The dynamics of variable-density turbulence
Sandoval, D.L.
1995-11-01
The dynamics of variable-density turbulent fluids are studied by direct numerical simulation. The flow is incompressible so that acoustic waves are decoupled from the problem, and implying that density is not a thermodynamic variable. Changes in density occur due to molecular mixing. The velocity field, is in general, divergent. A pseudo-spectral numerical technique is used to solve the equations of motion. Three-dimensional simulations are performed using a grid size of 128 3 grid points. Two types of problems are studied: (1) the decay of isotropic, variable-density turbulence, and (2) buoyancy-generated turbulence in a fluid with large density fluctuations. In the case of isotropic, variable-density turbulence, the overall statistical decay behavior, for the cases studied, is relatively unaffected by the presence of density variations when the initial density and velocity fields are statistically independent. The results for this case are in quantitative agreement with previous numerical and laboratory results. In this case, the initial density field has a bimodal probability density function (pdf) which evolves in time towards a Gaussian distribution. The pdf of the density field is symmetric about its mean value throughout its evolution. If the initial velocity and density fields are statistically dependent, however, the decay process is significantly affected by the density fluctuations. For the case of buoyancy-generated turbulence, variable-density departures from the Boussinesq approximation are studied. The results of the buoyancy-generated turbulence are compared with variable-density model predictions. Both a one-point (engineering) model and a two-point (spectral) model are tested against the numerical data. Some deficiencies in these variable-density models are discussed and modifications are suggested
New phenomena in variable-density Rayleigh-Taylor turbulence
Livescu, D; Ristorcelli, J R; Petersen, M R; Gore, R A, E-mail: livescu@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2010-12-15
is proportional to the turbulent Reynolds number, the dissipation rate and turbulent transport have different length scales long after the onset of the self-similar growth for the layer growth. To highlight the importance of turbulent transport, variable density energy budgets for the kinetic energy, mass flux and density-specific volume covariance equations, necessary for a moment closure of the flow, are provided.
Stochastic transport models for mixing in variable-density turbulence
Bakosi, J.; Ristorcelli, J. R.
2011-11-01
In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.
Density-ratio effects on buoyancy-driven variable-density turbulent mixing
Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam
2017-11-01
Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
Bakosi, Jozsef; Ristorcelli, Raymond J.
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Models for turbulent flows with variable density and combustion
Jones, W.P.
1980-01-01
Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms
Exact statistical results for binary mixing and reaction in variable density turbulence
Ristorcelli, J. R.
2017-02-01
We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ 2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ 2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived
Pietri, L.; Amielh, M.; Anselmet, F.; Fulachier, L. [Institut de Recherche sur les Phinomenes Hors Equilibre Equipe Turbulence, 13 - Marseille (France)
1997-12-31
Turbulent flows with strong density variations, like helium jets in the ambient air, have specific properties linked with the difference of gas densities. This paper presents some experimental results of turbulence properties inside such flows: the Reynolds tensions and the associated turbulent viscosity, and some characteristics linked with the statistical properties of the different turbulence scales. These last results allows to show the complexity of such flows characterized by the influence of external parameters (Reynolds number, initial density ratio, initial momentum flux) that govern the evolution of these parameters inside the jet from the nozzle up to regions where similarity properties are reached. (J.S.) 12 refs.
Modeling variable density turbulence in the wake of an air-entraining transom stern
Hendrickson, Kelli; Yue, Dick
2015-11-01
This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.
Hendrickson, Kelli; Yue, Dick
2016-11-01
This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.
Mohaghar, Mohammad; Carter, John; Pathikonda, Gokul; Ranjan, Devesh
2017-11-01
The current study experimentally investigates the influence of the initial Atwood ratio (At) on the evolution of Richtmyer-Meshkov instability at the Georgia Tech Shock Tube and Advanced Mixing Laboratory. Two Atwood numbers (At =0.22 and 0.67) are studied, which correspond to the gas combinations of nitrogen seeded with acetone vapor (light) over carbon dioxide (heavy) and same light gas over sulfur hexafluoride (heavy) respectively. A perturbed, multi-mode, inclined interface (with an amplitude to wavelength ratio of 0.088) is impulsively accelerated by the incident shock traveling vertically from light to heavy gas with a Mach number 1.55. The effect of Atwood ratio on turbulent mixing transition after reshock at the same non-dimensional times between the two cases is examined through ensemble-averaged turbulence statistics from simultaneous planar laser induced uorescence (PLIF) and particle image velocimetry (PIV) measurements. Preliminary studies over the smaller Atwood number indicates that turbulent mixing transition criteria can be satisfied after reshock. This work was supported by the National Science Foundation CAREER Award No. 1451994.
Density Effects on Post-shock Turbulence Structure
Tian, Yifeng; Jaberi, Farhad; Livescu, Daniel; Li, Zhaorui; Michigan State University Collaboration; Los Alamos National Laboratory Collaboration; Texas A&M University-Corpus Christi Collaboration
2017-11-01
The effects of density variations due to mixture composition on post-shock turbulence structure are studied using turbulence-resolving shock-capturing simulations. This work extends the canonical Shock-Turbulence Interaction (STI) problem to involve significant variable density effects. The numerical method has been verified using a series of grid and LIA convergence tests, and is used to generate accurate post-shock turbulence data for a detailed flow study. Density effects on post-shock turbulent statistics are shown to be significant, leading to an increased amplification of turbulent kinetic energy (TKE). Eulerian and Lagrangian analyses show that the increase in the post-shock correlation between rotation and strain is weakened in the case with significant density variations (referred to as the ``multi-fluid'' case). Similar to previous single-fluid results and LIA predictions, the shock wave significantly changes the topology of the turbulent structures, exhibiting a symmetrization of the joint PDF of second and third invariant of the deviatoric part of velocity gradient tensor. In the multi-fluid case, this trend is more significant and mainly manifested in the heavy fluid regions. Lagrangian data are also used to study the evolution of turbulence structure away from the shock wave and assess the accuracy of Lagrangian dynamical models.
Variable Kernel Density Estimation
Terrell, George R.; Scott, David W.
1992-01-01
We investigate some of the possibilities for improvement of univariate and multivariate kernel density estimates by varying the window over the domain of estimation, pointwise and globally. Two general approaches are to vary the window width by the point of estimation and by point of the sample observation. The first possibility is shown to be of little efficacy in one variable. In particular, nearest-neighbor estimators in all versions perform poorly in one and two dimensions, but begin to b...
THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS
Gazol, Adriana; Kim, Jongsoo
2013-01-01
We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function (Σ-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n ∼ –3 ), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from ∼0.2 to ∼5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n ∼> 7.1 cm –3 ) goes from ∼1.1 to ∼16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the Σ-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.
VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS
Pollack, Maxwell; Pauls, David; Wiita, Paul J., E-mail: wiitap@tcnj.edu [Department of Physics, The College of New Jersey P.O. Box 7718, Ewing, NJ 08628-0718 (United States)
2016-03-20
We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.
VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS
Pollack, Maxwell; Pauls, David; Wiita, Paul J.
2016-01-01
We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-01-01
We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant variables before fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of mixing between two interpenetrating fluids to define the initial profiles for the turbulence model variables. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted profiles for the turbulence model variables and profiles of the variables obtained from low Atwood number three dimensional simulations show reasonable agreement.
Spectrum of density turbulence measured by microwave reflectometer
Ding Xuantong; Cao Janyong; Xu Deming; Zhang Hongying; Yang Qinwei
1993-01-01
The principle of measuring lower frequency density turbulence with microwave reflectometer is presented. Preliminary results from the HL-1 tokamak have been obtained and compared with the results measured by means of electrostatic probe
Transfer equations for spectral densities of inhomogeneous MHD turbulence
Tu, C.-Y.; Marsch, E.
1990-01-01
On the basis of the dynamic equations governing the evolution of magnetohydrodynamic fluctuations expressed in terms of Elsaesser variables and of their correlation functions derived by Marsch and Tu, a new set of equations is presented describing the evolutions of the energy spectrum e ± and of the residual energy spectra e R and e S of MHD turbulence in an inhomogeneous magnetofluid. The nonlinearities associated with triple correlations in these equations are analysed in detail and evaluated approximately. The resulting energy-transfer functions across wavenumber space are discussed. For e ± they are shown to be approximately energy-conserving if the gradients of the flow speed and density are weak. New cascading functions are heuristically determined by an appropriate dimensional analysis and plausible physical arguments, following the standard phenomenology of fluid turbulence. However, for e R the triple correlations do not correspond to an 'energy' conserving process, but also represent a nonlinear source term for e R . If this source term can be neglected, the spectrum equations are found to be closed. The problem of dealing with the nonlinear source terms remains to be solved in future investigations. (author)
Investigation of the density turbulence in ohmic ASDEX plasmas
Dodel, G.; Holtzhauer, E.
1989-01-01
A 119 μm homodyne laser scattering experiment is used on ASDEX to investigate wavenumber and frequency of the density fluctuations occuring in the different operational conditions of the machine. The changes of the density turbulence caused by additional heating are of primary interest with regard to a possible correlation to anomalous transport. Therefore, in the current experiment particular emphasis is placed on these investigations. On the other hand it is the ohmic phase which constitutes the least complicated physical situation in a tokamak and is therefore best suited to reveal the basic physical nature of the density turbulence. In the following we present a summary of our findings in the ohmic phase and make an attempt to compare these findings with what would be expected from the simplest model of density-gradient-driven driftwave turbulence saturated at the mixing-length level. (author) 3 refs., 4 figs
Investigation of the density turbulence in ohmic ASDEX plasmas
Dodel, G; Holtzhauer, E [Stuttgart Univ. (Germany, F.R.). Inst. fuer Plasmaforschung; Giannone, L.; Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.)
1989-01-01
A 119 {mu}m homodyne laser scattering experiment is used on ASDEX to investigate wavenumber and frequency of the density fluctuations occuring in the different operational conditions of the machine. The changes of the density turbulence caused by additional heating are of primary interest with regard to a possible correlation to anomalous transport. Therefore, in the current experiment particular emphasis is placed on these investigations. On the other hand it is the ohmic phase which constitutes the least complicated physical situation in a tokamak and is therefore best suited to reveal the basic physical nature of the density turbulence. In the following we present a summary of our findings in the ohmic phase and make an attempt to compare these findings with what would be expected from the simplest model of density-gradient-driven driftwave turbulence saturated at the mixing-length level. (author) 3 refs., 4 figs.
Atmospheric turbulence profiling with unknown power spectral density
Helin, Tapio; Kindermann, Stefan; Lehtonen, Jonatan; Ramlau, Ronny
2018-04-01
Adaptive optics (AO) is a technology in modern ground-based optical telescopes to compensate for the wavefront distortions caused by atmospheric turbulence. One method that allows to retrieve information about the atmosphere from telescope data is so-called SLODAR, where the atmospheric turbulence profile is estimated based on correlation data of Shack-Hartmann wavefront measurements. This approach relies on a layered Kolmogorov turbulence model. In this article, we propose a novel extension of the SLODAR concept by including a general non-Kolmogorov turbulence layer close to the ground with an unknown power spectral density. We prove that the joint estimation problem of the turbulence profile above ground simultaneously with the unknown power spectral density at the ground is ill-posed and propose three numerical reconstruction methods. We demonstrate by numerical simulations that our methods lead to substantial improvements in the turbulence profile reconstruction compared to the standard SLODAR-type approach. Also, our methods can accurately locate local perturbations in non-Kolmogorov power spectral densities.
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-01-01
We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant parameters before the fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of the mixing between two interpenetrating fluids to define the initial profiles for the turbulence model parameters. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted initial profiles for the turbulence model parameters and initial profiles of the parameters obtained from low Atwood number three dimensional simulations show reasonable agreement.
Density turbulence and disruption phenomena in TEXTOR
Waidmann, G.; Kuang, G.; Jadoul, M.
1992-01-01
Disruptive processes are observed in tokamak plasmas not only at the operating limits (density limit or q-limit) but can be found under a variety of experimental conditions. Large forces are exerted then on vessel components and support structures. The sudden release of stored plasma energy presents a serious erosion problem for the first wall already in the next generation of large tokamak machines. Strong energy losses from the plasma and an influx of impurities are already present in minor plasma disruptions which do not immediately lead to a plasma current termination. The rapid loss of energy confinement was investigated within the framework of a systematic study on plasma disruption phenomena in TEXTOR. (author) 4 refs., 4 figs
High density turbulent plasma processes from a shock tube
Oyedeji, O.; Johnson, J.A. III
1991-01-01
We have finished the first stages of our experimental and theoretical investigations on models for energy and momentum transport and for photon-particle collision processes in a turbulent quasi-stationary high density plasma. The system is explored by beginning to determine the turbulence phenomenology associated with an ionizing shock wave. The theoretical underpinnings are explored for phonon particle collisions by determining the collisional redistribution function, using Lioville Space Green's Function, which will characterize the inelastic scattering of the radiation from one frequency to another. We have observed that a weak magnetic field tends to increase the apparent random-like behaviors in a collisional turbulent plasma. On the theoretical side, we have been able to achieve a form for the collisional redistribution function. It remains to apply these concepts to a stationary turbulent plasma in the reflected ionizing shock wave and to exercise the implications of evaluations of the collisional redistribution function for such a system when it is probed by a strong radiation source. These results are discussed in detail in the publications, which have resulted from the this effort, cited at the end of the report
Semi-local scaling and turbulence modulation in variable property turbulent channel flows
Patel, A.; Peeters, J.W.R.; Boersma, B.J.; Pecnik, R.
2015-01-01
We theoretically and numerically investigate the effect of temperature dependent density and viscosity on turbulence in channel flows. First, a mathematical framework is developed to support the validity of the semi-local scaling as proposed based on heuristic arguments by Huang, Coleman, and
Blazar Variability from Turbulence in Jets Launched by Magnetically Arrested Accretion Flows
Riordan, Michael O’; Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)
2017-07-10
Blazars show variability on timescales ranging from minutes to years, the former being comparable to and in some cases even shorter than the light-crossing time of the central black hole. The observed γ -ray light curves can be described by a power-law power density spectrum (PDS), with a similar index for both BL Lacs and flat-spectrum radio quasars. We show that this variability can be produced by turbulence in relativistic jets launched by magnetically arrested accretion flows (MADs). We perform radiative transport calculations on the turbulent, highly magnetized jet launching region of a MAD with a rapidly rotating supermassive black hole. The resulting synchrotron and synchrotron self-Compton emission, originating from close to the black hole horizon, is highly variable. This variability is characterized by PDS, which is remarkably similar to the observed power-law spectrum at frequencies less than a few per day. Furthermore, turbulence in the jet launching region naturally produces fluctuations in the plasma on scales much smaller than the horizon radius. We speculate that similar turbulent processes, operating in the jet at large radii (and therefore a high bulk Lorentz factor), are responsible for blazar variability over many decades in frequency, including on minute timescales.
Blazar Variability from Turbulence in Jets Launched by Magnetically Arrested Accretion Flows
Riordan, Michael O’; Pe’er, Asaf; McKinney, Jonathan C.
2017-01-01
Blazars show variability on timescales ranging from minutes to years, the former being comparable to and in some cases even shorter than the light-crossing time of the central black hole. The observed γ -ray light curves can be described by a power-law power density spectrum (PDS), with a similar index for both BL Lacs and flat-spectrum radio quasars. We show that this variability can be produced by turbulence in relativistic jets launched by magnetically arrested accretion flows (MADs). We perform radiative transport calculations on the turbulent, highly magnetized jet launching region of a MAD with a rapidly rotating supermassive black hole. The resulting synchrotron and synchrotron self-Compton emission, originating from close to the black hole horizon, is highly variable. This variability is characterized by PDS, which is remarkably similar to the observed power-law spectrum at frequencies less than a few per day. Furthermore, turbulence in the jet launching region naturally produces fluctuations in the plasma on scales much smaller than the horizon radius. We speculate that similar turbulent processes, operating in the jet at large radii (and therefore a high bulk Lorentz factor), are responsible for blazar variability over many decades in frequency, including on minute timescales.
Simulating variable-density flows with time-consistent integration of Navier-Stokes equations
Lu, Xiaoyi; Pantano, Carlos
2017-11-01
In this talk, we present several features of a high-order semi-implicit variable-density low-Mach Navier-Stokes solver. A new formulation to solve pressure Poisson-like equation of variable-density flows is highlighted. With this formulation of the numerical method, we are able to solve all variables with a uniform order of accuracy in time (consistent with the time integrator being used). The solver is primarily designed to perform direct numerical simulations for turbulent premixed flames. Therefore, we also address other important elements, such as energy-stable boundary conditions, synthetic turbulence generation, and flame anchoring method. Numerical examples include classical non-reacting constant/variable-density flows, as well as turbulent premixed flames.
On the implicit density based OpenFOAM solver for turbulent compressible flows
Fürst, Jiří
The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.
Modeling Turbulent Combustion for Variable Prandtl and Schmidt Number
Hassan, H. A.
2004-01-01
This report consists of two abstracts submitted for possible presentation at the AIAA Aerospace Science Meeting to be held in January 2005. Since the submittal of these abstracts we are continuing refinement of the model coefficients derived for the case of a variable Turbulent Prandtl number. The test cases being investigated are a Mach 9.2 flow over a degree ramp and a Mach 8.2 3-D calculation of crossing shocks. We have developed an axisymmetric code for treating axisymmetric flows. In addition the variable Schmidt number formulation was incorporated in the code and we are in the process of determining the model constants.
Topology in Synthetic Column Density Maps for Interstellar Turbulence
Putko, Joseph; Burkhart, B. K.; Lazarian, A.
2013-01-01
We show how the topology tool known as the genus statistic can be utilized to characterize magnetohydrodyanmic (MHD) turbulence in the ISM. The genus is measured with respect to a given density threshold and varying the threshold produces a genus curve, which can suggest an overall ‘‘meatball,’’ neutral, or ‘‘Swiss cheese’’ topology through its integral. We use synthetic column density maps made from three-dimensional 5123 compressible MHD isothermal simulations performed for different sonic and Alfvénic Mach numbers (Ms and MA respectively). We study eight different Ms values each with one sub- and one super-Alfvénic counterpart. We consider sight-lines both parallel (x) and perpendicular (y and z) to the mean magnetic field. We find that the genus integral shows a dependence on both Mach numbers, and this is still the case even after adding beam smoothing and Gaussian noise to the maps to mimic observational data. The genus integral increases with higher Ms values (but saturates after about Ms = 4) for all lines of sight. This is consistent with greater values of Ms resulting in stronger shocks, which results in a clumpier topology. We observe a larger genus integral for the sub-Alfvénic cases along the perpendicular lines of sight due to increased compression from the field lines and enhanced anisotropy. Application of the genus integral to column density maps should allow astronomers to infer the Mach numbers and thus learn about the environments of interstellar turbulence. This work was supported by the National Science Foundation’s REU program through NSF Award AST-1004881.
The temporal variability of species densities
Redfearn, A.; Pimm, S.L.
1993-01-01
Ecologists use the term 'stability' to mean to number of different things (Pimm 1984a). One use is to equate stability with low variability in population density over time (henceforth, temporal variability). Temporal variability varies greatly from species to species, so what effects it? There are at least three sets of factors: the variability of extrinsic abiotic factors, food web structure, and the intrinsic features of the species themselves. We can measure temporal variability using at least three statistics: the coefficient of variation of density (CV); the standard deviation of the logarithms of density (SDL); and the variance in the differences between logarithms of density for pairs of consecutive years (called annual variability, hence AV, b y Wolda 1978). There are advantages and disadvantages to each measure (Williamson 1984), though in our experience, the measures are strongly correlated across sets of taxonomically related species. The increasing availability of long-term data sets allows one to calculate these statistics for many species and so to begin to understand the various causes of species differences in temporal variability
Effects of rational surface density on resistive g turbulence
Beklemishev, A.D.; Sugama, H.; Horton, W.
1993-01-01
The Beklemishev-Horton theory states that the anomalous transport coefficient is proportional to the density of rational surfaces provided that the interaction between the modes localized around different rational surfaces is weak compared with modes of the same helicity. The authors examine the effects of the density of states ρ using resistive g turbulence in 2D (single-helicity) and 3D (multi-helicity) simulations. They find that the modes with different helicities do not equipartition the available energy, but rather the coalescence or inverse cascade effect is strong so that a few low order mode rational surfaces receive most of the energy. The quasilinear flattening at the surfaces is a strong effect and they use bifurcation theory to derive that the effective diffusivity increases as χ eff = χ 0 ρ/(1 - Cρ) where C is a constant determined by interaction integrals. For a sufficiently high density of states Cρ ≤ 1, the higher order nonlinear interaction must be taken into account
A Variable Turbulent Schmidt Number Formulation for Scramjet Application
Xiao, X.; Edwards, J. R.; Hassan, H. A.; Cutler, A. D.
2004-01-01
In high speed engines, thorough turbulent mixing of fuel and air is required to obtain high performance and high efficiency. Thus, the ability to predict turbulent mixing is crucial in obtaining accurate numerical simulation of an engine and its performance. Current state of the art in CFD simulation is to assume both turbulent Prandtl number and Schmidt numbers to be constants. However, since the mixing of fuel and air is inversely proportional to the Schmidt number, a value of 0.45 for the Schmidt number will produce twice as much diffusion as that with a value of 0.9. Because of this, current CFD tools and models have not been able to provide the needed guidance required for the efficient design of a scramjet engine. The goal of this investigation is to develop the framework needed to calculate turbulent Prandtl and Schmidt numbers as part of the solution. This requires four additional equations: two for the temperature variance and its dissipation rate and two for the concentration variance and its dissipation rate. In the current investigation emphasis will be placed on studying mixing without reactions. For such flows, variable Prandtl number does not play a major role in determining the flow. This, however, will have to be addressed when combustion is present. The approach to be used is similar to that used to develop the k-zeta model. In this approach, relevant equations are derived from the exact Navier-Stokes equations and each individual correlation is modeled. This ensures that relevant physics is incorporated into the model equations. This task has been accomplished. The final set of equations have no wall or damping functions. Moreover, they are tensorially consistent and Galilean invariant. The derivation of the model equations is rather lengthy and thus will not be incorporated into this abstract, but will be included in the final paper. As a preliminary to formulating the proposed model, the original k-zeta model with constant turbulent Prandtl and
Mean-field theory of differential rotation in density stratified turbulent convection
Rogachevskii, I.
2018-04-01
A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.
Restoration of variable density film soundtracks
Hassaïne , Abdelâali; Decencière , Etienne; Besserer , Bernard
2009-01-01
Full text available at http://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569192297.pdf; International audience; The restoration of motion picture films has been an active research field for many years. The restoration of the soundtrack however has mainly been performed at the audio domain in spite of the fast that it is recorded as a continuous image on the film stock. In this paper, we propose a new restoration method for variable density soundtracks. The method first d...
Elastic reflection waveform inversion with variable density
Li, Yuanyuan
2017-08-17
Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.
Heart rate turbulence and variability in patients with ventricular arrhythmias
Diego Tarricone
2009-08-01
Full Text Available Background: To evaluate the changes in autonomic neural control mechanisms before malignant ventricular arrhythmias, we measured heart rate variability (HRV and heart rate turbulence (HRT in patients with ventricular tachycardia or fibrillation (Group I; n=6, non sustained ventricular tachycardia (Group II; n=32, frequent premature ventricular beats (Group III; n=26 and with ICD implantation (Group IV; n=11. Methods: Time domain parameters of HRV and turbulence onset (TO and slope (TS were calculated on 24 hour Holter recordings. Normal values were: SDNN > 70 msec for HRV, TO <0% and TS >2.5 msec/RR-I for HRT. Results: Whereas SDNN was within normal range and similar in all study groups, HRT parameters were significantly different in patients who experienced VT/VF during Holter recording. Abnormal TO and/or TS were present in 100% of Group I patients and only in about 50% of Group II and IV. On the contrary, normal HRT parameters were present in 40-70% of Group II, III and IV patients and none of Group I. Conclusions: These data suggest that HRT analysis is more suitable than HRV to detect those transient alterations in autonomic control mechanisms that are likely to play a major trigger role in the genesis of malignant cardiac arrhythmias. (Heart International 2007; 3: 51-7
Reduction of the Random Variables of the Turbulent Wind Field
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.
2012-01-01
.e. Importance Sampling (IS) or Subset Simulation (SS), will be deteriorated on problems with many random variables. The problem with PDEM is that a multidimensional integral has to be carried out over the space defined by the random variables of the system. The numerical procedure requires discretization......Applicability of the Probability Density Evolution Method (PDEM) for realizing evolution of the probability density for the wind turbines has rather strict bounds on the basic number of the random variables involved in the model. The efficiency of most of the Advanced Monte Carlo (AMC) methods, i...... of the integral domain; this becomes increasingly difficult as the dimensions of the integral domain increase. On the other hand efficiency of the AMC methods is closely dependent on the design points of the problem. Presence of many random variables may increase the number of the design points, hence affects...
Fletcher, Douglas G.; Mckenzie, R. L.
1992-01-01
Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer.
Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling
Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.
2012-01-01
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold
Density effects on tokamak edge turbulence and transport with magnetic X-points
Xu, X.Q.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Ryutov, D.D.; Umansky, M.V.; Pearlstein, L.D.; Bulmer, R.H.; Russell, D.A.; Myra, J.R.; D'Ippolito, D.A.; Greenwald, M.; Snyder, P.B.; Mahdavi, M.A.
2005-01-01
Results are presented from the 3D electromagnetic turbulence code BOUT, the 2D transport code UEDGE, and theoretical analysis of boundary turbulence and transport in a real divertor-plasma geometry and its relationship to the density limit. Key results include: (1) a transition of the boundary turbulence from resistive X-point to resistive-ballooning as a critical plasma density is exceeded; (2) formation of an X-point MARFE in 2D UEDGE transport simulations for increasing outboard radial transport as found by BOUT for increasing density; (3) identification of convective transport by localized plasma 'blobs' in the SOL at high density during neutral fueling, and decorrelation of turbulence between the midplane and the divertor leg due to strong X-point magnetic shear; (4) a new divertor-leg instability driven at high plasma beta by a radial tilt of the divertor plate. (author)
Density based topology optimization of turbulent flow heat transfer systems
Dilgen, Sümer Bartug; Dilgen, Cetin Batur; Fuhrman, David R.
2018-01-01
The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective and the con...... in the optimization process, while also demonstrating extension of the methodology to include coupling of heat transfer with turbulent flows.......The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective...
Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest
Katul, G.; Hsieh, C.-I.; Bowling, D.; Clark, K.; Shurpali, N.; Turnipseed, A.; Albertson, J.; Tu, K.; Hollinger, D.; Evans, B. M.; Offerle, B.; Anderson, D.; Ellsworth, D.; Vogel, C.; Oren, R.
1999-01-01
The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100 m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (??(u), ??(w)) and temperature (??(T)) are more planar homogeneous than their vertical flux of momentum (u(*)2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (> 15%), this unique data set confirmed that single tower measurements represent the 'canonical' structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the 'moving-equilibrium' hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u(*), especially when u(*) was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (I(w)) and the arrival
Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers
Xiao, X.; Hassan, H. A.; Baurle, R. A.
2006-01-01
A complete turbulence model, where the turbulent Prandtl and Schmidt numbers are calculated as part of the solution and where averages involving chemical source terms are modeled, is presented. The ability of avoiding the use of assumed or evolution Probability Distribution Functions (PDF's) results in a highly efficient algorithm for reacting flows. The predictions of the model are compared with two sets of experiments involving supersonic mixing and one involving supersonic combustion. The results demonstrate the need for consideration of turbulence/chemistry interactions in supersonic combustion. In general, good agreement with experiment is indicated.
Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.
2011-01-01
In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2010-01-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth & Pope with Durbin's method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous ...
The causal relation between turbulent particle flux and density gradient
Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C. [CIEMAT - Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); García, L.; Nicolau, J. H. [Universidad Carlos III, 28911 Leganés, Madrid (Spain)
2016-07-15
A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local and instantaneous, as is sometimes assumed.
Tang, B.H.Y.; Chan, C.K. [Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)
2006-10-15
In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)
Heart rate variability and heart rate turbulence in patients with polycystic ovary syndrome.
Özkeçeci, Gülay; Ünlü, Bekir Serdar; Dursun, Hüseyin; Akçi, Önder; Köken, Gülengül; Onrat, Ersel; Avşar, Alaettin
2016-05-01
Cardiac autonomic dysfunction may develop in patients with polycystic ovary syndrome (PCOS). Heart rate variability (HRV) and heart rate turbulence (HRT) are used in assessing cardiac autonomic functions. The goal of this study was to compare the cardiac autonomic functions in patients with PCOS and healthy controls. To our knowledge, this is the first study evaluating cardiac autonomic functions in patients with PCOS with respect to both HRV and HRT. Twenty-three patients with PCOS (mean age 22.8±3.9 years) and 25 healthy female volunteers who were matched for age and body mass index (BMI) (mean age 23.5±6.2 years) were enrolled in this as case-control study. Twenty-four hour ambulatory electrocardiogram recordings of all participants were taken using Pathfinder software. The time domain parameters of HRV and HRT, including turbulence onset (TO) and turbulence slope, were calculated. Diagnosis of PCOS was made with physical and laboratory findings of hirsutism or biochemical hyperandrogenism and chronic anovulation. Diabetes mellitus, other hormon disorders or hormon therapy, pregnancy, atrial fibrilation, obesite, chronic diseases, disorders of the autonomic nervous system, a history of drug use affecting the autonomic nervous system were excluded. There were no significant differences in HRV and HRT parameters between the two groups. Cardiovascular risk factors, such as BMI, blood pressure, fasting blood glucose, and lipid parameters, were also similar. Triangular index measure of HRV was negatively correlated with high density lipoprotein cholesterol levels (r=-0.47, p<0.05), while age and BMI were significantly correlated with TO (r=0.31 and 0.47, respectively; p<0.05 for all). Cardiac autonomic functions were not found to be altered in patients with PCOS in comparison with healthy controls. These results may be explained with the absence of concomitant cardiovascular risk factors with the patients being in the early stage of the disease.
Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa
Bagdanavicius, Audrius
2015-11-01
Independent research at two centres using a burner and an explosion bomb has revealed important aspects of turbulent premixed flame structure. Measurements at pressures and temperatures up to 1.25MPa and 673K in the two rigs were aimed at quantifying the influences of flame stretch rate and strain rate Markstein number, Masr , on both turbulent burning velocity and flame surface density. That on burning velocity is expressed through the stretch rate factor, Io , or probability of burning, Pb 0.5. These depend on Masr , but they grow in importance as the Karlovitz stretch factor, K, increases, and are evaluated from the associated burning velocity data. Planar laser tomography was employed to identify contours of reaction progress variable in both rigs. These enabled both an appropriate flame front for the measurement of the turbulent burning velocity to be identified, and flame surface densities, with the associated factors, to be evaluated. In the explosion measurements, these parameters were derived also from the flame surface area, the derived Pb 0.5 factor and the measured turbulent burning velocities. In the burner measurement they were calculated directly from the flame surface density, which was derived from the flame contours.A new overall correlation is derived for the Pb 0.5 factor, in terms of Masr at different K and this is discussed in the light of previous theoretical studies. The wrinkled flame surface area normalised by the area associated with the turbulent burning velocity measurement, and the ratio of turbulent to laminar burning velocity, ut /ul , are also evaluated. The higher the value of Pb0.5, the more effective is an increased flame wrinkling in increasing ut /ul A correlation of the product of k and the laminar flame thickness with Karlovitz stretch factor and Markstein number is explored using the present data and those of other workers. Some generality is revealed, enabling the wave length associated with the spatial change in mean
Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa
Bagdanavicius, Audrius; Bowen, Phil J.; Bradley, Derek; Lawes, Malcolm; Mansour, Morkous S.
2015-01-01
Independent research at two centres using a burner and an explosion bomb has revealed important aspects of turbulent premixed flame structure. Measurements at pressures and temperatures up to 1.25MPa and 673K in the two rigs were aimed at quantifying the influences of flame stretch rate and strain rate Markstein number, Masr , on both turbulent burning velocity and flame surface density. That on burning velocity is expressed through the stretch rate factor, Io , or probability of burning, Pb 0.5. These depend on Masr , but they grow in importance as the Karlovitz stretch factor, K, increases, and are evaluated from the associated burning velocity data. Planar laser tomography was employed to identify contours of reaction progress variable in both rigs. These enabled both an appropriate flame front for the measurement of the turbulent burning velocity to be identified, and flame surface densities, with the associated factors, to be evaluated. In the explosion measurements, these parameters were derived also from the flame surface area, the derived Pb 0.5 factor and the measured turbulent burning velocities. In the burner measurement they were calculated directly from the flame surface density, which was derived from the flame contours.A new overall correlation is derived for the Pb 0.5 factor, in terms of Masr at different K and this is discussed in the light of previous theoretical studies. The wrinkled flame surface area normalised by the area associated with the turbulent burning velocity measurement, and the ratio of turbulent to laminar burning velocity, ut /ul , are also evaluated. The higher the value of Pb0.5, the more effective is an increased flame wrinkling in increasing ut /ul A correlation of the product of k and the laminar flame thickness with Karlovitz stretch factor and Markstein number is explored using the present data and those of other workers. Some generality is revealed, enabling the wave length associated with the spatial change in mean
High density turbulent plasma processes from a shock tube. Final performance report
Johnson, J.A. III.
1997-01-01
A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions
Scalar statistics in variable property turbulent channel flows
Patel, A.; Boersma, B.J.; Pecnik, R.
2017-01-01
Direct numerical simulation of fully developed, internally heated channel flows with isothermal walls is performed using the low-Mach-number approximation of Navier-Stokes equation to investigate the influence of temperature-dependent properties on turbulent scalar statistics. Different constitutive
Studying and modelling variable density turbulent flows for industrial applications
Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.
1996-07-01
Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.). 18 refs.
Studying and modelling variable density turbulent flows for industrial applications
Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.
1996-07-01
Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.)
517 DWELLING DENSITY VARIABILITY ACROSS GOVERNMENT ...
Osondu
confidence level, apartment type had no significant effect on dwelling density in ... words: dwelling density, home spaces, housing units, multifamily apartments ... spaces for work, Obateru (2005) defined .... of Statistics Year Book, 2008; Seeling et al., ... stress. The bedroom and habitable room indicators show similar trend.
Stratified flows with variable density: mathematical modelling and numerical challenges.
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Variable kernel density estimation in high-dimensional feature spaces
Van der Walt, Christiaan M
2017-02-01
Full Text Available Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high...
Density effects on turbulent boundary layer structure: From the atmosphere to hypersonic flow
Williams, Owen J. H.
This dissertation examines the effects of density gradients on turbulent boundary layer statistics and structure using Particle Image Velocimetry (PIV). Two distinct cases were examined: the thermally stable atmospheric surface layer characteristic of nocturnal or polar conditions, and the hypersonic bounder layer characteristic of high speed aircraft and reentering spacecraft. Previous experimental studies examining the effects of stability on turbulent boundary layers identified two regimes, weak and strong stability, separated by a critical bulk stratification with a collapse of near-wall turbulence thought to be intrinsic to the strongly stable regime. To examine the characteristics of these two regimes, PIV measurements were obtained in conjunction with the mean temperature profile in a low Reynolds number facility over smooth and rough surfaces. The turbulent stresses were found to scale with the wall shear stress in the weakly stable regime prior relaminarization at a critical stratification. Changes in profile shape were shown to correlate with the local stratification profile, and as a result, the collapse of near-wall turbulence is not intrinsic to the strongly stable regime. The critical bulk stratification was found to be sensitive to surface roughness and potentially Reynolds number, and not constant as previously thought. Further investigations examined turbulent boundary layer structure and changes to the motions that contribute to turbulent production. To study the characteristics of a hypersonic turbulent boundary layer at Mach 8, significant improvements were required to the implementation and error characterization of PIV. Limited resolution or dynamic range effects were minimized and the effects of high shear on cross-correlation routines were examined. Significantly, an examination of particle dynamics, subject to fluid inertia, compressibility and non-continuum effects, revealed that particle frequency responses to turbulence can be up to an
Probability densities and the radon variable transformation theorem
Ramshaw, J.D.
1985-01-01
D. T. Gillespie recently derived a random variable transformation theorem relating to the joint probability densities of functionally dependent sets of random variables. The present author points out that the theorem can be derived as an immediate corollary of a simpler and more fundamental relation. In this relation the probability density is represented as a delta function averaged over an unspecified distribution of unspecified internal random variables. The random variable transformation is derived from this relation
Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows
Minier, Jean-Pierre; Profeta, Christophe
2015-11-01
This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Zp=(xp,Up) and is represented by its PDF p (t ;yp,Vp) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Zp=(xp,Up,Us) , and, consequently, handles an extended PDF p (t ;yp,Vp,Vs) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical systems
Savane, Y. Sy; Diaby, I.; Faza Barry, M.; Lomonossov, V.
2002-11-01
We study the acceleration of charged particles by the variable magnetic field. The study is based on the determination of spectrum of accelerated particles and the spectrum of hydro magnetic turbulence. We plan the self-consistent system of equation and we also find out the solution of the system for the spectrum of particles and hydro magnetic turbulence with the conditions of effective acceleration in the cosmic space of solar system. (author)
Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.
Kainulainen, J.; Federrath, C.
2017-11-01
The relationship between turbulence energy and gas density variance is a fundamental prediction for turbulence-dominated media and is commonly used in analytic models of star formation. We determine this relationship for 15 molecular clouds in the solar neighbourhood. We use the line widths of the CO molecule as the probe of the turbulence energy (sonic Mach number, ℳs) and three-dimensional models to reconstruct the density probability distribution function (ρ-PDF) of the clouds, derived using near-infrared extinction and Herschel dust emission data, as the probe of the density variance (σs). We find no significant correlation between ℳs and σs among the studied clouds, but we cannot rule out a weak correlation either. In the context of turbulence-dominated gas, the range of the ℳs and σs values corresponds to the model predictions. The data cannot constrain whether the turbulence-driving parameter, b, and/or thermal-to-magnetic pressure ratio, β, vary among the sample clouds. Most clouds are not in agreement with field strengths stronger than given by β ≲ 0.05. A model with b2β/ (β + 1) = 0.30 ± 0.06 provides an adequate fit to the cloud sample as a whole. Based on the average behaviour of the sample, we can rule out three regimes: (i) strong compression combined with a weak magnetic field (b ≳ 0.7 and β ≳ 3); (ii) weak compression (b ≲ 0.35); and (iii) a strong magnetic field (β ≲ 0.1). When we include independent magnetic field strength estimates in the analysis, the data rule out solenoidal driving (b < 0.4) for the majority of the solar neighbourhood clouds. However, most clouds have b parameters larger than unity, which indicates a discrepancy with the turbulence-dominated picture; we discuss the possible reasons for this.
Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient
El-Amin, Mohamed; Sun, Shuyu; Kanayama, Hiroshi
2010-01-01
In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.
Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient
El-Amin, Mohamed
2010-12-01
In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.
Zamora, Blas; Kaiser, Antonio S.
2012-01-01
The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k - ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.
Three-dimensional density and compressible magnetic structure in solar wind turbulence
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-03-01
The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.
Production of fine structures in type III solar radio bursts due to turbulent density profiles
Loi, Shyeh Tjing; Cairns, Iver H.; Li, Bo
2014-01-01
Magnetic reconnection events in the corona release energetic electron beams along open field lines, and the beams generate radio emission at multiples of the electron plasma frequency f p to produce type III solar radio bursts. Type III bursts often exhibit irregularities in the form of flux modulations with frequency and/or local temporal advances and delays, and a type IIIb burst represents the extreme case where a type III burst is fragmented into a chain of narrowband features called striae. Remote and in situ spacecraft measurements have shown that density turbulence is ubiquitous in the corona and solar wind, and often exhibits a Kolmogorov power spectrum. In this work, we numerically investigate the effects of one-dimensional macroscopic density turbulence (along the beam direction) on the behavior of type III bursts, and find that this turbulence produces stria-like fine structures in the dynamic spectra of both f p and 2 f p radiation. Spectral and temporal fine structures in the predicted type III emission are produced by variations in the scattering path lengths and group speeds of radio emission, and in the locations and sizes of emitting volumes. Moderate turbulence levels yield flux enhancements with much broader half-power bandwidths in f p than 2 f p emission, possibly explaining the often observed type IIIb-III harmonic pairs as being where intensifications in 2 f p radiation are not resolved observationally. Larger turbulence levels producing trough-peak regions in the plasma density profile may lead to broader, resolvable intensifications in 2 f p radiation, which may account for the type IIIb-IIIb pairs that are sometimes observed.
Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities
Fenn, Daniel
The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent
Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin
2018-06-01
In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.
A measurement of the turbulence-driven density distribution in a non-star-forming molecular cloud
Ginsburg, Adam; Darling, Jeremy [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Federrath, Christoph, E-mail: Adam.G.Ginsburg@gmail.com [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Vic 3800 (Australia)
2013-12-10
Molecular clouds are supersonically turbulent. This turbulence governs the initial mass function and the star formation rate. In order to understand the details of star formation, it is therefore essential to understand the properties of turbulence, in particular the probability distribution of density in turbulent clouds. We present H{sub 2}CO volume density measurements of a non-star-forming cloud along the line of sight toward W49A. We use these measurements in conjunction with total mass estimates from {sup 13}CO to infer the shape of the density probability distribution function. This method is complementary to measurements of turbulence via the column density distribution and should be applicable to any molecular cloud with detected CO. We show that turbulence in this cloud is probably compressively driven, with a compressive-to-total Mach number ratio b=M{sub C}/M>0.4. We measure the standard deviation of the density distribution, constraining it to the range 1.5 < σ {sub s} < 1.9, assuming that the density is lognormally distributed. This measurement represents an essential input into star formation laws. The method of averaging over different excitation conditions to produce a model of emission from a turbulent cloud is generally applicable to optically thin line observations.
Improved Variable Window Kernel Estimates of Probability Densities
Hall, Peter; Hu, Tien Chung; Marron, J. S.
1995-01-01
Variable window width kernel density estimators, with the width varying proportionally to the square root of the density, have been thought to have superior asymptotic properties. The rate of convergence has been claimed to be as good as those typical for higher-order kernels, which makes the variable width estimators more attractive because no adjustment is needed to handle the negativity usually entailed by the latter. However, in a recent paper, Terrell and Scott show that these results ca...
Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1981-04-01
The temporal evolution of the electron temperature and density are measured in a turbulent heating experiment in TRIAM-1. Skin-like profiles of the electron temperature and density are clearly observed. The anomality in the electrical resistivity of the plasma in this skin-layer is estimated, and the plasma heating in this skin-layer is regarded as being due to anomalous joule heating arising from this anomalous resistivity. The ratio of drift velocity to electron thermal velocity in the layer is also calculated, and it is shown that the conditions needed to make the current-driven ion-acoustic instability triggerable are satisfied.
Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows
Safari, Mehdi
Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.
Mikkelsen, D. R., E-mail: dmikkelsen@pppl.gov; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); Reinke, M. L. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Podpaly, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); AAAS S and T Fellow placed in the Directorate for Engineering, NSF, 4201 Wilson Blvd., Arlington, Virginia 22230 (United States); Ma, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Candy, J.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)
2015-06-15
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just
The small amplitude of density turbulence in the inner solar wind
S. R. Spangler
2003-01-01
Full Text Available Very Long Baseline Interferometer (VLBI observations were made of radio sources close to the Sun, whose lines of sight pass through the inner solar wind (impact parameters 16-26 RE. Power spectra were analyzed of the interferometer phase fluctuations due to the solar wind plasma. These power spectra provide information on the level of plasma density fluctuations on spatial scales of roughly one hundred to several thousand kilometers. By specifying an outer scale to the turbulence spectrum, we can estimate the root-mean-square (rms amplitude of the density fluctuations. The data indicate that the rms fluctuation in density is only about 10% of the mean density. This value is low, and consistent with extrapolated estimates from more distant parts of the solar wind. Physical speculations based on this result are presented.
Advection of long lived density blobs in the turbulent state of a simple magnetized torus plasma
Barni, R; Riccardi, C
2009-01-01
The turbulent regime of a simple magnetized toroidal plasma column has been studied in the plasma device Thorello. The detection and the study of the spatio-temporal evolution of structures have been performed by means of conditional sampling techniques as well as other statistical tools. As a result the evidence of plasma blob formation and expulsion from the edge of the main plasma column has been obtained. The relation between structure phenomenology and statistical characteristics of the turbulent regime has been investigated. The motion of the density structures in the edge region of our device does not look ballistic but rather driven by the overall potential profile established in the turbulent state. Potential fluctuations are strongly anti-correlated with density structures, located in the same position and somewhat more extended. They provide a shallow potential well with a flat bottom and quite sharp edges surrounding and co-moving with the blobs. Blob lifetime exceeds the residence time associated with the overall E x B drift field. Then such persistent structures provide a means for a net convection of the charged particles to the limiter, across the magnetic field and beyond the edge region of the plasma.
Extracting a mix parameter from 2D radiography of variable density flow
Kurien, Susan; Doss, Forrest; Livescu, Daniel
2017-11-01
A methodology is presented for extracting quantities related to the statistical description of the mixing state from the 2D radiographic image of a flow. X-ray attenuation through a target flow is given by the Beer-Lambert law which exponentially damps the incident beam intensity by a factor proportional to the density, opacity and thickness of the target. By making reasonable assumptions for the mean density, opacity and effective thickness of the target flow, we estimate the contribution of density fluctuations to the attenuation. The fluctuations thus inferred may be used to form the correlation of density and specific-volume, averaged across the thickness of the flow in the direction of the beam. This correlation function, denoted by b in RANS modeling, quantifies turbulent mixing in variable density flows. The scheme is tested using DNS data computed for variable-density buoyancy-driven mixing. We quantify the deficits in the extracted value of b due to target thickness, Atwood number, and modeled noise in the incident beam. This analysis corroborates the proposed scheme to infer the mix parameter from thin targets at moderate to low Atwood numbers. The scheme is then applied to an image of counter-shear flow obtained from experiments at the National Ignition Facility. US Department of Energy.
Roman-Duval, Julia; Jackson, James; Federrath, Christoph; Klessen, Ralf S.; Brunt, Christopher; Heyer, Mark
2011-01-01
Turbulence plays a major role in the formation and evolution of molecular clouds. Observationally, turbulent velocities are convolved with the density of an observed region. To correct for this convolution, we investigate the relation between the turbulence spectrum of model clouds, and the statistics of their synthetic observations obtained from principal component analysis (PCA). We apply PCA to spectral maps generated from simulated density and velocity fields, obtained from hydrodynamic simulations of supersonic turbulence, and from fractional Brownian motion (fBm) fields with varying velocity, density spectra, and density dispersion. We examine the dependence of the slope of the PCA pseudo-structure function, α PCA , on intermittency, on the turbulence velocity (β v ) and density (β n ) spectral indexes, and on density dispersion. We find that PCA is insensitive to β n and to the log-density dispersion σ s , provided σ s ≤ 2. For σ s > 2, α PCA increases with σ s due to the intermittent sampling of the velocity field by the density field. The PCA calibration also depends on intermittency. We derive a PCA calibration based on fBm structures with σ s ≤ 2 and apply it to 367 13 CO spectral maps of molecular clouds in the Galactic Ring Survey. The average slope of the PCA structure function, (α PCA ) = 0.62 ± 0.2, is consistent with the hydrodynamic simulations and leads to a turbulence velocity exponent of (β v ) = 2.06 ± 0.6 for a non-intermittent, low density dispersion flow. Accounting for intermittency and density dispersion, the coincidence between the PCA slope of the GRS clouds and the hydrodynamic simulations suggests β v ≅ 1.9, consistent with both Burgers and compressible intermittent turbulence.
A variable turbulent Prandtl and Schmidt number model study for scramjet applications
Keistler, Patrick
A turbulence model that allows for the calculation of the variable turbulent Prandtl (Prt) and Schmidt (Sct) numbers as part of the solution is presented. The model also accounts for the interactions between turbulence and chemistry by modeling the corresponding terms. Four equations are added to the baseline k-zeta turbulence model: two equations for enthalpy variance and its dissipation rate to calculate the turbulent diffusivity, and two equations for the concentrations variance and its dissipation rate to calculate the turbulent diffusion coefficient. The underlying turbulence model already accounts for compressibility effects. The variable Prt /Sct turbulence model is validated and tuned by simulating a wide variety of experiments. Included in the experiments are two-dimensional, axisymmetric, and three-dimensional mixing and combustion cases. The combustion cases involved either hydrogen and air, or hydrogen, ethylene, and air. Two chemical kinetic models are employed for each of these situations. For the hydrogen and air cases, a seven species/seven reaction model where the reaction rates are temperature dependent and a nine species/nineteen reaction model where the reaction rates are dependent on both pressure and temperature are used. For the cases involving ethylene, a 15 species/44 reaction reduced model that is both pressure and temperature dependent is used, along with a 22 species/18 global reaction reduced model that makes use of the quasi-steady-state approximation. In general, fair to good agreement is indicated for all simulated experiments. The turbulence/chemistry interaction terms are found to have a significant impact on flame location for the two-dimensional combustion case, with excellent experimental agreement when the terms are included. In most cases, the hydrogen chemical mechanisms behave nearly identically, but for one case, the pressure dependent model would not auto-ignite at the same conditions as the experiment and the other
Influence of heavy cigarette smoking on heart rate variability and heart rate turbulence parameters
Cagirci, Goksel; Cay, Serkan; Karakurt, Ozlem
2009-01-01
BACKGROUND: Cigarette smoking increases the risk of cardiovascular events related with several mechanisms. The most suggested mechanism is increased activity of sympathetic nervous system. Heart rate variability (HRV) and heart rate turbulence (HRT) has been shown to be independent and powerful......, 69 subjects and nonsmokers 74 subjects (control group) were enrolled in this study. HRV and HRT analyses [turbulence onset (TO) and turbulence slope (TS)] were assessed from 24-hour Holter recordings. RESULTS: The values of TO were significantly higher in heavy cigarette smokers than control group...... (-1.150 +/- 4.007 vs -2.454 +/- 2.796, P = 0.025, respectively), but values of TS were not statistically different between two groups (10.352 +/- 7.670 vs 9.613 +/- 7.245, P = 0.555, respectively). Also, the number of patients who had abnormal TO was significantly higher in heavy cigarette smokers...
S. Dastgeer
2005-01-01
Full Text Available Interstellar scintillation and angular radio wave broadening measurements show that interstellar and solar wind (electron density fluctuations exhibit a Kolmogorov-like k-5/3 power spectrum extending over many decades in wavenumber space. The ubiquity of the Kolmogorov-like interstellar medium (ISM density spectrum led to an explanation based on coupling incompressible magnetohydrodynamic (MHD fluctuations to density fluctuations through a 'pseudosound' relation within the context of 'nearly incompressible' (NI hydrodynamics (HD and MHD models. The NI theory provides a fundamentally different explanation for the observed ISM density spectrum in that the density fluctuations can be a consequence of passive scalar convection due to background incompressible fluctuations. The theory further predicts generation of long-scale structures and various correlations between the density, temperature and the (magneto acoustic as well as convective pressure fluctuations in the compressible ISM fluids in different thermal regimes that are determined purely by the thermal fluctuation level. In this paper, we present the results of our two dimensional nonlinear fluid simulations, exploring various nonlinear aspects that lead to inertial range ISM turbulence within the context of a NI hydrodymanics model. In qualitative agreement with the NI predictions and the in-situ observations, we find that i the density fluctuations exhibit a Kolmogorov-like spectrum via a passive convection in the field of the background incompressible fluctuations, ii the compressible ISM fluctuations form long scale flows and structures, and iii the density and the temperature fluctuations are anti-correlated.
Köberl, S; Giuliani, F; Woisetschläger, J; Fontaneto, F
2010-01-01
A validation of a novel interferometric measurement technique for the frequency-resolved detection of local density fluctuation in turbulent combustion analysis was performed in this work. Two laser vibrometer systems together with a signal analyser were used to obtain frequency spectra of density fluctuations across a methane-jet flame. Since laser vibrometry is based on interferometric techniques, the derived signals are path-integrals along the measurement beam. To obtain local frequency spectra of density fluctuations, long-time-averaged measurements from each of the two systems were performed using correlation functions and cross spectra. Results were compared to data recorded by standard interferometric techniques for validation purposes. Additionally, Raman scattering and laser Doppler velocimetry were used for flame characterization
Probability density function of a puff dispersing from the wall of a turbulent channel
Nguyen, Quoc; Papavassiliou, Dimitrios
2015-11-01
Study of dispersion of passive contaminants in turbulence has proved to be helpful in understanding fundamental heat and mass transfer phenomena. Many simulation and experimental works have been carried out to locate and track motions of scalar markers in a flow. One method is to combine Direct Numerical Simulation (DNS) and Lagrangian Scalar Tracking (LST) to record locations of markers. While this has proved to be useful, high computational cost remains a concern. In this study, we develop a model that could reproduce results obtained by DNS and LST for turbulent flow. Puffs of markers with different Schmidt numbers were released into a flow field at a frictional Reynolds number of 150. The point of release was at the channel wall, so that both diffusion and convection contribute to the puff dispersion pattern, defining different stages of dispersion. Based on outputs from DNS and LST, we seek the most suitable and feasible probability density function (PDF) that represents distribution of markers in the flow field. The PDF would play a significant role in predicting heat and mass transfer in wall turbulence, and would prove to be helpful where DNS and LST are not always available.
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2007-11-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth and Pope [Phys. Fluids 29, 387 (1986)] with Durbin's [J. Fluid Mech. 249, 465 (1993)] method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous transport with a nonlocal representation of the near-wall Reynolds stress anisotropy. The presence of walls is incorporated through the imposition of no-slip and impermeability conditions on particles without the use of damping or wall-functions. Information on the turbulent time scale is supplied by the gamma-distribution model of van Slooten et al. [Phys. Fluids 10, 246 (1998)]. Two different micromixing models are compared that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. Single-point velocity and concentration statistics are compared to direct numerical simulation and experimental data at Reτ=1080 based on the friction velocity and the channel half width. The joint model accurately reproduces a wide variety of conditional and unconditional statistics in both physical and composition space.
Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows
Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)
1998-01-01
Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the
Esmaily, M.; Jofre, L.; Mani, A.; Iaccarino, G.
2018-03-01
A geometric multigrid algorithm is introduced for solving nonsymmetric linear systems resulting from the discretization of the variable density Navier-Stokes equations on nonuniform structured rectilinear grids and high-Reynolds number flows. The restriction operation is defined such that the resulting system on the coarser grids is symmetric, thereby allowing for the use of efficient smoother algorithms. To achieve an optimal rate of convergence, the sequence of interpolation and restriction operations are determined through a dynamic procedure. A parallel partitioning strategy is introduced to minimize communication while maintaining the load balance between all processors. To test the proposed algorithm, we consider two cases: 1) homogeneous isotropic turbulence discretized on uniform grids and 2) turbulent duct flow discretized on stretched grids. Testing the algorithm on systems with up to a billion unknowns shows that the cost varies linearly with the number of unknowns. This O (N) behavior confirms the robustness of the proposed multigrid method regarding ill-conditioning of large systems characteristic of multiscale high-Reynolds number turbulent flows. The robustness of our method to density variations is established by considering cases where density varies sharply in space by a factor of up to 104, showing its applicability to two-phase flow problems. Strong and weak scalability studies are carried out, employing up to 30,000 processors, to examine the parallel performance of our implementation. Excellent scalability of our solver is shown for a granularity as low as 104 to 105 unknowns per processor. At its tested peak throughput, it solves approximately 4 billion unknowns per second employing over 16,000 processors with a parallel efficiency higher than 50%.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Hu, Yong; Olguin, Hernan; Gutheil, Eva
2017-05-01
A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new
Maroteaux, Fadila; Pommier, Pierre-Lin
2013-01-01
Highlights: ► Turbulent time evolution is introduced in stochastic modeling approach. ► The particles number is optimized trough a restricted initial distribution. ► The initial distribution amplitude is modeled by magnitude of turbulence field. -- Abstract: Homogenous Charge Compression Ignition (HCCI) engine technology is known as an alternative to reduce NO x and particulate matter (PM) emissions. As shown by several experimental studies published in the literature, the ideally homogeneous mixture charge becomes stratified in composition and temperature, and turbulent mixing is found to play an important role in controlling the combustion progress. In a previous study, an IEM model (Interaction by Exchange with the Mean) has been used to describe the micromixing in a stochastic reactor model that simulates the HCCI process. The IEM model is a deterministic model, based on the principle that the scalar value approaches the mean value over the entire volume with a characteristic mixing time. In this previous model, the turbulent time scale was treated as a fixed parameter. The present study focuses on the development of a micro-mixing time model, in order to take into account the physical phenomena it stands for. For that purpose, a (k–ε) model is used to express this micro-mixing time model. The turbulence model used here is based on zero dimensional energy cascade applied during the compression and the expansion cycle; mean kinetic energy is converted to turbulent kinetic energy. Turbulent kinetic energy is converted to heat through viscous dissipation. Besides, in this study a relation to calculate the initial heterogeneities amplitude is proposed. The comparison of simulation results against experimental data shows overall satisfactory agreement at variable turbulent time scale
Numerical simulation and analysis of confined turbulent buoyant jet with variable source
El-Amin, Mohamed
2016-01-23
In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.
The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence
Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.
2017-12-01
In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.
Numerical simulation and analysis of confined turbulent buoyant jet with variable source
El-Amin, Mohamed; Al-Ghamdi, Abdulmajeed; Salama, Amgad; Sun, Shuyu
2016-01-01
In this work, experimental and numerical investigations are undertaken for confined buoyant turbulent jet with varying inlet temperatures. Results of the experimental work and numerical simulations for the problem under consideration are presented. Four cases of different variable inlet temperatures and different flow rates are considered. The realizable k-ɛ turbulence model is used to model the turbulent flow. Comparisons show good agreements between simulated and measured results. The average deviation of the simulated temperature by realizable k-ɛ turbulent model and the measured temperature is within 2%. The results indicate that temperatures along the vertical axis vary, generally, in nonlinear fashion as opposed to the approximately linear variation that was observed for the constant inlet temperature that was done in a previous work. Furthermore, thermal stratification exits, particularly closer to the entrance region. Further away from the entrance region the variation in temperatures becomes relatively smaller. The stratification is observed since the start of the experiment and continues during the whole course. Numerical experiments for constant, monotone increasing and monotone decreasing of inlet temperature are done to show its effect on the buoyancy force in terms of Richardson number.
Spatial and temporal variability in seasonal snow density
Bormann, Kathryn J.
2013-03-01
Snow density is a fundamental physical property of snowpacks used in many aspects of snow research. As an integral component in the remote sensing of snow water equivalent and parameterisation of snow models, snow density may be used to describe many important features of snowpack behaviour. The present study draws on a significant dataset of snow density and climate observations from the United States, Australia and the former Soviet Union and uses regression-based techniques to identify the dominant climatological drivers for snow densification rates, characterise densification rate variability and estimate spring snow densities from more readily available climate data. Total winter precipitation was shown to be the most prominent driver of snow densification rates, with mean air temperature and melt-refreeze events also found to be locally significant. Densification rate variance is very high at Australian sites, very low throughout the former Soviet Union and between these extremes throughout much of the US. Spring snow densities were estimated using a statistical model with climate variable inputs and best results were achieved when snow types were treated differently. Given the importance of snow density information in many snow-related research disciplines, this work has implications for current methods of converting snow depths to snow water equivalent, the representation of snow dynamics in snow models and remote sensing applications globally. © 2013 Elsevier B.V.
Spatial and temporal variability in seasonal snow density
Bormann, Kathryn J.; Westra, Seth; Evans, Jason P.; McCabe, Matthew
2013-01-01
Snow density is a fundamental physical property of snowpacks used in many aspects of snow research. As an integral component in the remote sensing of snow water equivalent and parameterisation of snow models, snow density may be used to describe many important features of snowpack behaviour. The present study draws on a significant dataset of snow density and climate observations from the United States, Australia and the former Soviet Union and uses regression-based techniques to identify the dominant climatological drivers for snow densification rates, characterise densification rate variability and estimate spring snow densities from more readily available climate data. Total winter precipitation was shown to be the most prominent driver of snow densification rates, with mean air temperature and melt-refreeze events also found to be locally significant. Densification rate variance is very high at Australian sites, very low throughout the former Soviet Union and between these extremes throughout much of the US. Spring snow densities were estimated using a statistical model with climate variable inputs and best results were achieved when snow types were treated differently. Given the importance of snow density information in many snow-related research disciplines, this work has implications for current methods of converting snow depths to snow water equivalent, the representation of snow dynamics in snow models and remote sensing applications globally. © 2013 Elsevier B.V.
DEPENDENCE OF THE TURBULENT VELOCITY FIELD ON GAS DENSITY IN L1551
Yoshida, Atsushi; Kitamura, Yoshimi; Shimajiri, Yoshito; Kawabe, Ryohei
2010-01-01
We have carried out mapping observations of the entire L1551 molecular cloud with about 2 pc x 2 pc size in the 12 CO(1-0) line with the Nobeyama 45 m radio telescope at the high effective resolution of 22'' (corresponding to 0.017 pc at the distance of 160 pc), and analyzed the 12 CO data together with the 13 CO(1-0) and C 18 O(1-0) data from the Nobeyama Radio Observatory database. We derived the new non-thermal line width-size relations, σ NT ∝ L γ , for the three molecular lines, corrected for the effect of optical depth and the line-of-sight integration. To investigate the characteristic of the intrinsic turbulence, the effects of the outflows were removed. The derived relations are (σ NT /km s -1 ) = (0.18 ± 0.010)(L/pc) 0.45±0.095 , (0.20 ± 0.020)(L/pc) 0.48±0.091 , and (0.22 ± 0.050) (L/pc) 0.54±0.21 for the 12 CO, 13 CO, and C 18 O lines, respectively, suggesting that the line width-size relation of the turbulence very weakly depends on our observed molecular lines, i.e., the relation does not change between the density ranges of 10 2 -10 3 and 10 3 -10 4 cm -3 . In addition, the relations indicate that incompressible turbulence is dominant at the scales smaller than 0.6 pc in L1551. The power spectrum indices converted from the relations, however, seem to be larger than that of the Kolmogorov spectrum for incompressible flow. The disagreement could be explained by the anisotropy in the turbulent velocity field in L1551, as expected in MHD turbulence. Actually, the autocorrelation functions of the centroid velocity fluctuations show larger correlation along the direction of the magnetic field measured for the whole Taurus cloud, which is consistent with the results of numerical simulations for incompressible MHD flow.
Small scale variability of snow density on Antarctic sea ice
Wever, N.; Leonard, K. C.; Paul, S.; Jacobi, H. W.; Proksch, M.; Lehning, M.
2016-12-01
Snow on sea ice plays an important role in air-ice-sea interactions. For example, snow may smooth the ice surface when snow drift is occurring, while at the same time it may also generate roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. We present data from an in-situ measurement campaign in the Weddell Sea during two subsequent cruises of RV Polarstern. By comparing snow density from snow pits and snow micro penetrometer (SMP) measurements, augmented by terrestrial laser scanning (TLS) on an area of 50x50 m2, highly resolved density profiles and surface topology were acquired at a horizontal resolution of approximately 30 cm. Average snow densities are about 280 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 170 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters, which disappear over larger distances. A comparison with TLS data indicates that the spatial variability is related to deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density profiles. The fundamental relationship between density variations, surface roughness and changes therein as investigated in this study are interpreted with respect to larger-scale ice-movement and the ice mass balance.
Self-similar density turbulence in the TCV tokamak scrape-off layer
Graves, J P; Horacek, J; Pitts, R A; Hopcraft, K I
2005-01-01
Plasma fluctuations in the scrape-off layer (SOL) of the TCV tokamak exhibit statistical properties which are universal across a broad range of discharge conditions. Electron density fluctuations, from just inside the magnetic separatrix to the plasma-wall interface, are described well by a gamma distributed random variable. The density fluctuations exhibit clear evidence of self-similarity in the far SOL, such that the corresponding probability density functions collapse upon renormalization solely by the mean particle density. This constitutes a demonstration that the amplitude of the density fluctuations is simply proportional to the mean density and is consistent with the further observation that the radial particle flux fluctuations scale solely with the mean density over two orders of magnitude. Such findings indicate that it may be possible to improve the prediction of transport in the critical plasma-wall interaction region of future large scale tokamaks. (letter to the editor)
Norris, Benjamin K.; Mullarney, Julia C.; Bryan, Karin R.; Henderson, Stephen M.
2017-09-01
This paper examines the role of mangrove pneumatophore roots as a spatial control over the turbulent kinetic energy (TKE) dissipation rate within a natural mangrove forest. Measurements of turbulence at millimeter scales were compared with vegetation geometries reconstructed using a novel photogrammetric technique. These small-scale relationships were then averaged to show larger-scale patterns in turbulence across the mudflat and mangrove fringe-forest transition. Although turbulence estimates varied with across-shore position, TKE dissipation was always elevated in the fringe relative to mudflat and forest interior sample sites. The largest dissipation rates (4.5 × 10-3 W kg-1) were measured as breaking waves propagated over canopies in very shallow water. Dissipation was reduced, but often remained intense (10-5-10-4 W kg-1) under non-breaking waves at the fringe, likely indicating turbulent generation in pneumatophore wakes. Pneumatophore density was positively correlated with the spatial distribution of TKE dissipation. Turbulence was also correlated positively with wave height and negatively with water depth. Fringe sediments were more sandy and less muddy than sediments onshore and offshore, suggesting that the intense turbulence may lead to winnowing of fine-grained sediments at the fringe.
Turbulent structures in cylindrical density currents in a rotating frame of reference
Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas
2018-06-01
Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.
Dimmable electronic ballasts by variable power density modulation technique
Borekci, Selim; Kesler, Selami
2014-11-01
Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.
Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis
Laituri, Tony R.
1988-01-01
Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.
Saitou, Y.; Yonesu, A.; Shinohara, S.; Ignatenko, M. V.; Kasuya, N.; Kawaguchi, M.; Terasaka, K.; Nishijima, T.; Nagashima, Y.; Kawai, Y.; Yagi, M.; Itoh, S.-I.; Azumi, M.; Itoh, K.
2007-01-01
The importance of reducing the neutral density to reach strong drift wave turbulence is clarified from the results of the extended magnetohydrodynamics and Monte Carlo simulations in a linear magnetized plasma. An upper bound of the neutral density relating to the ion-neutral collision frequency for the excitation of drift wave instability is shown, and the necessary flow velocity to excite this instability is also estimated from the neutral distributions. Measurements of the Mach number and the electron density distributions using Mach probe in the large mirror device (LMD) of Kyushu University [S. Shinohara et al., Plasma Phys. Control. Fusion 37, 1015 (1995)] are reported as well. The obtained results show a controllability of the neutral density and provide the basis for neutral density reduction and a possibility to excite strong drift wave turbulence in the LMD
Turbulence, raindrops and the l{sup 1/2} number density law
Lovejoy, S [Department of Physics, McGill University, 3600 University street, Montreal, Quebec, H3A 2T8 (Canada); Schertzer, D [Universite Paris-Est, ENPC/CEREVE, 77455 Marne-la-Vallee Cedex 2 (France)], E-mail: lovejoy@physics.mcgill.ca
2008-07-15
Using a unique data set of three-dimensional drop positions and masses (the HYDROP experiment), we show that the distribution of liquid water in rain displays a sharp transition between large scales which follow a passive scalar-like Corrsin-Obukhov (k{sup -5/3}) spectrum and a small-scale statistically homogeneous white noise regime. We argue that the transition scale l{sub c} is the critical scale where the mean Stokes number (= drop inertial time/turbulent eddy time) St{sub l} is unity. For five storms, we found l{sub c} in the range 45-75 cm with the corresponding dissipation scale St{sub {eta}} in the range 200-300. Since the mean interdrop distance was significantly smaller ({approx} 10 cm) than l{sub c} we infer that rain consists of 'patches' whose mean liquid water content is determined by turbulence with each patch being statistically homogeneous. For l>l{sub c}, we have St{sub l}<1 and due to the observed statistical homogeneity for l
Hahm, T.S.
1990-12-01
Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs
Guo, H.; Tayebi, B.; Galizzi, C.; Escudie, D.
2009-01-01
Hydrogen (H 2 ) is a clean burning component, but relatively expensive. Mixing a small amount of hydrogen with other fuels is an effective way to use H 2 . H 2 enriched combustion significantly improves fuel efficiency and reduces pollutant (nitrogen oxide and particulate matter) emissions. This presentation discussed the effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames. The presentation discussed flame configuration; the experimental methodology using laser tomography; and results for typical images, burning velocity, ratio of turbulent to laminar burning velocities, flame surface density, curvature, flame brush thickness, and integrated flame surface area. It was concluded that the increase of turbulent burning velocity was faster than that of laminar burning velocity, which contradicted traditional theory. figs.
Turbulence Generation in Combustion.
1987-07-22
flame length . This work is summarized in this section. I1.1 Model for Turbulent Burning Velocity For a range of turbulence conditions including...Variable density effects have been added in an approximation, and an expression for the length of jet flames has been developed. The flame length expression...of jet mixing and jet flame length data using fractals, College of Engineering, Energy Report E-86-02, Comell University, Ithaca, NY, 1986. Results
Varga, E.; Skrbek, L.
2018-02-01
Recently the interest in thermal counterflow of superfluid 4He, the most extensively studied form of quantum turbulence, has been renewed. Particularly, an intense theoretical debate has arisen about what form, if any, of the so-called Vinen equation accurately captures the dynamics of vortex line density, L . We address this problem experimentally, in a 21 cm long channel of square 7 ×7 mm2 cross section. Based on large statistics of second-sound data measured in nonequilibrium square-wave modulated thermally induced counterflow we investigate the phase portrait of the general form of the governing dynamical equation and conclude that for sparse tangles (L ≲105cm-2) all proposed forms of this equation based on the concept of a homogeneous random tangle of quantized vortices provide equally adequate descriptions of the growth of L , while for dense tangles (L >105cm-2) none of them is satisfactory or able to account for the significant slow-down in tangle growth rate as the steady state is approached. We claim, however, that agreement with theory is recovered if the geometrical parameter c2 introduced in numerical studies by K. W. Schwarz [Phys. Rev. B 38, 2398 (1988), 10.1103/PhysRevB.38.2398] is allowed to vary with vortex line density which also greatly improves the prediction of the observed early decay rate.
Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling
Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.
2012-12-01
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data
Guo, Ying; Xie, Cailang; Liao, Qin; Zhao, Wei; Zeng, Guihua; Huang, Duan
2017-08-01
The survival of Gaussian quantum states in a turbulent atmospheric channel is of crucial importance in free-space continuous-variable (CV) quantum key distribution (QKD), in which the transmission coefficient will fluctuate in time, thus resulting in non-Gaussian quantum states. Different from quantum hacking of the imperfections of practical devices, here we propose a different type of attack by exploiting the security loopholes that occur in a real lossy channel. Under a turbulent atmospheric environment, the Gaussian states are inevitably afflicted by decoherence, which would cause a degradation of the transmitted entanglement. Therefore, an eavesdropper can perform an intercept-resend attack by applying an entanglement-distillation operation on the transmitted non-Gaussian mixed states, which allows the eavesdropper to bias the estimation of the parameters and renders the final keys shared between the legitimate parties insecure. Our proposal highlights the practical CV QKD vulnerabilities with free-space quantum channels, including the satellite-to-earth links, ground-to-ground links, and a link from moving objects to ground stations.
Nayamatullah, M.; Rao Pillalamarri, Narasimha; Bhaganagar, Kiran
2018-04-01
A numerical investigation was performed to understand the flow dynamics of 2D density currents over sloping surfaces. Large eddy simulation was conducted for lock-exchange (L-E) release currents and overflows. 2D Navier-Stokes equations were solved using the Boussinesq approximation. The effects of the lock aspect-ratio (height/length of lock), slope, and Reynolds number on the flow structures and turbulence mixing have been analyzed. Results have confirmed buoyancy within the head of the two-dimensional currents is not conserved which contradicts the classical thermal theory. The lock aspect-ratio dictates the fraction of initial buoyancy which is carried by the head of the current at the beginning of the slumping (horizontal) and accelerating phase (over a slope), which has important implications on turbulence kinetic energy production, and hence mixing in the current. For L-E flows over a slope, increasing slope angle enhances the turbulence production. Increasing slope results in shear reversal within the density current resulting in shear-instabilities. Differences in turbulence production mechanisms and flow structures exist between the L-E and constant-flux release currents resulting in significant differences in the flow characteristics between different releases.
Sandeep, Anurag; Proch, Fabian; Kempf, Andreas M.; Chakraborty, Nilanjan
2018-06-01
The statistical behavior of the surface density function (SDF, the magnitude of the reaction progress variable gradient) and the strain rates, which govern the evolution of the SDF, have been analyzed using a three-dimensional flame-resolved simulation database of a turbulent lean premixed methane-air flame in a bluff-body configuration. It has been found that the turbulence intensity increases with the distance from the burner, changing the flame curvature distribution and increasing the probability of the negative curvature in the downstream direction. The curvature dependences of dilatation rate ∇ṡu → and displacement speed Sd give rise to variations of these quantities in the axial direction. These variations affect the nature of the alignment between the progress variable gradient and the local principal strain rates, which in turn affects the mean flame normal strain rate, which assumes positive values close to the burner but increasingly becomes negative as the effect of turbulence increases with the axial distance from the burner exit. The axial distance dependences of the curvature and displacement speed also induce a considerable variation in the mean value of the curvature stretch. The axial distance dependences of the dilatation rate and flame normal strain rate govern the behavior of the flame tangential strain rate, and its mean value increases in the downstream direction. The current analysis indicates that the statistical behaviors of different strain rates and displacement speed and their curvature dependences need to be included in the modeling of flame surface density and scalar dissipation rate in order to accurately capture their local behaviors.
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.
Modeling Compressed Turbulence with BHR
Israel, Daniel
2011-11-01
Turbulence undergoing compression or expansion occurs in systems ranging from internal combustion engines to supernovae. One common feature in many of these systems is the presence of multiple reacting species. Direct numerical simulation data is available for the single-fluid, low turbulent Mach number case. Wu, et al. (1985) compared their DNS results to several Reynolds-averaged Navier-Stokes models. They also proposed a three-equation k - ɛ - τ model, in conjunction with a Reynolds-stress model. Subsequent researchers have proposed alternative corrections to the standard k - ɛ formulation. Here we investigate three variants of the BHR model (Besnard, 1992). BHR is a model for multi-species variable-density turbulence. The three variants are the linear eddy-viscosity, algebraic-stress, and full Reynolds-stress formulations. We then examine the predictions of the model for the fluctuating density field for the case of variable-density turbulence.
Fletcher, D. G.; Mckenzie, R. L.
1992-01-01
Nonintrusive measurements of density and temperature and their turbulent fluctuation levels have been obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment compare favorably with previous measurements obtained in the same facility from conventional probes and an earlier spectroscopic technique.
Multi-phase Turbulence Density Power Spectra in the Perseus Molecular Cloud
Pingel, N. M.; Lee, Min-Young; Burkhart, Blakesley; Stanimirović, Snežana
2018-04-01
We derive two-dimensional spatial power spectra of four distinct interstellar medium tracers, H I, 12CO(J = 1–0), 13CO(J = 1–0), and dust, in the Perseus molecular cloud, covering linear scales ranging from ∼0.1 pc to ∼90 pc. Among the four tracers, we find the steepest slopes of ‑3.23 ± 0.05 and ‑3.22 ± 0.05 for the uncorrected and opacity-corrected H I column density images. This result suggests that the H I in and around Perseus traces a non-gravitating, transonic medium on average, with a negligible effect from opacity. On the other hand, we measure the shallowest slope of ‑2.72 ± 0.12 for the 2MASS dust extinction data and interpret this as the signature of a self-gravitating, supersonic medium. Possible variations in the dust-to-gas ratio likely do not alter our conclusion. Finally, we derive slopes of ‑3.08 ± 0.08 and ‑2.88 ± 0.07 for the 12CO(1–0) and 13CO(1–0) integrated intensity images. Based on theoretical predictions for an optically thick medium, we interpret these slopes of roughly ‑3 as implying that both CO lines are susceptible to the opacity effect. While simple tests for the impact of CO formation and depletion indicate that the measured slopes of 12CO(1–0) and 13CO(1–0) are not likely affected by these chemical effects, our results generally suggest that chemically more complex and/or fully optically thick media may not be a reliable observational tracer for characterizing turbulence.
Investigation of Scalar Filtered Density Function in Turbulent Partially Premixed Flames
Tong, Chenning
2006-01-01
... using measurement data obtained in turbulent partially premixed methane/air (Sandia) flames. For SGS scalar variance small compared to its mean, the FMDF is not far from Gaussian and the SGS scalar is well mixed...
Biglari, H.; Diamond, P.H.
1988-01-01
A simple physical model which describes the dynamics of turbulence and the spectrum of density fluctuations in compressible, self-gravitating matter and self-binding, phase-space density fluctuations is presented. The two systems are analogous to each other in that each tends to self-organize into hierarchical structures via the mechanism of Jeans collapse. The model, the essential physical ingredient of which is a cascade constrained by the physical requirement of quasivirialization, is shown to exhibit interesting geometric properties such as intrinsic intermittency and anisotropy
Numerical study of free pulsed jet flow with variable density
Kriaa, Wassim [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, 5000 Monastir (Tunisia)], E-mail: kriaawass@yahoo.fr; Cheikh, Habib Ben; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, 5000 Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, 60 rue Juliot Curie Technopole de Chateau-Gombert 13453, Marseille Cedex 13 (France)
2008-05-15
In this work, we propose a numerical study of a free pulsed plane jet with variable density in unsteady and laminar modes. At the nozzle exit, the flow is characterized by a uniform temperature and submitted to a longitudinal and periodic velocity disturbance: u = u{sub 0}(1 + A sin({omega}t)). A finite difference method is performed to solve the equations governing this flow type. The discussion relates to the effect of the most significant parameters, such as the pulsation frequency and amplitude, on the flow characteristic fields. The effects of Reynolds and Galileo numbers was also examined. The results show that the pulsation affects the flow in the vicinity of the nozzle, and further, the results of the unsteady mode join those of the steady non-pulsed jet. The results state also that the Strouhal number has no influence on the flow mixture degree, whereas the amplitude of pulsation affects, in a remarkable way, the mixture and, consequently, the concentration core length.
Chowdhury, Snehaunshu; Boyette, Wesley; Roberts, William L.
2017-01-01
In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating
Modelling of interactions between variable mass and density solid particles and swirling gas stream
Wardach-Święcicka, I; Kardaś, D; Pozorski, J
2011-01-01
The aim of this work is to investigate the solid particles - gas interactions. For this purpose, numerical modelling was carried out by means of a commercial code for simulations of two-phase dispersed flows with the in-house models accounting for mass and density change of solid phase. In the studied case the particles are treated as spherical moving grains carried by a swirling stream of hot gases. Due to the heat and mass transfer between gas and solid phase, the particles are losing their mass and they are changing their volume. Numerical simulations were performed for turbulent regime, using two methods for turbulence modelling: RANS and LES.
High density plasma heating in the Tokamak à configuration variable
Curchod, L.
2011-04-01
The Tokamak à Configuration Variable (TCV) is a medium size magnetic confinement thermonuclear fusion experiment designed for the study of the plasma performances as a function of its shape. It is equipped with a high power and highly flexible electron cyclotron heating (ECH) and current drive (ECCD) system. Up to 3 MW of 2 nd harmonic EC power in ordinary (O 2 ) or extraordinary (X 2 ) polarization can be injected from TCV low-field side via six independently steerable launchers. In addition, up to 1.5 MW of 3 rd harmonic EC power (X 3 ) can be launched along the EC resonance from the top of TCV vacuum vessel. At high density, standard ECH and ECCD are prevented by the appearance of a cutoff layer screening the access to the EC resonance at the plasma center. As a consequence, less than 50% of TCV density operational domain is accessible to X 2 and X 3 ECH. The electron Bernstein waves (EBW) have been proposed to overcome this limitation. EBW is an electrostatic mode propagating beyond the plasma cutoff without upper density limit. Since it cannot propagate in vacuum, it has to be excited by mode conversion of EC waves in the plasma. Efficient electron Bernstein waves heating (EBH) and current drive (EBCD) were previously performed in several fusion devices, in particular in the W7-AS stellarator and in the MAST spherical tokamak. In TCV, the conditions for an efficient O-X-B mode conversion (i.e. a steep density gradient at the O 2 plasma cutoff) are met at the edge of high confinement (H-mode) plasmas characterized by the appearance of a pedestal in the electron temperature and density profiles. TCV experiments have demonstrated the first EBW coupling to overdense plasmas in a medium aspect-ratio tokamak via O-X-B mode conversion. This thesis work focuses on several aspects of ECH and EBH in low and high density plasmas. Firstly, the experimental optimum angles for the O-X-B mode conversion is successfully compared to the full-wave mode conversion calculation
Variable Bone Density of Scaphoid: Importance of Subchondral Screw Placement.
Swanstrom, Morgan M; Morse, Kyle W; Lipman, Joseph D; Hearns, Krystle A; Carlson, Michelle G
2018-02-01
Background Ideal internal fixation of the scaphoid relies on adequate bone stock for screw purchase; so, knowledge of regional bone density of the scaphoid is crucial. Questions/Purpose The purpose of this study was to evaluate regional variations in scaphoid bone density. Materials and Methods Three-dimensional CT models of fractured scaphoids were created and sectioned into proximal/distal segments and then into quadrants (volar/dorsal/radial/ulnar). Concentric shells in the proximal and distal pole were constructed in 2-mm increments moving from exterior to interior. Bone density was measured in Hounsfield units (HU). Results Bone density of the distal scaphoid (453.2 ± 70.8 HU) was less than the proximal scaphoid (619.8 ± 124.2 HU). There was no difference in bone density between the four quadrants in either pole. In both the poles, the first subchondral shell was the densest. In both the proximal and distal poles, bone density decreased significantly in all three deeper shells. Conclusion The proximal scaphoid had a greater density than the distal scaphoid. Within the poles, there was no difference in bone density between the quadrants. The subchondral 2-mm shell had the greatest density. Bone density dropped off significantly between the first and second shell in both the proximal and distal scaphoids. Clinical Relevance In scaphoid fracture ORIF, optimal screw placement engages the subchondral 2-mm shell, especially in the distal pole, which has an overall lower bone density, and the second shell has only two-third the density of the first shell.
Santos, Emilie M. M.; Yoo, Albert J.; Beenen, Ludo F.; Berkhemer, Olvert A.; den Blanken, Mark D.; Wismans, Carrie; Niessen, Wiro J.; Majoie, Charles B.; Marquering, Henk A.; Fransen, Puck S. S.; Beumer, Debbie; van den Berg, Lucie A.; Lingsma, Hester F.; Schonewille, Wouter J.; Vos, Jan Albert; Nederkoorn, Paul J.; Wermer, Marieke J. H.; van Walderveen, Marianne A. A.; Staals, Julie; Hofmeijer, Jeannette; van Oostayen, Jacques A.; Lycklama à Nijeholt, Geert J.; Boiten, Jelis; Brouwer, Patrick A.; Emmer, Bart J.; de Bruijn, Sebastiaan F.; van Dijk, Lukas C.; Kappelle, L. Jaap; Lo, Rob H.; van Dijk, Ewoud J.; de Vries, Joost; de Kort, Paul L. M.; van den Berg, Jan S. P.; A A M van Hasselt, Boudewijn; Aerden, Leo A. M.; Dallinga, René J.; Visser, Marieke C.; Bot, Joseph C. J.; Vroomen, Patrick C.; Eshghi, Omid; Schreuder, Tobien H. C. M. L.; Heijboer, Roel J. J.; Keizer, Koos; Tielbeek, Alexander V.; Hertog, Heleen M. Den; Gerrits, Dick G.; van den Berg-Vos, Renske M.; Karas, Giorgos B.; Steyerberg, Ewout W.; Flach, H. Zwenneke; Sprengers, Marieke E. S.; Jenniskens, Sjoerd F. M.; van den Berg, René; Koudstaal, Peter J.; van Zwam, Wim H.; Roos, Yvo B. W. E. M.; van der Lugt, Aad; van Oostenbrugge, Robert J.; Dippel, Diederik W. J.
2016-01-01
Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert
E.M.M. Santos (Emilie M.); A.J. Yoo (Albert J.); L.F.M. Beenen (Ludo); O.A. Berkhemer (Olvert); M.D. Den Blanken (Mark D.); C. Wismans (Carrie); W.J. Niessen (Wiro); C.B. Majoie (Charles); H. Marquering (Henk)
2016-01-01
textabstractIntroduction: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by
Santos, E.M.; Yoo, A.J.; Beenen, L.F.; Berkhemer, O.A.; Blanken, M.D. den; Wismans, C.; Niessen, W.J.; Majoie, C.B.; Marquering, H.A.; Dijk, E.J. van; et al.,
2016-01-01
INTRODUCTION: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and
Federico eLombardi
2011-12-01
Full Text Available Assessment of autonomic modulation of sinus node by non-invasive techniques has provided relevant clinical information in patients with several cardiac and non-cardiac diseases and has facilitated the appraisal of neural regulatory mechanisms in normal and diseased subjects. The finding that even during resting conditions the heart period changes on a beat to beat basis and that after a premature ventricular beat there are small variations in RR interval whose measurements may be utilised to evaluate the autonomic modulation of sinus node, has provided unprecedented clinical and pathophysiological information. Heart rate variability (HRV and Heart Rate Turbulence (HRT have been extensively utilised in the clinical setting. To explain the negative predictive value of a reduced HRV it was determined that overall HRV was largely dependent on vagal mechanisms and that a reduction in HRV could reflect an increased sympathetic and a reduced vagal modulation of sinus node; i.e. an autonomic alteration favouring cardiac electrical instability. This initial interpretation was challenged by several findings indicating a greater complexity of the relationship between neural input and sinus node responsiveness as well as the possible interference with non-neural mechanisms.Under controlled conditions, however, the computation of low and high frequency components and of their ratio seems capable of providing adequate information on sympatho-vagal balance in normal subjects as well as in most patients with a preserved left ventricular function, thus providing a unique tool to investigate neural control mechanisms. Analysis on non-linear dynamics of HRV has also been utilised to describe the fractal like characteristic of the variability signal and proven effective to identify patients at risk for sudden cardiac death. A reduction on HRT parameters reflecting reduced baroreflex sensitivity as a likely result of a reduced vagal and of an increased sympathetic
Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report
Sanjiva Lele
2012-10-01
The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNS databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is
Liu, L.H.; Xu, X.; Chen, Y.L.
2004-01-01
The laminar flamelet equations in combination with the joint probability density function (PDF) transport equation of mixture fraction and turbulence frequency have been used to simulate turbulent jet diffusion flames. To check the suitability of the presumed shapes of the PDF for the modeling of turbulence-radiation interactions (TRI), two types of presumed joint PDFs are constructed by using the second-order moments of temperature and the species concentrations, which are derived by the laminar flamelet model. The time-averaged radiative source terms and the time-averaged absorption coefficients are calculated by the presumed joint PDF approaches, and compared with those obtained by the laminar flamelet model. By comparison, it is shown that there are obvious differences between the results of the independent PDF approach and the laminar flamelet model. Generally, the results of the dependent PDF approach agree better with those of the flamelet model. For the modeling of TRI, the dependent PDF approach is superior to the independent PDF approach
Sanjeev Sharma
2013-01-01
Full Text Available Elastic-plastic stresses, strains, and displacements have been obtained for a thin rotating annular disk with exponentially variable thickness and exponentially variable density with nonlinear strain hardening material by finite difference method using Von-Mises' yield criterion. Results have been computed numerically and depicted graphically. From the numerical results, it can be concluded that disk whose thickness decreases radially and density increases radially is on the safer side of design as compared to the disk with exponentially varying thickness and exponentially varying density as well as to flat disk.
Spatial variability in the density, distribution and vectorial capacity of ...
Malaria transmission varies from one area to another and there are also local difference in time and space. The objective of the study was to determine the local variability of entomological parameters namely, mosquito abundance, human biting rate (HBR), sporozoite rate for Plasmodium falciparum and entomological ...
Van Andel, H.W.H.
1978-03-01
Microwave radiation measurements in the region ωsub(pi) >ωsub(ce)) tokamak with turbulent skin heating show evidence of a Cerenkov beam-plasma instability during the first few microseconds of the heating pulse. It is proposed that the instability is caused by the interaction of populations of freely accelerated electrons with the bulk of the plasma, and corresponds to the unstable propagation of oblique whistlers along group-velocity resonance cones. Measured microwave spectra and their interpretation are presented. (Auth.)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
Weak turbulence theory of ion temperature gradient modes for inverted density plasmas
Hahm, T.S.; Tang, W.M.
1989-09-01
Typical profiles measured in H-mode (''high confinement'') discharges from tokamaks such as JET and DIII-D suggest that the ion temperature gradient instability threshold parameter η i (≡dlnT i /dlnn i ) could be negative in many cases. Previous linear theoretical calculations have established the onset conditions for these negative η i -modes and the fact that their growth rate is much smaller than their real frequency over a wide range of negative η i values. This has motivated the present nonlinear weak turbulence analysis to assess the relevance of such instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates that the 3-wave coupling to shorter wavelength modes is the dominant nonlinear saturation mechanism. It is found that both the saturation level for these fluctuations and the magnitude of the associated ion thermal diffusivity are considerably smaller than the strong turbulence mixing length type estimates for the more conventional positive-η i -instabilities. 19 refs., 3 figs
Hiraki, Naoji; Nakamura, Kazuo; Toi, Kazuo; Itoh, Satoshi
1980-01-01
The time evolution of electron temperature and density profiles are measured on the turbulent heating experiment in the TRIAM-1 tokamak. The skin-like profiles of electron temperature and density are observed just after the application of the pulsed electric field for turbulent heating. The width of the skin layer of the electron temperature profile is about 1 cm, and agrees well with the theoretical value. The above mentioned skin heating of electrons just after the heating pulse is also spectroscopically confirmed by the remarkable decrease of the volume emission of visible lines which is localized at the outer plasma region. (author)
Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1980-07-01
The time evolution of electron temperature and density profiles are measured on the turbulent heating experiment in the TRIAM-1 tokamak. The skin-like profiles of electron temperature and density are observed just after the application of the pulsed electric field for turbulent heating. The width of the skin layer of the electron temperature profile is about 1 cm, and agrees well with the theoretical value. The above mentioned skin heating of electrons just after the heating pulse is also spectroscopically confirmed by the remarkable decrease of the volume emission of visible lines which is localized at the outer plasma region.
Donkov, Sava; Stefanov, Ivan Z.
2018-03-01
We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.
Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density
Scott, James R.
2011-01-01
Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.
Spatial and temporal variability of turbulent vertical fluxes in Helsinki, Finland
Järvi, L.; Nordbo, A.; Haapanala, S.; Moilanen, J.; Vesala, T.
2012-04-01
The eddy-covariance technique has been widely used above vegetated surfaces to measure the turbulent exchange of momentum, heat and gases between the surface and the atmosphere. Above an urban surface, however, observations are scarce and complex measurement surroundings bring challenges to the measurements and the representativeness of the fluxes in a city scale. The fluxes of sensible (QH) and latent heat (QE), and CO2 (Fc) have been measured at three sites in Helsinki, Finland. At the SMEAR III station the measurements have been ongoing since December 2005 and the site is located next to a busy road about 4 km from downtown Helsinki. Two of the sites, Erottaja Fire Station (EFS) and Hotel Torni (HT), are located in downtown within a distance of 400 meters from each other. In EFS, the measurements have been carried out in June 2010 - January 2011, while in HT, the measurements have been ongoing since September 2010. The present dataset allows the studying of the inter-site variability of the exchange processes. Simultaneous measurements from all three sites cover four months in autumn/winter time. The high-latitude location allows a detailed examination of the effect of seasonal variation to the exchange processes. QH tends to be higher in city centre than in SMEAR III and a difference of 50 W m-2 is observed in winter. During the simultaneous measurements, stable atmospheric stratification is observed half of the time at SMEAR III whereas the occurrence in the city centre is less than 5%. This is a result of the urban heat island effect which is stronger in downtown than in the outside region. On the other hand, higher QE is measured in SMEAR III than in downtown particularly during spring and summer months when a difference of 100 W m-2 is observed. In downtown the low fraction of green areas limits the evaporation. Despite the short distance there are also differences between the two downtown sites. Both the median QH and QE are 7 W m-2 smaller in EFS than in
Study of the electron density variability at fixed heights over San Juan and Tucuman
Ezquer, R.G.; Mosert, M.; Radicella, S.M.; Jadur, C.A.
2002-01-01
The electron density (N) variability at fixed heights in the bottomside N profile over two Argentinean stations is presented. In this first study different solar conditions and some seasons are considered. The NHPC and CARP programs were used. The results show that, in general, for nighttime conditions the variability increases above 250 km. By noon the variability decreases with increasing the solar activity. At fixed heights, in general, the variability is larger by night than by day above 220 km. (author)
Nazarian, Negin; Martilli, Alberto; Kleissl, Jan
2018-03-01
As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less
Turbulence at the transition to the high density H-mode in Wendelstein 7-AS plasmas
Basse, N.P.; Zoletnik, S.; Baumel, S.
2003-01-01
Recently a new improved confinement regime was found in the Wendelstein 7-AS (W7-AS) stellarator (Renner H. et al 1989 Plasma Phys. Control. Fusion 31 1579). The discovery of this high density high confinement mode (HDH-mode) was facilitated by the installation of divertor modules. In this paper,...
Marscher, Alan P.
2011-09-01
Multi-wavelength light curves of bright gamma-ray blazars (e.g., 3C 454.3) are compared with the model proposed by Marscher and Jorstad. In this scenario, much of the optical and high-energy radiation in a blazar is emitted near the 43 GHz core of the jet as seen in VLBA images, parsecs from the central engine. The main physical features are a turbulent ambient jet plasma that passes through a standing recollimation shock in the jet. The model allows for short time-scales of optical and gamma-ray variability by restricting the highest-energy electrons radiating at these frequencies to a small fraction of the turbulent cells, perhaps those with a particular orientation of the magnetic field relative to the shock front. Because of this, the volume filling factor at high frequencies is relatively low, while that of the electrons radiating below about 10 THz is near unity. Such a model is consistent with the (1) red-noise power spectra of flux variations, (2) shorter time-scales of variability at higher frequencies, (3) frequency dependence of polarization and its variability, and (4) breaks in the synchrotron spectrum by more than the radiative loss value of 0.5. Simulated light curves are generated by a numerical code that (as of May 2011) includes synchrotron radiation as well as inverse Compton scattering of seed photons from both a dust torus and a Mach disk at the jet axis. The latter source of seed photons produces more pronounced variability in gamma-ray than in optical light curves, as is often observed. More features are expected to be added to the code by the time of the presentation. This research is supported in part by NASA through Fermi grants NNX08AV65G and NNX10AO59G, and by NSF grant AST-0907893.
Variability of breast density assessment in short-term reimaging with digital mammography
Kim, Won Hwa [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Moon, Woo Kyung, E-mail: moonwk@snu.ac.kr [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Sun Mi [Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Yi, Ann [Department of Radiology, Seoul Metropolitan Government Seoul National University, Boramae Medical Center, Seoul (Korea, Republic of); Chang, Jung Min; Koo, Hye Ryoung; Lee, Su Hyun; Cho, Nariya [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)
2013-10-01
Objective: To evaluate the variability of breast density assessments in short-term reimaging with digital mammography. Materials and methods: In 186 women, short term (mean interval, 27.6 days) serial digital mammograms including CC and MLO views were obtained without any treatment. Mammographic density assessments were performed by three blinded radiologists for Breast Imaging Report and Data System (BI-RADS, grades 1–4) and visual percentage density (PD) estimation, and by one radiologist for computer-aided PD estimation. The variability of assessments was analyzed according to the age, breast density, and mammography types by multivariate logistic regression. Results: In BI-RADS assessments, 29% (161 of 558) of breast density categories were assessed differently after short-term reimaging and the mean absolute difference in PD for CC and MLO view was 7.6% and 8.1% for visual assessments, and 7.4% and 6.4% for computer-aided assessments, respectively. Among all computer-aided assessments, 29% (54 of 186) of CC view and 22% (41 of 186) of MLO view assessments had discrepancy over 10% in PD. Younger age (<50), greater breast density (grades 3 and 4), and different mammography types were significantly associated with the variability. Conclusion: Considerable variability in breast density assessments occurred in short-term reimaging with digital mammography, particularly in women with younger age and greater breast density and when examined using different types of mammography.
Variability of breast density assessment in short-term reimaging with digital mammography
Kim, Won Hwa; Moon, Woo Kyung; Kim, Sun Mi; Yi, Ann; Chang, Jung Min; Koo, Hye Ryoung; Lee, Su Hyun; Cho, Nariya
2013-01-01
Objective: To evaluate the variability of breast density assessments in short-term reimaging with digital mammography. Materials and methods: In 186 women, short term (mean interval, 27.6 days) serial digital mammograms including CC and MLO views were obtained without any treatment. Mammographic density assessments were performed by three blinded radiologists for Breast Imaging Report and Data System (BI-RADS, grades 1–4) and visual percentage density (PD) estimation, and by one radiologist for computer-aided PD estimation. The variability of assessments was analyzed according to the age, breast density, and mammography types by multivariate logistic regression. Results: In BI-RADS assessments, 29% (161 of 558) of breast density categories were assessed differently after short-term reimaging and the mean absolute difference in PD for CC and MLO view was 7.6% and 8.1% for visual assessments, and 7.4% and 6.4% for computer-aided assessments, respectively. Among all computer-aided assessments, 29% (54 of 186) of CC view and 22% (41 of 186) of MLO view assessments had discrepancy over 10% in PD. Younger age (<50), greater breast density (grades 3 and 4), and different mammography types were significantly associated with the variability. Conclusion: Considerable variability in breast density assessments occurred in short-term reimaging with digital mammography, particularly in women with younger age and greater breast density and when examined using different types of mammography
Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
Lee, Chin Yik; Cant, Stewart
2017-07-01
A premixed propane-air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and
Electron heating caused by parametrically driven turbulence near the critical density
Mizuno, K.; DeGroot, J.S.; Estabrook, K.G.
1986-01-01
Microwave-driven experiments and particle simulation calculations are presented that model s-polarized laser light incident on a pellet. In the microwave experiments, the incident microwaves are observed to decay into ion and electron waves near the critical density if the microwave power is above a well-defined threshold. Significant absorption, thermal electron heating, and hot electron generation are observed for microwave powers above a few times threshold. Strong absorption, strong profile modification, strongly heated hot electrons with a Maxwellian distribution, a hot-electron temperature that increases slowly with power, and a hot-electron density that is almost constant, are all observed in both the microwave experiments and simulation calculations for high powers. In addition, the thermal electrons are strongly heated for high powers in the microwave experiments
Higdon, J.C.
1986-01-01
A model of anisotropic, plasma-fluid variations was used to investigate the unknown origin of the power spectra of interstellar electron fluctuations inferred by Armstrong, Cordes, and Rickett (1981). The modeled electron variations are interpreted as density components of an anisotropic stationary mode of nonlinear magnetogasdynamics-tangential pressure balances. It is suggested that the wavenumber spectra of electron variations are identical to the spectra of the convecting velocity fields over a wide range of wavenumbers. 55 references
Mingyue Shao
2017-01-01
Full Text Available The vibration model of moving membrane with variable density distribution is established, and the density distribution of the moving membrane varies along the lateral direction. The transverse vibration differential equations of moving membrane are established based on D’Alembert’s principle and discretized by using the differential quadrature method (DQM. The relationships of the first three dimensionless complex frequencies between dimensionless speed, density coefficient, and tension ratio of the membrane are analyzed by numerical calculation. The effects of the density coefficient and the tension ratio on transverse vibration characteristics of the membrane are investigated. The relationship between density coefficient and critical speed is obtained. The numerical results show that the density coefficient and the tension ratio have important influence on the stability of moving membrane. So the study provides a theoretical basis for improving the working stability of the membrane in the high-speed printing process.
Rai, Raj K. [Pacific Northwest National Laboratory, Richland, Washington; Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Pekour, Mikhail [Pacific Northwest National Laboratory, Richland, Washington; Shaw, William J. [Pacific Northwest National Laboratory, Richland, Washington; Kosovic, Branko [National Center for Atmospheric Research, Boulder, Colorado; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory, Livermore, California; Ennis, Brandon L. [Sandia National Laboratories, Albuquerque, New Mexico
2017-12-01
The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains each for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.
Yan, Zheng; McKee, George; Gohil, Punit; Schmitz, Lothar; Eldon, David; Grierson, Brian; Kriete, Matt; Rhodes, Terry; Petty, Craig
2017-10-01
Measurements of long wavelength density fluctuation characteristics have been obtained in the edge of Deuterium (D) plasmas across the L-H transition on DIII-D during density and q95 scans. The relative density fluctuation amplitude measured by Beam Emission Spectroscopy (BES) increases with higher q95. The power threshold is found to increase with plasma current (i.e., lower q95) but with complex density dependence: the largest increase of PLH is seen at ne 3.2e19 m-3. Interestingly, a dual counter-propagating mode is observed for cases when PLH is low. The existence of the dual mode is correlated with increasing flow shear. Estimation of the turbulence kinetic energy transfer from turbulence to the flow increases prior to the transition. The complex behaviors of the turbulence characteristics and dual frequency modes interactions impact the flow shear generation, the transition process and the power threshold scaling. Work supported by the US Department of Energy under DE-FG02-08ER54999, DE-AC02-09CH11466, DE-FC02-04ER54698, and DE-AC52-07NA27344.
Santos, Emilie M.M.; Yoo, Albert J.; Beenen, Ludo F.; Majoie, Charles B.; Berkhemer, Olvert A.; Blanken, Mark D. den; Wismans, Carrie; Niessen, Wiro J.; Marquering, Henk A.
2016-01-01
Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland-Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs. (orig.)
Santos, Emilie M.M. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Department of Radiology, AMC, Amsterdam (Netherlands); Yoo, Albert J. [Texas Stroke Institute, Plano, TX (United States); Beenen, Ludo F.; Majoie, Charles B. [Department of Radiology, AMC, Amsterdam (Netherlands); Berkhemer, Olvert A. [Department of Radiology, AMC, Amsterdam (Netherlands); Department of Neurology, Erasmus MC, Rotterdam (Netherlands); Blanken, Mark D. den; Wismans, Carrie [AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Marquering, Henk A. [Department of Radiology, AMC, Amsterdam (Netherlands); AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Collaboration: on behalf of the MR CLEAN investigators
2016-02-15
Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland-Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs. (orig.)
Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain
Maurer, V.; Kalthoff, N.; Wieser, A.; Kohler, M.; Mauder, M.; Gantner, L.
2016-02-01
In the spring of 2013, extensive measurements with multiple Doppler lidar systems were performed. The instruments were arranged in a triangle with edge lengths of about 3 km in a moderately flat, agriculturally used terrain in northwestern Germany. For 6 mostly cloud-free convective days, vertical velocity variance profiles were calculated. Weighted-averaged surface fluxes proved to be more appropriate than data from individual sites for scaling the variance profiles; but even then, the scatter of profiles was mostly larger than the statistical error. The scatter could not be explained by mean wind speed or stability, whereas time periods with significantly increased variance contained broader thermals. Periods with an elevated maximum of the variance profiles could also be related to broad thermals. Moreover, statistically significant spatial differences of variance were found. They were not influenced by the existing surface heterogeneity. Instead, thermals were preserved between two sites when the travel time was shorter than the large-eddy turnover time. At the same time, no thermals passed for more than 2 h at a third site that was located perpendicular to the mean wind direction in relation to the first two sites. Organized structures of turbulence with subsidence prevailing in the surroundings of thermals can thus partly explain significant spatial variance differences existing for several hours. Therefore, the representativeness of individual variance profiles derived from measurements at a single site cannot be assumed.
Levy, M.; Resplandy, L.; Lengaigne, M.
variability was responsible for interannual fluctuations of the subpolar phytoplankton bloom reaching 80% in amplitude and 2 weeks in timing. Over broader scales, the largest impact occurred in the subtropics with interannual variations of 20% in new...
Goldman, M.V.
1984-01-01
After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)
Ahmed, Altayeb Abdalla; Osman, Samah
2016-08-01
Fingerprints are important biometric variables that show manifold utilities in human biology, human morphology, anthropology, and genetics. Their role in forensics as a legally admissible tool of identification is well recognized and is based on their stability following full development, individualistic characteristics, easy classification of their patterns, and uniqueness. Nevertheless, fingerprint ridge density and its variability have not been previously studied in the Sudanese population. Hence, this study was conducted to analyze the topological variability in epidermal ridge density and to assess the possibility of its application in determining sex of Sudanese Arabs. The data used for this study were prints of all 10 fingers of 200 Sudanese Arab individuals (100 men and 100 women) aged between 18 and 28 years. Fingerprint ridge density was assessed for three different areas (radial, ulnar and proximal) for all 10 fingers of each subject. Significant variability was found between the areas (p crime scenes can be useful to determine sex of Sudanese individuals based on fingerprint ridge density; furthermore, ridge density can be considered a morphological trait for individual variation in forensic anthropology. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
C. Berndt
2018-02-01
New hydrological insights: Geostatistical techniques provide a better performance for all climate variables compared to simple methods Radar data improves the estimation of rainfall with hourly temporal resolution, while topography is useful for weekly to yearly values and temperature in general. No helpful information was found for cloudiness, sunshine duration, and wind speed, while interpolation of humidity benefitted from additional temperature data. The influences of temporal resolution, spatial variability, and additional information appear to be stronger than station density effects. High spatial variability of hourly precipitation causes the highest error, followed by wind speed, cloud coverage and sunshine duration. Lowest errors occur for temperature and humidity.
Coastal circulations driven by river outflow in a variable-density 1.5-layer model
McCreary, J.P.; Zhang, S.; Shetye, S.R.
A variable-density, 1.5-layer model is used to investigate the dynamics of the fresher-water plumes generated by river outflow. Solutions are found in a north-south channel, and the transport M sub(tau) and salinity S sub(tau) of the outflow...
The variability of wood density and compression strength of Norway spruce
Horáček, Petr; Fajstavr, Marek; Stojanović, Marko
2017-01-01
Roč. 10, 1-2 (2017), s. 17-26 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : Norway spruce * wood density * compression strength * variability Subject RIV: GK - Forestry OBOR OECD: Forestry
Fenzi, Ch
1999-10-29
In magnetic fusion devices, the optimisation of the power deposition profile on plasma facing components crucially depends on the heat diffusivity across the magnetic field fines, which is determined by the plasma edge turbulence. In this regard, spatial asymmetries of plasma edge turbulence are of great interest. In this work, we interest in up-down asymmetries of density fluctuations which are usually observed in Tore Supra, using a coherent light scattering experiment. It is shown that these asymmetries are correlated to the plasma edge geometrical configuration (plasma facing components, limiters). In fact, the plasma-limiter interaction induces locally in the plasma edge and the SOL (r/a > 0.9) an additional turbulence with short correlation length along the magnetic field fines, which spreads in the plasma core (0.9 {>=} r/a {>=} 0.5). The resultant up-down asymmetry weakly depends on density, increases with the edge safety factor, and inverts when the plasma current direction is reversed. Such up-down asymmetry observations bring strong impact on edge turbulence and transport models, which usually predict a ballooning of the turbulence in the high-field side but not an up-down asymmetry. A possible model is proposed here, based on the Kelvin Helmholtz instability. (author)
Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At
Chu, Chia-Ching; Gill, Torrence A; Hoffmann, Mark; Pelz-Stelinski, Kirsten S
2016-05-01
The Asian citrus psyllid (Diaphorina citri Kuwayama) is an insect pest capable of transmitting Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening in North America. D. citri also harbors three endosymbionts, Wolbachia, Candidatus Carsonella ruddii, and Candidatus Profftella armatura, which may influence D. citri physiology and fitness. Although genomic researches on these bacteria have been conducted, much remains unclear regarding their ecology and inter-population variability in D. citri. The present work examined the densities of each endosymbiont in adult D. citri sampled from different populations using quantitative PCR. Under field conditions, the densities of all three endosymbionts positively correlated with each other, and they are associated with D. citri gender and locality. In addition, the infection density of CLas also varied across populations. Although an analysis pooling D. citri from different populations showed that CLas-infected individuals tended to have lower endosymbiont densities compared to uninfected individuals, the difference was not significant when the population was included as a factor in the analysis, suggesting that other population-specific factors may have stronger effects on endosymbiont densities. To determine whether there is a genetic basis to the density differences, endosymbiont densities between aged CLas-negative females of two D. citri populations reared under standardized laboratory conditions were compared. Results suggested that inter-population variability in Wolbachia infection density is associated with the genotypes of the endosymbiont or the host. Findings from this work could facilitate understanding of D. citri-bacterial associations that may benefit the development of approaches for managing citrus greening, such as prevention of CLas transmission.
Benchmarking variable-density flow in saturated and unsaturated porous media
Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas
2015-04-01
In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.
On specification of initial conditions in turbulence models
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-12-01
Recent research has shown that initial conditions have a significant influence on the evolution of a flow towards turbulence. This important finding offers a unique opportunity for turbulence control, but also raises the question of how to properly specify initial conditions in turbulence models. We study this problem in the context of the Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is accelerated in to a heavy fluid because of misalignment between density and pressure gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural and man-made flows ranging from supernovae to the implosion phase of Inertial Confinement Fusion (ICF). Our approach consists of providing the turbulence models with a predicted profile of its key variables at the appropriate time in accordance to the initial conditions of the problem.
Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew; Muljadi, Eduard; Gevorgian, Vahan; Wang, Jianhui; Yan, Weihang; Zhang, Huaguang
2017-10-18
To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.
Mueller, H.W.; Carralero, D.; Birkenmeier, G.; Conway, G.D.; Fischer, R.; Happel, T.; Manz, P.; Suttrop, W.; Wolfrum, E.
2014-01-01
In the tokamak ASDEX Upgrade the influence of a non-axisymmetric n = 2 error field on the turbulence in the far scrape-off layer of a low density L-mode discharge has been studied. There is no density pump-out with the non-axisymmetric perturbation but an increase of the scrape-off layer density at the outer midplane. While the relative ion saturation current fluctuation level in the far scrape-off layer is decreasing, the skewness rises and especially the excess kurtosis grows by a factor of 1.5-3. The frequency of intermittent events (blobs) is increasing by 50 %. Also the poloidal velocity grows with the magnetic perturbation while the typical turbulent structure size becomes smaller by a factor 5-10 about 20-25 mm outside the separatrix. The local spectral density has been calculated from a two-point measurement of the ion saturation current. It is used to derive a dispersion relation. Two poloidal propagation velocities depending on the wave number have been found. One is an upper limit for the bulk E x B velocity and the second one the lower limit of the phase velocity. There is a significant contribution of the phase velocity to the propagation speed in the far scrape-off layer. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall
Keisuke Yano
2014-05-01
Full Text Available We investigate the asymptotic construction of constant-risk Bayesian predictive densities under the Kullback–Leibler risk when the distributions of data and target variables are different and have a common unknown parameter. It is known that the Kullback–Leibler risk is asymptotically equal to a trace of the product of two matrices: the inverse of the Fisher information matrix for the data and the Fisher information matrix for the target variables. We assume that the trace has a unique maximum point with respect to the parameter. We construct asymptotically constant-risk Bayesian predictive densities using a prior depending on the sample size. Further, we apply the theory to the subminimax estimator problem and the prediction based on the binary regression model.
Teodorovich, E. V.
2018-03-01
In order to find the shape of energy spectrum within the framework of the model of stationary homogeneous isotropic turbulence, the renormalization-group equations, which reflect the Markovian nature of the mechanism of energy transfer along the wavenumber spectrum, are used in addition to the dimensional considerations and the energy balance equation. For the spectrum, the formula depends on three parameters, namely, the wavenumber, which determines the upper boundary of the range of the turbulent energy production, the spectral flux through this boundary, and the fluid kinematic viscosity.
Variability in understory evapotranspiration with overstory density in Siberian larch forests
Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.
2016-12-01
Arctic ecosystems are changing rapidly in response to amplified rates of climate change. Increased vegetation productivity, altered ecosystem carbon and hydrologic cycling, and increased wildfire severity are among the key responses to changing permafrost and climate conditions. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem affected by these modifications. Understory vegetation in these ecosystems, which typically have low canopy cover, may account for half of all water fluxes. Despite the potential importance of the understory for ecosystem water exchange, there has been relatively little research examining variability in understory evapotranspiration in boreal larch forests. In particular, the water balance of understory shrubs and mosses is largely undefined and could provide insight on how understory vegetation and our changing climate interact. This is especially important because both observed increases in vegetation productivity and wildfire severity could lead to increases in forests density, altering the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. In order to better understand variability in understory evapotranspiration we measured in larch forests with differing overstory density and permafrost conditions that likely vary as a consequence of fire severity. We used the static chamber technique to measure fluxes across a range of understory vegetation types and environmental conditions. In general, we found that the understory vegetation in low density stands transpires more than that in high density stands. This tends to be correlated with a larger amount of aboveground biomass in the low density stands, and an increase in solar radiation, due to less shading by overstory trees. These results will help us to better understand water balances, evapotranspiration variability, and productivity changes associated with climate on understory vegetation. Additionally
Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.
Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S
2018-04-01
It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.
Guermond, J.-L.; Salgado, Abner J.
2011-01-01
In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established. © 2011 Society for Industrial and Applied Mathematics.
Generation of neutrons in a plane system by explosive implosion of a variable-density liner
Kaliski, S.
1978-01-01
The neutron yield has been calculated in a plane system at explosive implosion of a variable density liner into the explosive region. Due to high speed of implosion effected with the aid of a cumulative cone the neutron yield has already been obtained for the plane wave incident and reflected in deuterium gas. This has permitted an analytical approximate estimation of the neutron yield. This yield may be enhanced in a further phase of compression. (author)
Krommes, J.A.
1985-11-01
The author critiques the model of tokamak edge turbulence by P.W. Terry and P.H. Diamond (Phys. Fluids 28, 1419, 1985). The critique includes a discussion of the physical basis, consistency and quantitative accuracy of the Terry-Diamond model. 19 refs
Spitznagel Edward
2003-11-01
Full Text Available Abstract Background The assessment of data reproducibility is essential for application of microarray technology to exploration of biological pathways and disease states. Technical variability in data analysis largely depends on signal intensity. Within that context, the reproducibility of individual probe sets has not been hitherto addressed. Results We used an extraordinarily large replicate data set derived from human placental trophoblast to analyze probe-specific contribution to variability of gene expression. We found that signal variability, in addition to being signal-intensity dependant, is probe set-specific. Importantly, we developed a novel method to quantify the contribution of this probe set-specific variability. Furthermore, we devised a formula that incorporates a priori-computed, replicate-based information on probe set- and intensity-specific variability in determination of expression changes even without technical replicates. Conclusion The strategy of incorporating probe set-specific variability is superior to analysis based on arbitrary fold-change thresholds. We recommend its incorporation to any computation of gene expression changes using high-density DNA microarrays. A Java application implementing our T-score is available at http://www.sadovsky.wustl.edu/tscore.html.
B. Strelnikov
2017-04-01
Full Text Available In summer 2013 the WADIS-1 sounding rocket campaign was conducted at the Andøya Space Center (ACS in northern Norway (69° N, 16° E. Among other things, it addressed the question of the variability in mesosphere/lower thermosphere (MLT turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar near Tromsø. This allowed for horizontal variability to be observed in the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate, ε varied in space in a wavelike manner both horizontally and in the vertical direction. This wavelike modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that the vertical mean value of radar observations of ε agrees reasonably with rocket-borne measurements. In this way defined 〈εradar〉 value reveals clear tidal modulation and results in variation by up to 2 orders of magnitude with periods of 24 h. The 〈εradar〉 value also shows 12 h and shorter (1 to a few hours modulations resulting in one decade of variation in 〈εradar〉 magnitude. The 24 h modulation appeared to be in phase with tidal change of horizontal wind observed by SAURA-MF radar. Such wavelike and, in particular, tidal modulation of the turbulence dissipation field in the MLT region inferred from our analysis is a new finding of this work.
Zimmerman, A. M.; DePaola, A.; Bowers, J. C.; Krantz, J. A.; Nordstrom, J. L.; Johnson, C. N.; Grimes, D. J.
2007-01-01
Vibrio parahaemolyticus is indigenous to coastal environments and a frequent cause of seafood-borne gastroenteritis in the United States, primarily due to raw-oyster consumption. Previous seasonal-cycle studies of V. parahaemolyticus have identified water temperature as the strongest environmental predictor. Salinity has also been identified, although it is evident that its effect on annual variation is not as pronounced. The effects of other environmental factors, both with respect to the seasonal cycle and intraseasonal variation, are uncertain. This study investigated intraseasonal variations of densities of total and pathogenic V. parahaemolyticus organisms in oysters and overlying waters during the summer of 2004 at two sites in the northern Gulf of Mexico. Regression analyses indicated significant associations (P turbidity in water and in oysters at the Mississippi site but not at the Alabama site. Pathogenic V. parahaemolyticus organisms in Mississippi oyster and water samples were detected in 56% (9 out of 16) and 78% (43 out of 55) of samples, respectively. In contrast, 44% (7 out of 16) of oyster samples and 30% (14 out of 47) of water samples from Alabama were positive. At both sites, there was greater sample-to-sample variability in pathogenic V. parahaemolyticus densities than in total V. parahaemolyticus densities. These data suggest that, although total V. parahaemolyticus densities may be very informative, there is greater uncertainty when total V. parahaemolyticus densities are used to predict the risk of infection by pathogenic V. parahaemolyticus than previously recognized. PMID:17921270
Zimmerman, A M; DePaola, A; Bowers, J C; Krantz, J A; Nordstrom, J L; Johnson, C N; Grimes, D J
2007-12-01
Vibrio parahaemolyticus is indigenous to coastal environments and a frequent cause of seafood-borne gastroenteritis in the United States, primarily due to raw-oyster consumption. Previous seasonal-cycle studies of V. parahaemolyticus have identified water temperature as the strongest environmental predictor. Salinity has also been identified, although it is evident that its effect on annual variation is not as pronounced. The effects of other environmental factors, both with respect to the seasonal cycle and intraseasonal variation, are uncertain. This study investigated intraseasonal variations of densities of total and pathogenic V. parahaemolyticus organisms in oysters and overlying waters during the summer of 2004 at two sites in the northern Gulf of Mexico. Regression analyses indicated significant associations (P turbidity in water and in oysters at the Mississippi site but not at the Alabama site. Pathogenic V. parahaemolyticus organisms in Mississippi oyster and water samples were detected in 56% (9 out of 16) and 78% (43 out of 55) of samples, respectively. In contrast, 44% (7 out of 16) of oyster samples and 30% (14 out of 47) of water samples from Alabama were positive. At both sites, there was greater sample-to-sample variability in pathogenic V. parahaemolyticus densities than in total V. parahaemolyticus densities. These data suggest that, although total V. parahaemolyticus densities may be very informative, there is greater uncertainty when total V. parahaemolyticus densities are used to predict the risk of infection by pathogenic V. parahaemolyticus than previously recognized.
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Kurtis E. Steele
2013-01-01
Variable-density thinning has received a lot of public attention in recent years and has subsequently become standard language in most of the Willamette National Forestâs timber management projects. Many techniques have been tried, with varying on-the-ground successes. To accomplish variable-density thinning, the McKenzie River Ranger District currently uses...
de Wysiecki, María Laura; Arturi, Marcelo; Torrusio, Sandra; Cigliano, María Marta
2011-01-01
temperature had no significant effect on total grasshopper density, these weather variables and plant communities had differential influence on the dominant grasshopper species.
Sung, C.; Rhodes, T. L.; Staebler, G. M.; Yan, Z.; McKee, G. R.; Smith, S. P.; Osborne, T. H.; Peebles, W. A.
2018-05-01
For the first time, we report increased edge electron temperature and density turbulence levels ( T˜ e and n˜ e) in Edge Localized Mode free Quiescent H-mode (ELM-free QH-mode) plasmas as compared to the ELMing time period. ELMs can severely damage plasma facing components in fusion plasma devices due to their large transient energy transport, making ELM-free operation a highly sought after goal. The QH-mode is a candidate for this goal as it is ELM-free for times limited only by hardware constraints. It is found that the driving gradients decrease during the QH-mode compared to the ELMing phase, however, a significant decrease in the ExB shearing rate is also observed that taken together is consistent with the increased turbulence. These results are significant as the prediction and control of ELM-free H-mode regimes are crucial for the operation of future fusion devices such as ITER. The changes in the linear growth rates calculated by CGYRO [Candy et al., J. Comput. Phys. 324, 73 (2016)] and the measured ExB shearing rate between ELMing and QH-mode phases are qualitatively consistent with these turbulence changes. Comparison with ELMing and 3D fields ELM suppressed H-mode finds a similar increase in T˜ e and n˜ e, however, with distinctly different origins, the increased driving gradients rather than the changes in the ExB shearing rate in 3D fields ELM suppressed the H-mode. However, linear gyrokinetic calculation results are generally consistent with the increased turbulence in both ELM-controlled discharges.
Kim, Jeonglae; Pope, Stephen B.
2014-05-01
A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.
FPIV study of gas entrainment by a hollow cone spray submitted to variable density
Prosperi, B. [UMR CNRS/INPT-UPS 5502, Institut de Mecanique des Fluides de Toulouse, Toulouse (France); P GS AD INCAS, Siemens VDO Automotive, 1, av Paul Ourliac, BP 1149, Toulouse (France); Delay, G.; Bazile, R. [UMR CNRS/INPT-UPS 5502, Institut de Mecanique des Fluides de Toulouse, Toulouse (France); Helie, J.; Nuglish, H.J. [P GS AD INCAS, Siemens VDO Automotive, 1, av Paul Ourliac, BP 1149, Toulouse (France)
2007-08-15
The gas entrainment in a hollow cone spray submitted to variable density is studied experimentally in order to better understand the effect on mixture formation. Particle image velocimetry on fluorescent tracers, associated with a specific processing of the instantaneous velocity fields have been applied to obtain measurement in the close vicinity of the spray edge. In the ''quasi-steady'' region of the spray, important effect of the ambient density on the mass flow rate of entrained gas (m{sub e}) have been pointed out. The axial evolution of m{sub e} is in good agreement with an integral model that takes the momentum exchange between phases into account. (orig.)
Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd
2016-10-01
Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a
Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable density
Hu, Xianpeng; Liu, Qiao
2018-04-01
In this paper, we investigate the global existence and uniqueness of solution to the 3D inhomogeneous incompressible nematic liquid crystal flows with variable density in the framework of Besov spaces. It is proved that there exists a global and unique solution to the nematic liquid crystal flows if the initial data (ρ0 - 1 ,u0 ,n0 -e3) ∈ M (B˙p,1 3/p - 1 (R3)) × B˙p,1 3/p - 1 (R3) × B˙p,1 3/p (R3) with 1 ≤ p < 6, and satisfies
Bai Shiye
2016-05-01
Full Text Available An objective function defined by minimum compliance of topology optimization for 3D continuum structure was established to search optimal material distribution constrained by the predetermined volume restriction. Based on the improved SIMP (solid isotropic microstructures with penalization model and the new sensitivity filtering technique, basic iteration equations of 3D finite element analysis were deduced and solved by optimization criterion method. All the above procedures were written in MATLAB programming language, and the topology optimization design examples of 3D continuum structure with reserved hole were examined repeatedly by observing various indexes, including compliance, maximum displacement, and density index. The influence of mesh, penalty factors, and filter radius on the topology results was analyzed. Computational results showed that the finer or coarser the mesh number was, the larger the compliance, maximum displacement, and density index would be. When the filtering radius was larger than 1.0, the topology shape no longer appeared as a chessboard problem, thus suggesting that the presented sensitivity filtering method was valid. The penalty factor should be an integer because iteration steps increased greatly when it is a noninteger. The above modified variable density method could provide technical routes for topology optimization design of more complex 3D continuum structures in the future.
Shakouri, Mahmoud; Ikuma, Laura H; Aghazadeh, Fereydoun; Punniaraj, Karthy; Ishak, Sherif
2014-10-01
This paper investigates the effect of changing work zone configurations and traffic density on performance variables and subjective workload. Data regarding travel time, average speed, maximum percent braking force and location of lane changes were collected by using a full size driving simulator. The NASA-TLX was used to measure self-reported workload ratings during the driving task. Conventional lane merge (CLM) and joint lane merge (JLM) were modeled in a driving simulator, and thirty participants (seven female and 23 male), navigated through the two configurations with two levels of traffic density. The mean maximum braking forces was 34% lower in the JLM configuration, and drivers going through the JLM configuration remained in the closed lane longer. However, no significant differences in speed were found between the two merge configurations. The analysis of self-reported workload ratings show that participants reported 15.3% lower total workload when driving through the JLM. In conclusion, the implemented changes in the JLM make it a more favorable merge configuration in both high and low traffic densities in terms of optimizing traffic flow by increasing the time and distance cars use both lanes, and in terms of improving safety due to lower braking forces and lower reported workload. Copyright © 2014 Elsevier Ltd. All rights reserved.
The effects of variability on the number-flux-density relationship for radio sources
Schuch, N.J.
1981-01-01
It has been known for some time that the number-flux-density relationship for radio sources requires a population of sources whose properties evolve with cosmological epoch, at least in models where the redshifts are all taken to be cosmological. In particular, the surveys made at metre wavelengths show, for bright sources, a slope of the log N -log S curve which is steeper than the value -1.5 expected in a static, non-evolving Euclidean universe. Here, N is the number of radio sources brighter than flux density S. Expansion without evolution in conventional geometrical models predicts slopes flatter than -1.5. If the radio survey is carried out at higher frequencies (typically 2.7 or 5 GHz - 11 or 6 cm wavelength), the slope of the log N -log S curve is steeper than -1.5 but not so steep as the slopes found for the low-frequency surveys. Many of the sources found in high-frequency surveys have radio spectra with relatively higher flux-densities in the centimetre range; these sources are frequently variable at high frequencies, with time-scales from a month or two upwards. Some possible effects of the variations on the observed counts of radio sources are considered. (author)
Stirring turbulence with turbulence
Cekli, H.E.; Joosten, R.; van de Water, W.
2015-01-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the
van Haren, H.
2015-01-01
The character of turbulent overturns in a weakly stratified deep-sea is investigated in some detail using 144 high-resolution temperature sensors at 0.7 m intervals, starting 5 m above the bottom. A 9-day, 1 Hz sampled record from the 912 m depth flat-bottom (<0.5% bottom-slope) mooring site in the
Kim, Do-Gyoon; Shertok, Daniel; Ching Tee, Boon; Yeni, Yener N
2011-06-03
Creep is a time-dependent viscoelastic deformation observed under a constant prolonged load. It has been indicated that progressive vertebral deformation due to creep may increase the risk of vertebral fracture in the long-term. The objective of this study was to examine the relationships of creep with trabecular architecture and tissue mineral density (TMD) parameters in human vertebral cancellous bone at a physiological static strain level. Architecture and TMD parameters of cancellous bone were analyzed using microcomputerized tomography (micro-CT) in specimens cored out of human vertebrae. Then, creep and residual strains of the specimens were measured after a two-hour physiological compressive constant static loading and unloading cycle. Creep developed (3877 ± 2158 με) resulting in substantial levels of non-recoverable post-creep residual strain (1797 ± 1391 με). A strong positive linear correlation was found between creep and residual strain (r = 0.94, p creep rate. The TMD variability (GL(COV)) was the strongest correlate of creep rate (r = 0.79, p < 0.001). This result suggests that TMD variability may be a useful parameter for estimating the long-term deformation of a whole vertebral body. The results further suggest that the changes in TMD variability resulting from bone remodeling are of importance and may provide an insight into the understanding of the mechanisms underlying progressive failure of vertebral bodies and development of a clinical fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chowdhury, Snehaunshu
2017-01-23
In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating existing soot models are reported at intervals of ∆x/D∆x/D = 5 along the centerline of turbulent, non-premixed, C2H4/N2 flames. The jet exit Reynolds numbers of the flames investigated were 10,000 and 20,000. A simplified burner geometry based on a published design was chosen to aid modelers. Soot was sampled directly from the flame using a sampling probe with a 0.5-mm diameter orifice and diluted with N2 by a two-stage dilution process. The overall dilution ratio was not evaluated. An SMPS system was used to analyze soot particle concentrations in the diluted samples. Sampling conditions were optimized over a wide range of dilution ratios to eliminate the effect of agglomeration in the sampling probe. Two differential mobility analyzers (DMAs) with different size ranges were used separately in the SMPS measurements to characterize the entire size range of particles. In both flames, the PDFs were found to be mono-modal in nature near the jet exit. Further downstream, the profiles were flatter with a fall-off at larger particle diameters. The geometric mean of the soot size distributions was less than 10 nm for all cases and increased monotonically with axial distance in both flames.
Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes
Stolovitzky, G.; Sreenivasan, K.R.
1994-01-01
Kolmogorov's refined similarity hypotheses are shown to hold true for a variety of stochastic processes besides high-Reynolds-number turbulent flows, for which they were originally proposed. In particular, just as hypothesized for turbulence, there exists a variable V whose probability density function attains a universal form. Analytical expressions for the probability density function of V are obtained for Brownian motion as well as for the general case of fractional Brownian motion---the latter under some mild assumptions justified a posteriori. The properties of V for the case of antipersistent fractional Brownian motion with the Hurst exponent of 1/3 are similar in many details to those of high-Reynolds-number turbulence in atmospheric boundary layers a few meters above the ground. The one conspicuous difference between turbulence and the antipersistent fractional Brownian motion is that the latter does not possess the required skewness. Broad implications of these results are discussed
Effect of normal impurities on anisotropic superconductors with variable density of states
Whitmore, M. D.; Carbotte, J. P.
1982-06-01
We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.
Effect of normal impurities on anisotropic superconductors with variable density of states
Whitmore, M.D.; Carbotte, J.P.
1982-01-01
We develop a generalized BCS theory of impure superconductors with an anisotropic electron--electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(epsilon-c), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T/sub c/ by both the anisotropy and the peak in N(epsilon-c) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak
Numerical Investigation of Multiple-, Interacting-Scale Variable-Density Ground Water Flow Systems
Cosler, D.; Ibaraki, M.
2004-12-01
The goal of our study is to elucidate the nonlinear processes that are important for multiple-, interacting-scale flow and solute transport in subsurface environments. In particular, we are focusing on the influence of small-scale instability development on variable-density ground water flow behavior in large-scale systems. Convective mixing caused by these instabilities may mix the fluids to a greater extent than would be the case with classical, Fickian dispersion. Most current numerical schemes for interpreting field-scale variable-density flow systems do not explicitly account for the complexities caused by small-scale instabilities and treat such processes as "lumped" Fickian dispersive mixing. Such approaches may greatly underestimate the mixing behavior and misrepresent the overall large-scale flow field dynamics. The specific objectives of our study are: (i) to develop an adaptive (spatial and temporal scales) three-dimensional numerical model that is fully capable of simulating field-scale variable-density flow systems with fine resolution (~1 cm); and (ii) to evaluate the importance of scale-dependent process interactions by performing a series of simulations on different problem scales ranging from laboratory experiments to field settings, including an aquifer storage and freshwater recovery (ASR) system similar to those planned for the Florida Everglades and in-situ contaminant remediation systems. We are examining (1) methods to create instabilities in field-scale systems, (2) porous media heterogeneity effects, and (3) the relation between heterogeneity characteristics (e.g., permeability variance and correlation length scales) and the mixing scales that develop for varying degrees of unstable stratification. Applications of our work include the design of new water supply and conservation measures (e.g., ASR systems), assessment of saltwater intrusion problems in coastal aquifers, and the design of in-situ remediation systems for aquifer restoration
Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C
2017-11-01
Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Options for refractive index and viscosity matching to study variable density flows
Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.
2018-02-01
Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a
Some aspects of regional flow of variable-density groundwater in crystalline basement rock of Sweden
Voss, C.I.; Andersson, Johan
1991-12-01
The distribution of saltwaters in the Baltic shield in Sweden is consistent with ongoing but incomplete Holocene flushing and depends on the geometry and connectivity of conductive structures at both regional and local scales, and on the surface topography. Numerical simulation of regional variable-density fluid flow during Holocene land-rise and coastal regression shows that the existence of any old saltwater, whether derived from submarine recharge in regions below Sweden's highest post-glacial coastline or geochemical processes, is an indication either of slow fluid movements through the bedrock over long times, or of long travel distances through fracture systems before arriving at measurement points. During the land-rise period, regional flow is not affected by the variable density of fluids in the upper few kilometers of the shield and the topography of the water table is the only driving force. The spatial distribution of meteoric flushing water and pre-Holocene waters may be complex, with the possibility of relatively fresh water in fracture zones below salty units even at depths of a few kilometers. The domination of the topographic driving force implies that deep saltwater is not necessarily stagnant, and significant saltwater flows may be expected to occur in well-connected horizons even at depth. Local topography variation and fracture zone location combine to create a complex flow field in which local topographic driving forces extend to considerable depth in some areas, whereas regional topographic forces predominate in others. Thus, a pattern may be difficult to discern in measurements of the regional saltwater distribution, although it is clear that the coastal region is the major zone of discharge for deeper pre-Holocene fluids. During the land-rise period, regional flow equilibrates with changing climatic conditions and coastal positions, while the distribution of flushing water and older waters lags and will perpetually change between successive
Roe, Byron
2017-06-01
This paper is divided into two parts. In the first part, the material densities passed through for neutrinos going from FNAL to Sanford Laboratory are calculated using two recent density tables, Crustal [G. Laske, G. Masters, Z. Ma, and M. Pasyanos, Update on CRUST1.0—A 1-degree global model of Earth's crust, Geophys. Res. Abstracts 15, EGU2013-2658 (2013),; For the programs and tables, see the website: http://igppweb.ucsd.edu/ gabi/crust1.html.] and Shen-Ritzwoller [W. Shen and M. H. Ritzwoller, Crustal and uppermost mantle structure beneath the United States, J. Geophys. Res.: Solid Earth 121, 4306 (2016)], as well as the values from an older table PEMC [A. M. Dziewonski, A. L. Hales, and E. R. Lapwood, Parametrically simple earth models consistent with geophysical data, Phys. Earth Plan. Int. 10, 12 (1975); For further information see the website: http://ds.iris.edu/ds/products/emc-pem/.]. In the second part, neutrino oscillations at Sanford Laboratory are examined for the variable density table of Shen-Ritzwoller. These results are then compared with oscillation results using the mean density from the Shen-Ritzwoller tables and with one other fixed density. For the tests made here, the mean density results are quite similar to the results using the variable density vs distance.
Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Substrate
Martin, J. J.; Hastings, L.
2001-01-01
The multipurpose hydrogen test bed (MHTB), with an 18-cu m liquid hydrogen tank, was used to evaluate a combination foam/multilayer combination insulation (MLI) concept. The foam element (Isofoam SS-1171) insulates during ground hold/ascent flight, and allowed a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required. The 45-layer MLI was designed for an on-orbit storage period of 45 days. Unique WI features include a variable layer density, larger but fewer double-aluminized Mylar perforations for ascent to orbit venting, and a commercially established roll-wrap installation process that reduced assembly man-hours and resulted in a roust, virtually seamless MLI. Insulation performance was measured during three test series. The spray-on foam insulation (SOFI) successfully prevented purge gas liquefaction within the MLI and resulted in the expected ground hold heat leak of 63 W/sq m. The orbit hold tests resulted in heat leaks of 0.085 and 0.22 W/sq m with warm boundary temperatures of 164 and 305 K, respectively. Compared to the best previously measured performance with a traditional MLI system, a 41-percent heat leak reduction with 25 fewer MLI layers was achieved. The MHTB MLI heat leak is half that calculated for a constant layer density MLI.
Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2004-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.
Samuel Chan; Paul Anderson; John Cissel; Larry Lateen; Charley Thompson
2004-01-01
A large-scale operational study has been undertaken to investigate variable density management in conjunction with riparian buffers as a means to accelerate development of late-seral habitat, facilitate rare species management, and maintain riparian functions in 40-70 year-old headwater forests in western Oregon, USA. Upland variable retention treatments include...
Advances in fluid modeling and turbulence measurements
Wada, Akira; Ninokata, Hisashi; Tanaka, Nobukazu
2002-01-01
The context of this book consists of four fields: Environmental Fluid Mechanics; Industrial Fluid Mechanics; Fundamentals of Fluid Mechanics; and Turbulence Measurements. Environmental Fluid Mechanics includes free surface flows in channels, rivers, seas, and estuaries. It also discusses wind engineering issues, ocean circulation model and dispersion problems in atmospheric, water and ground water environments. In Industrial Fluid Mechanics, fluid phenomena in energy exchanges, modeling of turbulent two- or multi-phase flows, swirling flows, flows in combustors, variable density flows and reacting flows, flows in turbo-machines, pumps and piping systems, and fluid-structure interaction are discussed. In Fundamentals of Fluid Mechanics, progress in modeling turbulent flows and heat/mass transfers, computational fluid dynamics/numerical techniques, parallel computing algorithms, applications of chaos/fractal theory in turbulence are reported. In Turbulence Measurements, experimental studies of turbulent flows, experimental and post-processing techniques, quantitative and qualitative flow visualization techniques are discussed. Separate abstracts were presented for 15 of the papers in this issue. The remaining 89 were considered outside the subject scope of INIS. (J.P.N.)
Global variation of meteor trail plasma turbulence
L. P. Dyrud
2011-12-01
Full Text Available We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere, will the resulting trail become plasma turbulent? What are the factors influencing the development of turbulence? and how do these trails vary on a global scale? Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars. Turbulence also influences the evolution of specular radar meteor trails; this fact is important for the inference of mesospheric temperatures from the trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and ionospheric plasma density have on the variability of meteor trail evolution and on the observation of non-specular meteor trails. We demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends for non-specular and specular meteor trails.
Ma Jun; Jia Ya; Yi Ming; Tang Jun; Xia Yafeng
2009-01-01
In this paper, a new scheme is proposed to eliminate the useless spiral wave and turbulence in the excitable media. The activator amplitudes of few sites in the media are sampled and restricted within the appropriate thresholds. At first, the local control is imposed on the center of the media, and then the local control is introduced into the left border in the media. The numerical simulation results confirm that the whole media can reach homogeneous within few time units even if the spatiotemporal noise is imposed on the whole media. To check the model independence of this scheme, the scheme is used to remove the spiral wave in the Fitzhugh-Nagumo model firstly. In our numerical simulation, the whole system is discretized into 400 x 400 sites. Then the scheme is used to eliminate the stable rotating spiral wave, meandering spiral and spiral turbulence in the modified Fitzhugh-Nagumo model, respectively. Finally, this scheme is used to remove the stable rotating spiral wave in the Belousov-Zhabotinsky (BZ) reaction. All the results just confirm its effectiveness to eliminate the spiral wave and turbulence. The criterion for thresholds selection is also discussed in the end of this paper.
Strong Turbulence in Low-beta Plasmas
Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling
1980-01-01
An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production......-cathode reflex arc, Stellarator, Zeta discharge, ionospheric plasmas, and auroral plasma turbulence....
Modelling of structural effects on chemical reactions in turbulent flows
Gammelsaeter, H.R.
1997-12-31
Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.
Turbulence measurements in fusion plasmas
Conway, G D
2008-01-01
Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence-the microscopic random fluctuations in particle density, temperature, potential and magnetic field-is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.
Pearman, John K.; Ellis, Joanne; Irigoien, Xabier; Yellepeddi, Sarma B.; Jones, Burton; Carvalho, Susana
2017-01-01
The semi-enclosed nature of the Red Sea (20.2°N-38.5°N) makes it a natural laboratory to study the influence of environmental gradients on microbial communities. This study investigates the composition and structure of microbial prokaryotes and eukaryotes using molecular methods, targeting ribosomal RNA genes across different regions and seasons. The interaction between spatial and temporal scales results in different scenarios of turbulence and nutrient conditions allowing for testing of ecological theory that categorizes the response of the plankton community to these variations. The prokaryotic reads are mainly comprised of Cyanobacteria and Proteobacteria (Alpha and Gamma), with eukaryotic reads dominated by Dinophyceae and Syndiniophyceae. Periodic increases in the proportion of Mamiellophyceae and Bacillariophyceae reads were associated with alterations in the physical oceanography leading to nutrient increases either through the influx of Gulf of Aden Intermediate Water (south in the fall) or through water column mixing processes (north in the spring). We observed that in general dissimilarity amongst microbial communities increased when nutrient concentrations were higher, whereas richness (observed OTUs) was higher in scenarios of higher turbulence. Maximum abundance models showed the differential responses of dominant taxa to temperature giving an indication how taxa will respond as waters become warmer and more oligotrophic.
Pearman, John K.
2017-07-20
The semi-enclosed nature of the Red Sea (20.2°N-38.5°N) makes it a natural laboratory to study the influence of environmental gradients on microbial communities. This study investigates the composition and structure of microbial prokaryotes and eukaryotes using molecular methods, targeting ribosomal RNA genes across different regions and seasons. The interaction between spatial and temporal scales results in different scenarios of turbulence and nutrient conditions allowing for testing of ecological theory that categorizes the response of the plankton community to these variations. The prokaryotic reads are mainly comprised of Cyanobacteria and Proteobacteria (Alpha and Gamma), with eukaryotic reads dominated by Dinophyceae and Syndiniophyceae. Periodic increases in the proportion of Mamiellophyceae and Bacillariophyceae reads were associated with alterations in the physical oceanography leading to nutrient increases either through the influx of Gulf of Aden Intermediate Water (south in the fall) or through water column mixing processes (north in the spring). We observed that in general dissimilarity amongst microbial communities increased when nutrient concentrations were higher, whereas richness (observed OTUs) was higher in scenarios of higher turbulence. Maximum abundance models showed the differential responses of dominant taxa to temperature giving an indication how taxa will respond as waters become warmer and more oligotrophic.
Self-regulation of turbulence bursts and transport barriers
Floriani, E; Ciraolo, G; Ghendrih, Ph; Sarazin, Y; Lima, R
2013-01-01
The interplay between turbulent bursts and transport barriers is analyzed with a simplified model of interchange turbulence in magnetically confined plasmas. The turbulent bursts spread into the transport barriers and, depending on the competing magnitude of the burst and stopping capability of the barrier, can burn through. Simulations of two models of transport barriers are presented: a hard barrier where interchange turbulence modes are stable in a prescribed region and a soft barrier with external plasma biasing. The response of the transport barriers to the non-linear perturbations of the turbulent bursts, addressed in a predator–prey approach, indicates that the barriers monitor an amplification factor of the turbulent bursts, with amplification smaller than one for most bursts and, in some cases, amplification factors that can significantly exceed unity. The weak barriers in corrugated profiles and magnetic structures, as well as the standard barriers, are characterized by these transmission properties, which then regulate the turbulent burst transport properties. The interplays of barriers and turbulent bursts are modeled as competing stochastic processes. For different classes of the probability density function (PDF) of these processes, one can predict the heavy tail properties of the bursts downstream from the barrier, either exponential for a leaky barrier, or with power laws for a tight barrier. The intrinsic probing of the transport barriers by the turbulent bursts thus gives access to the properties of the barriers. The main stochastic variables are the barrier width and the spreading distance of the turbulent bursts within the barrier, together with their level of correlation. One finds that in the case of a barrier with volumetric losses, such as radiation or particle losses as addressed in our present simulations, the stochastic model predicts a leaky behavior with an exponential PDF of escaping turbulent bursts in agreement with the simulation
Theoretical analysis and semianalytical solutions for a turbulent buoyant hydrogen-air jet
El-Amin, Mohamed; Sun, S.; Salama, Amgad
2012-01-01
Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a single universal function, called plume function. By combining the obtained analytical expressions of centerline variables with empirical Gaussian expressions of the mean variables, we obtain semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit, and mass fraction).
Hydroxyl layer: trend of number density and intra-annual variability
Sonnemann, G. R.; Hartogh, P.; Berger, U.; Grygalashvyly, M.
2015-06-01
The layer of vibrationally excited hydroxyl (OH*) near the mesopause in Earth's atmosphere is widely used to derive the temperature at this height and to observe dynamical processes such as gravity waves. The concentration of OH* is controlled by the product of atomic hydrogen, with ozone creating a layer of enhanced concentration in the mesopause region. However, the basic influences on the OH* layer are atomic oxygen and temperature. The long-term monitoring of this layer provides information on a changing atmosphere. It is important to know which proportion of a trend results from anthropogenic impacts on the atmosphere and which proportion reflects natural variations. In a previous paper (Grygalashvyly et al., 2014), the trend of the height of the layer and the trend in temperature were investigated particularly in midlatitudes on the basis of our coupled dynamic and chemical transport model LIMA (Leibniz Institute Middle Atmosphere). In this paper we consider the trend for the number density between the years 1961 and 2009 and analyze the reason of the trends on a global scale. Further, we consider intra-annual variations. Temperature and wind have the strongest impacts on the trend. Surprisingly, the increase in greenhouse gases (GHGs) has no clear influence on the chemistry of OH*. The main reason for this lies in the fact that, in the production term of OH*, if atomic hydrogen increases due to increasing humidity of the middle atmosphere by methane oxidation, ozone decreases. The maximum of the OH* layer is found in the mesopause region and is very variable. The mesopause region is a very intricate domain marked by changeable dynamics and strong gradients of all chemically active minor constituents determining the OH* chemistry. The OH* concentration responds, in part, very sensitively to small changes in these parameters. The cause for this behavior is given by nonlinear reactions of the photochemical system being a nonlinear enforced chemical oscillator
Hydroxyl layer: trend of number density and intra-annual variability
G. R. Sonnemann
2015-06-01
Full Text Available The layer of vibrationally excited hydroxyl (OH* near the mesopause in Earth's atmosphere is widely used to derive the temperature at this height and to observe dynamical processes such as gravity waves. The concentration of OH* is controlled by the product of atomic hydrogen, with ozone creating a layer of enhanced concentration in the mesopause region. However, the basic influences on the OH* layer are atomic oxygen and temperature. The long-term monitoring of this layer provides information on a changing atmosphere. It is important to know which proportion of a trend results from anthropogenic impacts on the atmosphere and which proportion reflects natural variations. In a previous paper (Grygalashvyly et al., 2014, the trend of the height of the layer and the trend in temperature were investigated particularly in midlatitudes on the basis of our coupled dynamic and chemical transport model LIMA (Leibniz Institute Middle Atmosphere. In this paper we consider the trend for the number density between the years 1961 and 2009 and analyze the reason of the trends on a global scale. Further, we consider intra-annual variations. Temperature and wind have the strongest impacts on the trend. Surprisingly, the increase in greenhouse gases (GHGs has no clear influence on the chemistry of OH*. The main reason for this lies in the fact that, in the production term of OH*, if atomic hydrogen increases due to increasing humidity of the middle atmosphere by methane oxidation, ozone decreases. The maximum of the OH* layer is found in the mesopause region and is very variable. The mesopause region is a very intricate domain marked by changeable dynamics and strong gradients of all chemically active minor constituents determining the OH* chemistry. The OH* concentration responds, in part, very sensitively to small changes in these parameters. The cause for this behavior is given by nonlinear reactions of the photochemical system being a nonlinear enforced
Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen
2016-02-01
Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics.
Stochastic tools in turbulence
Lumey, John L
2012-01-01
Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the
Alysa Remsburg
2011-04-01
Full Text Available Many aquatic species have discrete life stages, making it important to understand relative influences of the different habitats occupied within those populations. Although population demographics in one stage can carry over to spatially separated life stages, most studies of habitat associations have been restricted to a single life stage. Among Gomphidae dragonflies (Odonata: Anisoptera, recruitment via adult oviposition establishes initial population sizes of the aquatic larvae. However, spatial variability in larval survivorship could obscure the relationship between adult and larval densities. This study uses surveys conducted during 2005 and 2006 of Gomphidae larval, emergence, and adult stages from 22 lake sites in northern Wisconsin, USA, to investigate (1 whether the Gomphidae density of each life stage correlated spatially with that of the preceding life stage and (2 what habitat factors help explain variation in densities at each life stage. Results indicated that adult densities from the previous season helped predict densities of early-instar larvae. This finding suggests that oviposition site selection controlled the local larval distribution more than larval survivorship or movement. Late-instar larval densities helped predict densities of emerging Gomphidae later the same season, suggesting that variation in survivorship of final-instar larvae among sites is small relative to the variation in larval recruitment. This study demonstrates that locations with higher densities of odonates in the water also have higher densities of odonates on land. In addition to the densities of Gomphidae in previous life stages, water clarity helped predict larval densities, and riparian wetland vegetation helped predict emergent dragonfly densities.
Carlos Roberto Sette Jr
2016-04-01
Full Text Available ABSTRACT Climatic conditions stimulates the cambial activity of plants, and cause significant changes in trunk diameter growth and wood characteristics. The objective of this study was to evaluate the influence of climate variables in the diameter growth rate of the stem and the wood density of Eucalyptus grandis trees in different classes of the basal area. A total of 25 Eucalyptus trees at 22 months of age were selected according to the basal area distribution. Dendrometer bands were installed at the height of 1.30 meters (DBH to monitor the diameter growth every 14 days, for 26 months. After measuring growth, the trees were felled and wood discs were removed at the DBH level to determine the radial density profile through x-ray microdensitometry and then re-scale the average values every 14 days. Climatic variables for the monitoring period were obtained and grouped every 14 days. The effect of the climate variables was determined by maximum and minimum growth periods in assessing trunk growth. These growth periods were related with precipitation, average temperature and relative air humidity. The re-scaled wood density values, calculated using the radial growth of the tree trunks measured accurately with steel dendrometers, enabled the determination of the relationship of small changes in wood density and the effect of the climatic variations and growth rate of eucalyptus tree trunks. A high sensitivity of the wood density to variation in precipitation levels was found.
Magnetohydrodynamic turbulence
Biskamp, Dieter
2003-01-01
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi
Miller, Tom E X
2007-07-01
1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.
Weyer, K. U.
2017-12-01
Coastal groundwater flow investigations at the Biscayne Bay, south of Miami, Florida, gave rise to the concept of density-driven flow of seawater into coastal aquifers creating a saltwater wedge. Within that wedge, convection-driven return flow of seawater and a dispersion zone were assumed by Cooper et al. (1964) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program must be able to simulate to be considered acceptable. Both, `density-driven flow' and Tothian `groundwater flow systems' (with or without variable density conditions) are driven by gravitation. The difference between the two are the boundary conditions. 'Density-driven flow' occurs under hydrostatic boundary conditions while Tothian `groundwater flow systems' occur under hydrodynamic boundary conditions. Revisiting the Cooper et al. (1964) publication with its record of piezometric field data (heads) showed that the so-called sea water wedge has been caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be supported by head data as energy indicators of flow fields
Anomalous diffusion in geophysical and laboratory turbulence
A. Tsinober
1994-01-01
Full Text Available We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926. The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc. - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992 and Kit et al. (1993. The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.
Mohseni, Mahdi; Bazargan, Majid
2014-01-01
Highlights: • The entropy generation in supercritical fluid flows has been numerically investigated. • The mechanisms of entropy generation are different near and away from the walls. • In the near wall region, the energy dissipation is the deciding parameter. • Away from the wall, the heat transfer is the effective factor in entropy generation. • The bulk Be number is greater in the liquid-like region than in vapor-like region. - Abstract: In this study, a two dimensional CFD code has been developed to investigate entropy generation in turbulent mixed convection heat transfer flow of supercritical fluids. Since the fluid properties vary significantly under supercritical conditions, the changes of entropy generation are large. The contribution of each of the mechanisms of entropy production (heat transfer and energy dissipation) is compared in different regions of the flow. The results show that the mechanisms of entropy generation act differently in the near wall region within the viscous sub-layer and in the region away from the wall. The effects of the wall heat flux on the entropy generation are also investigated
Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Bruno, R. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy)
2017-02-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.
Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun
2011-01-01
In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.
Donnelly, R.J.
1988-01-01
Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs
Davies, P.B.
1989-01-01
Variable-density groundwater flow was studied near the Waste Isolation Pilot Plant in southeastern New Mexico. An analysis of the relative magnitude of pressure-related and density-related flow-driving forces indicates that density-related gravity effects are not significant at the plant and to the west but are significant in areas to the north, northeast, and south. A regional-scale model of variable-density groundwater flow in the Culebra Dolomite member of the Rustler Formation indicates that the flow velocities are relatively rapid west of the site and extremely slow east and northeast of the site. In the transition zone between those two extremes, which includes the plant, velocities are highly variable. Sensitivity simulations indicates that the central and western parts of the region, including the plant, are fairly well isolated from the eastern and northeastern boundaries. Vertical-flux simulations indicate that as much as 25% of total inflow to the Culebra could be entering as vertical flow, with most of this flow occurring west of the plant. A simple cross-sectional model was developed to examine the flow system as it drains through time following recharge during a past glacial pluvial. This model indicates that the system as a whole drains very slowly and that it apparently could have sustained flow from purely transient drainage following recharge of the system during the Pleistocene
Korbut, Vadim; Voznyak, Orest; Sukholova, Iryna; Myroniuk, Khrystyna
2017-12-01
The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT). Calculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it's possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.
Ambrogioni, Luca; Güçlü, Umut; van Gerven, Marcel A. J.; Maris, Eric
2017-01-01
This paper introduces the kernel mixture network, a new method for nonparametric estimation of conditional probability densities using neural networks. We model arbitrarily complex conditional densities as linear combinations of a family of kernel functions centered at a subset of training points. The weights are determined by the outer layer of a deep neural network, trained by minimizing the negative log likelihood. This generalizes the popular quantized softmax approach, which can be seen ...
Prolonged river water pollution due to variable-density flow and solute transport in the riverbed
Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.
2015-04-01
A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.
Variability of footprint ridge density and its use in estimation of sex in forensic examinations.
Krishan, Kewal; Kanchan, Tanuj; Pathania, Annu; Sharma, Ruchika; DiMaggio, John A
2015-10-01
The present study deals with a comparatively new biometric parameter of footprints called footprint ridge density. The study attempts to evaluate sex-dependent variations in ridge density in different areas of the footprint and its usefulness in discriminating sex in the young adult population of north India. The sample for the study consisted of 160 young adults (121 females) from north India. The left and right footprints were taken from each subject according to the standard procedures. The footprints were analysed using a 5 mm × 5 mm square and the ridge density was calculated in four different well-defined areas of the footprints. These were: F1 - the great toe on its proximal and medial side; F2 - the medial ball of the footprint, below the triradius (the triradius is a Y-shaped group of ridges on finger balls, palms and soles which forms the basis of ridge counting in identification); F3 - the lateral ball of the footprint, towards the most lateral part; and F4 - the heel in its central part where the maximum breadth at heel is cut by a perpendicular line drawn from the most posterior point on heel. This value represents the number of ridges in a 25 mm(2) area and reflects the ridge density value. Ridge densities analysed on different areas of footprints were compared with each other using the Friedman test for related samples. The total footprint ridge density was calculated as the sum of the ridge density in the four areas of footprints included in the study (F1 + F2 + F3 + F4). The results show that the mean footprint ridge density was higher in females than males in all the designated areas of the footprints. The sex differences in footprint ridge density were observed to be statistically significant in the analysed areas of the footprint, except for the heel region of the left footprint. The total footprint ridge density was also observed to be significantly higher among females than males. A statistically significant correlation
Constraining variable density of ice shelves using wide-angle radar measurements
Drews, Reinhard; Brown, Joel; Matsuoka, Kenichi; Witrant, Emmanuel; Philippe, Morgane; Hubbard, Bryn; Pattyn, Frank
2016-04-01
The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium, for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g., temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar data sets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. We reconstruct depth to internal reflectors, local ice thickness, and firn-air content using a novel algorithm that includes traveltime inversion and ray tracing with a prescribed shape of the depth-density relationship. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggest that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals that the firn inside the channel is 4.7 % denser than that outside the channel. Hydrostatic ice thickness calculations used for determining basal melt rates should account for the denser firn in ice-shelf channels. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.
Early impact of oil palm planting density on vegetative and oil yield variables in West Africa
Bonneau Xavier
2014-07-01
Full Text Available A range of various different planting distances (from 7.5 to 9.5 m between oil palms were tested using an equilateral triangle design in a plantation density experiment which was settled in an oil palm commercial plantation in Nigeria. Climatic conditions were quite stable, with two seasons and around 2000 mm of annual rainfall. The soil was of desaturated ferralitic type, sandy on the surface, deep and without coarse elements. The early impact of plantation density was analysed at eight years after planting. Some early signs of depressive effect on yields were found for high planting densities (180 and 205 p/ha. Such a negative impact was not severe enough to counteract the effects of a higher number of palms per hectare. As a consequence, a gradient could be observed as yields (in tons of bunches per hectare increased with density. We can anticipate that the competition effect between palms will increase over time with high densities, so that the counteracting point ought to be reached in a few years. A thinning treatment has been included in the protocol. Thinning was carried out at the end of the eight-year period.
Large Eddy Simulation of turbulence
Poullet, P.; Sancandi, M.
1994-12-01
Results of Large Eddy Simulation of 3D isotropic homogeneous turbulent flows are presented. A computer code developed on Connexion Machine (CM5) has allowed to compare two turbulent viscosity models (Smagorinsky and structure function). The numerical scheme influence on the energy density spectrum is also studied [fr
Interstellar turbulence and shock waves
Bykov, A.M.
1982-01-01
Random deflections of shock fronts propagated through the turbulent interstellar medium can produce the strong electro-density fluctuations on scales l> or approx. =10 13 cm inferred from pulsar radio scintillations. The development of turbulence in the hot-phase ISM is discussed
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
Sanaz Jafari
2011-10-01
Full Text Available Rotating discs work mostly at high angular velocity. High speed results in large centrifugal forces in discs and induces large stresses and deformations. Minimizing weight of such disks yields various benefits such as low dead weights and lower costs. In order to attain a certain and reliable analysis, disk with variable thickness and density is considered. Semi-analytical solutions for the elastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption by authors in previous works. The optimum disk profile for minimum weight design is achieved by the Karush–Kuhn–Tucker (KKT optimality conditions. Inequality constrain equation is used in optimization to make sure that maximum von Mises stress is always less than yielding strength of the material of the disk.
SU-C-213-02: Characterizing 3D Printing in the Fabrication of Variable Density Phantoms
Madamesila, J; McGeachy, P; Villarreal-Barajas, J; Khan, R [The University of Calgary, Calgary, AB (Canada)
2015-06-15
Purpose: In this work, we present characterization, process flow, quality control and application of 3D fabricated low density phantoms for radiotherapy quality assurance. Methods: A Rostock delta 3D printer using polystyrene filament of diameter 1.75 mm was used to print geometric volumes of 2×2×1 cm{sup 3} of varying densities. The variable densities of 0.1 to 0.75 g/cm {sup 3} were created by modulating the infill. A computed tomography (CT) scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. The time required to print these volumes was also recorded. Using the calibration, two low density cones (0.19, 0.52 g/cm{sup 3}) were printed and benchmarked against commercially available phantoms. The dosimetric validation of the low density scaling of Anisotropic Analytical Algorithm (AAA) was performed by using a 0.5 g/cm{sup 3} slab of 10×10×2.4 cm{sup 3} with EBT3 GafChromic film. The gamma analysis at 3%/3mm criteria were compared for the measured and computed dose planes. Results: Analysis of the volume of air pockets in the infill resulted in a reasonable uniformity for densities 0.4 to 0.75 g/cm{sup 3}. Printed phantoms with densities below 0.4 g/cm{sup 3} exhibited a higher ratio of air to polystyrene resulting in large non-uniformity. Compared to the commercial inserts, good agreement was observed only for the printed 0.52 g/cm{sup 3} cone. Dosimetric comparison for a printed low density volume placed in-between layers of solid water resulted in >95% gamma agreement between AAA calculated dose planes and measured EBT3 films for a 6MV 5×5 cm{sup 2} clinical beam. The comparison showed disagreement in the penumbra region. Conclusion: In conclusion, 3D printing technology opens the door to desktop fabrication of variable density phantoms at economical prices in an efficient manner for the quality assurance needs of a small clinic.
SU-C-213-02: Characterizing 3D Printing in the Fabrication of Variable Density Phantoms
Madamesila, J; McGeachy, P; Villarreal-Barajas, J; Khan, R
2015-01-01
Purpose: In this work, we present characterization, process flow, quality control and application of 3D fabricated low density phantoms for radiotherapy quality assurance. Methods: A Rostock delta 3D printer using polystyrene filament of diameter 1.75 mm was used to print geometric volumes of 2×2×1 cm 3 of varying densities. The variable densities of 0.1 to 0.75 g/cm 3 were created by modulating the infill. A computed tomography (CT) scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. The time required to print these volumes was also recorded. Using the calibration, two low density cones (0.19, 0.52 g/cm 3 ) were printed and benchmarked against commercially available phantoms. The dosimetric validation of the low density scaling of Anisotropic Analytical Algorithm (AAA) was performed by using a 0.5 g/cm 3 slab of 10×10×2.4 cm 3 with EBT3 GafChromic film. The gamma analysis at 3%/3mm criteria were compared for the measured and computed dose planes. Results: Analysis of the volume of air pockets in the infill resulted in a reasonable uniformity for densities 0.4 to 0.75 g/cm 3 . Printed phantoms with densities below 0.4 g/cm 3 exhibited a higher ratio of air to polystyrene resulting in large non-uniformity. Compared to the commercial inserts, good agreement was observed only for the printed 0.52 g/cm 3 cone. Dosimetric comparison for a printed low density volume placed in-between layers of solid water resulted in >95% gamma agreement between AAA calculated dose planes and measured EBT3 films for a 6MV 5×5 cm 2 clinical beam. The comparison showed disagreement in the penumbra region. Conclusion: In conclusion, 3D printing technology opens the door to desktop fabrication of variable density phantoms at economical prices in an efficient manner for the quality assurance needs of a small clinic
Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence
Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef
2015-09-01
Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.
Winkler Wille, Mathilde Marie; Thomsen, Laura Hohwü; Dirksen, Asger
2012-01-01
lung density measurements, i.e. densitometry. Methods – In a pilot study 60 CT scans were selected from a sample of 3980 CT scans from The Danish Lung Cancer Screening Trial (DLCST). The amount of emphysema in these scans was scored independently by two observers, who were blinded regarding clinical...... information. The lung was segmented automatically by in-house developed computer software, and the percentage of pixels below -950 HU was used as a surrogate marker for emphysema. The observer variability, as well as the correlation with the lung density measurements, was analysed using Spearman’s rank...... in emphysema grading. However, the agreement with the CT lung density measurement was poor, indicating that the two types of evaluation represent different aspects of emphysema. Most likely, they should be seen as complementary rather than competitive evaluations. Future comparison with physiological tests...
Effect of resin variables on the creep behavior of high density hardwood composite panels
R.C. Tang; Jianhua Pu; C.Y Hse
1993-01-01
The flexural creep behavior of oriented strandboards (OSB) fabricated with mixed high, density hardwood flakes was investigated. Three types of adhesives, liquid phenolic-formaldehyde (LPF), melamine modified urea-formaldehyde (MUF), and LPF (face)/MUF (core) were chosen in this investigation. The resin contents (RC) used were 3.5 percent and 5.0 percent. The flakes...
The PDF method for turbulent combustion
Pope, S. B.
1991-01-01
Probability Density Function (PDF) methods provide a means of calculating the properties of turbulent reacting flows. They have been successfully applied to many turbulent flames, including some with finite rate kinetic effects. Here the methods are reviewed with an emphasis on computational issues and their application to turbulent combustion.
Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2003-01-01
The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.
Generalized Density-Corrected Model for Gas Diffusivity in Variably Saturated Soils
Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per
2011-01-01
models. The GDC model was further extended to describe two-region (bimodal) soils and could describe and predict Dp/Do well for both different soil aggregate size fractions and variably compacted volcanic ash soils. A possible use of the new GDC model is engineering applications such as the design...... of highly compacted landfill site caps....
1995-01-01
A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed
Turbulent effective absorptivity and refractivity
Rax, J.M.
1984-09-01
The problem of wave propagation in a turbulent magnetized plasma is investigated. Considering small scale, low frequency density fluctuations we solve the Maxwell equations and show that the eikonal approximation remains valid with an effective refractivity and an effective absorptivity taking into account the energy diffusion due to the turbulent motion. Then the result is applied to the problem of lower hybrid waves scattering by drift waves density fluctuations in tokamaks
MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY
Downes, T. P.; O'Sullivan, S.
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.
Abreu-Mendoza, Roberto A; Soto-Alba, Elia E; Arias-Trejo, Natalia
2013-01-01
Current research in the number development field has focused in individual differences regarding the acuity of children's approximate number system (ANS). The most common task to evaluate children's acuity is through non-symbolic numerical comparison. Efforts have been made to prevent children from using perceptual cues by controlling the visual properties of the stimuli (e.g., density, contour length, and area); nevertheless, researchers have used these visual controls interchangeably. Studies have also tried to understand the relation between children's cardinality knowledge and their performance in a number comparison task; divergent results may in fact be rooted in the use of different visual controls. The main goal of the present study is to explore how the usage of different visual controls (density, total filled area, and correlated and anti-correlated area) affects children's performance in a number comparison task, and its relationship to children's cardinality knowledge. For that purpose, 77 preschoolers participated in three tasks: (1) counting list elicitation to test whether children could recite the counting list up to ten, (2) give a number to evaluate children's cardinality knowledge, and (3) number comparison to evaluate their ability to compare two quantities. During this last task, children were asked to point at the set with more geometric figures when two sets were displayed on a screen. Children were exposed only to one of the three visual controls. Results showed that overall, children performed above chance in the number comparison task; nonetheless, density was the easiest control, while correlated and anti-correlated area was the most difficult in most cases. Only total filled area was sensitive to discriminate cardinal principal knowers from non-cardinal principal knowers. How this finding helps to explain conflicting evidence from previous research, and how the present outcome relates to children's number word knowledge is discussed.
Broken ergodicity in two-dimensional homogeneous magnetohydrodynamic turbulence
Shebalin, John V.
2010-01-01
Two-dimensional (2D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3D) homogeneous MHD turbulence. These features include several ideal (i.e., nondissipative) invariants along with the phenomenon of broken ergodicity (defined as nonergodic behavior over a very long time). Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo. Recently, the origin of broken ergodicity in 3D MHD turbulence that is manifest in the lowest wavenumbers was found. Here, we study the origin of broken ergodicity in 2D MHD turbulence. It will be seen that broken ergodicity in ideal 2D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions. The origins of broken ergodicity in an ideal 2D homogeneous MHD turbulence are found through an eigenanalysis of the covariance matrices of the probability density function and by an examination of the associated entropy functional. When the values of ideal invariants are kept fixed and grid size increases, it will be shown that the energy in a few large modes remains constant, while the energy in any other mode is inversely proportional to grid size. Also, as grid size increases, we find that broken ergodicity becomes manifest at more and more wavenumbers.
Cannon, Alex J.
2018-01-01
Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin
Pagh, Sussie; Hansen, Mette Sif; Jensen, Birger
2018-01-01
For the first time, temporal variability in body size and sexual dimorphism is revealed in foxes Vulpes vulpes from the same geographical area at over time. The weights and lengths of 552 Danish foxes were documented during three different periods: 1965–1977, 2012–2014 and the winter of 2015...... of 2012–2014, no difference in body fat measured by rump fat thickness (RFT) was found between age groups and genders in contrast to 2015/2016, when RFT was significantly (p ...–1977 and compared to 2015/2016, compared to 2012–2014, when population density was high (the mean weight: 6.8 kg). However, no significant differences were found in the weight of females. Hence, sexual dimorphism ranged from 7.6 to 3.6 in adult foxes in low and high-density periods, respectively. During the winters...
Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L
2009-08-01
The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.
FS. Albuquerque
Full Text Available The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm. The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.
Salazar-Camacho, Carlos; Villalobos, Mario
2010-04-01
We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is: lbond2 FeOH +lbond2 SOH +AsO43-+H→lbond2 FeOAsO3[2-]…SOH+HO where lbond2 SOH is an adjacent surface site to lbond2 FeOH; with log K = 21.6 ± 0.7 when lbond2 SOH is another lbond2 FeOH, and log K = 18.75 ± 0.9, when lbond2 SOH is lbond2 Fe 2OH. An additional small contribution of a protonated complex was required to describe data at low pH and very high arsenate loadings. The model considered goethites above 80 m 2/g as ideally composed of 70% face (1 0 1) and 30% face (0 0 1), resulting in a site density for lbond2 FeOH and for lbond2 Fe 3OH of 3.125/nm 2 each. Below 80 m 2/g surface capacity increases progressively with decreasing area, which was modeled by considering a progressively increasing proportion of faces (0 1 0)/(1 0 1), because face (0 1 0) shows a much higher site density of lbond2 FeOH groups. Computation of the specific proportion of faces, and thus of the site densities for the three types of crystallographic surface groups present in
General Exact Solution to the Problem of the Probability Density for Sums of Random Variables
Tribelsky, Michael I.
2002-07-01
The exact explicit expression for the probability density pN(x) for a sum of N random, arbitrary correlated summands is obtained. The expression is valid for any number N and any distribution of the random summands. Most attention is paid to application of the developed approach to the case of independent and identically distributed summands. The obtained results reproduce all known exact solutions valid for the, so called, stable distributions of the summands. It is also shown that if the distribution is not stable, the profile of pN(x) may be divided into three parts, namely a core (small x), a tail (large x), and a crossover from the core to the tail (moderate x). The quantitative description of all three parts as well as that for the entire profile is obtained. A number of particular examples are considered in detail.
Aivazyan, Yu M; Mergelyan, O S; Poulatov, M P
1974-01-01
Aproblem for the diffraction of a plane electromagnetic wave on a dielectric plate between two other dielectrics is solved. The dielectric constant of the plate depends periodically on three coordinates. From this solution it is possible to obtain the equations for fields and the angular distribution of diffracted waves for the particular cases of a crystal plate and a dielectric surface fluted in all directions. If the expansion is made in the variable of the electron density in crystals, the results will correspond to the problem for the X-ray diffraction on a crystal lattice, the values of the coefficient ..cap alpha -->..sub(tau) being determined by the lattice parameters.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Joong Hun Bae; Jung Yul Yoo; Haecheon Choi
2005-01-01
Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)
Moreau, Philippe [Aix-Marseille-1 Univ., 13 - Marseille (France)
1997-10-17
The density profile of the fusion plasmas can be investigated by the reflectometry diagnostics. The measurement principle is based on the radar techniques which calculate the phase shift of a millimeter wave propagating into the plasma and reflected at a cut-off layer. However, this propagation is perturbed by the plasma turbulence. These phenomena affect the phase delay measurement by not well understood a process. In this work we have tried to find the mechanisms and origin of the turbulence which is responsible for the phase disturbance. We point out the role of collisionality and plasma radiation in controlling the instability and also, demonstrate that the phase delay of the probing wave is very sensitive to the plasma MHD phenomena and is less affected by the micro-turbulence. The second part of this work is the development and the use of a new heterodyne reflectometer. The principal characteristics are given. Its heterodyne detection allows the separation of phase and amplitude information from the detected signal and then to study their contribution to the mechanism of signal perturbation. The use of this reflectometer allows us to point out the following points: - a high dynamic availability, required by the large amplitude drops, often greater than 30 db; - fast sweep operation requirement to `freeze` the plasma turbulence; - multiple reflection effects which modulate the amplitude and phase of the probing wave if they are not suppressed by filtering the detected signal; - very good localisation of the measurement (of the order of millimeter). The heterodyne reflectometer developed during this work offers several advantages of different distinct reflectometry techniques (fast sweep, absolute and differential phase measurements, heterodyne detection). It could be developed to work over higher frequency range so as to measure density profile over larger radial extension with very high performances. (author) 93 refs., 101 figs., 8 tabs. 3 ills.
Shaowei Sang
Full Text Available Each year there are approximately 390 million dengue infections worldwide. Weather variables have a significant impact on the transmission of Dengue Fever (DF, a mosquito borne viral disease. DF in mainland China is characterized as an imported disease. Hence it is necessary to explore the roles of imported cases, mosquito density and climate variability in dengue transmission in China. The study was to identify the relationship between dengue occurrence and possible risk factors and to develop a predicting model for dengue's control and prevention purpose.Three traditional suburbs and one district with an international airport in Guangzhou city were selected as the study areas. Autocorrelation and cross-correlation analysis were used to perform univariate analysis to identify possible risk factors, with relevant lagged effects, associated with local dengue cases. Principal component analysis (PCA was applied to extract principal components and PCA score was used to represent the original variables to reduce multi-collinearity. Combining the univariate analysis and prior knowledge, time-series Poisson regression analysis was conducted to quantify the relationship between weather variables, Breteau Index, imported DF cases and the local dengue transmission in Guangzhou, China. The goodness-of-fit of the constructed model was determined by pseudo-R2, Akaike information criterion (AIC and residual test. There were a total of 707 notified local DF cases from March 2006 to December 2012, with a seasonal distribution from August to November. There were a total of 65 notified imported DF cases from 20 countries, with forty-six cases (70.8% imported from Southeast Asia. The model showed that local DF cases were positively associated with mosquito density, imported cases, temperature, precipitation, vapour pressure and minimum relative humidity, whilst being negatively associated with air pressure, with different time lags.Imported DF cases and mosquito
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Nath, G; Sahu, P K
2016-01-01
A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.
Eom, Hye-Joung; Cha, Joo Hee; Kang, Ji-Won; Choi, Woo Jung; Kim, Han Jun; Go, EunChae
2018-05-01
Background Only few studies have assessed variability in the results obtained by the readers with different experience levels in comparison with automated volumetric breast density measurements. Purpose To examine the variations in breast density assessment according to BI-RADS categories among readers with different experience levels and to compare it with the results of automated quantitative measurements. Material and Methods Density assignment was done for 1000 screening mammograms by six readers with three different experience levels (breast-imaging experts, general radiologists, and students). Agreement level between the results obtained by the readers and the Volpara automated volumetric breast density measurements was assessed. The agreement analysis using two categories-non-dense and dense breast tissue-was also performed. Results Intra-reader agreement for experts, general radiologists, and students were almost perfect or substantial (k = 0.74-0.95). The agreement between visual assessments of the breast-imaging experts and volumetric assessments by Volpara was substantial (k = 0.77). The agreement was moderate between the experts and general radiologists (k = 0.67) and slight between the students and Volpara (k = 0.01). The agreement for the two category groups (nondense and dense) was almost perfect between the experts and Volpara (k = 0.83). The agreement was substantial between the experts and general radiologists (k = 0.78). Conclusion We observed similar high agreement levels between visual assessments of breast density performed by radiologists and the volumetric assessments. However, agreement levels were substantially lower for the untrained readers.
Cho, Joung-min; Akiyama, Yuto; Kakinuma, Tomoyuki; Mori, Takehiko
2013-01-01
We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on N,N ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulated characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical V G above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge
Laura MUNTEAN
2009-12-01
Full Text Available Objective: To evaluate bone mineral density (BMD in patients with ankylosing spondylitis (AS and determine its correlation with the demographic and clinical characteristics of AS. Patients and Methods: Demographic, clinical and osteodensitometric data were evaluated in a cross-sectional study that included 136 patients with AS. Spine and hip BMD were measured by means of dual energy X-ray absorptiometry (DXA. Using the modified Schober’s test we assessed spine mobility. We examined the sacroiliac, anteroposterior and lateral dorso-lumbar spine radiographs in order to grade sacroiliitis and assess syndesmophytes. Disease activity was evaluated using C-reactive protein (CRP levels and erythrocyte sedimentation rate (ESR. Demographic data and BMD measurements were compared with those of 167 age- and sex-matched healthy controls. Results: Patients with AS had a significantly lower BMD at the spine, femoral neck, trochanter and total hip as compared to age-matched controls (all p<0.01. According to the WHO classification, osteoporosis was present in 20.6% of the AS patients at the lumbar spine and in 14.6% at the femoral neck. There were no significant differences in BMD when comparing men and women with AS, except for trochanter BMD that was lower in female patients. No correlations were found between disease activity markers (ESR, CRP and BMD. Femoral neck BMD was correlated with disease duration, Schober’s test and sacroiliitis grade. Conclusion: Patients with AS have a lower spine and hip BMD as compared to age- and sex-matched controls. Bone loss at the femoral neck is associated with disease duration and more severe AS.
Jaya Shankar Tumuluru
2014-03-01
A flat die pellet mill was used to understand the effect of high levels of feedstock moisture content in the range of 28–38% (w.b.), with die rotational speeds of 40–60 Hz, and preheating temperatures of 30–110 °C on the pelleting characteristics of 4.8 mm screen size ground corn stover using an 8 mm pellet die. The physical properties of the pelletised biomass studied are: (a) pellet moisture content, (b) unit, bulk and tapped density, and (c) durability. Pelletisation experiments were conducted based on central composite design. Analysis of variance (ANOVA) indicated that feedstock moisture content influenced all of the physical properties at P < 0.001. Pellet moisture content decreased with increase in preheating temperature to about 110 °C and decreasing the feedstock moisture content to about 28% (w.b.). Response surface models developed for quality attributes with respect to process variables has adequately described the process with coefficient of determination (R2) values of >0.88. The other pellet quality attributes such as unit, bulk, tapped density, were maximised at feedstock moisture content of 30–33% (w.b.), die speeds of >50 Hz and preheating temperature of >90 °C. In case of durability a medium moisture content of 33–34% (w.b.) and preheating temperatures of >70 °C and higher die speeds >50 Hz resulted in high durable pellets. It can be concluded from the present study that feedstock moisture content, followed by preheating, and die rotational speed are the interacting process variables influencing pellet moisture content, unit, bulk and tapped density and durability.
Salerno, Michael; Taylor, Angela; Yang, Yang; Kuruvilla, Sujith; Ragosta, Michael; Meyer, Craig H; Kramer, Christopher M
2014-07-01
Adenosine stress cardiovascular magnetic resonance perfusion imaging can be limited by motion-induced dark-rim artifacts, which may be mistaken for true perfusion abnormalities. A high-resolution variable-density spiral pulse sequence with a novel density compensation strategy has been shown to reduce dark-rim artifacts in first-pass perfusion imaging. We aimed to assess the clinical performance of adenosine stress cardiovascular magnetic resonance using this new perfusion sequence to detect obstructive coronary artery disease. Cardiovascular magnetic resonance perfusion imaging was performed during adenosine stress (140 μg/kg per minute) and at rest on a Siemens 1.5-T Avanto scanner in 41 subjects with chest pain scheduled for coronary angiography. Perfusion images were acquired during injection of 0.1 mmol/kg Gadolinium-diethylenetriaminepentacetate at 3 short-axis locations using a saturation recovery interleaved variable-density spiral pulse sequence. Significant stenosis was defined as >50% by quantitative coronary angiography. Two blinded reviewers evaluated the perfusion images for the presence of adenosine-induced perfusion abnormalities and assessed image quality using a 5-point scale (1 [poor] to 5 [excellent]). The prevalence of obstructive coronary artery disease by quantitative coronary angiography was 68%. The average sensitivity, specificity, and accuracy were 89%, 85%, and 88%, respectively, with a positive predictive value and negative predictive value of 93% and 79%, respectively. The average image quality score was 4.4±0.7, with only 1 study with more than mild dark-rim artifacts. There was good inter-reader reliability with a κ statistic of 0.67. Spiral adenosine stress cardiovascular magnetic resonance results in high diagnostic accuracy for the detection of obstructive coronary artery disease with excellent image quality and minimal dark-rim artifacts. © 2014 American Heart Association, Inc.
Melin, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1969-07-01
A study has been made of the possibility of keeping in resonance a cavity filled with a plasma of variable density; only the low HF power zone has been examined (less than a few dozen W). A calculation is first made, for the chosen experimental conditions, of the slipping of the resonance frequency of a cavity as a function of the plasma parameters (density, temperature), with a view to obtaining an idea of its importance. A description is then given of the experimental set-up: the S band cavity (3000 Mc/sec) is supplied by a carcinotron type generator; use is made of the plasma of a positive column whose density ({approx}10{sup 11} cm{sup -3}) can easily be controlled so as to obtain slipping of the cavity frequency ({delta}F{sub max} {approx} 50 Mc/s). The zone of automatic agreement thus obtained for the S band is 3 per cent continuously ({approx}100 Mc/s) and 1 per cent ({approx}30 Mc/s) with a response time of 10 {mu}s (sudden changes in density, {delta}n {approx} 5.10{sup 10} cm{sup 3}). These characteristics already compare very favorably with existing systems, and can easily be improved. (author) [French] On etudie une possibilite de maintenir a la resonance une cavite chargee par un plasma dont la densite varie; on se limite au domaine des puissances HF faibles (< quelques dizaines de W). On calcule tout d'abord, pour les conditions experimentales choisies, le glissement de la frequence de resonance d'une cavite en fonction des parametres du plasma, densite, temperature, pour en evaluer les ordres de grandeur. On decrit ensuite la realisation experimentale: la cavite bande S (3000 Mc/s) est alimentee par un generateur du type carcinotron; on utilise le plasma d'une colonne positive, dont on controle facilement la densite ({approx}10{sup 11} cm{sup -3}) pour faire glisser en frequence la cavite ({delta}F{sub max} {approx} 50 Mc/s). La zone d'accord automatique obtenue ainsi pour la bande S est de 3 pour cent en continu ({approx}100 Mc/s), de 1 pour cent
Terry, P.W.; Diamond, P.H.
1986-01-01
We appreciate the interest of Krommes in our recent paper and welcome the opportunity to discuss his comments and other related issues. In our opinion, most of the objections hea has raised follow from a misunderstanding of the physics treated by clump and hole theory. In particular, throughout his critique Krommes attempts to extrapolate results and intuition of homogeneous Navier-Stokes turbulence (HN-ST) to the more complicated case of dissipative drift-wave turbulence (DD-WT). Since these two cases are so dissimilar with regard to their fundamental constituents, drive, characteristic scales and interaction mechanisms, extrapolations from one case to the other are unwarranted and misleading. Moreover, the hypotheses and results of clump and hole theories have fared well in several tests using laboratory and simulation data which is relevant to the theoretical models analyzed. 7 refs
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
Poliwczak, A R; Waszczykowska, E; Dziankowska-Bartkowiak, B; Koziróg, M; Dworniak, K
2018-03-01
Background Systemic lupus erythematosus is a progressive autoimmune disease. There are reports suggesting that patients even without overt signs of cardiovascular complications have impaired autonomic function. The aim of this study was to assess autonomic function using heart rate turbulence and heart rate variability parameters indicated in 24-hour ECG Holter monitoring. Methods Twenty-six women with systemic lupus erythematosus and 30 healthy women were included. Twenty-four hour ambulatory ECG-Holter was performed in home conditions. The basic parameters of heart rate turbulence and heart rate variability were calculated. The analyses were performed for the entire day and separately for daytime activity and night time rest. Results There were no statistically significant differences in the basic anthropometric parameters. The mean duration of disease was 11.52 ± 7.42. There was a statistically significant higher turbulence onset (To) value in patients with systemic lupus erythematosus, median To = -0.17% (minimum -1.47, maximum 3.0) versus To = -1.36% (minimum -4.53, maximum -0.41), P lupus erythematosus group than in the healthy controls, including SDANN and r-MSSD and p50NN. Concerning the morning activity and night resting periods, the results were similar as for the whole day. In the control group, higher values in morning activity were noted for parameters that characterise sympathetic activity, especially SDANN, and were significantly lower for parasympathetic parameters, including r-MSSD and p50NN, which prevailed at night. There were no statistically significant changes for systemic lupus erythematosus patients for p50NN and low and very low frequency. There was a positive correlation between disease duration and SDNN, R = 0.417; P < 0.05 and SDANN, R = 0.464; P < 0.05, a negative correlation between low/high frequency ratio and r-MSSD, R = -0.454; P < 0.05; p50NN, R = -0.435; P < 0.05 and high frequency
Jørgensen, Rikke Mørch; Abildstrøm, Steen Z; Levitan, Jacob
2016-01-01
AIMS: The density HRV parameter Dyx is a new heart rate variability (HRV) measure based on multipole analysis of the Poincaré plot obtained from RR interval time series, deriving information from both the time and frequency domain. Preliminary results have suggested that the parameter may provide...... new predictive information on mortality in survivors of acute myocardial infarction (MI). This study compares the prognostic significance of Dyx to that of traditional linear and nonlinear measures of HRV. METHODS AND RESULTS: In the Nordic ICD pilot study, patients with an acute MI were screened...... with 2D echocardiography and 24-hour Holter recordings. The study was designed to assess the power of several HRV measures to predict mortality. Dyx was tested in a subset of 206 consecutive Danish patients with analysable Holter recordings. After a median follow-up of 8.5 years 70 patients had died...
Kriaa, Wassim; Mhiri, Hatem; Le Palec, Georges E-mail: lepalec@unimeca.univ-mrs.fr; Bournot, Philippe
2003-07-01
In this work, we intend to solve the equations governing two laminar isothermal or non-isothermal coaxial plane jets with variable density in an ambient fluid at rest in order to study the initial conditions influence (i.e. the nozzles ejection conditions) on the jet characteristic parameters. A finite difference method is developed to solve the dimensionless Navier-Stokes and energy equations resulting from some assumptions. The discussion about the results relates primarily to the concentration core length according to the nozzles thicknesses ratios. The influences of the gas velocity and temperature resulting from the external nozzle are also examined. This made it possible to deduce correlations of practical use between these parameters in order to apply them in engineering processes.
Ford, C L; Winroth, M; Alfredsson, P H
2016-01-01
An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method. (paper)
Zhu, Guangpu
2018-01-26
In this paper, a fully discrete scheme which considers temporal and spatial discretizations is presented for the coupled Cahn-Hilliard equation in conserved form with the dynamic contact line condition and the Navier-Stokes equation with the generalized Navier boundary condition. Variable densities and viscosities are incorporated in this model. A rigorous proof of energy stability is provided for the fully discrete scheme based on a semi-implicit temporal discretization and a finite difference method on the staggered grids for the spatial discretization. A splitting method based on the pressure stabilization is implemented to solve the Navier-Stokes equation, while the stabilization approach is also used for the Cahn-Hilliard equation. Numerical results in both 2-D and 3-D demonstrate the accuracy, efficiency and decaying property of discrete energy of the proposed scheme.
Kim, Do-Gyoon; Navalgund, Anand R; Tee, Boon Ching; Noble, Garrett J; Hart, Richard T; Lee, Hye Ri
2012-11-01
Progressive vertebral deformation increases the fracture risk of a vertebral body in the postmenopausal patient. Many studies have observed that bone can demonstrate creep behavior, defined as continued time-dependent deformation even when mechanical loading is held constant. Creep is a characteristic of viscoelastic behavior, which is common in biological materials. We hypothesized that estrogen deficiency-dependent alteration of the mineral distribution of bone at the tissue level could influence the progressive postmenopausal vertebral deformity that is observed as the creep response at the organ level. The objective of this study was thus to examine whether the creep behavior of vertebral bone is changed by estrogen deficiency, and to determine which bone property parameters are responsible for the creep response of vertebral bone at physiological loading levels using an ovariectomized (OVX) rat model. Correlations of creep parameters with bone mineral density (BMD), tissue mineral density (TMD) and architectural parameters of both OVX and sham surgery vertebral bone were tested. As the vertebral creep was not fully recovered during the post-creep unloading period, there was substantial residual displacement for both the sham and OVX groups. A strong positive correlation between loading creep and residual displacement was found (r=0.868, pcreep behavior of the OVX group (pcreep caused progressive, permanent reduction in vertebral height for both the sham and OVX groups. In addition, estrogen deficiency-induced active bone remodeling increased variability of trabecular TMD in the OVX group. Taken together, these results suggest that increased variability of trabecular TMD resulting from high bone turnover influences creep behavior of the OVX vertebrae. Copyright © 2012 Elsevier Inc. All rights reserved.
Visible imaging of edge turbulence in NSTX
Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.
2000-01-01
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence
Visible imaging of edge turbulence in NSTX
S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden
2000-01-01
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence
Gao, Min
2014-09-01
In this paper, we develop an efficient numerical method for the two phase moving contact line problem with variable density, viscosity, and slip length. The physical model is based on a phase field approach, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,5]. To overcome the difficulties due to large density and viscosity ratio, the Navier-Stokes equations are solved by a splitting method based on a pressure Poisson equation [11], while the Cahn-Hilliard equation is solved by a convex splitting method. We show that the method is stable under certain conditions. The linearized schemes are easy to implement and introduce only mild CFL time constraint. Numerical tests are carried out to verify the accuracy, stability and efficiency of the schemes. The method allows us to simulate the interface problems with extremely small interface thickness. Three dimensional simulations are included to validate the efficiency of the method. © 2014 Elsevier Inc.
Boufadel, Michel C.; Suidan, Makram T.; Venosa, Albert D.
1999-04-01
We present a formulation for water flow and solute transport in two-dimensional variably saturated media that accounts for the effects of the solute on water density and viscosity. The governing equations are cast in a dimensionless form that depends on six dimensionless groups of parameters. These equations are discretized in space using the Galerkin finite element formulation and integrated in time using the backward Euler scheme with mass lumping. The modified Picard method is used to linearize the water flow equation. The resulting numerical model, the MARUN model, is verified by comparison to published numerical results. It is then used to investigate beach hydraulics at seawater concentration (about 30 g l -1) in the context of nutrients delivery for bioremediation of oil spills on beaches. Numerical simulations that we conducted in a rectangular section of a hypothetical beach revealed that buoyancy in the unsaturated zone is significant in soils that are fine textured, with low anisotropy ratio, and/or exhibiting low physical dispersion. In such situations, application of dissolved nutrients to a contaminated beach in a freshwater solution is superior to their application in a seawater solution. Concentration-engendered viscosity effects were negligible with respect to concentration-engendered density effects for the cases that we considered.
Gao, Min; Wang, Xiao-Ping
2014-01-01
In this paper, we develop an efficient numerical method for the two phase moving contact line problem with variable density, viscosity, and slip length. The physical model is based on a phase field approach, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,5]. To overcome the difficulties due to large density and viscosity ratio, the Navier-Stokes equations are solved by a splitting method based on a pressure Poisson equation [11], while the Cahn-Hilliard equation is solved by a convex splitting method. We show that the method is stable under certain conditions. The linearized schemes are easy to implement and introduce only mild CFL time constraint. Numerical tests are carried out to verify the accuracy, stability and efficiency of the schemes. The method allows us to simulate the interface problems with extremely small interface thickness. Three dimensional simulations are included to validate the efficiency of the method. © 2014 Elsevier Inc.
Xianghu Li
2018-02-01
Full Text Available Soil erosion is one of the most critical environmental hazards in the world. Understanding the changes in rainfall erosivity (RE and erosivity density (ED, as well as their affecting factors, at local and catchment scales in the context of climate warming is an important prerequisite of soil erosion prevention and soil loss risk assessment. The present study identified the variability and trends of RE and ED in terms of both time and space in the Ganjiang River catchment over the period of 1960–2012, and also analyzed and discussed the impact of climate change. The results show that RE and ED in the catchment had great monthly variations and high year-to-year variability. Both presented long-term increasing trends over the entire study period. The highest RE and ED were observed in June and in the eastern and northeast parts of the catchment, which indicated that June was the most susceptible month for soil erosion in this area and the lower reaches of the Ganjiang River was the riskiest area for soil erosion. Finally, the East Asian summer monsoon and climate change were highly correlated with changes in RE and ED.
Magrath, George N; Say, Emil Anthony T; Sioufi, Kareem; Ferenczy, Sandor; Samara, Wasim A; Shields, Carol L
2017-11-01
To evaluate the variability in foveal avascular zone (FAZ) and capillary density measurements on optical coherence tomography angiography using Optovue RTVue XR Avanti (OA) (Optovue) and Zeiss Cirrus HD-OCT 5000 (ZC) (Carl Zeiss Meditec). In this prospective, comparative case series, parafoveal (3 × 3 mm) optical coherence tomography angiography scans were obtained on healthy volunteers using both the Avanti and Cirrus. The FAZ area and capillary density at the level of both the superficial and deep capillary plexus were measured automatically using the built-in ReVue software (Optovue) with the Avanti as well as manually using ImageJ (National Institutes of Health) with both machines. There were 50 eyes in 25 healthy volunteers included in the analysis. Mean subject age was 33 years and there were 14 women (56%). On optical coherence tomography, mean central macular thickness was significantly greater on OA (259.1 μm) than ZC (257.6 μm, P = 0.0228). On optical coherence tomography angiography, mean superficial and deep plexus FAZ measured 0.2855 mm and 0.3465 mm on Avanti automated (A-A), 0.2739 mm and 0.3637 mm on Avanti manual (A-M), and 0.2657 mm and 0.3993 mm on Cirrus manual (C-M), respectively. There were no statistically significant differences in superficial plexus FAZ measurements between the A-A and A-M (P = 0.4019) or A-A and C-M (P = 0.1336). The A-M measured significantly larger than C-M (P = 0.0396). Deep plexus FAZ measurements were similar on A-A and A-M (P = 0.6299), but both were significantly less compared with C-M (P machine and technique are consistent and reliable between fellow eyes, significant variability exists in FAZ and capillary density measurements among different machines and techniques. Comparison of measurements across machines and techniques should be considered with caution.
Buatiche Jesús N
2006-03-01
Full Text Available Abstract Background Malaria transmission varies from one country to another and there are also local differences in time and space. An important variable when explaining the variability in transmission is the breeding behaviour of the different vector species and the availability of breeding sites. The aim of this study was to determine the geographical variability of certain entomological parameters: human biting rate (HBR, sporozoitic index (SI for Plasmodium falciparum and entomological inoculation rate (EIR. Methods The study was carried out in a small village in the mainland region of Equatorial Guinea. Adult mosquitoes were collected by CDC light traps. Polymerase Chain Reaction was employed to identify the species within the Anopheles gambiae complex and to detect P. falciparum sporozoites. The geographical position of all the dwellings in the village were taken using a global positioning system receiver unit. Data relating to the dwelling, occupants, use of bednets and the mosquitoes collection data were used to generate a geographical information system (GIS. This GIS allowed the minimum distance of the dwellings to the closest water point (potential breeding sites to be determined. Results A total of 1,173 anophelines were caught: 279 A. gambiae s.l. (217 A. gambiae s.s. and one Anopheles melas, 777 Anopheles moucheti and 117 Anopheles carnevalei. A. moucheti proved to be the main vector species and was responsible for 52.38 [95% IC: 33.7–71] night infective bites during this period. The highest SI was found in A. carnevalei (24%, even though the HBR was the lowest for this species. A significant association was found between the distance from the dwellings to the closest water point (River Ntem or secondary streams and the total HBR. Conclusion A clear association has been observed between the distance to potential breeding sites and the variability in the anopheline density, while the other parameters measured do not seem to
ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS
Robertson, Brant; Goldreich, Peter
2012-01-01
Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.
Characterization of local turbulence in magnetic confinement devices
Rajkovic, Milan; Skoric, Milos; Solna, Knut; Antar, Ghassan
2007-07-01
A multifractal analysis based on evaluation and interpretation of Large Deviation spectra is applied to plasma edge turbulence data from different devices (MAST and Tore Supra). It is demonstrated that in spite of some universal features there are unique characteristics for each device as well as for different confinement regimes. In the second part of the exposition the issue of estimating the variable power law behavior of spectral densities is addressed. The analysis of this issue is performed using fractional Brownian motion (fBm) as the underlying stochastic model whose parameters are estimated locally in time by wavelet scale spectra. In such a manner information about the inertial range as well as variability of the fBm parameters is obtained giving more information important for understanding edge turbulence and intermittency. (author)
Drury, L.O.; Stewart, J.M.
1976-01-01
A generalization of a transformation due to Kurskov and Ozernoi is used to rewrite the usual equations governing subsonic turbulence in Robertson-Walker cosmological models as Navier-Stokes equations with a time-dependent viscosity. This paper first rederives some well-known results in a very simple way by means of this transformation. The main result however is that the establishment of a Kolmogorov spectrum at recombination appears to be incompatible with subsonic turbulence. The conditions after recombination are also discussed briefly. (author)
Běták Emil
2014-04-01
Full Text Available For low-energy nuclear reactions well above the resonance region, but still below the pion threshold, statistical pre-equilibrium models (e.g., the exciton and the hybrid ones are a frequent tool for analysis of energy spectra and the cross sections of cluster emission. For α’s, two essentially distinct approaches are popular, namely the preformed one and the different versions of coalescence approaches, whereas only the latter group of models can be used for other types of cluster ejectiles. The original Iwamoto-Harada model of pre-equilibrium cluster emission was formulated using the overlap of the cluster and its constituent nucleons in momentum space. Transforming it into level or state densities is not a straigthforward task; however, physically the same model was presented at a conference on reaction models five years earlier. At that time, only the densities without spin were used. The introduction of spin variables into the exciton model enabled detailed calculation of the γ emission and its competition with nucleon channels, and – at the same time – it stimulated further developments of the model. However – to the best of our knowledge – no spin formulation has been presented for cluster emission till recently, when the first attempts have been reported, but restricted to the first emission only. We have updated this effort now and we are able to handle (using the same simplifications as in our previous work pre-equilibrium cluster emission with spin including all nuclei in the reaction chain.
Sarh, B.; Gokalp, I.; Sanders, H. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France)
1997-12-31
In the framework of the studies carried out by the LCSR on variable density flows and diffusion turbulent flames, this paper deals with the study of the influence of density variation on the characteristics of a heated rectangular turbulent jet emerging in a stagnant surrounding atmosphere and more particularly on the determination of turbulent viscosity. The dynamical field is measured using laser-Doppler anemometry while the thermal field is measured using cold wire anemometry. A numerical predetermination of the characteristics of this jet, based on a k-{epsilon} modeling, is carried out. (J.S.) 6 refs.
Nondissipative gravitational turbulence
Gurevich, A.V.; Zybin, K.P.
1988-01-01
The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence
Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas
Garcia, O.E.; Naulin, V.; Nielsen, A.H.
2006-01-01
the presence of long- range correlations in the particle density fluctuations. Finally, conditional statistics of the particle flux demonstrates the intermittency of the turbulent plasma transport and the quasi-periodic apparency of blob structures due to bursting in the global turbulence level....... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...
Turbulent energy generated by accelerations and shocks
Mikaelian, K.O.
1986-01-01
The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A 2 % (constant acceleration) and 9.3A 2 % (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs
Electron acceleration by turbulent plasmoid reconnection
Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.
2018-04-01
In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.
Sauer, Charles W; Boutin, Mallory A; Kim, Jae H
2017-05-01
Very-low-birth-weight infants continue to face significant difficulties with postnatal growth. Human milk is the optimal form of nutrition for infants but may exhibit variation in nutrient content. This study aimed to perform macronutrient analysis on expressed human milk from mothers whose babies are hospitalized in the neonatal intensive care unit. Up to five human milk samples per participant were analyzed for protein, carbohydrate, and fat content using reference chemical analyses (Kjeldahl for protein, high pressure liquid chromatography for carbohydrates, and Mojonnier for fat). Calorie content was calculated. A total of 64 samples from 24 participants was analyzed. Wide variability was found in calorie, protein, carbohydrate, and fat composition. The authors found an average of 17.9 kcal/ounce, with only 34% of samples falling within 10% of the expected caloric density. The assumption that human milk contains 20 kcal/ounce is no longer supported based on this study. This supports promoting an individualized nutrition strategy as a crucial aspect to optimal nutrition.
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Stochastic Subspace Modelling of Turbulence
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Jørgensen, Rikke Mørch; Levitan, Jacob; Halevi, Zohar
2015-01-01
AIMS: Dyx is a new heart rate variability (HRV) density analysis specifically designed to identify patients at high risk for malignant ventricular arrhythmias. The aim of this study was to test if Dyx can improve risk stratification for malignant ventricular tachyarrhythmias and to test if the pr......AIMS: Dyx is a new heart rate variability (HRV) density analysis specifically designed to identify patients at high risk for malignant ventricular arrhythmias. The aim of this study was to test if Dyx can improve risk stratification for malignant ventricular tachyarrhythmias and to test...
Saturation of the turbulent dynamo.
Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S
2015-08-01
The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.
Premixed autoignition in compressible turbulence
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Jet collimation by turbulent viscosity. I
Henriksen, R.N.
1987-01-01
In this paper it is assumed that the subscale turbulent eddies induced in an ambient medium by the emergence of a (already collimated) jet from a galactic nucleus (VLBI jet) are the source of the viscosity which causes material to be entrained into the large-scale (VLA) jet. New analytic solutions are derived by a generalization of the self-similar Ansatz used in the Landau-Squires solution to include variable density and viscosity. It is shown that such a process of viscous collimation of the VLA jets can account for the observed collimation-luminosity correlation, the magnetic flux, and the inferred mass flux of these jets. Order of magnitude comparisons of velocity and density fields with recently observed emission-line flow regions near radio jets are made. All of the viscosity-dependent observational checks imply roughly the same plausible value for the eddy viscosity. It is emphasized that storing the initial VLBI jet energy in the intermediate scales occupied by the turbulent eddies allows this energy to be largely undetected. 35 references
Using Indirect Turbulence Measurements for Real-Time Parameter Estimation in Turbulent Air
Martos, Borja; Morelli, Eugene A.
2012-01-01
The use of indirect turbulence measurements for real-time estimation of parameters in a linear longitudinal dynamics model in atmospheric turbulence was studied. It is shown that measuring the atmospheric turbulence makes it possible to treat the turbulence as a measured explanatory variable in the parameter estimation problem. Commercial off-the-shelf sensors were researched and evaluated, then compared to air data booms. Sources of colored noise in the explanatory variables resulting from typical turbulence measurement techniques were identified and studied. A major source of colored noise in the explanatory variables was identified as frequency dependent upwash and time delay. The resulting upwash and time delay corrections were analyzed and compared to previous time shift dynamic modeling research. Simulation data as well as flight test data in atmospheric turbulence were used to verify the time delay behavior. Recommendations are given for follow on flight research and instrumentation.
Measurement of beam driven hydrodynamic turbulence
Norem, J.; Black, E.; Bandura, L.; Errede, D.; Cummings, M. A. C.
2003-01-01
Cooling intense muon beams in liquid hydrogen absorbers introduces kW of heating to the cold fluid, which will drive turbulent flow. The amount of turbulence may be sufficient to help cool the liquid, but calculations are difficult. We have used a 20 MeV electron beam in a water tank to look at the scale of the beam driven convection and turbulence. The density and flow measurements are made with schlieren and Ronchi systems. We describe the optical systems and the turbulence measured. These data are being used to calibrate hydrodynamic calculations of convection driven and forced flow cooling in muon cooling absorbers
Transport barrier fluctuations governed by SOL turbulence spreading
Ghendrih, Ph.; Sarazin, Y.; Ciraolo, G.; Darmet, G.; Garbet, X.; Grangirard, V.; Tamain, P.; Benkadda, S.; Beyer, P.
2007-01-01
Turbulence spreading, namely turbulent transport extending into a stable region is reported both for the flat density profiles in the far SOL and into a modeled H-mode barrier. It is shown that due to turbulence penetration, the pedestal width fluctuates and that its effective width is a factor 2 smaller than the linear predicted width. Turbulence overshooting throughout the pedestal leads to a non-vanishing turbulent transport within the barrier and provides a coupling of core and SOL turbulence despite the transport barrier
Jafari, S.; Hojjati, M.H.; Fathi, A.
2012-01-01
Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk profiles for minimum weight design using the Karush-Kuhn-Tucker method (KKT) as a classical optimization method, simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. Some semi-analytical solutions for the elastic stress distribution in a rotating annular disk with uniform and variable thickness and density proposed by the authors in the previous works have been used. The von Mises failure criterion of optimum disk is used as an inequality constraint to make sure that the rotating disk does not fail. The results show that the minimum weight obtained for all three methods is almost identical. The KKT method gives a profile with slightly less weight (6% less than SA and 1% less than PSO) while the implementation of PSO and SA methods are easier and provide more flexibility compared with those of the KKT method. The effectiveness of the proposed optimization methods is shown. - Highlights: ► Karush-Kuhn-Tucker, simulated annealing and particle swarm methods are used. ► The KKT gives slightly less weight (6% less than SA and 1% less than PSO). ► Implementation of PSO and SA methods are easier and provide more flexibility. ► The effectiveness of the proposed optimization methods is shown.
Dambach Peter
2012-03-01
Full Text Available Abstract Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM, precipitation (Tropical Rainfall Measurement Mission = TRMM, land surface temperatures (LST. Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines
Jafari, S. [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Hojjati, M.H., E-mail: Hojjati@nit.ac.ir [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Fathi, A. [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of)
2012-04-15
Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk profiles for minimum weight design using the Karush-Kuhn-Tucker method (KKT) as a classical optimization method, simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. Some semi-analytical solutions for the elastic stress distribution in a rotating annular disk with uniform and variable thickness and density proposed by the authors in the previous works have been used. The von Mises failure criterion of optimum disk is used as an inequality constraint to make sure that the rotating disk does not fail. The results show that the minimum weight obtained for all three methods is almost identical. The KKT method gives a profile with slightly less weight (6% less than SA and 1% less than PSO) while the implementation of PSO and SA methods are easier and provide more flexibility compared with those of the KKT method. The effectiveness of the proposed optimization methods is shown. - Highlights: Black-Right-Pointing-Pointer Karush-Kuhn-Tucker, simulated annealing and particle swarm methods are used. Black-Right-Pointing-Pointer The KKT gives slightly less weight (6% less than SA and 1% less than PSO). Black-Right-Pointing-Pointer Implementation of PSO and SA methods are easier and provide more flexibility. Black-Right-Pointing-Pointer The effectiveness of the proposed optimization methods is shown.
Application of PDF methods to compressible turbulent flows
Delarue, B. J.; Pope, S. B.
1997-09-01
A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.
Flames in fractal grid generated turbulence
Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: p.lindstedt@imperial.ac.uk [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)
2013-12-15
Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration. (paper)
Turbulent equipartitions in two dimensional drift convection
Isichenko, M.B.; Yankov, V.V.
1995-01-01
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits
Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.
2017-12-01
Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.
Gallaher, Kevin T.; Mura, Marco; Todd, Wm Andrew; Harris, Tarsha L.; Kenyon, Emily; Harris, Tamara; Johnson, Karen C.; Satterfield, Suzanne; Kritchevsky, Stephen B.; Iannaccone, Alessandro
2007-01-01
The reproducibility of macular pigment optical density (MPOD) estimates in the elderly was assessed in 40 subjects (age: 79.1+/-3.5). Test-retest variability was good (Pearson's r coefficient: 0.734), with an average coefficient of variation (CV) of 18.4% and an intraclass correlation coefficient
Eddy turbulence parameters inferred from radar observations at Jicamarca
M. N. Vlasov
2007-03-01
Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×103 m2/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.
Eddy turbulence parameters inferred from radar observations at Jicamarca
M. N. Vlasov
2007-03-01
Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×10^{3} m^{2}/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.
Beam Shaping for CARS Measurements in Turbulent Environments
Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul M.
2010-01-01
This paper describes a new technique to mitigate the effect of beam steering on CARS measurements in turbulent, variable density environments. The new approach combines Planar BOXCARS phase-matching with elliptical shaping of one of the beams to generate a signal insensitive to beam steering, while keeping the same spatial resolution. Numerical and experimental results are provided to demonstrate the effectiveness of this approach. One set of experiments investigated the effect of beam shaping in the presence of a controlled and well quantified displacement of the beams at the focal plane. Another set of experiments, more qualitative, proved the effectiveness of the technique in the presence of severe beam steering due to turbulence.
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Turbulent flux and the diffusion of passive tracers in electrostatic turbulence
Basu, R.; Jessen, T.; Naulin, V.
2003-01-01
The connection between the diffusion of passive tracer particles and the anomalous turbulent flux in electrostatic drift-wave turbulence is investigated by direct numerical solutions of the 2D Hasegawa-Wakatani equations. The probability density functions for the point-wise and flux surface...
Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence
Sandberg, I.; Benkadda, S.; Garbet, X.; Ropokis, G.; Hizanidis, K.; Castillo-Negrete, D. del
2009-01-01
Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.
Agudo, Iván; Thum, Clemens; Ramakrishnan, Venkatessh; Molina, Sol N.; Casadio, Carolina; Gómez, José L.
2018-01-01
We report on the first results of the POLAMI (Polarimetric Monitoring of AGNs with Millimetre Wavelengths) programme, a simultaneous 3.5 and 1.3 mm full-Stokes-polarization monitoring of a sample of 36 of the brightest active galactic nuclei in the northern sky with the IRAM 30 m telescope. Through a systematic statistical study of data taken from 2006 October (from 2009 December for the case of the 1.3 mm observations) to 2014 August, we characterize the variability of the total flux density and linear polarization. We find that all sources in the sample are highly variable in total flux density at both 3.5 and 1.3 mm, as well as in spectral index, which (except in particularly prominent flares) is found to be optically thin between these two wavelengths. The total flux-density variability at 1.3 mm is found, in general, to be faster, and to have larger fractional amplitude and flatter power-spectral-density slopes than at 3.5 mm. The polarization degree is on average larger at 1.3 mm than at 3.5 mm, by a factor of 2.6. The variability of linear polarization degree is faster and has higher fractional amplitude than for total flux density, with the typical time-scales during prominent polarization peaks being significantly faster at 1.3 mm than at 3.5 mm. The polarization angle at both 3.5 and 1.3 mm is highly variable. Most of the sources show one or two excursions of >180° on time-scales from a few weeks to about a year during the course of our observations. The 3.5 and 1.3 mm polarization angle evolution follows each other rather well, although the 1.3 mm data show a clear preference to more prominent variability on the short time-scales, i.e. weeks. The data are compatible with multizone models of conical jets involving smaller emission regions for the shortest-wavelength emitting sites. Such smaller emitting regions should also be more efficient in energising particle populations, as implied by the coherent evolution of the spectral index and the total flux
Hoffie, Andreas Frank
Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky
Recent developments in plasma turbulence and turbulent transport
Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Érika Monteiro Michalsky
2009-12-01
Full Text Available In the present paper, we evaluate the relationship between climate variables and population density of Lutzomyia longipalpis in Montes Claros, an area of active transmission of American visceral leishmaniasis (AVL in Brazil. Entomological captures were performed in 10 selected districts of the city, between September 2002-August 2003. A total of 773 specimens of L. longipalpiswere captured in the period and the population density could be associated with local climate variables (cumulative rainfall, average temperature and relative humidity through a mathematical linear model with a determination coefficient (Rsqr of 0.752. Although based on an oversimplified statistical analysis, as far as the vector is concerned, this approach showed to be potentially useful as a starting point to guide control measures for AVL in Montes Claros.
Michalsky, Erika Monteiro; Fortes-Dias, Consuelo Latorre; França-Silva, João Carlos; Rocha, Marilia Fonseca; Barata, Ricardo Andrade; Dias, Edelberto Santos
2009-12-01
In the present paper, we evaluate the relationship between climate variables and population density of Lutzomyia longipalpis in Montes Claros, an area of active transmission of American visceral leishmaniasis (AVL) in Brazil. Entomological captures were performed in 10 selected districts of the city, between September 2002-August 2003. A total of 773 specimens of L. longipalpiswere captured in the period and the population density could be associated with local climate variables (cumulative rainfall, average temperature and relative humidity) through a mathematical linear model with a determination coefficient (Rsqr) of 0.752. Although based on an oversimplified statistical analysis, as far as the vector is concerned, this approach showed to be potentially useful as a starting point to guide control measures for AVL in Montes Claros.
Probability densities and Lévy densities
Barndorff-Nielsen, Ole Eiler
For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated.......For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated....
PDF turbulence modeling and DNS
Hsu, A. T.
1992-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.
Hansen, S; Grabau, D A; Rose, C
1998-01-01
included Chalkley counting, estimation of intratumoral microvessel density (MVD) by one hot-spot, MVD by the mean value of three hot-spots, and the highest value of MVD in three hot-spots. In addition, we applied stereology in the quantification of angiogenesis in the whole tumor section by random...
Rocket measurements of electron density irregularities during MAC/SINE
Ulwick, J. C.
1989-01-01
Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.
PDF approach for turbulent scalar field: Some recent developments
Gao, Feng
1993-01-01
The probability density function (PDF) method has been proven a very useful approach in turbulence research. It has been particularly effective in simulating turbulent reacting flows and in studying some detailed statistical properties generated by a turbulent field There are, however, some important questions that have yet to be answered in PDF studies. Our efforts in the past year have been focused on two areas. First, a simple mixing model suitable for Monte Carlo simulations has been developed based on the mapping closure. Secondly, the mechanism of turbulent transport has been analyzed in order to understand the recently observed abnormal PDF's of turbulent temperature fields generated by linear heat sources.
Nonuniform quantum turbulence in superfluids
Nemirovskii, Sergey K.
2018-04-01
The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent helium is studied. The counterflow velocity Vns x(y ) along the channel is supposed to have a parabolic profile in the transverse direction y . Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys. Rev. B 91, 180504 (2015), 10.1103/PhysRevB.91.180504]. The authors reported about a sophisticated behavior of the vortex-line density (VLD) L (r ,t ) , different from L ∝Vns x(y) 2 , which follows from the straightforward application of the conventional Vinen theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms of the transverse flux of VLD L (r ,t ) which should be incorporated in the standard Vinen equation to describe adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the behavior L (r ,t ) both in stationary and nonstationary situations. The general problem of the phenomenological Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.
Wang, P.-Y.; Hou, S.-S.
2005-01-01
In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions
Rossi, Margherita; Bruno, Giovanni; De Stefani, Alberto; Perri, Alessandro; Gracco, Antonio
2017-12-01
To assess whether cortical bone thickness and density vary in relation to age, sex and skeletal pattern at the maxillary and mandibular areas suitable for miniplates placement for orthodontic purposes. CBCT of 92 subjects (42 males and 50 females) with skeletal class I, II or III malocclusion, divided between adolescents and adults, were examined. InVivoDental ® software (Anatomage Inc, USA) was used to measure 34 maxillary areas and 40 mandibular areas per side. Values obtained were then compared between the groups of subjects. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney rank-sum test for independent samples. No significant differences were found in the cortical bone thickness values between the three skeletal patterns, and according to sex and age. Both maxilla and mandible showed an increase in cortical bone thickness from the anterior towards the posterior regions, and from the alveolar boneto the basal bone. Cortical bone density significantly varied in relation to the subject's age, with adults always showing higher values. Slight clinically significant differences were found between the three skeletal patterns and sex. In terms of cortical bone thickness, age, sex and skeletal pattern do not represent valid decision criteria for the evaluation of the best insertion areas for miniplates, while in terms of cortical bone density, only age is useful as a decision criterion. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.
Mazor, Roei D; Savir, Avital; Gheorghiu, David; Weinstein, Yuliana; Abadi-Korek, Ifat; Shabshin, Nogah
2016-05-01
This study assesses the inter-observer variability of mammographic breast density scoring (BDS) between technologists and radiologists and evaluates the effect of technologist patient referral on the load of adjuvant ultrasounds. In this IRB approved study, a retrospective analysis of 503 prospectively acquired, random mammograms was performed between January and March 2014. Each mammogram was evaluated for BDS independently and blindly by both the performing technologist and the interpreting radiologist. Statistical calculation of the Spearman correlation coefficient and weighted kappa were obtained to evaluate the inter-observer variability between technologists and radiologists and to examine whether it relates to the technologist's seniority or women's age. The effect on the load of adjuvant ultrasounds was evaluated. 10 mammography technologists and 7 breast radiologists participated in this study. BDS agreement levels between technologists and radiologists were in the fair to moderate range (kappa values: 0.3-0.45, Spearman coefficient values: 0.59-0.65). The technologists markedly over-graded the density compared to the radiologists in all the subsets evaluated. Comparison between low and high-density groups demonstrated a similar trend of over-grading by technologists, who graded 51% of the women as having dense breasts (scores 3-4) compared to 27% of the women graded as such by the radiologists. This trend of over grading breast density by technologists was unrelated to the women's age or to the technologists' seniority. Mammography technologists over-grade breast density. Technologists' referral to an adjuvant ultrasound leads to redundant ultrasound studies, unnecessary breast biopsies, costs and increased patient anxiety. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Turbulence associated with the sawtooth internal disruption
Andreoletti, J.; Laviron, C.; Olivain, J.; Pecquet, A.L.
1989-05-01
Specific turbulence associated with the sawtooth internal disruption has been observed on TFR tokamak plasmas by analyzing density fluctuations with CO 2 laser light scattering. The time localization is clearly connected with the successive phases of the relaxation process. Some specific turbulence appears in relation to the kink motion, but the main burst corresponds to the collapse phase. We concentrate our study on this strong burst and show first its frequency and wave number spectral properties and the corresponding pseudo dispersion relation. The specific turbulence is spatially localized. It is within the interior of the q = 1 surface and extends approximately 120 0 azimuthally. Taking into account the twisting of the central plasma during the turbulent kink phase, this location agrees with the azimuthal position of the ''sooner and faster'' outgoing heat flux. The power level of this turbulence is two orders of magnitude larger than the local quasi-stationary turbulence. These observations are in fair agreement with the predictions of the sawtooth disruption model previously proposed by Andreoletti. The observed specific turbulence shows several similarities with the so called ''magnetodrift turbulence'' described in the model
Turbulent momentum transport due to neoclassical flows
Lee, Jungpyo; Barnes, Michael; Parra, Felix I; Belli, Emily; Candy, Jeff
2015-01-01
Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality. (paper)
Wind Turbine Power Curves Incorporating Turbulence Intensity
Sørensen, Emil Hedevang Lohse
2014-01-01
. The model and method are parsimonious in the sense that only a single function (the zero-turbulence power curve) and a single auxiliary parameter (the equivalent turbulence factor) are needed to predict the mean power at any desired turbulence intensity. The method requires only ten minute statistics......The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...
Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration
Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.
2012-11-01
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.
A. P. Dimmock
2016-05-01
Full Text Available The local and global plasma properties in the magnetosheath play a fundamental role in regulating solar wind–magnetosphere coupling processes. However, the magnetosheath is a complex region to characterise as it has been shown theoretically, observationally and through simulations that plasma properties are inhomogeneous, non-isotropic and asymmetric about the Sun-Earth line. To complicate matters, dawn–dusk asymmetries are sensitive to various changes in the upstream conditions on an array of timescales. The present paper focuses exclusively on dawn–dusk asymmetries, in particularly that of ion density. We present a statistical study using THEMIS data of the dawn–dusk asymmetry of ion density in the dayside magnetosheath and its long-term variations between 2009 and 2015. Our data suggest that, in general, the dawn-side densities are higher, and the asymmetry grows from noon towards the terminator. This trend was only observed close to the magnetopause and not in the central magnetosheath. In addition, between 2009 and 2015, the largest asymmetry occurred around 2009 decreasing thereafter. We also concluded that no single parameter such as the Alfvén Mach number, plasma velocity, or the interplanetary magnetic field strength could exclusively account for the observed asymmetry. Interestingly, the dependence on Alfvén Mach number differed between data sets from different time periods. The asymmetry obtained in the THEMIS data set is consistent with previous studies, but the solar cycle dependence was opposite to an analysis based on IMP-8 data. We discuss the physical mechanisms for this asymmetry and its temporal variation. We also put the current results into context with the existing literature in order to relate THEMIS era measurements to those made during earlier solar cycles.
Guo, Z.; Lin, P.; Lowengrub, J.S.
2014-01-01
In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C 0 finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy law (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C 0 finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme
Internal wave energy radiated from a turbulent mixed layer
Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)
2014-09-15
We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.
Leroy, Adam K. [National Radio Astronomy Observtory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Lee, Cheoljong [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Schruba, Andreas [California Institute for Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Bolatto, Alberto [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Hughes, Annie; Sandstrom, Karin; Schinnerer, Eva; Walter, Fabian [Max Planck Institute fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Pety, Jerome [Institut de Radioastronomie Millimetrique, 300 Rue de la Piscine, F-38406 Saint Martin d' Heres (France)
2013-05-20
Many recent models consider the structure of individual interstellar medium (ISM) clouds as a way to explain observations of large parts of galaxies. To compare such models to observations, one must understand how to translate between surface densities observed averaging over large ({approx}kpc) scales and surface densities on the scale of individual clouds ({approx}pc scale), which are treated by models. We define a ''clumping factor'' that captures this translation as the ratio of the mass-weighted surface density, which is often the quantity of physical interest, to the area-weighted surface density, which is observed. We use high spatial resolution (sub-kpc) maps of CO and H I emission from nearby galaxies to measure the clumping factor of both atomic and molecular gas. The molecular and atomic ISM exhibit dramatically different degrees of clumping. As a result, the ratio H{sub 2}/H I measured at {approx}kpc resolution cannot be trivially interpreted as a cloud-scale ratio of surface densities. H I emission appears very smooth, with a clumping factor of only {approx}1.3. Based on the scarce and heterogeneous high-resolution data available, CO emission is far more clumped with a widely variable clumping factor, median {approx}7 for our heterogeneous data. Our measurements do not provide evidence for a universal mass-weighted surface density of molecular gas, but also cannot conclusively rule out such a scenario. We suggest that a more sophisticated treatment of molecular ISM structure, one informed by high spatial resolution CO maps, is needed to link cloud-scale models to kpc-scale observations of galaxies.
Pedro Freitas de Carvalho
2010-02-01
Full Text Available This study aimed to identify and assess the seasonal and spatial variations of the appendicularians in the Caravelas River estuary and the adjacent coastal area. Samples were taken during 12 campaigns over five years (2001 and 2003-2006. Ten species were identified; the most abundant were Oikopleura dioica, Oikopleura rufescens, and Oikopleura longicauda. These species represented more than 95% of the total numbers of appendicularians. The remaining species were less frequent and occurred in low densities. The mean density of appendicularians found at the coastal stations (804 ind.m-3. was higher than in the estuary (66 ind.m-3. However, the differences observed between the estuary and coastal stations were not significant (p=0.54. The samples taken during the dry season showed a higher mean density (587 ind.m-3 than in the rainy season (376 ind.m-3, and the differences between the seasons were statistically significant (p=0.004.Esse trabalho teve como objetivo identificar e avaliar as variações espaciais e sazonais das apendiculárias no estuário do rio Caravelas e área costeira adjacente (17º35' - 18º22' S e 39º8' - 39º55'W. As coletas foram realizadas em 12 campanhas durante cinco anos (2001 e 2003 - 2006. Foram identificadas dez espécies, sendo que Oikopleura dioica, O. rufescens e O. longicauda foram as mais abundantes. Estas três espécies representaram mais de 95% do total de apendiculárias coletadas. As outras espécies foram menos freqüentes e ocorreram em baixas densidades. A densidade média de apendiculárias encontrada nas estações e costeiras (804 ind.m-3 foi maior que na de estuário (158 ind.m-3. As diferenças encontradas entre as estações de estuário e costeiras não foram significativas (p=0,73. As campanhas realizadas durante o período seco apresentaram densidade média (587 ind.m-3 maior que do período chuvoso (376 ind.m-3. As diferenças entre os períodos chuvoso e seco foram estatisticamente
Nearly incompressible MHD turbulence in the solar wind
Matthaeus, W.H.; Zhou, Y.
1989-01-01
Observational studies indicate that solar wind plasma and magnetic field fluctuations may be meaningfully viewed as an example of magnetohydrodynamic turbulence. This paper presents a brief summary of some relevant results of turbulence theory and reviews a turbulence style description of 'typical' solar wind conditions. Recent results, particularly those regarding the radial evolution of inertial range cross helicity, support the viewpoint that interplanetary turbulence is active and evolving with heliocentric distance. A number of observed properties can be understood by appeal to incompressible turbulence mechanisms. This connection may be understood by appeal to incompressible turbulence mechanisms. This connection may be understood in terms of theories of pseudosound density fluctuations and nearly incompressible magnetohydrodynamics, which are also reviewed here. Finally, we summarize a recent two-scale dynamical theory of the radial and temporal evolution of the turbulence, which may provide an additional framework for understanding the observations. (author). 49 refs
Turbulence in Wendelstein 7-AS plasmas measured by collective light scattering
Basse, Nils Plesner
2002-08-01
This Ph.D. thesis contains theoretical and experimental work on plasma turbulence measurements using collective light scattering. The motivation for measuring turbulence in hot fusion plasmas is, along with the method used and results obtained, the subject of chapter 1. The theoretical part is divided into three chapters. Chapter 2 contains a full analytical derivation of the expected dependency of the detected signal on plasma parameters. Thereafter, spatial resolution of the measurements using different methods is treated in chapter 3. Finally, the spectral analysis tools used later in the thesis are described and illustrated in chapter 4. The experimental part is divided into four chapters. In chapter 5 transport concepts relevant to the thesis are outlined. Main parameters of the Wendelstein 7-AS (W7-AS) stellarator in which measurements were made are collected in chapter 6. The setup used to study fluctuations in the electron density of W7-AS plasmas is covered in chapter 7. This localised turbulence scattering (LOTUS) diagnostic is based on a CO 2 laser radiating at a wavelength of 10.59 μm. Fast, heterodyne, dual volume detection at variable wavenumbers between 14 and 62 cm -1 is performed. The central chapter of the thesis, chapter 8, contains an analysis of the measured density fluctuations before, during and after several confinement transition types. The aim was to achieve a better understanding of the connection between turbulence and the confinement quality of the plasma. Conclusions and suggestions for further work are summarised in chapter 9. (au)
Composite asymptotic expansions and scaling wall turbulence.
Panton, Ronald L
2007-03-15
In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.
Numerical simulation of Rayleigh-Taylor turbulent mixing layers
Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.
2009-01-01
Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)
High Reynolds Number Turbulence
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
Dissipative structures in magnetorotational turbulence
Ross, Johnathan; Latter, Henrik N.
2018-03-01
Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.
Turbulent flows over sparse canopies
Sharma, Akshath; García-Mayoral, Ricardo
2018-04-01
Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.
Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.
Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A
2018-06-13
Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
The structure and statistics of interstellar turbulence
Kritsuk, A G; Norman, M L; Ustyugov, S D
2017-01-01
We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence. (paper)
Wong, Man Sing; Ho, Hung Chak; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Chan, Ta-Chien
2017-07-24
Dust events have long been recognized to be associated with a higher mortality risk. However, no study has investigated how prolonged dust events affect the spatial variability of mortality across districts in a downwind city. In this study, we applied a spatial regression approach to estimate the district-level mortality during two extreme dust events in Hong Kong. We compared spatial and non-spatial models to evaluate the ability of each regression to estimate mortality. We also compared prolonged dust events with non-dust events to determine the influences of community factors on mortality across the city. The density of a built environment (estimated by the sky view factor) had positive association with excess mortality in each district, while socioeconomic deprivation contributed by lower income and lower education induced higher mortality impact in each territory planning unit during a prolonged dust event. Based on the model comparison, spatial error modelling with the 1st order of queen contiguity consistently outperformed other models. The high-risk areas with higher increase in mortality were located in an urban high-density environment with higher socioeconomic deprivation. Our model design shows the ability to predict spatial variability of mortality risk during an extreme weather event that is not able to be estimated based on traditional time-series analysis or ecological studies. Our spatial protocol can be used for public health surveillance, sustainable planning and disaster preparation when relevant data are available.
Creel, Scott; Creel, Michael
2009-11-01
1. Sampling error in annual estimates of population size creates two widely recognized problems for the analysis of population growth. First, if sampling error is mistakenly treated as process error, one obtains inflated estimates of the variation in true population trajectories (Staples, Taper & Dennis 2004). Second, treating sampling error as process error is thought to overestimate the importance of density dependence in population growth (Viljugrein et al. 2005; Dennis et al. 2006). 2. In ecology, state-space models are used to account for sampling error when estimating the effects of density and other variables on population growth (Staples et al. 2004; Dennis et al. 2006). In econometrics, regression with instrumental variables is a well-established method that addresses the problem of correlation between regressors and the error term, but requires fewer assumptions than state-space models (Davidson & MacKinnon 1993; Cameron & Trivedi 2005). 3. We used instrumental variables to account for sampling error and fit a generalized linear model to 472 annual observations of population size for 35 Elk Management Units in Montana, from 1928 to 2004. We compared this model with state-space models fit with the likelihood function of Dennis et al. (2006). We discuss the general advantages and disadvantages of each method. Briefly, regression with instrumental variables is valid with fewer distributional assumptions, but state-space models are more efficient when their distributional assumptions are met. 4. Both methods found that population growth was negatively related to population density and winter snow accumulation. Summer rainfall and wolf (Canis lupus) presence had much weaker effects on elk (Cervus elaphus) dynamics [though limitation by wolves is strong in some elk populations with well-established wolf populations (Creel et al. 2007; Creel & Christianson 2008)]. 5. Coupled with predictions for Montana from global and regional climate models, our results
Correlation Scales of the Turbulent Cascade at 1 au
Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.
2018-05-01
We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.
Scaling, Intermittency and Decay of MHD Turbulence
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
Clairet, F.; Vermare, L.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal
TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION
Hopkins, Philip F. [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Christiansen, Jessie L., E-mail: phopkins@caltech.edu [SETI Institute/NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States)
2013-10-10
A fundamental assumption in our understanding of disks is that when the Toomre Q >> 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number M∼0.1 can produce a few stochastic fragmentation or 'direct collapse' events over ∼Myr timescales, even if Q >> 1 and cooling is slow (t{sub cool} >> t{sub orbit}). In transsonic turbulence this extends to Q ∼ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times ∼> 50 t{sub dyn} may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ∼(Q M{sub disk}/M{sub *}){sup 2} M{sub disk} (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence.
TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION
Hopkins, Philip F.; Christiansen, Jessie L.
2013-01-01
A fundamental assumption in our understanding of disks is that when the Toomre Q >> 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number M∼0.1 can produce a few stochastic fragmentation or 'direct collapse' events over ∼Myr timescales, even if Q >> 1 and cooling is slow (t cool >> t orbit ). In transsonic turbulence this extends to Q ∼ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times ∼> 50 t dyn may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ∼(Q M disk /M * ) 2 M disk (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence
Ho, Hung Chak; Lau, Kevin Ka-Lun; Yu, Ruby; Wang, Dan; Woo, Jean; Kwok, Timothy Chi Yui; Ng, Edward
2017-08-31
Previous studies found a relationship between geriatric depression and social deprivation. However, most studies did not include environmental factors in the statistical models, introducing a bias to estimate geriatric depression risk because the urban environment was found to have significant associations with mental health. We developed a cross-sectional study with a binomial logistic regression to examine the geriatric depression risk of a high-density city based on five social vulnerability factors and four environmental measures. We constructed a socio-environmental vulnerability index by including the significant variables to map the geriatric depression risk in Hong Kong, a high-density city characterized by compact urban environment and high-rise buildings. Crude and adjusted odds ratios (ORs) of the variables were significantly different, indicating that both social and environmental variables should be included as confounding factors. For the comprehensive model controlled by all confounding factors, older adults who were of lower education had the highest geriatric depression risks (OR: 1.60 (1.21, 2.12)). Higher percentage of residential area and greater variation in building height within the neighborhood also contributed to geriatric depression risk in Hong Kong, while average building height had negative association with geriatric depression risk. In addition, the socio-environmental vulnerability index showed that higher scores were associated with higher geriatric depression risk at neighborhood scale. The results of mapping and cross-section model suggested that geriatric depression risk was associated with a compact living environment with low socio-economic conditions in historical urban areas in Hong Kong. In conclusion, our study found a significant difference in geriatric depression risk between unadjusted and adjusted models, suggesting the importance of including environmental factors in estimating geriatric depression risk. We also
Hung Chak Ho
2017-08-01
Full Text Available Previous studies found a relationship between geriatric depression and social deprivation. However, most studies did not include environmental factors in the statistical models, introducing a bias to estimate geriatric depression risk because the urban environment was found to have significant associations with mental health. We developed a cross-sectional study with a binomial logistic regression to examine the geriatric depression risk of a high-density city based on five social vulnerability factors and four environmental measures. We constructed a socio-environmental vulnerability index by including the significant variables to map the geriatric depression risk in Hong Kong, a high-density city characterized by compact urban environment and high-rise buildings. Crude and adjusted odds ratios (ORs of the variables were significantly different, indicating that both social and environmental variables should be included as confounding factors. For the comprehensive model controlled by all confounding factors, older adults who were of lower education had the highest geriatric depression risks (OR: 1.60 (1.21, 2.12. Higher percentage of residential area and greater variation in building height within the neighborhood also contributed to geriatric depression risk in Hong Kong, while average building height had negative association with geriatric depression risk. In addition, the socio-environmental vulnerability index showed that higher scores were associated with higher geriatric depression risk at neighborhood scale. The results of mapping and cross-section model suggested that geriatric depression risk was associated with a compact living environment with low socio-economic conditions in historical urban areas in Hong Kong. In conclusion, our study found a significant difference in geriatric depression risk between unadjusted and adjusted models, suggesting the importance of including environmental factors in estimating geriatric depression risk
Direct numerical simulation of droplet-laden isotropic turbulence
Dodd, Michael S.
Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow
Energetics of turbulent transport processes in tokamaks
Haas, F.A.; Thyagaraja, A.
1987-01-01
The effect of electromagnetic turbulence on electrons and ions under Tokamak conditions is considered using a kinetic description. Taking the magnetic fluctuation spectrum as given, the density fluctuation spectrum is self-consistently calculated taking account of quasi-neutrality. The calculation is valid for arbitrary collisionality and appropriate to low frequencies typical of experiment. In addition to the usual enhancement of the radial electron energy transport, it is found that the turbulent fluctuations can heat the plasma at rates comparable to ordinary ohmic heating under well-defined conditions. Interestingly, electromagnetic turbulence appears to imply only an insignificant correction to the toroidal resistance of the plasma as estimated from Spitzer resistivity. The scalings of anomalous transport, fluctuations and heating with temperature and plasma volume are investigated. The assumption that the magnetic fluctuation spectrum of the turbulence is invariant under a wide range of conditions is shown to result in interesting consequences for JET-like plasmas. (author)
Progress in turbulence research
Bradshaw, P.
1990-01-01
Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs
Intermittent Anisotropic Turbulence Detected by THEMIS in the Magnetosheath
Macek, W. M.; Wawrzaszek, A.; Kucharuk, B.; Sibeck, D. G.
2017-12-01
Following our previous study of Time History of Events and Macroscale Interactions during Substorms (THEMIS) data, we consider intermittent turbulence in the magnetosheath depending on various conditions of the magnetized plasma behind the Earth’s bow shock and now also near the magnetopause. Namely, we look at the fluctuations of the components of the Elsässer variables in the plane perpendicular to the scale-dependent background magnetic fields and along the local average ambient magnetic fields. We have shown that Alfvén fluctuations often exhibit strong anisotropic non-gyrotropic turbulent intermittent behavior resulting in substantial deviations of the probability density functions from a normal Gaussian distribution with a large kurtosis. In particular, for very high Alfvénic Mach numbers and high plasma beta, we have clear anisotropy with non-Gaussian statistics in the transverse directions. However, along the magnetic field, the kurtosis is small and the plasma is close to equilibrium. On the other hand, intermittency becomes weaker for moderate Alfvén Mach numbers and lower values of the plasma parameter beta. It also seems that the degree of intermittency of turbulence for the outgoing fluctuations propagating relative to the ambient magnetic field is usually similar as for the ingoing fluctuations, which is in agreement with approximate equipartition of energy between these oppositely propagating Alfvén waves. We believe that the different characteristics of this intermittent anisotropic turbulent behavior in various regions of space and astrophysical plasmas can help identify nonlinear structures responsible for deviations of the plasma from equilibrium.
Rullaud, M
2004-06-01
A new modelization of turbulent combustion is proposed with detailed chemistry and probability density functions (PDFs). The objective is to capture temperature and species concentrations, mainly the CO. The PCM-FTC model, Presumed Conditional Moment - Flame Tabulated Chemistry, is based on the tabulation of laminar premixed and diffusion flames to capture partial pre-mixing present in aeronautical engines. The presumed PDFs is introduced to predict averaged values. The tabulation method is based on the analysis of the chemical structure of laminar premixed and diffusion flames. Hypothesis are presented, tested and validated with Sandia experimental data jet flames. Then, the model is introduced in a turbulent flow simulation software. Three configurations are retained to quantify the level of prediction of this formulation: the D and F-Flames of Sandia and lifted jet flames of methane/air of Stanford. A good agreement is observed between experiments and simulations. The validity of this method is then demonstrated. (author)
Li, X.; Hu, B.; Burnett, W.; Santos, I.
2008-05-01
Submarine Groundwater Discharge (SGD) as an unseen phenomenon is now recognized as an important pathway between land and sea. These discharges typically display significant spatial and temporal variability making quantification difficult. Groundwater seepage is patchy, diffuse, and temporally variable, and thus makes the estimation of its magnitude and components is a challenging enterprise. A two-dimensional hydrogeological model is developed to the near-shore environment of an unconfined aquifer at a Florida coastal area in the northeastern Gulf of Mexico. Intense geological survey and slug tests are set to investigate the heterogeneity of this layered aquifer. By applying SEAWAT2000, considering the uncertainties caused by changes of boundary conditions, a series of variable-density-flow models incorporates the tidal-influenced seawater recirculation and the freshwater-saltwater mixing zone under the dynamics of tidal pattern, tidal amplitude and variation of water table. These are thought as the contributing factors of tidal pumping and hydraulic gradient which are the driven forces of SGD. A tidal-influenced mixing zone in the near-shore aquifer shows the importance of tidal mechanism to flow and salt transport in the process of submarine pore water exchange. Freshwater ratio in SGD is also analyzed through the comparison of Submarine Groundwater Recharge and freshwater inflow. The joint calibration with other methods (natural tracer model and seepage meter) is also discussed.
Homogeneous turbulence dynamics
Sagaut, Pierre
2018-01-01
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...
Gilling, Lasse
of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence......Wind turbines operate in inflow turbulence whether it originates from the shear in the atmospheric boundary layer or from the wake of other wind turbines. Consequently, the airfoils of the wings experience turbulence in the inflow. The main topic of this thesis is to investigate the effect...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...
Statistical theory of plasmas turbulence
Kim, Eun-jin; Anderson, Johan
2009-01-01
We present a statistical theory of intermittency in plasma turbulence based on short-lived coherent structures (instantons). In general, the probability density functions (PDFs) of the flux R are shown to have an exponential scaling P(R) ∝ exp (-cR s ) in the tails. In ion-temperature-gradient turbulence, the exponent takes the value s=3/2 for momentum flux and s=3 for zonal flow formation. The value of s follows from the order of the highest nonlinear interaction term and the moments for which the PDFs are computed. The constant c depends on the spatial profile of the coherent structure and other physical parameters in the model. Our theory provides a powerful mechanism for ubiquitous exponential scalings of PDFs, often observed in various tokamaks. Implications of the results, in particular, on structure formation are further discussed. (author)
Homogeneous purely buoyancy driven turbulent flow
Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant
2010-11-01
An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.
INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE
Hunana, P.; Zank, G. P.
2010-01-01
The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.
Zentgraf, Florian; Baum, Elias; Dreizler, Andreas [Fachgebiet Reaktive Strömungen und Messtechnik (RSM), Center of Smart Interfaces (CSI), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Böhm, Benjamin [Fachgebiet Energie und Kraftwerkstechnik (EKT), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Peterson, Brian, E-mail: brian.peterson@ed.ac.uk [Department of Mechanical Engineering, School of Engineering, Institute for Energy Systems, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland (United Kingdom)
2016-04-15
Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.
Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.
2018-02-01
We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.
Multiscaling Dynamics of Impurity Transport in Drift-Wave Turbulence
Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.
2008-01-01
Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments
Gliozzi, Mario; Papadakis, Iossif E.; Eracleous, Michael; Sambruna, Rita M.; Ballantyne, David R.; Braito, Valentina; Reeves, James N.
2009-09-01
We investigate the short-term variability properties and the power spectral density (PSD) of the broad-line radio galaxy (BLRG) 3C 390.3 using observations made by XMM-Newton, RXTE, and Suzaku on several occasions between 2004 October and 2006 December. The main aim of this work is to derive model-independent constraints on the origin of the X-ray emission and on the nature of the central engine in 3C 390.3. On timescales of the order of few hours, probed by uninterrupted XMM-Newton light curves, the flux of 3C 390.3 is consistent with being constant in all energy bands. On longer timescales, probed by the 2-day RXTE and Suzaku observations, the flux variability becomes significant. The latter observation confirms that the spectral variability behavior of 3C 390.3 is consistent with the spectral evolution observed in (radio-quiet) Seyfert galaxies: the spectrum softens as the source brightens. The correlated variability between soft and hard X-rays, observed during the Suzaku exposure and between the two XMM-Newton pointings, taken 1 week apart, argues against scenarios characterized by the presence of two distinct variable components in the 0.5-10 keV X-ray band. A detailed PSD analysis carried out over five decades in frequency suggests the presence of a break at T br = 43+34 -25 days at a 92% confidence level. This is the second tentative detection of a PSD break in a radio-loud, non-jet dominated active galactic nucleus (AGN), after the BLRG 3C 120, and appears to be in general agreement with the relation between T br, M BH, and L bol, followed by Seyfert galaxies. Our results indicate that the X-ray variability properties of 3C 390.3 are broadly consistent with those of radio-quiet AGN, suggesting that the X-ray emission mechanism in 3C 390.3 is similar to that of nearby Seyfert galaxies without any significant contribution from a jet component.
Gliozzi, Mario; Papadakis, Iossif E.; Eracleous, Michael; Sambruna, Rita M.; Ballantyne, David R.; Braito, Valentina; Reeves, James N.
2009-01-01
We investigate the short-term variability properties and the power spectral density (PSD) of the broad-line radio galaxy (BLRG) 3C 390.3 using observations made by XMM-Newton, RXTE, and Suzaku on several occasions between 2004 October and 2006 December. The main aim of this work is to derive model-independent constraints on the origin of the X-ray emission and on the nature of the central engine in 3C 390.3. On timescales of the order of few hours, probed by uninterrupted XMM-Newton light curves, the flux of 3C 390.3 is consistent with being constant in all energy bands. On longer timescales, probed by the 2-day RXTE and Suzaku observations, the flux variability becomes significant. The latter observation confirms that the spectral variability behavior of 3C 390.3 is consistent with the spectral evolution observed in (radio-quiet) Seyfert galaxies: the spectrum softens as the source brightens. The correlated variability between soft and hard X-rays, observed during the Suzaku exposure and between the two XMM-Newton pointings, taken 1 week apart, argues against scenarios characterized by the presence of two distinct variable components in the 0.5-10 keV X-ray band. A detailed PSD analysis carried out over five decades in frequency suggests the presence of a break at T br = 43 +34 -25 days at a 92% confidence level. This is the second tentative detection of a PSD break in a radio-loud, non-jet dominated active galactic nucleus (AGN), after the BLRG 3C 120, and appears to be in general agreement with the relation between T br , M BH , and L bol , followed by Seyfert galaxies. Our results indicate that the X-ray variability properties of 3C 390.3 are broadly consistent with those of radio-quiet AGN, suggesting that the X-ray emission mechanism in 3C 390.3 is similar to that of nearby Seyfert galaxies without any significant contribution from a jet component.
Boundary Plasma Turbulence Simulations for Tokamaks
Xu, X.; Umansky, M.; Dudson, B.; Snyder, P.
2008-05-01
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T e ; T i ) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics
Thedrez, Aurélie; Blom, Dirk J; Ramin-Mangata, Stéphane; Blanchard, Valentin; Croyal, Mikaël; Chemello, Kévin; Nativel, Brice; Pichelin, Matthieu; Cariou, Bertrand; Bourane, Steeve; Tang, Lihua; Farnier, Michel; Raal, Frederick J; Lambert, Gilles
2018-03-01
Evolocumab, a PCSK9 (proprotein convertase subtilisin kexin type 9)-neutralizing antibody, lowers low-density lipoprotein cholesterol (LDL-C) in homozygous familial hypercholesterolemic (HoFH) patients with reduced LDLR (low-density lipoprotein receptor) function. However, their individual responses are highly variable, even among carriers of identical LDLR genetic defects. We aimed to elucidate why HoFH patients variably respond to PCSK9 inhibition. Lymphocytes were isolated from 22 HoFH patients enrolled in the TAUSSIG trial (Trial Assessing Long Term Use of PCSK9 Inhibition in Subjects With Genetic LDL Disorders). Ten patients were true homozygotes (FH1/FH1) and 5 identical compound heterozygotes (FH1/FH2). Lymphocytes were plated with or without mevastatin, recombinant PCSK9 (rPCSK9), or a PCSK9-neutralizing antibody. Cell surface LDLR expression was analyzed by flow cytometry. All HoFH lymphocytes had reduced cell surface LDLR expression compared with non-FH lymphocytes, for each treatment modality. Lymphocytes from FH1/FH2 patients (LDLR defective/negative) displayed the lowest LDLR expression levels followed by lymphocytes from FH1/FH1 patients (defective/defective). Mevastatin increased, whereas rPCSK9 reduced LDLR expression. The PCSK9-neutralizing antibody restored LDLR expression. Lymphocytes displaying higher LDLR expression levels were those isolated from patients presenting with lowest levels of LDL-C and apolipoprotein B, before and after 24 weeks of evolocumab treatment. These negative correlations remained significant in FH1/FH1 patients and appeared more pronounced when patients with apolipoprotein E3/E3 genotypes were analyzed separately. Significant positive correlations were found between the levels of LDLR expression and the percentage reduction in LDL-C on evolocumab treatment. Residual LDLR expression in HoFH is a major determinant of LDL-C levels and seems to drive their individual response to evolocumab. © 2017 American Heart Association
Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.
Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine
2016-05-01
Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners.
Program to determine space vehicle response to wind turbulence
Wilkening, H. D.
1972-01-01
Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.
Beam steering effects in turbulent high pressure flames
Hemmerling, B; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.
Turbulent methane combustion in a laboratory-scale furnace
Oksanen, A.; Maeki-Mantila, E. [Tampere Univ. of Technology (Finland). Energy and Process Engineering
1996-12-31
Methane combustion in the 400 rotational symmetric test chamber by ENEL was investigated. The prediction of the reaction rates of methane and carbon monoxide was based on the models which are taking into consideration the effect of turbulence on the oxidation phenomena namely the eddy dissipation concept model (EDC) and the eddy dissipation model (EDM). The experimental results of the distributions of the different species concentrations, temperature, velocities, turbulence quantities etc. were measured in the chamber cross-sections. The formation of nitric oxide was modelled using the thermal- and prompt-NO formation mechanisms and the formulation was based on the chemical kinetics and the probability density function (pdf) with the {beta}- and {delta}-distributions. If more than one variable is taken into consideration in the use of pdf it is very difficult to find distribution for different variables and especially to solve them with the moderate amount of the computing time. Therefore, in this presentation the amount of the pdf variables was limited as small as possible i.e. only one variable namely the mixture fraction was used the variance of which was solved from the transport equation. The computational domain which was divided into about seven thousand cells includes areas where the mean values of the variables can be supposed to be known and where the distribution of the probability is very narrow. Because in every computational cell the probability distribution as accurate as possible is wanted the linearization of the integration was made. The effect of the local extinction on the reaction rates was also included in the paper
Turbulent methane combustion in a laboratory-scale furnace
Oksanen, A; Maeki-Mantila, E [Tampere Univ. of Technology (Finland). Energy and Process Engineering
1997-12-31
Methane combustion in the 400 rotational symmetric test chamber by ENEL was investigated. The prediction of the reaction rates of methane and carbon monoxide was based on the models which are taking into consideration the effect of turbulence on the oxidation phenomena namely the eddy dissipation concept model (EDC) and the eddy dissipation model (EDM). The experimental results of the distributions of the different species concentrations, temperature, velocities, turbulence quantities etc. were measured in the chamber cross-sections. The formation of nitric oxide was modelled using the thermal- and prompt-NO formation mechanisms and the formulation was based on the chemical kinetics and the probability density function (pdf) with the {beta}- and {delta}-distributions. If more than one variable is taken into consideration in the use of pdf it is very difficult to find distribution for different variables and especially to solve them with the moderate amount of the computing time. Therefore, in this presentation the amount of the pdf variables was limited as small as possible i.e. only one variable namely the mixture fraction was used the variance of which was solved from the transport equation. The computational domain which was divided into about seven thousand cells includes areas where the mean values of the variables can be supposed to be known and where the distribution of the probability is very narrow. Because in every computational cell the probability distribution as accurate as possible is wanted the linearization of the integration was made. The effect of the local extinction on the reaction rates was also included in the paper
Self-contained filtered density function
Nouri, Arash G.; Pope, Stephen B.
2017-01-01
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Self-contained filtered density function
Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.
2017-09-01
The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet.
Taveira, Rodrigo R; Diogo, José S; Lopes, Diogo C; da Silva, Carlos B
2013-10-01
Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism in a direct numerical simulation of a turbulent plane jet at Re(λ) ≈ 110. The particles (tracers) are initially seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment mechanism than in previous works since the statistics in relation to the TNTI position involve data from the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes "active" only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI differ substantially from inside the turbulent region. Only about 1% of all particles find their way into pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that "engulfment" is not significant for the present flow, indirectly suggesting that the entrainment is largely due to "nibbling" small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent region, consistent with the particles moving tangent to the interface around the time they cross it.
PDF modeling of turbulent flows on unstructured grids
Bakosi, Jozsef
In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. Because the technique solves a transport equation for the PDF of the velocity and scalars, a mathematically exact treatment of advection, viscous effects and arbitrarily complex chemical reactions is possible; these processes are treated without closure assumptions. A set of algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain and to track particles. All three aspects regarding the grid make use of the finite element method. Compared to hybrid methods, the current methodology is stand-alone, therefore it is consistent both numerically and at the level of turbulence closure without the use of consistency conditions. Since both the turbulent velocity and scalar concentration fields are represented in a stochastic way, the method allows for a direct and close interaction between these fields, which is beneficial in computing accurate scalar statistics. Boundary conditions implemented along solid bodies are of the free-slip and no-slip type without the need for ghost elements. Boundary layers at no-slip boundaries are either fully resolved down to the viscous sublayer, explicitly modeling the high anisotropy and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions or specified via logarithmic wall-functions. As in moment closures and large eddy simulation, these wall-treatments provide the usual trade-off between resolution and computational cost as required by the given application. Particular attention is focused on
Statistical Mechanics of Turbulent Dynamos
Shebalin, John V.
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Turbulence generation by waves
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Turbulent Buoyant Jets in Flowing Ambients
Chen, Hai-Bo; Larsen, Torben; Petersen, Ole
1991-01-01
The mean behaviour of horizontal turbulent buoyant jets in co-flowing currents is investigated experimentally and numerically, in terms of jet trajectory, dilution and centerline density deficit and velocity decay. It is demonstrated in the paper that the laboratory data on the jet trajectory and...
Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures
Dragutin Mihailović
2017-09-01
Full Text Available Turbulence is often expressed in terms of either irregular or random fluid flows, without quantification. In this paper, a methodology to evaluate the randomness of the turbulence using measures based on the Kolmogorov complexity (KC is proposed. This methodology is applied to experimental data from a turbulent flow developing in a laboratory channel with canopy of three different densities. The methodology is even compared with the traditional approach based on classical turbulence statistics.
Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.
2016-01-01
Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.
Drift wave turbulence in low-β plasmas
Mikkelsen, Torben; Larsen, Søren Ejling; Pécseli, Hans
1983-01-01
Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms of w...... spectrum is demonstrated. Some aspects of the relative diffusion of a test-cloud of charged particles released in the turbulent field are discussed.......Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms...... of wavenumber spectra. The spectral index of the turbulent potential fluctuations is determined and the variation of the spectral intensity is investigated for varying magnetic fields. The results compare favourably with theoretical predictions. The importance of distinguishing subranges in the turbulent...
Turbulent acceleration of auroral electrons
Bryant, D.A.; Cook, A.C.; Wang, Z.-S.; Angelis, U. de; Perry, C.H.
1991-07-01
It is shown that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions with lower-hybrid electrostatic turbulence. The peak itself is shown to be a direct consequence of restrictions imposed on reflexion of electron velocities in the frame of reference of individual wave packets by the limitation in group velocity. A Monte-Carlo model demonstrates how the various properties of the acceleration region are reflected in the resultant electron distribution. It is shown, in particular, that the width of the peak is governed by the amplitude of the turbulence, while the amplitude of the peak reflects the column density of wave energy. Electron distributions encountered within three auroral arcs are interpreted to yield order of magnitude estimates of the amplitude and rms electric field of lower-hybrid wave packets. The velocities and frequencies of the resonant waves, the net electric field, the column density of wave energy and the electric-field energy density are also estimated. The results are found to be consistent with available electric-field measurements. A general broadening of the electron distribution caused by less systematic interactions between electrons and wave packets is shown to have a negligible effect on the peak resulting from the reflexion process; it does, though, lead to the creation of a characteristic high-energy tail. (author)
Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU
Fraternale, F; Gallana, L; Iovieno, M; Tordella, D; Opher, M; Richardson, J D
2016-01-01
Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbulence is motivated by a number of factors all keys to the understanding of the Solar Wind origin and thermodynamics. The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between −2.1 and −1.1, depending on frequency subranges. Probability density functions (PDFs) and correlations indicate that the flow has a significant intermittency. (invited comment)
External intermittency prediction using AMR solutions of RANS turbulence and transported PDF models
Olivieri, D. A.; Fairweather, M.; Falle, S. A. E. G.
2011-12-01
External intermittency in turbulent round jets is predicted using a Reynolds-averaged Navier-Stokes modelling approach coupled to solutions of the transported probability density function (pdf) equation for scalar variables. Solutions to the descriptive equations are obtained using a finite-volume method, combined with an adaptive mesh refinement algorithm, applied in both physical and compositional space. This method contrasts with conventional approaches to solving the transported pdf equation which generally employ Monte Carlo techniques. Intermittency-modified eddy viscosity and second-moment turbulence closures are used to accommodate the effects of intermittency on the flow field, with the influence of intermittency also included, through modifications to the mixing model, in the transported pdf equation. Predictions of the overall model are compared with experimental data on the velocity and scalar fields in a round jet, as well as against measurements of intermittency profiles and scalar pdfs in a number of flows, with good agreement obtained. For the cases considered, predictions based on the second-moment turbulence closure are clearly superior, although both turbulence models give realistic predictions of the bimodal scalar pdfs observed experimentally.
Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils
Zhang, Yue
2015-07-23
This paper presentsamultiscale finite-element formulation for the second modeofzonal detached-eddy simulation. The multiscale formulation corrects the lack of stability of the standard Galerkin formulation by incorporating the effect of unresolved scales to the grid (resolved) scales. The stabilization terms arise naturally and are free of userdefined stability parameters. Validation of the method is accomplished via the turbulent flow over tandem cylinders. The boundary-layer separation, free shear-layer rollup, vortex shedding from the upstream cylinder, and interaction with the downstream cylinder are well reproduced. Good agreement with experimental measurements gives credence to the accuracy of zonal detached-eddy simulation in modeling turbulent separated flows. A comprehensive study is then conducted on the performance degradation of ice-contaminated airfoils. NACA 23012 airfoil with a spanwise ice ridge and Gates Learjet Corporation-305 airfoil with a leading-edge horn-shape glaze ice are selected for investigation. Appropriate spanwise domain size and sufficient grid density are determined to enhance the reliability of the simulations. A comparison of lift coefficient and flowfield variables demonstrates the added advantage that the zonal detached-eddy simulation model brings to the Spalart-Allmaras turbulence model. Spectral analysis and instantaneous visualization of turbulent structures are also highlighted via zonal detached-eddy simulation. Copyright © 2015 by the CFD Lab of McGill University. Published by the American Institute of Aeronautics and Astronautics, Inc.
Plasma Turbulence General Topics
Kadomtsev, B. B. [Nuclear Energy Institute, Academy of Sciences of the USSR, Moscow, USSR (Russian Federation)
1965-06-15
It is known that under experimental conditions plasma often shows chaotic motion. Such motion, when many degrees of freedom are excited to levels considerably above the thermal level, will be called turbulent. The properties of turbulent plasma in many respects differ from the properties of laminar plasma. It can be said that the appearance of various anomalies in plasma behaviour indicates the presence of turbulence in plasma. In order to verify directly the presence of turbulent motion in plasma we must, however, measure the fluctuation of some microscopic parameters in plasma.
The calculation of turbulence phenomena in plasma focus dynamics using REDUCE
Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.
1982-05-01
Based on previous calculations of the development of highly turbulent plasma states resulting from m=0 instabilities and the application to the turbulent development in the late stage of a plasma focus experiment, using REDUE, the treatment of plasma focus dynamics is extended to the compression stage and 'intermediate' stage between maximum density and m = o onset. For this, a two-fluid model of the magneto-fluid dynamic equations is employed. The non-linear development is again treated in ω, k-space and transformed back into r, t-space to obtain local dynamic variables as functions of time. The calculation is applied to the Stuttgart plasma focus experiment POSEIDON. It is shown that for relatively high pinch currents, neutron production also appears in the 'intermediate' phase, the life-time of which increases with increasing pinch current. (orig.)
Turbulent Transport in a Three-dimensional Solar Wind
Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)
2017-03-01
Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.
Fully developed turbulence via Feigenbaum's period-doubling bifurcations
Duong-van, M.
1987-08-01
Since its publication in 1978, Feigenbaum's predictions of the onset of turbulence via period-doubling bifurcations have been thoroughly borne out experimentally. In this paper, Feigenbaum's theory is extended into the regime in which we expect to see fully developed turbulence. We develop a method of averaging that imposes correlations in the fluctuating system generated by this map. With this averaging method, the field variable is obtained by coarse-graining, while microscopic fluctuations are preserved in all averaging scales. Fully developed turbulence will be shown to be a result of microscopic fluctuations with proper averaging. Furthermore, this model preserves Feigenbaum's results on the physics of bifurcations at the onset of turbulence while yielding additional physics both at the onset of turbulence and in the fully developed turbulence regime
The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.
2017-09-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar
Understanding Turbulence in Compressing Plasmas and Its Exploitation or Prevention
Davidovits, Seth
Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulence need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a "sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a
Zhang, Hubao; Schwartz, Frank W.; Wood, Warren W.; Garabedian, S.P.; LeBlanc, D.R.
1998-01-01
A multispecies numerical code was developed to simulate flow and mass transport with kinetic adsorption in variable-density flow systems. The two-dimensional code simulated the transport of bromide (Br−), a nonreactive tracer, and lithium (Li+), a reactive tracer, in a large-scale tracer test performed in a sand-and-gravel aquifer at Cape Cod, Massachusetts. A two-fraction kinetic adsorption model was implemented to simulate the interaction of Li+ with the aquifer solids. Initial estimates for some of the transport parameters were obtained from a nonlinear least squares curve-fitting procedure, where the breakthrough curves from column experiments were matched with one-dimensional theoretical models. The numerical code successfully simulated the basic characteristics of the two plumes in the tracer test. At early times the centers of mass of Br− and Li+ sank because the two plumes were closely coupled to the density-driven velocity field. At later times the rate of downward movement in the Br− plume due to gravity slowed significantly because of dilution by dispersion. The downward movement of the Li+ plume was negligible because the two plumes moved in locally different velocity regimes, where Li+ transport was retarded relative to Br−. The maximum extent of downward transport of the Li+ plume was less than that of the Br− plume. This study also found that at early times the downward movement of a plume created by a three-dimensional source could be much more extensive than the case with a two-dimensional source having the same cross-sectional area. The observed shape of the Br− plume at Cape Cod was simulated by adding two layers with different hydraulic conductivities at shallow depth across the region. The large dispersion and asymmetrical shape of the Li+ plume were simulated by including kinetic adsorption-desorption reactions.
Christian-Frear, T.L.; Webb, S.W.
1995-01-01
Human intrusion scenarios at the Waste Isolation Pilot Plant (WIPP) involve penetration of the repository and an underlying brine reservoir by a future borehole. Brine and gas from the brine reservoir and the repository may flow up the borehole and into the overlying Culebra formation, which is saturated with water containing different amounts of dissolved 'solids resulting in a spatially varying density. Current modeling approaches involve perturbing a steady-state Culebra flow field by inflow of gas and/or brine from a breach borehole that has passed through the repository. Previous studies simulating steady-state flow in the Culebra have been done. One specific study by LaVenue et al. (1990) used the SWIFT 2 code, a single-phase flow and transport code, to develop the steady-state flow field. Because gas may also be present in the fluids from the intrusion borehole, a two-phase code such as TOUGH2 can be used to determine the effect that emitted fluids may have on the steady-state Culebra flow field. Thus a comparison between TOUGH2 and SWIFT2 was prompted. In order to compare the two codes and to evaluate the influence of gas on flow in the Culebra, modifications were made to TOUGH2. Modifications were performed by the authors to allow for element-specific values of permeability, porosity, and elevation. The analysis also used a new equation of state module for a water-brine-air mixture, EOS7 (Pruess, 1991), which was developed to simulate variable water densities by assuming a miscible mixture of water and brine phases and allows for element-specific brine concentration in the INCON file
PDF Modeling of Turbulent Combustion
Pope, Stephen B
2006-01-01
.... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...
Vorotyntsev, M.A.
1991-01-01
Key problems of turbulent mass transfer at a solid wall are reviewed: closure problem for the concentration field, information on wall turbulence, applications of microelectrodes to study the structure of turbulence, correlation properties of current fluctuations. (author). 26 refs
Lidar for Wind and Optical Turbulence Profiling
Fastig Shlomo
2018-01-01
Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.
Theory of resistivity-gradient-driven turbulence
Garcia, L.; Carreras, B.A.; Diamond, P.H.; Callen, J.D.
1984-10-01
A theory of the nonlinear evolution and saturation of resistivity-driven turbulence, which evolves from linear rippling instabilities, is presented. The nonlinear saturation mechanism is identified both analytically and numerically. Saturation occurs when the turbulent diffusion of the resistivity is large enough so that dissipation due to parallel electron thermal conduction balances the nonlinearly modified resistivity gradient driving term. The levels of potential, resistivity, and density fluctuations at saturation are calculated. A combination of computational modeling and analytic treatment is used in this investigation
Turbulence modelling; Modelisation de la turbulence isotherme
Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)
1997-12-31
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.
Nagendra Prakash, Vivek
2013-01-01
This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in
Dynamic paradigm of turbulence
Mukhamedov, Alfred M.
2006-01-01
In this paper a dynamic paradigm of turbulence is proposed. The basic idea consists in the novel definition of chaotic structure given with the help of Pfaff system of PDE associated with the turbulent dynamics. A methodological analysis of the new and the former paradigm is produced
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
Turbulent mixing in three-dimensional droplet arrays
Zoby, M.R.G.; Navarro-Martinez, S.; Kronenburg, A.; Marquis, A.J.
2011-01-01
The atomisation, evaporation and subsequent mixing of fuel from a liquid spray determines the effectiveness of the combustion processes in gas turbines and internal combustion engines. In the present paper, three-dimensional direct numerical simulations (DNS) of the evaporation of methanol droplets in hot environments are presented. The gas phase mixing is assessed by examining the scalar dissipation and the mixture fraction probability density function (PDF). Novel multi-conditional models are proposed that use mixture fraction and structural parameters as the conditioning variables for the scalar dissipation which is found to be well predicted in terms of magnitude and distribution. The β-PDF description of the mixture fraction seems to capture well the global behaviour for a laminar environment and for time-averaged results in turbulent cases. A novel model for the mixture fraction PDF is also proposed based on the multi-conditional model for scalar dissipation and an accurate representation of the PDF is achieved.
Tao Zhi
2016-10-01
Full Text Available A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux ranging from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophysical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction performance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy-influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models.
Compressible turbulent flows: aspects of prediction and analysis
Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik
2007-03-15
Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density
Behaviour of turbulence models near a turbulent/non-turbulent interface revisited
Ferrey, P.; Aupoix, B.
2006-01-01
The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn
Organized turbulent motions in a hedgerow vineyard: effect of evolving canopy structure
Vendrame, Nadia; Tezza, Luca; Tha Paw U, Kyaw; Pitacco, Andrea
2017-04-01
Vegetation-atmosphere exchanges are determined by functional and structural properties of the plants together with environmental forcing. However, a fundamental aspect is the interaction of the canopy with the lower atmosphere. The vegetation deeply alters the composition and physical properties of the air flow, exchanging energy, matter and momentum with it. These processes take place in the bottom part of the atmospheric boundary layer where turbulence is the main mechanism transporting within-canopy air towards the mid- and upper atmospheric boundary layer and vice versa. Canopy turbulence is highly influenced by vegetation drag elements, determining the vertical profile of turbulent moments within the canopy. Canopies organized in rows, like vineyards, show peculiar turbulent transport dynamics. In addition, the morphological structure (phenology) of the vineyard is greatly variable seasonally, shifting from an empty canopy during vine dormancy to dense foliage in summer. The understanding of the canopy ventilation regime is related to several practical applications in vineyard management. For example, within-canopy turbulent motion is very important to predict small particles dispersion, like fungal spores, and minimize infection studying the effect on leaf wetness duration. Our study aims to follow the continuous evolution of turbulence characteristics and canopy structure during the growing season of a hedgerow vineyard, from bud break to fully developed canopy. The field experiment was conducted in a flat extensive vineyard in North-Eastern Italy, using a vertical array of five synchronous sonic anemometers within and above the canopy. Turbulent flow organization was greatly influenced by canopy structure. Turbulent coherent structures involved in momentum transport have been investigated using the classical quadrant analysis and a novel approach to identify dominant temporal scales. Momentum transport in the canopy was dominated by downward gusts showing
Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets
Asaithambi, Rajapandiyan
Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the
Radiative effects on turbulent buoyancy-driven air flow in open square cavities
Zamora, B.; Kaiser, A.S.
2016-01-01
The effects of the radiative effects and the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low- Reynolds k-ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide range of the Rayleigh number varying from 10 3 to 10 16 . The results obtained taking into account the variable thermophysical properties of air are compared to those calculated assuming constant properties and the Boussinesq approximation. In addition, the influence of considering surface radiative effects on the differences reached for the Nusselt number and the mass flow rate obtained with several intensities of heating is studied; specifically, the effects of thermal radiation on the appearance of the burnout phenomenon is analyzed. The changes produced in the flow patterns into the cavity when the radiative heat transfer and the effects of variation of properties are relevant, are also shown. (authors)
Eaton, John; Hwang, Wontae; Cabral, Patrick
2002-11-01
the addition of gravity as a variable parameter may help us to better understand the physics of turbulence attenuation. The experiments are conducted in a turbulence chamber capable of producing stationary or decaying isotropic turbulence with nearly zero mean flow and Taylor microscale Reynolds numbers up to nearly 500. The chamber is a 410 mm cubic box with the corners cut off to make it approximately spherical. Synthetic jet turbulence generators are mounted in each of the eight corners of the box. Each generator consists of a loudspeaker forcing a plenum and producing a pulsed jet through a 20 mm diameter orifice. These synthetic jets are directed into ejector tubes pointing towards the chamber center. The ejector tubes increase the jet mass flow and decrease the velocity. The jets then pass through a turbulence grid. Each of the eight loudspeakers is forced with a random phase and frequency. The resulting turbulence is highly Isotropic and matches typical behavior of grid turbulence. Measurements of both phases are acquired using particle image velocimetry (PIV). The gas is seeded with approximately 1 micron diameter seeding particles while the solid phase is typically 150 micron diameter spherical glass particles. A double-pulsed YAG laser and a Kodak ES-1.0 10-bit PIV camera provide the PIV images. Custom software is used to separate the images into individual images containing either gas-phase tracers or large particles. Modern high-resolution PIV algorithms are then used to calculate the velocity field. A large set of image pairs are acquired for each case, then the results are averaged both spatially and over the ensemble of acquired images. The entire apparatus is mounted in two racks which are carried aboard NASA's KC-135 Flying Microgravity Laboratory. The rack containing the turbulence chamber, the laser head, and the camera floats freely in the airplane cabin (constrained by competent NASA personnel) to minimize g-jitter.
Numerical simulation of turbulent combustion: Scientific challenges
Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan
2014-08-01
Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.
Inverse scattering problem in turbulent magnetic fluctuations
R. A. Treumann
2016-08-01
Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes
Low-latitude ionospheric turbulence observed by Aureol-3 satellite
Y. Hobara
2005-06-01
Full Text Available Using PSD (Power Spectral Density data on electron density and electric field variations observed on board Aureol-3 satellite at low-to-mid-latitude ionosphere we analyze a scale distribution of the ionospheric turbulence in a form k^{-α}, where k is the wave number and α is the spectral index. At first, high-resolution data in the near-equator region for several orbits have been processed. In this case the frequency range is from 6Hz to 100Hz (corresponding spatial scales from 80m to 1.3km, each power spectrum obeys a single power law fairly well, and the mean spectral indices are rather stable with α_{N}=2.2±0.3 and α_{E}=1.8±0.2, for the density and electric field, respectively. Then we produce a statistical study of 96 electric field bursts in the frequency range 10-100Hz from low-time resolution data (filter bank envelope. These bursts concentrate on the side of the Equatorial Anomaly crest (geomagnetic latitude 30-40°. Spectral indices of the bursts vary in the interval α_{E}=2.0-2.5 but are fairly stable in seasons and local times. The electric field power of the burst has rather a large variability but has a relative increase in mean values for the summer and winter, as well as the daytime. The effect of major seismic activities toward the ionospheric turbulence is not conclusive either for the refractive index or for the electric field power. However, the mean value for the electric field power of bursts during seismic periods is larger than that for non seismic periods, and the statistical difference of the mean values is rather significant.
Low-latitude ionospheric turbulence observed by Aureol-3 satellite
Y. Hobara
2005-06-01
Full Text Available Using PSD (Power Spectral Density data on electron density and electric field variations observed on board Aureol-3 satellite at low-to-mid-latitude ionosphere we analyze a scale distribution of the ionospheric turbulence in a form k-α, where k is the wave number and α is the spectral index. At first, high-resolution data in the near-equator region for several orbits have been processed. In this case the frequency range is from 6Hz to 100Hz (corresponding spatial scales from 80m to 1.3km, each power spectrum obeys a single power law fairly well, and the mean spectral indices are rather stable with αN=2.2±0.3 and αE=1.8±0.2, for the density and electric field, respectively. Then we produce a statistical study of 96 electric field bursts in the frequency range 10-100Hz from low-time resolution data (filter bank envelope. These bursts concentrate on the side of the Equatorial Anomaly crest (geomagnetic latitude 30-40°. Spectral indices of the bursts vary in the interval αE=2.0-2.5 but are fairly stable in seasons and local times. The electric field power of the burst has rather a large variability but has a relative increase in mean values for the summer and winter, as well as the daytime. The effect of major seismic activities toward the ionospheric turbulence is not conclusive either for the refractive index or for the electric field power. However, the mean value for the electric field power of bursts during seismic periods is larger than that for non seismic periods, and the statistical difference of the mean values is rather significant.
Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing
2003-01-01
SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.
Drift-free kinetic equations for turbulent dispersion
Bragg, A.; Swailes, D. C.; Skartlien, R.
2012-11-01
The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.
TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS
Gao, Yang; Law, Chung K.; Xu, Haitao
2015-01-01
The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation
Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P
2003-01-01
Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA
Liquid holdup in turbulent contact absorber
Haq, A.; Zaman, M.; Inayat, M.H.; Chughtai, I.R.
2009-01-01
Dynamic liquid holdup in a turbulent contact absorber was obtained through quick shut off valves technique. Experiments were carried out in a Perspex column. Effects of liquid velocity, gas velocity, packing diameter packing density and packing height on dynamic liquid holdup were studied. Hollow spherical high density polyethylene (HDPE) balls were used as inert fluidized packing. Experiments were performed at practical range of liquid and gas velocities. Holdup was calculated on the basis of static bed height. Liquid holdup increases with increasing both liquid and gas velocities both for type 1 and type 2 modes of fluidization. Liquid holdup increases with packing density. No effect of dia was observed on liquid holdup. (author)
Turbulent current drive mechanisms
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-08-01
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.
Belotserkovskii, OM; Chechetkin, VM
2005-01-01
The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.
Hoejstrup, J [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K S [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B J [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
Aviation turbulence processes, detection, prediction
Lane, Todd
2016-01-01
Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.
Chang, Ouliang
The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific
Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.
2015-01-01
Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. We also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths
Turbulent buoyant jets and plumes
Rodi, Wolfgang
The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami
Neutrino Flavor Evolution in Turbulent Supernova Matter
Lund, Tina; Kneller, James P.
In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.
Containerless Ripple Turbulence
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-11-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k5/3 which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear
Inflow Turbulence Generation Methods
Wu, Xiaohua
2017-01-01
Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes-LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.
Containerless Ripple Turbulence
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-01-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k(sup 5/3) which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M$ millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear
Magnetohydrodynamic turbulence revisited
Goldreich, P.; Sridhar, S.
1997-01-01
In 1965, Kraichnan proposed that MHD turbulence occurs as a result of collisions between oppositely directed Alfvacute en wave packets. Recent work has generated some controversy over the nature of nonlinear couplings between colliding Alfvacute en waves. We find that the resolution to much of the confusion lies in the existence of a new type of turbulence, intermediate turbulence, in which the cascade of energy in the inertial range exhibits properties intermediate between those of weak and strong turbulent cascades. Some properties of intermediate MHD turbulence are the following: (1) in common with weak turbulent cascades, wave packets belonging to the inertial range are long-lived; (2) however, components of the strain tensor are so large that, similar to the situation in strong turbulence, perturbation theory is not applicable; (3) the breakdown of perturbation theory results from the divergence of neighboring field lines due to wave packets whose perturbations in velocity and magnetic fields are localized, but whose perturbations in displacement are not; (4) three-wave interactions dominate individual collisions between wave packets, but interactions of all orders n≥3 make comparable contributions to the intermediate turbulent energy cascade; (5) successive collisions are correlated since wave packets are distorted as they follow diverging field lines; (6) in common with the weak MHD cascade, there is no parallel cascade of energy, and the cascade to small perpendicular scales strengthens as it reaches higher wavenumbers; (7) for an appropriate weak excitation, there is a natural progression from a weak, through an intermediate, to a strong cascade. copyright 1997 The American Astronomical Society
Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence
Yoshizawa, A.
1996-01-01
Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics
Interferometry and MHD turbulence measurements in toroidal pinches
Dutt, T.L.; Evans, D.E.; Wilcock, P.D.
1976-01-01
A 10.6 micron interferometer produced 2 to 3 good quality fringes in the HBTX plasma. There is substantial agreement in the electron densities determined by interferometry and by Thomson scattering, but since the former is an absolute measurement and is systematically lower than the Thomson scattering values, the latter may be too great by about 35%. In RF Pinches, turbulence associated with the instability deflects the beam and corrupts the interferogram. However, if the intensity fluctuations induced in this beam by the turbulence, are measured, as is done in the second experiment performed in the FRSX plasma with a HCN laser, the frequency spectrum of the turbulence can be deduced. In this plasma, rms fluctuations in the density were measured by this means to be 20%, and the dominant frequency of the fluctuations multiplied by the tube diameter was approximately Alfven speed, favouring an interpretation of the gross turbulence in this plasma in terms of Alfen waves. (U.K.)
Turbulence in Wendelstein 7-AS plasmas measured by collective light scattering
Basse, Nils Plesner
2002-08-01
This Ph.D. thesis contains theoretical and experimental work on plasma turbulence measurements using collective light scattering. The motivation for measuring turbulence in hot fusion plasmas is, along with the method used and results obtained, the subject of chapter 1. The theoretical part is divided into three chapters. Chapter 2 contains a full analytical derivation of the expected dependency of the detected signal on plasma parameters. Thereafter, spatial resolution of the measurements using different methods is treated in chapter 3. Finally, the spectral analysis tools used later in the thesis are described and illustrated in chapter 4. The experimental part is divided into four chapters. In chapter 5 transport concepts relevant to the thesis are outlined. Main parameters of the Wendelstein 7-AS (W7-AS) stellarator in which measurements were made are collected in chapter 6. The setup used to study fluctuations in the electron density of W7-AS plasmas is covered in chapter 7. This localised turbulence scattering (LOTUS) diagnostic is based on a CO{sub 2} laser radiating at a wavelength of 10.59 {mu}m. Fast, heterodyne, dual volume detection at variable wavenumbers between 14 and 62 cm{sup -1} is performed. The central chapter of the thesis, chapter 8, contains an analysis of the measured density fluctuations before, during and after several confinement transition types. The aim was to achieve a better understanding of the connection between turbulence and the confinement quality of the plasma. Conclusions and suggestions for further work are summarised in chapter 9. (au)
Turbulent transport of energetic ions
Dannert, Tilman; Hauff, Thilo; Jenko, Frank; Guenter, Sibylle
2006-01-01
Approaching ITER operation, the issue of anomalous transport of fast particles becomes more and more important. This is partly because the ITER heating and current drive system relies heavily on neutral beam injection. Moreover burning plasmas are heated by fast fusion α particles.Fusion α particles are characterised by a fixed energy and an isotropic velocity distribution. Therefore they have gyroradii one magnitude larger than the thermal ions. The dependency of the particle diffusion of α test particles on the Kubo number K = VExBτc/λc (VExB mean E x B velocity, τc, λc correlation time and length of the turbulent potential) is presented. For different turbulent regimes, different dependency of the diffusion on the gyroradius is found. For large Kubo numbers, the transport is found to remain constant for gyroradii up to the correlation length of the potential, whereas it is drastically reduced in the small Kubo number regime.In the second part, a model for beam ions injected along the equilibrium magnetic field is described. The beam ions are treated gyrokinetically in a self-consistent way with the equilibrium distribution function taken as a shifted Maxwellian. The implications of such a model for the Vlasov equation, the field equations, and the calculation of moments and fluxes are discussed. Linear and nonlinear results, obtained with the gyrokinetic flux tube code GENE show the existence of a new instability driven by fast beam ions. The instability has a maximum growth rate at perpendicular wave numbers of kyρs ∼ 0.15 and depends mainly on the beam velocity and the density gradient of the beam ions. This instability leads to a replacement of bulk ion particle transport by fast ion particle transport, connected to a strongly enhanced heat flux. In the presence of this instability, the turbulent particle and heat transport is dominated by fast ions
Atmospheric turbulence temperature on the laser wavefront properties
Contreras López, J. C.; Ballesteros Díaz, A.; Tíjaro Rojas, O. J.; Torres Moreno, Y.
2017-06-01
Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting.
Atmospheric turbulence temperature on the laser wavefront properties
López, J C Contreras; Rojas, O J Tíjaro; Díaz, A Ballesteros; Moreno, Y Torres
2017-01-01
Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting. (paper)
On the decay of homogeneous isotropic turbulence
Skrbek, L.; Stalp, Steven R.
2000-08-01
Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in
PDF methods for combustion in high-speed turbulent flows
Pope, Stephen B.
1995-01-01
This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.
Statistics of optical vortex wander on propagation through atmospheric turbulence.
Gu, Yalong
2013-04-01
The transverse position of an optical vortex on propagation through atmospheric turbulence is studied. The probability density of the optical vortex position on a transverse plane in the atmosphere is formulated in weak turbulence by using the Born approximation. With these formulas, the effect of aperture averaging on topological charge detection is investigated. These results provide quantitative guidelines for the design of an optimal detector of topological charge, which has potential application in optical vortex communication systems.
Turbulence Scattering of High Harmonic Fast Waves
M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau
2001-01-01
Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Mixing and Turbulence Statistics in an Inclined Interface Richtmyer-Meshkov Instability
Subramaniam, Akshay; Lele, Sanjiva
2016-11-01
The interaction of a Mach 1.55 shockwave with a nominally inclined interface is considered. Unlike the classical Richtmyer-Meshkov problem, the interface evolution is non-linear from early time and large highly correlated vortical structures are observed even after reshock. The simulations target the experiment of McFarland et al. (2014). Simulations are performed using the Miranda code (Cook et al., 2005) that uses high-order spectral-like numerics (Lele, 1992). Results from multiple grid resolutions up to 4 billion grid points establish grid convergence. Comparisons to the experiments show that the simulations adequately capture the physics of the problem. Analysis of the data from the simulations based on variable density turbulence equations in the Favre averaged form will be presented. Statistics of unclosed terms in the variable density RANS equations will also be presented and compared to standard closure models. It is observed that the Reynolds Stresses have a non-monotonic return to isotropy after reshock and that compressibility effects are important long after reshock. The effect of numerics are also quantified and presented. Computer time for this work was provided by NSF PRAC award "Multi-material turbulent mixing" on the Blue Waters system.
Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation
Lee, M.C.; Kuo, S.P.
1990-01-01
Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed
Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Stigsson, Martin; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)
2004-12-01
SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden, Forsmark and Simpevarp. The investigations started in 2002 and have been planned since the late 1990s. The work presented here investigates the possibility of using hydrogeochemical measurements in deep boreholes to reduce parameter uncertainty in a regional modelling of groundwater flow in fractured rock. The work was conducted with the aim of improving the palaeohydrogeological understanding of the Simpevarp area and to give recommendations to the preparations of the next version of the Preliminary Site Description (1.2). The study is based on a large number of numerical simulations of transient variable density groundwater flow through a strongly heterogeneous and anisotropic medium. The simulations were conducted with the computer code DarcyTools, the development of which has been funded by SKB. DarcyTools is a flexible porous media code specifically designed to treat groundwater flow and salt transport in sparsely fractured crystalline rock and it is noted that some of the features presented in this report are still under development or subjected to testing and verification. The simulations reveal the sensitivity of the results to different hydrogeological modelling assumptions, e.g. the sensitivity to the initial groundwater conditions at 10,000 BC, the size of the model domain and boundary conditions, and the hydraulic properties of deterministically and stochastically modelled deformation zones. The outcome of these simulations was compared with measured salinities and calculated relative proportions of different water types (mixing proportions) from measurements in two deep core drilled boreholes in the Laxemar subarea. In addition to the flow simulations, the statistics of flow related transport parameters were calculated for particle flowpaths from repository depth to ground surface for two subareas within the
Follin, Sven; Stigsson, Martin; Berglund, Sten; Svensson, Urban
2004-12-01
SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden, Forsmark and Simpevarp. The investigations started in 2002 and have been planned since the late 1990s. The work presented here investigates the possibility of using hydrogeochemical measurements in deep boreholes to reduce parameter uncertainty in a regional modelling of groundwater flow in fractured rock. The work was conducted with the aim of improving the palaeohydrogeological understanding of the Simpevarp area and to give recommendations to the preparations of the next version of the Preliminary Site Description (1.2). The study is based on a large number of numerical simulations of transient variable density groundwater flow through a strongly heterogeneous and anisotropic medium. The simulations were conducted with the computer code DarcyTools, the development of which has been funded by SKB. DarcyTools is a flexible porous media code specifically designed to treat groundwater flow and salt transport in sparsely fractured crystalline rock and it is noted that some of the features presented in this report are still under development or subjected to testing and verification. The simulations reveal the sensitivity of the results to different hydrogeological modelling assumptions, e.g. the sensitivity to the initial groundwater conditions at 10,000 BC, the size of the model domain and boundary conditions, and the hydraulic properties of deterministically and stochastically modelled deformation zones. The outcome of these simulations was compared with measured salinities and calculated relative proportions of different water types (mixing proportions) from measurements in two deep core drilled boreholes in the Laxemar subarea. In addition to the flow simulations, the statistics of flow related transport parameters were calculated for particle flowpaths from repository depth to ground surface for two subareas within the
Fathali, M.; Deshiri, M. Khoshnami
2016-04-01
The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.
Radio propagation through the turbulent interstellar plasma
Rickett, B.J.
1990-01-01
The current understanding of interstellar scattering is reviewed, and its impact on radio astronomy is examined. The features of interstellar plasma turbulence are also discussed. It is concluded that methods involving the investigation of the flux variability of pulsars and extragalactic sources and the VLBI visibility curves constitute new techniques for probing the ISM. However, scattering causes a seeing limitation in radio observations. It is now clear that variation due to RISS (refractive interstellar scintillations) is likely to be important for several classes of variable sources, especially low-frequency variables and centimeter-wave flickering. 168 refs
From vortex reconnections to quantum turbulence
Lipniacki, T.
2001-01-01
An alternative approach to quantum turbulence is proposed in order to derive the evolution equation for vortex line-length density. Special attention is paid to reconnections of vortex lines. The summed line-length change ΔS of two vortex lines resulting from the reconnection (in the presence of counterflow V ns ) can be approximated in the form: δS=-at 1/2 +bV ns 2 t 3/2 , with a>0, b≥0, at least until δS≤0. For steady-state turbulence, the average line-length change left angle ΔS right angle between reconnections has to be zero. If, for a given value of the counterflow, the line density is smaller than the equilibrium one, the reconnections occur less frequently and left angle ΔS right angle becomes positive and the line density grows until the equilibrium is restored. When the line-density is too large, the reconnections are more frequent, the lines shorten between reconnections and the line density gets smaller. The time derivative of the total line density is proportional to the reconnection frequency multiplied by the average line-length change due to a single reconnection. The evolution equation obtained in the proposed approach resembles the alternative Vinen equation. (orig.)
Lardjane, N.
2002-05-15
The subject of this work concerns the application of large-eddy simulation to the mixing of two fluids with different thermodynamical properties. Numerical errors in the discretization of Navier-Stokes equations and their interaction with sub-grid models are investigated on a self decaying isotropic homogeneous turbulence. A high resolution numerical code is then developed for the simulation of binary mixing layers. Reduction of early acoustic waves amplitude is achieved by use of a temporal self-similar initial condition. The relative magnitude of sub-grid terms arising from filtered equations is investigated on explicit filtering of direct numerical simulation results of temporal N{sub 2}/O{sub 2} and H{sub 2}/O{sub 2} mixing layers. Implicit closure (MILES) is then evoked on the basis of WENO schemes. (author)
''Turbulent Equipartition'' Theory of Toroidal Momentum Pinch
Hahm, T.S.; Diamond, P.H.; Gurcan, O.D.; Rewaldt, G.
2008-01-01
The mode-independent part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density (Hahm et al., Phys. Plasmas 14,072302 (2007)) which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of 'magnetically weighted angular momentum density', nm i U # parallel# R/B 2 , and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.
Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence
Cheminet, Adam; Blanquart, Guillaume
2011-11-01
Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.
Platis, Andreas; Martinez, Daniel; Bange, Jens
2014-05-01
Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the
Theory of neoclassical resistivity-gradient-driven turbulence
Kwon, O.J.; Diamond, P.H.; Hahm, T.S.
1988-12-01
It is shown that rippling instabilities can tap the density gradient expansion free energy source through the density dependence of the neoclassical resistivity. Linear analyses show that the region where neoclassical rippling modes are significantly excited extends from the edge of the plasma to the region where ν/sub *e/ ≤ 1. Since these modes are non-dispersive, diamagnetic effects are negligible in comparison to the nonlinear decorrelation rate at saturation. Thus, the relevant regime is the 'strong turbulence' regime. The turbulent radial diffusivities of the temperature and the density are obtained as eigenvalues of the renormalized eigenmode equations at steady state. The density gradient acts to enhance the level of turbulence, compared to that driven by the temperature gradient alone. The saturated turbulent state is characterized by: current decoupling, the breakdown of Boltzmann relation, a radial mode scale of density fluctuations exceeding that of temperature fluctuations, implying that density diffusivity exceeds temperature diffusivity, and that density fluctuation levels exceed temperature fluctuation levels. Magnetic fluctuation levels are negligible. 29 refs., 1 fig
Tearing instabilities in turbulence
Ishizawa, A.; Nakajima, N.
2009-01-01
Full text: Effects of micro-turbulence on tearing instabilities are investigated by numerically solving a reduced set of two-fluid equations. Micro-turbulence excites both large-scale and small-scale Fourier modes through energy transfer due to nonlinear mode coupling. The energy transfer to large scale mode does not directly excite tearing instability but it gives an initiation of tearing instability. When tearing instability starts to grow, the excited small scale mode plays an important role. The mixing of magnetic flux by micro-turbulence is the dominant factor of non-ideal MHD effect at the resonant surface and it gives rise to magnetic reconnection which causes tearing instability. Tearing instabilities were investigated against static equilibrium or flowing equilibrium so far. On the other hand, the recent progress of computer power allows us to investigate interactions between turbulence and coherent modes such as tearing instabilities in magnetically confined plasmas by means of direct numerical simulations. In order to investigate effects of turbulence on tearing instabilities we consider a situation that tearing mode is destabilized in a quasi-equilibrium including micro-turbulence. We choose an initial equilibrium that is unstable against kinetic ballooning modes and tearing instabilities. Tearing instabilities are current driven modes and thus they are unstable for large scale Fourier modes. On the other hand kinetic ballooning modes are unstable for poloidal Fourier modes that are characterized by ion Larmor radius. The energy of kinetic ballooning modes spreads over wave number space through nonlinear Fourier mode coupling. We present that micro-turbulence affects tearing instabilities in two different ways by three-dimensional numerical simulation of a reduced set of two-fluid equations. One is caused by energy transfer to large scale modes, the other is caused by energy transfer to small scale modes. The former is the excitation of initial
Compressibility effects on turbulent mixing
Panickacheril John, John; Donzis, Diego
2016-11-01
We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.
Statistical Mechanics of Turbulent Flows
Cambon, C
2004-01-01
counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point correlations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-ε to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled 'The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics
Guo, Hao; Huang, Qian-Min; Liu, Pei-qing; Qu, Qiu-Lin
2015-01-01
An experimental study is performed to investigate the local high-frequency perturbation effects of a synthetic jet injection on a flat-plate turbulent boundary layer. Parameters of the synthetic jet are designed to force a high-frequency perturbation from a thin spanwise slot in the wall. In the test locations downstream of the slot, it is found that skin-friction is reduced by the perturbation, which is languishingly evolved downstream of the slot with corresponding influence on the near-wall regeneration mechanism of turbulent structures. The downstream slot region is divided into two regions due to the influence strength of the movement of spanwise vortices generated by the high-frequency perturbation. Interestingly, the variable interval time average technique is found to be disturbed by the existence of the spanwise vortices’ motion, especially in the region close to the slot. Similar results are obtained from the analysis of the probability density functions of the velocity fluctuation time derivatives, which is another indirect technique for detecting the enhancement or attenuation of streamwise vortices. However, both methods have shown consistent results with the skin-friction reduction mechanism in the far-away slot region. The main purpose of this paper is to remind researchers to be aware of the probable influence of spanwise vortices’ motion in wall-bounded turbulence control. (paper)
Turbulence introduction to theory and applications of turbulent flows
Westerweel, Jerry; Nieuwstadt, Frans T M
2016-01-01
This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.
Energy partitioning constraints at kinetic scales in low-β turbulence
Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.
2018-02-01
Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.
Implications of Navier-Stokes turbulence theory for plasma turbulence
Montgomery, David
1977-01-01
A brief discussion of Navier-Stokes turbulence theory is given with particular reference to the two dimensional case. The MHD turbulence is introduced with possible applications of techniques developed in Navier-Stokes theory. Turbulence in Vlasov plasma is also discussed from the point of view of the ''direct interaction approximation'' (DIA). (A.K.)
A mathematical model of turbulence for turbulent boundary layers
Pereira Filho, H.D.V.
1977-01-01
Equations to the so called Reynolds stress-tensor (kinetic turbulent energy) and dissipation rate are developed and a turbulence flux approximation used. Our ideia here is to use those equations in order to develop an economical and fast numeircal procedure for computation of turbulent boundary layer. (author) [pt
Time change and universality in turbulence
Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen
of the probability densities of turbulent velocity increments. Furthermore, the application of a time change in terms of the scale parameter δ of the normal inverse Gaussian distribution results in a collapse of the densities of velocity increments onto Reynolds number independent distributions. We discuss this kind...... experiment. Taylor Reynolds numbers range from Rλ = 80 for the wind tunnel experiment up to Rλ = 17000 for the atmospheric boundary layer experiment. Empirical findings strongly support the appropriateness of normal inverse Gaussian distributions for a parsimonious and universal description...
Instantaneous aerosol dynamics in a turbulent flow
Zhou, Kun
2012-01-01
Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par-ticles are nucleated in a thin layer region corresponding to a specific narrow temperature range near the cool stream side. However, particles undergo high growth rate on the hot stream side due to condensation. Coagulation decreases the total particle number density at a rate which is highly correlated to the in-stantaneous number density.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)
Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)
1999-03-01
The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.
Mongiovì, Maria Stella; Jou, David; Sciacca, Michele
2018-01-01
This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to
EFFECTS OF ELECTROMAGNETIC TURBULENCE IN THE NEOCLASSICAL OHM's LAW
HINTON, F.L; WALTZ, R.E; CANDY, J.
2003-01-01
OAK-B135 An Ohm's law for tokamak plasmas has been derived, which includes the effect of electromagnetic turbulence as well as the neoclassical conductivity and bootstrap current. The most important current-driving effects of the turbulence have been identified, expressions for the driven (dynamo) current have been derived and these have been evaluated using the GYRO electromagnetic turbulence code. The most important current drive mechanism, the divergence of the radial flux of parallel electron momentum induced by magnetic flutter, drives a current density which have positive peaks on low order rational surfaces, with compensating negative dips nearby, thus driving zero total current. Another current drive mechanism, the beating of the parallel electric field fluctuations with the electron density fluctuations, drives a current density which is much smaller than that driven by the magnetic flutter mechanism, but could drive a nonzero total current
Bharat Pokharel
2016-12-01
Full Text Available Our objective was to model the average wood density in black spruce trees in representative stands across a boreal forest landscape based on relationships with predictor variables extracted from airborne light detection and ranging (LiDAR point cloud data. Increment core samples were collected from dominant or co-dominant black spruce trees in a network of 400 m2 plots distributed among forest stands representing the full range of species composition and stand development across a 1,231,707 ha forest management unit in northeastern Ontario, Canada. Wood quality data were generated from optical microscopy, image analysis, X-ray densitometry and diffractometry as employed in SilviScan™. Each increment core was associated with a set of field measurements at the plot level as well as a suite of LiDAR-derived variables calculated on a 20 × 20 m raster from a wall-to-wall coverage at a resolution of ~1 point m−2. We used a multiple linear regression approach to identify important predictor variables and describe relationships between stand structure and wood density for average black spruce trees in the stands we observed. A hierarchical classification model was then fitted using random forests to make spatial predictions of mean wood density for average trees in black spruce stands. The model explained 39 percent of the variance in the response variable, with an estimated root mean square error of 38.8 (kg·m−3. Among the predictor variables, P20 (second decile LiDAR height in m and quadratic mean diameter were most important. Other predictors describing canopy depth and cover were of secondary importance and differed according to the modeling approach. LiDAR-derived variables appear to capture differences in stand structure that reflect different constraints on growth rates, determining the proportion of thin-walled earlywood cells in black spruce stems, and ultimately influencing the pattern of variation in important wood quality attributes
Warm-ion drift Alfven turbulence and the L-H transition
Scott, B.
1998-01-01
Computations of fluid drift turbulence treating ions and electrons on equal footing, including both temperatures, are conducted in a model toroidal geometry. The resulting 'ion mixing mode' turbulence bears features of both electron drift-Alfven and ion temperature gradient turbulence, and nonlinear sensitivity to the relative strengths of the density and temperature gradients provides a possible route to the bifurcation needed for the L-H transition. (author)
Turbulence Intensity Scaling: A Fugue
Basse, Nils T.
2018-01-01
We study streamwise turbulence intensity definitions using smooth- and rough-wall pipe flow measurements made in the Princeton Superpipe. Scaling of turbulence intensity with the bulk (and friction) Reynolds number is provided for the definitions. The turbulence intensity is proportional to the square root of the friction factor with the same proportionality constant for smooth- and rough-wall pipe flow. Turbulence intensity definitions providing the best description of the measurements are i...
Turbulent wakes of fractal objects
Staicu, A.D.; Mazzi, B.; Vassilicos, J.C.; Water, van de W.
2003-01-01
Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are
Plasma turbulence calculations on supercomputers
Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.
1991-01-01
Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem