges with recurrence interval from 1.5 to 50 years. The model for each cross-section was calibrated with the water level of a 20-year flood from May 2014, determined shortly after the flood on the basis of high-water marks. Results indicated that incised and channelized river reaches are typified by similar flow widths and cross-sectional flow areas, which are substantially smaller than those in the multi-thread reach. However, because of steeper channel slope in the incised reach than in the channelized reach, the three river reaches differ in unit stream power and bed shear stress, which attain the highest values in the incised reach, intermediate values in the channelized reach, and the lowest ones in the multi-thread reach. These patterns of flow power and hydraulic forces are reflected in significant differences in river competence between the three river reaches. Since the introduction of the channelization scheme 30 years ago, sedimentation has reduced its initial flow conveyance by more than half and elevated water stages at given flood discharges by about 0.5-0.7 m. This partly reflects a progressive growth of natural levees along artificially stabilized channel banks. By contrast, sediments of natural

  14. Do Students Experience Flow Conditions Online?

    Science.gov (United States)

    Meyer, Katrina A.; Jones, Stephanie J.

    2013-01-01

    This pilot study asked graduate students enrolled in higher education programs at two institutions to ascertain whether and to what extent they experienced nine flow-related conditions in two settings: (1) online courses or (2) surfing or gaming online. In both settings, flow was experienced "sometimes," although no significant…

  15. Steady nanofluid flow with variable fluid possessions over a linearly extending surface: A Lie group exploration

    Directory of Open Access Journals (Sweden)

    Kalidas Das

    2018-03-01

    Full Text Available The temperament of stream characteristic, heat and mass transfer of MHD forced convective flow over a linearly expanding porous medium has been scrutinized in the progress exploration. The germane possessions of the liquid like viscosity along with thermal conductivity are believed to be variable in nature, directly influenced by the temperature of flow. As soon as gaining the system of leading equations of the stream, Lie symmetric group transformations have been employed to come across the fitting parallel conversions to alter the central PDEs into a suit of ODEs. The renovated system of ODE with appropriate boundary conditions is numerically solved with the assistance of illustrative software MAPLE 17. The consequences of the relevant factors of the system have been exemplified through charts and graphs. An analogous qualified survey has been prepared among present inquiry and subsisting reads and achieved an admirable accord between them. The variable viscosity parameter has more significant effect on nanofluid velocity than regular fluid and temporal profile as well as nanoparticle concentration is also influenced with variable viscosity. Keywords: Nanofluid, Stretching sheet, Variable viscosity, Variable thermal conductivity, Lie symmetry group

  16. Sources of variability of resting cerebral blood flow in healthy subjects

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Kruuse, Christina Rostrup; Olesen, Jes

    2013-01-01

    Measurements of cerebral blood flow (CBF) show large variability among healthy subjects. The aim of the present study was to investigate the relative effect of established factors influencing CBF on the variability of resting CBF. We retrospectively analyzed spontaneous variability in 430 CBF...... measurements acquired in 152 healthy, young subjects using (133)Xe single-photon emission computed tomography. Cerebral blood flow was correlated positively with both end-tidal expiratory PCO2 (PETCO2) and female gender and inversely with hematocrit (Hct). Between- and within-subject CO2 reactivity...... when Hct was also accounted for. The present study confirms large between-subject variability in CBF measurements and that gender, Hct, and PETCO2 explain only a small part of this variability. This implies that a large fraction of CBF variability may be due to unknown factors such as differences...

  17. An entropy-variables-based formulation of residual distribution schemes for non-equilibrium flows

    Science.gov (United States)

    Garicano-Mena, Jesús; Lani, Andrea; Degrez, Gérard

    2018-06-01

    In this paper we present an extension of Residual Distribution techniques for the simulation of compressible flows in non-equilibrium conditions. The latter are modeled by means of a state-of-the-art multi-species and two-temperature model. An entropy-based variable transformation that symmetrizes the projected advective Jacobian for such a thermophysical model is introduced. Moreover, the transformed advection Jacobian matrix presents a block diagonal structure, with mass-species and electronic-vibrational energy being completely decoupled from the momentum and total energy sub-system. The advantageous structure of the transformed advective Jacobian can be exploited by contour-integration-based Residual Distribution techniques: established schemes that operate on dense matrices can be substituted by the same scheme operating on the momentum-energy subsystem matrix and repeated application of scalar scheme to the mass-species and electronic-vibrational energy terms. Finally, the performance gain of the symmetrizing-variables formulation is quantified on a selection of representative testcases, ranging from subsonic to hypersonic, in inviscid or viscous conditions.

  18. [Dynamics of sap flow density in stems of typical desert shrub Calligonum mongolicum and its responses to environmental variables].

    Science.gov (United States)

    Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen

    2016-02-01

    Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics.

  19. Parallel and non-parallel laminar mixed convection flow in an inclined tube: The effect of the boundary conditions

    International Nuclear Information System (INIS)

    Barletta, A.

    2008-01-01

    The necessary condition for the onset of parallel flow in the fully developed region of an inclined duct is applied to the case of a circular tube. Parallel flow in inclined ducts is an uncommon regime, since in most cases buoyancy tends to produce the onset of secondary flow. The present study shows how proper thermal boundary conditions may preserve parallel flow regime. Mixed convection flow is studied for a special non-axisymmetric thermal boundary condition that, with a proper choice of a switch parameter, may be compatible with parallel flow. More precisely, a circumferentially variable heat flux distribution is prescribed on the tube wall, expressed as a sinusoidal function of the azimuthal coordinate θ with period 2π. A π/2 rotation in the position of the maximum heat flux, achieved by setting the switch parameter, may allow or not the existence of parallel flow. Two cases are considered corresponding to parallel and non-parallel flow. In the first case, the governing balance equations allow a simple analytical solution. On the contrary, in the second case, the local balance equations are solved numerically by employing a finite element method

  20. Understanding Hydrological Processes in Variable Source Areas in the Glaciated Northeastern US Watersheds under Variable Climate Conditions

    Science.gov (United States)

    Steenhuis, T. S.; Azzaino, Z.; Hoang, L.; Pacenka, S.; Worqlul, A. W.; Mukundan, R.; Stoof, C.; Owens, E. M.; Richards, B. K.

    2017-12-01

    The New York City source watersheds in the Catskill Mountains' humid, temperate climate has long-term hydrological and water quality monitoring data It is one of the few catchments where implementation of source and landscape management practices has led to decreased phosphorus concentration in the receiving surface waters. One of the reasons is that landscape measures correctly targeted the saturated variable source runoff areas (VSA) in the valley bottoms as the location where most of the runoff and other nonpoint pollutants originated. Measures targeting these areas were instrumental in lowering phosphorus concentration. Further improvements in water quality can be made based on a better understanding of the flow processes and water table fluctuations in the VSA. For that reason, we instrumented a self-contained upland variable source watershed with a landscape characteristic of a soil underlain by glacial till at shallow depth similar to the Catskill watersheds. In this presentation, we will discuss our experimental findings and present a mathematical model. Variable source areas have a small slope making gravity the driving force for the flow, greatly simplifying the simulation of the flow processes. The experimental data and the model simulations agreed for both outflow and water table fluctuations. We found that while the flows to the outlet were similar throughout the year, the discharge of the VSA varies greatly. This was due to transpiration by the plants which became active when soil temperatures were above 10oC. We found that shortly after the temperature increased above 10oC the baseflow stopped and only surface runoff occurred when rainstorms exceeded the storage capacity of the soil in at least a portion of the variable source area. Since plant growth in the variable source area was a major variable determining the base flow behavior, changes in temperature in the future - affecting the duration of the growing season - will affect baseflow and

  1. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  2. Bed Load Variability and Morphology of Gravel Bed Rivers Subject to Unsteady Flow: A Laboratory Investigation

    Science.gov (United States)

    Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.

    2018-02-01

    Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.

  3. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Daming; Wang, Tianyou; Wang, Gangde [Tianjin University, State Key Laboratory of Engines, Tianjin (China); Jia, Ming [Dalian University of Technology, School of Energy and Power Engineering, Dalian (China)

    2012-09-15

    In spark ignition engines, cycle-to-cycle variation (CCV) limits the expansion of the operating range because it induces the load variations and the occurrence of misfire and/or knock. Variable valve actuation (VVA) or variable valve lift (VVL) has been widely used in SI engines to improve the volumetric efficiency or to reduce the pumping losses. It is necessary to investigate the CCV of in-cylinder gas motion and mixing processes in SI engines with VVA/VVL system. This study is aimed to analyze the CCV of the tumble flow in a gasoline direct injection (GDI) engine when VVL is employed. Cycle-resolved digital particle image velocimetry (CRD-PIV) data were acquired for the in-cylinder flow field of a motored four-stroke multi-valve GDI optical engine. The CCV of in-cylinder gas motion with a series of valve profiles and different maximum valve lift (MVL) was analyzed, including cyclic variation characteristics of bulk flow (tumble centre and tumble ratio), large- and small-scale fluctuation, total kinetic energy, and circulation. The results show that the CCV of the in-cylinder flow is increased with reduced MVL. With lower MVLs, stable tumble flow cannot be formed in the cylinder, and the ensemble-averaged tumble ratio decreases to zero before the end of the compression stroke due to violent variation. In addition, the evolution of the circulation shows larger variation with lower MVLs that indicates the 'spin' of the small-scale eddy in the flow field presents violent fluctuation from one cycle to another, especially at the end of the compression stroke. Moreover, the analyze of the kinetic energy indicates the total energy of the flow field with lower MVLs increases significantly comparing with higher MVL conditions due to the intake flow jet at the intake valve seat in the intake stroke. However, the CCV of the in-cylinder flow becomes more violent under lower MVL conditions, especially for the low-frequency fluctuation kinetic energy. Thus, present

  4. Distribution, abundance, and diversity of stream fishes under variable environmental conditions

    Science.gov (United States)

    Christopher M. Taylor; Thomas L. Holder; Richard A. Fiorillo; Lance R. Williams; R. Brent Thomas; Melvin L. Warren

    2006-01-01

    The effects of stream size and flow regime on spatial and temporal variability of stream fish distribution, abundance, and diversity patterns were investigated. Assemblage variability and species richness were each significantly associated with a complex environmental gradient contrasting smaller, hydrologically variable stream localities with larger localities...

  5. The Graded Alluvial River: Variable Flow and the Dominant Discharge

    Science.gov (United States)

    Blom, A.; Arkesteijn, L.; Viparelli, E.

    2016-12-01

    We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.

  6. Performance evaluation of a drag-disc turbine transducer and three-beam gamma densitometer under transient two-phase flow conditions

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chen, L.L.; Solbrig, C.W.

    1979-01-01

    One of the primary variables measured in the Loss-of-Fluid Test (LOFT) Program is mass flow rate. LOFT uses drag-disc turbine tranducers (DTT) and a three-beam gamma densitometer to measure parameters from which mass flow may be computed. The transducer combination was performance tested under transient conditions in the blowdown loop at the LOFT Test Support Facility (LTSF). The performance tests consisted of three partial blowdowns of different durations starting from the same initial conditions. The reference mean mass flow rate was determined by measuring the amount of water required to reestablish initial conditions after each partial blowdown. The average mass flow rates computed from the output of the drag disc, turbine, and gamma densitometer were compared to the reference mean mass flow rates over three blowdown intervals. The tests indicated that the equal phase velocity mass measurement model provided excellent results through the use of the turbine and densitometer, and drag disc and densitometer when the phase velocities were nearly equal

  7. The effect of virtual reality on gait variability.

    Science.gov (United States)

    Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas

    2010-07-01

    Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.

  8. Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow

    International Nuclear Information System (INIS)

    Jackson, J.D.; Li, J.

    2002-01-01

    A fundamental study is reported of heat transfer from a vertical heated tube to air which is induced naturally upwards through it by the action of buoyancy. Measurements of local heat transfer coefficient were made using a specially designed computer-controlled power supply and measurement system for conditions of uniform wall temperature and uniform wall heat flux. The effectiveness of heat transfer proved to be much lower than for conditions of forced convection. It was found that the results could be correlated satisfactorily when presented in terms of dimensionless parameters similar to those used for free convection heat transfer from vertical surfaces provided that the heat transfer coefficients were evaluated using local fluid bulk temperature calculated utilising the measured values of flow rate induced through the system. Additional experiments were performed' with pumped flow. These covered the entire mixed convection region. It was found that the data for naturally-induced flow mapped onto the pumped flow data when presented in terms of Nusselt number ratio (mixed to forced) and buoyancy parameter. Computational simulations of the experiments were performed using an advanced computer code which incorporated a buoyancy-influenced, variable property, developing wall shear flow formulation and a low Reynolds number k-ε turbulence model. These reproduced observed behaviour quite well. (author)

  9. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow

    Science.gov (United States)

    Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao

    2018-05-01

    An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.

  10. Effects of alloy composition and flow condition on the flow accelerated corrosion in neutral water condition

    International Nuclear Information System (INIS)

    Satoh, Tomonori; Ugachi, Hirokazu; Tsukada, Takashi; Uchida, Shunsuke

    2008-01-01

    The major mechanism of Flow accelerated corrosion (FAC) is the dissolution of the protective oxide on carbon steel, which is enhanced by mass transfer and erosion under high flow velocity conditions. In this study, the effects of alloy composition and flow velocity on FAC of carbon steel were evaluated by measuring FAC rate of tube type carbon steel specimens in the neutral water condition at 150degC. Obtained results are summarized in follows. 1) High FAC rate was depended upon the v 1.2 in the tube type specimen made of the standard alloy. 2) FAC was mitigated for the carbon steel with more than 0.03% of Cr content. 3) FAC rate decreased as Ni content increased in more than 0.1% of Ni content. 4) The difference in chemical composition of oxide film between Ni added carbon steel and Cr added one was confirmed. The hematite rich oxide was observed for Ni added carbon steel. 5) The effects of Cu on FAC rate was not observed up to 0.1% of Cu content. (author)

  11. Benchmarking variable-density flow in saturated and unsaturated porous media

    Science.gov (United States)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  12. Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost

    International Nuclear Information System (INIS)

    Streletskiy, Dmitry A; Shiklomanov, Nikolay I; Nyland, Kelsey E; Tananaev, Nikita I; Opel, Thomas; Streletskaya, Irina D; Tokarev, Igor’; Shiklomanov, Alexandr I

    2015-01-01

    Role of changing climatic conditions on permafrost degradation and hydrology was investigated in the transition zone between the tundra and forest ecotones at the boundary of continuous and discontinuous permafrost of the lower Yenisei River. Three watersheds of various sizes were chosen to represent the characteristics of the regional landscape conditions. Samples of river flow, precipitation, snow cover, and permafrost ground ice were collected over the watersheds to determine isotopic composition of potential sources of water in a river flow over a two year period. Increases in air temperature over the last forty years have resulted in permafrost degradation and a decrease in the seasonal frost which is evident from soil temperature measurements, permafrost and active-layer monitoring, and analysis of satellite imagery. The lowering of the permafrost table has led to an increased storage capacity of permafrost affected soils and a higher contribution of ground water to river discharge during winter months. A progressive decrease in the thickness of the layer of seasonal freezing allows more water storage and pathways for water during the winter low period making winter discharge dependent on the timing and amount of late summer precipitation. There is a substantial seasonal variability of stable isotopic composition of river flow. Spring flooding corresponds to the isotopic composition of snow cover prior to the snowmelt. Isotopic composition of river flow during the summer period follows the variability of precipitation in smaller creeks, while the water flow of larger watersheds is influenced by the secondary evaporation of water temporarily stored in thermokarst lakes and bogs. Late summer precipitation determines the isotopic composition of texture ice within the active layer in tundra landscapes and the seasonal freezing layer in forested landscapes as well as the composition of the water flow during winter months. (letter)

  13. Off-wall boundary conditions for turbulent flows obtained from buffer-layer minimal flow units

    Science.gov (United States)

    Garcia-Mayoral, Ricardo; Pierce, Brian; Wallace, James

    2012-11-01

    There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ = 400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J . FluidMech .) . Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows. 2012 CTR Summer Program.

  14. Flows in networks under fuzzy conditions

    CERN Document Server

    Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich

    2017-01-01

    This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...

  15. Two-phase flow regimes and mechanisms of critical heat flux under subcooled flow boiling conditions

    International Nuclear Information System (INIS)

    Le Corre, Jean-Marie; Yao, Shi-Chune; Amon, Cristina H.

    2010-01-01

    A literature review of critical heat flux (CHF) experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available experimental information. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. Even though the selected concept has not received much attention (in term or theoretical developments and applications) as compared to other more popular DNB models, its basis have often been cited by experimental investigators and is considered by the authors as the 'most-likely' mechanism based on the literature review and analysis performed in this work. The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow and has been numerically implemented and validated in bubbly flow and coupled with one- and three-dimensional (CFD) two-phase flow codes, in a companion paper. [Le Corre, J.M., Yao, S.C., Amon, C.H., in this issue. A mechanistic model of critical heat flux under subcooled flow boiling conditions for application to one and three-dimensional computer codes. Nucl. Eng. Des.].

  16. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    International Nuclear Information System (INIS)

    Jaquet, O.; Namar, R.; Jansson, P.

    2010-10-01

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  17. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  18. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  19. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  20. Detection of changes in flow variability of the upper Danube between 1876-2006

    International Nuclear Information System (INIS)

    Pekarova, Pavla; Miklanek, Pavol; Halmova, Dana; Skoda, Peter; Pekar, Jan

    2008-01-01

    It is widely acknowledged that global warming will result in an increased extremality of hydrological phenomena. As for streamflow it is anticipated that duration of low-flow conditions and flood frequency will both increase. Approving this hypothesis by statistically evaluating daily runoff characteristics depends on the availability of long and homogeneous data series. The aim of this paper is to analyze the change of the average daily flows of the Danube at Bratislava for different subsets of the period 1876-2006. The statistical tests did not reveal any increase in the extremality of daily runoff over the period 1876-2006. On the contrary, variability of daily flows of the Danube River decreases. Over the last 30 years streamflows increased in the winter-spring season and decreased in the summertime, compared to the past periods. This can be explained by the higher air temperature in the headwaters. A warmer climate causes an earlier onset of snowmelt in the winter-spring season, thus less runoff is observed in the summer with higher rates of precipitation.

  1. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  2. R 12 two-phase flow in throttle capillaries in critical flow conditions

    International Nuclear Information System (INIS)

    Petry, G.

    1983-01-01

    In this dissertation, the state of knowledge on two phase flow, its use and measurement processes are given from an extensive search of the literature. In the experimental part of the work, a continuously working experimental circuit was built up, by which single component two phase flow can be examined in critical flow conditions. Using the maintenance equations, a system of equations was produced, by which the content of steam flow, the content of steam volume and the slip between the phases at the end corssection of the capillary can be determined. The transfer of the experimental results into the Baker diagram shows that the experimental values lie in the region of mist, bubble and foam flow. (orig.) [de

  3. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  4. Preferential flow occurs in unsaturated conditions

    Science.gov (United States)

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  5. Reconnection conditions for a coaxial plasma gun

    International Nuclear Information System (INIS)

    Berk, H.L.; Hammer, J.H.; Shearer, J.W.

    1982-01-01

    A fluid model for the flow conditions necessary to form a compact torus from the plasma ejected by a coaxial plasma gun is developed. This is done by finding the conditions for which the steady-flow equations break down. Results are found for two cases; variable external flux and variable outer-wall radius

  6. Transient burnout in flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1981-01-01

    A transient flow reduction burnout experiment was conducted with water in a uniformly heated, vertically oriented tube. Test pressures ranged from 0.5 to 3.9 MPa. An analytical method was developed to obtain transient burnout conditions at the exit. A simple correlation to predict the deviation of the transient burnout mass velocity at the tube exit from the steady state mass velocity obtained as a function of steam-water density ratio and flow reduction rate. The correlation was also compared with the other data. (author)

  7. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    Science.gov (United States)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate

  8. Statistical conditional sampling for variable-resolution video compression.

    Directory of Open Access Journals (Sweden)

    Alexander Wong

    Full Text Available In this study, we investigate a variable-resolution approach to video compression based on Conditional Random Field and statistical conditional sampling in order to further improve compression rate while maintaining high-quality video. In the proposed approach, representative key-frames within a video shot are identified and stored at full resolution. The remaining frames within the video shot are stored and compressed at a reduced resolution. At the decompression stage, a region-based dictionary is constructed from the key-frames and used to restore the reduced resolution frames to the original resolution via statistical conditional sampling. The sampling approach is based on the conditional probability of the CRF modeling by use of the constructed dictionary. Experimental results show that the proposed variable-resolution approach via statistical conditional sampling has potential for improving compression rates when compared to compressing the video at full resolution, while achieving higher video quality when compared to compressing the video at reduced resolution.

  9. Magnetohydrodynamic boundary layer flow past a porous substrate with Beavers-Joseph boundary condition

    International Nuclear Information System (INIS)

    Jat, R.N.; Chaudhary, Santosh

    2009-01-01

    The flow of an electrically conducting fluid past a porous substrate attached to the flat plate with Beavers-Joseph boundary condition under the influence of a uniform transverse magnetic field has been studied. Taking suitable similar variables, the momentum equation is transformed to ordinary differential equation and solved by standard techniques. The energy equation is solved by considering two boundary layers, one in the porous substrate and the other above the porous substrate. The velocity and temperature distributions along with Nusselt number are discussed numerically and presented through graphs. (author)

  10. Rainfall Variability and Landuse Conversion Impacts to Sensitivity of Citarum River Flow

    Directory of Open Access Journals (Sweden)

    Dyah Marganingrum

    2013-07-01

    Full Text Available The objective of this study is to determine the sensitivity of Citarum river flow to climate change and land conversion. It will provide the flow information that required in the water resources sustainability. Saguling reservoir is one of the strategic reservoirs, which 75% water is coming from the inflow of Upper Citarum measured at Nanjung station. Climate variability was identified as rainfall variability. Sensitivity was calculated as the elasticity value of discharge using three-variate model of statistical approach. The landuse conversion was calculated used GIS at 1994 and 2004. The results showed that elasticity at the Nanjung station and Saguling station decreased from 1.59 and 1.02 to 0.68 and 0.62 respectively. The decreasing occurred in the before the dam was built period (1950-1980 to the after reservoirs operated period (1986-2008. This value indicates that: 1 Citarum river flow is more sensitive to rainfall variability that recorded at Nanjung station than Saguling station, 2 rainfall character is more difficult to predict. The landuse analysis shows that forest area decrease to ± 27% and built up area increased to ± 26%. Those implied a minimum rainfall reduction to± 8% and minimum flow to ± 46%. Those were caused by land conversion and describing that the vegetation have function to maintain the base flow for sustainable water resource infrastructure.

  11. Transient flow conditions in probabilistic wellhead protection: importance and ways to manage spatial and temporal uncertainty in capture zone delineation

    Science.gov (United States)

    Enzenhoefer, R.; Rodriguez-Pretelin, A.; Nowak, W.

    2012-12-01

    "From an engineering standpoint, the quantification of uncertainty is extremely important not only because it allows estimating risk but mostly because it allows taking optimal decisions in an uncertain framework" (Renard, 2007). The most common way to account for uncertainty in the field of subsurface hydrology and wellhead protection is to randomize spatial parameters, e.g. the log-hydraulic conductivity or porosity. This enables water managers to take robust decisions in delineating wellhead protection zones with rationally chosen safety margins in the spirit of probabilistic risk management. Probabilistic wellhead protection zones are commonly based on steady-state flow fields. However, several past studies showed that transient flow conditions may substantially influence the shape and extent of catchments. Therefore, we believe they should be accounted for in the probabilistic assessment and in the delineation process. The aim of our work is to show the significance of flow transients and to investigate the interplay between spatial uncertainty and flow transients in wellhead protection zone delineation. To this end, we advance our concept of probabilistic capture zone delineation (Enzenhoefer et al., 2012) that works with capture probabilities and other probabilistic criteria for delineation. The extended framework is able to evaluate the time fraction that any point on a map falls within a capture zone. In short, we separate capture probabilities into spatial/statistical and time-related frequencies. This will provide water managers additional information on how to manage a well catchment in the light of possible hazard conditions close to the capture boundary under uncertain and time-variable flow conditions. In order to save computational costs, we take advantage of super-positioned flow components with time-variable coefficients. We assume an instantaneous development of steady-state flow conditions after each temporal change in driving forces, following

  12. Thermal ignition in a reactive variable viscosity Poiseuille flow ...

    African Journals Online (AJOL)

    In this paper, we investigate the thermal ignition in a strongly exothermic reaction of a variable viscosity combustible material flowing through a channel with isothermal walls under Arrhenius kinetics, neglecting the consumption of the material. Analytical solutions are constructed for the governing nonlinear boundary-value ...

  13. DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

    Science.gov (United States)

    Moss, James N.

    2000-01-01

    This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.

  14. MAXIMUM PRINCIPLE FOR SUBSONIC FLOW WITH VARIABLE ENTROPY

    Directory of Open Access Journals (Sweden)

    B. Sizykh Grigory

    2017-01-01

    Full Text Available Maximum principle for subsonic flow is fair for stationary irrotational subsonic gas flows. According to this prin- ciple, if the value of the velocity is not constant everywhere, then its maximum is achieved on the boundary and only on the boundary of the considered domain. This property is used when designing form of an aircraft with a maximum critical val- ue of the Mach number: it is believed that if the local Mach number is less than unit in the incoming flow and on the body surface, then the Mach number is less then unit in all points of flow. The known proof of maximum principle for subsonic flow is based on the assumption that in the whole considered area of the flow the pressure is a function of density. For the ideal and perfect gas (the role of diffusion is negligible, and the Mendeleev-Clapeyron law is fulfilled, the pressure is a function of density if entropy is constant in the entire considered area of the flow. Shows an example of a stationary sub- sonic irrotational flow, in which the entropy has different values on different stream lines, and the pressure is not a function of density. The application of the maximum principle for subsonic flow with respect to such a flow would be unreasonable. This example shows the relevance of the question about the place of the points of maximum value of the velocity, if the entropy is not a constant. To clarify the regularities of the location of these points, was performed the analysis of the com- plete Euler equations (without any simplifying assumptions in 3-D case. The new proof of the maximum principle for sub- sonic flow was proposed. This proof does not rely on the assumption that the pressure is a function of density. Thus, it is shown that the maximum principle for subsonic flow is true for stationary subsonic irrotational flows of ideal perfect gas with variable entropy.

  15. Analytic solutions to linear, time-dependent fission product deposition models for isothermal laminar, slug, or multiregion flow conditions

    International Nuclear Information System (INIS)

    Durkee, J.W. Jr.

    1983-01-01

    The time-dependent convective-diffusion equation with radioactive decay is solved analytically in axisymmetric cylindrical geometry for laminar and slug velocity profiles under isothermal conditions. Concentration dependent diffusion is neglected. The laminar flow solution is derived using the method of separation of variables and Frobenius' technique for constructing a series expansion about a regular singular point. The slug flow multiregion solution is obtained using the method of separation of variables. The Davidon Variable Metric Minimization algorithm is used to compute the coupling coefficients. These solutions, which describe the transport of fission products in a flowing stream, are then used to determine the concentration of radioactive material deposited on a conduit wall using a standard mass transfer model. Fission product deposition measurements for five diffusion tubes in a Fort St. Vrain High-Temperature Gas-Cooled reactor plateout probe are analyzed. Using single region slug and laminar models, the wall mass transfer coefficients, diffusion coefficients, and inlet concentrations are determined using least squares analysis. The diffusion coefficients and inlet concentrations are consistent between tubes. The derived diffusion coefficients and wall mass transfer coefficients are in relative agreement with known literature values

  16. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  17. Hydro-dynamic Solute Transport under Two-Phase Flow Conditions.

    Science.gov (United States)

    Karadimitriou, Nikolaos K; Joekar-Niasar, Vahid; Brizuela, Omar Godinez

    2017-07-26

    There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.

  18. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  19. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  20. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    International Nuclear Information System (INIS)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-01-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction. (paper)

  1. Thermogravimetric study of a Phase Change Slurry: Effect of variable conditions

    International Nuclear Information System (INIS)

    Giro-Paloma, J.; Valle-Zermeño, R. del; Fernández, A.I.; Chimenos, J.M.; Formosa, J.

    2016-01-01

    Highlights: • Dry or wet PCS present differences in their thermal behavior. • The optimum conditions of dry PCS were determined by TGA. • Type of atmosphere and heating rate were the variables under consideration. • T peak can be accurately determined at 1 °C·min −1 in N 2. • Fusion/latent heat can be best determined at 10 °C·min −1 . - Abstract: Microcapsules containing Phase Change Materials (MPCM) are widely used for passive systems in energy storage. When MPCM are mixed with a carrier fluid, Phase Change Slurries (PCS) are used for heat transfer fluids in active systems or heat transport systems. The thermal behavior of PCS can be measured as dry or wet basis, resulting in important differences in weight losses. This study explores the optimum conditions for analyzing the thermal behavior of dried PCS by thermogravimetric analysis (TGA) varying the parameter conditions for obtaining peak temperature and heat flow (latent heat). The factors that were taken into account were the atmosphere of study (air and nitrogen) and the heating rate (0.5, 1, 5, and 10 °C·min −1 ). The best conditions to determine peak temperature are at 1 °C·min −1 and in N 2 atmosphere, whereas the decomposition fusion/latent heat of the sample is improved at higher heating velocities towards 10 °C·min −1 .

  2. Numerical modeling of variably saturated flow and transport, 881 Hillside at Rocky Flats Plant, Jefferson County, Colorado

    International Nuclear Information System (INIS)

    Fedors, R.W.; Warner, J.W.

    1993-01-01

    This study characterizes the unconfined groundwater flow and chemical transport in a thin veneer of colluvial and alluvial Quaternary sediments on the 881 Hillslope at Rocky Flats Plant, Jefferson County, Colorado. Colluvial deposits with a varying thickness of 1.5 to 6.7 meters mantle a 255 meter steeply dipping hillslope. Saturated and the similar material types. A two-dimensional finite element code for variably saturated conditions is used to obtain steady state flow conditions from which water contents and Darcy velocities are used for transient contaminant transport modeling. The migration of an absorptive solute is modeled over a twenty year period using the transport portion of the two-dimensional finite element code. Different potential scenarios for the source area are compared with actual well sample data. The solutes considered for this study are Trichloroethene (TCE) and tetrachloroethene (PCE) dissolved in the water phase

  3. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    Science.gov (United States)

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  4. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antheaume, Sylvain [Electricite de France, Recherche et Developpement, Laboratoire National d' Hydraulique et Environnement, 6 Quai Watier, 78400 Chatou (France); Maitre, Thierry; Achard, Jean-Luc [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble (France)

    2008-10-15

    The present study deals with the efficiency of cross flow water current turbine for free stream conditions versus power farm conditions. In the first part, a single turbine for free fluid flow conditions is considered. The simulations are carried out with a new in house code which couples a Navier-Stokes computation of the outer flow field with a description of the inner flow field around the turbine. The latter is based on experimental results of a Darrieus wind turbine in an unbounded domain. This code is applied for the description of a hydraulic turbine. In the second part, the interest of piling up several turbines on the same axis of rotation to make a tower is investigated. Not only is it profitable because only one alternator is needed but the simulations demonstrate the advantage of the tower configuration for the efficiency. The tower is then inserted into a cluster of several lined up towers which makes a barge. Simulations show that the average barge efficiency rises as the distance between towers is decreased and as the number of towers is increased within the row. Thereby, the efficiency of a single isolated turbine is greatly increased when set both into a tower and into a cluster of several towers corresponding to possible power farm arrangements. (author)

  5. The coherent variability of African river flows : composite climate ...

    African Journals Online (AJOL)

    The composite structure of the ocean and atmosphere around Africa is studied in the context of river flow variability. Annual streamflows are analysed for the Blue and White Nile, Congo, Niger, Senegal, Zambezi, and Orange Rivers, and inflow to Lake Malawi. Spectral energy is concentrated in 6.6- and 2.4-year bands.

  6. Modelling food-web mediated effects of hydrological variability and environmental flows.

    Science.gov (United States)

    Robson, Barbara J; Lester, Rebecca E; Baldwin, Darren S; Bond, Nicholas R; Drouart, Romain; Rolls, Robert J; Ryder, Darren S; Thompson, Ross M

    2017-11-01

    Environmental flows are designed to enhance aquatic ecosystems through a variety of mechanisms; however, to date most attention has been paid to the effects on habitat quality and life-history triggers, especially for fish and vegetation. The effects of environmental flows on food webs have so far received little attention, despite food-web thinking being fundamental to understanding of river ecosystems. Understanding environmental flows in a food-web context can help scientists and policy-makers better understand and manage outcomes of flow alteration and restoration. In this paper, we consider mechanisms by which flow variability can influence and alter food webs, and place these within a conceptual and numerical modelling framework. We also review the strengths and weaknesses of various approaches to modelling the effects of hydrological management on food webs. Although classic bioenergetic models such as Ecopath with Ecosim capture many of the key features required, other approaches, such as biogeochemical ecosystem modelling, end-to-end modelling, population dynamic models, individual-based models, graph theory models, and stock assessment models are also relevant. In many cases, a combination of approaches will be useful. We identify current challenges and new directions in modelling food-web responses to hydrological variability and environmental flow management. These include better integration of food-web and hydraulic models, taking physiologically-based approaches to food quality effects, and better representation of variations in space and time that may create ecosystem control points. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Investigation on premature occurrence of critical heat flux under oscillatory flow and power conditions

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Dasgupta, A.; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    Two-phase natural circulation loops have extensive applications in nuclear and process industries. One of the major concerns with natural circulation is the occurrence of the various types of flow instabilities, which can cause premature boiling crisis due to flow and power oscillations. In this work a transient computer code COPCOS (Code for Prediction of CHF under Oscillating flow and power condition) has been developed to predict the premature occurrence of CHF (critical heat flux) under oscillating flow and power. The code incorporates conduction equation of the fuel and coolant energy equation. For CHF prediction, CHF look-up table developed by Groeneveld is used. A facility named CHF and Instability Loop (CHIL) has been set up to study the effect of oscillatory flow on CHF. CHF and Instability Loop (CHIL) is a simple rectangular loop having a 10.5 mm ID and 1.2 m long test section. The flow through the test section is controlled by a canned motor pump using a Variable Frequency Drive (VFD). This leads to the ability of having a very precise control over flow oscillations which can be induced in the test section. The effect of frequency and amplitude of flow oscillation on occurrence of premature CHF has been investigated in this facility using COPCOS. Full paper covers details of COPCOS code, description of the facility and effect of frequency and the effect of oscillatory flow on CHF in the facility. (author)

  8. Numerical Simulation Analysis of Five-Step Variable-Diameter Pipe with Solid-Liquid Two-Phase Abrasive Flow Polishing

    Science.gov (United States)

    Li, Junye; Zhang, Hengfu; Wu, Guiling; Hu, Jinglei; Liu, Yang; Sun, Zhihui

    2018-01-01

    In many areas of precision machining abrasive flow polishing technology has an important role. In order to study the influence of abrasive flow on the polishing effect of variable diameter parts, the fifth step variable diameter tube was taken as the research object to analyze the dynamic pressure and turbulent kinetic energy distribution of inlet velocity on the fifth-order variable diameter tube influences. Through comparative analysis, the abrasive flow polished variable diameter pipe parts have very effective and significant polishing effect and the higher the inlet speed, the more significant the polishing effect.

  9. Verification of the karst flow model under laboratory controlled conditions

    Science.gov (United States)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  10. Some aspects of regional flow of variable-density groundwater in crystalline basement rock of Sweden

    International Nuclear Information System (INIS)

    Voss, C.I.; Andersson, Johan

    1991-12-01

    The distribution of saltwaters in the Baltic shield in Sweden is consistent with ongoing but incomplete Holocene flushing and depends on the geometry and connectivity of conductive structures at both regional and local scales, and on the surface topography. Numerical simulation of regional variable-density fluid flow during Holocene land-rise and coastal regression shows that the existence of any old saltwater, whether derived from submarine recharge in regions below Sweden's highest post-glacial coastline or geochemical processes, is an indication either of slow fluid movements through the bedrock over long times, or of long travel distances through fracture systems before arriving at measurement points. During the land-rise period, regional flow is not affected by the variable density of fluids in the upper few kilometers of the shield and the topography of the water table is the only driving force. The spatial distribution of meteoric flushing water and pre-Holocene waters may be complex, with the possibility of relatively fresh water in fracture zones below salty units even at depths of a few kilometers. The domination of the topographic driving force implies that deep saltwater is not necessarily stagnant, and significant saltwater flows may be expected to occur in well-connected horizons even at depth. Local topography variation and fracture zone location combine to create a complex flow field in which local topographic driving forces extend to considerable depth in some areas, whereas regional topographic forces predominate in others. Thus, a pattern may be difficult to discern in measurements of the regional saltwater distribution, although it is clear that the coastal region is the major zone of discharge for deeper pre-Holocene fluids. During the land-rise period, regional flow equilibrates with changing climatic conditions and coastal positions, while the distribution of flushing water and older waters lags and will perpetually change between successive

  11. Modern aspects of nonlinear convection and magnetic field in flow of thixotropic nanofluid over a nonlinear stretching sheet with variable thickness

    Science.gov (United States)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir

    2018-05-01

    Main objective of present analysis is to study the magnetohydrodynamic (MHD) nonlinear convective flow of thixotropic nanofluid. Flow is due to nonlinear stretching surface with variable thickness. Nonlinear thermal radiation and heat generation/absorption are utilized in the energy expression. Convective conditions and zero mass flux at sheet are considered. Intention in present analysis is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Appropriate transformations are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been scrutinized through homotopic algorithm. Behavior of various sundry variables on velocity, temperature, nanoparticle concentration, skin friction coefficient and local Nusselt number are displayed through graphs. It is concluded that qualitative behaviors of temperature and thermal layer thickness are similar for radiation and temperature ratio variables. Moreover an enhancement in heat generation/absorption show rise to thermal field.

  12. Extracting a mix parameter from 2D radiography of variable density flow

    Science.gov (United States)

    Kurien, Susan; Doss, Forrest; Livescu, Daniel

    2017-11-01

    A methodology is presented for extracting quantities related to the statistical description of the mixing state from the 2D radiographic image of a flow. X-ray attenuation through a target flow is given by the Beer-Lambert law which exponentially damps the incident beam intensity by a factor proportional to the density, opacity and thickness of the target. By making reasonable assumptions for the mean density, opacity and effective thickness of the target flow, we estimate the contribution of density fluctuations to the attenuation. The fluctuations thus inferred may be used to form the correlation of density and specific-volume, averaged across the thickness of the flow in the direction of the beam. This correlation function, denoted by b in RANS modeling, quantifies turbulent mixing in variable density flows. The scheme is tested using DNS data computed for variable-density buoyancy-driven mixing. We quantify the deficits in the extracted value of b due to target thickness, Atwood number, and modeled noise in the incident beam. This analysis corroborates the proposed scheme to infer the mix parameter from thin targets at moderate to low Atwood numbers. The scheme is then applied to an image of counter-shear flow obtained from experiments at the National Ignition Facility. US Department of Energy.

  13. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  14. Fluid flow in panel radiator under various conditions - thermographic visualisation

    Directory of Open Access Journals (Sweden)

    Bašta Jiří

    2012-04-01

    Full Text Available Thermographic investigation of a heating panel radiator under various conditions, especially with various heating water volume flow rate is described in this article. For a radiator type 10-500x1000 TBOE and for two levels of inlet water temperature (75 and 55 °C a set of thermal images of surface temperature patterns for various values of heating water volume flow rate was taken. The initial value of flow rate was derived from nominal heating output and recalculated to real conditions. An increase of volume flow rate higher than 15 % over the nominal recalculated value is for the studied cases easily detectable on the resulting thermal images.

  15. Redox conditions effect on flow accelerated corrosion: Influence of hydrazine and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, O. de [EDF, R and D Div., Moret sur Loing (France); Bouchacourt, M. [EDF, Engineering and Service Div., Villeurbanne (France); Fruzzetti, K. [EPRI, Science and Technology Div., Palo Alto, CA (United States)

    2002-07-01

    Flow accelerated corrosion (FAC) of carbon steels has been studied world-wide for more than twenty years and is now fairly well understood. The influence of several parameters like water chemistry (i.e. pH and oxygen content), temperature, hydrodynamic or mass transfer conditions (i.e. flow velocity, geometry, steam quality..) and steel composition on the corrosion kinetics has been demonstrated both theoretically and experimentally. However, the effect of a reducing environment and variable redox conditions have not yet been fully explored. It's well known that a reducing environment is effective in increasing the resistance of steam generator tubing to intergranular attack / stress corrosion cracking (IGA/SCC) and pitting. In that way, secondary water chemistry specifications have been modified from low hydrazine to high hydrazine chemistry in the steam-water circuit. Nevertheless, increasing hydrazine levels up to 200 {mu}g/kg could have a detrimental effect by potentially enhancing the FAC process. Moreover, in order to have a complete understanding of the possible impact of the water chemistry environment it is also important to consider the impact of redox conditions during shutdowns (cold and/or hot shutdowns) and start up periods when aerated water injections are made to maintain a constant water level in the Steam Generators from the auxiliary feedwater circuit. Therefore, a common EDF and EPRI R and D effort has been recently carried out to study the effects of hydrazine and oxygen on FAC. The results are presented as follows. (authors)

  16. Use of a Phase Transition Concept for Traffic Flow Condition Estimation

    Directory of Open Access Journals (Sweden)

    Larin Oleg N.

    2014-12-01

    Full Text Available The article covers the main models of traffic flow conditions, analyzes the condition estimation criteria, and provides the classification of models. The article provides the grounds for the use of the phase transition concept for traffic flow condition estimation. The models of the aggregate condition of free and congested traffic have been developed, the phase boundaries between free and congested traffic have been defined. Applicability conditions for the models of the aggregate condition of have been analyzed.

  17. Analysis of Causes of Non-Uniform Flow Distribution in Manifold Systems with Variable Flow Rate along Length

    Science.gov (United States)

    Zemlyanaya, N. V.; Gulyakin, A. V.

    2017-11-01

    The uniformity of flow distribution in perforated manifolds is a relevant task. The efficiency of water supply, sewerage and perflation systems is determined by hydraulics of the flow with a variable mass. The extensive study of versatile available information showed that achieving a uniform flow distribution through all of the outlets is almost impossible. The analysis of the studies conducted by other authors and our numerical experiments performed with the help of the software package ANSYS 16.1 were made in this work. The results allowed us to formulate the main causes of non-uniform flow distribution. We decided to suggest a hypothesis to explain the static pressure rise problem at the end of a perforated manifold.

  18. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.

    1962-01-01

    The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4 sub 2 ; Mass velocity 144 2 /s; Heated length 1040 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the ranges investigated the observed steam quality at burnout, x BO generally decreases with increasing heat flux; increases with increasing pressure and decreases with increasing mass velocity. The mass velocity effect has been explained on the basis of climbing film flow theory. Finally we have found that for engineering purposes the effects of inlet subcooling and channel length are negligible

  19. Numerical study of free pulsed jet flow with variable density

    Energy Technology Data Exchange (ETDEWEB)

    Kriaa, Wassim [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, 5000 Monastir (Tunisia)], E-mail: kriaawass@yahoo.fr; Cheikh, Habib Ben; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, 5000 Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, 60 rue Juliot Curie Technopole de Chateau-Gombert 13453, Marseille Cedex 13 (France)

    2008-05-15

    In this work, we propose a numerical study of a free pulsed plane jet with variable density in unsteady and laminar modes. At the nozzle exit, the flow is characterized by a uniform temperature and submitted to a longitudinal and periodic velocity disturbance: u = u{sub 0}(1 + A sin({omega}t)). A finite difference method is performed to solve the equations governing this flow type. The discussion relates to the effect of the most significant parameters, such as the pulsation frequency and amplitude, on the flow characteristic fields. The effects of Reynolds and Galileo numbers was also examined. The results show that the pulsation affects the flow in the vicinity of the nozzle, and further, the results of the unsteady mode join those of the steady non-pulsed jet. The results state also that the Strouhal number has no influence on the flow mixture degree, whereas the amplitude of pulsation affects, in a remarkable way, the mixture and, consequently, the concentration core length.

  20. Polluted soil leaching: unsaturated conditions and flow rate effects

    Directory of Open Access Journals (Sweden)

    Chourouk Mathlouthi

    2017-04-01

    Full Text Available In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

  1. Simplified model for a ventilated glass window under forced air flow conditions

    International Nuclear Information System (INIS)

    Ismail, K.A.R.; Henriquez, J.R.

    2006-01-01

    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance

  2. Simplified model for a ventilated glass window under forced air flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, K.A.R. [Depto. de Engenharia Termica e de Fluidos-FEM-UNICAMP CP: 6122 CEP 13083-970 Campinas, SP (Brazil); Henriquez, J.R. [Depto. de Eng. Mecanica-DEMEC, UFPE Av. Academico Helio Ramos, S/N CEP 50740-530, Recife, PE (Brazil)

    2006-02-01

    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance. (author)

  3. An Irrotational Flow Field That Approximates Flat Plate Boundary Conditions

    OpenAIRE

    Ruffa, Anthony A.

    2004-01-01

    An irrotational solution is derived for the steady-state Navier-Stokes equations that approximately satisfies the boundary conditions for flow over a finite flat plate. The nature of the flow differs substantially from boundary layer flow, with severe numerical difficulties in some regions.

  4. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Science.gov (United States)

    Hayat, T.; Shah, Faisal; Alsaedi, A.; Hussain, Zakir

    The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction.

  5. The Unsteady Variable – Viscosity Free Convection Flow on a ...

    African Journals Online (AJOL)

    The unsteady variable-viscosity free convection flow of a viscous incompressible fluid near an infinite vertical plate (or wall) is investigated under an arbitrary timedependent heating of the plates, and the governing equations of motion and energy transformed into ordinary differential equations. Employing asymptotic ...

  6. Concentration of nanoparticles and/or microparticles in flow conditions by dielectrophoresis

    DEFF Research Database (Denmark)

    2017-01-01

    A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention.......A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention....

  7. Instrumentation for localized measurements in two-phase flow conditions

    International Nuclear Information System (INIS)

    Neff, G.G.; Averill, R.H.; Shurts, S.W.

    1979-01-01

    Three types of instrumentation that have been developed by EG and G Idaho, Inc., and its predecessor, Aerojet Nuclear company, at the Idaho National Engineering Laboratory to investigate two-phase flow phenomenon in a nuclear reactor at the Loss-of-Fluid Test (LOFT) facility are discussed: (a) a combination drag disc-turbine transducer (DTT), (b) a multibeam nuclear hardened gamma densitometer system, and (c) a conductivity sensitive liquid level transducer (LLT). The DTT obtains data on the complex problem of two-phase flow conditions in the LOFT primary coolant system during a loss-os-coolant experiment (LOCE). The discussion of the DTT describes how a turbine, measuring coolant velocity, and a drag disc, measuring coolant momentum flux, can provide valuable mass flow data. The nuclear hardened gamma densitometer is used to obtain density and flow regime information for two-phase flow in the LOFT primary coolant system during a LOCE. The LLT is used to measure water and steam conditions within the LOFT reactor core during a LOCE. The LLT design and the type of data obtained are described

  8. Dynamic simulation of variable capacity refrigeration systems under abnormal conditions

    International Nuclear Information System (INIS)

    Liang Nan; Shao Shuangquan; Tian Changqing; Yan Yuying

    2010-01-01

    There are often abnormal working conditions at evaporator outlet of a refrigeration system, such as two-phase state in transient process, and it is essential to investigate such transient behaviours for system design and control strategy. In this paper, a dynamic lumped parameter model is developed to simulate the transient behaviours of refrigeration system with variable capacity in both normal and abnormal working conditions. The appropriate discriminant method is adopted to switch the normal and abnormal conditions smoothly and to eliminate the simulated data oscillation. In order to verify the dynamic model, we built a test system with variable frequency compressor, water-cooling condenser, evaporator and electronic expansion valve. Calculated values from the mathematical model show reasonable agreement with the experimental data. The simulation results show that the transient behaviours of the variable capacity refrigeration system in the abnormal working conditions can be calculated reliably with the dynamic model when the compressor rotary speed or the opening of electronic expansion valve changes abruptly.

  9. Influence of Flow Sequencing Attributed to Climate Change and Climate Variability on the Assessment of Water-dependent Ecosystem Outcomes

    Science.gov (United States)

    Wang, J.; Nathan, R.; Horne, A.

    2017-12-01

    Traditional approaches to characterize water-dependent ecosystem outcomes in response to flow have been based on time-averaged hydrological indicators, however there is increasing recognition for the need to characterize ecological processes that are highly dependent on the sequencing of flow conditions (i.e. floods and droughts). This study considers the representation of flow regimes when considering assessment of ecological outcomes, and in particular, the need to account for sequencing and variability of flow. We conducted two case studies - one in the largely unregulated Ovens River catchment and one in the highly regulated Murray River catchment (both located in south-eastern Australia) - to explore the importance of flow sequencing to the condition of a typical long-lived ecological asset in Australia, the River Red Gum forests. In the first, the Ovens River case study, the implications of representing climate change using different downscaling methods (annual scaling, monthly scaling, quantile mapping, and weather generator method) on the sequencing of flows and resulting ecological outcomes were considered. In the second, the Murray River catchment, sequencing within a historic drought period was considered by systematically making modest adjustments on an annual basis to the hydrological records. In both cases, the condition of River Red Gum forests was assessed using an ecological model that incorporates transitions between ecological conditions in response to sequences of required flow components. The results of both studies show the importance of considering how hydrological alterations are represented when assessing ecological outcomes. The Ovens case study showed that there is significant variation in the predicted ecological outcomes when different downscaling techniques are applied. Similarly, the analysis in the Murray case study showed that the drought as it historically occurred provided one of the best possible outcomes for River Red Gum

  10. Microbiologically induced corrosion of carbon steel under continuous flow conditions

    International Nuclear Information System (INIS)

    Tunaru, Mariana; Dragomir, Maria; Voicu, Anca

    2008-01-01

    Microbiologically induced corrosion is the label generally applied to corrosion involving the action of bacteria on metal surfaces. While different combinations of bacterial species, materials and chemical constituents are interrelated factors, stagnant water is the factor most often mentioned in reported cases. This paper presents the results obtained regarding the testing of microbiologically induced corrosion of carbon steel under continuous flow conditions in the presence of iron-oxidizing bacteria. The tests were performed on coupons of SA106gr.B exposed both in stagnant conditions and in flow conditions. The surfaces of these coupons were studied by metallographic technique, while the developed biofilms were analysed using microbiological technique. The correlation of all the results which were obtained emphasized that the minimizing the occurrence of stagnant or low-flow conditions can prove effective in reducing the risk of microbiologically induced corrosion in plant cooling-water systems. (authors)

  11. Multiphysical model of heterogenous flow moving along а channel of variable cross-section

    Directory of Open Access Journals (Sweden)

    М. А. Васильева

    2017-10-01

    Full Text Available The article deals with the problem aimed at solving the fundamental problems of developing effective methods and tools for designing, controlling and managing the stream of fluid flowing in variable-section pipelines intended for the production of pumping equipment, medical devices and used in such areas of industry as mining, chemical, food production, etc. Execution of simulation modelling of flow motion according to the scheme of twisted paddle static mixer allows to estimate the efficiency of mixing by calculating the trajectory and velocities of the suspended particles going through the mixer, and also to estimate the pressure drop on the hydraulic flow resistance. The model examines the mixing of solids dissolved in a liquid at room temperature. To visualize the process of distributing the mixture particles over the cross-section and analyzing the mixing efficiency, the Poincaréplot module of the COMSOL Multiphysics software environment was used. For the first time, a multi-physical stream of heterogeneous flow model has been developed that describes in detail the physical state of the fluid at all points of the considered section at the initial time, takes into account the design parameters of the channel (orientation, dimensions, material, etc., specifies the laws of variation of the parameters at the boundaries of the calculated section in conditions of the wave change in the internal section of the working chamber-channel of the inductive peristaltic pumping unit under the influence of the energy of the magnetic field.

  12. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    Science.gov (United States)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  13. Categorization of flow conditions using Integral quantities for characterizing stagnation and recirculation

    International Nuclear Information System (INIS)

    Han, M.H.; Hwang, W.T.; Jeong, H.J.; Kim, E.H.

    2008-01-01

    This paper describes a method for categorizing an atmospheric flow condition of a site by using integral quantities for characterizing stagnation and recirculation. Authors have devised a method for categorizing flow conditions using distribution curves which represent the flow condition of the whole of Korea. It was found that the flow conditions for four nuclear power plant sites were good enough from a meteorological aspect. Among the four sites, Kori nuclear power plant site which is located at the south-eastern part of the Korean peninsular shows the best condition. Meteorological condition is the key factor for estimating the environmental effects of a nuclear facility. The devised method can be used for assessing the relative environmental risk of a nuclear facility with only meteorological data. And the devised categorization method can be used for choosing a suitable site for an industrial facility such as a nuclear power plant and a chemical complex. (author)

  14. Differences in displayed pump flow compared to measured flow under varying conditions during simulated cardiopulmonary bypass.

    LENUS (Irish Health Repository)

    Hargrove, M

    2008-07-01

    Errors in blood flow delivery due to shunting have been reported to reduce flow by, potentially, up to 40-83% during cardiopulmonary bypass. The standard roller-pump measures revolutions per minute and a calibration factor for different tubing sizes calculates and displays flow accordingly. We compared displayed roller-pump flow with ultrasonically measured flow to ascertain if measured flow correlated with the heart-lung pump flow reading. Comparison of flows was measured under varying conditions of pump run duration, temperature, viscosity, varying arterial\\/venous loops, occlusiveness, outlet pressure, use of silicone or polyvinyl chloride (PVC) in the roller race, different tubing diameters, and use of a venous vacuum-drainage device.

  15. Estimation of exhaust gas aerodynamic force on the variable geometry turbocharger actuator: 1D flow model approach

    International Nuclear Information System (INIS)

    Ahmed, Fayez Shakil; Laghrouche, Salah; Mehmood, Adeel; El Bagdouri, Mohammed

    2014-01-01

    Highlights: • Estimation of aerodynamic force on variable turbine geometry vanes and actuator. • Method based on exhaust gas flow modeling. • Simulation tool for integration of aerodynamic force in automotive simulation software. - Abstract: This paper provides a reliable tool for simulating the effects of exhaust gas flow through the variable turbine geometry section of a variable geometry turbocharger (VGT), on flow control mechanism. The main objective is to estimate the resistive aerodynamic force exerted by the flow upon the variable geometry vanes and the controlling actuator, in order to improve the control of vane angles. To achieve this, a 1D model of the exhaust flow is developed using Navier–Stokes equations. As the flow characteristics depend upon the volute geometry, impeller blade force and the existing viscous friction, the related source terms (losses) are also included in the model. In order to guarantee stability, an implicit numerical solver has been developed for the resolution of the Navier–Stokes problem. The resulting simulation tool has been validated through comparison with experimentally obtained values of turbine inlet pressure and the aerodynamic force as measured at the actuator shaft. The simulator shows good compliance with experimental results

  16. Study on the flow reduction of forced flow superconducting magnet and its stable operation condition

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Makoto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-03-01

    The forced flow superconducting coil especially made from a Cable-in-Conduit Conductor (CICC) is applied for large-scale devices such as fusion magnets and superconducting magnet energy storage (SMES) because it has high mechanical and electrical performance potential. The flow reduction phenomena caused by AC loss generation due to the pulsed operation was found based on the experimental results of three forced flow superconducting coils. And relation between the AC loss generation and flow reduction was defined from viewpoint of the engineering design and operation of the coils. Also the mechanism of flow reduction was investigated and stable operation condition under the flow reduction was clarified for forced flow superconducting coils. First, experiments of three different large-scale superconducting coils were carried out and experimental database of the flow reduction by AC loss generation was established. It was found experimentally that the flow reduction depends on the AC loss generation (W/m{sup 3}) in all of coils. It means the stable operation condition is defined not only the electro magnetism of superconducting coil but also flow condition. Mechanism of the flow reduction was investigated based on the experimental database. Hydraulics was applied to supercritical helium as a coolant. Also performances of the cryogenic pump by which coolant are supplied to the coil and friction of the superconductor as cooling path is considered for hydraulic estimation. The flow reduction of the coil is clarified and predictable by the equations of continuity, momentum and energy balance. Also total mass flow rate of coolant was discussed. The estimation method in the design phase was developed for total mass flow rate which are required under the flow reduction by AC losses. The friction of the superconductor and performance of cryogenic pump should be required for precise prediction of flow reduction. These values were obtained by the experiment data of coil and

  17. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    Science.gov (United States)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  18. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    International Nuclear Information System (INIS)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal; Jansson, Peter

    2012-11-01

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  19. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal [In2Earth Modelling Ltd, Lausanne (Switzerland); Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)

    2012-11-15

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  20. Online dynamic flight optimisation applied to guidance of a variable-flow ducted rocket

    NARCIS (Netherlands)

    Halswijk, W.H.C.

    2009-01-01

    The Variable-Flow Ducted Rocket (VFDR) is a type of ramjet that can control the fuel mass flow to the combustion chamber. It combines the high efficiency at high-speed of ramjets with the throttlability of turbofans, and this makes VFDR propulsion an excellent choice for high speed, long range

  1. Analysis of flow induced valve operation and pressure wave propagation for single and two-phase flow conditions

    International Nuclear Information System (INIS)

    Nagel, H.

    1986-01-01

    The flow induced valve operation is calculated for single and two-phase flow conditions by the fluid dynamic computer code DYVRO and results are compared to experimental data. The analysis show that the operational behaviour of the valves is not only dependent on the condition of the induced flow, but also the pipe flow can cause a feedback as a result of the induced pressure waves. For the calculation of pressure wave propagation in pipes of which the operation of flow induced valves has a considerable influence it is therefore necessary to have a coupled analysis of the pressure wave propagation and the operational behaviour of the valves. The analyses of the fast transient transfer from steam to two-phase flow show a good agreement with experimental data. Hence even these very high loads on pipes resulting from such fluid dynamic transients can be calculated realistically. (orig.)

  2. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  3. Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    The use of variable-speed compressors in heat pumps and air conditioners has increased in recent years in order to improve comfort and energy efficiency. At the same time, there is a trend towards embedding more sensors in this type of equipment to facilitate real-time energy monitoring and diagnostics. Although compressor mass flow rate and power consumption are useful indices for performance monitoring and diagnostics, they are expensive to measure. The virtual variable-speed compressor sen...

  4. Study of transient burnout characteristics under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1984-03-01

    As part of a study of the thermal behavior of fuel rods during Power-Cooling-Mismatch (PCM) accidents in light water reactors, burnout characteristics in a uniformly heated, vertically oriented tube or annulus, under flow reduction condition, were experimentally studied. Test pressures ranged 0.1--3.9 MPa and flow reduction rates 0.44--1100%/s. An analytical method is developed to obtain the local mass velocity during a transient condition. The major results are as follows: With increasing flow reduction rate beyond a threshold, transient burnout mass velocity at the inlet was lower than that in steady state tests under the experimental pressures. The higher system pressure resulted in the less transient effects. At pressures higher than 2.0 MPa and flow reduction rates lower than 20%/s, the local burnout mass velocity agreed with the steady state burnout mass velocity, whereas the local burnout mass velocity became higher than the steady state burnout mass velocity at flow reduction rates higher than 20%/s. At pressures lower than 1 MPa, with increasing flow reduction rate beyond the threshold value of 2%/s, the local burnout mass velocity was lower than the steady state burnout mass velocity. An empirical correlation is presented to give the ratio of the transient to the steady state burnout mass velocities at the burnout location as a function of the steam-water density ratio and the flow reduction rate. The experimental results by Cumo et al. agree with the correlation. The correlation, however, cannot predict the experimental results at higher flow reduction rates beyond 40%/s. (author)

  5. Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium

    Science.gov (United States)

    Babcock, Dale A.

    1995-01-01

    A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.

  6. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  7. The Flow of a Variable Viscosity Fluid down an Inclined Plane with a Free Surface

    Directory of Open Access Journals (Sweden)

    M. S. Tshehla

    2013-01-01

    Full Text Available The effect of a temperature dependent variable viscosity fluid flow down an inclined plane with a free surface is investigated. The fluid film is thin, so that lubrication approximation may be applied. Convective heating effects are included, and the fluid viscosity decreases exponentially with temperature. In general, the flow equations resulting from the variable viscosity model must be solved numerically. However, when the viscosity variation is small, then an asymptotic approximation is possible. The full solutions for the temperature and velocity profiles are derived using the Runge-Kutta numerical method. The flow controlling parameters such as the nondimensional viscosity variation parameter, the Biot and the Brinkman numbers, are found to have a profound effect on the resulting flow profiles.

  8. Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions.

  9. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar

    2017-07-01

    This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

  10. Vertical flow constructed wetlands for domestic wastewater treatment on tropical conditions: effect of several design parameters

    DEFF Research Database (Denmark)

    Bohorquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    Vertical flow constructed wetlands (VFWC) design and operation takes into account several variables which affect performance its performance. These aspects had been evaluated and documented among others in countries like USA, Denmark, Austria. In contrast, VFCW had not been studied in tropical...... countries and, specifically in Colombia, design and operation parameters are not defined yet. The objective of this study was evaluate the effects of filter medium, the feeding frequency and Heliconia psittacorum presence, a typical local plant, on the domestic wastewater treatment in tropical conditions....

  11. Performance and internal flow condition of mini centrifugal pump with splitter blades

    International Nuclear Information System (INIS)

    Shigemitsu, T; Fukutomi, J; Kaji, K; Wada, T

    2012-01-01

    Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.

  12. Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit

    Science.gov (United States)

    Tan, Chaoqun; Hu, Bill X.

    2017-04-01

    The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.

  13. Quantification of variability in bedform geometry

    NARCIS (Netherlands)

    van der Mark, C.F.; Blom, Astrid; Hulscher, Suzanne J.M.H.

    2008-01-01

    We analyze the variability in bedform geometry in laboratory and field studies. Even under controlled steady flow conditions in laboratory flumes, bedforms are irregular in size, shape, and spacing, also in case of well-sorted sediment. Our purpose is to quantify the variability in bedform geometry.

  14. Phosphorus mobilization in rewetted peat and sand at variable flow rate and redox regimes

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heiberg, Lisa; Jensen, Henning S.

    2012-01-01

    the upward percolation of groundwater with variable O2 content and flow rate, we investigated the hydro-biogeochemical Fe and P dynamics in intact cores of a carbon rich peat and carbon poor sand. Percolation of deionized water with high, low or no O2 supply at 10 °C caused markedly different in situ redox...... rates from 7.6 to 11 mg P m−2 day−1. Organic or particulate P contributed to 40–45% of total P losses from the peat. In contrast, the high O2 supply during high flow rate kept the peat oxic and lowered TP release rates to 6.7 mg P m−2 day−1. The carbon poor sand demonstrated that this soil type...... regimes in the two soils during 21 or 67 days of continuous percolation at either 1 or 4 mm h−1. Anoxic conditions occurred in the peat soil at both low oxygen supply and anoxic infiltration, causing reductive Fe(III) dissolution with high Fe(II) and P effluent concentrations and total P (TP) release...

  15. Improved energy performance of air cooled centrifugal chillers with variable chilled water flow

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2008-01-01

    This paper considers how to apply optimum condensing temperature control and variable chilled water flow to increase the coefficient of performance (COP) of air cooled centrifugal chillers. A thermodynamic model for the chillers was developed and validated using a wide range of operating data and specifications. The model considers real process phenomena, including capacity control by the inlet guide vanes of the compressor and an algorithm to determine the number and speed of condenser fans staged based on a set point of condensing temperature. Based on the validated model, it was found that optimizing the control of condensing temperature and varying the evaporator's chilled water flow rate enable the COP to increase by 0.8-191.7%, depending on the load and ambient conditions. A cooling load profile of an office building in a subtropical climate was considered to assess the potential electricity savings resulting from the increased chiller COP and optimum staging of chillers and pumps. There is 16.3-21.0% reduction in the annual electricity consumption of the building's chiller plant. The results of this paper provide useful information on how to implement a low energy chiller plant

  16. Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow

    KAUST Repository

    Joekar-Niasar, Vahid

    2012-02-23

    The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model called DYPOSIT, which has been employed and extended for this study: (a) P c-S w relationship is measured empirically under equilibrium conditions. It is then used in Darcy-based simulations for all dynamic conditions. This is only valid if there is a guarantee that this relationship is unique for a given flow process (drainage or imbibition) independent of dynamic conditions; (b) It is also known that P c-S w relationship is flow process dependent. Depending on drainage and imbibition, different curves can be achieved, which are referred to as "hysteresis". A thermodynamically derived theory (Hassanizadeh and Gray, Water Resour Res 29: 3389-3904, 1993a) suggests that, by introducing a new state variable, called the specific interfacial area (a nw, defined as the ratio of fluid-fluid interfacial area to the total volume of the domain), it is possible to define a unique relation between capillary pressure, saturation, and interfacial area. This study investigates these two aspects of capillary pressure-saturation relationship using a dynamic pore-network model. The simulation results imply that P c-S w relation not only depends on flow process (drainage and imbibition) but also on dynamic conditions for a given flow process. Moreover, this study attempts to obtain the first preliminary insights into the global functionality of capillary pressure-saturation-interfacial area relationship under equilibrium and non-equilibrium conditions and the uniqueness of P c-S w-a nw relationship. © 2012 The Author(s).

  17. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  18. Bridge pressure flow scour for clear water conditions

    Science.gov (United States)

    2009-10-01

    The equilibrium scour at a bridge caused by pressure flow with critical approach velocity in clear-water simulation conditions was studied both analytically and experimentally. The flume experiments revealed that (1) the measured equilibrium scour pr...

  19. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M

    1962-07-01

    The present report deals with the results of the first phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. Data were obtained in the following ranges of variables. Pressure 2.4flow theory. Finally we have found that for engineering purposes the effects of inlet subcooling and channel length are negligible.

  20. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    P. E. Bachem

    2017-09-01

    Full Text Available The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial–interglacial variability. Here, we present high-resolution records of sea surface temperature (SST and ice-rafted debris (IRD in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  1. Controlling flow conditions of test filters in iodine filters

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1979-03-01

    Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)

  2. Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...

    African Journals Online (AJOL)

    The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...

  3. Numerical Evaluation of Averaging BDFT(bidirectional flow tube) Flow Meter on Applicability in the Fouling Condition

    International Nuclear Information System (INIS)

    Park, J. P.; Jeong, J. H.; Yuna, B. J.; Jerng, D. W.

    2013-01-01

    The results show that the averaging BDFT is a promising flow meter for the accurate measurement of flow rates in the fouling condition of the NPPs. A new instrumentation, an averaging BDFT, was proposed to measure the accurate flow rate under corrosion environment. In this study, to validate the applicability of the averaging BDFT on the fouling conditions, flow analyses using the CFD code were performed. Analyses results show that this averaging BDFT does not lose the measuring performance even under the corrosion environment. Therefore, it is expected that the averaging BDFT can replace the type flow meters for the feedwater pipe of steam generator of NPPs. Most of the NPPs adopt pressure difference type flow meters such as venturi and orifice meters for the measurement of feedwater flow rates to calculate reactor thermal power. However, corrosion products in the feedwater deposits on the flow meter as operating time goes. These effects lead to severe errors in the flow indication and then determination of reactor thermal power. The averaging BDFT has a potentiality to minimize this problem. Therefore, it is expected that the averaging BDFT can replace the type venturi meters for the feedwater pipe of steam generator of NPPs. The present work compares the amplification factor, K, based on CFD calculation against the K obtained from experiments in order to confirm whether a CFD code can be applicable to the evaluation of characteristic for the averaging BDFT. In addition to this, the simulations to take into account of fouling effect are also carried out by rough wall option

  4. Enhancing sedimentation by improving flow conditions using parallel retrofit baffles.

    Science.gov (United States)

    He, Cheng; Scott, Eric; Rochfort, Quintin

    2015-09-01

    In this study, placing parallel-connected baffles in the vicinity of the inlet was proposed to improve hydraulic conditions for enhancing TSS (total suspended solids) removal. The purpose of the retrofit baffle design is to divide the large and fast inflow into smaller and slower flows to increase flow uniformity. This avoids short-circuiting and increases residence time in the sedimentation basin. The newly proposed parallel-connected baffle configuration was assessed in the laboratory by comparing its TSS removal performance and the optimal flow residence time with those from the widely used series-connected baffles. The experimental results showed that the parallel-connected baffles outperformed the series-connected baffles because it could disperse flow faster and in less space by splitting the large inflow into many small branches instead of solely depending on flow internal friction over a longer flow path, as was the case under the series-connected baffles. Being able to dampen faster flow before entering the sedimentation basin is critical to reducing the possibility of disturbing any settled particles, especially under high inflow conditions. Also, for a large sedimentation basin, it may be more economically feasible to deploy the proposed parallel retrofit baffle in the vicinity of the inlet than series-connected baffles throughout the entire settling basin. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    Science.gov (United States)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  6. Rainfall variability and its influence on surface flow regimes. Examples from the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Osman, M. [Debre Zeit (Ethiopia); Sauerborn, P. [Seminar fuer Geographie und ihre Didaktik, Univ. zu Koeln, Koeln (Germany)

    2002-07-01

    The article shows results of an international and interdisciplinary project with the title 'Rainfall and its Erosivity in Ethiopia'. Rainfall variability affects the water resource management of Ethiopia. The influence of rainfall variability on flow regimes was investigated using five gauging stations with data availability from 1982-1997. It was confirmed that the variability in rainfall has a direct implication for surface runoff. Surface runoff declined at most of the gauging stations investigated. Therefore, effective water resource management is recommended for the study area. Future research should focus on watershed management which includes land-use and land cover. The question posed here is whether the variability in rainfall significantly affected surface flow in the study area. (orig.)

  7. Variability, trends, and teleconnections of stream flows with large-scale climate signals in the Omo-Ghibe River Basin, Ethiopia.

    Science.gov (United States)

    Degefu, Mekonnen Adnew; Bewket, Woldeamlak

    2017-04-01

    This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.

  8. Leaching of radioactive waste forms under saturated and unsaturated flow conditions

    International Nuclear Information System (INIS)

    Petelka, M.F.

    1987-01-01

    To predict the environmental impact of shallow land burial sites for radioactive waste, the mobilization and migration of waste nuclides must be estimated. The theoretical understanding that in potential leaching mechanisms leach-rate variations may arise from changes in both moisture content and volumetric flow rate was tested in column flow leach experiments using labeled vermiculite particles as a simulated waste form. As far as possible, conditions of flow rate and solution ion concentration were chosen to roughly approximate expected field conditions. A modified pressure-plate apparatus was developed, tested, and found suitable for the production of steady-state unsaturated conditions with leachate flow. Water content was determined using the gamma-ray attenuation method. The effects of several parameters on leaching were studied, including moisture content and pore velocity. Pore velocity effects were found to be negligible. It was found that the leach rate depends on the fraction of the exposed waste surface that is wetted and varies with the mobile water content in a non-linear fashion. The experimental results indicate that the release rate of radionuclides placed within a properly sited low-level waste disposal site may be two to three times smaller than that predicted assuming saturated conditions. This study was performed using a homogeneous fine-grained synthetic waste form, at room temperature, with a near neutral pH leachant and oxidizing conditions

  9. Removing Unnecessary Variables from Horn Clause Verification Conditions

    Directory of Open Access Journals (Sweden)

    Emanuele De Angelis

    2016-07-01

    Full Text Available Verification conditions (VCs are logical formulas whose satisfiability guarantees program correctness. We consider VCs in the form of constrained Horn clauses (CHC which are automatically generated from the encoding of (an interpreter of the operational semantics of the programming language. VCs are derived through program specialization based on the unfold/fold transformation rules and, as it often happens when specializing interpreters, they contain unnecessary variables, that is, variables which are not required for the correctness proofs of the programs under verification. In this paper we adapt to the CHC setting some of the techniques that were developed for removing unnecessary variables from logic programs, and we show that, in some cases, the application of these techniques increases the effectiveness of Horn clause solvers when proving program correctness.

  10. Structure of wall-bounded flows at transcritical conditions

    Science.gov (United States)

    Ma, Peter C.; Yang, Xiang I. A.; Ihme, Matthias

    2018-03-01

    At transcritical conditions, the transition of a fluid from a liquidlike state to a gaslike state occurs continuously, which is associated with significant changes in fluid properties. Therefore, boiling in its conventional sense does not exist and the phase transition at transcritical conditions is known as "pseudoboiling." In this work, direct numerical simulations (DNS) of a channel flow at transcritical conditions are conducted in which the bottom and top walls are kept at temperatures below and above the pseudoboiling temperature, respectively. Over this temperature range, the density changes by a factor of 18 between both walls. Using the DNS data, the usefulness of the semilocal scaling and the Townsend attached-eddy hypothesis are examined in the context of flows at transcritical conditions—both models have received much empirical support from previous studies. It is found that while the semilocal scaling works reasonably well near the bottom cooled wall, where the fluid density changes only moderately, the same scaling has only limited success near the top wall. In addition, it is shown that the streamwise velocity structure function follows a logarithmic scaling and the streamwise energy spectrum exhibits an inverse wave-number scaling, thus providing support to the attached-eddy model at transcritical conditions.

  11. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 2. Case study

    Science.gov (United States)

    Graham, Wendy D.; Neff, Christina R.

    1994-05-01

    The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.

  12. Flow boundary conditions for chain-end adsorbing polymer blends.

    Science.gov (United States)

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  13. Observations from borehole dilution logging experiments in fractured crystalline rock under variable hydraulic conditions

    Science.gov (United States)

    Harte, Philip T.; Anderson, Alton; Williams, John H.

    2014-01-01

    Identifying hydraulically active fractures in low permeability, crystalline-bedrock aquifers requires a variety of geophysical and hydrogeophysical borehole tools and approaches. One such approach is Single Borehole Dilution Tests (SBDT), which in some low flow cases have been shown to provide greater resolution of borehole flow than other logging procedures, such as vertical differential Heat Pulse Flowmeter (HPFM) logging. Because the tools used in SBDT collect continuous profiles of water quality or dye changes, they can identify horizontal flow zones and vertical flow. We used SBDT with a food grade blue dye as a tracer and dual photometer-nephelometer measurements to identify low flow zones.SBDT were conducted at seven wells with open boreholes (exceeding 300 ft). At most of the wells HPFM logs were also collected. The seven wells are set in low-permeability, fractured granite and gneiss rocks underlying a former tetrachloroeythylene (PCE) source area at the Savage Municipal Well Superfund site in Milford, NH. Time series SBDT logs were collected at each of the seven wells under three distinct hydraulic conditions: (1) ambient conditions prior to a pump test at an adjacent well, (2) mid test, after 2-3 days of the start of the pump test, and (3) at the end of the test, after 8-9 days of the pump test. None of the SBDT were conducted under pumping conditions in the logged well. For each condition, wells were initially passively spiked with blue dye once and subsequent time series measurements were made.Measurement accuracy and precision of the photometer tool is important in SBDT when attempting to detect low rates of borehole flow. Tests indicate that under ambient conditions, none of the wells had detectable flow as measured with HPFM logging. With SBDT, 4 of the 7 showed the presence of some very low flow. None of 5 (2 of the 7 wells initially logged with HPFM under ambient conditions were not re-logged) wells logged with the HPFM during the pump test had

  14. Second Law Analysis for a Variable Viscosity Reactive Couette Flow under Arrhenius Kinetics

    Directory of Open Access Journals (Sweden)

    N. S. Kobo

    2010-01-01

    Full Text Available This study investigates the inherent irreversibility associated with the Couette flow of a reacting variable viscosity combustible material under Arrhenius kinetics. The nonlinear equations of momentum and energy governing the flow system are solved both analytically using a perturbation method and numerically using the standard Newton Raphson shooting method along with a fourth-order Runge Kutta integration algorithm to obtain the velocity and temperature distributions which essentially expedite to obtain expressions for volumetric entropy generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field.

  15. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  16. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2013-01-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  17. Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow

    Science.gov (United States)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua

    2018-01-01

    The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model (DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation. It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model. Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model. To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified. Support of National Natural Science Foundation of China under Grant Nos. 11475028, 11772064, and 11502117 Science Challenge Project under Grant Nos. JCKY2016212A501 and TZ2016002

  18. Variable coupling between sap-flow and transpiration in pine trees under drought conditions

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grunzweig, Jose M.; Yakir, Dan

    2016-04-01

    Changes in diurnal patterns in water transport and physiological activities in response to changes in environmental conditions are important adjustments of trees to drought. The rate of sap flow (SF) in trees is expected to be in agreement with the rate of tree-scale transpiration (T) and provides a powerful measure of water transport in the soil-plant-atmosphere system. The aim of this five-years study was to investigate the temporal links between SF and T in Pinus halepensis exposed to extreme seasonal drought in the Yatir forest in Israel. We continuously measured SF (20 trees), the daily variations in stem diameter (ΔDBH, determined with high precision dendrometers; 8 trees), and ecosystem evapotranspiration (ET; eddy covariance), which were complemented with short-term campaigns of leaf-scale measurements of H2O and CO2 gas exchange, water potentials, and hydraulic conductivity. During the rainy season, tree SF was well synchronized with ecosystem ET, reaching maximum rates during midday in all trees. However, during the dry season, the daily SF trends greatly varied among trees, allowing a classification of trees into three classes: 1) Trees that remain with SF maximum at midday, 2) trees that advanced their SF peak to early morning, and 3) trees that delayed their SF peak to late afternoon hours. This classification remained valid for the entire study period (2010-2015), and strongly correlated with tree height and DBH, and to a lower degree with crown size and competition index. In the dry season, class 3 trees (large) tended to delay the timing of SF maximum to the afternoon, and to advance their maximum diurnal DBH to early morning, while class 2 trees (smaller) advanced their SF maximum to early morning and had maximum daily DBH during midday and afternoon. Leaf-scale transpiration (T), measurements showed a typical morning peak in all trees, irrespective of classification, and a secondary peak in the afternoon in large trees only. Water potential and

  19. Variable Width Riparian Model Enhances Landscape and Watershed Condition

    Science.gov (United States)

    Abood, S. A.; Spencer, L.

    2017-12-01

    Riparian areas are ecotones that represent about 1% of USFS administered landscape and contribute to numerous valuable ecosystem functions such as wildlife habitat, stream water quality and flows, bank stability and protection against erosion, and values related to diversity, aesthetics and recreation. Riparian zones capture the transitional area between terrestrial and aquatic ecosystems with specific vegetation and soil characteristics which provide critical values/functions and are very responsive to changes in land management activities and uses. Two staff areas at the US Forest Service have coordinated on a two phase project to support the National Forests in their planning revision efforts and to address rangeland riparian business needs at the Forest Plan and Allotment Management Plan levels. The first part of the project will include a national fine scale (USGS HUC-12 digits watersheds) inventory of riparian areas on National Forest Service lands in western United States with riparian land cover, utilizing GIS capabilities and open source geospatial data. The second part of the project will include the application of riparian land cover change and assessment based on selected indicators to assess and monitor riparian areas on annual/5-year cycle basis.This approach recognizes the dynamic and transitional nature of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process. The results suggest that incorporating functional variable width riparian mapping within watershed management planning can improve riparian protection and restoration. The application of Riparian Buffer Delineation Model (RBDM) approach can provide the agency Watershed Condition Framework (WCF) with observed riparian area condition on an annual basis and on multiple scales. The use of this model to map moderate to low gradient systems of sufficient width in conjunction with an understanding of the influence of distinctive landscape

  20. Validation of a CFD code for Unsteady Flows with cyclic boundary Conditions

    International Nuclear Information System (INIS)

    Kim, Jong-Tae; Kim, Sang-Baik; Lee, Won-Jae

    2006-01-01

    Currently Lilac code is under development to analyze thermo-hydraulics of a high-temperature gas-cooled reactor (GCR). Interesting thermo-hydraulic phenomena in a nuclear reactor are usually unsteady and turbulent. The analysis of the unsteady flows by using a three dimension CFD code is time-consuming if the flow domain is very large. Hopefully, flow domains commonly encountered in the nuclear thermo-hydraulics is periodic. So it is better to use the geometrical characteristics in order to reduce the computational resources. To get the benefits from reducing the computation domains especially for the calculations of unsteady flows, the cyclic boundary conditions are implemented in the parallelized CFD code LILAC. In this study, the parallelized cyclic boundary conditions are validated by solving unsteady laminar and turbulent flows past a circular cylinder

  1. Numerical Investigation of Multiple-, Interacting-Scale Variable-Density Ground Water Flow Systems

    Science.gov (United States)

    Cosler, D.; Ibaraki, M.

    2004-12-01

    The goal of our study is to elucidate the nonlinear processes that are important for multiple-, interacting-scale flow and solute transport in subsurface environments. In particular, we are focusing on the influence of small-scale instability development on variable-density ground water flow behavior in large-scale systems. Convective mixing caused by these instabilities may mix the fluids to a greater extent than would be the case with classical, Fickian dispersion. Most current numerical schemes for interpreting field-scale variable-density flow systems do not explicitly account for the complexities caused by small-scale instabilities and treat such processes as "lumped" Fickian dispersive mixing. Such approaches may greatly underestimate the mixing behavior and misrepresent the overall large-scale flow field dynamics. The specific objectives of our study are: (i) to develop an adaptive (spatial and temporal scales) three-dimensional numerical model that is fully capable of simulating field-scale variable-density flow systems with fine resolution (~1 cm); and (ii) to evaluate the importance of scale-dependent process interactions by performing a series of simulations on different problem scales ranging from laboratory experiments to field settings, including an aquifer storage and freshwater recovery (ASR) system similar to those planned for the Florida Everglades and in-situ contaminant remediation systems. We are examining (1) methods to create instabilities in field-scale systems, (2) porous media heterogeneity effects, and (3) the relation between heterogeneity characteristics (e.g., permeability variance and correlation length scales) and the mixing scales that develop for varying degrees of unstable stratification. Applications of our work include the design of new water supply and conservation measures (e.g., ASR systems), assessment of saltwater intrusion problems in coastal aquifers, and the design of in-situ remediation systems for aquifer restoration

  2. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    International Nuclear Information System (INIS)

    Shit, G.C.; Majee, Sreeparna

    2015-01-01

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field

  3. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in; Majee, Sreeparna

    2015-08-15

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field.

  4. Adverse Condition and Critical Event Prediction in Cranfield Multiphase Flow Facility

    DEFF Research Database (Denmark)

    Egedorf, Søren; Shaker, Hamid Reza

    2017-01-01

    , or even to the environment. To cope with these, adverse condition and critical event prediction plays an important role. Adverse Condition and Critical Event Prediction Toolbox (ACCEPT) is a tool which has been recently developed by NASA to allow for a timely prediction of an adverse event, with low false...... alarm and missed detection rates. While ACCEPT has shown to be an effective tool in some applications, its performance has not yet been evaluated on practical well-known benchmark examples. In this paper, ACCEPT is used for adverse condition and critical event prediction in a multiphase flow facility....... Cranfield multiphase flow facility is known to be an interesting benchmark which has been used to evaluate different methods from statistical process monitoring. In order to allow for the data from the flow facility to be used in ACCEPT, methods such as Kernel Density Estimation (KDE), PCA-and CVA...

  5. An analysis of effect of land use change on river flow variability

    Science.gov (United States)

    Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang

    2018-02-01

    Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.

  6. Stratified flows with variable density: mathematical modelling and numerical challenges.

    Science.gov (United States)

    Murillo, Javier; Navas-Montilla, Adrian

    2017-04-01

    Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux

  7. Bubble CPAP versus CPAP with variable flow in newborns with respiratory distress: a randomized controlled trial.

    Science.gov (United States)

    Yagui, Ana Cristina Zanon; Vale, Luciana Assis Pires Andrade; Haddad, Luciana Branco; Prado, Cristiane; Rossi, Felipe Souza; Deutsch, Alice D Agostini; Rebello, Celso Moura

    2011-01-01

    To evaluate the efficacy and safety of nasal continuous positive airway pressure (NCPAP) using devices with variable flow or bubble continuous positive airway pressure (CPAP) regarding CPAP failure, presence of air leaks, total CPAP and oxygen time, and length of intensive care unit and hospital stay in neonates with moderate respiratory distress (RD) and birth weight (BW) ≥ 1,500 g. Forty newborns requiring NCPAP were randomized into two study groups: variable flow group (VF) and continuous flow group (CF). The study was conducted between October 2008 and April 2010. Demographic data, CPAP failure, presence of air leaks, and total CPAP and oxygen time were recorded. Categorical outcomes were tested using the chi-square test or the Fisher's exact test. Continuous variables were analyzed using the Mann-Whitney test. The level of significance was set at p CPAP failure (21.1 and 20.0% for VF and CF, respectively; p = 1.000), air leak syndrome (10.5 and 5.0%, respectively; p = 0.605), total CPAP time (median: 22.0 h, interquartile range [IQR]: 8.00-31.00 h and median: 22.0 h, IQR: 6.00-32.00 h, respectively; p = 0.822), and total oxygen time (median: 24.00 h, IQR: 7.00-85.00 h and median: 21.00 h, IQR: 9.50-66.75 h, respectively; p = 0.779). In newborns with BW ≥ 1,500 g and moderate RD, the use of continuous flow NCPAP showed the same benefits as the use of variable flow NCPAP.

  8. Mechanics of occurrence of critical flow in compressible two-phase flow

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Sudo, Yukio

    1976-01-01

    Fundamental framework of mechanics for the occurrence of critical flow is investigated, following the principle that the critical flow appears as a limit in a continuous change of state of flow along a nozzle (or a pipe) and should be derived only from simultaneous mechanical equations concerned with the flow. Mathematical procedures with which the critical flow: (i) the single phase flow of an arbitrary fluid, unrestricted by the equation of state of ideal gas, where the number of simultaneous equations is equal to the number of independent variables, and (ii) the one-component, separated two-phase flow under saturated condition, where the number of equations exceeds that of variables. In each case, interesting mechanism of leading to the occurrence of a limiting state of flow at a definite cross-section in a nozzle (incl. a pipe) is clarified, and a definite state of flow at the critical cross-section is also determined. Then, the analysis is extended to the critical flow which should appear in the completely isolated and the homogeneously dispersed, two-component, two-phase flow (composed of a compressible and an incompressible substance). It is found that the analyses of these special flow patterns provide several supplementary information to the mechanics of critical flow. (auth.)

  9. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    Science.gov (United States)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  10. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    Science.gov (United States)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for

  11. Creep behavior of Zircaloy cladding under variable conditions

    International Nuclear Information System (INIS)

    Matsuo, Y.

    1989-01-01

    Various creep tests of Zircaloy cladding tubes under variable conditions were conducted to investigate which hardening rule can be applicable for the creep behavior associated with condition changes. The results show that the strain-hardening rule is applicable in general when either the stress or temperature conditions change, provided that a certain amount of creep strain recovery is observed in case of stress drop. In stress reversal conditions, however, softening of the material was observed. Strain rate after stress reversal is much higher than that predicted by the strain-hardening rule. In this case, the modified strain-hardening model, considering a recoverable creep-hardening range together with the strain recovery, predicts the creep behavior well. The applicability of the model is ascertained through a verification test that includes stress reversal, strain recovery, stress changes, and temperature changes

  12. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 1. Theory

    Science.gov (United States)

    Graham, Wendy D.; Tankersley, Claude D.

    1994-05-01

    Stochastic methods are used to analyze two-dimensional steady groundwater flow subject to spatially variable recharge and transmissivity. Approximate partial differential equations are developed for the covariances and cross-covariances between the random head, transmissivity and recharge fields. Closed-form solutions of these equations are obtained using Fourier transform techniques. The resulting covariances and cross-covariances can be incorporated into a Bayesian conditioning procedure which provides optimal estimates of the recharge, transmissivity and head fields given available measurements of any or all of these random fields. Results show that head measurements contain valuable information for estimating the random recharge field. However, when recharge is treated as a spatially variable random field, the value of head measurements for estimating the transmissivity field can be reduced considerably. In a companion paper, the method is applied to a case study of the Upper Floridan Aquifer in NE Florida.

  13. A new method for controlling refrigerant flow in automobile air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Xuquan Li; Jiangping Chen; Zhijiu Chen [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics Engineering; Weihua Liu; Wei Hu; Xiaobing Liu [Shanghai Delphi Automotive Air Conditiong Systems Co. Ltd., Changhai (China)

    2004-05-01

    This paper describes the improvement of the refrigerant flow control method by using an electronic expansion valve (EEV) which is driven by a stepper motor in automobile air conditioning system. An EEV can make a quick response to the abrupt change in the refrigerant flow rate during the change in automobile speed and the thermostatic on/off operation. The flow rate characteristic of the EEV for automobile air conditioning was presented. A microcontroller is used to receive the input signal and generate the output signal to control the opening of the EEV. The fuzzy self-tuning proportional-integral-derivative (PID) control method is employed. Experimental results show that the new control method can feed adequate refrigerant flow into the evaporator in various operations. The evaporator discharge air temperature has dropped by approximately 3{sup o}C as compared with that of the conventional PID control system. (author)

  14. Control of multi-evaporator air-conditioning systems for flow distribution

    International Nuclear Information System (INIS)

    Lin, J.-L.; Yeh, T.-J.

    2009-01-01

    Modern air-conditioners incorporate variable-speed compressors and variable-opening expansion valves as the actuators for improving cooling performance and energy efficiency. These actuators have to be properly feedback-controlled; otherwise the systems may exhibit even poorer performance than the conventional machines which use fixed-speed compressors and mechanical expansion valves. In this paper, a control strategy with flow distribution capability is proposed for multi-evaporator air-conditioners to accommodate different thermal demands in different rooms. The structure in the control strategy is based on a low-order, linear model obtained from system identification. To determine appropriate control parameters, theorems regarding stability of the closed-loop system are given. Moreover, by performing steady-state analysis on the control system and utilizing characteristics of the identified system parameters, one can analytically explain the mechanics of flow distribution. Experiments indicate that the proposed strategy can successfully regulate the indoor temperatures regardless that the reference settings for respective rooms are different and the settings are switched in the middle of the control process.

  15. Performance Characteristics of a Cross-Flow Hydrokinetic Turbine under Unsteady Conditions

    Science.gov (United States)

    Flack, Karen; Lust, Ethan; Bailin, Ben

    2017-11-01

    Performance characteristics are presented for a cross-flow hydrokinetic turbine designed for use in a riverine environment. The test turbine is a 1:6 scale model of a three-bladed device (9.5 m span, 6.5 m diameter) that has been proposed by the Department of Energy. Experiments are conducted in the large towing tank (116 m long, 7.9 m wide, 5 m deep) at the United States Naval Academy. The turbine is towed beneath a moving carriage at a constant speed in combination with a shaft motor to achieve the desired tip speed ratio (TSR) range. The measured quantities of turbine thrust, torque and RPM result in power and thrust coefficients for a range of TSR. Results will be presented for cases with quiescent flow at a range of Reynolds numbers and flow with mild surface waves, representative of riverine environments. The impact of unsteady flow conditions on the average turbine performance was not significant. Unsteady flow conditions did have an impact on instantaneous turbine performance which operationally would result in unsteady blade loading and instantaneous power quality.

  16. Relationship of goat milk flow emission variables with milking routine, milking parameters, milking machine characteristics and goat physiology.

    Science.gov (United States)

    Romero, G; Panzalis, R; Ruegg, P

    2017-11-01

    The aim of this paper was to study the relationship between milk flow emission variables recorded during milking of dairy goats with variables related to milking routine, goat physiology, milking parameters and milking machine characteristics, to determine the variables affecting milking performance and help the goat industry pinpoint farm and milking practices that improve milking performance. In total, 19 farms were visited once during the evening milking. Milking parameters (vacuum level (VL), pulsation ratio and pulsation rate, vacuum drop), milk emission flow variables (milking time, milk yield, maximum milk flow (MMF), average milk flow (AVMF), time until 500 g/min milk flow is established (TS500)), doe characteristics of 8 to 10 goats/farm (breed, days in milk and parity), milking practices (overmilking, overstripping, pre-lag time) and milking machine characteristics (line height, presence of claw) were recorded on every farm. The relationships between recorded variables and farm were analysed by a one-way ANOVA analysis. The relationships of milk yield, MMF, milking time and TS500 with goat physiology, milking routine, milking parameters and milking machine design were analysed using a linear mixed model, considering the farm as the random effect. Farm was significant (Pfarms, being similar to those recommended in scientific studies. Few milking parameters and milking machine characteristics affected the tested variables: average vacuum level only showed tendency on MMF, and milk pipeline height on TS500. Milk yield (MY) was mainly affected by parity, as the interaction of days in milk with parity was also significant. Milking time was mainly affected by milk yield and breed. Also significant were parity, the interaction of days in milk with parity and overstripping, whereas overmilking showed a slight tendency. We concluded that most of the studied variables were mainly related to goat physiology characteristics, as the effects of milking parameters and

  17. FLASH: A finite element computer code for variably saturated flow

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.

    1992-05-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A

  18. Variable-density ground-water flow and paleohydrology in the Waste Isolation Pilot Plant (WIPP) region, southeastern New Mexico

    International Nuclear Information System (INIS)

    Davies, P.B.

    1989-01-01

    Variable-density groundwater flow was studied near the Waste Isolation Pilot Plant in southeastern New Mexico. An analysis of the relative magnitude of pressure-related and density-related flow-driving forces indicates that density-related gravity effects are not significant at the plant and to the west but are significant in areas to the north, northeast, and south. A regional-scale model of variable-density groundwater flow in the Culebra Dolomite member of the Rustler Formation indicates that the flow velocities are relatively rapid west of the site and extremely slow east and northeast of the site. In the transition zone between those two extremes, which includes the plant, velocities are highly variable. Sensitivity simulations indicates that the central and western parts of the region, including the plant, are fairly well isolated from the eastern and northeastern boundaries. Vertical-flux simulations indicate that as much as 25% of total inflow to the Culebra could be entering as vertical flow, with most of this flow occurring west of the plant. A simple cross-sectional model was developed to examine the flow system as it drains through time following recharge during a past glacial pluvial. This model indicates that the system as a whole drains very slowly and that it apparently could have sustained flow from purely transient drainage following recharge of the system during the Pleistocene

  19. SAP FLOW RESPONSE OF CHERRY TREES TO WEATHER CONDITION

    Directory of Open Access Journals (Sweden)

    Á. JUHÁSZ

    2011-03-01

    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  20. 13 CFR 120.214 - What conditions apply for variable interest rates?

    Science.gov (United States)

    2010-01-01

    ... interest rates? 120.214 Section 120.214 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Policies Specific to 7(a) Loans Maturities; Interest Rates; Loan and Guarantee Amounts § 120.214 What conditions apply for variable interest rates? A Lender may use a variable rate of interest...

  1. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  2. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  3. Characteristics of buoyancy force on stagnation point flow with magneto-nanoparticles and zero mass flux condition

    Directory of Open Access Journals (Sweden)

    Iftikhar Uddin

    2018-03-01

    Full Text Available This attempt dedicated to the solution of buoyancy effect over a stretching sheet in existence of MHD stagnation point flow with convective boundary conditions. Thermophoresis and Brownian motion aspects are included. Incompressible fluid is electrically conducted in the presence of varying magnetic field. Boundary layer analysis is used to develop the mathematical formulation. Zero mass flux condition is considered at the boundary. Non-linear ordinary differential system of equations is constructed by means of proper transformations. Interval of convergence via numerical data and plots are developed. Characteristics of involved variables on the velocity, temperature and concentration distributions are sketched and discussed. Features of correlated parameters on Cf and Nu are examined by means of tables. It is found that buoyancy ratio and magnetic parameters increase and reduce the velocity field. Further opposite feature is noticed for higher values of thermophoresis and Brownian motion parameters on concentration distribution. Keywords: Stagnation point, MHD, Nanoparticles, Zero mass flux condition

  4. On thermoeconomics of energy systems at variable load conditions: Integrated optimization of plant design and operation

    International Nuclear Information System (INIS)

    Piacentino, A.; Cardona, F.

    2007-01-01

    Thermoeconomics has been assuming a growing role among the disciplines oriented to the analysis of energy systems, its different methodologies allowing solution of problems in the fields of cost accounting, plant design optimisation and diagnostic of malfunctions. However, the thermoeconomic methodologies as such are particularly appropriate to analyse large industrial systems at steady or quasi-steady operation, but they can be hardly applied to small to medium scale units operating in unsteady conditions to cover a variable energy demand. In this paper, the fundamentals of thermoeconomics for systems operated at variable load are discussed, examining the cost formation process and, separately, the cost fractions related to capital depreciation (which require additional distinctions with respect to plants in steady operation) and to exergy consumption. The relevant effects of the efficiency penalty due to off design operation on the exergetic cost of internal flows are also examined. An original algorithm is proposed for the integrated optimization of plant design and operation based on an analytical solution by the Lagrange multipliers method and on a multi-objective decision function, expressed either in terms of net cash flow or primary energy saving. The method is suitable for application in complex energy systems, such as 'facilities of components of a same product' connected to external networks for power or heat distribution. For demonstrative purposes, the proposed thermoeconomically aided optimization is performed for a grid connected trigeneration system to be installed in a large hotel

  5. Experimental study of the permeability of concrete under variable thermal and hydric conditions

    International Nuclear Information System (INIS)

    Chen, W.

    2011-01-01

    The main objective of this study is to evaluate the variable thermal and hydric effect, with fissuration effect on the hydraulic behaviour of two concretes. Many experimental tests (saturation and permeability measurements, uniaxial and triaxial compressions tests) were carried out in order to investigate the temperature and saturation influence on the behaviour hydraulic on sound and micro-cracked concrete. Moreover, an experimental device for permeability measurement on macro-cracked concrete was realized, it allows to study the behaviour of macro-cracked of concrete confined and subjected to dry gas flow or very moist air at different temperatures. Multiaxial mechanical tests are coupled to the permeability measurements of sound concrete and micro-cracked by freezing and thawing, which allow to measuring the permeability under deviatoric load-unload with the effect of pre-cracking under stress. We also effectuated a test of relative permeability of concrete as a function of water saturation, subjected to drying and re-saturation, conditioning by the different relative humidity imposed. (author)

  6. Analysis of Cattaneo-Christov heat and mass fluxes in the squeezed flow embedded in porous medium with variable mass diffusivity

    Directory of Open Access Journals (Sweden)

    M. Farooq

    Full Text Available This research article investigates the squeezing flow of Newtonian fluid with variable viscosity over a stretchable sheet inserted in Darcy porous medium. Cattaneo-Christov double diffusion models are implemented to scrutinize the characteristics of heat and mass transfer via variable thermal conductivity and variable mass diffusivity. These models are the modification of conventional laws of Fourier’s and Fick’s via thermal and solutal relaxation times respectively. The homotopy analysis Method (HAM is being utilized to provide the solution of highly nonlinear system of coupled partial differential equations after converted into dimensionless governing equations. The behavior of flow parameters on velocity, concentration, and temperature distributions are sketched and analyzed physically. The result indicates that both concentration and temperature distributions decay for higher solutal and thermal relaxation parameters respectively. Keywords: Squeezing flow, Porous medium, Variable viscosity, Cattaneo-Christov heat and mass flux models, Variable thermal conductivity, Variable mass diffusivity

  7. Heart rate and flow velocity variability as determined from umbilical Doppler velocimetry at 10-20 weeks of gestation.

    Science.gov (United States)

    Ursem, N T; Struijk, P C; Hop, W C; Clark, E B; Keller, B B; Wladimiroff, J W

    1998-11-01

    1. The aim of this study was to define from umbilical artery flow velocity waveforms absolute peak systolic and time-averaged velocity, fetal heart rate, fetal heart rate variability and flow velocity variability, and the relation between fetal heart rate and velocity variables in early pregnancy.2.A total of 108 women presenting with a normal pregnancy from 10 to 20 weeks of gestation consented to participate in a cross-sectional study design. Doppler ultrasound recordings were made from the free-floating loop of the umbilical cord.3. Umbilical artery peak systolic and time-averaged velocity increased at 10-20 weeks, whereas fetal heart rate decreased at 10-15 weeks of gestation and plateaued thereafter. Umbilical artery peak systolic velocity variability and fetal heart rate variability increased at 10-20 and 15-20 weeks respectively.4. The inverse relationship between umbilical artery flow velocity and fetal heart rate at 10-15 weeks of gestation suggests that the Frank-Starling mechanism regulates cardiovascular control as early as the late first and early second trimesters of pregnancy. A different underlying mechanism is suggested for the observed variability profiles in heart rate and umbilical artery peak systolic velocity. It is speculated that heart rate variability is mediated by maturation of the parasympathetic nervous system, whereas peak systolic velocity variability reflects the activation of a haemodynamic feedback mechanism.

  8. Gravity flow and solute dispersion in variably saturated sand

    Science.gov (United States)

    Kumahor, Samuel K.; de Rooij, Gerrit H.; Vogel, Hans-Joerg

    2014-05-01

    Solute dispersion in porous media depends on the structure of the velocity field at the pore scale. Hence, dispersion is expected to change with water content and with mean flow velocity. We performed laboratory experiments using a column of repacked fine-grained quartz sand (0.1-0.3 mm grain size) with a porous plate at the bottom to controle the water potential at the lower boundary. We established gravity flow conditions - i.e. constant matric potential and water content throughout the column - for a number of different irrigation rates. We measured breakthrough curves during unit gradient flow for an inert tracer which could be described by the convection-dispersion equation. As the soil water content decreased we observed an initially gradual increase in dispersivity followed by an abrupt increase below a threshold water content (0.19) and pressure head (-38 hPa). This phenomena can be explained by the geometry of phase distribution which was simulated based on Xray-CT images of the porous structure.

  9. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  10. Variable property, steady, axi-symmetric, laminar, continuum plasma flow over spheroidal particles

    International Nuclear Information System (INIS)

    Wen Yuemin; Jog, Milind A.

    2005-01-01

    Steady, continuum, laminar plasma flow over spheroidal particles has been numerically investigated in this paper using a finite volume method. To body-fit the non-spherical particle surface, an adaptive orthogonal grid is generated. The flow field and the temperature distribution are calculated for oblate and prolate particle shapes. A number of particle surface temperatures and far field temperatures are considered and thermo-physical property variation is fully accounted for in our model. The particle shapes are represented in terms of axis ratio which is defined as the ratio of axis perpendicular to the flow direction to the axis along the flow direction. For oblate shape, axis ratios from 1.6 (disk-like) to 1 (sphere) are used whereas for prolate shape, axis ratios of 1(sphere) to 0.4 (cylinder-like) are used. Effects of flow Reynolds number, particle shape, surface and far field temperatures, and variable properties, on the flow field, temperature variations, drag coefficient, and Nusselt number are outlined. Results show that particle shape has significant effect on flow and heat transfer to particle surface. Compared to a constant property flow, accounting for thermo-physical property variation leads to prediction of higher temperature and velocity gradients in the vicinity of the particle surface. Based on the numerical results, a correlation for the Nusslet number is proposed that accounts for the effect of particle shape in continuum flow with large thermo-physical property variation

  11. Complex variable boundary elements for fluid flow; Robni elementi kompleksne spremenljivke za pretok fluidov

    Energy Technology Data Exchange (ETDEWEB)

    Bizjak, D; Alujevic, A [Institut ' Jozef Stefan' , Ljubljana (Yugoslavia)

    1988-07-01

    The Complex Variable Boundary Element Method is a numerical method for solving two-dimensional problems of Laplace or Poisson type. It is based on the theory of analytic functions. This paper resumes the basic facts about the method. Application of the method to the stationary incompressible irrotational flow is carried out after that. At the end, a sample problem of flow through an abrupt area change channel is shown. (author)

  12. Effect of Varying Hemodynamic and Vascular Conditions on Fractional Flow Reserve: An In Vitro Study.

    Science.gov (United States)

    Kolli, Kranthi K; Min, James K; Ha, Seongmin; Soohoo, Hilary; Xiong, Guanglei

    2016-06-30

    The aim of this study was to investigate the impact of varying hemodynamic conditions on fractional flow reserve (ratio of pressure distal [Pd] and proximal [Pa] to stenosis under hyperemia) in an in vitro setting. Failure to achieve maximal hyperemia and the choice of hyperemic agents may have differential effects on coronary hemodynamics and, consequently, on the determination of fractional flow reserve. An in vitro flow system was developed to experimentally model the physiological coronary circulation as flow-dependent stenosis resistance in series with variable downstream resistance. Five idealized models with 30% to 70% diameter stenosis severity were fabricated using VeroClear rigid material in an Objet260 Connex printer. Mean aortic pressure was maintained at 7 levels (60-140 mm Hg) from hypotension to hypertension using a needle valve that mimicked adjustable microcirculatory resistance. A range of physiological flow rates was applied by a steady flow pump and titrated by a flow sensor. The pressure drop and the pressure ratio (Pd/Pa) were assessed for the 7 levels of aortic pressure and differing flow rates. The in vitro experimental data were coupled with pressure-flow relationships from clinical data for populations with and without myocardial infarction, respectively, to evaluate fractional flow reserve. The curve for pressure ratio and flow rate demonstrated a quadratic relationship with a decreasing slope. The absolute decrease in fractional flow reserve in the group without myocardial infarction (with myocardial infarction) was on the order of 0.03 (0.02), 0.05 (0.02), 0.07 (0.05), 0.17 (0.13) and 0.20 (0.24), respectively, for 30%, 40%, 50%, 60%, and 70% diameter stenosis, for an increase in aortic pressure from 60 to 140 mm Hg. The fractional flow reserve value, an index of physiological stenosis significance, was observed to decrease with increasing aortic pressure for a given stenosis in this idealized in vitro experiment for vascular

  13. Impacts of Realistic Urban Heating, Part I: Spatial Variability of Mean Flow, Turbulent Exchange and Pollutant Dispersion

    Science.gov (United States)

    Nazarian, Negin; Martilli, Alberto; Kleissl, Jan

    2018-03-01

    As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less

  14. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Follin, Sven; Zugec, Nada

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions

  15. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  16. Investigation of two-phase flow instability under SMART-P core conditions

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Lee, Chung Chan

    2005-01-01

    An integral-type advanced light water reactor, named SMART-P, is being continuously studied at KAERI. The reactor core consists of hundreds of closed-channel type fuel assemblies with vertical upward flows. The upper and lower parts of the fuel assembly channels are connected to the common heads. The constant pressure drop imposed on the channel is responsible for the occurrence of density wave oscillations under local boiling and/or natural circulation conditions. The fuel assembly channel with oscillatory flow is highly susceptible to experience the CHF which may cause the fuel failure due to a sudden increase of the cladding temperature. Thus, prevention of the flow instability is an important criterion for the SMART-P core design. Experimental and analytical studies have been conducted in order to investigate the onset of flow instability (OFI) under SMART core conditions. The parallel channel oscillations were observed in a high pressure water-loop test facility. A linear stability analysis model in the frequency-domain was developed for the prediction of the marginal stability boundary (MSB) in the parallel boiling channels

  17. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  18. Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

    2002-01-01

    The spatial variability of layer-scale hydrogeologic properties of the unsaturated zone (UZ) at Yucca Mountain, Nevada, is investigated using inverse modeling. The thick UZ is grouped into five hydrostratigraphic units and further into 35 hydrogeologic layers. For each layer, lateral variability is represented by the variations in calibrated values of layer-scale properties at different individual deep boreholes. In the calibration model, matrix and fracture properties are calibrated for the one-dimensional vertical column at each individual borehole using the ITOUGH2 code. The objective function is the summation of the weighted misfits between the ambient unsaturated flow (represented by measured state variables: water saturation, water potential, and pneumatic pressure) and the simulated one in the one-dimensional flow system. The objective function also includes the weighted misfits between the calibrated properties and their prior information. Layer-scale state variables and prior rock properties are obtained from their core-scale measurements. Because of limited data, the lateral variability of three most sensitive properties (matrix permeability, matrix of the van Genuchten characterization, and fracture permeability) is calibrated, while all other properties are fixed at their calibrated layer-averaged values. Considerable lateral variability of hydrogeologic properties is obtained. For example, the lateral variability of is two to three orders of magnitude and that of and is one order of magnitude. The effect of lateral variability on site-scale flow and transport will be investigated in a future study

  19. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    Science.gov (United States)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  20. Adaptive boundary conditions for exterior flow problems

    CERN Document Server

    Boenisch, V; Wittwer, S

    2003-01-01

    We consider the problem of solving numerically the stationary incompressible Navier-Stokes equations in an exterior domain in two dimensions. This corresponds to studying the stationary fluid flow past a body. The necessity to truncate for numerical purposes the infinite exterior domain to a finite domain leads to the problem of finding appropriate boundary conditions on the surface of the truncated domain. We solve this problem by providing a vector field describing the leading asymptotic behavior of the solution. This vector field is given in the form of an explicit expression depending on a real parameter. We show that this parameter can be determined from the total drag exerted on the body. Using this fact we set up a self-consistent numerical scheme that determines the parameter, and hence the boundary conditions and the drag, as part of the solution process. We compare the values of the drag obtained with our adaptive scheme with the results from using traditional constant boundary conditions. Computati...

  1. RELAP5/MOD2 benchmarking study: Critical heat flux under low-flow conditions

    International Nuclear Information System (INIS)

    Ruggles, E.; Williams, P.T.

    1990-01-01

    Experimental studies by Mishima and Ishii performed at Argonne National Laboratory and subsequent experimental studies performed by Mishima and Nishihara have investigated the critical heat flux (CHF) for low-pressure low-mass flux situations where low-quality burnout may occur. These flow situations are relevant to long-term decay heat removal after a loss of forced flow. The transition from burnout at high quality to burnout at low quality causes very low burnout heat flux values. Mishima and Ishii postulated a model for the low-quality burnout based on flow regime transition from churn turbulent to annular flow. This model was validated by both flow visualization and burnout measurements. Griffith et al. also studied CHF in low mass flux, low-pressure situations and correlated data for upflows, counter-current flows, and downflows with the local fluid conditions. A RELAP5/MOD2 CHF benchmarking study was carried out investigating the performance of the code for low-flow conditions. Data from the experimental study by Mishima and Ishii were the basis for the benchmark comparisons

  2. Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    Directory of Open Access Journals (Sweden)

    Stefano Pagliara

    2011-06-01

    Full Text Available Free surface flows in macro- and intermediate roughness conditions have a high aeration potential causing the flow characteristics to vary with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m2/s and 0.09 m2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.

  3. A Variable Flow Modelling Approach To Military End Strength Planning

    Science.gov (United States)

    2016-12-01

    function. The MLRPS is more complex than the variable flow model as it has to cater for a force structure that is much larger than just the MT branch...essential positions in a Ship’s complement, or by the biggest current deficit in forecast end strength. The model can be adjusted to cater for any of these...is unlikely that the RAN will be able to cater for such an increase in hires, so this scenario is not likely to solve their problem. Each transition

  4. Using nitrate to quantify quick flow in a karst aquifer

    Science.gov (United States)

    Mahler, B.J.; Garner, B.D.

    2009-01-01

    In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with ??18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The ??18O- based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems. ?? 2008 National Ground Water Association.

  5. Multiple causes of nonstationarity in the Weihe annual low-flow series

    Science.gov (United States)

    Xiong, Bin; Xiong, Lihua; Chen, Jie; Xu, Chong-Yu; Li, Lingqi

    2018-02-01

    Under the background of global climate change and local anthropogenic activities, multiple driving forces have introduced various nonstationary components into low-flow series. This has led to a high demand on low-flow frequency analysis that considers nonstationary conditions for modeling. In this study, through a nonstationary frequency analysis framework with the generalized linear model (GLM) to consider time-varying distribution parameters, the multiple explanatory variables were incorporated to explain the variation in low-flow distribution parameters. These variables are comprised of the three indices of human activities (HAs; i.e., population, POP; irrigation area, IAR; and gross domestic product, GDP) and the eight measuring indices of the climate and catchment conditions (i.e., total precipitation P, mean frequency of precipitation events λ, temperature T, potential evapotranspiration (EP), climate aridity index AIEP, base-flow index (BFI), recession constant K and the recession-related aridity index AIK). This framework was applied to model the annual minimum flow series of both Huaxian and Xianyang gauging stations in the Weihe River, China (also known as the Wei He River). The results from stepwise regression for the optimal explanatory variables show that the variables related to irrigation, recession, temperature and precipitation play an important role in modeling. Specifically, analysis of annual minimum 30-day flow in Huaxian shows that the nonstationary distribution model with any one of all explanatory variables is better than the one without explanatory variables, the nonstationary gamma distribution model with four optimal variables is the best model and AIK is of the highest relative importance among these four variables, followed by IAR, BFI and AIEP. We conclude that the incorporation of multiple indices related to low-flow generation permits tracing various driving forces. The established link in nonstationary analysis will be beneficial

  6. Experimental study of swirl flow patterns in Gas Conditioning Tower at various entry conditions

    DEFF Research Database (Denmark)

    Jinov, Andrei A.; Larsen, Poul Scheel

    1999-01-01

    In a gas conditioning tower hot flue gas with relatively high dust loads is cooled by injecting water spray near the top. For satisfactory operation wet particles should be kept off walls and all water should have evaporated to yield a uniformly cooled flow before it reaches the bottom of the tower...

  7. Peak expiratory flow variability, bronchial responsiveness, and susceptibility to ambient air pollution in adults

    NARCIS (Netherlands)

    Boezen, M; Schouten, Jan; Rijcken, B; Vonk, J; Gerritsen, J; Hoek, G; Brunekreef, B; Postma, D

    1998-01-01

    Bronchial hyperresponsiveness (BHR) and peak expiratory flow (PEF) variability are associated expressions of airway lability, yet probably reflect different underlying pathophysiologic mechanisms. We investigated whether both measures can be used interchangeably to identify subjects who are

  8. Theoretical analysis of effect of ocean condition on natural circulation flow

    International Nuclear Information System (INIS)

    Gong Houjun; Yang Xingtuan; Jiang Shengyao; Liu Zhiyong

    2010-01-01

    According to the simulation loop of Integrated natural circulation reactor,the mathematical model of natural circulation in non-inertial reference system is established, and the influence mechanism of ocean condition upon natural circulation is analyzed. Software is programmed to investigate the behaviors in the cases of rolling without heating power, static state with different power and rolling with heating power, and calculation results show that: the inertia force added by rolling causes the periodical fluctuating of the flow rate of channels, but it is not the direct reason of core flow fluctuation. The heave changes the driving head, and causes the same flow rate fluctuation of all channels. Inclining makes the core flow rate decrease, but the change of flow rate of different channels is different.(authors)

  9. Attributing uncertainty in streamflow simulations due to variable inputs via the Quantile Flow Deviation metric

    Science.gov (United States)

    Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish

    2018-06-01

    Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.

  10. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  11. Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: Example from the Monasterio de Piedra Natural Park (Spain)

    Science.gov (United States)

    Berrendero, Esther; Arenas, Concha; Mateo, Pilar; Jones, Brian

    2016-05-01

    The River Piedra in the Monasterio de Piedra Natural Park (NE Spain) is a modern tufa-depositing river that encompasses various depositional environments that are inhabited by different cyanobacterial populations. Molecular (16S rDNA) and morphological analyses of the cyanobacteria from different facies showed that Phormidium incrustatum dominates in the fast-flowing water areas where the mean depositional rate is 1.6 cm/year. Stromatolites in these areas are formed of palisades of hollow calcite tubes (inner diameter of 6.0-7.5 μm, walls 2-12 μm thick) that formed through calcite encrustation around the filaments followed by decay of the trichomes. In contrast, in slow-flowing water areas with lower depositional rates (mean depositional rate of 0.3 cm/year), Phormidium aerugineo-caeruleum is the dominant species. In these areas, randomly oriented calcite tubes (inner diameter of 5-6 μm, walls 3-8 μm thick) formed by calcite encrustation, are found in thin and uneven laminae and as scattered tubes in the loose lime mud and sand-sized carbonate sediment. Although this species did not build laminated deposits, it gave cohesiveness to the loose sediment. In the stepped and low waterfalls, with intermediate deposition rates (mean depositional rate of 0.9 cm/year), both species of Phormidium are found in association with spongy moss and algal boundstones, which is consistent with the variable flow conditions in this setting. The calcite encrustations on the cyanobacteria from different environments exhibit irregular patterns that may be linked to changes in the calcite saturation index. The physicochemical conditions associated with extracellular polymeric substances may be more significant to CaCO3 precipitation in microbial mats in slow-flowing water conditions than in fast-flowing water conditions. These results show that flow conditions may influence the distribution of different cyanobacteria that, in turn, leads to the development of different sedimentary

  12. Solute transport with time-variable flow paths during upward and downward flux in a heterogeneous unsaturated porous medium

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan

    2014-05-01

    To acquire knowledge of solute transport through the unsaturated zone in the shallow subsurface is decisive to assess groundwater quality, nutrient cycling or to plan remediation strategies. The shallow subsurface is characterized by structural heterogeneity and strongly influenced by atmospheric conditions. This leads to changing flow directions, strong temporal changes in saturation and heterogeneous water fluxes during infiltration and evaporation events. Recent studies (e.g. Lehmann and Or, 2009; Bechtold et al.,2011) demonstrated the importance of lateral flow and solute transport during evaporation conditions (upward flux). The heterogeneous structure in these studies was constructed using two types of sand with strong material contrasts and arranged in parallel with a vertical orientation. Lateral transport and redistribution of solute from coarse to fine media was observed deeper in the soil column and from fine to coarse close to the soil surface. However, if boundary conditions are reversed due to precipitation, the flow field is not necessarily reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport under those conditions. In this contribution we analyze transport of a solute in the shallow subsurface to assess effects resulting from the temporal change of heterogeneous soil structures due to dynamic flow conditions. Two-dimensional numerical simulations of unsaturated flow and transport are conducted using a coupled finite volume and random walk particle tracking algorithm to quantify solute transport and leaching rates. Following previous studies (Lehmann and Or, 2009; Bechtold et al., 2011), the chosen domain is composed of two materials, coarse and fine sand, arranged in parallel with a vertical orientation. Hence, one sharp interface of strong material heterogeneity is induced. During evaporation both sands are

  13. Application of the DTM to Nonlinear Cases Arising in Fluid Flows with Variable Viscosity

    DEFF Research Database (Denmark)

    Barari, Amin; Rahimi, M; Hosseini, M.J

    2012-01-01

    This paper employs the differential transformation method to investigate two nonlinear ordinary differential systems for plane coquette flow having variable viscosity and thermal conductivity. The concept of differential transformation is briefly introduced, and then differential transformation m...

  14. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness

    Directory of Open Access Journals (Sweden)

    Rai Sajjad Saif

    Full Text Available This paper investigates the stagnation point flow of second grade nanomaterial towards a nonlinear stretching surface subject to variable surface thickness. The process of heat transfer is examined through the melting heat and mixed convection effects. Further novel features regarding Brownian motion and thermophoresis are present. Boundary-layer approximation is employed in the problem formulation. Momentum, energy and concentration equations are converted into the non-linear ordinary differential system through the appropriate transformations. Convergent solutions for resulting problem are computed. Behaviors of various sundry variables on temperature and concentration are studied in detail. The skin friction coefficient and heat and mass transfer rates are also computed and analyzed. Our results indicate that the temperature and concentration distributions are enhanced for larger values of thermophoresis parameter. Further the present work is hoped to be useful in improving the performance of heat transfer of base fluid. Keywords: Stagnation-point flow, Second grade fluid, Nanoparticles, Melting heat process, Nonlinear stretching surface, Variable surface thickness

  15. A scalable geometric multigrid solver for nonsymmetric elliptic systems with application to variable-density flows

    Science.gov (United States)

    Esmaily, M.; Jofre, L.; Mani, A.; Iaccarino, G.

    2018-03-01

    A geometric multigrid algorithm is introduced for solving nonsymmetric linear systems resulting from the discretization of the variable density Navier-Stokes equations on nonuniform structured rectilinear grids and high-Reynolds number flows. The restriction operation is defined such that the resulting system on the coarser grids is symmetric, thereby allowing for the use of efficient smoother algorithms. To achieve an optimal rate of convergence, the sequence of interpolation and restriction operations are determined through a dynamic procedure. A parallel partitioning strategy is introduced to minimize communication while maintaining the load balance between all processors. To test the proposed algorithm, we consider two cases: 1) homogeneous isotropic turbulence discretized on uniform grids and 2) turbulent duct flow discretized on stretched grids. Testing the algorithm on systems with up to a billion unknowns shows that the cost varies linearly with the number of unknowns. This O (N) behavior confirms the robustness of the proposed multigrid method regarding ill-conditioning of large systems characteristic of multiscale high-Reynolds number turbulent flows. The robustness of our method to density variations is established by considering cases where density varies sharply in space by a factor of up to 104, showing its applicability to two-phase flow problems. Strong and weak scalability studies are carried out, employing up to 30,000 processors, to examine the parallel performance of our implementation. Excellent scalability of our solver is shown for a granularity as low as 104 to 105 unknowns per processor. At its tested peak throughput, it solves approximately 4 billion unknowns per second employing over 16,000 processors with a parallel efficiency higher than 50%.

  16. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    International Nuclear Information System (INIS)

    Weili, L; Jinling, L; Xingqi, L; Yuan, L

    2010-01-01

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  17. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    Energy Technology Data Exchange (ETDEWEB)

    Weili, L; Jinling, L; Xingqi, L; Yuan, L, E-mail: liaoweili2004@163.co [Institute of Water Resources and Hydro-Electric Engineering, Xi' an University of Technology No.5 South Jinhua Road, Xi' an, Shaanxi, 710048 (China)

    2010-08-15

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  18. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    Science.gov (United States)

    Weili, L.; Jinling, L.; Xingqi, L.; Yuan, L.

    2010-08-01

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  19. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  20. Scalar conservation and boundedness in simulations of compressible flow

    Science.gov (United States)

    Subbareddy, Pramod K.; Kartha, Anand; Candler, Graham V.

    2017-11-01

    With the proper combination of high-order, low-dissipation numerical methods, physics-based subgrid-scale models, and boundary conditions it is becoming possible to simulate many combustion flows at relevant conditions. However, non-premixed flows are a particular challenge because the thickness of the fuel/oxidizer interface scales inversely with Reynolds number. Sharp interfaces can also be present in the initial or boundary conditions. When higher-order numerical methods are used, there are often aphysical undershoots and overshoots in the scalar variables (e.g. passive scalars, species mass fractions or progress variable). These numerical issues are especially prominent when low-dissipation methods are used, since sharp jumps in flow variables are not always coincident with regions of strong variation in the scalar fields: consequently, special detection mechanisms and dissipative fluxes are needed. Most numerical methods diffuse the interface, resulting in artificial mixing and spurious reactions. In this paper, we propose a numerical method that mitigates this issue. We present methods for passive and active scalars, and demonstrate their effectiveness with several examples.

  1. A study on the flow induced vibration in two phase flow under heating and non-heating conditions

    International Nuclear Information System (INIS)

    Kim, Dae Hun

    2007-02-01

    Critical heat flux (CHF) enhancement devices, like a spacer grid with mixing vane, cause flow-induced vibration (FIV) due to turbulence made by structural resistance. CHF enhancement and FIV reduction are usually studied separately. The main purpose of this article is to investigate the relationship between CHF and FIV. Information of flow-induced vibration due to wire coil design, is experimentally presented in this study by detecting flow-induced vibration under the two-phase flow condition with wire coil inserts. CHF experiments were performed in an upward vertical annulus tube under controlled vibration conditions to determine the effect of vibration on CHF. FIV was measured in an upward vertical tube with various wire coil inserts using air-water as flow material. CHF experiments were performed at one atmosphere with mechanically controlled vibration. A quartz tube (inner diameter of 17 mm, thickness of 2mm and length of 0.72 m) was used for outer tube and a SUS-304 tube (outer diameter of 6.35 mm, thickness of 0.89 mm and length of 0.7 m) was used for the inner heater. Vibration of the heater tube with an amplitude range of 0.1 mm to 0.5 mm and a frequency range of 10 Hz to 50 Hz was carried out at a mass flux of 115 kg/m 2 s and 215 kg/m 2 s. CHF was enhanced by vibration with a maximum ratio of 16.4 %. CHF was increased with increased amplitude and quality. The CHF correlation was developed with R (coefficient of correlation) of 0.903. FIV measuring experiments were performed at one atmosphere by changing the inserted wire coil type. An acrylic tube was used for the test section with inner diameter of 25 mm, thickness of 10 mm and length of 0.5 m. Four types of wire coil, which have a thickness of between 2 mm and 3 mm and pitch length of between 25 mm and 50 mm, were used. FIV and dynamic pressure were detected in water mass flux range of 100 ∼ 3060 kg/m 2 s and air mass flux range of 5.02 ∼ 60.3 kg/m 2 s. Vibration increased along with mass flux and

  2. Impact of magnetic field in three-dimensional flow of Sisko nanofluid with convective condition

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-09-01

    This communication addresses the magnetohydrodynamic (MHD) three dimensional flow of Sisko nanofluid bounded by a surface stretched bidirectionally. Nanofluid model includes the Brownian motion and thermophoresis. Heat transfer through convective condition is discussed. Developed condition with the zero nanoparticles mass flux at the surface is implemented. The governing problems subject to boundary layer approximations are computed for the convergent series solutions. Effects of interesting flow parameters on the temperature and nanoparticles concentration distributions are studied and discussed. Skin friction coefficients and the local Nusselt number are computed and analyzed. - Highlights: • Three-dimensional flow of Sisko nanofluid is modeled. • Uniform applied magnetic field is adopted. • Brownian motion and thermophoresis effects are accounted. • Heat transfer convective condition is utilized. • Recently constructed condition with zero nanoparticles mass flux is implemented.

  3. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  4. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments

    Science.gov (United States)

    Cartigny, Matthieu; Ventra, Dario; Postma, George; Van den Berg, Jan H.

    2014-05-01

    Supercritical-flow phenomena are fairly common in modern sedimentary environments, yet their recognition remains subordinate in the rock record. This is commonly ascribed to the poor preservation potential of deposits from supercritical flows. However, the number of documented flume datasets on supercritical-flow dynamics and sedimentary structures is very limited in comparison with available data from subcritical-flow experiments, and our inability to identify and interpret such deposits might also be due to insufficient knowledge. This article describes the results of systematic experiments spanning the full range of supercritical-flow bedforms (antidunes, chutes-and-pools, cyclic steps) developed over mobile sand beds of variable grain sizes. Flow character and related bedform patterns are constrained through time-series measurements of the bed configuration, flow depth, flow velocity and Froude number. The results allow the refinement and extension of current bedform stability diagrams in the supercritical-flow domain. The experimental dataset and the stability diagram clarify morphodynamic relationships between antidune and cyclic steps. The onset of antidunes is controlled by the flow passing a threshold value of the Froude parameter. The transition from antidunes to cyclic steps instead is completed at a threshold value of the mobility parameter, and this transition spans a wider range of values for the mobility parameter as grain size increases. Sedimentary structures associated with the development of supercritical bedforms under variable aggradation rates are revealed by means of a synthetic aggradation technique and compared with examples from field and flume studies. Aggradation rate bears an important influence on the geometry of supercritical structures, and it should be held in consideration for the identification and mutual distinction of supercritical-flow bedforms in the stratigraphic record.

  5. Traffic Flow Prediction Using MI Algorithm and Considering Noisy and Data Loss Conditions: An Application to Minnesota Traffic Flow Prediction

    Directory of Open Access Journals (Sweden)

    Seyed Hadi Hosseini

    2014-10-01

    Full Text Available Traffic flow forecasting is useful for controlling traffic flow, traffic lights, and travel times. This study uses a multi-layer perceptron neural network and the mutual information (MI technique to forecast traffic flow and compares the prediction results with conventional traffic flow forecasting methods. The MI method is used to calculate the interdependency of historical traffic data and future traffic flow. In numerical case studies, the proposed traffic flow forecasting method was tested against data loss, changes in weather conditions, traffic congestion, and accidents. The outcomes were highly acceptable for all cases and showed the robustness of the proposed flow forecasting method.

  6. On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations

    Directory of Open Access Journals (Sweden)

    Aouss Gabash

    2016-02-01

    Full Text Available It has recently been shown that using battery storage systems (BSSs to provide reactive power provision in a medium-voltage (MV active distribution network (ADN with embedded wind stations (WSs can lead to a huge amount of reverse power to an upstream transmission network (TN. However, unity power factors (PFs of WSs were assumed in those studies to analyze the potential of BSSs. Therefore, in this paper (Part-I, we aim to further explore the pure reactive power potential of WSs (i.e., without BSSs by investigating the issue of variable reverse power flow under different limits on PFs in an electricity market model. The main contributions of this work are summarized as follows: (1 Introducing the reactive power capability of WSs in the optimization model of the active-reactive optimal power flow (A-R-OPF and highlighting the benefits/impacts under different limits on PFs. (2 Investigating the impacts of different agreements for variable reverse power flow on the operation of an ADN under different demand scenarios. (3 Derivation of the function of reactive energy losses in the grid with an equivalent-π circuit and comparing its value with active energy losses. (4 Balancing the energy curtailment of wind generation, active-reactive energy losses in the grid and active-reactive energy import-export by a meter-based method. In Part-II, the potential of the developed model is studied through analyzing an electricity market model and a 41-bus network with different locations of WSs.

  7. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  8. Low flow and drought spatial analysis

    International Nuclear Information System (INIS)

    Dakova, Snejana

    2004-01-01

    The hydrological characteristics of Bulgarian rivers reflect to the climate variability. Nearly all precipitation is received during the spring and/or winter months, with negligible precipitations in summer. Thus, peak flows occur in spring and/or winter, and during the summer, the flow is significant lower with many rivers being ephemeral. Therefore, 2210 reservoirs for satisfaction the water needs have been constructed during the last sixty years. In spit of that, Bulgaria is facing to a new insufficiency of water. The recent climate change investigations and climate scenarios determine the area of Balkan Peninsula as territories with decreasing of rainfalls and increasing of air temperature. In view of that, research the low flow in the light of climate changing together with the water management is required. In this study the definitions of low flow and drought are developed using available data obtained in Bulgarian area, which has semiarid zone conditions. The difference between the terms of drought and low flow is describing and clarified also. The low flow and drought variables are investigated on two levels: first on long-year's variability using annual data and than monthly and seasonal data series-for enabling the within-year effects to be determined. The relationship between the probability of river's dry up and mean annual and seasonal rainfalls is quantified using multiple regressions applied to logarithmic- transformed data. This paper presets also analyses of minimum flow series with zero values. The exceed probability above which stream flow is zero and conditional probability of non-zero flow (non-zero-duration curve) is obtained by the principals of total probability. A different kind of adjusting duration curves are proposed depending of the number of zero values in the series.(Author)

  9. Effects from influent boundary conditions on tracer migration and spatial variability features in intermediate-scale experiments

    International Nuclear Information System (INIS)

    Fuentes, H.R.; Polzer, W.L.; Springer, E.P.

    1987-04-01

    In previous unsaturated transport studies at Los Alamos dispersion coefficients were estimated to be higher close to the tracer source than at greater distances from the source. Injection of tracers through discrete influent outlets could have accounted for those higher dispersions. Also, a lack of conservation of mass of the tracers was observed and suspected to be due to spatial variability in transport. In the present study experiments were performed under uniform influent (ponded) conditions in which breakthrough of tracers was monitored at four locations at each of four depths. All other conditions were similar to those of the unsaturated transport experiments. A comparison of results from these two sets of experiments indicates differences in the parameter estimates. Estimates were made for the dispersion coefficient and the retardation factor by the one-dimensional steady flow computer code, CFITIM. Estimates were also made for mass and for velocity and the dispersion coefficient by the method of moments. The dispersion coefficient decreased with depth under discrete influent application and increased with depth under ponded influent application. Retardation was predicted better under the discrete influent application than under ponded influent application. Differences in breakthroughs and in estimated parameters among locations at the same depth were observed under ponded influent application. Those differences indicate that there is a lack of conservation of mass as well as significant spatial variability across the experimental domain. 14 refs., 9 figs., 8 tabs

  10. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-01-01

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after ∼30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been

  11. Comparison between OpenFOAM CFD & BEM theory for variable speed – variable pitch HAWT

    Directory of Open Access Journals (Sweden)

    ElQatary Islam

    2014-01-01

    Full Text Available OpenFoam is used to compare computational fluid dynamics (CFD with blade element momentum theory (BEM for a variable speed - variable pitch HAWT (Horizontal Axis Wind Turbine. The wind turbine is first designed using the BEM to determine the blade chord, twist and operating conditions. The wind turbine blade has an outer diameter of 14 m, uses a NACA 63–415 profile for the entire blade and root to tip twist distribution of 15deg (Figure 3. The RPM varies from 20–75 for freestream velocities varying between 3–10.5 m/s (variable speed and a constant RPM of 78.78 for velocities ranging between 11–25 m/s (variable pitch. OpenFOAM is used to investigate the wind turbine performance at several operating points including cut-in wind speed (3 m/s, rated wind speed (10.5 m/s and in the variable pitch zone. Simulation results show that in the variable-speed operating range, both CFD and BEM compare reasonably well. This agreement can be attributed to the fact that the complex three-dimensional flow around the turbine blades can be split into two radial segments. For radii less than the mid-span, the flow is three-dimensional, whereas for radii greater than the mid-span, the flow is approximately two-dimensional. Since the majority of the power is produced from sections beyond the mid-span, the agreement between CFD and BEM is reasonable. For the variable-pitch operating range the CFD results and BEM deviate considerably. In this case the majority of the power is produced from the inner sections in which the flow is three-dimensional and can no longer be predicted by the BEM. The results show that differences in pitch angles up to 10deg can result to regulate the power for high wind speeds in the variable-pitch operation zone.

  12. Development of a pressure based vortex-shedding meter: measuring unsteady mass-flow in variable density gases

    International Nuclear Information System (INIS)

    Ford, C L; Winroth, M; Alfredsson, P H

    2016-01-01

    An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method. (paper)

  13. Mechanisms of flow and water mass variability in Denmark Strait

    Science.gov (United States)

    Moritz, Martin; Jochumsen, Kerstin; Quadfasel, Detlef; Mashayekh Poul, Hossein; Käse, Rolf H.

    2017-04-01

    The dense water export through Denmark Strait contributes significantly to the lower limb of the Atlantic Meridional Overturning Circulation. Overflow water is transported southwestward not only in the deep channel of the Strait, but also within a thin bottom layer on the Greenland shelf. The flow on the shelf is mainly weak and barotropic, exhibiting many recirculations, but may eventually contribute to the overflow layer in the Irminger Basin by spilling events in the northern Irminger Basin. Especially the circulation around Dohrn Bank and the Kangerdlussuaq Trough contribute to the shelf-basin exchange. Moored observations show the overflow in Denmark Strait to be stable during the last 20 years (1996-2016). Nevertheless, flow variability was noticed on time scales of eddies and beyond, i.e. on weekly and interannual scales. Here, we use a combination of mooring data and shipboard hydrographic and current data to address the dominant modes of variability in the overflow, which are (i) eddies, (ii) barotropic pulsations of the plume, (iii) lateral shifts of the plume core position, and (iv) variations in vertical extension, i.e. varying overflow thickness. A principle component analysis is carried out and related to variations in sea surface height and wind stress, derived from satellite measurements. Furthermore, a test for topographic waves is performed. Shelf contributions to the overflow core in the Irminger Basin are identified from measurements of temperature and salinity, as well as velocity, which were obtained during recent cruises in the region. The flow and water mass pattern obtained from the observational data is compared to simulations in a high resolution regional model (ROMS), where tracer release experiments and float deployments were carried out. The modelling results allow a separation between different atmospheric forcing modes (NAO+ vs NAO- situations), which impact the water mass distribution and alter the dense water pathways on the

  14. Centrifuge modelling of granular flows

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  15. On flows of viscoelastic fluids under threshold-slip boundary conditions

    Science.gov (United States)

    Baranovskii, E. S.

    2018-03-01

    We investigate a boundary-value problem for the steady isothermal flow of an incompressible viscoelastic fluid of Oldroyd type in a 3D bounded domain with impermeable walls. We use the Fujita threshold-slip boundary condition. This condition states that the fluid can slip along a solid surface when the shear stresses reach a certain critical value; otherwise the slipping velocity is zero. Assuming that the flow domain is not rotationally symmetric, we prove an existence theorem for the corresponding slip problem in the framework of weak solutions. The proof uses methods for solving variational inequalities with pseudo-monotone operators and convex functionals, the method of introduction of auxiliary viscosity, as well as a passage-to-limit procedure based on energy estimates of approximate solutions, Korn’s inequality, and compactness arguments. Also, some properties and estimates of weak solutions are established.

  16. Compressible turbulent channel flow with impedance boundary conditions

    Science.gov (United States)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with

  17. Optimal orientation in flows : Providing a benchmark for animal movement strategies

    NARCIS (Netherlands)

    McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem

    2014-01-01

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal)

  18. Dynamic modelling for two-phase flow systems

    International Nuclear Information System (INIS)

    Guerra, M.A.

    1991-06-01

    Several models for two-phase flow have been studied, developing a thermal-hydraulic analysis code with one of these models. The program calculates, for one-dimensional cases with variable flow area, the transient behaviour of system process variables, when the boundary conditions (heat flux, flow rate, enthalpy and pressure) are functions of time. The modular structure of the code, eases the program growth. In fact, the present work is the basis for a general purpose accident and transient analysis code in nuclear reactors. Code verification has been made against RETRAN-02 results. Satisfactory results have been achieved with the present version of the code. (Author) [es

  19. Improved flux calculations for viscous incompressible flow by the variable penalty method

    International Nuclear Information System (INIS)

    Kheshgi, H.; Luskin, M.

    1985-01-01

    The Navier-Stokes system for viscous, incompressible flow is considered, taking into account a replacement of the continuity equation by the perturbed continuity equation. The introduction of the approximation allows the pressure variable to be eliminated to obtain the system of equations for the approximate velocity. The penalty approximation is often applied to numerical discretizations since it provides a reduction in the size and band-width of the system of equations. Attention is given to error estimates, and to two numerical experiments which illustrate the error estimates considered. It is found that the variable penalty method provides an accurate solution for a much wider range of epsilon than the classical penalty method. 8 references

  20. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  1. Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions.

    Science.gov (United States)

    Chen, Shu; Yang, Guolu; Lu, Jing; Wang, Lei

    2018-02-01

    Although the effects of periphyton on water quality and its relationship with flow conditions have been studied by researchers, our understanding about their combined action in eutrophic shallow lakes is poor. In this research, four aquatic model ecosystems with different water circulation rates and hydraulic conditions were constructed to investigate the effect of periphyton and flow condition on water quality. The concentrations of NH 4 + , TP, and chlorophyll-a and flow conditions were determined. The results show that, as a result of the rising nutrient level at the early stage and the decline in the lower limit, the presence of periphyton can make the ecosystem adaptable to a wider range of nutrients concentration. In terms of the flow condition, the circulation rate and hydraulic condition are influential factors for aquatic ecosystem. Higher circulation rate in the ecosystem, on one hand, facilitates the metabolism by accelerating nutrient cycling which is beneficial to water quality; on the other hand, high circulation rate leads to the nutrient lower limit rising which is harmful to water quality improvement. At low velocities, slight differences in hydraulic conditions, vertical velocity gradient and turbulence intensity gradient could affect the quantity of phytoplankton. Our study suggests that, considering environmental effect of periphyton, flow conditions and their combined action is essential for water quality improvement and ecological restoration in eutrophic shallow lakes.

  2. A study of fluid flow and combustion with variable valve timing

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, F

    1998-10-01

    The effects of variable valve timing (VVT) were examined by in-cylinder Laser Doppler Velocimetry flow measurements and heat-release calculations. A single-cylinder Volvo B5254 engine was used for all experiments and the valve timing was altered by phasing or exchanging the camshaft. Special cam lobes were developed for simulation of throttle-less operation. With the standard double camshaft, a tumbling flow was generated and with valve deactivation, a swirling flow was generated. The turbulence was increased with valve deactivation. This increased the combustion rate making lean burn possible. The standard camshaft with inlet valve deactivation and late cam phasing had a faster combustion at {lambda} = 1.8 than the standard camshaft with normal cam phasing at {lambda} = 1.0. Early and late inlet valve closing was used for enabling throttle-less operation. Early inlet valve closing (EIVC) generated a very slow tumble with low turbulence. Late inlet valve closing generated both very high and low turbulence. The net indicated efficiency was improved with up to 10%. Some reduction was observed for the gross indicated efficiency, due to a too large reduction in effective compression ratio. A very stable combustion was obtained for EIVC with gasoline, possibly due to a sheering flow over the inlet valves resulting in improved fuel-air preparation. Wavelet analysis was used for dividing LDV flow measurements into time and frequency resolved information. The technique rendered the same flow results as the moving window technique, but with a separation of the turbulence into different frequencies. The choice of wavelet was shown not to be crucial. The frequency resolved turbulence was studied for tumble and swirl. A tumbling flow had a larger transfer of energy from low frequency turbulence into high frequency turbulence than a swirling flow. This is caused by the tumble breakdown. A correlation against heat-release indicated that high frequency turbulence have a larger

  3. Simulating low-flow conditions in an arctic watershed using WaSiM

    Science.gov (United States)

    Daanen, R. P.; Gaedeke, A.; Liljedahl, A. K.; Arp, C. D.; Whitman, M. S.; Jones, B. M.; Cai, L.; Alexeev, V. A.

    2017-12-01

    The goal of this study is to identify the magnitude, timing, and duration of low-flow conditions under scenarios of summer drought throughout the 4500-km2 Fish Creek watershed, which is set entirely on the Arctic Coastal Plain of northern Alaska. The hydrologic response of streams in this region to drought conditions is not well understood, but likely varies by stream size, upstream lake extent, and geologic setting. We used a physically based model, Water Balance Simulation Model (WaSiM) to simulate river discharge, surface runoff, active layer depth, soil temperatures, water levels, groundwater levels, groundwater flow, and snow distribution. We found that 7-day low flows were strongly affected by scenarios of drought or wet conditions. The 10-year-period scenarios were generated by selecting dry or wet years from a reanalysis dataset. Starting conditions for the simulations were based on a control run with average atmospheric conditions. Connectivity of lakes with better feeding conditions for fish significantly decreased in the scenarios of both summer and winter drought. The overall memory of the hydrologic network seems to be on the order of two to three years, based on the time to reach equilibrium hydrological conditions. This suggests that lake level fluctuation and water harvest could have a long-term effect on the connectivity of lakes. Climate change could strongly affect this system, and increased future water use could add more pressure on fish populations. Snowmelt is a major component of the water balance in a typical Arctic watershed and fish tend to migrate to their summer feeding lakes during the spring. Mid-summer periods without significant rainfall prove most limiting on fish movement, and during this time headwater lakes supply the majority of streamflow and are often the habitat destination for foraging fish. Models that predict connectivity of these lakes to downstream networks during low-flow conditions will help identify where lake water

  4. Flow and Heat Transfer of Bingham Plastic Fluid over a Rotating Disk with Variable Thickness

    Science.gov (United States)

    Liu, Chunyan; Pan, Mingyang; Zheng, Liancun; Ming, Chunying; Zhang, Xinxin

    2016-11-01

    This paper studies the steady flow and heat transfer of Bingham plastic fluid over a rotating disk of finite radius with variable thickness radially in boundary layer. The boundary layer flow is caused by the rotating disk when the extra stress is greater than the yield stress of the Bingham fluid. The analyses of the velocity and temperature field related to the variable thickness disk have not been investigated in current literatures. The governing equations are first simplified into ordinary differential equations owing to the generalized von Kármán transformation for seeking solutions easily. Then semi-similarity approximate analytical solutions are obtained by using the homotopy analysis method for different physical parameters. It is found that the Bingham number clearly influences the velocity field distribution, and the skin friction coefficient Cfr is nonlinear growth with respect to the shape parameter m. Additionally, the effects of the involved parameters (i.e. shape parameter m, variable thickness parameter β, Reynolds number Rev, and Prandtl number Pr) on velocity and temperature distribution are investigated and analyzed in detail.

  5. Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes.

    Science.gov (United States)

    Fiegel, Henning C; Havers, Joerg; Kneser, Ulrich; Smith, Molly K; Moeller, Tim; Kluth, Dietrich; Mooney, David J; Rogiers, Xavier; Kaufmann, Peter M

    2004-01-01

    Maintenance of liver-specific function of hepatocytes in culture is still difficult. Improved culture conditions may enhance the cell growth and function of cultured cells. We investigated the effect of three-dimensional culture under flow conditions, and the influence of surface modifications in hepatocyte cultures. Hepatocytes were harvested from Lewis rats. Cells were cultured on three-dimensional polymeric poly-lactic-co-glycolic acid (PLGA) matrices in static culture, or in a pulsatile flow-bioreactor system. Different surface modifications of matrices were investigated: coating with collagen I, collagen IV, laminin, or fibronectin; or uncoated matrix. Hepatocyte numbers, DNA content, and albumin secretion rate were assessed over the observation period. Culture under flow condition significantly enhanced cell numbers. An additional improvement of this effect was observed, when matrix coating was used. Cellular function also showed a significant increase (4- to 5-fold) under flow conditions when compared with static culture. Our data showed that culture under flow conditions improves cell number, and strongly enhances cellular function. Matrix modification by coating with extracellular matrix showed overall an additive stimulatory effect. Our conclusion is that combining three-dimensional culture under flow conditions and using matrix modification significantly improves culture conditions and is therefore attractive for the development of successful culture systems for hepatocytes.

  6. The control variable method: a fully implicit numerical method for solving conservation equations for unsteady multidimensional fluid flow

    International Nuclear Information System (INIS)

    Le Coq, G.; Boudsocq, G.; Raymond, P.

    1983-03-01

    The Control Variable Method is extended to multidimensional fluid flow transient computations. In this paper basic principles of the method are given. The method uses a fully implicit space discretization and is based on the decomposition of the momentum flux tensor into scalar, vectorial, and tensorial, terms. Finally some computations about viscous-driven flow and buoyancy-driven flow in cavity are presented

  7. Variable disparity estimation based intermediate view reconstruction in dynamic flow allocation over EPON-based access networks

    Science.gov (United States)

    Bae, Kyung-Hoon; Lee, Jungjoon; Kim, Eun-Soo

    2008-06-01

    In this paper, a variable disparity estimation (VDE)-based intermediate view reconstruction (IVR) in dynamic flow allocation (DFA) over an Ethernet passive optical network (EPON)-based access network is proposed. In the proposed system, the stereoscopic images are estimated by a variable block-matching algorithm (VBMA), and they are transmitted to the receiver through DFA over EPON. This scheme improves a priority-based access network by converting it to a flow-based access network with a new access mechanism and scheduling algorithm, and then 16-view images are synthesized by the IVR using VDE. Some experimental results indicate that the proposed system improves the peak-signal-to-noise ratio (PSNR) to as high as 4.86 dB and reduces the processing time to 3.52 s. Additionally, the network service provider can provide upper limits of transmission delays by the flow. The modeling and simulation results, including mathematical analyses, from this scheme are also provided.

  8. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sklenářová, Hana, E-mail: sklenarova@faf.cuni.cz [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic); Voráčová, Ivona [Institute of Analytical Chemistry of the CAS, v. v. i., Brno (Czech Republic); Chocholouš, Petr; Polášek, Miroslav [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic)

    2017-04-15

    The effect of 0.01–100 µmol L{sup −1} Quantum Dots (QDs) with different emission wavelengths (520–640 nm) and different surface modifications (mercaptopropionic, mercaptoundecanoic, thioglycolic acids and mercaptoethylamine) on permanganate-induced and luminol–hydrogen peroxide chemiluminescence (CL) was studied in detail by a sequential injection technique using a spiral detection flow cell and a flow-batch detection cell operated in flow and stop-flow modes. In permanganate CL system no significant enhancement of the CL signal was observed while for the luminol–hydrogen peroxide CL substantial increase (>100% and >90% with the spiral detection cell in flow and stop-flow modes, respectively) was attained for CdTe QDs. Enhancement exceeding 120% was observed for QDs with emissions at 520, 575 and 603 nm (sizes of 2.8 nm, 3.3 nm and 3.6 nm) using the flow-batch detection cell in the stop-flow mode. Pronounced effect was noted for surface modifications while mercaptoethylamine was the most efficient in CL enhancement compared to mercaptopropionic acid the most commonly applied coating. Significant difference between results obtained in flow and flow-batch conditions based on the entire kinetics of the extremely fast CL reaction was discussed. The increase of the CL signal was always accompanied by reduced lifetime of the CL emission thus application of QDs in flow techniques should be always coupled with the study of the CL lifetime.

  9. Critical flashing flows in nozzles with subcooled inlet conditions

    International Nuclear Information System (INIS)

    Abuaf, N.; Jones, O.C. Jr.; Wu, B.J.C.

    1983-01-01

    Examination of a large number of experiments dealing with flashing flows in converging and converging-diverging nozzles reveals that knowledge of the flashing inception point is the key to the prediction of critical flow rates. An extension of the static flashing inception correlation of Jones [16] and Alamgir and Lienhard [17] to flowing systems has allowed the determination of the location of flashing inception in nozzle flows with subcooled inlet conditions. It is shown that in all the experiments examined with subcooled inlet regardless of the degree of inlet subcooling, flashing inception invariably occurred very close to the throat. A correlation is given to predict flashing inception in both pipes and nozzles which matches all data available, but is lacking verification in intermediate nozzle geometries where turbulence may be important. A consequence of this behavior is that the critical mass flux may be correlated to the pressure difference between the nozzle inlet and flashing inception, through a single phase liquid discharge coefficient and an accurate prediction of the flashing inception pressure at the throat. Comparison with the available experiments indicate that the predicted mass fluxes are within 5 percent of the measurements

  10. Prediction of flow recirculation in a blanket assembly under worst-case natural-convection conditions

    International Nuclear Information System (INIS)

    Khan, E.U.; Rector, D.R.

    1982-01-01

    Reactor fuel and blanket assemblies within a Liquid Metal Fast Breeder Reactor (LMFBR) can be subjected to severe radial heat flux gradients. At low-flow conditions, with power-to-flow ratios of nearly the same magnitude as design conditions, buoyancy forces cause flow redistribution to the side of a bundle with the higher heat generation rate. Recirculation of fluid within a rod bundle can occur during a natural convection transient because of the combined effect of flow coastdown and buoyancy-induced redistribution. An important concern is whether recirculation leads to high coolant temperatures. For this reason, the COBRA-WC code was developed with the capability of modeling recirculating flows. Experiments have been conducted in a 2 x 6 rod bundle for flow and power transients to study recirculation in the mixed-convection (forced cooled) and natural-convection regimes. The data base developed was used to validate the recirculation module in the COBRA-WC code. COBRA-WC code calculations were made to predict flow and temperature distributions in a typical LMFBR blanket assembly for the worst-case, natural-circulation transient

  11. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine, NASA Advanced Air Vehicles Program - Commercial Supersonic Technology Project - AeroServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  12. Biosorption of Cr(VI) from aqueous solution using A. hydrophila in up-flow column. Optimization of process variables

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S.H.; Srivastava, P.; Ranjan, D. [Banaras Hindu Univ., Varanasi (India). Water Pollution Research Lab.; Talat, M. [Banaras Hindu Univ., Varanasi (India). Dept. of Biochemistry

    2009-06-15

    In the present study, continuous up-flow fixed-bed column study was carried out using immobilized dead biomass of Aeromonas hydrophila for the removal of Cr(VI) from aqueous solution. Different polymeric matrices were used to immobilized biomass and polysulfone-immobilized biomass has shown to give maximum removal. The sorption capacity of immobilized biomass for the removal of Cr(VI) evaluating the breakthrough curves obtained at different flow rate and bed height. A maximum of 78.58% Cr(VI) removal was obtained at bed height of 19 cm and flow rate of 2 mL/min. Bed depth service time model provides a good description of experimental results with high correlation coefficient (>0.996). An attempt has been made to investigate the individual as well as cumulative effect of the process variables and to optimize the process conditions for the maximum removal of chromium from water by two-level two-factor full-factorial central composite design with the help of Minitab {sup registered} version 15 statistical software. The predicted results are having a good agreement (R{sup 2}=98.19%) with the result obtained. Sorption-desorption studies revealed that polysulfone-immobilized biomass could be reused up to 11 cycles and bed was completely exhausted after 28 cycles. (orig.)

  13. Error estimation for CFD aeroheating prediction under rarefied flow condition

    Science.gov (United States)

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2014-12-01

    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  14. Effects of aging on blood pressure variability in resting conditions

    NARCIS (Netherlands)

    Veerman, D. P.; Imholz, B. P.; Wieling, W.; Karemaker, J. M.; van Montfrans, G. A.

    1994-01-01

    The objective of this study was to determine the effect of aging on beat-to-beat blood pressure and pulse interval variability in resting conditions and to determine the effect of aging on the sympathetic and vagal influence on the cardiovascular system by power spectral analysis of blood pressure

  15. Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable density

    Science.gov (United States)

    Hu, Xianpeng; Liu, Qiao

    2018-04-01

    In this paper, we investigate the global existence and uniqueness of solution to the 3D inhomogeneous incompressible nematic liquid crystal flows with variable density in the framework of Besov spaces. It is proved that there exists a global and unique solution to the nematic liquid crystal flows if the initial data (ρ0 - 1 ,u0 ,n0 -e3) ∈ M (B˙p,1 3/p - 1 (R3)) × B˙p,1 3/p - 1 (R3) × B˙p,1 3/p (R3) with 1 ≤ p < 6, and satisfies

  16. Critical heat-flux experiments under low-flow conditions in a vertical annulus

    International Nuclear Information System (INIS)

    Mishima, K.; Ishii, M.

    1982-03-01

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF

  17. A variable hard sphere-based phenomenological inelastic collision model for rarefied gas flow simulations by the direct simulation Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Prasanth, P S; Kakkassery, Jose K; Vijayakumar, R, E-mail: y3df07@nitc.ac.in, E-mail: josekkakkassery@nitc.ac.in, E-mail: vijay@nitc.ac.in [Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode - 673 601, Kerala (India)

    2012-04-01

    A modified phenomenological model is constructed for the simulation of rarefied flows of polyatomic non-polar gas molecules by the direct simulation Monte Carlo (DSMC) method. This variable hard sphere-based model employs a constant rotational collision number, but all its collisions are inelastic in nature and at the same time the correct macroscopic relaxation rate is maintained. In equilibrium conditions, there is equi-partition of energy between the rotational and translational modes and it satisfies the principle of reciprocity or detailed balancing. The present model is applicable for moderate temperatures at which the molecules are in their vibrational ground state. For verification, the model is applied to the DSMC simulations of the translational and rotational energy distributions in nitrogen gas at equilibrium and the results are compared with their corresponding Maxwellian distributions. Next, the Couette flow, the temperature jump and the Rayleigh flow are simulated; the viscosity and thermal conductivity coefficients of nitrogen are numerically estimated and compared with experimentally measured values. The model is further applied to the simulation of the rotational relaxation of nitrogen through low- and high-Mach-number normal shock waves in a novel way. In all cases, the results are found to be in good agreement with theoretically expected and experimentally observed values. It is concluded that the inelastic collision of polyatomic molecules can be predicted well by employing the constructed variable hard sphere (VHS)-based collision model.

  18. Hydroelectric power plant with variable flow on drinking water adduction

    Science.gov (United States)

    Deaconu, S. I.; Babău, R.; Popa, G. N.; Gherman, P. L.

    2018-01-01

    The water feeding system of the urban and rural localities is mainly collected with feed pipes which can have different lengths and different levels. Before using, water must be treated. Since the treatment take place in the tanks, the pressure in the inlet of the station must be diminished. Many times the pressure must be reduced with 5-15 Barr and this is possible using valves, cavils, and so on. The flow capacity of the water consumption is highly fluctuating during one day, depending on the season, etc. This paper presents a method to use the hydroelectric potential of the feed pipes using a hydraulic turbine instead of the classical methods for decreasing the pressure. To avoid the dissipation of water and a good behavior of the power parameters it is used an asynchronous generator (AG) which is coupled at the electrical distribution network through a static frequency converter (SFC). The turbine has a simple structure without the classical devices (used to regulate the turbine blades). The speed of rotation is variable, depending on the necessary flow capacity in the outlet of the treatment station. The most important element of the automation is the static frequency converter (SFC) which allows speeds between 0 and 1.5 of the rated speed of rotation and the flow capacity varies accordingly with it.

  19. On the freestream matching condition for stagnation point turbulent flows

    Science.gov (United States)

    Speziale, C. G.

    1989-01-01

    The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises from the standard kappa-epsilon model is not due to a defect in the model but results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production equals dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which does not reach such a simple equilibrium. Consequently, the adjustment that has been made in the constants of the epsilon-transport equation to eliminate this singularity is not self-consistent since it is tantamount to artificially imposing an equilibrium structure on a turbulent flow which is known not to have one.

  20. Waste migration in shallow burial sites under unsaturated flow conditions

    International Nuclear Information System (INIS)

    Eicholz, G.G.; Whang, J.

    1987-01-01

    Unsaturated conditions prevail in many shallow-land burial sites, both in arid and humid regions. Unless a burial site is allowed to flood and possibly overflow, a realistic assessment of any migration scenario must take into account the conditions of unsaturated flow. These are more difficult to observe and to model, but introduce significant changes into projected rates of waste leaching and waste migration. Column tests have been performed using soils from the Southeastern coastal plain to observe the effects of varying degrees of ''unsaturation'' on the movement of radioactive tracers. The moisture content in the columns was controlled by maintaining various levels of hydrostatic suction on soil columns whose hydrodynamic characteristics had been determined carefully. Tracer tests, employing Cs-137, I-131 and Ba-133 were used to determine migration profiles and to follow their movement down the column for different suction values. A calculational model has been developed for unsaturated flow and seems to match the observations fairly well. It is evident that a full description of migration processes must take into account the reduced migration rates under unsaturated conditions and the hysteresis effects associated with wetting-drying cycles

  1. Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions

    Science.gov (United States)

    Fox, Aryeh; Packman, Aaron I.; Boano, Fulvio; Phillips, Colin B.; Arnon, Shai

    2018-05-01

    Fine particle deposition and streambed clogging affect many ecological and biogeochemical processes, but little is known about the effects of groundwater flow into and out of rivers on clogging. We evaluated the effects of losing and gaining flow on the deposition of suspended kaolinite clay particles in a sand streambed and the resulting changes in rates and patterns of hyporheic exchange flux (HEF). Observations of clay deposition from the water column, clay accumulation in the streambed sediments, and water exchange with the bed demonstrated that clay deposition in the bed substantially reduced both HEF and the size of the hyporheic zone. Clay deposition and HEF were strongly coupled, leading to rapid clogging in areas of water and clay influx into the bed. Local clogging diverted exchanged water laterally, producing clay deposit layers that reduced vertical hyporheic flow and favored horizontal flow. Under gaining conditions, HEF was spatially constrained by upwelling water, which focused clay deposition in a small region on the upstream side of each bed form. Because the area of inflow into the bed was smallest under gaining conditions, local clogging required less clay mass under gaining conditions than neutral or losing conditions. These results indicate that losing and gaining flow conditions need to be considered in assessments of hyporheic exchange, fine particle dynamics in streams, and streambed clogging and restoration.

  2. Blazar Variability from Turbulence in Jets Launched by Magnetically Arrested Accretion Flows

    International Nuclear Information System (INIS)

    Riordan, Michael O’; Pe’er, Asaf; McKinney, Jonathan C.

    2017-01-01

    Blazars show variability on timescales ranging from minutes to years, the former being comparable to and in some cases even shorter than the light-crossing time of the central black hole. The observed γ -ray light curves can be described by a power-law power density spectrum (PDS), with a similar index for both BL Lacs and flat-spectrum radio quasars. We show that this variability can be produced by turbulence in relativistic jets launched by magnetically arrested accretion flows (MADs). We perform radiative transport calculations on the turbulent, highly magnetized jet launching region of a MAD with a rapidly rotating supermassive black hole. The resulting synchrotron and synchrotron self-Compton emission, originating from close to the black hole horizon, is highly variable. This variability is characterized by PDS, which is remarkably similar to the observed power-law spectrum at frequencies less than a few per day. Furthermore, turbulence in the jet launching region naturally produces fluctuations in the plasma on scales much smaller than the horizon radius. We speculate that similar turbulent processes, operating in the jet at large radii (and therefore a high bulk Lorentz factor), are responsible for blazar variability over many decades in frequency, including on minute timescales.

  3. Blazar Variability from Turbulence in Jets Launched by Magnetically Arrested Accretion Flows

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, Michael O’; Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2017-07-10

    Blazars show variability on timescales ranging from minutes to years, the former being comparable to and in some cases even shorter than the light-crossing time of the central black hole. The observed γ -ray light curves can be described by a power-law power density spectrum (PDS), with a similar index for both BL Lacs and flat-spectrum radio quasars. We show that this variability can be produced by turbulence in relativistic jets launched by magnetically arrested accretion flows (MADs). We perform radiative transport calculations on the turbulent, highly magnetized jet launching region of a MAD with a rapidly rotating supermassive black hole. The resulting synchrotron and synchrotron self-Compton emission, originating from close to the black hole horizon, is highly variable. This variability is characterized by PDS, which is remarkably similar to the observed power-law spectrum at frequencies less than a few per day. Furthermore, turbulence in the jet launching region naturally produces fluctuations in the plasma on scales much smaller than the horizon radius. We speculate that similar turbulent processes, operating in the jet at large radii (and therefore a high bulk Lorentz factor), are responsible for blazar variability over many decades in frequency, including on minute timescales.

  4. Approximate method of calculation of non-equilibrium flow parameters of chemically reacting nitrogen tetroxide in the variable cross-section channels with energy exchange

    International Nuclear Information System (INIS)

    Bazhin, M.A.; Fedosenko, G.Eh.; Shiryaeva, N.M.; Mal'ko, M.V.

    1986-01-01

    It is shown that adiabatic non-equilibrium chemically reacting gas flow with energy exchange in a variable cross-section channel may be subdivided into five possible types: 1) quasi-equilibrium flow; 2) flow in the linear region of deviation from equilibrium state; 3) quasi-frozen flow; 4) flow in the linear region of deviation from frozen state; 5) non-equilibrium flow. Criteria of quasi-equilibrium and quazi-frozen flows, including factors of external action of chemically reacting gas on flow, allow to obtain simple but sufficiently reliable approximate method of calculation of flow parameters. The considered method for solving the problem of chemically reacting nitrogen tetroxide in the variable cross-section channel with energy exchange can be used for evaluation of chemical reaction kinetics on the flow parameter in the stages of axial-flow and radial-flow turbines and in another practical problems

  5. The Characteristics of Turbulence in Curved Pipes under Highly Pulsatile Flow Conditions

    Science.gov (United States)

    Kalpakli, A.; Örlü, R.; Tillmark, N.; Alfredsson, P. Henrik

    High speed stereoscopic particle image velocimetry has been employed to provide unique data from a steady and highly pulsatile turbulent flow at the exit of a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady conditions, the so called "swirl switching" phenomenon, as well as the secondary flow under pulsations have been reconstructed through proper orthogonal decomposition. The present data set constitutes - to the authors' knowledge - the first detailed investigation of a turbulent, pulsatile flow through a pipe bend.

  6. In vitro study on work of breathing during non-invasive ventilation using a new variable flow generator.

    Science.gov (United States)

    Flink, Rutger C; van Kaam, Anton H; de Jongh, Frans H

    2015-07-01

    In an attempt to reduce the work of breathing (WOB) and the risk of respiratory failure, preterm infants are increasingly treated with nasal synchronised biphasic positive airway pressure (BPAP) via the Infant Flow SiPAP system. However, the relatively high resistance of the generator limits the pressure amplitude (PA) and pressure build-up (PB) of this system. This in vitro study investigates the impact of a new generator with improved fluid mechanics on the WOB, PA and PB during BPAP. Using a low compliance lung model, WOB, PA and PB, were measured during BPAP using the old and the new Infant Flow generators. Airway resistance (tube sizes 2.5 mm, 3.0 mm and 3.5 mm), nasal interface sizes (small, medium and large) and four different ventilator settings were used to mimic different clinical conditions. Compared with the old generator, the new generator significantly reduced the WOB between 10% and 70%, depending on the measurement configuration. The maximum PA was higher when using the new (6-7 cm H2O) generator versus the old (3-4 cm H2O) generator. During the first 100 ms of inspiration, the new generator reached between 33% and 40% of the peak pressure compared with 11-20% for the old generator. This in vitro study shows that a new generator of the Infant Flow SiPAP device results in a significant reduction in WOB and an increase in PA and PB during BPAP. The results of this study need to be confirmed under variable clinical conditions in preterm infants. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Unsteady two-dimensional potential-flow model for thin variable geometry airfoils

    DEFF Research Database (Denmark)

    Gaunaa, Mac

    2010-01-01

    In the present work, analytical expressions for distributed and integral unsteady two-dimensional forces on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by its camber line...... in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the integral forces can be reduced to Munk's steady and Theodorsen's unsteady results for thin airfoils, and numerical evaluation shows...

  8. On conditions and parameters important to model sensitivity for unsaturated flow through layered, fractured tuff

    International Nuclear Information System (INIS)

    Prindle, R.W.; Hopkins, P.L.

    1990-10-01

    The Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive-waste repositories. This report describes the results of a study for HYDROCOIN of model sensitivity for isothermal, unsaturated flow through layered, fractured tuffs. We investigated both the types of flow behavior that dominate the performance measures and the conditions and model parameters that control flow behavior. We also examined the effect of different conceptual models and modeling approaches on our understanding of system behavior. The analyses included single- and multiple-parameter variations about base cases in one-dimensional steady and transient flow and in two-dimensional steady flow. The flow behavior is complex even for the highly simplified and constrained system modeled here. The response of the performance measures is both nonlinear and nonmonotonic. System behavior is dominated by abrupt transitions from matrix to fracture flow and by lateral diversion of flow. The observed behaviors are strongly influenced by the imposed boundary conditions and model constraints. Applied flux plays a critical role in determining the flow type but interacts strongly with the composite-conductivity curves of individual hydrologic units and with the stratigraphy. One-dimensional modeling yields conservative estimates of distributions of groundwater travel time only under very limited conditions. This study demonstrates that it is wrong to equate the shortest possible water-travel path with the fastest path from the repository to the water table. 20 refs., 234 figs., 10 tabs

  9. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  10. Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    Science.gov (United States)

    Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.

    2005-01-01

    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.

  11. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  12. MODELING OF RELATIONSHIP BETWEEN GROUNDWATER FLOW AND OTHER METEOROLOGICAL VARIABLES USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Şaban YURTÇU

    2006-02-01

    Full Text Available In this study, modeling of the effect of rainfall, flow and evaporation as independent variables on the change of underground water levels as dependent variables were investigated by fuzzy logic (FL. In the study, total 396 values taken from six observation stations belong to Afyon inferior basin in Akarçay from 1977 to 1989 years were used. Using the monthly average values of stations, the change of underground water level was modeled by FL. It is observed that the results obtained from FL and the observations are compatible with each other. This shows FL modeling can be used to estimate groundwater levels from the appropriate meteorological value.

  13. Pilot points method for conditioning multiple-point statistical facies simulation on flow data

    Science.gov (United States)

    Ma, Wei; Jafarpour, Behnam

    2018-05-01

    We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  14. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...

  15. A century of changing flows: Forest management changed flow magnitudes and warming advanced the timing of flow in a southwestern US river.

    Directory of Open Access Journals (Sweden)

    Marcos D Robles

    Full Text Available The continued provision of water from rivers in the southwestern United States to downstream cities, natural communities and species is at risk due to higher temperatures and drought conditions in recent decades. Snowpack and snowfall levels have declined, snowmelt and peak spring flows are arriving earlier, and summer flows have declined. Concurrent to climate change and variation, a century of fire suppression has resulted in dramatic changes to forest conditions, and yet, few studies have focused on determining the degree to which changing forests have altered flows. In this study, we evaluated changes in flow, climate, and forest conditions in the Salt River in central Arizona from 1914-2012 to compare and evaluate the effects of changing forest conditions and temperatures on flows. After using linear regression models to remove the influence of precipitation and temperature, we estimated that annual flows declined by 8-29% from 1914-1963, coincident with a 2-fold increase in basal area, a 2-3-fold increase in canopy cover, and at least a 10-fold increase in forest density within ponderosa pine forests. Streamflow volumes declined by 37-56% in summer and fall months during this period. Declines in climate-adjusted flows reversed at mid-century when spring and annual flows increased by 10-31% from 1964-2012, perhaps due to more winter rainfall. Additionally, peak spring flows occurred about 12 days earlier in this period than in the previous period, coincident with winter and spring temperatures that increased by 1-2°C. While uncertainties remain, this study adds to the knowledge gained in other regions that forest change has had effects on flow that were on par with climate variability and, in the case of mid-century declines, well before the influence of anthropogenic warming. Current large-scale forest restoration projects hold some promise of recovering seasonal flows.

  16. A cellular automata model of traffic flow with variable probability of randomization

    International Nuclear Information System (INIS)

    Zheng Wei-Fan; Zhang Ji-Ye

    2015-01-01

    Research on the stochastic behavior of traffic flow is important to understand the intrinsic evolution rules of a traffic system. By introducing an interactional potential of vehicles into the randomization step, an improved cellular automata traffic flow model with variable probability of randomization is proposed in this paper. In the proposed model, the driver is affected by the interactional potential of vehicles before him, and his decision-making process is related to the interactional potential. Compared with the traditional cellular automata model, the modeling is more suitable for the driver’s random decision-making process based on the vehicle and traffic situations in front of him in actual traffic. From the improved model, the fundamental diagram (flow–density relationship) is obtained, and the detailed high-density traffic phenomenon is reproduced through numerical simulation. (paper)

  17. Conditions for similitude and the effect of finite Debye length in electroosmotic flows.

    Science.gov (United States)

    Oh, Jung Min; Kang, Kwan Hyoung

    2007-06-15

    Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries.

  18. Application of a film flow model to predicting burnout under transient conditions

    International Nuclear Information System (INIS)

    Leslie, D.C.; Kirby, G.J.

    1967-08-01

    The film flow model developed previously has been generalised to transient situations by assuming that only convection is changed by the transient; evaporation, deposition and entrainment are assumed to be unaffected. A computer code TRABUT computes the time behaviour of the mass velocity and the quality by the method of characteristics, and then integrates the film flow equations along the same characteristics until the point of burn-out or zero film flow is reached. The time delay between the onset of a transient and burn-out has been computed both for flux and flow transients. These computations have been compared with those made using the standard local conditions hypothesis. The film flow model gives shorter delays in almost all cases, but the difference would not be detectable with present experimental techniques. (author)

  19. Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition.

    Science.gov (United States)

    Cheng, Yujie; Zhou, Bo; Lu, Chen; Yang, Chao

    2017-05-25

    Fault diagnosis for rolling bearings has attracted increasing attention in recent years. However, few studies have focused on fault diagnosis for rolling bearings under variable conditions. This paper introduces a fault diagnosis method for rolling bearings under variable conditions based on visual cognition. The proposed method includes the following steps. First, the vibration signal data are transformed into a recurrence plot (RP), which is a two-dimensional image. Then, inspired by the visual invariance characteristic of the human visual system (HVS), we utilize speed up robust feature to extract fault features from the two-dimensional RP and generate a 64-dimensional feature vector, which is invariant to image translation, rotation, scaling variation, etc. Third, based on the manifold perception characteristic of HVS, isometric mapping, a manifold learning method that can reflect the intrinsic manifold embedded in the high-dimensional space, is employed to obtain a low-dimensional feature vector. Finally, a classical classification method, support vector machine, is utilized to realize fault diagnosis. Verification data were collected from Case Western Reserve University Bearing Data Center, and the experimental result indicates that the proposed fault diagnosis method based on visual cognition is highly effective for rolling bearings under variable conditions, thus providing a promising approach from the cognitive computing field.

  20. Burner flow regulators with mechanisms performing two variable function. Meccanismi che generano una funzione di due variabili applicati alla regolazione dei bruciatori

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, L.; Tagliaferro, B. (R.B.L. Riello Bruciatori, Legnago Spa, Legnago (Italy)); Cossalter, V.; Da Lio, M. (Padua Univ. (Italy). Dip. di Ingegneria Meccanica)

    1993-08-01

    A new class of fuel oil burners has recently been developed by an Italian firm with the aim of obtaining high performances in terms of both energy efficiency and air pollution abatement. The innovative feature of these burners is that they are equipped with a device which permits the automatic and optimum regulation of the air fuel mixture independent of ambient and operating conditions. To reduce costs, the regulation system is a mechanical one instead of electronic which would require an expensive lambda probe. The mechanical regulating system controls air intake by simply taking into account two main combustion factors - ambient temperature and the nominal fuel flow rate. The special cam mechanism is thus classified as one which performs a single function with two degrees of freedom, i.e., the independent variables of ambient temperature and nominal fuel flow. One of the air intake valve's movements is governed by a temperature transducer, the other (primary), by a screw which allows the registering of the air flow during burner installation or upon completion of periodic maintenance checks. In addition to optimizing combustion control, this control technique affords the possibility to adapt the air flow to the different fuel flows obtained by changing the type of nozzle or supply pressure.

  1. Effects of dual-task conditions on cervical spine movement variability.

    Science.gov (United States)

    Niederer, Daniel; Vogt, Lutz; Vogel, Johanna; Banzer, Winfried

    2017-09-22

    The potential to accurately perform cervical movements during more challenging tasks might be of importance to prevent dysfunctional motion characteristics. Although sensorimotor function during dual-task conditions are of increasing interest in biomedical and rehabilitation research, effects of such conditions on movement consistency of the neck have not yet been investigated. In this crossover MiSpEx(Medicine in Spine Exercise)-diagnostic study, we aimed to explore differences between single and dual-task conditions on cervical movement variability. Nineteen healthy participants (9 male; 24.5 ± 3.3 y) performed 10 repetitive maximal cervical movements in (1) flexion/extension and (2) lateral flexion, during one single- and during two dual-task test conditions (cognitive, motor) in a randomised and cross-over sequence. Latter consisted of a working memory n-back task (n= 2) and a repetitive ankle movement task. Range of motion (RoM) was assessed using an external three-dimensional ultrasonic movement analysis system. Coefficient of variation (CV) for repetitive RoM was analysed for differences between conditions and controlled for variances in intra-individual movement characteristics. Friedman and post-hoc Bonferroni-adjusted confidence intervals for differences from single- to dual-task values revealed changes in CV in flexion/extension from single-task to motor dual-task (+0.02 ± 0.02 (97.5%CI: 0.01; 0.03); pdual-task condition (+0.01 ± 0.02 (97.5%CI: 0.003; 0.02)) nor for lateral flexion (p> 0.05). Pearson regression analyses revealed a linear negative (pdual-task (R=2 0.55). Results for lateral flexion are comparable, baseline CV negatively impacts differences to cognitive (R=2 0.2) and motor dual-task performance (R=2 0.76; pdual-task conditions while participants with a higher variability remained almost stable or showed a decrease. The results point toward a complex interrelationship of motion patterns and adaptation processes during challenging tasks

  2. Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition

    International Nuclear Information System (INIS)

    Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang

    2014-01-01

    Highlights: • Two-phase flow in PEMFC cathode channels is observed in different gravity environments. • The PEMFC shows different operating behavior in normal and microgravity conditions. • Water tends can be removed in microgravity conditions at high water production regime. • Liquid aggregation occurs in microgravity conditions at low water production regime. • Effect of gravity on performance and two-phase flow at two operating regimes is studied. - Abstract: Water management is important for improving the performance and stability of proton exchange membrane fuel cells (PEMFCs) for space applications. An in situ visual observation was conducted on the gas–liquid two-phase flow in the cathode channels of a PEMFC in short-term microgravity condition. The microgravity environment was supplied by a drop tower. A single serpentine flow channel with a depth of 2 mm and a width of 2 mm was applied as the cathode flow field. A membrane electrode assembly comprising of a Nafion 112 membrane sandwiched between gas diffusion layers was used. The anode and cathode were loaded with 1 mg cm −2 platinum. The PEMFC shows a distinct operating behavior in microgravity because of the effect of gravity on the two-phase flow. At a high water production regime, cell performance is enhanced by 4.6% and the accumulated liquid water in the flow channel tends can be removed in microgravity conditions to alleviate flooding. At a low water production regime, cell performance deteriorates by 6.6% and liquid aggregation occurs in the flow channel because of the coalescence of dispersed water droplets in microgravity conditions, thus squeezing the flow channel. The operating behavior of PEMFC in microgravity conditions is different from that in normal gravity conditions. Further studies are needed on PEMFC operating characteristics and liquid management for space applications

  3. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Persson, P.; Nilsson, L.; Eriksson, O.

    1963-06-01

    The present report deals with the results of the second phase of an experimental investigation of burnout conditions for flow of boiling water in vertical round ducts. The following ranges of variables were studied and 809 burnout measurements were obtained. Pressure 5. 3 2 ; Inlet subcooling 56 sub BO 2 ; Mass velocity 100 2 s; Heated length 600 BO , were plotted against the pressure with the surface heat flux as parameter. The data have been correlated by curves, and the scatter around the curves is less than ± 5 per cent. In the ranges investigated, the observed steam quality at burnout, X BO generally decreases with increasing heat flux and mass velocity but increases with increasing pressure. The data have been compared with the empirical correlation by Tong, and excellent agreement was found for pressures higher than 10 kg/cm 2

  4. Effects of bee venom acupuncture on heart rate variability, pulse wave, and cerebral blood flow for types of Sasang Constitution

    Directory of Open Access Journals (Sweden)

    Lee Sang-min

    2009-03-01

    Full Text Available 1. Objectives: To evaluate effects of bee venom acupuncture on cardiovascular system and differences according to each constitution. 2. Methods: Heart rate variability, pulse wave and the velocity of cerebral blood flow were measured before bee venom acupuncture(BVA, right after and after 30 minuets, had been applied to 20 subjects. 3. Results: 1. BVA did not have effects on measurement variables of heart rate variability. 2. BVA had effects on pulse wave, showing total time, radial augmentation index up and height of percussion wave, time to percussion wave, sum of pulse pressure down. 3. BVA did not have effects on the cerebral blood flow velocity when considering not Sasang Constitution 4. Considering Sasang Constitution, BVA demonstrates different responses in time to preincisura wave, mean blood flow velocity, peak systolic velocity and end diastolic velocity. 4.Conclusion: From those results, the following conclusions are obtained. Cause BVA alters pulse wave and makes differences in the cerebral blood flow velocity according to Sasang Constitution. Various methods of BVA treatment are needed considering Sasang Constitution.

  5. Cellular automata model for traffic flow with safe driving conditions

    International Nuclear Information System (INIS)

    Lárraga María Elena; Alvarez-Icaza Luis

    2014-01-01

    In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner microscopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in platoons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model. (general)

  6. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  7. Volume-heated boiling pool flow behavior and application to transition phase accident conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C. Jr.; Chen, J.C.

    1978-01-01

    Observations of two-phase flow fields in volume-heated boiling pools are reported. Photographic observations, together with pool-average void fraction measurements are presented. Flow regime transition criteria derived from the measurements are discussed. The churn-turbulent flow regime was the dominant regime for superficial vapor velocities up to nearly five times the Kutateladze dispersal velocity. Within this range of conditions, a churn-turbulent drift flux model provides a reasonable prediction of the pool-average void fraction data. The results of the experiment and analyses are extrapolated to transition phase conditions. It is shown that intense pool boil-up could occur where the pool-average void fraction would be greater than 0.6 for steel vaporization rates equivalent to power levels greater than one percent of nominal LMFBR power density

  8. Study on natural circulation flow under reactor cavity flooding condition in advanced PWRs

    International Nuclear Information System (INIS)

    Tao Jun; Yang Jiang; Cao Jianhua; Lu Xianghui; Guo Dingqing

    2015-01-01

    Cavity flooding is an important severe accident management measure for the in-vessel retention of a degraded core by external reactor vessel cooling in advanced PWRs. A code simulation study on the natural circulation flow in the gap between the reactor vessel wall and insulation material under cavity flooding condition is performed by using a detailed mechanistic thermal-hydraulic code package RELAP 5. By simulating of an experiment carried out for studying the natural circulation flow for APR1400 shows that the code is applicable for analyzing the circulation flow under this condition. The analysis results show that heat removal capacity of the natural circulation flow in AP1000 is sufficient to prevent thermal failure of the reactor vessel under bounding heat load. Several conclusions can be drawn from the sensitivity analysis. Larger coolant inlet area induced larger natural circulation flow rate. The outlet should be large enough and should not be submerged by the cavity water to vent the steam-water mixture. In the implementation of cavity flooding, the flooding water level should be high enough to provide sufficient natural circulation driven force. (authors)

  9. The effects of overwinter flows on the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah

    International Nuclear Information System (INIS)

    Magnusson, A.K.; LaGory, K.E.; Hayse, J.W.

    2010-01-01

    Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort (CPUE)), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.

  10. The Eschenmoser coupling reaction under continuous-flow conditions

    Science.gov (United States)

    Singh, Sukhdeep; Köhler, J Michael; Schober, Andreas

    2011-01-01

    Summary The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given. PMID:21915222

  11. The Eschenmoser coupling reaction under continuous-flow conditions

    Directory of Open Access Journals (Sweden)

    Sukhdeep Singh

    2011-08-01

    Full Text Available The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given.

  12. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  13. Spectral Kurtosis Entropy and Weighted SaE-ELM for Bogie Fault Diagnosis under Variable Conditions

    Directory of Open Access Journals (Sweden)

    Zhipeng Wang

    2018-05-01

    Full Text Available Bogies are crucial for the safe operation of rail transit systems and usually work under uncertain and variable operating conditions. However, the diagnosis of bogie faults under variable conditions has barely been discussed until now. Thus, it is valuable to develop effective methods to deal with variable conditions. Besides, considering that the normal data for training are much more than the faulty data in practice, there is another problem in that only a small amount of data is available that includes faults. Concerning these issues, this paper proposes two new algorithms: (1 A novel feature parameter named spectral kurtosis entropy (SKE is proposed based on the protrugram. The SKE not only avoids the manual post-processing of the protrugram but also has strong robustness to the operating conditions and parameter configurations, which have been validated by a simulation experiment in this paper. In this paper, the SKE, in conjunction with variational mode decomposition (VMD, is employed for feature extraction under variable conditions. (2 A new learning algorithm named weighted self-adaptive evolutionary extreme learning machine (WSaE-ELM is proposed. WSaE-ELM gives each sample an extra sample weight to rebalance the training data and optimizes these weights along with the parameters of hidden neurons by means of the self-adaptive differential evolution algorithm. Finally, the hybrid method based on VMD, SKE, and WSaE-ELM is verified by using the vibration signals gathered from real bogies with speed variations. It is demonstrated that the proposed method of bogie fault diagnosis outperforms the conventional methods by up to 4.42% and 6.22%, respectively, in percentages of accuracy under variable conditions.

  14. Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions

    International Nuclear Information System (INIS)

    Serrano, José Ramón; Arnau, Francisco José; García-Cuevas, Luis Miguel; Dombrovsky, Artem; Tartoussi, Hadi

    2016-01-01

    Highlights: • A procedure for performance maps extrapolation of any radial turbine is presented. • Non measured VGT positions, speeds and blade to jet speed ratios can be extrapolated. • Calibration coefficients that can be fitted with a limited set of map data are used. • Experimental points at high blade to jet speed ratios have been used for validation. • The extrapolation accuracy is good in different map ranges and variables. - Abstract: Turbine performance at extreme off-design conditions is growing in importance for properly computing turbocharged reciprocating internal combustion engines behaviour during urban driving conditions at current and future homologation cycles. In these cases, the turbine operates at very low flow rates and power outputs and at very high blade to jet speed ratios during transitory periods due to turbocharger wheel inertia and the high pulsation level of engine exhaust flow. This paper presents a physically based method that is able to extrapolate radial turbines reduced mass flow and adiabatic efficiency in blade speed ratio, turbine rotational speed and stator vanes position. The model uses a very narrow range of experimental data from turbine maps to fit the necessary coefficients. By using a special experimental turbocharger gas stand, experimental data have been obtained for extremely low turbine power outputs for the sake of model validation. Even if the data used for fitting only covers the turbine normal operation zone, the extrapolation model provides very good agreement with the experiments at very high blade speed ratio points; producing also good results when extrapolating in rotational speed and stator vanes position.

  15. FLOWNET: A Computer Program for Calculating Secondary Flow Conditions in a Network of Turbomachinery

    Science.gov (United States)

    Rose, J. R.

    1978-01-01

    The program requires the network parameters, the flow component parameters, the reservoir conditions, and the gas properties as input. It will then calculate all unknown pressures and the mass flow rate in each flow component in the network. The program can treat networks containing up to fifty flow components and twenty-five unknown network pressures. The types of flow components that can be treated are face seals, narrow slots, and pipes. The program is written in both structured FORTRAN (SFTRAN) and FORTRAN 4. The program must be run in an interactive (conversational) mode.

  16. Instability of automotive air conditioning system with a variable displacement compressor. Part 1. Experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Changqing; Dou, Chunpeng; Yang, Xinjiang; Li, Xianting [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (People' s Republic of China)

    2005-11-01

    A test system is built first in order to investigate the instability of the automotive air conditioning (AAC) system with a variable displacement compressor (VDC), and hunting phenomena caused by the large external disturbance in the AAC system with a VDC and a thermal expansion valve, and in the AAC system with a VDC and a fixed-area throttling device are investigated experimentally in part 1 of this paper. The experimental results indicate that there also exist the hunting phenomena in the AAC system with a fixed-area throttling device. The system stability is found to be dependent on the direction of the external disturbance, and the system is apt to cause hunting when the condensing pressure decreases excessively since it may cause two-phase state at the throttling device inlet and make a large disturbance to the system. The piston stroke length will oscillate only when the oscillation amplitudes of forces acting on the wobble plate are great enough, otherwise the piston stroke length will be kept invariable, and then the system instability rule is also suitable for the AAC system with a fixed displacement compressor. From the experimental results, it is concluded that the two-phase flow at the throttling device inlet or at the evaporator outlet is the necessary condition but not sufficient condition for system hunting. Finally, a new concept, conservative stable region, is proposed based on the experimental results and theoretical analysis. (author)

  17. Experimental investigation on local parameter measurement using optical probes in two-phase flow under rolling condition

    International Nuclear Information System (INIS)

    Tian Daogui; Sun Licheng; Yan Changqi; Liu Guoqiang

    2013-01-01

    In order to get more local interfacial information as well as to further comprehend the intrinsic mechanism of two-phase flow under rolling condition, a method was proposed to measure the local parameters by using optical probes under rolling condition in this paper. An experimental investigation of two-phase flow under rolling condition was conducted using the probe fabricated by the authors. It is verified that the probe method is feasible to measure the local parameters in two'-phase flow under rolling condition. The results show that the interfacial parameters distribution near wall region has a distinct periodicity due to the rolling motion. The averaged deviation of the void fraction measured by the probe from that obtained from measured pressure drop is about 8%. (authors)

  18. Variability in blood flow and pO2 in tumors in response to carbogen breathing

    International Nuclear Information System (INIS)

    Lanzen, Jennifer L.; Braun, Rod D.; Ong, Aqui L.; Dewhirst, Mark W.

    1998-01-01

    Purpose: There is speculation that the CO 2 in carbogen (95% O 2 , 5% CO 2 ) can block the vasoconstrictive effects of oxygen. However, it has recently been shown that blood flow in human tumors is variable while patients breathe carbogen. Furthermore, we have shown a consistent decrease in tumor blood flow (TBF) with carbogen breathing in the rat window chamber model. Also, we have previously shown that there is no significant difference in tumor growth time after radiation with air vs. carbogen breathing. This study was designed to investigate the effects of carbogen breathing on blood flow and oxygen levels in a solid tumor. Methods: Measurements were made in Fischer-344 rats with 8-10 mm diameter R3230Ac tumors transplanted either within the quadriceps muscle (n = 16) or subcutis (n = 14). Nontumor-bearing quadriceps muscle was studied in six other rats. After a 20-minute air-breathing baseline, rats breathed carbogen for an additional 40 minutes. Partial pressure of oxygen (pO 2 ) was continuously monitored at one position for 60 minutes using 9-12 μm diameter oxygen microelectrodes. Blood flow was simultaneously monitored in all animals using laser Doppler flowmetry (1-2 probes/tumor). Results: Blood flow changes during carbogen breathing were variable in all tissues and intratumoral heterogeneity was observed. Despite variability in blood flow, pO 2 consistently increased in normal muscle but varied in both tumor sites. During carbogen breathing, the percent pO 2 measurements greater than the baseline average were 99.5% ± 0.4% (mean ± SEM), 42.7% ± 13.8%, and 79.8% ± 11.0% in normal muscle, subcutaneous tumor, and muscle tumor, respectively. To show the magnitude of change, average pO 2 values during air and carbogen breathing were calculated for each site. Normal muscle increased from 14.9 ± 2.3 to 39.0 ± 6.4 mm Hg (paired t-test; p = 0.009). Muscle tumors showed a rise from 14.6 ± 3.2 to 34.5 ± 8.2 mm Hg (p = 0.019). However, pO 2 in subcutaneous

  19. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge.

    Science.gov (United States)

    Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis

    2013-02-01

    Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

  20. Parameterised Model of 2D Combustor Exit Flow Conditions for High-Pressure Turbine Simulations

    Directory of Open Access Journals (Sweden)

    Marius Schneider

    2017-12-01

    Full Text Available An algorithm is presented generating a complete set of inlet boundary conditions for Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD of high-pressure turbines to investigate their interaction with lean and rich burn combustors. The method shall contribute to understanding the sensitivities of turbine aerothermal performance in a systematic approach. The boundary conditions are based on a set of input parameters controlling velocity, temperature, and turbulence fields. All other quantities are derived from operating conditions and additional modelling assumptions. The algorithm is coupled with a CFD solver by applying the generated profiles as inlet boundary conditions. The successive steps to derive consistent flow profiles are described and results are validated against flow fields extracted from combustor CFD.

  1. Development of a setup to enable stable and accurate flow conditions for membrane biofouling studies

    KAUST Repository

    Bucs, Szilard

    2015-07-10

    Systematic laboratory studies on membrane biofouling require experimental conditions that are well defined and representative for practice. Hydrodynamics and flow rate variations affect biofilm formation, morphology, and detachment and impacts on membrane performance parameters such as feed channel pressure drop. There is a suite of available monitors to study biofouling, but systems to operate monitors have not been well designed to achieve an accurate, constant water flow required for a reliable determination of biomass accumulation and feed channel pressure drop increase. Studies were done with membrane fouling simulators operated in parallel with manual and automated flow control, with and without dosage of a biodegradable substrate to the feedwater to enhance biofouling rate. High flow rate variations were observed for the manual water flow system (up to ≈9%) compared to the automatic flow control system (<1%). The flow rate variation in the manual system was strongly increased by biofilm accumulation, while the automatic system maintained an accurate and constant water flow in the monitor. The flow rate influences the biofilm accumulation and the impact of accumulated biofilm on membrane performance. The effect of the same amount of accumulated biomass on the pressure drop increase was related to the linear flow velocity. Stable and accurate feedwater flow rates are essential for biofouling studies in well-defined conditions in membrane systems. © 2015 Balaban Desalination Publications. All rights reserved.

  2. Improvement of Estimation method for two-phase flow in a large-diameter pipe. Pt. 4. Effect of the inlet boundary condition of the upward flow section on flow characteristics

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Okawa, Tomio; Zhou, Shirong

    1999-01-01

    In nuclear power plants, many large-diameter pipes are subject to gas-liquid two-phase flow. For rational design and performance estimation, the flow in the pipes should be predicted accurately. With the correlation used at present, however, the flow analysis can not reach desirable precision. This is partly due to the lack of understanding of the two-phase flow characteristics in large-diameter pipes. Therefore, steam-water two-phase flow in a vertical pipe (155 mm i.d.) was investigated empirically. Lateral distribution data of phase volume fraction, gas velocity and bubble diameter were obtained. The effects of the inlet boundary condition were also observed. The drift velocity in the developing region was considerably affected by the inlet boundary condition. By deriving the correlation of mean bubble diameter as a function of void fraction and pressure, the empirical data was predicted with high accuracy compared with the existing correlation used in best-estimate codes of nuclear reactor safety analysis. (author)

  3. Notes on HP1 a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media. HP1 Version 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, D.; Simunek, J.

    2010-01-15

    HP1 is a comprehensive modeling tool in terms of processes and reactions for simulating reactive transport and biogeochemical processes in variably-saturated porous media. HP1 results from coupling the water and solute transport model HYDRUS-1D (Simunek et al., 2009a) and PHREEQC-2 (Parkhurst and Appelo, 1999). This note provides an overview of how to set up and execute a HP1 project using version 2.2.002 of HP1 and version 4.13 of the graphical user interface (GUI) of HYDRUS-1D. A large part of this note are step-by-step instructions for selected examples involving mineral dissolution and precipitation, cation exchange, surface complexation and kinetic degradation networks. The implementation of variably-saturated flow conditions, changing boundary conditions, a layered soil profile or immobile water is also illustrated.

  4. Notes on HP1 a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media. HP1 Version 2.2

    International Nuclear Information System (INIS)

    Jacques, D.; Simunek, J.

    2010-01-01

    HP1 is a comprehensive modeling tool in terms of processes and reactions for simulating reactive transport and biogeochemical processes in variably-saturated porous media. HP1 results from coupling the water and solute transport model HYDRUS-1D (Simunek et al., 2009a) and PHREEQC-2 (Parkhurst and Appelo, 1999). This note provides an overview of how to set up and execute a HP1 project using version 2.2.002 of HP1 and version 4.13 of the graphical user interface (GUI) of HYDRUS-1D. A large part of this note are step-by-step instructions for selected examples involving mineral dissolution and precipitation, cation exchange, surface complexation and kinetic degradation networks. The implementation of variably-saturated flow conditions, changing boundary conditions, a layered soil profile or immobile water is also illustrated.

  5. Hydrometeorological threshold conditions for debris flow initiation in Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2012-10-01

    Full Text Available Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN. For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.

  6. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  7. Analytical solutions of couple stress fluid flows with slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Devakar M.

    2014-09-01

    Full Text Available In the present article, the exact solutions for fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible couple stress fluid between parallel plates are obtained using slip boundary conditions. The effect of various parameters on velocity for each problem is discussed. It is found that, for each of the problems, the solution in the limiting case as couple stresses approaches to zero is similar to that of classical viscous Newtonian fluid. The results indicate that, the presence of couple stresses decreases the velocity of the fluid.

  8. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    Science.gov (United States)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  9. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions

    International Nuclear Information System (INIS)

    Armellini, A.; Casarsa, L.; Mucignat, C.

    2011-01-01

    The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.

  10. Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition

    Directory of Open Access Journals (Sweden)

    Mahfoudh Cerdoun

    2016-01-01

    Full Text Available In automotive applications radial gas turbines are commonly fitted with a twin-entry volute connected to a divided exhaust manifold, ensuring a better scavenge process owing to less interference between engines’ cylinders. This paper is concerned with the study of the unsteady performances related to the pulsating flows of a twin-entry radial turbine in engine-like conditions and the hysteresis-like behaviour during the pulses period. The results show that the aerodynamic performances deviate noticeably from the steady state and depend mainly on the time shifting between the actual output power and the isentropic power, which is distantly related to the apparent length. The maximum of efficiency and output shaft power are accompanied by low entropy generation through the shroud entry side, and their instantaneous behaviours tend to follow mainly the inlet total pressure curve. As revealed a billow is created by the interaction between the main flow and the infiltrated flow, affecting the flow incidence at rotor entry and producing high losses.

  11. Nonlinear vortex structures and Rayleigh instability condition in shear flow plasmas

    International Nuclear Information System (INIS)

    Haque, Q.; Saleem, H.; Mirza, A.M.

    2009-01-01

    Full text: It is shown that the shear flow produced by externally applied electric field can unstable the drift waves. Due to shear flow, the Rayleigh instability condition is modified, which is obtained for both electron-ion and electron-positron-ion plasmas. These shear flow driven drift waves can be responsible for large amplitude electrostatic fluctuations in tokamak edges. In the nonlinear regime, the stationary structures may appear in electron-positron-ion plasmas similar to electron-ion plasmas. The nonlinear vortex structures like counter rotating dipole vortices and vortex chains can be formed with the aid of special type of shear flows. The positrons can be used as a probe in laboratory plasmas, which make it a multi-component plasma. The presence of positrons in electron-ion plasma system can affect the speed and amplitude of the nonlinear vortex structures. This investigation can have application in both laboratory and astrophysical plasmas. (author)

  12. Numerical simulation of flow in centrifugal pump under cavitation and sediment condition

    International Nuclear Information System (INIS)

    Lu, J L; Guo, P C; Zheng, X B; Zhao, Q; Luo, X Q

    2012-01-01

    The sediment concentration is very high in many rivers in the world, especially in China. The pumps that designed for the clear water are usually seriously abraded. The probability of pump cavitation is greatly enhanced due to the existence of sand. Under the joint action and mutual promotion of sand erosion and cavitation, serious abrasion could occurred, and the hydraulic performance of the pump may be greatly descended, meanwhile the safety and stability of the whole pump are greatly threatened. Therefore, it is significant to investigate the cavitation characteristic of pump under sediment flow condition. In this paper, the flow in a single stage centrifugal pump under cleat water and sediment flow conditions was numerically simulated. The cavitation performance under clear water was firstly analyzed. Then, The pressure, velocity and solid particle distribution in centrifugal pump under different particle diameter and different particle concentration was investigated by using the two-fluid model; The area and extent of erosion was illustrated by using the particle track model. Finally, the influence of mixed sand on centrifugal pump performance was investigated.

  13. Natural convection accidental conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Delmastro, D.F.; Clausse, A.

    1990-01-01

    Under certain conditions, wether accidental or in nuclear reactor design, a nuclear reactor core may be found to be refrigerated by a fluid in natural circulation. Before the possible density waves phenomenon occurrence, it is essential to have a good knowledge of the flow evolution and thermohydraulic variables under these conditions. (Author) [es

  14. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    Science.gov (United States)

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  15. Chemically reacting fluid flow induced by an exponentially accelerated infinite vertical plate in a magnetic field and variable temperature via LTT and FEM

    Directory of Open Access Journals (Sweden)

    Srinivasa Raju R.

    2016-01-01

    Full Text Available In this research paper, we found both numerical and analytical solutions for the effect of chemical reaction on unsteady, incompressible, viscous fluid flow past an exponentially accelerated vertical plate with heat absorption and variable temperature in a magnetic field. The flow problem is governed by a system of coupled non-linear partial differential equations with suitable boundary conditions. We have solved the governing equations by an efficient, accurate, powerful finite element method (FEM as well as Laplace transform technique (LTT. The evaluation of the numerical results are performed and graphical results for the velocity, temperature and concentration profiles within the boundary layer are discussed. Also, the expressions for the skin-friction, Nusselt number and the Sherwood number coefficients have been derived and discussed through graphs and tabular forms for different values of the governing parameters.

  16. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    Science.gov (United States)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  17. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. [Lewis 8 by 6-foot supersonic wind tunnel tests

    Science.gov (United States)

    Nelson, D. P.

    1980-01-01

    Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.

  18. Assessment of bridge abutment scour and sediment transport under various flow conditions

    Science.gov (United States)

    Gilja, Gordon; Valyrakis, Manousos; Michalis, Panagiotis; Bekić, Damir; Kuspilić, Neven; McKeogh, Eamon

    2017-04-01

    Safety of bridges over watercourses can be compromised by flow characteristics and bridge hydraulics. Scour process around bridge foundations can develop rapidly during low-recurrence interval floods when structural elements are exposed to increased flows. Variations in riverbed geometry, as a result of sediment removal and deposition processes, can increase flood-induced hazard at bridge sites with catastrophic failures and destructive consequences for civil infrastructure. The quantification of flood induced hazard on bridge safety generally involves coupled hydrodynamic and sediment transport models (i.e. 2D numerical or physical models) for a range of hydrological events covering both high and low flows. Modelled boundary conditions are usually estimated for their probability of occurrence using frequency analysis of long-term recordings at gauging stations. At smaller rivers gauging station records are scarce, especially in upper courses of rivers where weirs, drops and rapids are common elements of river bathymetry. As a result, boundary conditions that accurately represent flow patterns on modelled river reach cannot be often reliably acquired. Sediment transport process is also more complicated to describe due to its complexity and dependence to local flow field making scour hazard assessment a particularly challenging issue. This study investigates the influence of flow characteristics to the development of scour and sedimentation processes around bridge abutments of a single span masonry arch bridge in south Ireland. The impact of downstream weirs on bridge hydraulics through variation of downstream model domain type is also considered in this study. The numerical model is established based on detailed bathymetry data surveyed along a rectangular grid of 50cm spacing. Acquired data also consist of riverbed morphology and water level variations which are monitored continuously on bridge site. The obtained data are then used to compare and calibrate

  19. Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition

    International Nuclear Information System (INIS)

    Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei

    2014-01-01

    Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model

  20. Effects of initial conditions on self-similarity in a co-flowing axi-symmetric round jet

    International Nuclear Information System (INIS)

    Uddin, M.; Pollard, A.

    2004-01-01

    The effect of initial conditions of a spatially developing coflowing jet is investigated using an LES at Re D = 7,300. A co-flow velocity to initial jet centerline velocity ratio of 1:11 and a co-flow to initial jet diameter ratio of 35:1 are used to match the flow cases of Reference 11. The 35D x 135D simulation volume is divided into 1024 x 256 x 128 control volumes in the longitudinal, radial and azimuthal directions respectively. Time averaged results of the effect of initial conditions on mean flow, the decay of jet centreline velocity, growth of the jet and the distribution of Reynolds stresses in the near, and far field of the shear layer is presented. These quantities show good agreement with the measurements of Reference 11. Our results suggest that the first order moments, e.g., decay of centreline velocity excess, the radial mean velocity profiles, have little dependence on the initial conditions. As well, the Reynolds shear stress appears to have lesser sensitivity to the variation of initial velocity profiles. However, initial conditions have pronounced effect on the self-similarity of normal stresses. Additionally, the computations indicate little Reynolds number dependency, which is consistent with Townsend's school of thought. (author)

  1. CFD analysis and flow model reduction for surfactant production in helix reactor

    Directory of Open Access Journals (Sweden)

    Nikačević N.M.

    2015-01-01

    Full Text Available Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD simulations. Non-reactive flow is simulated, though viscosity is treated as variable in the direction of flow, as it increases during the reaction. The design and operating parameters (reactor diameter, number of coils and inlet velocity are varied in CFD simulations, in order to examine the effects on the flow pattern. Given that 3D simulations are not practical for fast computations needed for optimization, scale-up and control, CFD flow model is reduced to one-dimensional axial dispersion (AD model with spatially variable dispersion coefficient. Dimensionless dispersion coefficient (Pe is estimated under different conditions and results are analyzed. Finally, correlation which relates Pe number with Reynolds number and number of coils from the reactor entrance is proposed for the particular reactor application and conditions.

  2. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  3. New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions.

    Science.gov (United States)

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Pak, Tannaz; Shokri, Nima

    2017-07-04

    Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO 2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-wet conditions is less understood. This study reports the results of a series of two-dimensional high-resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence of concave and convex interfaces. Intermediate wettability leads to various interfacial movements which are not identified under imbibition or drainage conditions. These pore-scale events significantly influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending fluid from weak imbibition to intermediate-wet conditions.

  4. Potential electricity savings by variable speed control of compressor for air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Nasution, Henry [Bung Hatta University, Department of Mechanical Engineering, Faculty of Industrial Engineering, Padang, West Sumatera (Indonesia); Wan Hassan, Mat Nawi [Universiti Teknologi Malaysia, Faculty of Mechanical Engineering, Skudai, Johor Bahru-Darul Ta' zim (Malaysia)

    2006-05-15

    The potential of a variable-speed compressor running on a controller to provide enhanced load-matching capability, energy saving and thermal comfort for application in air-conditioning system is demonstrated. An air-conditioning system, originally operated on a constant speed mode, is retrofitted with an inverter and a PID controller. The system was installed to a thermal environmental room together with a data acquisition system to monitor energy consumption and temperature of the room. Measurements were taken 2 h daily at a time interval of 5 min for an on/off and an inverter variable-speed conditions. The results indicate that thermal comfort of the room together with energy saving can be obtained through a proper selection of K for the controller. At a temperature setting of 22 C, the energy saving for the system is estimated to reach 25.3% for PID controllers. (orig.)

  5. Elliptic flow from non-equilibrium initial condition with a saturation scale

    International Nuclear Information System (INIS)

    Ruggieri, M.; Scardina, F.; Plumari, S.; Greco, V.

    2013-01-01

    A current goal of relativistic heavy-ion collisions experiments is the search for a Color Glass Condensate (CGC) as the limiting state of QCD matter at very high density. In viscous hydrodynamics simulations, a standard Glauber initial condition leads to estimate 4πη/s∼1, while employing the Kharzeev–Levin–Nardi (KLN) modeling of the glasma leads to at least a factor of 2 larger η/s. Within a kinetic theory approach based on a relativistic Boltzmann-like transport simulation, our main result is that the out-of-equilibrium initial distribution reduces the efficiency in building-up the elliptic flow. At RHIC energy we find the available data on v 2 are in agreement with a 4πη/s∼1 also for KLN initial conditions. More generally, our study shows that the initial non-equilibrium in p-space can have a significant impact on the build-up of anisotropic flow

  6. Aerodynamic performance investigation on waverider with variable blunt radius in hypersonic flows

    Science.gov (United States)

    Li, Shibin; Wang, Zhenguo; Huang, Wei; Xu, Shenren; Yan, Li

    2017-08-01

    Waverider is an important candidate for the design of hypersonic vehicles. However, the ideal waverider cannot be manufactured because of its sharp leading edge, so the leading edge should be blunted. In the paper, the HMB solver and laminar flow model have been utilized to obtain the flow field properties around the blunt waverider with the freestream Mach number being 8.0, and several novel strategies have been suggested to improve the aerodynamic performance of blunt waverider. The numerical method has been validated against experimental data, and the Stanton number(St) of the predicted result has been analyzed. The obtained results show good agreement with the experimental data. Stmax decreases by 58% and L/D decreases by 8.2% when the blunt radius increases from 0.0002 m to 0.001 m. ;Variable blunt waverider; is a good compromise for aerodynamic performance and thermal insulation. The aero-heating characteristics are very sensitive to Rmax. The position of the smallest blunt radius has a great effect on the aerodynamic performance. In addition, the type of blunt leading edge has a great effect on the aero-heating characteristics when Rmax is fixed. Therefore, out of several designs, Type 4is the best way to achieve the good overall performance. The ;Variable blunt waverider; not only improves the aerodynamic performance, but also makes the aero-heating become evenly-distributed, leading to better aero-heating characteristics.

  7. Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions

    OpenAIRE

    Jodeau , M.; Hauet , A.; Paquier , A.; Le Coz , J.; Dramais , G.

    2008-01-01

    Large Scale Particle Image Velocimetry (LS-PIV) is used to measure the surface flow velocities in a mountain stream during high flow conditions due to a reservoir release. A complete installation including video acquisition from a mobile elevated viewpoint and artificial flow seeding has been developed and implemented. The LS-PIV method was adapted in order to take into account the specific constraints of these high flow conditions. Using a usual LS-PIV data processing, significant variations...

  8. Revisiting Johnson and Jackson boundary conditions for granular flows

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Benyahia, Sofiane

    2012-07-01

    In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.

  9. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  10. Flow behaviour in a CANDU horizontal fuel channel from stagnant subcooled initial conditions

    International Nuclear Information System (INIS)

    Caplan, M.Z.; Gulshani, P.; Holmes, R.W.; Wright, A.C.D.

    1984-01-01

    The flow behaviour in a CANDU primary system with horizontal fuel channels is described following a small inlet header break. With the primary pumps running, emergency coolant injection is in the forward direction so that the channel outlet feeders remain warmer than the inlet thereby promoting forward natural circulation. However, the break force opposes the forward driving force. Should the primary pumps run down after the circuit has refilled, there is a break size for which the natural circulation force is balanced by the break force and channels could, theoretically, stagnate. Result of visualization and of full-size channel tests on channel flow behaviour from an initially stagnant channel condition are discussed. After a channel stagnation, the decay power heats the coolant to saturation. Steam is then formed and the coolant stratifies. The steam expands into the subcooled water in the end fitting in a chugging type of flow regime due to steam condensation. After the end fitting reaches the saturation temperature, steam is able to penetrate into the vertical feeder thereby initiating a large buoyancy induced flow which refills the channel. The duration of stagnation is shown to be sensitive to small asymmetries in the initial conditions. A small initial flow can significantly shorten the occurrence and/or duration of boiling as has been confirmed by reactor experience. (author)

  11. High-speed flow visualization in a pump-turbine under off-design operating conditions

    International Nuclear Information System (INIS)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M

    2010-01-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  12. A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui

    2016-01-01

    This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...

  13. Subaqueous ice-contact fans: Depositional systems characterised by highly aggradational supercritical flow conditions

    Science.gov (United States)

    Lang, Joerg; Winsemann, Jutta

    2015-04-01

    Subaqueous ice-contact fans are deposited by high-energy plane-wall jets from subglacial conduits into standing water bodies. Highly aggradational conditions during flow expansion and deceleration allow for the preservation of bedforms related to supercritical flows, which are commonly considered rare in the depositional record. We present field examples from gravelly and sandy subaqueous ice-contact fan successions, which indicate that deposition by supercritical flows might be considered as a characteristic feature of these depositional systems. The studied successions were deposited in deep ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. The gravel-rich subaqueous fan deposits are dominated by large scour-fills (up to 25 m wide and 3 m) deep and deposits of turbulent hyperconcentrated flows, which are partly attributed to supercritical flow conditions (Winsemann et al., 2009). Scours (up to 4.5 m wide and 0.9 m deep) infilled by gravelly backsets are observed above laterally extensive erosional surfaces and are interpreted as deposits of cyclic steps. Laterally discontinuous beds of low-angle cross-stratified gravel are interpreted as antidune deposits. Downflow and up-section the gravel-rich deposits pass into sand-rich successions, which include deposits of chutes-and-pools, breaking antidunes, stationary antidunes and humpback dunes (Lang and Winsemann, 2013). Deposits of chutes-and-pools and breaking antidunes are characterised by scour-fills (up to 4 m wide and 1.2 m deep) comprising backsets or gently dipping sigmoidal foresets. Stationary antidune deposits consist of laterally extensive sinusoidal waveforms with long wavelengths (1-12 m) and low amplitudes (0.1-0.5 m), which formed under quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by divergent sigmoidal foresets and are interpreted as

  14. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  15. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations

    DEFF Research Database (Denmark)

    Feenstra, T.; Schmidt Thøgersen, Mariane; Wieser, E.

    2017-01-01

    H mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial...... adhesion of each mutant across several commonly used adhesion assays, including agglutination of yeast, adhesion to mono- and tri-mannosylated substrates, and static adhesion to bladder epithelial and endothelial cells. We performed a comparison of these assays to a novel method that we developed to study...... mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel...

  16. Conversion Method of the Balance Test Results in Open Jet Tunnel on the Free Flow Conditions

    Directory of Open Access Journals (Sweden)

    V. T. Bui

    2015-01-01

    Full Text Available The paper considers a problem of sizing a model and converting the balance test results in the low speed open-jet wind tunnel to free-flow conditions. The ANSYS Fluent commercial code performs flow model calculations in the test section and in the free flow, and the ANSYS ICEM CFD module is used to provide grid generation. A structured grid is generated in the free flow and an unstructured one is provided in the test section. The changes of aerodynamic coefficients are determined at the different values of the blockage factor for the segmental-conical and hemisphere cylinder-cone shapes of the model. The blockage factor values are found at which the interference of the test section – model is neglected. The paper presents a technique to convert the wind tunnel test results to the free flow conditions.

  17. Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2012-01-01

    Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.

  18. Distribution of peak expiratory flow variability by age, gender and smoking habits in a random population sample aged 20-70 yrs

    NARCIS (Netherlands)

    Boezen, H M; Schouten, J. P.; Postma, D S; Rijcken, B

    1994-01-01

    Peak expiratory flow (PEF) variability can be considered as an index of bronchial lability. Population studies on PEF variability are few. The purpose of the current paper is to describe the distribution of PEF variability in a random population sample of adults with a wide age range (20-70 yrs),

  19. Joint Calibration of Submarine Groundwater Discharge (SGD) with Tidal Pumping: Modeling Variable-density Groundwater Flow in Unconfined Coastal Aquifer of Apalachee Bay, Gulf of Mexico

    Science.gov (United States)

    Li, X.; Hu, B.; Burnett, W.; Santos, I.

    2008-05-01

    Submarine Groundwater Discharge (SGD) as an unseen phenomenon is now recognized as an important pathway between land and sea. These discharges typically display significant spatial and temporal variability making quantification difficult. Groundwater seepage is patchy, diffuse, and temporally variable, and thus makes the estimation of its magnitude and components is a challenging enterprise. A two-dimensional hydrogeological model is developed to the near-shore environment of an unconfined aquifer at a Florida coastal area in the northeastern Gulf of Mexico. Intense geological survey and slug tests are set to investigate the heterogeneity of this layered aquifer. By applying SEAWAT2000, considering the uncertainties caused by changes of boundary conditions, a series of variable-density-flow models incorporates the tidal-influenced seawater recirculation and the freshwater-saltwater mixing zone under the dynamics of tidal pattern, tidal amplitude and variation of water table. These are thought as the contributing factors of tidal pumping and hydraulic gradient which are the driven forces of SGD. A tidal-influenced mixing zone in the near-shore aquifer shows the importance of tidal mechanism to flow and salt transport in the process of submarine pore water exchange. Freshwater ratio in SGD is also analyzed through the comparison of Submarine Groundwater Recharge and freshwater inflow. The joint calibration with other methods (natural tracer model and seepage meter) is also discussed.

  20. Leveraging Understanding of Flow of Variable Complex Fluid to Design Better Absorbent Hygiene Products

    Science.gov (United States)

    Krautkramer, C.; Rend, R. R.

    2014-12-01

    Menstrual flow, which is a result of shedding of uterus endometrium, occurs periodically in sync with a women's hormonal cycle. Management of this flow while allowing women to pursue their normal daily lives is the purpose of many commercial products. Some of these products, e.g. feminine hygiene pads and tampons, utilize porous materials in achieving their goal. In this paper we will demonstrate different phenomena that have been observed in flow of menstrual fluid through these porous materials, share some of the advances made in experimental and analytical study of these phenomena, and also present some of the unsolved challenges and difficulties encountered while studying this kind of flow. Menstrual fluid is generally composed of four main components: blood plasma, blood cells, cervical mucus, and tissue debris. This non-homogeneous, multiphase fluid displays very complex rheological behavior, e. g., yield stress, thixotropy, and visco-elasticity, that varies throughout and between menstrual cycles and among women due to various factors. Flow rates are also highly variable during menstruation and across the population and the rheological properties of the fluid change during the flow into and through the product. In addition to these phenomena, changes to the structure of the porous medium within the product can also be seen due to fouling and/or swelling of the material. This paper will, also, share how the fluid components impact the flow and the consequences for computer simulation, the creation of a simulant fluid and testing methods, and for designing products that best meet consumer needs. We hope to bring to light the challenges of managing this complex flow to meet a basic need of women all over the world. An opportunity exists to apply learnings from research in other disciplines to improve the scientific knowledge related to the flow of this complex fluid through the porous medium that is a sanitary product.

  1. Study on boiling heat transfer of subcooled flow under oscillatory flow condition

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Yamazaki, Satoshi; Koizumi, Yasuo

    2004-01-01

    The Onset of Nucleate Boiling, the point of Net Vapor Generation and Critical Heat Flux on subcooled flow boiling under oscillatory flow, focusing on liquid velocity, amplitude and frequency of oscillatory flow were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2 and 4 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. Temperatures at Onset of Nuclear Boiling and Critical Heat Flux obtained in the experiments decreased with the oscillatory flow. The decrease of liquid velocity by oscillatory flow caused the ONB and the CHF to decrease. On the other hand, heat flux at Net Vapor Generation decreased with oscillatory flow; the increase of liquid velocity by oscillatory flow caused the NVG to decrease. (author)

  2. An Outflow Boundary Condition Model for Noninvasive Prediction of Fractional Flow Reserve in Diseased Coronary Arteries.

    Science.gov (United States)

    Fayssal, Iyad A; Moukalled, Fadl; Alam, Samir; Isma'eel, Hussain

    2018-04-01

    This paper reports on a new boundary condition formulation to model the total coronary myocardial flow and resistance characteristics of the myocardial vascular bed for any specific patient when considered for noninvasive diagnosis of ischemia. The developed boundary condition model gives an implicit representation of the downstream truncated coronary bed. Further, it is based on incorporating patient-specific physiological parameters that can be noninvasively extracted to account for blood flow demand to the myocardium at rest and hyperemic conditions. The model is coupled to a steady three-dimensional (3D) collocated pressure-based finite volume flow solver and used to characterize the "functional significance" of a patient diseased coronary artery segment without the need for predicting the hemodynamics of the entire arterial system. Predictions generated with this boundary condition provide a deep understanding of the inherent challenges behind noninvasive image-based diagnostic techniques when applied to human diseased coronary arteries. The overall numerical method and formulated boundary condition model are validated via two computational-based procedures and benchmarked with available measured data. The newly developed boundary condition is used via a designed computational methodology to (a) confirm the need for incorporating patient-specific physiological parameters when modeling the downstream coronary resistance, (b) explain the discrepancies presented in the literature between measured and computed fractional flow reserve (FFRCT), and (c) discuss the current limitations and future challenges in shifting to noninvasive assessment of ischemia.

  3. Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Memiş Kemal

    2010-01-01

    Full Text Available Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

  4. Flow behavior of Daqing waxy crude oil under simulated pipelining conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jianlin [China University of Petroleum, Beijing (China); PetroChina Company Ltd. (China); Zhang, Jinjun; Li, Hongying; Zhang, Fan; Yang, Xiaojing [China University of Petroleum, Beijing (China)

    2005-07-01

    Daqing oil field is the largest oil field in China. This crude oil is a typical waxy crude oil, with a wax content of 26% and a gel point of 32 deg C. Flow behaviors of waxy crude oils at temperatures near the gel point/pour point are vital for both pipeline hydraulic calculation and evaluation on restartability of a shutdown pipeline. In this study, experimental simulation was conducted by using a stirred vessel with the energy dissipation of viscous flow as the shear simulation parameter. The viscosity, gel point, yield stress and thixotropy were measured by sampling from the simulation vessel. The viscosity under simulated pipelining condition was found less than that measured under quiescent cooling condition. The gel point decreased with decreasing temperature of sampling, i.e. the end temperature of the dynamic cooling process. At sampling temperatures above 35 deg C, that is 3 deg C above the gel point measured under quiescent cooling condition, both the yield stresses and the thixotropic parameters showed little dependence on the shear history. However, at lower sampling temperatures, remarkable shear history dependence was found. Empirical correlations were developed between the yield stress and the sampling temperature as well as the measurement temperature, and between the thixotropic parameters and the sampling temperature. (author)

  5. Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-01-01

    Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.

  6. The Acute Effect of Resistance Exercise with Blood Flow Restriction with Hemodynamic Variables on Hypertensive Subjects

    Directory of Open Access Journals (Sweden)

    Araújo Joamira P.

    2014-12-01

    Full Text Available The purpose of this study was to analyze systolic blood pressure (SBP, diastolic blood pressure (DBP and the heart rate (HR before, during and after training at moderate intensity (MI, 50%-1RM and at low intensity with blood flow restriction (LIBFR. In a randomized controlled trial study, 14 subjects (average age 45±9,9 years performed one of the exercise protocols during two separate visits to the laboratory. SBP, DBP and HR measurements were collected prior to the start of the set and 15, 30, 45 and 60 minutes after knee extension exercises. Repeated measures of analysis of variance (ANOVA were used to identify significant variables (2 x 5; group x time. The results demonstrated a significant reduction in SBP in the LIBFR group. These results provide evidence that strength training performed acutely alters hemodynamic variables. However, training with blood flow restriction is more efficient in reducing blood pressure in hypertensive individuals than training with moderate intensity.

  7. Global assessment of surfing conditions: seasonal, interannual and long-term variability

    Science.gov (United States)

    Espejo, A.; Losada, I.; Mendez, F.

    2012-12-01

    International surfing destinations owe a great debt to specific combinations of wind-wave, thermal conditions and local bathymetry. As surf quality depends on a vast number of geophysical variables, a multivariable standardized index on the basis of expert judgment is proposed to analyze surf resource in a worldwide domain. Data needed is obtained by combining several datasets (reanalyses): 60-year satellite-calibrated spectral wave hindcast (GOW, WaveWatchIII), wind fields from NCEP/NCAR, global sea surface temperature from ERSST.v3b, and global tides from TPXO7.1. A summary of the global surf resource is presented, which highlights the high degree of variability in surfable events. According to general atmospheric circulation, results show that west facing low to middle latitude coasts are more suitable for surfing, especially those in Southern Hemisphere. Month to month analysis reveals strong seasonal changes in the occurrence of surfable events, enhancing those in North Atlantic or North Pacific. Interannual variability is investigated by comparing occurrence values with global and regional climate patterns showing a great influence at both, global and regional scales. Analysis of long term trends shows an increase in the probability of surfable events over the west facing coasts on the planet (i.e. + 30 hours/year in California). The resulting maps provide useful information for surfers and surf related stakeholders, coastal planning, education, and basic research.; Figure 1. Global distribution of medium quality (a) and high quality surf conditions probability (b).

  8. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    International Nuclear Information System (INIS)

    Kellner, Erik

    2007-02-01

    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  9. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Erik [Dept. of Forest Ecology, Univ. of Helsinki (Finland)

    2007-02-15

    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  10. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network.

    Science.gov (United States)

    Shakiba, Mohammad; Parson, Nick; Chen, X-Grant

    2016-06-30

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s -1 ). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.

  11. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    Science.gov (United States)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  12. Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities

    Science.gov (United States)

    Zamora, Blas; Kaiser, Antonio S.

    2012-01-01

    The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k - ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.

  13. On conditions of negativity of friction resistance for nonstationary modes of blood flow and possible mechanism of affecting of environmental factors on energy effectiveness of cardiovascular system function

    Directory of Open Access Journals (Sweden)

    Sergey G. Chefranov

    2013-05-01

    Full Text Available It is shown that initiated by action of molecular viscosity impulse flow, directed usually from the moving fluid to limiting it solid surface, can, under certain conditions, turn to zero and get negative values in the case of non-stationary flow caused by alternating in time longitudinal (along the pipe axis pressure gradient. It is noted that this non-equilibrium mechanism of negative friction resistance in the similar case of pulsating blood flow in the blood vessels, in addition to the stable to turbulent disturbances swirled blood flow structure providing, can also constitute hydro-mechanical basis of the observed but not explained yet paradoxically high energy effectiveness of the normal functioning of the cardiovascular system (CVS. We consider respective mechanism of affecting on the stability of the normal work of CVS by environmental variable factors using shifting of hydro-dynamic mode with negative resistance realization range boundaries and variation of linear hydrodynamic instability leading to the structurally stable swirled blood flow organization.

  14. Flow oscillations on the steam control valve in the middle opening condition. Clarification of the phenomena by steam flow experiment and CFD calculation

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio

    2006-01-01

    A steam control valve might cause vibrations of piping when the valve opening is in a middle condition. For rationalization of maintenance and management of the plant, the valve should be improved, but it is difficult to understand flow characteristics in detail by experiment because flow around the valve is complex 3D structure and becomes supersonic (M>1). Therefore, it is necessary to clarify the cause of the vibrations and to develop improvements by Computational Fluid Dynamics (CFD) technology. In previous researches, we clarified a mechanism of the pressure fluctuations in the middle opening condition and suggested the way to prevent the pressure fluctuations by experiments and CFD calculations. But, as we used air as a working fluid in our previous research instead of steam that is used in the power plant, we couldn't consider effects of condensation and difference of change of the quantity of state between air and steam. In this report, we have conducted steam flow experiments by multi-purpose steam experiment apparatus 'WISSH' and CFD calculations by steam flow code 'MATIS-SC' to clarify those effects. As a result, in the middle opening condition, we have observed rotating pressure fluctuations in the experiment and valve-attached flow and local high-pressure region in the CFD result. These results show the pressure fluctuations in steam experiments and CFD is same kind of the fluctuations found in air experiment and CFD. (author)

  15. Flow processes in electric discharge drivers

    Science.gov (United States)

    Baganoff, D.

    1975-01-01

    The performance of an electric discharge shock tube is discussed from the point of view that the conditions at the sonic station are the primary controlling variables (likewise in comparing designs), and that the analysis of the flow on either side of the sonic station should be done separately. The importance of considering mass-flow rate in matching a given driver design to the downstream flow required for a particular shock-wave speed is stressed. It is shown that a driver based on the principle of liquid injection (of H2) is superior to one based on the Ludwieg tube, because of the greater mass-flow rate and the absence of a massive diaphragm.

  16. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative

  17. Computational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow Conditions

    Science.gov (United States)

    2016-04-26

    domain used in our thrombus formation simulations. Fig. 2 B shows the 3D geometry of the flow-chamber section consisting of two channels measuring 250 60...ArticleComputational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow ConditionsVijay Govindarajan,1 Vineet Rakesh,1 Jaques...understanding of thrombus formation as a physicochemical process that has evolved to protect the integrity of the human vasculature is critical to our ability to

  18. Investigating the effect of variable gutter technique as a novel method on vertical flow of material in closed die forging processes

    Energy Technology Data Exchange (ETDEWEB)

    Pourbashiri, M.; Sedighi, M. [Iran University, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Recently, Variable gutter technique has been introduced as a novel method in order to reduce waste materials in closed-die forging processes. In this paper, the capability of this method is investigated for a family of forged parts that the vertical flow of material is the last stage of forming process. As a case study, using the variable gutter technique, the amount of waste material is decreased about 50% for a sample forged part with a local rising. The results of FVM simulations and experiments confirmed the effectiveness of the variable gutter technique in such forging processes. The vertical flow of material in the die cavity (h parameter), as a criterion, for different gutter width and thickness dimensions was examined by FVM simulations. The results shown that the gutter thickness has more effect on vertical flow of material than the gutter width. By decreasing the gutter thickness and increasing the gutter width, the amount of vertical flow of material is increased about 120% and 29%, respectively. Finally, A/H ratio (A = Max width of sectional area of a forged part, H = Max height of a forged part) is proposed as shape complexity factor of a forged part. The results of FVM simulations are indicated that for the ratio of A/H > 2, the variable gutter thickness technique is more effective and can be successfully used to reduce the amount of waste materials.

  19. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions

    International Nuclear Information System (INIS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Jin, Guangyuan; Tan, Sichao

    2013-01-01

    Highlights: ► Two-phase flow frictional resistance in narrow duct in rolling is studied. ► Frictional resistance behaviors in rolling are divided into three regions. ► Transient frictional pressure drop fluctuates synchronously with rolling motion. ► Conventional correlations are evaluated against experimental data in rolling motion. ► New correlation for transient frictional resistance in rolling motion is developed. - Abstract: Frictional resistance of air-water two-phase flow in a narrow rectangular duct subjected to rolling motion was investigated experimentally. Time-averaged and transient frictional pressure drop under rolling condition were compared with conventional correlation in laminar flow region (Re l l ⩽ 1400) and turbulent flow region (Re l > 1400) respectively. The result shows that, despite no influence on time-averaged frictional resistance, rolling motion does induce periodical fluctuation of the pressure drop in laminar and transition flow regions. Transient frictional pressure drop fluctuates synchronously with the rolling motion both in laminar and in transition flow region, while it is nearly invariable in turbulent flow region. The fluctuation amplitude of the Relative frictional pressure gradient decreases with the increasing of the superficial velocities. Lee and Lee (2002) correlation and Chisholm (1967) correlation could satisfactorily predict time-averaged frictional pressure drop under rolling conditions, whereas poorly predict the transient frictional pressure drop when it fluctuates periodically. A new correlation with better accuracy for predicting the transient frictional pressure drop in rolling motion is achieved by modifying the Chisholm (1967) correlation on the basis of analyzing the present experimental results with a great number of data points

  20. Variability in Second Language Learning: The Roles of Individual Differences, Learning Conditions, and Linguistic Complexity

    Science.gov (United States)

    Tagarelli, Kaitlyn M.; Ruiz, Simón; Vega, José Luis Moreno; Rebuschat, Patrick

    2016-01-01

    Second language learning outcomes are highly variable, due to a variety of factors, including individual differences, exposure conditions, and linguistic complexity. However, exactly how these factors interact to influence language learning is unknown. This article examines the relationship between these three variables in language learners.…

  1. Parameters, which effect the mass flow in the PRHRS under a natural convection condition

    International Nuclear Information System (INIS)

    Chung, Y. J.; Lee, G. H.; Kim, H. C.; Kim, K. K.; Zee, S. Q.

    2004-01-01

    Small and medium sized integral type reactors for the diverse utilization of nuclear energy are getting much attention from the international nuclear community. They diversify the peaceful uses of nuclear energy in the areas of seawater desalination, district heating, industrial heat-generation process and ship propulsion. The SMART (System integrated Modular Advanced ReacTor) is a small modular integral type pressurized water reactor, which was developed for the dual purposes application of seawater desalination and small-scaled power generation in KOREA. The reactor is designed for a forced convection core cooling during start-up and normal operating conditions and for a natural circulation core cooling during accidental conditions. The main safety objective of the SMART is to increase the degree of inherent safety features by advanced designs such as a passive residual heat removal system (PRHRS). The passive residual heat removal system removes the core decay heat and sensible heat by a natural circulation in the case of emergency conditions. This study focuses on the flow behavior in the passive residual heat removal system of the integral reactor. The system necessitates a hydraulic head to achieve the required natural circulation flow rate, which in turn, may cause a larger two-phase pressure drop and flow oscillation. Also, it is of interest to investigate the complex effects of the boiling and condensation in such low frequency thermo-hydraulic oscillations. Thermal hydraulic analysis for the passive residual heat removal system has been carried out by means of the MARS code for a full range of reactor operating conditions. The MARS code has been developed at the Korea Atomic Energy Research Institute by consolidating and restructuring the RELAP5/MOD3.2 and COBRA-TF which has the capabilities of analyzing the one-dimensional or three-dimensional best estimated thermal-hydraulic system and the fuel responses of the light water reactor transients. A selected

  2. LES of fluid and heat flow over a wall-bounded short cylinder at different inflow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Borello, D [Dipartmento di Ingegneria Meccanica e Aerospaziale, Sapienza University of Rome (Italy); Hanjalic, K, E-mail: borello@dma.ing.uniroma1.it [Department of Multi-scale Physics, Delft University of Technology (Netherlands)

    2011-12-22

    We report on LES studies of flow patterns, vortical structures and heat transfer in flows over a short single cylinder of diameter D placed in a plane channel of height h = 0.4D in which the bottom wall is heated. The Reynolds number of 6150, based on D, corresponds to the water experiments reported by Sahin et al. (2008). For the basic computational domain of 24 Multiplication-Sign 14 Multiplication-Sign 0.4D three different inflow conditions have been considered: a non-turbulent flow with a uniform initial velocity developing along the channel (NT), a fully developed channel flows (FD) (generated a priori) and periodic conditions (PC). The latter boundary conditions have also been considered for two shorter domain lengths of 6D and 3D corresponding to a cylinder in a compact matrix. For the long domain, despite the length of the channel of 9.5 D before (and after) the cylinder, the inlet conditions show strong effects on the formation and evolution of the multiple vortex systems both in front and behind the cylinder, influencing significantly also friction and heat transfer. Simulations show some agreement with experimental data though the comparison is impaired by the uncertainty in the experimental inflow conditions. For the shortest cylinder spacing the wake never closes and the flow shows enhanced unsteadiness and turbulence level. Interestingly, the comparison for the same short domain (3Dx3D) using the mean temperature at the inflow to this domain as a reference shows the lowest average base-wall Nusselt number in the PC 3D case that corresponds to compact heat exchangers.

  3. Comparison of the Spatiotemporal Variability of Temperature, Precipitation, and Maximum Daily Spring Flows in Two Watersheds in Quebec Characterized by Different Land Use

    Directory of Open Access Journals (Sweden)

    Ali A. Assani

    2016-01-01

    Full Text Available We compared the spatiotemporal variability of temperatures and precipitation with that of the magnitude and timing of maximum daily spring flows in the geographically adjacent L’Assomption River (agricultural and Matawin River (forested watersheds during the period from 1932 to 2013. With regard to spatial variability, fall, winter, and spring temperatures as well as total precipitation are higher in the agricultural watershed than in the forested one. The magnitude of maximum daily spring flows is also higher in the first watershed as compared with the second, owing to substantial runoff, given that the amount of snow that gives rise to these flows is not significantly different in the two watersheds. These flows occur early in the season in the agricultural watershed because of the relatively high temperatures. With regard to temporal variability, minimum temperatures increased over time in both watersheds. Maximum temperatures in the fall only increased in the agricultural watershed. The amount of spring rain increased over time in both watersheds, whereas total precipitation increased significantly in the agricultural watershed only. However, the amount of snow decreased in the forested watershed. The magnitude of maximum daily spring flows increased over time in the forested watershed.

  4. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    Science.gov (United States)

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  5. Modeling of water flow and solute transport in unsaturated heterogeneous fields

    International Nuclear Information System (INIS)

    Bresler, E.; Dagan, G.

    1982-01-01

    A comprehensive model which considers dispersive solute transport, nonsteady moisture flow regimes and complex boundary conditions is described. The main assumptions are: vertical flow; spatial variability which is associated with the saturated hydraulic conductivity K/sub s/ occurs in the horizontal plane, but is constant in the profile, and has a lognormal probability distribution function (PDF); deterministic recharge and solute concentration are applied during infiltration; the soil is at uniform water content and salt concentration prior to infiltration. The problem is to solve, for arbitrary K/sub s/, the Richards' equation of flow simultaneously with the diffusion-convection equation for salt transport, with the boundary and initial conditions appropriate to infiltration-redistribution. Once this is achieved, the expectation and variance of various quantities of interest (solute concentration, moisture content) are obtained by using the statistical averaging procedure and the given PDF of K/sub s/. Since the solution of Richards' equation for the infiltration-redistribution cycle is extremely difficult (for a given K/sub s/), an approxiate solution is derived by using the concept of piston flow type wetting fronts. Similarly, accurate numerical solutions are used as input for the same statistical averaging procedure. The stochastic model is applied to two spatially variable soils by using both accurate numerical solutions and the simplified water and salt transport models. A comparison between the results shows that the approximate simplified models lead to quite accurate values of the expectations and variances of the flow variables for the entire field. It is suggested that in spatially variable fields, stochastic modeling represents the actual flow phenomena realistically, and provides the main statistical moments by using simplified flow models which can be used with confidence in applications

  6. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    International Nuclear Information System (INIS)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang

    2014-01-01

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  7. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang [Xi' an Jiaotong University, Xi' an (China)

    2014-01-15

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  8. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    Directory of Open Access Journals (Sweden)

    S. Ravindra

    2017-03-01

    Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.

  9. Decadal variability on the Northwest European continental shelf

    Science.gov (United States)

    Jones, Sam; Cottier, Finlo; Inall, Mark; Griffiths, Colin

    2018-02-01

    Decadal scale time series of the shelf seas are important for understanding both climate and process studies. Despite numerous investigations of long-term temperature variability in the shelf seas, studies of salinity variability are few. Salt is a more conservative tracer than temperature in shallow seas, and it can reveal changes in local hydrographic conditions as well as transmitted basin-scale changes. Here, new inter-annual salinity time series on the northwest European shelf are developed and a 13 year high resolution salinity record from a coastal mooring in western Scotland is presented and analysed. We find strong temporal variability in coastal salinity on timescales ranging from tidal to inter-annual, with the magnitude of variability greatest during winter months. There is little seasonality and no significant decadal trend in the coastal time series of salinity. We propose 4 hydrographic states to explain salinity variance in the shelf area west of Scotland based on the interaction between a baroclinic coastal current and wind-forced barotropic flow: while wind forcing is important, we find that changes in the buoyancy-driven flow are more likely to influence long-term salinity observations. We calculate that during prevailing westerly wind conditions, surface waters in the Sea of the Hebrides receive a mix of 62% Atlantic origin water to 38% coastal sources. This contrasts with easterly wind conditions, during which the mix is 6% Atlantic to 94% coastal sources on average. This 'switching' between hydrographic states is expected to impact nutrient transport and therefore modify the level of primary productivity on the shelf. This strong local variability in salinity is roughly an order of magnitude greater than changes in the adjacent ocean basin, and we infer from this that Scottish coastal waters are likely to be resilient to decadal changes in ocean climate.

  10. The influence of tip clearance on performance and internal flow condition of fluid food pump using low viscous fluid

    International Nuclear Information System (INIS)

    Kubo, S; Ishioka, T; Fukutomi, J; Shigemitsu, T

    2012-01-01

    Fluid machines for fluid food have been used in wide variety of fields i.e. transportation, the filling, and for the improvement of quality of fluid foods. However, flow conditions of it are quite complicated because fluid foods are different from water. Therefore, design methods based on internal flow conditions have not been conducted. In this research, turbo-pumps having a small number of blades were used to decrease shear loss and keep wide flow passage. The influence of the tip clearance was investigated by the numerical analysis using the model with and without the tip clearance. In this paper, the influence of tip clearance on performances and internal flow conditions of turbo-pump using low viscous fluid were clarified by experimental and numerical analysis results. In addition, design methods based on the internal flow were considered. Further, the influences of viscosity on the performance characteristic and internal flow were investigated.

  11. Groundwater flow analysis on local scale. Setting boundary conditions for groundwater flow analysis on site scale model in step 1

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The surface-based Investigation Phase of the MIU project is a site scale study for understanding the groundwater flow system immediately surrounding the MIU construction site. The MIU project is being conducted using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis of the local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in Step 1 in site scale of the MIU project. As a result of the study, head distribution to set boundary conditions for groundwater flow analysis on the site scale model could be obtained. (author)

  12. Variability in lateralised blood flow response to language is associated with language development in children aged 1-5 years.

    Science.gov (United States)

    Kohler, M; Keage, H A D; Spooner, R; Flitton, A; Hofmann, J; Churches, O F; Elliott, S; Badcock, N A

    2015-01-01

    The developmental trajectory of language lateralisation over the preschool years is unclear. We explored the relationship between lateralisation of cerebral blood flow velocity response to object naming and cognitive performance in children aged 1-5 years. Functional transcranial Doppler ultrasound was used to record blood flow velocity bilaterally from middle cerebral arteries during a naming task in 58 children (59% male). At group level, the Lateralisation Index (LI) revealed a greater relative increase in cerebral blood flow velocity within the left as compared to right middle cerebral artery. After controlling for maternal IQ, left-lateralised children displayed lower expressive language scores compared to right- and bi-lateralised children, and reduced variability in LI. Supporting this, greater variability in lateralised response, rather than mean response, was indicative of greater expressive language ability. Findings suggest that a delayed establishment of language specialisation is associated with better language ability in the preschool years. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Magnetic resonance measurements of azygos and portal venous blood flow under fasting and postprandial conditions in healthy controls and cirrhotics

    International Nuclear Information System (INIS)

    Takamura, Naoko

    2001-01-01

    Using MR velocity mapping, we studied measurements azygos (A) and portal venous blood flow (P) under fasting and postprandial conditions in 7 healthy controls (C) and 10 cirrhotics (LC). Fasting A in LC was higher than that in C. Fasting P in C was higher than that in LC. Variability of repeated measuring A and P was low in C and LC. A postprandial increase of A in LC was higher than that in C. Fasting A/P ratio in LC was higher than that in C. Our results suggest that MR velocity mapping is expected as the reproducible method for monitoring the hemodynamic change in the azygos and portal venous system. (author)

  14. Analytical solution of velocity for ammonia-water horizontal falling-film flow

    International Nuclear Information System (INIS)

    Zhang, Qiang; Gao, Yide

    2016-01-01

    Highlights: • We built a new falling-film flow model that analyzed the film flow characteristics. • We have obtained a new formula of film thickness over the horizontal tube. • We derived analysis solution to analyze the effect of inertial force to velocity in the entrance region of liquid film. • It described the characters of the ammonia-waterfalling-film film over the horizontal tube. • It is good for falling-film absorption, generation and evaporation to optimizing the design parameters and further improving the capabilities. - Abstract: A new horizontal tube falling film velocity model was built and calculated to analyze the problem of film flow conditions. This model also analyzed the film thickness distribution in horizontal tube falling film flow and considered the effect of the inertial force on velocity. The film thickness and velocity profile can be obtained based on the principle of linear superposition, a method of separation of variables that introduces the effect of variable inertial force on the velocity profile in the process of falling-film absorption. The film flow condition and the film thickness distribution at different fluid Reynolds numbers (Re) and tube diameters were calculated and compared with the results of the Crank–Nicolson numerical solution under the same conditions. The results show that the film flow condition out of a horizontal tube and that the film thickness increases with the fluid Re. At a specific Re and suitable tube diameter, the horizontal tube reaches a more uniform film. Finally, the analysis results have similar trend with the experimental and numerical predicted data in literature.

  15. Theoretical and numerical investigations of TAP experiments. New approaches for variable pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Senechal, U.; Breitkopf, C. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik

    2011-07-01

    Temporal analysis of products (TAP) is a valuable tool for characterization of porous catalytic structures. Established TAP-modeling requires a spatially constant diffusion coefficient and neglect convective flows, which is only valid in Knudsen diffusion regime. Therefore in experiments, the number of molecules per pulse must be chosen accordingly. New approaches for variable process conditions are highly required. Thus, a new theoretical model is developed for estimating the number of molecules per pulse to meet these requirements under any conditions and at any time. The void volume is calculated as the biggest sphere fitting between three pellets. The total number of pulsed molecules is assumed to fill the first void volume at the inlet immediately. Molecule numbers from these calculations can be understood as maximum possible molecules at any time in the reactor to be in Knudsen diffusion regime, i.e., above the Knudsen number of 2. Moreover, a new methodology for generating a full three-dimensional geometrical representation of beds is presented and used for numerical simulations to investigate spatial effects. Based on a freely available open-source game physics engine library (BULLET), beds of arbitrary-sized pellets can be generated and transformed to CFD-usable geometry. In CFD-software (ANSYS CFX registered) a transient diffusive transport equation with time-dependent inlet boundary conditions is solved. Three different pellet diameters were investigated with 1e18 molecules per pulse, which is higher than the limit from the theoretical calculation. Spatial and temporal distributions of transported species show regions inside the reactor, where non-Knudsen conditions exist. From this results, the distance from inlet can be calculated where the theoretical pressure limit (Knudsen number equals 2) is obtained, i.e., from this point to the end of the reactor Knudsen regime can be assumed. Due to linear dependency of pressure and concentration (assuming ideal

  16. Resting heart rate variability predicts safety learning and fear extinction in an interoceptive fear conditioning paradigm.

    Directory of Open Access Journals (Sweden)

    Meike Pappens

    Full Text Available This study aimed to investigate whether interindividual differences in autonomic inhibitory control predict safety learning and fear extinction in an interoceptive fear conditioning paradigm. Data from a previously reported study (N = 40 were extended (N = 17 and re-analyzed to test whether healthy participants' resting heart rate variability (HRV - a proxy of cardiac vagal tone - predicts learning performance. The conditioned stimulus (CS was a slight sensation of breathlessness induced by a flow resistor, the unconditioned stimulus (US was an aversive short-lasting suffocation experience induced by a complete occlusion of the breathing circuitry. During acquisition, the paired group received 6 paired CS-US presentations; the control group received 6 explicitly unpaired CS-US presentations. In the extinction phase, both groups were exposed to 6 CS-only presentations. Measures included startle blink EMG, skin conductance responses (SCR and US-expectancy ratings. Resting HRV significantly predicted the startle blink EMG learning curves both during acquisition and extinction. In the unpaired group, higher levels of HRV at rest predicted safety learning to the CS during acquisition. In the paired group, higher levels of HRV were associated with better extinction. Our findings suggest that the strength or integrity of prefrontal inhibitory mechanisms involved in safety- and extinction learning can be indexed by HRV at rest.

  17. Input Selection for Return Temperature Estimation in Mixing Loops using Partial Mutual Information with Flow Variable Delay

    DEFF Research Database (Denmark)

    Overgaard, Anders; Kallesøe, Carsten Skovmose; Bendtsen, Jan Dimon

    2017-01-01

    adgang til data, er ønsker at skabe en datadreven model til kontrol. Grundet den store mængde tilgængelig data anvendes der en metode til valg af inputs kaldet "Partial Mutual Information" (PMI). Denne artikel introducerer en metode til at inkluderer flow variable forsinkelser i PMI. Data fra en...... kontorbygning i Bjerringbro anvendes til analyse. Det vises at "Mutual Information" og et "Generalized Regression Neural Network" begge forbedres ved at anvende flow variabelt forsinkelse i forhold til at anvende konstante delay....

  18. Studies on variable swirl intake system for DI diesel engine using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Jebamani Rathnaraj David

    2008-01-01

    Full Text Available It is known that a helical port is more effective than a tangential port to attain the required swirl ratio with minimum sacrifice in the volumetric efficiency. The swirl port is designed for lesser swirl ratio to reduce emissions at higher speeds. But this condition increases the air fuel mixing time and particulate smoke emissions at lower speeds. Optimum swirl ratio is necessary according to the engine operating condition for optimum combustion and emission reduction. Hence the engine needs variable swirl to enhance the combustion in the cylinder according to its operating conditions, for example at partial load or low speed condition it requires stronger swirl, while the air quantity is more important than the swirl under very high speed or full load and maximum torque conditions. The swirl and charging quantity can easily trade off and can be controlled by the opening of the valve. Hence in this study the steady flow rig experiment is used to evaluate the swirl of a helical intake port design for different operating conditions. The variable swirl plate set up of the W06DTIE2 engine is used to experimentally study the swirl variation for different openings of the valve. The sliding of the swirl plate results in the variation of the area of inlet port entry. Therefore in this study a swirl optimized combustion system varying according to the operating conditions by a variable swirl plate mechanism is studied experimentally and compared with the computational fluid dynamics predictions. In this study the fluent computational fluid dynamics code has been used to evaluate the flow in the port-cylinder system of a DI diesel engine in a steady flow rig. The computational grid is generated directly from 3-D CAD data and in cylinder flow simulations, with inflow boundary conditions from experimental measurements, are made using the fluent computational fluid dynamics code. The results are in very good agreement with experimental results.

  19. Experimental study of R134a/R410A cascade cycle for variable refrigerant flow heat pump systems

    International Nuclear Information System (INIS)

    Kim, Jeong Hun; Lee, Jae Wan; Park, Warn Gyu; Choi, Hwan Jong; Lee, Sang Hun; Oh, Sai Kee

    2015-01-01

    Cascade cycle is widely applied to heat pumps operating at low ambient temperature to overcome problems such as low heating capacity and Coefficient of performance (COP) deterioration A number of researches have been conducted on cascade cycle heat pumps, but most of those studies were focused on system optimization to determine optimal intermediate temperature in air-to-water heat pumps. However, experimental optimization in regard to air and water heating simultaneously using a cascade cycle has been an understudied area. Therefore, we focused on experimental analysis for a cascade system with Variable refrigerant flow (VRF) heat pumps. Experiments were conducted under a variety of operating conditions, such as ambient and water inlet temperature. COP increased up to 16% when water inlet temperature decreased. COP of VRF heat pumps with cascade cycle is three-times higher compared with conventional boilers as well as 17% higher compared to single heat pumps

  20. Two-Dimensional Bifurcated Inlet Variable Cowl Lip Test Completed in 10- by 10-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Hoffman, T. R.

    2000-01-01

    Researchers at the NASA Glenn Research Center at Lewis Field successfully tested a variable cowl lip inlet at simulated takeoff conditions in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) as part of the High-Speed Research Program. The test was a follow-on to the Two-Dimensional Bifurcated (2DB) Inlet/Engine test. At the takeoff condition for a High-Speed Civil Transport aircraft, the inlet must provide adequate airflow to the engine with an acceptable distortion level and high-pressure recovery. The test was conducted to study the effectiveness of installing two rotating lips on the 2DB Inlet cowls to increase mass flow rate and eliminate or reduce boundary layer flow separation near the lips. Hardware was mounted vertically in the test section so that it extended through the tunnel ceiling and that the 2DB Inlet was exposed to the atmosphere above the test section. The tunnel was configured in the aerodynamic mode, and exhausters were used to pump down the tunnel to vacuum levels and to provide a maximum flow rate of approximately 58 lb/sec. The test determined the (1) maximum flow in the 2DB Inlet for each variable cowl lip, (2) distortion level and pressure recovery for each lip configuration, (3) boundary layer conditions near variable lips inside the 2DB Inlet, (4) effects of a wing structure adjacent to the 2DB Inlet, and (5) effects of different 2DB Inlet exit configurations. It also employed flow visualization to generate enough qualitative data on variable lips to optimize the variable lip concept. This test was a collaborative effort between the Boeing Company and Glenn. Extensive inhouse support at Glenn contributed significantly to the progress and accomplishment of this test.

  1. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina

    Science.gov (United States)

    Watershed land use and topographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the relative influences of land use and watershed geomorphic characteristics on low flow variability in the sour...

  2. Work zone variable speed limit systems: Effectiveness and system design issues.

    Science.gov (United States)

    2010-03-01

    Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...

  3. Predicting the onset of dynamic instability of a cylindrical plate under axial flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States); Woods, B.G. [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A semi-numerical flow induced vibration model is developed of a cylindrical plate. Black-Right-Pointing-Pointer Test case results are presented and agree well with previous studies data. Black-Right-Pointing-Pointer The model identifies a relationship between forces and the plate natural frequency. - Abstract: The dynamic mechanical stability of a single cylindrical plate under flow conditions is considered herein. Numerous plate-type research reactors such as the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL) comprise fuel elements which contain arrays of concentrically aligned cylindrical plates. Several of these reactors are licensed to operate at extreme heat fluxes; as a corollary their hydraulic designs require large flow rates sufficient to remove this heat. These flow rates may reach superficial velocities upwards of 15 m/s through individual flow channels. Given that fuel plates typically found in such research reactors are relatively long ({approx}1.2573 m), wide ({approx}0.1397 m), and extremely thin ({approx}0.00127 m) concern is drawn toward the susceptibility of flow induced vibration (FIV). In an attempt to gain a more comprehensive understanding toward the dynamic mechanical limit of stability of cylindrical plates, a FIV model was developed using semi-numerical methods. The FIV model was developed in two separate modules; a plate stability module, and a flow module. These modules were then coupled together to produce a FIV model. In this study, a set of test cases are presented on the plate stability module under free vibration conditions, comparing well against known available information from previous studies. Results are similarly presented on the flow module and compared against a RELAP5-3D model. Lastly, results of these coupled modules are presented and discussion is given toward the relationship between plate natural frequency, geometry, and plate membrane pressures.

  4. Flow behavior of volume-heated boiling pools: implications with respect to transition phase accident conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C. Jr.; Chen, J.C.

    1979-01-01

    Observations of two-phase flow fields in single-component volume-heated boiling pools were made. Photographic observations, together with pool-average void fraction measurements, indicate that the churn-turbulent flow regime is stable for superficial vapor velocities up to nearly five times the Kutateladze dispersal limit. Within this range of conditions, a churn-turbulent drift flux model provides a reasonable prediction of the pool-average void fraction data. An extrapolation of the data to transition phase accident conditions suggests that intense boilup could occur where the pool-average void fraction would be >0.6 for steel vaporization rates equivalent to power levels >1% of nominal liquid-metal fast breeder reactor power density. The extended stability of bubbly flow to unusually large vapor fluxes and void fractions, observed in some experiments, is a major unresolved issue

  5. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  6. A study on the numerical instability of COBRA-series subchannel analysis codes at low-pressure and low-flow conditions

    International Nuclear Information System (INIS)

    Yoo, Y. J.; Hwnag, T. H.; Kim, K. K.; Ji, S. K.

    2001-01-01

    The numerical instability at low-pressure and low-flow conditions has been confirmed to be the common problem of the existing COBRA-series subchannel analysis codes. In addition, the range of operating conditions at which the analyses by the codes are impossible has been evaluated. To evaluate the MATRA's inapplicable range of operating conditions of the SMART core that is to be operated at the low flow condition, i.e. about 30% of the flow of the existing commercial pressurized water reactors at the steady-state condition, the analyses of various operating conditions were performed by using several representative COBRA-series subchannel analysis codes including MATRA. TORC of CE, COBRA3CP of Siemens/KWU, COBRA4I of PNL, and MATRA of KAERI were chosen as the subchannel analysis codes to be evaluated. The various operating conditions used in the CHF tests carried out at the Winfrith Establishment of UKAEA were chosen as the conditions to be analyzed. As the result, the numerical instabilities at low-pressure and low-flow conditions occurred in the analyses by all of the codes. It was revealed that the MATRA code, which numerically more stable thatn the other codes, was not able to analyze the conditions of the pressure not more than 100 bar and the mass velocity not more than 300 kg/sec-m 2 . Hereafter it is required to find out the exact reason for the numerical instability of the existing COBRA-series subchannel analysis codes at low-pressure and low-flow conditions and to devise the new method to get over that numerical problem

  7. Gravity-driven, dry granular flows over a loose bed in stationary and homogeneous conditions

    Science.gov (United States)

    Meninno, Sabrina; Armanini, Aronne; Larcher, Michele

    2018-02-01

    Flows involving solid particulates have been widely studied in recent years, but their dynamics are still a complex issue to model because they strongly depend on the interaction with the boundary conditions. We report on laboratory investigations regarding homogeneous and steady flows of identical particles over a loose bed in a rectangular channel. Accurate measurements were carried out through imaging techniques to estimate profiles of the mean velocity, solid concentration, and granular temperature for a large set of flow rates and widths. Vertical and transversal structures observed in the flow change as interparticle interactions become more collisional, and they depend on the bottom over which the flow develops. The lateral confinement has a remarkable effect on the flow, especially for narrow channels compared with the grain size, and a hydraulic analogy is able to show how the walls influence the mechanisms of friction and energy dissipation.

  8. Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Annuli (Part I)

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, G.

    1962-12-01

    The present report deals with measurements of burnout conditions for flow of boiling water in an annulus with an inner diameter of 9.92 mm, an outer diameter of 17 - 42 mm and a heated length of 608 mm. Data were obtained in respect of external heating only, internal heating only and dual uniform and non-uniform heating. The following ranges of variables were studied and 978 burnout measurements were obtained. Pressure 8.5 2 ; Inlet subcooling 60 sub i 2 ; Outer surface heat flux 0 o 2 ; Mass velocity 71 2 /sec; The results are presented in diagrams where the burnout steam qualities, x BO , were plotted against the pressure with the surface heat fluxes as parameters. The data have been correlated by curves. The scatter of the data around the curves is less than ± 5 per cent. In the case of equal heat fluxes on both walls of the annulus, burnout always occurred on the inner wall, and the data compared rather well with round duct data. When the annulus was heated internally only, the data showed very low burnout values in comparison with the results for dual heating and round ducts. This disagreement was explained by considering the climbing film flow model and by the fact that only a fraction of the channel perimeter was heated. For external heating the data are somewhat lower than corresponding round duct data, but rather high in comparison with internal heating. The climbing film flow model was also used to interpret this observation. For dual non-uniform heating it was found that the outer surface may be overloaded from 30 to 70 per cent compared with the inner surface without reducing the margin of safety in respect of burnout for the annulus. It was further observed that when the heat flux fox the wall on which burnout occurs is increased, the burnout steam quality for the channel decreases. If, however, the heat flux for the opposite wall is increased, the burnout steam quality also increases. It was also observed that the highest burnout values are obtained

  9. Adaptation of endothelial cells to physiologically-modeled, variable shear stress.

    Directory of Open Access Journals (Sweden)

    Joseph S Uzarski

    Full Text Available Endothelial cell (EC function is mediated by variable hemodynamic shear stress patterns at the vascular wall, where complex shear stress profiles directly correlate with blood flow conditions that vary temporally based on metabolic demand. The interactions of these more complex and variable shear fields with EC have not been represented in hemodynamic flow models. We hypothesized that EC exposed to pulsatile shear stress that changes in magnitude and duration, modeled directly from real-time physiological variations in heart rate, would elicit phenotypic changes as relevant to their critical roles in thrombosis, hemostasis, and inflammation. Here we designed a physiological flow (PF model based on short-term temporal changes in blood flow observed in vivo and compared it to static culture and steady flow (SF at a fixed pulse frequency of 1.3 Hz. Results show significant changes in gene regulation as a function of temporally variable flow, indicating a reduced wound phenotype more representative of quiescence. EC cultured under PF exhibited significantly higher endothelial nitric oxide synthase (eNOS activity (PF: 176.0±11.9 nmol/10(5 EC; SF: 115.0±12.5 nmol/10(5 EC, p = 0.002 and lower TNF-a-induced HL-60 leukocyte adhesion (PF: 37±6 HL-60 cells/mm(2; SF: 111±18 HL-60/mm(2, p = 0.003 than cells cultured under SF which is consistent with a more quiescent anti-inflammatory and anti-thrombotic phenotype. In vitro models have become increasingly adept at mimicking natural physiology and in doing so have clarified the importance of both chemical and physical cues that drive cell function. These data illustrate that the variability in metabolic demand and subsequent changes in perfusion resulting in constantly variable shear stress plays a key role in EC function that has not previously been described.

  10. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, G.

    1964-11-01

    The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 sub 2 ; Mass velocity 94 2 /s; Burnout steam quality 0.10 BO < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within ± 5 per cent by means of the correlation by Becker et al for flow in smooth channels

  11. Open boundary condition, Wilson flow and the scalar glueball mass

    International Nuclear Information System (INIS)

    Chowdhury, Abhishek; Harindranath, A.; Maiti, Jyotirmoy

    2014-01-01

    A major problem with periodic boundary condition on the gauge fields used in current lattice gauge theory simulations is the trapping of topological charge in a particular sector as the continuum limit is approached. To overcome this problem open boundary condition in the temporal direction has been proposed recently. One may ask whether open boundary condition can reproduce the observables calculated with periodic boundary condition. In this work we find that the extracted lowest glueball mass using open and periodic boundary conditions at the same lattice volume and lattice spacing agree for the range of lattice scales explored in the range 3 GeV≤(1/a)≤5 GeV. The problem of trapping is overcome to a large extent with open boundary and we are able to extract the glueball mass at even larger lattice scale ≈ 5.7 GeV. To smoothen the gauge fields we have used recently proposed Wilson flow which, compared to HYP smearing, exhibits better systematics in the extraction of glueball mass. The extracted glueball mass shows remarkable insensitivity to the lattice spacings in the range explored in this work, 3 GeV≤(1/a)≤5.7 GeV.

  12. Variability of Bed Load Components in Different Hydrological Conditions

    Directory of Open Access Journals (Sweden)

    Hossein Kheirfam

    2017-04-01

    New hydrological insights: We found that the amount of the minimum, the mean and the maximum bed load were 3 × 10−8, 6.15 × 10−4± 7.17 × 10−4 and 4.38 × 10−3 kg s−1, respectively. The minimum, the mean, and the maximum discharge were also 60, 334 ± 215.56 and 780 l s−1, respectively. In low discharge conditions during summer, the fine grain sediments had the largest amount of bed load sediment. Coarse and medium-grained sediment transportation was higher in autumn and the early winter consistent with the occurrence of extreme rainfall and flood flows.

  13. Variable cycle engine

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A.P.; Sprunger, E.V.

    1980-09-16

    A variable cycle turboshaft engine includes a remote fan system and respective high and low pressure systems for selectively driving the fan system in such a manner as to provide VTOL takeoff capability and minimum specific fuel consumption (SFC) at cruise and loiter conditions. For takeoff the fan system is primarily driven by the relatively large low pressure system whose combustor receives the motive fluid from a core bypass duct and, for cruise and loiter conditions, the fan system is driven by both a relatively small high pressure core and the low pressure system with its combustor inoperative. A mixer is disposed downstream of the high pressure system for mixing the relatively cold air from the bypass duct and the relatively hot air from the core prior to its flow to the low pressure turbine.

  14. Assessment of Environmental Flows under Human Intervention and Climate Change Conditions in a Mediterranean Watershed

    Science.gov (United States)

    Yilmaz, M. T.; Alp, E.; Aras, M.; Özaltın, A. M.; Sarıcan, Y.; Afsar, M.; Bulut, B.; Ersoy, E. N.; Karasu, İ. G.; Onen, A.

    2017-12-01

    Allocation of the river flow for ecosystems is very critical for sustainable management of ecosystems containing aquatic habitats in need of more water than other environments. Availability and allocation of water over such locations becomes more stressed as a result of the influence of human interventions (e.g., increased water use for irrigation) and the expected change in climate. This study investigates the current and future (until 2100) low-flow requirements over 10 subcatchments in a Mediterranean Watershed, in Turkey, using Tennant and hydrological low-flow methods. The future river flows are estimated using HBV model forced by climate projections obtained by HADGEM2, MPI-ESM-MR, and CNRM-CM5.1 models coupled with RegCM4.3 under RCP 4.5 and RCP 8.5 emission scenarios. Critical flows (i.e., Q10, Q25, Q50) are calculated using the best fit to commonly used distributions for the river flow data, while the decision between the selection of Q10, Q25, Q50 critical levels are made depending on the level of human interference made over the catchment. Total three low-flow requirement estimations are obtained over each subcatchment using the Tennant (two estimates for the low and high flow seasons for environmentally good conditions) and the hydrological low-flow methods. The highest estimate among these three methods is selected as the low-flow requirement of the subcatchment. The river flows over these 10 subcatchments range between 197hm3 and 1534hm3 while the drainage areas changing between 936 and 4505 km2. The final low-flow estimation (i.e., the highest among the three estimate) for the current conditions range between 94 hm3 and 715 hm3. The low-flow projection values between 2075 and 2099 are on average 39% lower than the 2016 values, while the steepest decline is expected between 2050 and 2074. The low flow and high flow season Tennant estimates dropped 22-25% while the hydrological method low-flow estimates dropped 32% from 2016 to 2075-2099 average, where

  15. Determination of Optimal Flow Paths for Safety Injection According to Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwae Hwan; Kim, Ju Hyun; Kim, Dong Yeong; Na, Man Gyun [Chosun Univ., Gwangju (Korea, Republic of); Hur, Seop; Kim, Changhwoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In case severe accidents happen, major safety parameters of nuclear reactors are rapidly changed. Therefore, operators are unable to respond appropriately. This situation causes the human error of operators that led to serious accidents at Chernobyl. In this study, we aimed to develop an algorithm that can be used to select the optimal flow path for cold shutdown in serious accidents, and to recover an NPP quickly and efficiently from the severe accidents. In order to select the optimal flow path, we applied a Dijkstra algorithm. The Dijkstra algorithm is used to find the path of minimum total length between two given nodes and needs a weight (or length) matrix. In this study, the weight between nodes was calculated from frictional and minor losses inside pipes. That is, the optimal flow path is found so that the pressure drop between a starting node (water source) and a destination node (position that cooling water is injected) is minimized. In case a severe accident has happened, if we inject cooling water through the optimized flow path, then the nuclear reactor will be safely and effectively returned into the cold shutdown state. In this study, we have analyzed the optimal flow paths for safety injection as a preliminary study for developing an accident recovery system. After analyzing the optimal flow path using the Dijkstra algorithm, and the optimal flow paths were selected by calculating the head loss according to path conditions.

  16. Calculation of local flow conditions in the lower core of a PWR with code-Saturne

    International Nuclear Information System (INIS)

    Fournier, Y.

    2003-01-01

    In order to better understand the stresses to which fuel rods are subjected, we need to improve our knowledge of the fluid flow inside the core. A code specialized for calculations in tube bundles is used to calculate the flow inside the whole of the core, with a resolution at the assembly level. Still, it is necessary to obtain realistic entry conditions, and these depend on the flow in the downcomer and lower plenum. Also, the flow in the first stages of the core features 4 incoming jets per assembly, and requires a resolution much finer than that used for the whole core calculation. A series of calculations are thus run with our incompressible Navier-Stokes solver, Code-Saturne, using a classical Ranse turbulence model. The first calculations involve a detailed geometry, including part of the cold legs, downcomer, lower plenum, and lower core of a pressurized water reactor. The level of detail includes most obstacles below the core. The lower core plate, being pierced with close to 800 holes, cannot be realistically represented within a practical mesh size, so that a head loss model is used. The lower core itself requiring even more detail is also represented with head losses. We make full use of Code-Saturne's non conforming mesh possibilities to represent a complex geometry, being careful to retain a good mesh quality. Starting just under the lower core, the mesh is aligned with fuel rod assemblies, so that different types of assemblies can be represented through different head loss coefficients. These calculations yield steady-state or near steady-state results, which are compared to experimental data, and should be sufficient to yield realistic entry conditions for full core calculations at assembly width resolution, and beyond those mechanical strain calculations. We are also interested in more detailed flow conditions and fluctuations in the lower core area, so as to better quantify vibrational input. This requires a much higher resolution, which we limit

  17. Robust boundary treatment for open-channel flows in divergence-free incompressible SPH

    Science.gov (United States)

    Pahar, Gourabananda; Dhar, Anirban

    2017-03-01

    A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.

  18. Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation

  19. Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity

    Science.gov (United States)

    Hayat, Tasawar; Javed, Mehwish; Imtiaz, Maria; Alsaedi, Ahmed

    2018-03-01

    This paper presents the study of Jeffrey fluid flow by a rotating disk with variable thickness. Energy equation is constructed by using Cattaneo-Christov heat flux model with variable thermal conductivity. A system of equations governing the model is obtained by applying boundary layer approximation. Resulting nonlinear partial differential system is transformed to ordinary differential system. Homotopy concept leads to the convergent solutions development. Graphical analysis for velocities and temperature is made to examine the influence of different involved parameters. Thermal relaxation time parameter signifies that temperature for Fourier's heat law is more than Cattaneo-Christov heat flux. A constitutional analysis is made for skin friction coefficient and heat transfer rate. Effects of Prandtl number on temperature distribution and heat transfer rate are scrutinized. It is observed that larger Reynolds number gives illustrious temperature distribution.

  20. Hamiltonian formulation of inviscid flows with free boundaries

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.; Brown, R.; Yang, Y.M.

    1988-01-01

    The formulation of the Hamiltonian structures for inviscid fluid flows with material free surfaces is presented in both the Lagrangian specification, where the fundamental Poisson brackets are canonical, and in the Eulerian specification, where the dynamics is given in noncanonical form. The noncanonical Eulerian brackets are derived explicitly from the canonical Lagrangian brackets. The Eulerian brackets are, with the exception of a single term at each material free surface separating flows in different phases, identical to those for isentropic flow of a compressible, inviscid fluid. The dynamics of the free surface is located in the Hamiltonian and in the definition of the Eulerian variables of mass density, rho(x, t), momentum density, M(x,t) [which is rho times the fluid velocity v(x,t)], and the specific entropy, σ(x,t). The boundary conditions for the Eulerian variables and the evolution equations for the free surfaces come from the Euler equations of the flow. This construction provides a unified treatment of inviscid flows with any number of free surfaces

  1. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    Science.gov (United States)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  2. Investigation of analytical methods in thermal stratification analysis. Evaluation of flow rates through flow holes for normal and scram conditions of 40% power operation with AQUA code

    International Nuclear Information System (INIS)

    Doi, Yoshihiro; Muramatsu, Toshiharu

    1997-08-01

    Thermal stratification phenomena are observed in an upper plenum of liquid metal fast breeder reactors (LMFBRs) under reactor scram conditions, which give rise to thermal stress on structural components. Therefore it is important to evaluate characteristics of phenomena in the design of the internal structure in an LMFBR plenum. To evaluate flow rates through flow holes of the prototype fast breeder reactor, MONJU, numerical analyses were carried out with AQUA code for normal and scram conditions with 40% power operation. Through comparison of analysis results and measured temperature, thermal stratification phenomena in 300 second period after the scram was evaluated. Flow rate through the upper flow holes, the lower flow holes and annular gap between the inner barrel and the reactor vessel were evaluated with the measured temperature and the analysis results individually. (J.P.N.)

  3. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Mamou, M.; Khalid, M. [National Research Council, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Hongyi.Xu@nrc.ca

    2004-07-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  4. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    International Nuclear Information System (INIS)

    Xu, H.; Mamou, M.; Khalid, M.

    2004-01-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  5. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    Science.gov (United States)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  6. Validation of the TRACR3D code for soil water flow under saturated/unsaturated conditions in three experiments

    International Nuclear Information System (INIS)

    Perkins, B.; Travis, B.; DePoorter, G.

    1985-01-01

    Validation of the TRACR3D code in a one-dimensional form was obtained for flow of soil water in three experiments. In the first experiment, a pulse of water entered a crushed-tuff soil and initially moved under conditions of saturated flow, quickly followed by unsaturated flow. In the second experiment, steady-state unsaturated flow took place. In the final experiment, two slugs of water entered crushed tuff under field conditions. In all three experiments, experimentally measured data for volumetric water content agreed, within experimental errors, with the volumetric water content predicted by the code simulations. The experiments and simulations indicated the need for accurate knowledge of boundary and initial conditions, amount and duration of moisture input, and relevant material properties as input into the computer code. During the validation experiments, limitations on monitoring of water movement in waste burial sites were also noted. 5 references, 34 figures, 9 tables

  7. CFD Analysis of Random Turbulent Flow Load in Steam Generator of APR1400 Under Normal Operation Condition

    International Nuclear Information System (INIS)

    Lim, Sang Gyu; You, Sung Chang; Kim, Han Gon

    2011-01-01

    Regulatory guide 1.20 revision 3 of the Nuclear Regulatory Committee (NRC) modifies guidance for vibration assessments of reactor internals and steam generator internals. The new guidance requires applicants to provide a preliminary analysis and evaluation of the design and performance of a facility, including the safety margins of during normal operation and transient conditions anticipated during the life of the facility. Especially, revision 3 require rigorous assessments of adverse flow effects in the steam dryer cased by flow-excited acoustic and structural resonances such as the abnormality from power-uprated BWR cases. For two nearly identical nuclear power plants, the steam system of one BWR plant experienced failure of steam dryers and the main steam system components when steam flow was increased by 16 percent for extended power uprate (EPU). The mechanisms of those failures have revealed that a small adverse flow changing from the prototype condition induced severe flow-excited acoustic and structural resonances, leading to structural failures. In accordance with the historical background, therefore, potential adverse flow effects should be evaluated rigorously for steam generator internals in both BWR and Pressurized Water Reactor (PWR). The Advanced Power Reactor 1400 (APR1400), an evolutionary light water reactor, increased the power by 7.7 percent from the design of the 'Valid Prototype', System80+. Thus, reliable evaluations of potential adverse flow effects on the steam generator of APR1400 are necessary according to the regulatory guide. This paper is part of the computational fluid dynamics (CFD) analysis results for evaluation of the adverse flow effect for the steam generator internals of APR1400, including a series of sensitivity analyses to enhance the reliability of CFD analysis and an estimation the effect of flow loads on the internals of the steam generator under normal operation conditions

  8. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition

    International Nuclear Information System (INIS)

    Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong

    2014-01-01

    Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes

  9. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng

    2012-01-01

    Recently, liquid-gas flows related to droplets, bubbles, and thin films on solid surfaces with thermal and wettability gradients have attracted widespread attention because of the many physical processes involved and their promising potential applications in biology, chemistry, and industry. Various new physical effects have been discovered at fluid-solid interfaces by experiments and molecular dynamics simulations, e.g., fluid velocity slip, temperature slip (Kapitza resistance), mechanical-thermal cross coupling, etc. There have been various models and theories proposed to explain these experimental and numerical observations. However, to the best of our knowledge,a continuum hydrodynamic model capable of predicting the temperature and velocity profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve wettability gradients and thermal gradients. This model is able to describe fluid velocity slip, temperature slip, and mechanical-thermal coupling that may occur at fluid-solid interfaces. For this purpose, we first employ the diffuse interface modeling to formulate the hydrodynamic equations for one-component liquid-gas flows in the bulk region. This reproduces the dynamic van der Waals theory of Onuki [Phys. Rev. Lett., 94: 054501, 2005]. We then extendWaldmann\\'s method [Z. Naturforsch. A, 22: 1269-1280, 1967] to formulate the boundary conditions at the fluid-solid interface that match the hydrodynamic equations in the bulk. The effects of the solid surface curvature are also briefly discussed in the appendix. The guiding principles of our model derivation are the conservation laws and the positive definiteness of entropy production together with the Onsager reciprocal relation. The derived model is self-consistent in the sense that the boundary conditions are

  10. Compensation of flow maldistribution in fin-and-tube evaporators for residential air-conditioning

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian

    2011-01-01

    Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution....

  11. An experimental and numerical study of diffusion flames in cross-flow and quiescent environment at smoke point condition

    Science.gov (United States)

    Goh, Sien Fong

    An experimental and numerical study of a turbulent smoke point diffusion flame in a quiescent and cross-flow condition was performed. The fuel mass flow rate of a turbulent smoke point flame was determined at a quiescent condition and in cross-flow with velocity ranging from 2 to 4 m/s. This fuel mass flow rate is defined as the Critical Fuel Mass Flow Rate (CFMFR). At a fuel mass flow rate below the CFMFR the flame produces smoke. In the dilution study, an amount of inert gas (nitrogen) was added to the fuel stream to achieve the smoke point condition for ten different fractions of CFMFR. From this dilution study, three regions were defined, the chemically-dominated region, transition region, and momentum-dominated region. The first objective of this study was to determine the factors behind the distinction of these three regions. The second objective was to understand the effect of cross-flow velocity on the smoke point flame structure. The flame temperature, radiation, geometrical dimension of flame, velocity, and global emissions and in-flame species concentration were measured. The third objective was to study a numerical model that can simulate the turbulent smoke point flame structure. The dilution study showed that the flames in quiescent condition and in the 3.5 and 4 m/s cross-flow condition had the chemically-dominated region at 5% to 20% CFMFR, the transition region at 20% to 40% CFMFR, and the momentum-dominated region at 40% to 100% CFMFR. On the other hand, the flame in cross-flow of 2 to 3 m/s showed the chemically-dominated region at 5% to 10% CFMFR, the transition region at 10% to 30% CFMFR, and the momentum-dominated region at 30% to 100% CFMFR. The chemically-dominated flame had a sharp dual-peak structure for the flame temperature, CO2 and NO concentration profiles at 25% and 50% flame length. However, the momentum-dominated region flame exhibited a dual peak structure only at 25% flame length. The decrease of flow rate from 30% to 10% CFMFR

  12. Heat transfer effects on flow past an exponentially accelerated vertical plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2008-01-01

    Full Text Available An exact solution to the problem of flow past an exponentially accelerated infinite vertical plate with variable temperature is analyzed. The temperature of the plate is raised linearly with time t. The dimensionless governing equations are solved using Laplace-transform technique. The velocity and temperature profiles are studied for different physical parameters like thermal Grashof number Gr, time and an accelerating parameter a. It is observed that the velocity increases with increasing values of a or Gr.

  13. Fives decades of strong temporal variability in the flow of the Brunt Ice Shelf, Antarctica

    Science.gov (United States)

    De Rydt, Jan; Gudmundsson, Hilmar; Nagler, Thomas

    2017-04-01

    The Brunt Ice Shelf, East Antarctica, is a complex conglomerate of meteoric and marine ice, weakly connected to the much larger and faster-flowing Stancomb Wills Glacier Tongue to the east, and pinned down to the seabed in a small area around the McDonalds Ice Rumples in the north. The ice shelf is home to the UK research station Halley, from which changes to the ice shelf have been monitored closely since the 1960s. A unique 50-year record of the flow speed and an intense surveying programme over the past 10 years, have revealed a strong temporal variability in the flow. In particular, the speed of the ice shelf has increased by 10% each year over the past few years. In order to understand these rapid changes, we use a state-of-the-art flow model in combination with a range of satellite, ground-based and airborne radar data, to accurately simulate the historical flow and recent changes. In particular, we model the effects of a recently formed rift that is propagating at a speed of up to 600m/day and threatens to dislodge the ice shelf from its pinning point at the McDonalds Ice Rumples. We also report on the recent reactivation of a large chasm which has prompted the relocation of the station during the 2016/17 austral summer.

  14. Assessing River Low-Flow Uncertainties Related to Hydrological Model Calibration and Structure under Climate Change Conditions

    Directory of Open Access Journals (Sweden)

    Mélanie Trudel

    2017-03-01

    Full Text Available Low-flow is the flow of water in a river during prolonged dry weather. This paper investigated the uncertainty originating from hydrological model calibration and structure in low-flow simulations under climate change conditions. Two hydrological models of contrasting complexity, GR4J and SWAT, were applied to four sub-watersheds of the Yamaska River, Canada. The two models were calibrated using seven different objective functions including the Nash-Sutcliffe coefficient (NSEQ and six other objective functions more related to low flows. The uncertainty in the model parameters was evaluated using a PARAmeter SOLutions procedure (PARASOL. Twelve climate projections from different combinations of General Circulation Models (GCMs and Regional Circulation Models (RCMs were used to simulate low-flow indices in a reference (1970–2000 and future (2040–2070 horizon. Results indicate that the NSEQ objective function does not properly represent low-flow indices for either model. The NSE objective function applied to the log of the flows shows the lowest total variance for all sub-watersheds. In addition, these hydrological models should be used with care for low-flow studies, since they both show some inconsistent results. The uncertainty is higher for SWAT than for GR4J. With GR4J, the uncertainties in the simulations for the 7Q2 index (the 7-day low-flow value with a 2-year return period are lower for the future period than for the reference period. This can be explained by the analysis of hydrological processes. In the future horizon, a significant worsening of low-flow conditions was projected.

  15. Flow theory and MR techniques

    International Nuclear Information System (INIS)

    Listerud, J.; Altas, S.W.; Axel, L.

    1991-01-01

    One of the unique characteristics of magnetic resonance imaging (MRI) is its depiction of flow, even without the administration of intravascular contrast agents. Flow-related phenomena were recognized early in the development of nuclear magnetic resonance, well before imaging techniques were even devised. The appearance of flowing fluid (e.g., blood or CSF) is important to understand for several reasons. First, its signal intensity is quite variable, even in normal physiologic states, so the possibility of misinterpreting normal findings as representing pathologic conditions, such as vascular thrombosis, is reduced if one has a solid conceptualization of the physical basis of flow effects. Second, signal emanating from flowing spins often generates significant artifacts that can obscure anatomy and degrade images, thereby reducing the radiologist's ability to interpret images and identify lesions. The understanding of flow artifacts allows one to recognize them and implement maneuvers to eliminate or compensate for such effects. Third, it has become apparent that the signal information from flow can be exploited to provide previously unavailable physiologic information

  16. Design and construction of an experiment for two-phase flow in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, R.E.G.; Aziz, K.

    1993-08-01

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  17. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain).

    Science.gov (United States)

    Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco

    2011-05-01

    Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

  18. Experience gained in the process of the variable mass heat flow control implemented in the district heat supply system of the city of Gyor

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, F.; Milanovich, L.; Lelek, J.; Kekk, I. [District Heating LTD. of Gyor (Hungary)

    1996-11-01

    The district heating system of the city of Gyor is fed from a hot water boiler plant. The total heat demand for 23,000 residential homes and several public facilities is 260 MW. The variable mass flow control was implemented in 1991 through 1992. Design, preparatory job and the majority of implementation was carried out without external involvement. The paper presents historical background and brief project presentation which is followed by comparative presentation of the variable mass flow control and constant mass flow control. This comparative survey has been conducted on the basis of operating data for 1993 and those for 1988. In the conclusion the gained experience is summarized.

  19. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay.

    Science.gov (United States)

    Ayers, Lisa; Kohler, Malcolm; Harrison, Paul; Sargent, Ian; Dragovic, Rebecca; Schaap, Marianne; Nieuwland, Rienk; Brooks, Susan A; Ferry, Berne

    2011-04-01

    Circulating cell-derived microparticles (MPs) have been implicated in several disease processes and elevated levels are found in many pathological conditions. The detection and accurate measurement of MPs, although attracting widespread interest, is hampered by a lack of standardisation. The aim of this study was to establish a reliable flow cytometric assay to measure distinct subtypes of MPs in disease and to identify any significant causes of variability in MP quantification. Circulating MPs within plasma were identified by their phenotype (platelet, endothelial, leukocyte and annexin-V positivity (AnnV+). The influence of key variables (i.e. time between venepuncture and centrifugation, washing steps, the number of centrifugation steps, freezing/long-term storage and temperature of thawing) on MP measurement were investigated. Increasing time between venepuncture and centrifugation leads to increased MP levels. Washing samples results in decreased AnnV+MPs (P=0.002) and platelet-derived MPs (PMPs) (P=0.002). Double centrifugation of MPs prior to freezing decreases numbers of AnnV+MPs (P=0.0004) and PMPs (P=0.0004). A single freeze thaw cycle of samples led to an increase in AnnV+MPs (P=0.0020) and PMPs (P=0.0039). Long-term storage of MP samples at -80° resulted in decreased MP levels. This study found that minor protocol changes significantly affected MP levels. This is one of the first studies attempting to standardise a method for obtaining and measuring circulating MPs. Standardisation will be essential for successful development of MP technologies, allowing direct comparison of results between studies and leading to a greater understanding of MPs in disease. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  20. Premix fuels study applicable to duct burner conditions for a variable cycle engine

    Science.gov (United States)

    Venkataramani, K. S.

    1978-01-01

    Emission levels and performance of a premixing Jet-A/air duct burner were measured at reference conditions representative of take-off and cruise for a variable cycle engine. In a parametric variation sequence of tests, data were obtained at inlet temperatures of 400, 500 and 600K at equivalence ratios varying from 0.9 to the lean stability limit. Ignition was achieved at all the reference conditions although the CO levels were very high. Significant nonuniformity across the combustor was observed for the emissions at the take-off condition. At a reference Mach number of 0.117 and an inlet temperature of 600K, corresponding to a simulated cruise condition, the NOx emission level was approximately 1 gm/kg-fuel.

  1. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    Science.gov (United States)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  2. The gradient flow running coupling with twisted boundary conditions

    International Nuclear Information System (INIS)

    Ramos, Alberto

    2014-09-01

    We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density left angle E(t) right angle is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge SU(2) coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.

  3. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    Science.gov (United States)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  4. Viscous and Joule heating effects on MHD free convection flow with variable plate temperature

    International Nuclear Information System (INIS)

    Hossain, M.A.

    1990-09-01

    A steady two-dimensional laminar boundary layer flow of a viscous incompressible and electrically conducting fluid past a vertical heated plate with variable temperature in the presence of a transverse uniform magnetic field has been investigated by bringing the effect of viscous and Joules heating. The non-dimensional boundary layer equations are solved using the implicit finite difference method along with Newton's approximation for small Prandtl number chosen as typical of coolant liquid metals at operating temperature. (author). 10 refs, 2 figs, 1 tab

  5. Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at off-design conditions

    International Nuclear Information System (INIS)

    Zhao, B J; Chen, H L; Hou, D H; Huang, Z F

    2012-01-01

    The solid-liquid two-phase flow fields in the non-clogging centrifugal pump with a double-channel impeller have been investigated numerically for the design condition and also off-design conditions, in order to study the solid-liquid two-phase flow pattern and non-clogging mechanism in non-clogging centrifugal pumps. The main conclusions include: The sand volume fraction distribution is extremely inhomogeneous in the whole flow channel of the pump at off-design conditions. In the impeller, particles mainly flow along the pressure surface and hub; In the volute, particles mainly accumulate in the region near to the exit of volute, the largest sand volume fraction is observed at the tongue, and a large number of particles collide with volute wall and exit the volute after circling around the volute for several times. When the particle diameter increases, particles tend to accumulate on the pressure side of the impeller, and more particles crash with the pressure side of the blade. And larger sand volume fraction gratitude is also observed in the whole flow channel of the pump. With the decrease of the inlet sand volume fraction, particles tend to accumulate on the suction side of the blade. Compared with the particle diameter, the inlet sand volume fraction has less influence on the sand volume fraction gratitude in the whole channel of the pump. At the large flow rate, the minimum and maximum sand volume fraction in the whole flow channel of the model pump tends to be smaller than that at the small flow rate. Thus, it is concluded that the water transportation capacity increases with the flow rate. This research will strengthen people's understanding of the multiphase flow pattern in non-clogging centrifugal pumps, thus provides a theoretical basis for the optimal design of non-clogging centrifugal pumps.

  6. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    Science.gov (United States)

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  7. Study on the Formation and Initial Transport for Non-Homogeneous Debris Flow

    Directory of Open Access Journals (Sweden)

    An Ping Shu

    2017-04-01

    Full Text Available Non-homogeneous debris flows generally occur during the rainy seasons in Southwest China, and have received considerable attention in the literature. Regarding the complexity in debris flow dynamics, experimental approaches have proven to be effective in revealing the formative mechanism for debris flow, and quantifying the relations between the various influencing factors with debris-flow formation and subsequent transport processes. Therefore, a flume-based and experimental study was performed at the Debris Flow Observation and Research Station of Jiangjia Gully in Yunnan Province, to theoretically analyze favorable conditions for debris-flow formation and initial transport by selecting the median particle size d50, flow rate Q, vertical grading coefficient ψ, slopes S, and the initial soil water contents W as the five variables for investigation. To achieve this, an optimal combination of these variables was made through an orthogonal experimental design to determine their relative importance upon the occurrence and initial mobilization behavior of a debris flow and to further enhance our insight into debris-flow triggering and transport mechanisms.

  8. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    Science.gov (United States)

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  9. Flow rate and temperature characteristics in steady state condition on FASSIP-01 loop during commissioning

    Science.gov (United States)

    Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.

    2018-02-01

    The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.

  10. Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, S.R., E-mail: srcorsi@usgs.gov [U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562 (United States); Borchardt, M.A.; Spencer, S.K. [U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, WI 54449 (United States); Hughes, P.E.; Baldwin, A.K. [U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562 (United States)

    2014-08-15

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  11. Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables

    International Nuclear Information System (INIS)

    Corsi, S.R.; Borchardt, M.A.; Spencer, S.K.; Hughes, P.E.; Baldwin, A.K.

    2014-01-01

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56–2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n = 63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing

  12. Effects of Watershed Land Use and Geomorphology on Stream Low Flows During Severe Drought Conditions in the Southern Blue Ridge Mountains, Georgia and North Carolina, United States

    Science.gov (United States)

    Land use and physiographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the influence of land use and watershed geomorphic characteristics on low-flow variability in the southern Blue Ridge Mo...

  13. Experimental and numerical study on single-phase flow characteristics of natural circulation system with heated narrow rectangular channel under rolling motion condition

    International Nuclear Information System (INIS)

    Yu, Shengzhi; Wang, Jianjun; Yan, Ming; Yan, Changqi; Cao, Xiaxin

    2017-01-01

    Highlights: • The phasic difference between flow rate and frictional pressure drop is negligible. • Effect mechanism of rolling motion on flow behaviors of NC is interpreted. • The startup model is proposed and verified. • Steady-state correlations are feasible to predict transient resistance. • The in-house code can simulate instantaneous flow behaviors of NC correctly. - Abstract: Effects of rolling motion on flow characteristics in a natural circulation system were investigated experimentally and numerically. The numerical results from validated code were mainly used to provide detailed information for the discussion and analysis of experimental results. The results indicate that under rolling motion condition, the phasic difference between flow rate and frictional pressure drop of narrow rectangular channel is negligible. Angular acceleration is the eigenvalue for the effects of rolling motion on flow rate under single-phase natural circulation condition. When angular acceleration is approximately equal, even though either the angle or the period of rolling motion is different, peak, trough and time-averaged values of flow rate are approximately equal. Under rolling motion and single-phase natural circulation conditions, the phenomenon that dimensionless time-averaged mass flow rate is smaller than that under steady state condition is controlled by the nonlinear relationship between mass flow rate and the resistance of loop. The factor also causes the result that the absolute difference of dimensionless flow rate between peak and steady state is smaller than that between trough and steady state. The startup model which is proposed in present paper can be used to predict the flow characteristics of single-phase natural circulation system at startup stage of rolling motion favorably. The self-developed code can simulate instantaneous flow characteristics of single-phase natural circulation system under rolling motion and steady state conditions

  14. A computational investigation of the interstitial flow induced by a variably thick blanket of very fine sand covering a coarse sand bed

    Science.gov (United States)

    Bartzke, Gerhard; Huhn, Katrin; Bryan, Karin R.

    2017-10-01

    Blanketed sediment beds can have different bed mobility characteristics relative to those of beds composed of uniform grain-size distribution. Most of the processes that affect bed mobility act in the direct vicinity of the bed or even within the bed itself. To simulate the general conditions of analogue experiments, a high-resolution three-dimensional numerical `flume tank' model was developed using a coupled finite difference method flow model and a discrete element method particle model. The method was applied to investigate the physical processes within blanketed sediment beds under the influence of varying flow velocities. Four suites of simulations, in which a matrix of uniform large grains (600 μm) was blanketed by variably thick layers of small particles (80 μm; blanket layer thickness approx. 80, 350, 500 and 700 μm), were carried out. All beds were subjected to five predefined flow velocities ( U 1-5=10-30 cm/s). The fluid profiles, relative particle distances and porosity changes within the bed were determined for each configuration. The data show that, as the thickness of the blanket layer increases, increasingly more small particles accumulate in the indentations between the larger particles closest to the surface. This results in decreased porosity and reduced flow into the bed. In addition, with increasing blanket layer thickness, an increasingly larger number of smaller particles are forced into the pore spaces between the larger particles, causing further reduction in porosity. This ultimately causes the interstitial flow, which would normally allow entrainment of particles in the deeper parts of the bed, to decrease to such an extent that the bed is stabilized.

  15. Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, T. [Faculty of Computing, Mohammad Ali Jinnah University, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-08-15

    This article investigates the magnetohydrodynamic flow of third grade nanofluid with thermophoresis and Brownian motion effects. Energy equation is considered in the presence of thermal radiation and viscous dissipation. Rosseland’s approximation is employed for thermal radiation. The heat and concentration flux conditions are taken into account. The governing nonlinear mathematical expressions of velocity, temperature and concentration are converted into dimensionless expressions via transformations. Series solutions of the dimensionless velocity, temperature and concentration are developed. Convergence of the constructed solutions is checked out both graphically and numerically. Effects of interesting physical parameters on the temperature and concentration are plotted and discussed in detail. Numerical values of skin-friction coefficient are computed for the hydrodynamic and hydromagnetic flow cases.

  16. Non-adiabatic pressure loss boundary condition for modelling turbocharger turbine pulsating flow

    International Nuclear Information System (INIS)

    Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.

    2015-01-01

    Highlights: • Bespoke non-adiabatic pressure loss boundary for pulse flow turbine modelling. • Predictions show convincing results against experimental and literature data. • Predicted pulse pressure propagation is in good agreement with literature data. • New methodology is time efficient and requires minimal geometrical inputs. - Abstract: This paper presents a simplified methodology of pulse flow turbine modelling, as an alternative over the meanline integrated methodology outlined in previous work, in order to make its application to engine cycle simulation codes much more straight forward. This is enabled through the development of a bespoke non-adiabatic pressure loss boundary to represent the turbine rotor. In this paper, turbocharger turbine pulse flow performance predictions are presented along with a comparison of computation duration against the previously established integrated meanline method. Plots of prediction deviation indicate that the mass flow rate and actual power predictions from both methods are highly comparable and are reasonably close to experimental data. However, the new boundary condition required significantly lower computational time and rotor geometrical inputs. In addition, the pressure wave propagation in this simplified unsteady turbine model at different pulse frequencies has also been found to be in agreement with data from the literature, thereby supporting the confidence in its ability to simulate the wave action encountered in turbine pulse flow operation

  17. Inactive supply wells as conduits for flow and contaminant migration: conditions of occurrence and suggestions for management

    Science.gov (United States)

    Gailey, Robert M.

    2017-11-01

    Water supply wells can act as conduits for vertical flow and contaminant migration between water-bearing strata under common hydrogeologic and well construction conditions. While recognized by some for decades, there is little published data on the magnitude of flows and extent of resulting water quality impacts. Consequently, the issue may not be acknowledged widely enough and the need for better management persists. This is especially true for unconsolidated alluvial groundwater basins that are hydrologically stressed by agricultural activities. Theoretical and practical considerations indicate that significant water volumes can migrate vertically through wells. The flow is often downward, with shallow groundwater, usually poorer in quality, migrating through conduit wells to degrade deeper water quality. Field data from locations in California, USA, are presented in combination with modeling results to illustrate both the prevalence of conditions conducive to intraborehole flow and the resulting impacts to water quality. Suggestions for management of planned wells include better enforcement of current regulations and more detailed consideration of hydrogeologic conditions during design and installation. A potentially greater management challenge is presented by the large number of existing wells. Monitoring for evidence of conduit flow and solute transport in areas of high well density is recommended to identify wells that pose greater risks to water quality. Conduit wells that are discovered may be addressed through approaches that include structural modification and changes in operations.

  18. Lattice Boltzmann simulations of pressure-driven flows in microchannels using Navier–Maxwell slip boundary conditions

    KAUST Repository

    Reis, Tim

    2012-01-01

    We present lattice Boltzmann simulations of rarefied flows driven by pressure drops along two-dimensional microchannels. Rarefied effects lead to non-zero cross-channel velocities, nonlinear variations in the pressure along the channel. Both effects are absent in flows driven by uniform body forces. We obtain second-order accuracy for the two components of velocity the pressure relative to asymptotic solutions of the compressible Navier-Stokes equations with slip boundary conditions. Since the common lattice Boltzmann formulations cannot capture Knudsen boundary layers, we replace the usual discrete analogs of the specular diffuse reflection conditions from continuous kinetic theory with a moment-based implementation of the first-order Navier-Maxwell slip boundary conditions that relate the tangential velocity to the strain rate at the boundary. We use these conditions to solve for the unknown distribution functions that propagate into the domain across the boundary. We achieve second-order accuracy by reformulating these conditions for the second set of distribution functions that arise in the derivation of the lattice Boltzmann method by an integration along characteristics. Our moment formalism is also valuable for analysing the existing boundary conditions. It reveals the origin of numerical slip in the bounce-back other common boundary conditions that impose conditions on the higher moments, not on the local tangential velocity itself. © 2012 American Institute of Physics.

  19. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait.

    Science.gov (United States)

    Tamburini, Paola; Storm, Fabio; Buckley, Chris; Bisi, Maria Cristina; Stagni, Rita; Mazzà, Claudia

    2018-01-01

    The availability of wearable sensors allows shifting gait analysis from the traditional laboratory settings, to daily life conditions. However, limited knowledge is available about whether alterations associated to different testing environment (e.g. indoor or outdoor) and walking protocols (e.g. free or controlled), result from actual differences in the motor behaviour of the tested subjects or from the sensitivity to these changes of the indexes adopted for the assessment. In this context, it was hypothesized that testing environment and walking protocols would not modify motor control stability in the gait of young healthy adults, who have a mature and structured gait pattern, but rather the variability of their motor pattern. To test this h