Sato, Daiki; Saitoh, Hiroumi
This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.
International Nuclear Information System (INIS)
Tu, Qiu; Zou, Deqiu; Deng, Chenmian; Zhang, Jie; Hou, Lifeng; Yang, Min; Nong, Guicai; Feng, Yuhai
2016-01-01
Highlights: • The control model of compressor output capacity has been built. • The control strategy of compressor switching has been presented. • The switching process of standard compressor has been described. • The characteristics of EER and noise have been presented. • The control strategy and model have been proved by experiments. - Abstract: A set of 14 HP variable refrigerant flow air conditioning system (VRF AC) with multi-compressor has been designed, and the output capacity control strategy of compressor(s) including the switching control model of standard compressor has been built. In the output capacity control model, a certain suction pressure is used as the pressure control target to adjust the output capacity of compressors, and a little pressure fluctuation is taken into account to amend the target pressure. Furthermore, in the compressor switching control model, the most favorable operation frequency region is determined on base of the energy efficiency characteristic and noise characteristic of the compressor. And, in order to solve the large fluctuation problem of the system running and frequent ON-OFF action of the standard compressor, the equal output capacity switching principle can be used to determine the thermo-on and thermo-off switched frequency points, and control the switching process of the compressor. Experiments demonstrate the feasibility of this control strategy to ensure the stability and reliability, improve the energy efficiency and reduce the compressor noise.
Liu, Chuang; Lam, H. K.
2015-01-01
In this paper, we propose a polynomial fuzzy observer controller for nonlinear systems, where the design is achieved through the stability analysis of polynomial-fuzzy-model-based (PFMB) observer-control system. The polynomial fuzzy observer estimates the system states using estimated premise variables. The estimated states are then employed by the polynomial fuzzy controller for the feedback control of nonlinear systems represented by the polynomial fuzzy model. The system stability of the P...
Output Control Using Feedforward And Cascade Controllers
Seraji, Homayoun
1990-01-01
Report presents theoretical study of open-loop control elements in single-input, single-output linear system. Focus on output-control (servomechanism) problem, in which objective is to find control scheme that causes output to track certain command inputs and to reject certain disturbance inputs in steady state. Report closes with brief discussion of characteristics and relative merits of feedforward, cascade, and feedback controllers and combinations thereof.
Ostroff, Aaron J.
1998-01-01
This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.
Experimental characterization of variable output refractive beamshapers using freeform elements
Shultz, Jason A.; Smilie, Paul J.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.
2014-09-01
We present experimental results from variable output refractive beam shapers based on freeform optical surfaces. Two freeform elements in close proximity comprise a beam shaper that maps a circular Gaussian input to a circular `flat-top' output. Different lateral relative shifts between the elements result in a varying output diameter while maintaining the uniform irradiance distribution. We fabricated the beam shaping elements in PMMA using multi-axis milling on a Moore Nanotech 350FG diamond machining center and tested with a 632.8 nm Gaussian input. Initial optical testing confirmed both the predicted beam shaping and variable functionality, but with poor output uniformity. The effects of surface finish on optical performance were investigated using LightTrans VirtualLabTM to perform physical optics simulations of the milled freeform surfaces. These simulations provided an optimization path for determining machining parameters to improve the output uniformity of the beam shaping elements. A second variable beam shaper based on a super-Gaussian output was designed and fabricated using the newly determined machining parameters. Experimental test results from the second beam shaper showed outputs with significantly higher quality, but also suggest additional areas of study for further improvements in uniformity.
Input/Output linearizing control of a nuclear reactor
International Nuclear Information System (INIS)
Perez C, V.
1994-01-01
The feedback linearization technique is an approach to nonlinear control design. The basic idea is to transform, by means of algebraic methods, the dynamics of a nonlinear control system into a full or partial linear system. As a result of this linearization process, the well known basic linear control techniques can be used to obtain some desired dynamic characteristics. When full linearization is achieved, the method is referred to as input-state linearization, whereas when partial linearization is achieved, the method is referred to as input-output linearization. We will deal with the latter. By means of input-output linearization, the dynamics of a nonlinear system can be decomposed into an external part (input-output), and an internal part (unobservable). Since the external part consists of a linear relationship among the output of the plant and the auxiliary control input mentioned above, it is easy to design such an auxiliary control input so that we get the output to behave in a predetermined way. Since the internal dynamics of the system is known, we can check its dynamics behavior on order of to ensure that the internal states are bounded. The linearization method described here can be applied to systems with one-input/one-output, as well as to systems with multiple-inputs/multiple-outputs. Typical control problems such as stabilization and reference path tracking can be solved using this technique. In this work, the input/output linearization theory is presented, as well as the problem of getting the output variable to track some desired trayectories. Further, the design of an input/output control system applied to the nonlinear model of a research nuclear reactor is included, along with the results obtained by computer simulation. (Author)
Output controllability of nonlinear systems with bounded control
International Nuclear Information System (INIS)
Garcia, Rafael; D'Attellis, Carlos
1990-01-01
The control problem treated in this paper is the output controllability of a nonlinear system in the form: x = f(x) + g(x)u(t); y = h(x), using bounded controls. The approach to the problem consists of a modification in the system using dynamic feedback in such a way that the input/output behaviour of the closed loop matches the input/output behaviour of a completely output-controllable system with bounded controls. Sufficient conditions are also put forward on the system so that a compact set in the output space may be reached in finite time using uniformally bounded controls, and a result on output regulation in finite time with asymptotic state stabilization is obtained. (Author)
Solar Power Station Output Inverter Control Design
Directory of Open Access Journals (Sweden)
J. Bauer
2011-04-01
Full Text Available The photovoltaic applications spreads in these days fast, therefore they also undergo great development. Because the amount of the energy obtained from the panel depends on the surrounding conditions, as intensity of the sun exposure or the temperature of the solar array, the converter must be connected to the panel output. The Solar system equipped with inverter can supply small loads like notebooks, mobile chargers etc. in the places where the supplying network is not present. Or the system can be used as a generator and it shall deliver energy to the supply network. Each type of the application has different requirements on the converter and its control algorithm. But for all of them the one thing is common – the maximal efficiency. The paper focuses on design and simulation of the low power inverter that acts as output part of the whole converter. In the paper the design of the control algorithm of the inverter for both types of inverter application – for islanding mode and for operation on the supply grid – is discussed. Attention is also paid to the design of the output filter that should reduce negative side effects of the converter on the supply network.
Cardiac output measurement instruments controlled by microprocessors
International Nuclear Information System (INIS)
Spector, M.; Barritault, L.; Boeri, C.; Fauchet, M.; Gambini, D.; Vernejoul, P. de
The nuclear medicine and biophysics laboratory of the Necker-Enfants malades University Hospital Centre has built a microprocessor controlled Cardiac flowmetre. The principle of the cardiac output measurement from a radiocardiogram is well established. After injection of a radioactive indicator upstream from the heart cavities the dilution curve is obtained by the use of a gamma-ray precordial detector. This curve normally displays two peaks due to passage of the indicator into the right and left sides of the heart respectively. The output is then obtained from the stewart Hamilton principle once recirculation is eliminated. The graphic method used for the calculation however is long and tedious. The decreasing fraction of the dilution curve is projected in logarithmic space in order to eliminate recirculation by determining the mean straight line from which the decreasing exponential is obtained. The principle of the use of microprocessors is explained (electronics, logics) [fr
Handwriting generates variable visual output to facilitate symbol learning.
Li, Julia X; James, Karin H
2016-03-01
Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing 2 hypotheses: that handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5-year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: 3 involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and 3 involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the 6 conditions (N = 72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Iliev, Peter; Bhalla, Tarun; Tobias, Joseph D
2016-04-01
The Ambu Smart-Infuser Pain Pump and the On-Q Pump with Select-a-Flow Variable Rate Controller are elastomeric devices with a flow regulator that controls the rate of infusion of a local anesthetic agent through a peripheral catheter. As a safety evaluation, we evaluated the infusion characteristics of these two devices when filled with manufacturer recommended standard volumes and when overfilled with a volume 50% in excess of that which is recommended. Nineteen disposable devices from the two manufacturers were used in this study. Nine were filled with 0.9% normal saline according to the respective manufacturers' recommendations (four Ambu pumps were filled with 650 ml and five On-Q pumps were filled with 550 ml) and 10 devices were 150% overfilled (five Ambu pumps were filled with 975 ml and five On-Q pumps were filled with 825 ml). All of the devices were set to infuse at 10 ml · h(-1) at room temperature (21°C) for 12 h. The fluid delivered during each 2-h period was measured using a graduated column. The On-Q pump (in the settings of normal fill and 150% overfill) delivered a significantly higher output per hour than the set rate during the first 8 h, while the Ambu pump delivered a value close to the set rate of 10 ml · h(-1). No significant difference in the hourly delivered output was noted for either device when comparing the normal fill to the 150% overfill groups. This investigation demonstrates that no change in the hourly output occurs with overfilling of these home infusion devices. However, as noted previously, the hourly output from the On-Q device is significantly higher than the set rate during the initial 8 h of infusion which could have potential clinical implications. © 2016 John Wiley & Sons Ltd.
Multi-decadal Variability of the Wind Power Output
Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.
2014-05-01
The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the
Reducing variability in the output of pattern classifiers using histogram shaping
International Nuclear Information System (INIS)
Gupta, Shalini; Kan, Chih-Wen; Markey, Mia K.
2010-01-01
Purpose: The authors present a novel technique based on histogram shaping to reduce the variability in the output and (sensitivity, specificity) pairs of pattern classifiers with identical ROC curves, but differently distributed outputs. Methods: The authors identify different sources of variability in the output of linear pattern classifiers with identical ROC curves, which also result in classifiers with differently distributed outputs. They theoretically develop a novel technique based on the matching of the histograms of these differently distributed pattern classifier outputs to reduce the variability in their (sensitivity, specificity) pairs at fixed decision thresholds, and to reduce the variability in their actual output values. They empirically demonstrate the efficacy of the proposed technique by means of analyses on the simulated data and real world mammography data. Results: For the simulated data, with three different known sources of variability, and for the real world mammography data with unknown sources of variability, the proposed classifier output calibration technique significantly reduced the variability in the classifiers' (sensitivity, specificity) pairs at fixed decision thresholds. Furthermore, for classifiers with monotonically or approximately monotonically related output variables, the histogram shaping technique also significantly reduced the variability in their actual output values. Conclusions: Classifier output calibration based on histogram shaping can be successfully employed to reduce the variability in the output values and (sensitivity, specificity) pairs of pattern classifiers with identical ROC curves, but differently distributed outputs.
Coupling between the Output Force and Stiffness in Different Variable Stiffness Actuators
Directory of Open Access Journals (Sweden)
Amir Jafari
2014-08-01
Full Text Available The fundamental objective in developing variable stiffness actuators is to enable the actuator to deliberately tune its stiffness. This is done through controlling the energy flow extracted from internal power units, i.e., the motors of a variable stiffness actuator (VSA. However, the stiffness may also be unintentionally affected by the external environment, over which, there is no control. This paper analysis the correlation between the external loads, applied to different variable stiffness actuators, and their resultant output stiffness. Different types of variable stiffness actuators have been studied considering springs with different types of nonlinearity. The results provide some insights into how to design the actuator mechanism and nonlinearity of the springs in order to increase the decoupling between the load and stiffness in these actuators. This would significantly widen the application range of a variable stiffness actuator.
Engineering microbial consortia for controllable outputs
Energy Technology Data Exchange (ETDEWEB)
Lindemann, Stephen R.; Bernstein, Hans C.; Song, Hyun-Seob; Fredrickson, Jim K.; Fields, Matthew W.; Shou, Wenying; Johnson, David R.; Beliaev, Alexander S.
2016-03-11
Much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into resilient consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here, we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution global measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that when combined with appropriate modeling framework that predictive knowledge generates testable hypotheses and orthogonal synthetic biology tools, such understanding can dramatically improve our ability to control the fate and functioning of consortia. In this article, we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties.
Does Black’s Hypothesis for Output Variability Hold for Mexico?
Macri, Joseph; Sinha, Dipendra
2007-01-01
Using two data series, namely GDP and the index of industrial production, we study the relationship between output variability and the growth rate of output. Ng-Perron unit root test shows that the growth rate of GDP is non-stationary but the growth rate of industrial output is stationary. Thus, we use the ARCH-M model for the monthly data of industrial output. A number of specifications (with and without a dummy variable) are used. In all cases, the results show that output variability has a...
Directory of Open Access Journals (Sweden)
Shuiqing Yu
2013-01-01
Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.
Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.
Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping
2017-01-31
In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.
Photoelectric sensor output controlled by eyeball movements
1965-01-01
The difference between the infrared absorption of the iris and infrared reflectivity of the eyeball controls the operation of a device consisting of an infrared source and amplifier, a cadmium selenide infrared sensor, and an infrared filter.
Design of output feedback controller for a unified chaotic system
International Nuclear Information System (INIS)
Li Wenlin; Chen Xiuqin; Shen Zhiping
2008-01-01
In this paper, the synchronization of a unified chaotic system is investigated by the use of output feedback controllers; a two-input single-output feedback controller and single-input single-output feedback controller are presented to synchronize the unified chaotic system when the states are not all measurable. Compared with the existing results, the controllers designed in this paper have some advantages such as small feedback gain, simple structure and less conservation. Finally, numerical simulations results are provided to demonstrate the validity and effectiveness of the proposed method
Distributed control design for nonlinear output agreement in convergent systems
Weitenberg, Erik; De Persis, Claudio
2015-01-01
This work studies the problem of output agreement in homogeneous networks of nonlinear dynamical systems under time-varying disturbances using controllers placed at the nodes of the networks. For the class of contractive systems, necessary and sufficient conditions for output agreement are derived,
Directory of Open Access Journals (Sweden)
Heli Hu
2014-01-01
Full Text Available The design of the dynamic output feedback H∞ control for uncertain interconnected systems of neutral type is investigated. In the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results are given to show the effectiveness of the proposed method.
A PASSIVELY MODE-LOCKED CR4+:FORSTERITE LASER WITH ELEСTRONICALLY CONTROLLED OUTPUT CHARACTERISTICS
Directory of Open Access Journals (Sweden)
S. A. Zolotovskaya
2011-01-01
Full Text Available Applicability of electronic control of laser output parameters to bulk solid-state laser sources is demonstrated. A single laser source with variable pulse duration for novel imaging and manipulation systems is presented. Stable passive mode-locking of a Cr4+:forsterite laser using a voltage controlled p-n junction quantum dot saturable absorber was achieved. Output shortening from 17,4 to 6,4 ps near-transform limited pulses was obtained by applying reverse bias.
Buck supplies output voltage ripple reduction using fuzzy control
Directory of Open Access Journals (Sweden)
Nicu BIZON
2007-12-01
Full Text Available Using the PWM control for switching power supplies the peaks EMI noise appear at the switching frequency and its harmonics. Using randomize or chaotic PWM control techniques in these systems the power spectrum is spread out in all frequencies band spectral emissions, but with a bigger ripple in the output voltage. The proposed nonlinear feedback control method, which induces chaos, is based by fuzzy rules that minimize the output voltage ripple. The feasibility and effectiveness of this relative simple method is shown by simulation. A comparison with the previous control method is included, too.
Direct output feedback control of discrete-time systems
International Nuclear Information System (INIS)
Lin, C.C.; Chung, L.L.; Lu, K.H.
1993-01-01
An optimal direct output feedback control algorithm is developed for discrete-time systems with the consideration of time delay in control force action. Optimal constant output feedback gains are obtained through variational process such that certain prescribed quadratic performance index is minimized. Discrete-time control forces are then calculated from the multiplication of output measurements by these pre-calculated feedback gains. According to the proposed algorithm, structural system is assured to remain stable even in the presence of time delay. The number of sensors and controllers may be very small as compared with the dimension of states. Numerical results show that direct velocity feedback control is more sensitive to time delay than state feedback but, is still quite effective in reducing the dynamic responses under earthquake excitation. (author)
Output control of da Vinci surgical system's surgical graspers.
Johnson, Paul J; Schmidt, David E; Duvvuri, Umamaheswar
2014-01-01
The number of robot-assisted surgeries performed with the da Vinci surgical system has increased significantly over the past decade. The articulating movements of the robotic surgical grasper are controlled by grip controls at the master console. The user interface has been implicated as one contributing factor in surgical grasping errors. The goal of our study was to characterize and evaluate the user interface of the da Vinci surgical system in controlling surgical graspers. An angular manipulator with force sensors was used to increment the grip control angle as grasper output angles were measured. Input force at the grip control was simultaneously measured throughout the range of motion. Pressure film was used to assess the maximum grasping force achievable with the endoscopic grasping tool. The da Vinci robot's grip control angular input has a nonproportional relationship with the grasper instrument output. The grip control mechanism presents an intrinsic resistant force to the surgeon's fingertips and provides no haptic feedback. The da Vinci Maryland graspers are capable of applying up to 5.1 MPa of local pressure. The angular and force input at the grip control of the da Vinci robot's surgical graspers is nonproportional to the grasper instrument's output. Understanding the true relationship of the grip control input to grasper instrument output may help surgeons understand how to better control the surgical graspers and promote fewer grasping errors. Copyright © 2014 Elsevier Inc. All rights reserved.
Hierarchical-control-based output synchronization of coexisting attractor networks
International Nuclear Information System (INIS)
Yun-Zhong, Song; Yi-Fa, Tang
2010-01-01
This paper introduces the concept of hierarchical-control-based output synchronization of coexisting attractor networks. Within the new framework, each dynamic node is made passive at first utilizing intra-control around its own arena. Then each dynamic node is viewed as one agent, and on account of that, the solution of output synchronization of coexisting attractor networks is transformed into a multi-agent consensus problem, which is made possible by virtue of local interaction between individual neighbours; this distributed working way of coordination is coined as inter-control, which is only specified by the topological structure of the network. Provided that the network is connected and balanced, the output synchronization would come true naturally via synergy between intra and inter-control actions, where the Tightness is proved theoretically via convex composite Lyapunov functions. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme. (general)
Event-triggered output feedback control for distributed networked systems.
Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa
2016-01-01
This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Output synchronization control of ship replenishment operations: theory and experiments
Kyrkjebø, E.; Pettersen, K.Y.; Wondergem, M.; Nijmeijer, H.
2007-01-01
A leader–follower synchronization output feedback control scheme is presented for the ship replenishment problem where only positions are measured. No mathematical model of the leader ship is required, and the control scheme relies on nonlinear observers to estimate velocity and acceleration of all
Quantized Passive Dynamic Output Feedback Control with Actuator Failure
Directory of Open Access Journals (Sweden)
Zu-Xin Li
2016-01-01
Full Text Available This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with quantization and actuator failures, where the measurement output of the system is quantized by a logarithmic quantizer before being transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.
The non-planar single-frequency ring laser with variable output coupling
Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui
2002-03-01
We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.
ROBUST CONTROL ALGORITHM FOR MULTIVARIABLE PLANTS WITH QUANTIZED OUTPUT
Directory of Open Access Journals (Sweden)
A. A. Margun
2017-01-01
Full Text Available The paper deals with robust output control algorithm for multivariable plants under disturbances. A plant is described by the system of linear differential equations with known relative degrees. Plant parameters are unknown but belong to the known closed bounded set. Plant state vector is unmeasured. Plant output is measured only via static quantizer. Control system algorithm is based on the high gain feedback method. Developed controller provides exponential convergence of tracking error to the bounded area. The area bounds depend on quantizer parameters and the value of external disturbances. Experimental approbation of the proposed control algorithm is performed with the use of Twin Rotor MIMO System laboratory bench. This bench is a helicopter like model with two degrees of freedom (pitch and yaw. DC motors are used as actuators. The output signals are measured via optical encoders. Mathematical model of laboratory bench is obtained. Proposed algorithm was compared with proportional - integral – differential controller in conditions of output quantization. Obtained results have confirmed the efficiency of proposed controller.
Robust output LQ optimal control via integral sliding modes
Fridman, Leonid; Bejarano, Francisco Javier
2014-01-01
Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization. In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be kn...
High Power Tm3+-Doped Fiber Lasers Tuned by a Variable Reflective Output Coupler
Directory of Open Access Journals (Sweden)
Yulong Tang
2008-01-01
Full Text Available Wide wavelength tuning by a variable reflective output coupler is demonstrated in high-power double-clad Tm3+-doped silica fiber lasers diode-pumped at ∼790 nm. Varying the output coupling from 96% to 5%, the laser wavelength is tuned over a range of 106 nm from 1949 to 2055 nm. The output power exceeds 20 W over 90-nm range and the maximum output power is 32 W at 1949 nm for 51-W launched pump power, corresponding to a slope efficiency of ∼70%. Assisted with different fiber lengths, the tuning range is expanded to 240 nm from 1866 to 2107 nm with the output power larger than 10 W.
Directory of Open Access Journals (Sweden)
Stefan Groothuis
2014-06-01
Full Text Available In this paper, a novel variable stiffness mechanism is presented, which is capable of achieving an output stiffness with infinite range and an unlimited output motion, i.e., the mechanism output is completely decoupled from the rotor motion, in the zero stiffness configuration. The mechanism makes use of leaf springs, which are engaged at different positions by means of two movable supports, to realize the variable output stiffness. The Euler–Bernoulli leaf spring model is derived and validated through experimental data. By shaping the leaf springs, it is shown that the stiffness characteristic of the mechanism can be changed to fulfill different application requirements. Alternative designs can achieve the same behavior with only one leaf spring and one movable support pin.
Directory of Open Access Journals (Sweden)
Shahrukh Adnan Khan M. D.
2017-01-01
Full Text Available This paper presents a Graphical User Interface (GUI software utility for the input/output characterization of single variable and multivariable nonlinear systems by obtaining the sinusoidal input describing function (SIDF of the plant. The software utility is developed on MATLAB R2011a environment. The developed GUI holds no restriction on the nonlinearity type, arrangement and system order; provided that output(s of the system is obtainable either though simulation or experiments. An insight to the GUI and its features are presented in this paper and example problems from both single variable and multivariable cases are demonstrated. The formulation of input/output behavior of the system is discussed and the nucleus of the MATLAB command underlying the user interface has been outlined. Some of the industries that would benefit from this software utility includes but not limited to aerospace, defense technology, robotics and automotive.
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
Output feedback control of a quadrotor UAV using neural networks.
Dierks, Travis; Jagannathan, Sarangapani
2010-01-01
In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.
Output variability caused by random seeds in a multi-agent transport simulation model
DEFF Research Database (Denmark)
Paulsen, Mads; Rasmussen, Thomas Kjær; Nielsen, Otto Anker
2018-01-01
Dynamic transport simulators are intended to support decision makers in transport-related issues, and as such it is valuable that the random variability of their outputs is as small as possible. In this study we analyse the output variability caused by random seeds of a multi-agent transport...... simulator (MATSim) when applied to a case study of Santiago de Chile. Results based on 100 different random seeds shows that the relative accuracies of estimated link loads tend to increase with link load, but that relative errors of up to 10 % do occur even for links with large volumes. Although...
Robust Output Model Predictive Control of an Unstable Rijke Tube
Directory of Open Access Journals (Sweden)
Fabian Jarmolowitz
2012-01-01
Full Text Available This work investigates the active control of an unstable Rijke tube using robust output model predictive control (RMPC. As internal model a polytopic linear system with constraints is assumed to account for uncertainties. For guaranteed stability, a linear state feedback controller is designed using linear matrix inequalities and used within a feedback formulation of the model predictive controller. For state estimation a robust gain-scheduled observer is developed. It is shown that the proposed RMPC ensures robust stability under constraints over the considered operating range.
COA based robust output feedback UPFC controller design
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-12-15
In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.
Directory of Open Access Journals (Sweden)
Hongfeng Tao
2018-01-01
Full Text Available For a class of single-input single-output (SISO dual-rate sampling processes with disturbances and output delay, this paper presents a robust fault-tolerant iterative learning control algorithm based on output information. Firstly, the dual-rate sampling process with output delay is transformed into discrete system in state-space model form with slow sampling rate without time delay by using lifting technology; then output information based fault-tolerant iterative learning control scheme is designed and the control process is turned into an equivalent two-dimensional (2D repetitive process. Moreover, based on the repetitive process stability theory, the sufficient conditions for the stability of system and the design method of robust controller are given in terms of linear matrix inequalities (LMIs technique. Finally, the flow control simulations of two flow tanks in series demonstrate the feasibility and effectiveness of the proposed method.
Input-output linearizing tracking control of induction machine with the included magnetic saturation
DEFF Research Database (Denmark)
Dolinar, Drago; Ljusev, Petar; Stumberger, Gorazd
2003-01-01
The tracking control design of an induction motor, based on input-output linearisation with magnetic saturation included is addressed. The magnetic saturation is represented by a nonlinear magnetising curve for the iron core and is used in the control, the observer of the state variables......, and in the load torque estimator. An input-output linearising control is used to achieve better tracking performances. It is based on the mixed 'stator current - rotor flux linkage' induction motor model with magnetic saturation considered in the stationary reference frame. Experimental results show...... that the proposed input-output linearising tracking control with saturation included behaves considerably better than the one without saturation, and that it introduces smaller position and speed errors, and better motor stiffness on account of the increased computational complexity....
Impact of magnetic saturation on the input-output linearising tracking control of an induction motor
DEFF Research Database (Denmark)
Dolinar, Drago; Ljusev, Petar; Stumberger, Gorazd
2004-01-01
This paper deals with the tracking control design of an induction motor, based on input-output linearization with magnetic saturation included. Magnetic saturation is represented by the nonlinear magnetizing curve of the iron core and is used in the control design, the observer of state variables......, and in the load torque estimator. An input-output linearising control is used to achieve better tracking performances of the drive. It is based on the mixed ”stator current - rotor flux linkage” induction motor model with magnetic saturation considered in the stationary reference frame. Experimental results show...... that the proposed input-output linearising tracking control with the included saturation behaves considerably better than the one without saturation, and that it introduces smaller position and speed errors, and better motor stiffness on account of the increased computational complexity....
Inflation,Inflation Variability, and Output Performance. Venezuela 1951-2002
Olivo, Victor
2014-01-01
This paper explores the relationship between the level of inflation, inflation variability, and output performance in the Venezuelan economy for the period 1951-2002. The paper examines the mechanism through which higher inflation translates into lower non-oil real GDP growth. We find empirical evidence that supports Friedman's (1977) contention that higher inflation produces more inflation volatility /uncertainty that leads to relative price variability that in turn, is harmful for the prope...
Torres, Elizabeth B; Cole, Jonathan; Poizner, Howard
2014-01-01
Parkinson's disease (PD) is a neurodegenerative disorder defined by motor impairments that include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and tremor. While the progressive decline in motor output functions is well documented, less understood are impairments linked to the continuous kinesthetic sensation emerging from the flow of motions. There is growing evidence in recent years that kinesthetic problems are also part of the symptoms of PD, but objective methods to readily quantify continuously unfolding motions across different contexts have been lacking. Here we present evidence from a deafferented subject (IW) and a new statistical platform that enables new analyses of motor output variability measured as a continuous flow of kinesthetic reafferent input. Systematic increasing similarities between the patterns of motor output variability in IW and the participants with increasing degrees of PD severity suggest potential deficits in kinesthetic sensing in PD. We propose that these deficits may result from persistent, noisy, and random motor patterns as the disorder progresses. The stochastic signatures from the unfolding motions revealed levels of noise in the motor output fluctuations of these patients bound to decrease the kinesthetic signal's bandwidth. The results are interpreted in light of the concept of kinesthetic reafference ( Von Holst and Mittelstaedt, 1950). In this context, noisy motor output variability from voluntary movements in PD leads to a returning stream of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent output re-enters the CNS as corrupted sensory motor input. We find here that severity level in PD leads to the persistence of such patterns, thus bringing the statistical signatures of the subjects with PD systematically closer to those of the subject without proprioception.
Torres, Elizabeth B.; Cole, Jonathan; Poizner, Howard
2014-01-01
Parkinson’s disease (PD) is a neurodegenerative disorder defined by motor impairments that include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and tremor. While the progressive decline in motor output functions is well documented, less understood are impairments linked to the continuous kinesthetic sensation emerging from the flow of motions. There is growing evidence in recent years that kinesthetic problems are also part of the symptoms of PD, but objective methods to readily quantify continuously unfolding motions across different contexts have been lacking. Here we present evidence from a deafferented subject (IW) and a new statistical platform that enables new analyses of motor output variability measured as a continuous flow of kinesthetic reafferent input. Systematic increasing similarities between the patterns of motor output variability in IW and the participants with increasing degrees of PD severity suggest potential deficits in kinesthetic sensing in PD. We propose that these deficits may result from persistent, noisy, and random motor patterns as the disorder progresses. The stochastic signatures from the unfolding motions revealed levels of noise in the motor output fluctuations of these patients bound to decrease the kinesthetic signal’s bandwidth. The results are interpreted in light of the concept of kinesthetic reafference ( Von Holst and Mittelstaedt, 1950). In this context, noisy motor output variability from voluntary movements in PD leads to a returning stream of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent output re-enters the CNS as corrupted sensory motor input. We find here that severity level in PD leads to the persistence of such patterns, thus bringing the statistical signatures of the subjects with PD systematically closer to those of the subject without proprioception. PMID:25374524
The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations
Directory of Open Access Journals (Sweden)
Hannes Kunz
2014-01-01
Full Text Available One key approach to analyzing the feasibility of energy extraction and generation technologies is to understand the net energy they contribute to society. These analyses most commonly focus on a simple comparison of a source’s expected energy outputs to the required energy inputs, measured in the form of energy return on investment (EROI. What is not typically factored into net energy analysis is the influence of output variability. This omission ignores a key attribute of biological organisms and societies alike: the preference for stable returns with low dispersion versus equivalent returns that are intermittent or variable. This biologic predilection for stability, observed and refined in academic financial literature, has a direct relationship to many new energy technologies whose outputs are much more variable than traditional energy sources. We investigate the impact of variability on net energy metrics and develop a theoretical framework to evaluate energy systems based on existing financial and biological risk models. We then illustrate the impact of variability on nominal energy return using representative technologies in electricity generation, with a more detailed analysis on wind power, where intermittence and stochastic availability of hard-to-store electricity will be factored into theoretical returns.
Output Power Control of Wind Turbine Generator by Pitch Angle Control using Minimum Variance Control
Senjyu, Tomonobu; Sakamoto, Ryosei; Urasaki, Naomitsu; Higa, Hiroki; Uezato, Katsumi; Funabashi, Toshihisa
In recent years, there have been problems such as exhaustion of fossil fuels, e. g., coal and oil, and environmental pollution resulting from consumption. Effective utilization of renewable energies such as wind energy is expected instead of the fossil fuel. Wind energy is not constant and windmill output is proportional to the cube of wind speed, which cause the generated power of wind turbine generators (WTGs) to fluctuate. In order to reduce fluctuating components, there is a method to control pitch angle of blades of the windmill. In this paper, output power leveling of wind turbine generator by pitch angle control using an adaptive control is proposed. A self-tuning regulator is used in adaptive control. The control input is determined by the minimum variance control. It is possible to compensate control input to alleviate generating power fluctuation with using proposed controller. The simulation results with using actual detailed model for wind power system show effectiveness of the proposed controller.
Cross Voltage Control with Inner Hysteresis Current Control for Multi-output Boost Converter
DEFF Research Database (Denmark)
Nami, Alireza; Zare, Firuz; Blaabjerg, Frede
2009-01-01
Multi-output boost (MOB) converter is a novel DC-DC converter unlike the regular boost converter, has the ability to share its total output voltage and to have different series output voltage from a given duty cycle for low and high power applications. In this paper, discrete voltage control...... with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference...... voltages against variation in load or input voltage. The salient features of the proposed control strategy are simplicity of implementation and ease to extend to multiple outputs in the MOB converter. Simulation and experimental results are presented to show the validity of control strategy....
SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.
Chae, Seunghwan; Nguang, Sing Kiong
2014-07-01
In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.
Speed control variable rate irrigation
Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...
Design of output feedback UPFC controller for damping of electromechanical oscillations using PSO
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)
2009-10-15
In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) is developed. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. Only local and available state variables are adopted as the input signals of each controller for the decentralized design. Thus, structure of the designed UPFC controller is simple and easy to implement. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the designed PSO-based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to both the m{sub B} based controller and conventional power system stablizer. (author)
Output Feedback Stabilization with Nonlinear Predictive Control: Asymptotic properties
Directory of Open Access Journals (Sweden)
Lars Imsland
2003-07-01
Full Text Available State space based nonlinear model predictive control (NM PC needs the state for the prediction of the system behaviour. Unfortunately, for most applications, not all states are directly measurable. To recover the unmeasured states, typically a stable state observer is used. However, this implies that the stability of the closed-loop should be examined carefully, since no general nonlinear separation principle exists. Recently semi-global practical stability results for output feedback NMPC using a high-gain observer for state estimation have been established. One drawback of this result is that (in general the observer gain must be increased, if the desired set the state should converge to is made smaller. We show that under slightly stronger assumptions, not only practical stability, but also convergence of the system states and observer error to the origin for a sufficiently large but bounded observer gain can be achieved.
Multi input single output model predictive control of non-linear bio-polymerization process
Energy Technology Data Exchange (ETDEWEB)
Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)
2015-05-15
This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.
Directory of Open Access Journals (Sweden)
Mariana Santos Matos Cavalca
2012-01-01
Full Text Available One of the main advantages of predictive control approaches is the capability of dealing explicitly with constraints on the manipulated and output variables. However, if the predictive control formulation does not consider model uncertainties, then the constraint satisfaction may be compromised. A solution for this inconvenience is to use robust model predictive control (RMPC strategies based on linear matrix inequalities (LMIs. However, LMI-based RMPC formulations typically consider only symmetric constraints. This paper proposes a method based on pseudoreferences to treat asymmetric output constraints in integrating SISO systems. Such technique guarantees robust constraint satisfaction and convergence of the state to the desired equilibrium point. A case study using numerical simulation indicates that satisfactory results can be achieved.
Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.
2018-05-01
Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed
Basic study on dynamic reactive-power control method with PV output prediction for solar inverter
Directory of Open Access Journals (Sweden)
Ryunosuke Miyoshi
2016-01-01
Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.
Output Feedback Tracking Control of an Underactuated Quad-Rotor UAV
National Research Council Canada - National Science Library
Lee, DongBin; Burg, Timothy; Xian, Bin; Dawson, Darren
2006-01-01
...) using output feedback (OFB). Specifically, an observer is designed to estimate the velocities and an output feedback controller is designed for a nonlinear UAV system in which only position and angles are measurable...
DEFF Research Database (Denmark)
Rasmussen, Bjarne D.; Jakobsen, Arne
1999-01-01
Mathematical models of refrigeration systems are often based on a coupling of component models forming a “closed loop” type of system model. In these models the coupling structure of the component models represents the actual flow path of refrigerant in the system. Very often numerical...... instabilities prevent the practical use of such a system model for more than one input/output combination and for other magnitudes of refrigerating capacities.A higher numerical robustness of system models can be achieved by making a model for the refrigeration cycle the core of the system model and by using...... variables with narrow definition intervals for the exchange of information between the cycle model and the component models.The advantages of the cycle-oriented method are illustrated by an example showing the refrigeration cycle similarities between two very different refrigeration systems....
Output feedback control of heat transport mechanisms in parabolic distributed solar collectors
Elmetennani, Shahrazed
2016-08-05
This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.
Pivoting output unit control systems activated by jacks. [for controlling aircraft flaps
Belliere, P.
1978-01-01
An invention to be used for controlling aircraft flaps is described. It is applicable to control systems with two coaxial output units which pivot simultaneously with respect to two fixed units and which are activated by two opposed, straight coaxial jacks.
Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela
2015-01-01
An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solv...
Synthesis of state observer and nonlinear output feedback controller design of AC machines
International Nuclear Information System (INIS)
Al-Tahir, Ali Abdul Razzaq
2016-01-01
The research work developed in this thesis has been mainly devoted to the observation and sensor-less control problems of electrical systems. Three major contributions have been carried out using the high - gain concept and output feedback adaptive nonlinear control for online UPS. In this thesis, we dealt with synthesis of sampled high - gain observers for nonlinear systems application to PMSMs and DFIGs. We particularly focus on two constraints: sampling effect and tracking unmeasured mechanical and magnetic state variables. The first contribution consists in a high gain observer design that performs a relatively accurate estimation of both mechanical and magnetic state variable using the available measurements on stator currents and voltages of PMSM. We propose a global exponential observer having state predictor for a class of nonlinear globally Lipschitz system. In second contribution, we proposed a novel non - standard HGO design for non-injective feedback relation application to variable speed DFIG based WPGS. Meanwhile, a reduced system model is analyzed, provided by observability test to check is it possible synthesis state observer for sensor-less control. In last contribution, an adaptive observer for states and parameters estimation are designed for a class of state - affine systems application to output feedback adaptive nonlinear control of three-phase AC/DC boost power converter for online UPS systems. Basically, the problem focused on cascade nonlinear adaptive controller that is developed making use Lyapunov theory. The parameters uncertainties are processed by the practical control laws under back-stepping design techniques with capacity of adaptation. (author)
36 CFR 1193.43 - Output, display, and control functions.
2010-07-01
... for the use of the product, through at least one mode in enhanced auditory fashion (i.e., increased... and use the product, including but not limited to, text, static or dynamic images, icons, labels... of audio cutoff. Where a product delivers audio output through an external speaker, provide an...
Output Tracking Control of Switched Hybrid Systems: A Fliess Functional Expansion Approach
Directory of Open Access Journals (Sweden)
Fenghua He
2013-01-01
Full Text Available The output tracking problem is investigated for a nonlinear affine system with multiple modes of continuous control inputs. We convert the family of nonlinear affine systems under consideration into a switched hybrid system by introducing a multiple-valued logic variable. The Fliess functional expansion is adopted to express the input and output relationship of the switched hybrid system. The optimal switching control is determined for a multiple-step output tracking performance index. The proposed approach is applied to a multitarget tracking problem for a flight vehicle aiming for one real target with several decoys flying around it in the terminal guidance course. These decoys appear as apparent targets and have to be distinguished with the approaching of the flight vehicle. The guidance problem of one flight vehicle versus multiple apparent targets should be considered if no large miss distance might be caused due to the limitation of the flight vehicle maneuverability. The target orientation at each time interval is determined. Simulation results show the effectiveness of the proposed method.
Controlling output pulse and prepulse in a resonant microwave pulse compressor
International Nuclear Information System (INIS)
Shlapakovski, A.; Artemenko, S.; Chumerin, P.; Yushkov, Yu.
2013-01-01
A resonant microwave pulse compressor with a waveguide H-plane-tee-based energy extraction unit was studied in terms of its capability to produce output pulses that comprise a low-power long-duration (prepulse) and a high-power short-duration part. The application of such combined pulses with widely variable prepulse and high-power pulse power and energy ratios is of interest in the research area of electronic hardware vulnerability. The characteristics of output radiation pulses are controlled by the variation of the H-plane tee transition attenuation at the stage of microwave energy storage in the compressor cavity. Results of theoretical estimations of the parameters tuning range and experimental investigations of the prototype S-band compressor (1.5 MW, 12 ns output pulse; ∼13.2 dB gain) are presented. The achievable maximum in the prepulse power is found to be about half the power of the primary microwave source. It has been shown that the energy of the prepulse becomes comparable with that of the short-duration (nanosecond) pulse, while the power of the latter decreases insignificantly. The possible range of variation of the prepulse power and energy can be as wide as 40 dB. In the experiments, the prepulse level control within the range of ∼10 dB was demonstrated.
Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification
Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2018-01-01
This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.
A Self-Oscillating Control Scheme for a Boost Converter Providing a Controlled Output Current
DEFF Research Database (Denmark)
Knott, Arnold; Pfaffinger, Gerhard R.; Andersen, Michael A. E.
2011-01-01
Most switched mode power supplies provide a regulated voltage at their output. However, there are applications requiring a controlled current. Among others are battery chargers, test equipment for converters driven by solar cells, and LED drivers. This paper describes a dc–dc power converter real...
Lombardi, Giovanni; Sansoni, Veronica; Banfi, Giuseppe
2017-08-01
In the last few years, a growing number of molecules have been associated to an endocrine function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several pathophysiological conditions including the cardiovascular ones. However, data from different studies are often not completely comparable or even discordant. This would be due, at least in part, to the whole set of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects the final output. In research, for example, when samples are collected over a long time and by different laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of myokines with cardiovascular functions.
Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins
International Nuclear Information System (INIS)
Naik, Mugdha S; Singh, Sahjendra N; Mittal, Rajat
2009-01-01
This paper treats the question of servoregulation of autonomous underwater vehicles (AUVs) in the yaw plane using pectoral-like mechanical fins. The fins attached to the vehicle have oscillatory swaying and yawing motion. The bias angle of the angular motion of the fin is used for the purpose of control. Of course, the design approach considered here is applicable to AUVs for other choices of oscillation patterns of the fins, which produce periodic forces and moments. It is assumed that the vehicle parameters, hydrodynamic coefficients, as well the fin forces and moments are unknown. For the trajectory control of the yaw angle, a sampled-data indirect adaptive control system using output (yaw angle) feedback is derived. The control system has a modular structure, which includes a parameter identifier and a stabilizer. For the control law derivation, an internal model of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. Unlike the direct adaptive control scheme, the derived control law is applicable to minimum as well as nonminimum phase biorobotic AUVs (BAUVs). This is important, because for most of the fin locations on the vehicle, the model is a nonminimum phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and the remaining state variables remain bounded. Simulation results are presented which show that the derived modular control system accomplishes precise set point yaw angle control and turning maneuvers in spite of the uncertainties in the system parameters using only yaw angle feedback
Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang
2010-09-01
This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.
An improved robust model predictive control for linear parameter-varying input-output models
Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.
2018-01-01
This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal
Output control system in a boiling water atomic power plant
International Nuclear Information System (INIS)
Sadakane, Ken-ichiro.
1975-01-01
Object: To provide a line in bypass relation with a water heater, a flow rate of said bypass being adjusted to thereby perform quick responsive sub-cool control of a core inlet. Structure: A steam line and a water line are disposed so as to feed water from the reactor core to the water heater via turbine and thence to the core. A line disposed in bypass relation with the water heater arranged in the water line includes a control valve for controlling water passing through the bypass line and a main control for sending a signal to said control valve, said main control receiving loads from the outside, whereby a control signal is transmitted to the control valve, causing water passing through the water heater and water line to the core to be bypassed, a period of time for supplying time to be reduced, and quick response to be enhanced. (Kamimura, M.)
Ma, Xunjun; Lu, Yang; Wang, Fengjiao
2017-09-01
This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.
Directory of Open Access Journals (Sweden)
R.Maheswari
2008-06-01
Full Text Available This paper presents the design of periodic output feedback control using state feedback gain to control the vibration of piezo actuated cantilever beam. The effectiveness of the controller is evaluated through simulation and experimentally by exciting the structure at resonance. Real time implementation of the controller is done using microcontroller. The closed loop eigen values of the system with periodic output feedback and state feedback are identical.
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
Controlling Access to Input/Output Peripheral Devices
Directory of Open Access Journals (Sweden)
E. Y. Rodionov
2010-03-01
Full Text Available In this paper the author proposes a system that manages information security policy on enterprise. Problems related to managing information security policy on enterprise and access to peripheral devices in computer systems functioning under control of Microsoft Windows NT operating systems are considered.
Co-Design of Event Generator and Dynamic Output Feedback Controller for LTI Systems
Directory of Open Access Journals (Sweden)
Dan Ma
2015-01-01
Full Text Available This paper presents a co-design method of the event generator and the dynamic output feedback controller for a linear time-invariant (LIT system. The event-triggered condition on the sensor-to-controller and the controller-to-actuator depends on the plant output and the controller output, respectively. A sufficient condition on the existence of the event generator and the dynamic output feedback controller is proposed and the co-design problem can be converted into the feasibility of linear matrix inequalities (LMIs. The LTI system is asymptotically stable under the proposed event-triggered controller and also reduces the computing resources with respect to the time-triggered one. In the end, a numerical example is given to illustrate the effectiveness of the proposed approach.
International Nuclear Information System (INIS)
Wen Guilin; Wang Qingguo; Lin Chong; Han Xu; Li Guangyao
2006-01-01
Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics-Chua's circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays
Output power control of two coupled wind generators
Directory of Open Access Journals (Sweden)
A Boukhelifa
2016-09-01
Full Text Available In this paper we are interested to the power control of two wind generators coupled to the network through power converters. Every energy chain conversion is composed of a wind turbine, a gearbox, a Double Fed Induction Generator (DFIG, two PWM converters and a DC bus. The power exchange and the DC voltage are controlled by the use of proportional integral correctors. For our study, initially we have modeled all the components of the one system energy conversion, and then we have simulated its behavior using Matlab/Simulink. In another part of this paper we present the analysis of the interaction and the powerflow between the two aerogenerators following a disturbance due to wind speed on every turbine. Also we have considered a connection fault to the DC bus. In each case the assessment of power brought into play is checked. Simulation tests are established.
Intelligent control for large-scale variable speed variable pitch wind turbines
Institute of Scientific and Technical Information of China (English)
Xinfang ZHANG; Daping XU; Yibing LIU
2004-01-01
Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.
Turbo-generator control with variable valve actuation
Vuk, Carl T [Denver, IA
2011-02-22
An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.
LMI-based adaptive reliable H∞ static output feedback control against switched actuator failures
An, Liwei; Zhai, Ding; Dong, Jiuxiang; Zhang, Qingling
2017-08-01
This paper investigates the H∞ static output feedback (SOF) control problem for switched linear system under arbitrary switching, where the actuator failure models are considered to depend on switching signal. An active reliable control scheme is developed by combination of linear matrix inequality (LMI) method and adaptive mechanism. First, by exploiting variable substitution and Finsler's lemma, new LMI conditions are given for designing the SOF controller. Compared to the existing results, the proposed design conditions are more relaxed and can be applied to a wider class of no-fault linear systems. Then a novel adaptive mechanism is established, where the inverses of switched failure scaling factors are estimated online to accommodate the effects of actuator failure on systems. Two main difficulties arise: first is how to design the switched adaptive laws to prevent the missing of estimating information due to switching; second is how to construct a common Lyapunov function based on a switched estimate error term. It is shown that the new method can give less conservative results than that for the traditional control design with fixed gain matrices. Finally, simulation results on the HiMAT aircraft are given to show the effectiveness of the proposed approaches.
An Optimal Augmented Monotonic Tracking Controller for Aircraft Engines with Output Constraints
Directory of Open Access Journals (Sweden)
Jiakun Qin
2017-01-01
Full Text Available This paper proposes a novel min-max control scheme for aircraft engines, with the aim of transferring a set of regulated outputs between two set-points, while ensuring a set of auxiliary outputs remain within prescribed constraints. In view of this, an optimal augmented monotonic tracking controller (OAMTC is proposed, by considering a linear plant with input integration, to enhance the ability of the control system to reject uncertainty in system parameters and ensure no crossing limits. The key idea is to use the eigenvalue and eigenvector placement method and genetic algorithms to shape the output responses. The approach is validated by numerical simulation. The results show that the designed OAMTC controller can achieve a satisfactory dynamic and steady performance and keep the auxiliary outputs within constraints in the transient regime.
Control design for a wind turbine-generator using output feedback
Javid, S. H.; Murdoch, A.; Winkelman, J. R.
1981-01-01
The modeling and approach to control design for a large horizontal axis wind turbine (WT) generator are presented. The control design is based on a suboptimal output regulator which allows coordinated control of WT blade pitch angle and field voltage for the purposes of regulating electrical power and terminal voltage. Results of detailed non-linear simulation tests of this controller are shown.
Variable gas spring for matching power output from FPSE to load of refrigerant compressor
Chen, Gong; Beale, William T.
1990-01-01
The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.
Somatotype variables related to strength and power output in male basketball players.
Buśko, Krzysztof; Pastuszak, Anna; Lipińska, Monika; Lipińska, Marta; Gryko, Karol
2017-01-01
The purpose of this study was to investigate the relationship between somatotype, muscular strength, power output measured in maximal cycle ergometer exercise bouts, and maximal power output and height of rise of the body mass centre (jump height) measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), in male basketball players. Thirteen male basketball players (second division, age 19.4 ± 0.8 years, body height 192.9 ± 5.6 cm, body mass 88.8 ± 8.6 kg, training experience 9.3 ± 0.8 years) participated in the study. Somatotype was determined using the Heath-Carter method. Maximal joint torques were measured under static conditions. Power output was measured in 2 maximal cycle ergometer exercise bouts, 10 seconds each, with increasing external loads equal to 7.5 and 10.0% of the body weight (BW). All jump trials (ACMJ, CMJ and SPJ) were performed on a force plate. The mean somatotype of basketball players amounted to: 2.8-4.2-3.2. The sum of the joint torques for left and right lower extremities (0.613), trunk (0.631) and all six measured muscle groups (0.647) were significantly correlated (p jump during ACMJ, CMJ and SPJ trials. The power output measured in maximal cycle ergometer exercise bouts with increasing external loads was significantly correlated (p basketball players' anthropometric characteristics can influence their level of performance but it is not a decisive factor.
Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback
DEFF Research Database (Denmark)
Fossen, T.I.; Blanke, M.
1999-01-01
More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...
DEFF Research Database (Denmark)
Fossen, T. I.; Blanke, Mogens
2000-01-01
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...
Directory of Open Access Journals (Sweden)
I. N. Dubinkin
2017-05-01
Full Text Available The article deals with a method of numerical simulation of laser oscillation in the radially symmetric unstable resonator with an output variable reflectivity mirror (VRM. Research results of the VRM parameters influence on the spatial and energy properties of the laser radiation are obtained. Numerical simulation of laser oscillation in active and passive Q-switching and comparative analysis of the spatial and energy radiation characteristics is done for these modes.
Control and automatic alignment of the output mode cleaner of GEO 600
Energy Technology Data Exchange (ETDEWEB)
Prijatelj, M; Grote, H; Degallaix, J; Hewitson, M; Affeldt, C; Leong, J; Lueck, H; Strain, K A; Wittel, H; Willke, B; Danzmann, K [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universitaet Hannover, Callinstr. 38, 30167 Hannover (Germany); Hild, S; Freise, A, E-mail: mirko.prijatelj@aei.mpg.d [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)
2010-05-01
The implementation of a mode cleaner at the output port of the GEO 600 gravitational wave detector will be part of the upcoming transition from GEO 600 to GEO-HF. Part of the transition will be the move from a heterodyne readout to a DC readout scheme. DC readout performance will be limited by higher order optical modes and control sidebands present at the output port. For optimum performance of DC readout an output mode cleaner (OMC) will clean the output beam of these contributions. Inclusion of an OMC will introduce new noise sources whose magnitudes needed to be estimated and for which new control systems will be needed. In this article we set requirements on the performance of these control systems and investigate the simulated performance of different designs.
DEFF Research Database (Denmark)
Zhang, Baohua; Hu, Weihao; Hou, Peng
2015-01-01
Inclusion of the wake effect in the wind farm control design (WF) can increase the total captured power by wind turbines (WTs), which is usually implemented by derating upwind WTs. However, derating the WT without a proper control strategy will increase the structural loads, caused by operation...... in stall mode. Therefore, the WT control strategy for derating operation should be considered in the attempt at maximizing the total captured power while reducing structural loads. Moreover, electrical power loss on the transmission system inside a WF is also not negligible for maximizing the total output...... power of the WF. In this paper, an optimal active power dispatch strategy based on a WT derating strategy and considering the transmission loss is proposed for maximizing the total output power. The active power reference of each WT is chosen as the optimization variable. A partial swarm optimizing...
WORKBENCH FOR CONTROL SYSTEMS TRIALS BASED ON VIPA 300 CONTROLLER AND ADVANTECH INPUT/OUTPUT CARD
Directory of Open Access Journals (Sweden)
M. V. Levinskyi
2015-01-01
Full Text Available The topic is about workbench creation for control systems trials based on VIPA 300 industrial PLC and model of control object which is implemented in MatLab Simulink program on PC. Connection between controller and the PC is provided by the Advantech PCI-1711 input/output card of discrete and analog signals. Object identification,control system synthesis, creation of control device structure and its parametrical identification, as a rule, is done on a PC in a modelling environment, e.g. in MatLab. But often, using this PC modelling, the hardware and software features of algorithms which were obtained during system synthesis are not considered in a specific industrial PLC.It is considered a good idea to use a composite version where obtained algorithms are tested in a real industrial PLC and control object is substituted by a model which is working on a PC in real time scale. In this case software realization of algorithms in a specific PLC are fully taken into account and substitution of real control object by itsmodel considerably reduces the costs for carrying out experiments and allows to study the system behavior when control object parameters and modes of operation vary greatly. The creation of workbench stipulates several stages: configuration and programming of industrial PLC VIPA 313 SC, installation and configuration of Advantech PCI- 1711 input/output card, tuning of Simulink modelling environment for working in real time scale using Real-Time Windows Target Library, testing of workbench by using constant and harmonic signals of different frequencies. Work results of virtual stabilization system are compared with combined version. In virtual stabilization system PID governor and control object are implemented in Simulink. In combined version control object is still implemented in Simulink and PID governor - in VIPA 313 SC controller (using functional block FB58 from Step7 standard library.
International Nuclear Information System (INIS)
Jiang, Jian-ping; Li, Dong-xu
2010-01-01
This paper is devoted to the study of the decentralized guaranteed cost static output feedback vibration control for piezoelectric smart structures. A smart panel with collocated piezoelectric actuators and velocity sensors is modeled using a finite element method, and then the size of the model is reduced in the state space using the modal Hankel singular value. The necessary and sufficient conditions of decentralized guaranteed cost static output feedback control for the reduced system have been presented. The decentralized and centralized static output feedback matrices can be obtained from solving two linear matrix inequalities. A comparison between centralized control and decentralized control is performed in order to investigate their effectiveness in suppressing vibration of a smart panel. Numerical results show that when the system is subjected to initial displacement or white noise disturbance, the decentralized and centralized controls are both very effective and the control results are very close
High-speed, multi-input, multi-output control using GPU processing in the HBT-EP tokamak
Energy Technology Data Exchange (ETDEWEB)
Rath, N., E-mail: Nikolaus@rath.org [Columbia University, Rm 200 Mudd, 500 W 120th St, New York, NY - 10027 (United States); Bialek, J.; Byrne, P.J.; DeBono, B.; Levesque, J.P.; Li, B.; Mauel, M.E.; Maurer, D.A.; Navratil, G.A.; Shiraki, D. [Columbia University, Rm 200 Mudd, 500 W 120th St, New York, NY - 10027 (United States)
2012-12-15
Highlights: Black-Right-Pointing-Pointer We present a GPU based system for magnetic control of perturbed equilibria. Black-Right-Pointing-Pointer Cycle times are below 5 {mu}s and I/O latencies below 10 {mu}s for 96 inputs and 64 outputs. Black-Right-Pointing-Pointer A new architecture removes host RAM and CPU from the control cycle. Black-Right-Pointing-Pointer GPU and DA/AD modules operate independently and communicate via PCIe peer-to-peer connections. Black-Right-Pointing-Pointer The Linux host system does not require real-time extensions. - Abstract: We report on the design of a new plasma control system for the HBT-EP tokamak that utilizes a graphical processing unit (GPU) to magnetically control the 3D perturbed equilibrium state [1] of the plasma. The control system achieves cycle times of 5 {mu}s and I/O latencies below 10 {mu}s for up to 96 inputs and 64 outputs. The number of state variables is in the same order. To handle the resulting computational complexity under the given time constraints, the control algorithms are designed for massively parallel processing. The necessary hardware resources are provided by an NVIDIA Tesla M2050 GPU, offering a total of 448 computing cores running at 1.3 GHz each. A new control architecture allows control input from magnetic diagnostics to be pushed directly into GPU memory by a D-TACQ ACQ196 digitizer, and control output to be pulled directly from GPU memory by two D-TACQ AO32 analog output modules. By using peer-to-peer PCI express connections, this technique completely eliminates the use of host RAM and central processing unit (CPU) from the control cycle, permitting single-digit microsecond latencies on a standard Linux host system without any real-time extensions.
Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela
2015-10-01
An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solving these problems, preliminary Receding Horizon Control with Moving Horizon Estimation (RHC/MHE) results, based on flow measurements, were also obtained. In this work, the RHC/MHE algorithm has been extended to take into account both flow and water level measurements and the resulting control loop has been extensively simulated to assess the system performance according different measurement availability scenarios and rain events. All simulations have been carried out using a detailed physically based model of a real case-study network as virtual reality.
Robust output feedback H-infinity control and filtering for uncertain linear systems
Chang, Xiao-Heng
2014-01-01
"Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.
Digitally controlled oscillator design with a variable capacitance XOR gate
International Nuclear Information System (INIS)
Kumar, Manoj; Arya, Sandeep K.; Pandey, Sujata
2011-01-01
A digitally controlled oscillator (DCO) using a three-transistor XOR gate as the variable load has been presented. A delay cell using an inverter and a three-transistor XOR gate as the variable capacitance is also proposed. Three-, five- and seven-stage DCO circuits have been designed using the proposed delay cell. The output frequency is controlled digitally with bits applied to the delay cells. The three-bit DCO shows output frequency and power consumption variation in the range of 3.2486–4.0267 GHz and 0.6121–0.3901 mW, respectively, with a change in the control word 111–000. The five-bit DCO achieves frequency and power of 1.8553–2.3506 GHz and 1.0202–0.6501 mW, respectively, with a change in the control word 11111–00000. Moreover, the seven-bit DCO shows a frequency and power consumption variation of 1.3239–1.6817 GHz and 1.4282–0.9102 mW, respectively, with a varying control word 1111111–0000000. The power consumption and output frequency of the proposed circuits have been compared with earlier reported circuits and the present approaches show significant improvements. (semiconductor integrated circuits)
Elshahaby, Fatma E. A.; Ghaly, Michael; Jha, Abhinav K.; Frey, Eric C.
2015-03-01
Model Observers are widely used in medical imaging for the optimization and evaluation of instrumentation, acquisition parameters and image reconstruction and processing methods. The channelized Hotelling observer (CHO) is a commonly used model observer in nuclear medicine and has seen increasing use in other modalities. An anthropmorphic CHO consists of a set of channels that model some aspects of the human visual system and the Hotelling Observer, which is the optimal linear discriminant. The optimality of the CHO is based on the assumption that the channel outputs for data with and without the signal present have a multivariate normal distribution with equal class covariance matrices. The channel outputs result from the dot product of channel templates with input images and are thus the sum of a large number of random variables. The central limit theorem is thus often used to justify the assumption that the channel outputs are normally distributed. In this work, we aim to examine this assumption for realistically simulated nuclear medicine images when various types of signal variability are present.
Directory of Open Access Journals (Sweden)
Yu Hsing
2016-09-01
Full Text Available Applying aggregate demand/aggregate supply analysis and based on a quarterly sample during 2000.Q4–2015.Q4, this paper finds that Croatia’s aggregate output is positively associated with government debt as percent of GDP during 2000.Q4–2008.Q4, real appreciation of the kuna, the real stock price, German real GDP, the real oil price and real wages and negatively influenced by government debt as percent of GDP during 2009.Q1–2015.Q4, the real lending rate and the expected inflation rate. The dynamic relationships between real GDP and government debt as percent of GDP suggest that fiscal discipline needs to be exercised in pursuing expansionary macroeconomic policy in the future.
Control strategies to optimise power output in heave buoy energy convertors
International Nuclear Information System (INIS)
Abu Zarim, M A U A; Sharip, R M
2013-01-01
Wave energy converter (WEC) designs are always discussed in order to obtain an optimum design to generate the power from the wave. Output power from wave energy converter can be improved by controlling the oscillation in order to acquire the interaction between the WEC and the incident wave.The purpose of this research is to study the heave buoys in the interest to generate an optimum power output by optimising the phase control and amplitude in order to maximise the active power. In line with the real aims of this study which investigate the theory and function and hence optimise the power generation of heave buoys as renewable energy sources, the condition that influence the heave buoy must be understand in which to propose the control strategies that can be use to control parameters to obtain optimum power output. However, this research is in an early stage, and further analysis and technical development is require
Analysis on electronic control unit of continuously variable transmission
Cao, Shuanggui
Continuously variable transmission system can ensure that the engine work along the line of best fuel economy, improve fuel economy, save fuel and reduce harmful gas emissions. At the same time, continuously variable transmission allows the vehicle speed is more smooth and improves the ride comfort. Although the CVT technology has made great development, but there are many shortcomings in the CVT. The CVT system of ordinary vehicles now is still low efficiency, poor starting performance, low transmission power, and is not ideal controlling, high cost and other issues. Therefore, many scholars began to study some new type of continuously variable transmission. The transmission system with electronic systems control can achieve automatic control of power transmission, give full play to the characteristics of the engine to achieve optimal control of powertrain, so the vehicle is always traveling around the best condition. Electronic control unit is composed of the core processor, input and output circuit module and other auxiliary circuit module. Input module collects and process many signals sent by sensor and , such as throttle angle, brake signals, engine speed signal, speed signal of input and output shaft of transmission, manual shift signals, mode selection signals, gear position signal and the speed ratio signal, so as to provide its corresponding processing for the controller core.
Directory of Open Access Journals (Sweden)
Rafał Magulski
2015-06-01
Full Text Available Development of wind generation, besides its positive aspects related to the use of renewable energy, is a challenge from the point of view of power systems’ operational security and economy. The uncertain and variable nature of wind generation sources entails the need for the for the TSO to provide adequate reserves of power, necessary to maintain the grid’s stable operation, and the actors involved in the trading of energy from these sources incur additional of balancing unplanned output deviations. The paper presents the results of analyses concerning the options to forecast a selected wind farm’s output exercised by means of different methods of prediction, using a different range of measurement and forecasting data available on the farm and its surroundings. The analyses focused on the evaluation of forecast errors, and selection of input data for forecasting models and assessment of their impact on prediction quality improvement.
PC-based input/output controllers from a VME perspective
International Nuclear Information System (INIS)
Hill, J.O.
1999-01-01
The Experimental Physics and Industrial Control System (EPICS) has been widely adopted in the accelerator community. Although EPICS is available on many platforms, the majority of sites have deployed VME- or VXI-based input output controllers running the vxWorks real time operating system. Recently, a hybrid approach using vxWorks on both PC and traditional platforms is being implemented at LANL. To illustrate these developments the author compares his recent experience deploying PC-based EPICS input output controllers with experience deploying similar systems based on traditional EPICS platforms
Variability in effective radiating area and output power of new ultrasound transducers at 3 MHz.
Johns, Lennart D; Straub, Stephen J; Howard, Samuel M
2007-01-01
Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. A descriptive and interferential approach was taken to this quasi-experimental design. Measurement laboratory. Sixty-six 5-cm(2) ultrasound transducers were purchased from 6 different manufacturers. All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Effective radiating area, power, and nSAI. All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers. Stricter FDA standards regarding effective radiating area and total power are needed, and standards regulating SAI should be established.
Groothuis, Stefan; Carloni, Raffaella; Stramigioli, Stefano
This paper presents a proof of concept of a variable stiffness actuator (VSA) that uses only one (high power) input motor. In general, VSAs use two (high power) motors to be able to control both the output position and the output stiffness, which possibly results in a heavy, and bulky system. In
Roes, M.G.L.; Duarte, J.L.; Hendrix, M.A.M.
2010-01-01
Feedback sensor isolation is often an expensive necessity in power converters, for reasons of safety and electromagnetic compatibility. A disturbance observer-based control strategy for a dual-output resonant converter is proposed to overcome this problem. Current control of two LED loads is
Robust output-feedback control to eliminate stick-slip oscillations in drill-string systems
Vromen, T.G.M.; Dai, C.H.; van de Wouw, N.; Oomen, T.A.E.; Astrid, P.; Nijmeijer, H.
2015-01-01
The aim of this paper is to design a robust output-feedback controller to eliminate torsional stick-slip vibrations. A multi-modal model of the torsional dynamics with a nonlinear bit-rock interaction model is used. The controller design is based on skewed-μ DK-iteration and the stability of the
Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang
2014-06-01
This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.
Almost output regulation of LFT systems via gain-scheduling control
Yuan, Chengzhi; Duan, Chang; Wu, Fen
2018-05-01
Output regulation of general uncertain systems is a meaningful yet challenging problem. In spite of the rich literature in the field, the problem has not yet been addressed adequately due to the lack of an effective design mechanism. In this paper, we propose a new design framework for almost output regulation of uncertain systems described in the general form of linear fractional transformation (LFT) with time-varying parametric uncertainties and unknown external perturbations. A novel semi-LFT gain-scheduling output regulator structure is proposed, such that the associated control synthesis conditions guaranteeing both output regulation and ? disturbance attenuation performance are formulated as a set of linear matrix inequalities (LMIs) plus parameter-dependent linear matrix equations, which can be solved separately. A numerical example has been used to demonstrate the effectiveness of the proposed approach.
Cartas de control para monitorear variables multinomiales
Directory of Open Access Journals (Sweden)
Luz Marcela Restrepo-Tamayo
2014-07-01
Full Text Available Background: The control as a tool for monitoring the quality of a product, allows to study the stability of processes over time, contrasting two hypothesis, which states that the process is in stable condition and the other denies it. Its use has been massive for continuous variables but not for categorical variables, why it is imperative to design such tools for such variables. Objective: To propose two (2 control charts for variables multinomial processes based on the p-value test result for homogeneity of proportions using the chi square test for uniform processing variables and approximation Wilson - Hilferty for variables chi square. Methods: The performance of proposed charts via simulation is estimated considering a Phase II process and considering the first category increments of 2%, 4% and 6% in the control stage. Results: The multinomial control chart using Wilson-Hilferty approximation for variables chi square, from the transformation of value-p, has poor performance compared to the control charts using p-value processing and using chi-square p-value, as they have less ability to detect small changes. Conclusion: We propose two control charts to monitor multinomial variables and once studied via simulation, based on the average run length (ARL and the probability of rejecting the null hypothesis of equal proportions, we recommend the control chart using value-p, or equivalently, the control chart processing using chi square p-value.
Output Feedback Control of Electro-Hydraulic Cylinder Drives using the Twisting Algorithm
DEFF Research Database (Denmark)
Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.
2014-01-01
contributions in literature. This paper considers the twisting algorithm when applied directly for output feedback control, and with the design based on a reduced order model representation of an arbitrary valve driven hydraulic cylinder drive. The consequence of implementing such a controller with the well......This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered...... feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller....
Neural network-based optimal adaptive output feedback control of a helicopter UAV.
Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani
2013-07-01
Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.
Means and method for controlling the neutron output of a neutron generator tube
International Nuclear Information System (INIS)
1980-01-01
A specification is given for an energizing and regulating circuit for a gas filled neutron generator tube consisting of a target, an ion source and a replenisher, the circuit consisting of a power supply to provide a negative high voltage to the target and a target current corresponding to the neutron output of the tube, a constant current source, and control means connected to the power supply and to the constant current source, the control means being responsive to the target current to provide a portion of the constant current to the replenisher substantially to regulate the neutron output of the tube. (author)
Mezzenga, Emilio; D'Errico, Vincenzo; Sarnelli, Anna; Strigari, Lidia; Menghi, Enrico; Marcocci, Francesco; Bianchini, David; Benassi, Marcello
2016-01-01
The purpose of this study was to retrospectively evaluate the results from a Helical TomoTherapy Hi-Art treatment system relating to quality controls based on daily static and dynamic output checks using statistical process control methods. Individual value X-charts, exponentially weighted moving average charts, and process capability and acceptability indices were used to monitor the treatment system performance. Daily output values measured from January 2014 to January 2015 were considered. The results obtained showed that, although the process was in control, there was an out-of-control situation in the principal maintenance intervention for the treatment system. In particular, process capability indices showed a decreasing percentage of points in control which was, however, acceptable according to AAPM TG148 guidelines. Our findings underline the importance of restricting the acceptable range of daily output checks and suggest a future line of investigation for a detailed process control of daily output checks for the Helical TomoTherapy Hi-Art treatment system.
Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya
2016-09-01
In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.
Zhao, Kai; Song, Yongduan; Shen, Zhixi
2018-02-01
In this paper, a neuroadaptive fault-tolerant tracking control method is proposed for a class of time-delay pure-feedback systems in the presence of external disturbances and actuation faults. The proposed controller can achieve prescribed transient and steady-state performance, despite uncertain time delays and output constraints as well as actuation faults. By combining a tangent barrier Lyapunov-Krasovskii function with the dynamic surface control technique, the neural network unit in the developed control scheme is able to take its action from the very beginning and play its learning/approximating role safely during the entire system operational envelope, leading to enhanced control performance without the danger of violating compact set precondition. Furthermore, prescribed transient performance and output constraints are strictly ensured in the presence of nonaffine uncertainties, external disturbances, and undetectable actuation faults. The control strategy is also validated by numerical simulation.
Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems
Directory of Open Access Journals (Sweden)
Lili Zhang
2014-01-01
Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.
A controls engineering approach for analyzing airplane input-output characteristics
Arbuckle, P. Douglas
1991-01-01
An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.
Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems
Directory of Open Access Journals (Sweden)
Ruliang Wang
2012-01-01
Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.
Including model uncertainty in the model predictive control with output feedback
Directory of Open Access Journals (Sweden)
Rodrigues M.A.
2002-01-01
Full Text Available This paper addresses the development of an efficient numerical output feedback robust model predictive controller for open-loop stable systems. Stability of the closed loop is guaranteed by using an infinite horizon predictive controller and a stable state observer. The performance and the computational burden of this approach are compared to a robust predictive controller from the literature. The case used for this study is based on an industrial gasoline debutanizer column.
Modeling and control of the output current of a Reformed Methanol Fuel Cell system
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Pasupathi, Sivakumar
2015-01-01
In this work, a dynamic Matlab SIMULINK model of the relationship between the fuel cell current set point of a Reformed Methanol Fuel Cell system and the output current of the system is developed. The model contains an estimated fuel cell model, based on a polarization curve and assumed first order...... dynamics, as well as a battery model based on an equivalent circuit model and a balance of plant power consumption model. The models are tuned with experimental data and verified using a verification data set. The model is used to develop an output current controller which can control the charge current...... of the battery. The controller is a PI controller with feedforward and anti-windup. The performance of the controller is tested and verified on the physical system....
Symmetric voltage-controlled variable resistance
Vanelli, J. C.
1978-01-01
Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.
Non-linear control of the output stage of a solar microinverter
Lopez-Santos, Oswaldo; Garcia, Germain; Martinez-Salamero, Luis; Avila-Martinez, Juan C.; Seguier, Lionel
2017-01-01
This paper presents a proposal to control the output stage of a two-stage solar microinverter to inject real power into the grid. The input stage of the microinverter is used to extract the maximum available power of a photovoltaic module enforcing a power source behavior in the DC-link to feed the output stage. The work here reported is devoted to control a grid-connected power source inverter with a high power quality level at the grid side ensuring the power balance of the microinverter regulating the voltage of the DC-link. The proposed control is composed of a sinusoidal current reference generator and a cascade type controller composed by a current tracking loop and a voltage regulation loop. The current reference is obtained using a synchronized generator based on phase locked loop (PLL) which gives the shape, the frequency and phase of the current signal. The amplitude of the reference is obtained from a simple controller regulating the DC-link voltage. The tracking of the current reference is accomplished by means of a first-order sliding mode control law. The solution takes advantage of the rapidity and inherent robustness of the sliding mode current controller allowing a robust behavior in the regulation of the DC-link using a simple linear controller. The analytical expression to determine the power quality indicators of the micro-inverter's output is theoretically solved giving expressions relating the converter parameters. The theoretical approach is validated using simulation and experimental results.
DEFF Research Database (Denmark)
Chater, E.; Giri, F.; Guerrero, Josep M.
2014-01-01
We consider the problem of controlling plants that are subject to multiple saturation constraints. Especially, we are interested in linear systems whose input is subject to amplitude and rate constraints of saturation type. Furthermore, the considered systems output is also subject to an intrinsi...
Observer-based output-feedback control to eliminate torsional drill-string vibrations
Vromen, T.G.M.; Wouw, van de N.; Doris, A.; Astrid, P.; Nijmeijer, H.
2014-01-01
Torsional stick-slip vibrations decrease the performance and reliability of drilling systems used for the exploration of energy and mineral resources. In this work, we present the design of a nonlinear observer-based output-feedback control strategy to eliminate these vibrations. We apply the
Adaptive Neural Output Feedback Control for Uncertain Robot Manipulators with Input Saturation
Directory of Open Access Journals (Sweden)
Rong Mei
2017-01-01
Full Text Available This paper presents an adaptive neural output feedback control scheme for uncertain robot manipulators with input saturation using the radial basis function neural network (RBFNN and disturbance observer. First, the RBFNN is used to approximate the system uncertainty, and the unknown approximation error of the RBFNN and the time-varying unknown external disturbance of robot manipulators are integrated as a compounded disturbance. Then, the state observer and the disturbance observer are proposed to estimate the unmeasured system state and the unknown compounded disturbance based on RBFNN. At the same time, the adaptation technique is employed to tackle the control input saturation problem. Utilizing the estimate outputs of the RBFNN, the state observer, and the disturbance observer, the adaptive neural output feedback control scheme is developed for robot manipulators using the backstepping technique. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis and the asymptotically convergent tracking error is obtained under the integrated effect of the system uncertainty, the unmeasured system state, the unknown external disturbance, and the input saturation. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed adaptive neural output feedback control scheme for uncertain robot manipulators.
Fuzzy Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Prescribed Performance.
Zhang, Jin-Xi; Yang, Guang-Hong
2018-05-01
This paper investigates the tracking control problem for a family of strict-feedback systems in the presence of unknown nonlinearities and immeasurable system states. A low-complexity adaptive fuzzy output feedback control scheme is proposed, based on a backstepping method. In the control design, a fuzzy adaptive state observer is first employed to estimate the unmeasured states. Then, a novel error transformation approach together with a new modification mechanism is introduced to guarantee the finite-time convergence of the output error to a predefined region and ensure the closed-loop stability. Compared with the existing methods, the main advantages of our approach are that: 1) without using extra command filters or auxiliary dynamic surface control techniques, the problem of explosion of complexity can still be addressed and 2) the design procedures are independent of the initial conditions. Finally, two practical examples are performed to further illustrate the above theoretic findings.
Directory of Open Access Journals (Sweden)
Sie Long Kek
2015-01-01
Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.
Event-Triggered Output-Feedback Control for Disturbed Linear Systems
Directory of Open Access Journals (Sweden)
Hao Jiang
2018-01-01
Full Text Available In the last few decades, event-triggered control received considerable attention, because of advantages in reducing the resource utilization, such as communication load and processor. In this paper, we propose an event-triggered output-feedback controller for disturbed linear systems, in order to achieve both better resource utilization and disturbance attenuation properties at the same time. Based on our prior work on state-feedback H∞ control for disturbed systems, we propose an approach to design an output-feedback H∞ controller for the system whose states are not completely observable, and a sufficient condition guaranteeing the asymptotic stability and robustness of the system is given in the form of LMIs (Linear Matrix Inequalities.
Robust H∞ output-feedback control for path following of autonomous ground vehicles
Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed
2016-03-01
This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.
Neural Adaptive Sliding-Mode Control of a Vehicle Platoon Using Output Feedback
Directory of Open Access Journals (Sweden)
Maode Yan
2017-11-01
Full Text Available This paper investigates the output feedback control problem of a vehicle platoon with a constant time headway (CTH policy, where each vehicle can communicate with its consecutive vehicles. Firstly, based on the integrated-sliding-mode (ISM technique, a neural adaptive sliding-mode control algorithm is developed to ensure that the vehicle platoon is moving with the CTH policy and full state measurement. Then, to further decrease the measurement complexity and reduce the communication load, an output feedback control protocol is proposed with only position information, in which a higher order sliding-mode observer is designed to estimate the other required information (velocities and accelerations. In order to avoid collisions among the vehicles, the string stability of the whole vehicle platoon is proven through the stability theorem. Finally, numerical simulation results are provided to verify its effectiveness and advantages over the traditional sliding-mode control method in vehicle platoons.
Li, Li-Wei; Yang, Guang-Hong
2017-07-01
The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.
Effect of disposable infection control barriers on light output from dental curing lights.
Scott, Barbara A; Felix, Corey A; Price, Richard B T
2004-02-01
To prevent contamination of the light guide on a dental curing light, barriers such as disposable plastic wrap or covers may be used. This study compared the effect of 3 disposable barriers on the spectral output and power density from a curing light. The hypothesis was that none of the barriers would have a significant clinical effect on the spectral output or the power density from the curing light. Three disposable barriers were tested against a control (no barrier). The spectra and power from the curing light were measured with a spectrometer attached to an integrating sphere. The measurements were repeated on 10 separate occasions in a random sequence for each barrier. Analysis of variance (ANOVA) followed by Fisher's protected least significant difference test showed that the power density was significantly less than control (by 2.4% to 6.1%) when 2 commercially available disposable barriers were used (p 0.05). The effect of each of the barriers on the power output was small and probably clinically insignificant. ANOVA comparisons of mean peak wavelength values indicated that none of the barriers produced a significant shift in the spectral output relative to the control ( p > 0.05). Two of the 3 disposable barriers produced a significant reduction in power density from the curing light. This drop in power was small and would probably not adversely affect the curing of composite resin. None of the barriers acted as light filters.
Directory of Open Access Journals (Sweden)
Yaoyao Wang
2014-01-01
Full Text Available For the 4-DOF (degrees of freedom trajectory tracking control problem of underwater remotely operated vehicles (ROVs in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC technique is introduced in light of the equivalent output injection sliding mode observer (SMO and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time.
A Free-Piston Linear Generator Control Strategy for Improving Output Power
Directory of Open Access Journals (Sweden)
Chi Zhang
2018-01-01
Full Text Available This paper presents a control strategy to improve the output power for a single-cylinder two-stroke free-piston linear generator (FPLG. The comprehensive simulation model of this FPLG is established and the operation principle is introduced. The factors that affect the output power are analyzed theoretically. The characteristics of the piston motion are studied. Considering the different features of the piston motion respectively in acceleration and deceleration phases, a ladder-like electromagnetic force control strategy is proposed. According to the status of the linear electric machine, the reference profile of the electromagnetic force is divided into four ladder-like stages during one motion cycle. The piston motions, especially the dead center errors, are controlled by regulating the profile of the electromagnetic force. The feasibility and advantage of the proposed control strategy are verified through comparison analyses with two conventional control strategies via MatLab/Simulink. The results state that the proposed control strategy can improve the output power by around 7–10% with the same fuel cycle mass.
Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding
2017-08-29
This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.
Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller
Directory of Open Access Journals (Sweden)
Sreenivasappa Veeranna Bhupasandra
2010-01-01
Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.
Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems
International Nuclear Information System (INIS)
Poursamad, Amir; Markazi, Amir H.D.
2009-01-01
This paper describes an adaptive fuzzy sliding-mode control algorithm for controlling unknown or uncertain, multi-input multi-output (MIMO), possibly chaotic, dynamical systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal sliding-mode controller, and the robust controller compensates the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the asymptotic stability and tracking of the controlled system. The effectiveness of the proposed method is shown by applying it to some well-known chaotic systems.
Sliding-mode control of single input multiple output DC-DC converter
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
Torque Modeling and Control of a Variable Compression Engine
Bergström, Andreas
2003-01-01
The SAAB variable compression engine is a new engine concept that enables the fuel consumption to be radically cut by varying the compression ratio. A challenge with this new engine concept is that the compression ratio has a direct influence on the output torque, which means that a change in compression ratio also leads to a change in the torque. A torque change may be felt as a jerk in the movement of the car, and this is an undesirable effect since the driver has no control over the compre...
Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew
2018-01-01
The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.
Tian, Jiayi; Zhang, Shifeng; Zhang, Yinhui; Li, Tong
2018-03-01
Since motion control plant (y (n) =f(⋅)+d) was repeatedly used to exemplify how active disturbance rejection control (ADRC) works when it was proposed, the integral chain system subject to matched disturbances is always regarded as a canonical form and even misconstrued as the only form that ADRC is applicable to. In this paper, a systematic approach is first presented to apply ADRC to a generic nonlinear uncertain system with mismatched disturbances and a robust output feedback autopilot for an airbreathing hypersonic vehicle (AHV) is devised based on that. The key idea is to employ the feedback linearization (FL) and equivalent input disturbance (EID) technique to decouple nonlinear uncertain system into several subsystems in canonical form, thus it would be much easy to directly design classical/improved linear/nonlinear ADRC controller for each subsystem. It is noticed that all disturbances are taken into account when implementing FL rather than just omitting that in previous research, which greatly enhances controllers' robustness against external disturbances. For autopilot design, ADRC strategy enables precise tracking for velocity and altitude reference command in the presence of severe parametric perturbations and atmospheric disturbances only using measurable output information. Bounded-input-bounded-output (BIBO) stable is analyzed for closed-loop system. To illustrate the feasibility and superiority of this novel design, a series of comparative simulations with some prominent and representative methods are carried out on a benchmark longitudinal AHV model. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yuanchun Li
2015-01-01
Full Text Available The goal of this paper is to describe an active decentralized fault-tolerant control (ADFTC strategy based on dynamic output feedback for reconfigurable manipulators with concurrent actuator and sensor failures. Consider each joint module of the reconfigurable manipulator as a subsystem, and treat the fault as the unknown input of the subsystem. Firstly, by virtue of linear matrix inequality (LMI technique, the decentralized proportional-integral observer (DPIO is designed to estimate and compensate the sensor fault online; hereafter, the compensated system model could be derived. Then, the actuator fault is estimated similarly by another DPIO using LMI as well, and the sufficient condition of the existence of H∞ fault-tolerant controller in the dynamic output feedback is presented for the compensated system model. Furthermore, the dynamic output feedback controller is presented based on the estimation of actuator fault to realize active fault-tolerant control. Finally, two 3-DOF reconfigurable manipulators with different configurations are employed to verify the effectiveness of the proposed scheme in simulation. The main advantages of the proposed scheme lie in that it can handle the concurrent faults act on the actuator and sensor on the same joint module, as well as there is no requirement of fault detection and isolation process; moreover, it is more feasible to the modularity of the reconfigurable manipulator.
Output Power Smoothing Control for a Wind Farm Based on the Allocation of Wind Turbines
Directory of Open Access Journals (Sweden)
Ying Zhu
2018-06-01
Full Text Available This paper presents a new output power smoothing control strategy for a wind farm based on the allocation of wind turbines. The wind turbines in the wind farm are divided into control wind turbines (CWT and power wind turbines (PWT, separately. The PWTs are expected to output as much power as possible and a maximum power point tracking (MPPT control strategy combining the rotor inertia based power smoothing method is adopted. The CWTs are in charge of the output power smoothing for the whole wind farm by giving the calculated appropriate power. The battery energy storage system (BESS with small capacity is installed to be the support and its charge and discharge times are greatly reduced comparing with the traditional ESSs based power smoothing strategies. The simulation model of the permanent magnet synchronous generators (PMSG based wind farm by considering the wake effect is built in Matlab/Simulink to test the proposed power smoothing method. Three different working modes of the wind farm are given in the simulation and the simulation results verify the effectiveness of the proposed power smoothing control strategy.
Application of Output Predictive Algorithmic Control to a Terrain Following Aircraft System.
1982-03-01
non-linear regime the results from an optimal control solution may be questionable. 15 -**—• - •*- "•—"".’" CHAPTER 3 Output Prpdirl- ivf ...strongly influenced by two other factors as well - the sample time T and the least-squares cost function Q. unlike the deadbeat control law of Ref...design of aircraft control systems since these methods offer tremendous insight into the dynamic behavior of the system at relatively low cost . However
Directory of Open Access Journals (Sweden)
S. Aberkane
2007-01-01
Full Text Available This paper deals with dynamic output feedback control of continuous-time active fault tolerant control systems with Markovian parameters (AFTCSMP and state-dependent noise. The main contribution is to formulate conditions for multiperformance design, related to this class of stochastic hybrid systems, that take into account the problematic resulting from the fact that the controller only depends on the fault detection and isolation (FDI process. The specifications and objectives under consideration include stochastic stability, ℋ2 and ℋ∞ (or more generally, stochastic integral quadratic constraints performances. Results are formulated as matrix inequalities. The theoretical results are illustrated using a classical example from literature.
Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model
Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç
2017-01-01
This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.
Robust output feedback cruise control for high-speed train movement with uncertain parameters
International Nuclear Information System (INIS)
Li Shu-Kai; Yang Li-Xing; Li Ke-Ping
2015-01-01
In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible couplers, which is subject to rolling mechanical resistance, aerodynamic drag and wind gust. Based on Lyapunov’s stability theory, the sufficient condition for the existence of the robust output feedback cruise control law is given in terms of linear matrix inequalities (LMIs), under which the high-speed train tracks the desired speed, the relative spring displacement between the two neighboring cars is stable at the equilibrium state, and meanwhile a small prescribed H ∞ disturbance attenuation level is guaranteed. One numerical example is given to illustrate the effectiveness of the proposed methods. (paper)
Directory of Open Access Journals (Sweden)
Jae-Uk Lim
2018-04-01
Full Text Available This paper proposes a technique that compensates for unbalance and nonlinearity in microgrid inverters with power transformers operating in stand-alone mode. When a microgrid inverter is operating in stand-alone mode, providing high-quality power is very important. When an unbalanced, nonlinear load is connected, zero sequence current and negative sequence current occur, which leads to an unbalanced output voltage. This paper examines why the zero sequence component occurs differently depending on the structure of a three-phase transformer connected to the inverter output terminal, and it proposes a method for controlling the zero sequence component. It also uses a resonant controller to remove the harmonics that correspond to the negative sequence component and the nonlinear component. The proposed elements were verified by a Powersim (PSIM simulation.
Means and method for controlling the neutron output of a neutron generator tube
International Nuclear Information System (INIS)
Langford, O.M.; Peelman, H.E.
1980-01-01
A gas filled neutron tube in a nuclear well logging tool has a target an ion source voltage and a replenisher connected to ground. A negative high voltage is applied to the target by a power supply also providing a target current corresponding to the neutron output of the neutron generator tube. A constant current source provides a constant current. A network receiving the target current and the constant current provides a portion of the constant current as a replenisher current which is applied to the replenisher in a neutron generating tube. The network controls the magnitude of the replenisher current in accordance with the target current so as to control the neutron output of the neutron generating tube. (auth)
Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid
Kuwayama, Akira
The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.
EPICS Input/Output Controller (IOC) application developer's guide. APS Release 3.12
International Nuclear Information System (INIS)
Kraimer, M.R.
1994-11-01
This document describes the core software that resides in an Input/Output Controller (IOC), one of the major components of EPICS. The basic components are: (OPI) Operator Interface; this is a UNIX based workstation which can run various EPICS tools; (IOC) Input/Output Controller; this is a VME/VXI based chassis containing a Motorola 68xxx processor, various I/O modules, and VME modules that provide access to other I/O buses such as GPIB, (LAN), Local Area Network; and this is the communication network which allows the IOCs and OPIs to communicate. Epics provides a software component, Channel Access, which provides network transparent communication between a Channel Access client and an arbitrary number of Channel Access servers
Directory of Open Access Journals (Sweden)
Chuanjing Hou
2015-01-01
Full Text Available An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.
Hou, Chuanjing; Hu, Lisheng; Zhang, Yingwei
2015-01-01
An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.
Power output and efficiency of a thermoelectric generator under temperature control
International Nuclear Information System (INIS)
Chen, Wei-Hsin; Wu, Po-Hua; Wang, Xiao-Dong; Lin, Yu-Li
2016-01-01
Highlights: • Power output and efficiency of a thermoelectric generator (TEG) is studied. • Temperatures at the module’s surfaces are approximated by sinusoidal functions. • Mean output power and efficiency are enhanced by the temperature oscillation. • The maximum mean efficiency of the TEG in this study is 8.45%. • The phase angle of 180° is a feasible operation for maximizing the performance. - Abstract: Operation control is an effective way to improve the output power of thermoelectric generators (TEGs). The present study is intended to numerically investigate the power output and efficiency of a TEG and find the operating conditions for maximizing its performance. The temperature distributions at the hot side and cold side surfaces of the TEG are approximated by sinusoidal functions. The influences of the temperature amplitudes at the hot side surface and the cold side surface, the phase angle, and the figure-of-merit (ZT) on the performance of the TEG are analyzed. The predictions indicate that the mean output power and efficiency of the TEG are significantly enhanced by the temperature oscillation, whereas the mean absorbed heat by the TEG is slightly influenced. An increase in the temperature amplitude of the hot side surface and the phase angle can effectively improve the performance. For the phase angle of 0°, a smaller temperature amplitude at the cold side surface renders the better performance compared to that with a larger amplitude. When the ZT value increases from 0.736 to 1.8, the mean efficiency at the phase angle of 180° is amplified by a factor of 1.72, and the maximum mean efficiency is 8.45%. In summary, a larger temperature amplitude at the hot side surface with the phase angle of 180° is a feasible operation for maximizing the performance.
The role of spinal GABAergic circuits in the control of phrenic nerve motor output.
Marchenko, Vitaliy; Ghali, Michael G Z; Rogers, Robert F
2015-06-01
While supraspinal mechanisms underlying respiratory pattern formation are well characterized, the contribution of spinal circuitry to the same remains poorly understood. In this study, we tested the hypothesis that intraspinal GABAergic circuits are involved in shaping phrenic motor output. To this end, we performed bilateral phrenic nerve recordings in anesthetized adult rats and observed neurogram changes in response to knocking down expression of both isoforms (65 and 67 kDa) of glutamate decarboxylase (GAD65/67) using microinjections of anti-GAD65/67 short-interference RNA (siRNA) in the phrenic nucleus. The number of GAD65/67-positive cells was drastically reduced on the side of siRNA microinjections, especially in the lateral aspects of Rexed's laminae VII and IX in the ventral horn of cervical segment C4, but not contralateral to microinjections. We hypothesize that intraspinal GABAergic control of phrenic output is primarily phasic, but also plays an important role in tonic regulation of phrenic discharge. Also, we identified respiration-modulated GABAergic interneurons (both inspiratory and expiratory) located slightly dorsal to the phrenic nucleus. Our data provide the first direct evidence for the existence of intraspinal GABAergic circuits contributing to the formation of phrenic output. The physiological role of local intraspinal inhibition, independent of descending direct bulbospinal control, is discussed. Copyright © 2015 the American Physiological Society.
Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.
Wan, Ying; Cao, Jinde; Wen, Guanghui
In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control
Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay.
Roggiani, Manuela; Goulian, Mark
2015-06-15
Escherichia coli senses and responds to trimethylamine-N-oxide (TMAO) in the environment through the TorT-TorS-TorR signal transduction system. The periplasmic protein TorT binds TMAO and stimulates the hybrid kinase TorS to phosphorylate the response regulator TorR through a phosphorelay. Phosphorylated TorR, in turn, activates transcription of the torCAD operon, which encodes the proteins required for anaerobic respiration via reduction of TMAO to trimethylamine. Interestingly, E. coli respires TMAO in both the presence and absence of oxygen, a behavior that is markedly different from the utilization of other alternative electron acceptors by this bacterium. Here we describe an unusual form of regulation by oxygen for this system. While the average level of torCAD transcription is the same for aerobic and anaerobic cultures containing TMAO, the behavior across the population of cells is strikingly different under the two growth conditions. Cellular levels of torCAD transcription in aerobic cultures are highly heterogeneous, in contrast to the relatively homogeneous distribution in anaerobic cultures. Thus, oxygen regulates the variance of the output but not the mean for the Tor system. We further show that this oxygen-dependent variability stems from the phosphorelay. Trimethylamine-N-oxide (TMAO) is utilized by numerous bacteria as an electron acceptor for anaerobic respiration. In E. coli, expression of the proteins required for TMAO respiration is tightly regulated by a signal transduction system that is activated by TMAO. Curiously, although oxygen is the energetically preferred electron acceptor, TMAO is respired even in the presence of oxygen. Here we describe an interesting and unexpected form of regulation for this system in which oxygen produces highly variable expression of the TMAO utilization proteins across a population of cells without affecting the mean expression of these proteins. To our knowledge, this is the first reported example of a stimulus
Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems
Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu
2013-10-01
This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.
Directory of Open Access Journals (Sweden)
Abdelmajid Abouloifa
2018-01-01
Full Text Available This paper addresses the problem of controlling the single-phase grid connected to the photovoltaic system through a full bridge inverter with LCL-filter. The control aims are threefold: (i imposing the voltage in the output of PV panel to track a reference provided by the MPPT block; (ii regulating the DC-link voltage to guarantee the power exchange between the source and AC grid; (iii ensuring a satisfactory power factor correction (PFC. The problem is dealt with using a cascade nonlinear adaptive controller that is developed making use of sliding-mode technique and observers in order to estimate the state variables and grid parameters, by measuring only the grid current, PV voltage, and the DC bus voltage. The control problem addressed by this work involves several difficulties, including the uncertainty of some parameters of the system and the numerous state variables are inaccessible to measurements. The results are confirmed by simulation under MATLAB∖Simulink∖SimPowerSystems, which show that the proposed regulator is robust with respect to climate changes.
International Nuclear Information System (INIS)
Steinke, R.G.
1997-01-01
Signal-variable values and their component-parameter values differ in an end-of-timestep edit to the TRCOUT and TRCGRF files because signal variables have beginning-of-timestep values, and component parameters have end-of-timestep values. Oscillatory divergence in the MST2 standard test problem after 9000 s occurs because of TRAC-P's numerical evaluation at a 1000 material Courant number. The magnitude of that divergence has diminished by a factor of 3.5 from Version 5.3.01 to 5.4.15 and by a factor of 25 from Version 5.4.15 to 5.4.28. That divergence can be eliminated by evaluating MST2 with a maximum material Courant number of 500
Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain
2017-10-02
This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.
Meng, Su; Chen, Jie; Sun, Jian
2017-10-01
This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.
Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun
2017-07-01
In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.
Directory of Open Access Journals (Sweden)
Hongbin Wang
2016-01-01
Full Text Available We propose an iterative learning control algorithm (ILC that is developed using a variable forgetting factor to control a mobile robot. The proposed algorithm can be categorized as an open-closed-loop iterative learning control, which produces control instructions by using both previous and current data. However, introducing a variable forgetting factor can weaken the former control output and its variance in the control law while strengthening the robustness of the iterative learning control. If it is applied to the mobile robot, this will reduce position errors in robot trajectory tracking control effectively. In this work, we show that the proposed algorithm guarantees tracking error bound convergence to a small neighborhood of the origin under the condition of state disturbances, output measurement noises, and fluctuation of system dynamics. By using simulation, we demonstrate that the controller is effective in realizing the prefect tracking.
Directory of Open Access Journals (Sweden)
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Means and method for controlling the neutron output of a neutron generator tube
International Nuclear Information System (INIS)
Langford, O.M.; Peelman, H.E.
1978-01-01
Means and method are described for energizing and regulating a neutron generator tube having a target, an ion source and a replenisher. It providing a negative high voltage to the target and monitoring the target current. A constant current from a constant current source is divided into a shunt current and a replenisher current in accordence with the target current. The replenisher current is applied to the replenisher in a neutron generator tube so as to control the neutron output in accordance with the target current
Means and method for controlling the neutron output of a neutron generator tube
International Nuclear Information System (INIS)
1977-01-01
A means and method for energizing and regulating a neutron generator tube is described. It has a target, an ion source and a replenisher. A negative high voltage is applied to the target and the target current monitored. A constant current from a constant current source is divided into a shunt current and a replenisher current in accordance with the target current. The replenisher current is applied to the replenisher in a neutron generator tube so as to control the neutron output in accordance with the target current. (C.F.)
DEFF Research Database (Denmark)
Codas, Andrés; Hanssen, Kristian G.; Foss, Bjarne
2017-01-01
The production life of oil reservoirs starts under significant uncertainty regarding the actual economical return of the recovery process due to the lack of oil field data. Consequently, investors and operators make management decisions based on a limited and uncertain description of the reservoir....... In this work, we propose a new formulation for robust optimization of reservoir well controls. It is inspired by the multiple shooting (MS) method which permits a broad range of parallelization opportunities and output constraint handling. This formulation exploits coherent risk measures, a concept...
Directory of Open Access Journals (Sweden)
Francesco Ferri
2014-04-01
Full Text Available In order to reduce the cost of electricity produced by wave energy converters (WECs, the benefit of selling electricity as well as the investment costs of the structure has to be considered. This paper presents a methodology for assessing the control strategy for a WEC with respect to both energy output and structural fatigue loads. Different active and passive control strategies are implemented (proportional (P controller, proportional-integral (PI controller, proportional-integral-derivative with memory compensation (PID controller, model predictive control (MPC and maximum energy controller (MEC, and load time-series resulting from numerical simulations are used to design structural parts based on fatigue analysis using rain-flow counting, Stress-Number (SN curves and Miner’s rule. The objective of the methodology is to obtain a cost-effective WEC with a more comprehensive analysis of a WEC based on a combination of well known control strategies and standardised fatigue methods. The presented method is then applied to a particular case study, the Wavestar WEC, for a specific location in the North Sea. Results, which are based on numerical simulations, show the importance of balancing the gained power against structural fatigue. Based on a simple cost model, the PI controller is shown as a viable solution.
Output feedback control of linear fractional transformation systems subject to actuator saturation
Ban, Xiaojun; Wu, Fen
2016-11-01
In this paper, the control problem for a class of linear parameter varying (LPV) plant subject to actuator saturation is investigated. For the saturated LPV plant depending on the scheduling parameters in linear fractional transformation (LFT) fashion, a gain-scheduled output feedback controller in the LFT form is designed to guarantee the stability of the closed-loop LPV system and provide optimised disturbance/error attenuation performance. By using the congruent transformation, the synthesis condition is formulated as a convex optimisation problem in terms of a finite number of LMIs for which efficient optimisation techniques are available. The nonlinear inverted pendulum problem is employed to demonstrate the effectiveness of the proposed approach. Moreover, the comparison between our LPV saturated approach with an existing linear saturated method reveals the advantage of the LPV controller when handling nonlinear plants.
Directory of Open Access Journals (Sweden)
Zhe Dong
2014-02-01
Full Text Available Small modular reactors (SMRs could be beneficial in providing electricity power safely and also be viable for applications such as seawater desalination and heat production. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR has been seen as one of the best candidates for building SMR-based nuclear power plants. Since the MHTGR dynamics display high nonlinearity and parameter uncertainty, it is necessary to develop a nonlinear adaptive power-level control law which is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR, but also easy to implement practically. In this paper, based on the concept of shifted-ectropy and the physically-based control design approach, it is proved theoretically that the simple proportional-differential (PD output-feedback power-level control can provide asymptotic closed-loop stability. Then, based on the strong approximation capability of the multi-layer perceptron (MLP artificial neural network (ANN, a compensator is established to suppress the negative influence caused by system parameter uncertainty. It is also proved that the MLP-compensated PD power-level control law constituted by an experientially-tuned PD regulator and this MLP-based compensator can guarantee bounded closed-loop stability. Numerical simulation results not only verify the theoretical results, but also illustrate the high performance of this MLP-compensated PD power-level controller in suppressing the oscillation of process variables caused by system parameter uncertainty.
Output-Feedback Control of a Chaotic MEMS Resonator for Oscillation Amplitude Enhancement
Directory of Open Access Journals (Sweden)
Alexander Jimenez-Triana
2014-01-01
Full Text Available The present work addresses the problem of chaos control in an electrostatic MEMS resonator by using an output-feedback control scheme. One of the unstable orbits immersed in the chaotic attractor is stabilized in order to produce a sustained oscillation of the movable plate composing the microstructure. The orbit is carefully chosen so as to produce a high amplitude oscillation. This approach allows the enhancement of oscillation amplitude of the resonator at a reduced control effort, since the unstable orbit already exists in the system and it is not necessary to spend energy to create it. Realistic operational conditions of the MEMS are considered including parametric uncertainties in the model and constraints due to the difficulty in measuring the speed of the plates of the microstructure. A control law is constructed recursively by using the technique of backstepping. Finally, numerical simulations are carried out to confirm the validity of the developed control scheme and to demonstrate the effect of controlling orbits immersed in the chaotic attractor.
Using Variable Speed Control on Pump Application
Directory of Open Access Journals (Sweden)
Dr.Sc. Aida Spahiu
2012-06-01
Full Text Available Pumps are one of the most common variable speed drive (VSD system applications and special interest has focused on improving their energy efficiency by using variable speed control instead of throttling or other less efficient flow control methods. Pumps are the single largest user of electricity in industry in the European Union, consuming 160 TWh per annum of electricity and accounting for 79 million tonnes of carbon dioxide (CO2 emissions [1]. Centrifugal pumps are the most likely pump style to provide a favorable return based on energy savings when applied with a variable speed drive. To help illustrate this, are conducted benchmark testing to document various head and flow scenarios and their corresponding effect on energy savings. Paper shows the relationship of static and friction head in the energy efficiency equation and the effect of motor, pump and VSD efficiencies. The received results are good reference points for engineers and managers of water sector in Albania to select the best prospects for maximizing efficiency and energy savings.
Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems
Wang, Gang; Chen, Changzheng; Yu, Shenbo
2017-07-01
This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.
Variable current speed controller for eddy current motors
Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.
1982-03-12
A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.
Directory of Open Access Journals (Sweden)
Olav Slupphaug
2001-01-01
Full Text Available We present a mathematical programming approach to robust control of nonlinear systems with uncertain, possibly time-varying, parameters. The uncertain system is given by different local affine parameter dependent models in different parts of the state space. It is shown how this representation can be obtained from a nonlinear uncertain system by solving a set of continuous linear semi-infinite programming problems, and how each of these problems can be solved as a (finite series of ordinary linear programs. Additionally, the system representation includes control- and state constraints. The controller design method is derived from Lyapunov stability arguments and utilizes an affine parameter dependent quadratic Lyapunov function. The controller has a piecewise affine output feedback structure, and the design amounts to finding a feasible solution to a set of linear matrix inequalities combined with one spectral radius constraint on the product of two positive definite matrices. A local solution approach to this nonconvex feasibility problem is proposed. Complexity of the design method and some special cases such as state- feedback are discussed. Finally, an application of the results is given by proposing an on-line computationally feasible algorithm for constrained nonlinear state- feedback model predictive control with robust stability.
DEFF Research Database (Denmark)
Schmidt, Lasse; Andersen, Torben O.
2016-01-01
The application of second order sliding mode algorithms for output feedback control in hydraulic valve-cylinder drives appear attractive due to their simple realization and parametrization, and strong robustness toward bounded parameter variations and uncertainties. However, intrinsic nonlinear...
Energy Technology Data Exchange (ETDEWEB)
Rhee, J.J.; Miranowski, J.A.
1984-02-01
It can be shown that a variation of the multiplier approach solves the Leontief pollution model in a more directly interpretable and computationally efficient manner than the conventional method of directly using the augmented Leontief inverse matrix. The solution of each endogenous variable of the model can be expressed in terms of the non-augmented Leontief inverse, exogenous variables, and two important multipliers, ''the pollution control multiplier'' and ''a modified Keynesian multiplier,'' modified by pollution control. The so-called induced effect and the effect of pollution control on a given economy can be separated from the model. 6 references, 5 footnotes, 1 table.
Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.
Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun
2015-11-01
Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.
Static output feedback ℋ ∞ control for a fractional-order glucose-insulin system
N’Doye, Ibrahima
2015-05-23
This paper presents the ℋ∞ static output feedback control of nonlinear fractional-order systems. Based on the extended bounded real lemma, the ℋ∞ control is formulated and sufficient conditions are derived in terms of linear matrix inequalities (LMIs) formulation by using the fractional Lyapunov direct method where the fractional-order α belongs to 0 < α < 1. The control approach is finally applied to the regulation of the glucose level in diabetes type 1 treatment. Therefore, it is attempted to incorporate fractional-order into the mathematical minimal model of glucose-insulin system dynamics and it is still an interesting challenge to show, how the order of a fractional differential system affects the dynamics of the system in the presence of meal disturbance. Numerical simulations are carried out to illustrate our proposed results and show that the nonlinear fractional-order glucose-insulin systems are, at least, as stable as their integer-order counterpart in the presence of exogenous glucose infusion or meal disturbance. © 2015 Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg
Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate
2014-05-21
Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001. Copyright © 2014, Brown et al.
International Nuclear Information System (INIS)
Chen, J.-D.
2007-01-01
In this paper, the robust control problem of output dynamic observer-based control for a class of uncertain neutral systems with discrete and distributed time delays is considered. Linear matrix inequality (LMI) optimization approach is used to design the new output dynamic observer-based controls. Three classes of observer-based controls are proposed and the maximal perturbed bound is given. Based on the results of this paper, the constraint of matrix equality is not necessary for designing the observer-based controls. Finally, a numerical example is given to illustrate the usefulness of the proposed method
Han, Seong-Ik; Lee, Jang-Myung
2014-01-01
This paper proposes a backstepping control system that uses a tracking error constraint and recurrent fuzzy neural networks (RFNNs) to achieve a prescribed tracking performance for a strict-feedback nonlinear dynamic system. A new constraint variable was defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries. An adaptive RFNN was also used to obtain the required improvement on the approximation performances in order to avoid calculating the explosive number of terms generated by the recursive steps of traditional backstepping control. The boundedness and convergence of the closed-loop system was confirmed based on the Lyapunov stability theory. The prescribed performance of the proposed control scheme was validated by using it to control the prescribed error of a nonlinear system and a robot manipulator. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Blood volume, blood pressure and total body sodium: internal signalling and output control
DEFF Research Database (Denmark)
Bie, P
2009-01-01
Total body sodium and arterial blood pressure (ABP) are mutually dependent variables regulated by complex control systems. This review addresses the role of ABP in the normal control of sodium excretion (NaEx), and the physiological control of renin secretion. NaEx is a pivotal determinant of ABP......, and under experimental conditions, ABP is a powerful, independent controller of NaEx. Blood volume is a function of dietary salt intake; however, ABP is not, at least not in steady states. A transient increase in ABP after a step-up in sodium intake could provide a causal relationship between ABP...... and the regulation of NaEx via a hypothetical integrative control system. However, recent data show that subtle sodium loading (simulating salty meals) causes robust natriuresis without changes in ABP. Changes in ABP are not necessary for natriuresis. Normal sodium excretion is not regulated by pressure. Plasma...
Energy Technology Data Exchange (ETDEWEB)
Song, Young Gi; Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-05-15
The Low-Level RF (LLRF) control system of the Proton Engineering Frontier Project (PEFP) was developed for handling the driving frequency for Quadrupole (RFQ) and the Draft Tube Linac (DTL) cavities in 2006. The RF amplitude and phase of the accelerating field were controlled within 1% and 1 degree by stability requirements, respectively. Operators have been using the LLRF control system under the windows based text console mode as an operator interface. The LLRF control system could not be integrated with Experimental Physics Industrial Control System (EPICS) Input Output Controllers (IOC) for each subsection of PEFP facility. The main objective of this study is to supply operators of the LLRF control system with user friendly and convenient operating environment. The new LLRF control system is composed of a Verse Module Eurocard (VME) baseboard, a PCI Mezzanine Card (PMC), Board Support Package (BSP), EPICS software tool and a Real-Time Operating System (RTOS) VxWorks. A test with a dummy cavity of the new LLRF control system shows that operators can control and monitor operation parameters for a desired feedback action by using EPICS Channel Access (CA).
International Nuclear Information System (INIS)
Song, Young Gi; Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub
2010-01-01
The Low-Level RF (LLRF) control system of the Proton Engineering Frontier Project (PEFP) was developed for handling the driving frequency for Quadrupole (RFQ) and the Draft Tube Linac (DTL) cavities in 2006. The RF amplitude and phase of the accelerating field were controlled within 1% and 1 degree by stability requirements, respectively. Operators have been using the LLRF control system under the windows based text console mode as an operator interface. The LLRF control system could not be integrated with Experimental Physics Industrial Control System (EPICS) Input Output Controllers (IOC) for each subsection of PEFP facility. The main objective of this study is to supply operators of the LLRF control system with user friendly and convenient operating environment. The new LLRF control system is composed of a Verse Module Eurocard (VME) baseboard, a PCI Mezzanine Card (PMC), Board Support Package (BSP), EPICS software tool and a Real-Time Operating System (RTOS) VxWorks. A test with a dummy cavity of the new LLRF control system shows that operators can control and monitor operation parameters for a desired feedback action by using EPICS Channel Access (CA).
DEFF Research Database (Denmark)
Ranaboldo, Matteo; Giebel, Gregor; Codina, Bernat
2013-01-01
A combination of physical and statistical treatments to post‐process numerical weather predictions (NWP) outputs is needed for successful short‐term wind power forecasts. One of the most promising and effective approaches for statistical treatment is the Model Output Statistics (MOS) technique....... The proposed MOS performed well in both wind farms, and its forecasts compare positively with an actual operative model in use at Risø DTU and other MOS types, showing minimum BIAS and improving NWP power forecast of around 15% in terms of root mean square error. Further improvements could be obtained...
DEFF Research Database (Denmark)
Han, Renke; Meng, Lexuan; Guerrero, Josep M.
2016-01-01
Based on the hierarchical control structure in islanded Micro-Grid (MG) systems, the coupling/tradeoff effects in different control levels are analyzed in details. In the primary level, analyses of the coupling effects among droop control gains, line impedance differences, output reactive power...
Zhong, Zhixiong; Zhu, Yanzheng; Ahn, Choon Ki
2018-03-20
In this paper, we address the problem of reachable set estimation for continuous-time Takagi-Sugeno (T-S) fuzzy systems subject to unknown output delays. Based on the reachable set concept, a new controller design method is also discussed for such systems. An effective method is developed to attenuate the negative impact from the unknown output delays, which likely degrade the performance/stability of systems. First, an augmented fuzzy observer is proposed to capacitate a synchronous estimation for the system state and the disturbance term owing to the unknown output delays, which ensures that the reachable set of the estimation error is limited via the intersection operation of ellipsoids. Then, a compensation technique is employed to eliminate the influence on the system performance stemmed from the unknown output delays. Finally, the effectiveness and correctness of the obtained theories are verified by the tracking control of autonomous underwater vehicles. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil [' ' Dunarea de Jos' ' University of Galati, 47, Domneasca, 800008-Galati (Romania)
2010-02-15
This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results. (author)
International Nuclear Information System (INIS)
Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil
2010-01-01
This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results.
An output amplitude configurable wideband automatic gain control with high gain step accuracy
International Nuclear Information System (INIS)
He Xiaofeng; Ye Tianchun; Mo Taishan; Ma Chengyan
2012-01-01
An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented. The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs. And what's more, the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy. A zero, which is composed by the source feedback resistance and the source capacity, is introduced to compensate for the pole. The AGC is fabricated in a 0.18 μm CMOS process. The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB. The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA, and the die area is 800 × 300 μm 2 . (semiconductor integrated circuits)
Roes, M.G.L.; Duarte, J.L.; Hendrix, M.A.M.
2011-01-01
Feedback sensor isolation is often an expensive necessity in power converters, for reasons of safety and electromagnetic compatibility. A disturbance observer-based control strategy for a dual-output resonant converter is proposed to overcome this problem. Current control of two LED loads is
Energy Technology Data Exchange (ETDEWEB)
Li, Yang; Qin, Le; Zou, Shipeng; Long, Shijun [School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)
2014-04-11
A lots of problems may occur frequently when controlling the temperature of the enamelling machine oven in the real industrial process, such as multi-variable coupled problem. an experimental rig with triple inputs and triple outputs was devised and a simulation modeling was established accordingly in this study,. the temperature control system based on the feedforward compensation algorithm was proposed. Experimental results have shown that the system is of high efficiency, good stability and promising application.
Reuter, Stephan
2012-10-01
The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.
The reproductive output of sea lice Caligus rogercresseyi under controlled conditions.
Bravo, Sandra
2010-05-01
Gravid females of Caligus rogercresseyi were collected from Atlantic salmon (Salmo salar) from a farm located at Chiloe Island (42 degrees 40'S73 degrees 15'W), Chile, to obtain information about the reproductive output of this parasite in vitro. The egg strings removed from the females were incubated under controlled conditions to obtain virgin adult females. One female which had mated only once produced eleven generations of eggs strings in a period of 74 days. The first egg strings of the females obtained in vitro were produced at 389 degree days ( degrees D) after egg incubation, while the next generations of eggs strings were produced with a periodicity between 4 and 6 days dependent on the water temperature. The average length of the egg string was 3.1mm and the mean number of eggs per string was 31. The values recorded in captivity for the egg string length and the number of eggs per string, were lower than the values recorded in gravid females from the field. One female survived for 79 days and males, maintained separately from the females, survived for 60 days. Copyright 2009 Elsevier Inc. All rights reserved.
Binny, Diana; Mezzenga, Emilio; Lancaster, Craig M; Trapp, Jamie V; Kairn, Tanya; Crowe, Scott B
2017-06-01
The aims of this study were to investigate machine beam parameters using the TomoTherapy quality assurance (TQA) tool, establish a correlation to patient delivery quality assurance results and to evaluate the relationship between energy variations detected using different TQA modules. TQA daily measurement results from two treatment machines for periods of up to 4years were acquired. Analyses of beam quality, helical and static output variations were made. Variations from planned dose were also analysed using Statistical Process Control (SPC) technique and their relationship to output trends were studied. Energy variations appeared to be one of the contributing factors to delivery output dose seen in the analysis. Ion chamber measurements were reliable indicators of energy and output variations and were linear with patient dose verifications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi
2016-01-01
This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...
Liu, Zhi; Chen, Ci; Zhang, Yun; Chen, C L P
2015-03-01
To achieve an excellent dual-arm coordination of the humanoid robot, it is essential to deal with the nonlinearities existing in the system dynamics. The literatures so far on the humanoid robot control have a common assumption that the problem of output hysteresis could be ignored. However, in the practical applications, the output hysteresis is widely spread; and its existing limits the motion/force performances of the robotic system. In this paper, an adaptive neural control scheme, which takes the unknown output hysteresis and computational efficiency into account, is presented and investigated. In the controller design, the prior knowledge of system dynamics is assumed to be unknown. The motion error is guaranteed to converge to a small neighborhood of the origin by Lyapunov's stability theory. Simultaneously, the internal force is kept bounded and its error can be made arbitrarily small.
Li, Yongming; Ma, Zhiyao; Tong, Shaocheng
2017-09-01
The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization
Directory of Open Access Journals (Sweden)
Rui Bai
2014-01-01
Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.
Directory of Open Access Journals (Sweden)
Ronghui ZHENG
2017-12-01
Full Text Available A control method for Multi-Input Multi-Output (MIMO non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multi-output kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well. Keywords: Cross spectra, Kurtosis control, Multi-input multi-output, Non-Gaussian, Random vibration test
Varga, S; Kytöviita, M-M
2014-03-01
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function--seed production--did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Evidence for dual control mechanism regulating hepatic glucose output in nondiabetic men
International Nuclear Information System (INIS)
Clore, J.N.; Glickman, P.S.; Helm, S.T.; Nestler, J.E.; Blackard, W.G.
1991-01-01
The authors previously reported a fall in hepatic glucose output (HGO) during sleep accompanied by reductions in glucose utilization (Rd) and free fatty acids (FFAs). This study was undertaken to determine the potential role of changes in Rd and FFA on HGO in nondiabetic men. To determine if the fall in HGO during sleep could be reversed by FFA elevation, seven nondiabetic men underwent [3-3H]glucose infusions from 2200 to 0800, with heparin (90 mU.kg-1.min-1) added at 0200. Glucose appearance (Ra) fell from 11.7 ± 1.1 at 2430 to 8.9 ± 0.8 mumol.kg-1.min-1 (P less than 0.05) at 0200. The fall in Ra was associated with decreases in FFA (0.57 ± 0.10 to 0.48 ± 0.07 mM) and glycerol (0.08 ± 0.01 to 0.06 ± 0.01 mM). Infusion of heparin significantly increased FFA and glycerol (1.09 ± 0.21 and 0.11 ± 0.01 mM, respectively, P less than 0.01) and resulted in a significant fall in plasma alanine, suggesting that gluconeogenesis had been increased. However, rates of glucose turnover were indistinguishable from overnight studies without heparin. In additional studies (n = 6), intralipid and heparin-induced FFA elevation (from 0.61 ± 0.07 to 0.95 ± 0.05 mM, P less than 0.01) stimulated gluconeogenesis ([U-14C]alanine to glucose) twofold (188 ± 22% increase compared to 114 ± 6% in saline control studies, P less than 0.01). However, despite increasing gluconeogenesis, overall HGO did not change (10.6 ± 0.5 vs. 10.7 ± 0.6 mumol.kg-1.min-1) during lipid infusion
Wang, W.; Wang, D.; Peng, Z. H.
2017-09-01
Without assuming that the communication topologies among the neural network (NN) weights are to be undirected and the states of each agent are measurable, the cooperative learning NN output feedback control is addressed for uncertain nonlinear multi-agent systems with identical structures in strict-feedback form. By establishing directed communication topologies among NN weights to share their learned knowledge, NNs with cooperative learning laws are employed to identify the uncertainties. By designing NN-based κ-filter observers to estimate the unmeasurable states, a new cooperative learning output feedback control scheme is proposed to guarantee that the system outputs can track nonidentical reference signals with bounded tracking errors. A simulation example is given to demonstrate the effectiveness of the theoretical results.
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
Variable-Structure Control of a Model Glider Airplane
Waszak, Martin R.; Anderson, Mark R.
2008-01-01
A variable-structure control system designed to enable a fuselage-heavy airplane to recover from spin has been demonstrated in a hand-launched, instrumented model glider airplane. Variable-structure control is a high-speed switching feedback control technique that has been developed for control of nonlinear dynamic systems.
Variable structure TITO fuzzy-logic controller implementation for a solar air-conditioning system
Energy Technology Data Exchange (ETDEWEB)
Lygouras, J.N.; Pachidis, Th. [Laboratory of Electronics, School of Electrical and Computer Engineering, Democritus University of Thrace, GR-67100 Xanthi (Greece); Kodogiannis, V.S. [Centre for Systems Analysis, School of Computer Science, University of Westminster, London HA1 3TP (United Kingdom); Tarchanidis, K.N. [Department of Petroleum Technology, Technological Education Institute of Kavala, GR-65404, Kavala (Greece); Koukourlis, C.S. [Laboratory of Telecommunications, School of Electrical and Computer Engineering, Democritus University of Thrace, GR-67100 Xanthi (Greece)
2008-04-15
The design and implementation of a Two-Input/Two-Output (TITO) variable structure fuzzy-logic controller for a solar-powered air-conditioning system is described in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. The first affects the temperature in the generator of the solar air-conditioner, while the second, the pressure in the power loop. The difficulty of Multi-Input/Multi-Output (MIMO) systems control is how to overcome the coupling effects among each degree of freedom. First, a traditional fuzzy-controller has been designed, its output being one of the components of the control signal for each DC motor driver. Secondly, according to the characteristics of the system's dynamics coupling, an appropriate coupling fuzzy-controller (CFC) is incorporated into a traditional fuzzy-controller (TFC) to compensate for the dynamic coupling among each degree of freedom. This control strategy simplifies the implementation problem of fuzzy control, but can also improve the control performance. This mixed fuzzy controller (MFC) can effectively improve the coupling effects of the systems, and this control strategy is easy to design and implement. Experimental results from the implemented system are presented. (author)
Directory of Open Access Journals (Sweden)
Jiao Jiao
2016-11-01
Full Text Available Explored in this paper is the grid impedance effect on the stability of a single-phase grid connected inverter with an LC filter based on an analysis of the inverter output impedance. For a single-phase grid connected inverter, a PI controller is often used to regulate the current injected into the grid. However, the control performance can be influenced when the inverter is connected to a weak grid. Also, the utility grid has background harmonic noise, which can make the injected current distorted. Therefore, analysis of the output impedance of a single-phase grid connected inverter is important for the robustness and stability of the system. By modeling the output impedance of inverter, it can be determined that the proportional gain and integral gain of the controller have an effect on the output impedance. Analytical results show that by adjusting the PI controller parameters, the ability for harmonic reduction and stability of the system can be improved. Simulation and experiments using a 1 kW single-phase grid connected inverter verify the effectiveness of the theoretical analysis.
A Method of MPPT Control Based on Power Variable Step-size in Photovoltaic Converter System
Directory of Open Access Journals (Sweden)
Xu Hui-xiang
2016-01-01
Full Text Available Since the disadvantage of traditional MPPT algorithms of variable step-size, proposed power tracking based on variable step-size with the advantage method of the constant-voltage and the perturb-observe (P&O[1-3]. The control strategy modify the problem of voltage fluctuation caused by perturb-observe method, at the same time, introducing the advantage of constant-voltage method and simplify the circuit topology. With the theoretical derivation, control the output power of photovoltaic modules to change the duty cycle of main switch. Achieve the maximum power stabilization output, reduce the volatility of energy loss effectively, and improve the inversion efficiency[3,4]. Given the result of experimental test based theoretical derivation and the curve of MPPT when the prototype work.
Nugraha, A. T.; Agustinah, T.
2018-01-01
Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
-sequence virtual resistance even in the case of feeding a balanced three-phase load. Furthermore, to adapt to the variety of unbalanced loads, a dynamically-tuned negative-sequence resistance loop is designed, such that a good compromise between the quality of inverter output voltage and the performance of load......The virtual output impedance loop is known as an effective way to enhance the load sharing stability and quality of droop-controlled parallel inverters. This paper proposes an improved design of virtual output impedance loop for parallel three-phase voltage source inverters. In the approach...... sharing can be obtained. Finally, laboratory test results of two parallel three-phase voltage source inverters are shown to confirm the validity of the proposed method....
Directory of Open Access Journals (Sweden)
Mohsen Taherbaneh
2010-01-01
Full Text Available In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panel I-V curves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.
Directory of Open Access Journals (Sweden)
Supachai Klungtong
2017-01-01
Full Text Available This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP, band-reject (BR, low-pass (LP, high-pass (HP, and all-pass (AP functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.
Energy Technology Data Exchange (ETDEWEB)
Berlin, V. V.; Murav' ev, O. A.; Golubev, A. V.
2012-03-15
A mathematical description of a closed control system with allowance for pressure fluctuations in the head system, which makes it possible to analyze the regime stability of orthogonal generating sets at tidal electric power plants when operating in the complete range of heads, outputs, and rotational speeds, and to select parameters of the control system, is obtained for an orthogonal hydroturbine and a generator with a load regulator.
International Nuclear Information System (INIS)
Berlin, V. V.; Murav’ev, O. A.; Golubev, A. V.
2012-01-01
A mathematical description of a closed control system with allowance for pressure fluctuations in the head system, which makes it possible to analyze the regime stability of orthogonal generating sets at tidal electric power plants when operating in the complete range of heads, outputs, and rotational speeds, and to select parameters of the control system, is obtained for an orthogonal hydroturbine and a generator with a load regulator.
Predictive Variable Gain Iterative Learning Control for PMSM
Directory of Open Access Journals (Sweden)
Huimin Xu
2015-01-01
Full Text Available A predictive variable gain strategy in iterative learning control (ILC is introduced. Predictive variable gain iterative learning control is constructed to improve the performance of trajectory tracking. A scheme based on predictive variable gain iterative learning control for eliminating undesirable vibrations of PMSM system is proposed. The basic idea is that undesirable vibrations of PMSM system are eliminated from two aspects of iterative domain and time domain. The predictive method is utilized to determine the learning gain in the ILC algorithm. Compression mapping principle is used to prove the convergence of the algorithm. Simulation results demonstrate that the predictive variable gain is superior to constant gain and other variable gains.
Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.
2018-02-01
This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.
Self-Learning Variable Structure Control for a Class of Sensor-Actuator Systems
Chen, Sanfeng; Li, Shuai; Liu, Bo; Lou, Yuesheng; Liang, Yongsheng
2012-01-01
Variable structure strategy is widely used for the control of sensor-actuator systems modeled by Euler-Lagrange equations. However, accurate knowledge on the model structure and model parameters are often required for the control design. In this paper, we consider model-free variable structure control of a class of sensor-actuator systems, where only the online input and output of the system are available while the mathematic model of the system is unknown. The problem is formulated from an optimal control perspective and the implicit form of the control law are analytically obtained by using the principle of optimality. The control law and the optimal cost function are explicitly solved iteratively. Simulations demonstrate the effectiveness and the efficiency of the proposed method. PMID:22778633
Koliopoulos, T. C.; Koliopoulou, G.
2007-10-01
We present an input-output solution for simulating the associated behavior and optimized physical needs of an environmental system. The simulations and numerical analysis determined the accurate boundary loads and areas that were required to interact for the proper physical operation of a complicated environmental system. A case study was conducted to simulate the optimum balance of an environmental system based on an artificial intelligent multi-interacting input-output numerical scheme. The numerical results were focused on probable further environmental management techniques, with the objective of minimizing any risks and associated environmental impact to protect the quality of public health and the environment. Our conclusions allowed us to minimize the associated risks, focusing on probable cases in an emergency to protect the surrounded anthropogenic or natural environment. Therefore, the lining magnitude could be determined for any useful associated technical works to support the environmental system under examination, taking into account its particular boundary necessities and constraints.
Setälä, Piritta Anniina; Virkkunen, Ilkka Tapani; Kämäräinen, Antti Jaakko; Huhtala, Heini Sisko Annamari; Virta, Janne Severi; Yli-Hankala, Arvi Mikael; Hoppu, Sanna Elisa
2018-05-16
Active compression-decompression (ACD) devices have enhanced end-tidal carbon dioxide (ETCO 2 ) output in experimental cardiopulmonary resuscitation (CPR) studies. However, the results in out-of-hospital cardiac arrest (OHCA) patients have shown inconsistent outcomes, and earlier studies lacked quality control of CPR attempts. We compared manual CPR with ACD-CPR by measuring ETCO 2 output using an audiovisual feedback defibrillator to ensure continuous high quality resuscitation attempts. 10 witnessed OHCAs were resuscitated, rotating a 2 min cycle with manual CPR and a 2 min cycle of ACD-CPR. Patients were intubated and the ventilation rate was held constant during CPR. CPR quality parameters and ETCO 2 values were collected continuously with the defibrillator. Differences in ETCO 2 output between manual CPR and ACD-CPR were analysed using a linear mixed model where ETCO 2 output produced by a summary of the 2 min cycles was included as the dependent variable, the patient as a random factor and method as a fixed effect. These comparisons were made within each OHCA case to minimise confounding factors between the cases. Mean length of the CPR episodes was 37 (SD 8) min. Mean compression depth was 76 (SD 1.3) mm versus 71 (SD1.0) mm, and mean compression rate was 100 per min (SD 6.7) versus 105 per min (SD 4.9) between ACD-CPR and manual CPR, respectively. For ETCO 2 output, the interaction between the method and the patient was significant (P<0.001). ETCO 2 output was higher with manual CPR in 6 of the 10 cases. This study suggests that quality controlled ACD-CPR is not superior to quality controlled manual CPR when ETCO 2 is used as a quantitative measure of CPR effectiveness. NCT00951704; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Optimal multivariable control of a wind turbine with variable speed
Steinbuch, M.
1987-01-01
The control system design for a 310 kW horizontal axis wind energy conversion system with a synchronous generator and DC link is investigated. Because the wind turbine system has multiple inputs (pitch angle, field vollage alld delay angle), and multiple outputs, (speed and power), and because the
Directory of Open Access Journals (Sweden)
Muayad Al-Qaisy
2015-02-01
Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.
Variable pattern contamination control under positive pressure
International Nuclear Information System (INIS)
Philippi, H.M.
1997-01-01
Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs
Variable pattern contamination control under positive pressure
Energy Technology Data Exchange (ETDEWEB)
Philippi, H.M. [Chalk River Labs., Ontario (Canada)
1997-08-01
Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs.
On the functional aspects of variability in postural control
Van Emmerik, Richard E.A.; Van Wegen, Erwin E.H.
2002-01-01
Current research in nonlinear dynamics and chaos theory has challenged traditional perspectives that associate high variability with performance decrement and pathology. It is argued that variability can play a functional role in postural control and that reduction of variability is associated with
Li, L. L.; Jin, C. L.; Ge, X.
2018-01-01
In this paper, the output regulation problem with dissipative property for a class of switched stochastic delay systems is investigated, based on an error-dependent switching law. Under the assumption that none subsystem is solvable for the problem, a sufficient condition is derived by structuring multiple Lyapunov-Krasovskii functionals with respect to multiple supply rates, via designing error feedback regulators. The condition is also established when dissipative property reduces to passive property. Finally, two numerical examples are given to demonstrate the feasibility and efficiency of the present method.
Li, Cong; Jing, Hui; Wang, Rongrong; Chen, Nan
2018-05-01
This paper presents a robust control schema for vehicle lateral motion regulation under unreliable communication links via controller area network (CAN). The communication links between the system plant and the controller are assumed to be imperfect and therefore the data packet dropouts occur frequently. The paper takes the form of parallel distributed compensation and treats the dropouts as random binary numbers that form Bernoulli distribution. Both of the tire cornering stiffness uncertainty and external disturbances are considered to enhance the robustness of the controller. In addition, a robust H∞ static output-feedback control approach is proposed to realize the lateral motion control with relative low cost sensors. The stochastic stability of the closed-loop system and conservation of the guaranteed H∞ performance are investigated. Simulation results based on CarSim platform using a high-fidelity and full-car model verify the effectiveness of the proposed control approach.
International Nuclear Information System (INIS)
Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J.-P.
2017-01-01
Highlights: • We present a fuzzy smart controller for hybrid renewable and conventional energy system. • The rules are based on human intelligence and implemented in the smart controller. • Efficient tracking capability of the proposed controller is proofed in this paper by an example. • Excess produced renewable energy is converted to hydrogen for household use . • Considerable electric grid energy saving is highlighted in the proposed controller system. - Abstract: This study concerns the conception and development of an efficient multi input-output fuzzy logic smart controller, to manage the energy flux of a sustainable hybrid power system, based on renewable power sources, integrating solar panels and a wind turbine associated with storage, applied to a typical residential habitat. In the suggested topology, the energy surplus is redirected to an electrolysis system to produce hydrogen suitable for household utilities. To assume a constant access to electricity in case of consumption peak, connection to the grid is also considered as an exceptional rescue resource. The objective of the presented controller is to exploit instantaneously the produced renewable electric energy and insure savings of electric grid energy. The proposed multi input-output fuzzy logic smart controller has been achieved and verified, outcome switches command signals are discussed and the renewable energy system integration ratio is highlighted.
International Nuclear Information System (INIS)
Park, Moon Ghu; Cho, Nam Zin
1993-01-01
A Nonlinear model-based Hybrid Controller (NHC) is developed which consists of the adaptive proportional-integral-feedforward (PIF) gains and variable structure controller. The controller has the robustness against modeling uncertainty and is applied to the trajectory tracking control of single-input, single-output nonlinear systems. The essence of the scheme is to divide the control into four different terms. Namely, the adaptive P-I-F gains and variable structure controller are used to accomplish the specific control actions by each terms. The robustness of the controller is guaranteed by the feedback of estimated uncertainty and the performance specification given by the adaptation of PIF gains using the second method of Lyapunov. The variable structure controller is incorporated to regulate the initial peak of the tracking error during the parameter adaptation is not settled yet. The newly developed NHC method is applied to the power tracking control of a nuclear reactor and the simulation results show great improvement in tracking performance compared with the conventional model-based control methods. (Author)
DEFF Research Database (Denmark)
Kim, Jaehong; Guerrero, Josep M.; Rodriguez, Pedro
2011-01-01
A decentralized power control method in a singlephase flexible acmicrogrid is proposed in this paper. Droop control is widely considered to be a good choice for managing the power flows between microgrid converters in a decentralized manner. In this work, to enhance the power loop dynamics, droop...... control combined with a derivative controller is used in islanded mode. In grid-connected mode, to strictly control the power factor in the point of common coupling (PCC), a droop method combined with an integral controller is adopted. Small-signal analysis of the proposed control is shown both...... in islanded and grid-connected mode. The proposed control scheme does not need any mode switching action. Thus, it is relatively simple in control for full mode of operation. Smooth transitions between the operation modes and the effectiveness of the proposed control scheme are evaluated through simulation...
Mode control in a high gain relativistic klystron amplifier with 3 GW output power
Wu, Yang; Xie, Hong-Quan; Xu, Zhou
2014-01-01
Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.
Control of a hydraulically actuated continuously variable transmission
Pesgens, M.F.M.; Vroemen, B.G.; Stouten, B.; Veldpaus, F.E.; Steinbuch, M.
2006-01-01
Vehicular drivelines with hierarchical powertrain control require good component controller tracking, enabling the main controller to reach the desired goals. This paper focuses on the development of a transmission ratio controller for a hydraulically actuated metal push-belt continuously variable
A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process
Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan
2015-12-01
A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.
Control approach development for variable recruitment artificial muscles
Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew
2016-04-01
This study characterizes hybrid control approaches for the variable recruitment of fluidic artificial muscles with double acting (antagonistic) actuation. Fluidic artificial muscle actuators have been explored by researchers due to their natural compliance, high force-to-weight ratio, and low cost of fabrication. Previous studies have attempted to improve system efficiency of the actuators through variable recruitment, i.e. using discrete changes in the number of active actuators. While current variable recruitment research utilizes manual valve switching, this paper details the current development of an online variable recruitment control scheme. By continuously controlling applied pressure and discretely controlling the number of active actuators, operation in the lowest possible recruitment state is ensured and working fluid consumption is minimized. Results provide insight into switching control scheme effects on working fluids, fabrication material choices, actuator modeling, and controller development decisions.
Directory of Open Access Journals (Sweden)
Zhe Dong
2014-11-01
Full Text Available Small modular reactors (SMRs are those nuclear fission reactors with electrical output powers of less than 300 MWe. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR has been seen as one of the best candidates for building SMR-based nuclear plants with high safety-level and economical competitive power. Power-level control is crucial in providing grid-appropriation for all types of SMRs. Usually, there exists nonlinearity, parameter uncertainty and control input saturation in the SMR-based plant dynamics. Motivated by this, a novel saturated adaptive output-feedback power-level control of the MHTGR is proposed in this paper. This newly-built control law has the virtues of having relatively neat form, of being strong adaptive to parameter uncertainty and of being able to compensate control input saturation, which are given by constructing Lyapunov functions based upon the shifted-ectropies of neutron kinetics and reactor thermal-hydraulics, giving an online tuning algorithm for the controller parameters and proposing a control input saturation compensator respectively. It is proved theoretically that input-to-state stability (ISS can be guaranteed for the corresponding closed-loop system. In order to verify the theoretical results, this new control strategy is then applied to the large-range power maneuvering control for the MHTGR of the HTR-PM plant. Numerical simulation results show not only the relationship between regulating performance and control input saturation bound but also the feasibility of applying this saturated adaptive control law practically.
Saxena, Samveg
Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs
Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)
2000-01-01
A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.
Hamdy, M; Hamdan, I
2015-07-01
In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Tore Bakka
2012-01-01
Full Text Available The problem of robust ℋ∞ dynamic output feedback control design with pole placement constraints is studied for a linear parameter-varying model of a floating wind turbine. A nonlinear model is obtained and linearized using the FAST software developed for wind turbines. The main contributions of this paper are threefold. Firstly, a family of linear models are represented based on an affine parameter-varying model structure for a wind turbine system. Secondly, the bounded parameter-varying parameters are removed using upper bounded inequalities in the control design process. Thirdly, the control problem is formulated in terms of linear matrix inequalities (LMIs. The simulation results show a comparison between controller design based on a constant linear model and a controller design for the linear parameter-varying model. The results show the effectiveness of our proposed design technique.
Variable setpoint as a relaxing component in physiological control.
Risvoll, Geir B; Thorsen, Kristian; Ruoff, Peter; Drengstig, Tormod
2017-09-01
Setpoints in physiology have been a puzzle for decades, and especially the notion of fixed or variable setpoints have received much attention. In this paper, we show how previously presented homeostatic controller motifs, extended with saturable signaling kinetics, can be described as variable setpoint controllers. The benefit of a variable setpoint controller is that an observed change in the concentration of the regulated biochemical species (the controlled variable) is fully characterized, and is not considered a deviation from a fixed setpoint. The variation in this biochemical species originate from variation in the disturbances (the perturbation), and thereby in the biochemical species representing the controller (the manipulated variable). Thus, we define an operational space which is spanned out by the combined high and low levels of the variations in (1) the controlled variable, (2) the manipulated variable, and (3) the perturbation. From this operational space, we investigate whether and how it imposes constraints on the different motif parameters, in order for the motif to represent a mathematical model of the regulatory system. Further analysis of the controller's ability to compensate for disturbances reveals that a variable setpoint represents a relaxing component for the controller, in that the necessary control action is reduced compared to that of a fixed setpoint controller. Such a relaxing component might serve as an important property from an evolutionary point of view. Finally, we illustrate the principles using the renal sodium and aldosterone regulatory system, where we model the variation in plasma sodium as a function of salt intake. We show that the experimentally observed variations in plasma sodium can be interpreted as a variable setpoint regulatory system. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Energy Technology Data Exchange (ETDEWEB)
Aliprantis, D.C.; Papathanassiou, S.A.; Papadopoulos, M.P.; Kladas, A.G. [Purdue University, Electrical and Computer Engineering, West Lafayette, IN (United States)
2000-08-01
In this paper the operation of a variable-speed, stall regulated wind turbine equipped with a permanent magnet synchronous generator (PMSG) is examined. The emphasis is placed on the analysis of the electric part of the system, i.e. the electrical generator, the power electronics converters and the control. The operational characteristics of the machine are investigated through a series of computer simulations and the speed control system is designed to maximize the power output and achieve a smooth torque and power profile. (orig.)
Directory of Open Access Journals (Sweden)
Sanjeevikumar Padmanaban
2017-01-01
Full Text Available Classical DC-DC converters used in high voltage direct current (HVDC power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions.
Ostroff, A. J.; Hueschen, R. M.
1984-01-01
The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition for landing, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot time to make longer range decisions. This paper shows a design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Single control element failures are allowed in three of the four controls. The four controls design and failure cases are analyzed by means of a digital airplane simulation, with regard to tracking capability and ability to overcome severe windshear and turbulence during the aproach and landing phase of flight.
Feedforward control strategy for the state-decoupling Stand-alone UPS with LC output filter
DEFF Research Database (Denmark)
Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.
2017-01-01
. In order to further increase the load current disturbance rejection capability of the state-decoupling in UPS system, a feedforward control strategy is proposed. In addition, the design principle for the current and voltage regulators are discussed. Simulation and experimental results are provided......In this paper, the disturbance rejection performance of the cascaded control strategy for UPS system is investigated. The comparison of closed loop system performance between conventional cascaded control (CCC) strategy and state-decoupling cascaded control (SDCC) strategy are further explored...
Effects of hydrodynamic interactions and control within a point absorber array on electrical output
DEFF Research Database (Denmark)
Nambiar, Anup J.; Forehand, David I.M.; Kramer, Morten
2015-01-01
the WECs and the total power extracted by the array can be modified. In this paper, different resistive and reactive PTO control strategies, applied to a time-domain wave-to-wire model of a three-float Danish Wavestar device, are compared. The time-domain modelling approach, as opposed to the frequency......-coordinated global array control (matrix control) was found to maximise the time-averaged power generated by the array. Fully-coordinated control potentially enables wave farm developers and device designers to explore the opportunities of connecting and maximising energy yields from installations...
Pitch Angle Control for Variable Speed Wind Turbines
DEFF Research Database (Denmark)
Chen, Zhe; Zhang, Jianzhong; Cheng, M
2008-01-01
Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...
Lam, H K
2012-02-01
This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.
Persis, Claudio De; Jayawardhana, Bayu
2012-01-01
The role of internal model principle is investigated in this paper in the context of collective synchronization and formation control problems. In the collective synchronization problem for nonlinear systems, we propose distributed control laws for passive systems which synchronize to the solution
Adaptive Fuzzy Output Regulation for Formation Control of Unmanned Surface Vehicles
DEFF Research Database (Denmark)
Li, Shaobao; Er, Meng Joo; Wang, Ning
2017-01-01
In this paper, the formation control problem of unmanned surface vehicles (USVs) is investigated. Unlike the classical formation control problem where the reference signal is required to be second-order differentiable with respect to time, we consider a more general autonomous dynamic system...
Variable structure unit vector control of electric power generation ...
African Journals Online (AJOL)
A variable structure Automatic Generation Control (VSAGC) scheme is proposed in this paper for the control of a single area power system model dominated by steam powered electric generating plants. Unlike existing, VSAGC scheme where the selection of the control function is based on a trial and error procedure, the ...
Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji
This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.
Limit cycles and stiffness control with variable stiffness actuators
Carloni, Raffaella; Marconi, L.
2012-01-01
Variable stiffness actuators realize highly dynamic systems, whose inherent mechanical compliance can be properly exploited to obtain a robust and energy-efficient behavior. The paper presents a control strategy for variable stiffness actuators with the primarily goal of tracking a limit cycle
Diurnal urinary volume and uranium output in uranium workers and unexposed controls
International Nuclear Information System (INIS)
Medley, D.W.; Kathren, R.L.; Miller, A.G.
1994-01-01
Volume and uranium content were determined in individual urine voids over a 76-h (3.25-d) period from six unexposed normal male subjects and three male uranium workers. Uranium analyses were accomplished by a newly developed high-precision kinetic phosphorescence analysis technique with a lower level of detection of 0.007 ng mL -1 . Urinary uranium concentrations in individual voids varied by a factor of 2 or less for any one unexposed subject, although there was an order of magnitude variation among the group of unexposed men. The fractional urinary volume excreted in the open-quotes standardclose quotes so-called simulated 24-h sample was the same for both the unexposed and exposed groups and averaged 0.42 ± 0.13 of the total daily urine volume. The fraction of uranium in the simulated 24-h samples was 0.43 ± 0.15 in the unexposed group but only 0.31 ± 0.13 in the uranium worker group, suggesting that the use of the simulated 24-h urine sample would underestimate the total daily urinary uranium output by approximately a factor of 2 in the uranium workers. Daily urinary excretion relative to intake from drinking water (essentially equal to the gastrointestinal uptake fraction) among the unexposed group ranged from 0.002-0.028, averaging 0.011 ± 0.008, with an indication that the gastrointestinal uptake factor was inversely proportional to total intake via drinking water. 11 refs., 1 fig., 6 tabs
Zha, Wenting; Zhai, Junyong; Fei, Shumin
2013-07-01
This paper investigates the problem of output feedback stabilization for a class of high-order feedforward nonlinear systems with time-varying input delay. First, a scaling gain is introduced into the system under a set of coordinate transformations. Then, the authors construct an observer and controller to make the nominal system globally asymptotically stable. Based on homogeneous domination approach and Lyapunov-Krasovskii functional, it is shown that the closed-loop system can be rendered globally asymptotically stable by the scaling gain. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Xubin Ping
2015-01-01
Full Text Available For the quasi-linear parameter varying (quasi-LPV system with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC is investigated. The estimation error set is represented by a zonotope and refreshed by the zonotopic set-membership estimation method. By properly refreshing the estimation error set online, the bounds of true state at the next sampling time can be obtained. Furthermore, the feasibility of the main optimization problem at the next sampling time can be determined at the current time. A numerical example is given to illustrate the effectiveness of the approach.
Development of magneto-rheologial fluid (MRF) based clutch for output torque control of AC motors
Nguyen, Q. Hung; Do, H. M. Hieu; Nguyen, V. Quoc; Nguyen, N. Diep; Le, D. Thang
2018-03-01
In industry, the AC motor is widely used because of low price, power availability, low cost maintenance. The main disadvantages of AC motors compared to DC motors are difficulty in speed and torque control, requiring expensive controllers with complex control algorithms. This is the basic limitations in the widespread adoption of AC motor systems for industrial automation. One feasible solution for AC motor control is using MRF (magneto-rheological fluid) based clutches (shortly called MR clutches) Although there have been many studies on MR clutches, most of these clutches used traditional configuration with coils wound on the middle cylindrical part and a compotator is used to supply power to the coils. Therefore, this type of MR clutches possesses many disadvantages such as high friction and unstable applied current due to commutator, complex structure which causes difficulty in manufacture, assembly, and maintenance. In addition, the bottleneck problem of magnetic field is also a challenging issue. In this research, we will develop a new type of MR clutches that overcomes the abovementioned disadvantages of traditional MR clutches and more suitable for application in controlling of AC motor. Besides, in this study, speed and torque control system for AC motors using developed MR clutches is designed and experimental validated.
International Nuclear Information System (INIS)
Kamalzare, Mahmoud; Johnson, Erik A; Wojtkiewicz, Steven F
2014-01-01
Designing control strategies for smart structures, such as those with semiactive devices, is complicated by the nonlinear nature of the feedback control, secondary clipping control and other additional requirements such as device saturation. The usual design approach resorts to large-scale simulation parameter studies that are computationally expensive. The authors have previously developed an approach for state-feedback semiactive clipped-optimal control design, based on a nonlinear Volterra integral equation that provides for the computationally efficient simulation of such systems. This paper expands the applicability of the approach by demonstrating that it can also be adapted to accommodate more realistic cases when, instead of full state feedback, only a limited set of noisy response measurements is available to the controller. This extension requires incorporating a Kalman filter (KF) estimator, which is linear, into the nominal model of the uncontrolled system. The efficacy of the approach is demonstrated by a numerical study of a 100-degree-of-freedom frame model, excited by a filtered Gaussian random excitation, with noisy acceleration sensor measurements to determine the semiactive control commands. The results show that the proposed method can improve computational efficiency by more than two orders of magnitude relative to a conventional solver, while retaining a comparable level of accuracy. Further, the proposed approach is shown to be similarly efficient for an extensive Monte Carlo simulation to evaluate the effects of sensor noise levels and KF tuning on the accuracy of the response. (paper)
Directory of Open Access Journals (Sweden)
Tran Thai Trung
2014-10-01
Full Text Available Since the penetration level of wind energy is continuously increasing, the negative impact caused by the fluctuation of wind power output needs to be carefully managed. This paper proposes a novel real-time coordinated control algorithm based on a wavelet transform to mitigate both short-term and long-term fluctuations by using a hybrid energy storage system (HESS. The short-term fluctuation is eliminated by using an electric double-layer capacitor (EDLC, while the wind-HESS system output is kept constant during each 10-min period by a Ni-MH battery (NB. State-of-charge (SOC control strategies for both EDLC and NB are proposed to maintain the SOC level of storage within safe operating limits. A ramp rate limitation (RRL requirement is also considered in the proposed algorithm. The effectiveness of the proposed algorithm has been tested by using real time simulation. The simulation model of the wind-HESS system is developed in the real-time digital simulator (RTDS/RSCAD environment. The proposed algorithm is also implemented as a user defined model of the RSCAD. The simulation results demonstrate that the HESS with the proposed control algorithm can indeed assist in dealing with the variation of wind power generation. Moreover, the proposed method shows better performance in smoothing out the fluctuation and managing the SOC of battery and EDLC than the simple moving average (SMA based method.
Energy Technology Data Exchange (ETDEWEB)
Sindelar, R.
1999-07-01
Hitherto, the electrical output of turbo generators has generally been controlled by means of power output controllers. Load changes caused, for example, by changeovers to isolated unit operation where the load requirements are unknown at first, often resulted in `wrong way control` effects that sometimes even caused entire turbine generator sets to fail. Controlling the internal turbine power makes it possible to avoid such consequences. (orig.) [Deutsch] Die elektrische Leistung eines Turbogenerators wurde bislang durch Leistungsregler geregelt. Im Falle einer Lastaenderung, wie sie beispielsweise beim Uebergang in den Betrieb auf ein Teilnetz (Insel-) mit vorher unbekannter Last vorkommt, trat ein Falschregeleffekt auf. Auf diesen wurden bereits Turbosatzausfaelle zurueckgefuehrt. Wird anstelle der elektrischen Leistung allerdings die innere Turbinenleistung geregelt, so tritt der Falschregeleffekt nicht ein. (orig.)
Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi
This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.
Active surge control for variable speed axial compressors.
Lin, Shu; Yang, Chunjie; Wu, Ping; Song, Zhihuan
2014-09-01
This paper discusses active surge control in variable speed axial compressors. A compression system equipped with a variable area throttle is investigated. Based on a given compressor model, a fuzzy logic controller is designed for surge control and a proportional speed controller is used for speed control. The fuzzy controller uses measurements of the change of pressure rise as well as the change of mass flow to determine the throttle opening. The presented approach does not require the knowledge of system equilibrium or the surge line. Numerical simulations show promising results. The proposed fuzzy logic controller performs better than a backstepping controller and is capable to suppress surge at different operating points. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Output feedback control of heat transport mechanisms in parabolic distributed solar collectors
Elmetennani, Shahrazed; Kirati, Taous Meriem Laleg
2016-01-01
. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a
Model Predictive Current Control for High-Power Grid-Connected Converters with Output LCL Filter
DEFF Research Database (Denmark)
Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro
2009-01-01
A model predictive control strategy for a highpower, grid connected 3-level neutral clamped point converter is presented. Power losses constraints set a limit on commutation losses so reduced switching frequency is required, thus producing low frequency current harmonics. To reduce these harmonics...
Observer based output-feedback control to eliminate rorsional drill-string vibrations
Vromen, T.G.M.; van de Wouw, N.; Doris, A.; Astrid, P.; Nijmeijer, H.
2014-01-01
Torsional stick-slip vibrations decrease the performance and reliability of drilling systems used for the exploration of energy and mineral resources. In this work, we present the design of a nonlinear observer-based outputfeedback control strategy to eliminate these vibrations. We apply the
Controlling the power output of a nuclear reactor with fuzzy logic
Ruan, D.; Wal, A.J. van der
1998-01-01
The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations
Controlling the Power Output of a Nuclear Reactor with Fuzzy Logic
Ruan, D.; Wal, A.J. van der
1997-01-01
The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations
Variable speed control for Vertical Axis Wind Turbine
DEFF Research Database (Denmark)
Galinos, Christos; Larsen, Torben J.
A robust variable speed control for vertical axis wind turbine applications is implemented. It is a PI rotor speed controller based on an induction generator model operated at variable frequency. The generator dynamics are approximated by a first order differential equation with a prescribed slip....... In order to allow variability in the rotor speed an inverter is assumed which changes the nominal generator speed. Below rated power the optimum tip speed ratio is tracked, while above the power is constrained to rated. The wind speed which is needed in the control it is considered as a known signal...... the Inflow project. The investigation of the VAWT performance under different control parameters such as the PI gains has been performed by Christos Galinos. Deterministic and turbulent wind speed steps of 2 m/s from 6 m/s to 24 m/s and back to 12 m/s are applied. The controller gives smooth transient...
Russo, Massimo; Tadros, Alfred; Flowers, Woodie; Zeltzer, David
1991-01-01
The advent of high resolution, physical model based computer graphics has left a gap in the design of input/output technology appropriate for interacting with such complex virtual world models. Since virtual worlds consist of physical models, it is appropriate to output the inherent force information necessary for the simulation to the user. The detailed design, construction, and control of a three degree freedom force output joystick will be presented. A novel kinematic design allows all three axes to be uncoupled, so that the system inertia matrix is diagonal. The two planar axes are actuated through an offset gimbal, and the third through a sleeved cable. To compensate for friction and inertia effects, this transmission is controlled by a force feedforward and a closed force feedback proportional loop. Workspace volume is a cone of 512 cubic inches, and the device bandwidth is maximized at 60 Hz for the two planar and 30 Hz for the third axis. Each axis is controlled by a motor/proportional magnetic particle brake combination fixed to the base. The innovative use of motors and brakes allows objects with high resistive torque requirements to be simulated without the stability and related safety issues involved with high torque, energy storing motors alone. Position, velocity, and applied endpoint force are sensed directly. Different control strategies are discussed and implemented, with an emphasis on how virtual environment force information, generated by the MIT Media Lab Computer Graphics and Animation Group BOLIO system, is transmitted to the device controller. The design constraints for a kinesthetic force feedback device can be summarized as: How can the symbiosis between the sense of presence in the virtual environment be maximized without compromising the interaction task under the constraints of the mechanical device limitations? Research in this field will yield insights to the optimal human sensory feedback mix for a wide spectrum of control and
Directory of Open Access Journals (Sweden)
Chih-Lung Shen
2013-01-01
Full Text Available A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-frequency transformer with high turns ratio is used to increase the voltage. In addition, the system uses the car battery as dc power supply. By regulating the duty cycle of the main switch in the buck converter, the output voltage of the buck converter can be linearly adjusted so as to obtain a specific high voltage for ER. The driving system is self-excited; that is, no additional external driving circuit is required. Thus, it reduces cost and simplifies system structure. A prototype version of the actual product is studied to measure and evaluate the key waveforms. The feasibility of the proposed system is verified based on experimental results.
Program for control and editing the output data of spiral reader
International Nuclear Information System (INIS)
Yamburenko, V.S.
1983-01-01
The program forming the magnetic tape with outpug data of Spiral Reader from that one containing initial data for computing on big computers is desribed. The program is controlled by ''operator-computer'' dialogue using the HT-340 display. During rewriting the data structure and quality are checked. Manual and automatic modes of rewriting are possible. The editing mode permits to create easily arrays of data of a given format. The magnetic tapes format and data structure are also described
Resistance Torque Based Variable Duty-Cycle Control Method for a Stage II Compressor
Zhong, Meipeng; Zheng, Shuiying
2017-07-01
The resistance torque of a piston stage II compressor generates strenuous fluctuations in a rotational period, and this can lead to negative influences on the working performance of the compressor. To restrain the strenuous fluctuations in the piston stage II compressor, a variable duty-cycle control method based on the resistance torque is proposed. A dynamic model of a stage II compressor is set up, and the resistance torque and other characteristic parameters are acquired as the control targets. Then, a variable duty-cycle control method is applied to track the resistance torque, thereby improving the working performance of the compressor. Simulated results show that the compressor, driven by the proposed method, requires lower current, while the rotating speed and the output torque remain comparable to the traditional variable-frequency control methods. A variable duty-cycle control system is developed, and the experimental results prove that the proposed method can help reduce the specific power, input power, and working noise of the compressor to 0.97 kW·m-3·min-1, 0.09 kW and 3.10 dB, respectively, under the same conditions of discharge pressure of 2.00 MPa and a discharge volume of 0.095 m3/min. The proposed variable duty-cycle control method tracks the resistance torque dynamically, and improves the working performance of a Stage II Compressor. The proposed variable duty-cycle control method can be applied to other compressors, and can provide theoretical guidance for the compressor.
Energy Technology Data Exchange (ETDEWEB)
Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr [Université Abbès Laghrour, Laboratoire des capteurs, Instrumentations et procédés (LCIP), Khenchela (Algeria); University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Mohamadi, Tayeb [University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Gourmat, Laïd [Université Abbès Laghrour, Khenchela, 40000 (Algeria)
2016-07-25
In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.
Automatic Welding Control Using a State Variable Model.
1979-06-01
A-A10 610 NAVEAL POSTGRADUATE SCH4O.M CEAY CA0/ 13/ SAUTOMATIC WELDING CONTROL USING A STATE VARIABLE MODEL.W()JUN 79 W V "my UNCLASSIFIED...taverse Drive Unit // Jbint Path /Fixed Track 34 (servomotor positioning). Additional controls of heave (vertical), roll (angular rotation about the
In search of control variables : A systems approach
Dalenoort, GJ
1997-01-01
Motor processes cannot be modeled by a single (unified) model. Instead, a number of models at different levels of description are needed. The concepts of control and control variable only make sense at the functional level. A clear distinction must be made between external models and internal
Replacement of input/output cables of the digital control computers at Gentilly 2
International Nuclear Information System (INIS)
Melancon, P.; Lafreniere, P.
1991-01-01
During the 1990 annual outage at Gentilly 2 the Preventive Maintenance Program inspections on the digital control computers (DCCs) revealed an alarming degradation of cable insulation at several locations. It was found that approximately 20% of the cable connector assemblies inspected showed signs of degradation. These findings raised the concern of an increased risk of random short-circuit faults at the very heart of the station control system. Given the excellent reliability of the Gentilly 2 DCCs and their inherent design robustness, it was decided to proceed with the replacement of all of the complete cable connector assemblies within a reasonable time frame. It is planned to replace all assemblies of DCCX and DCCY during the 1991 annual outage. The degradation of the insulation was traced to a material incompatibility problem originating during cable manufacture. A migration of the plastifier contained in the PVC of the transparent sheaths, surrounding many of the cable conductors to terminal block connections, resulted in the chemical attack of the conductor insulation. This paper summarizes the problem identification and disposition process followed by Gentilly 2 Technical Unit personnel
Exporting Variables in a Hierarchically Distributed Control System
Energy Technology Data Exchange (ETDEWEB)
Chamizo Llatas, M
1995-07-01
We describe the Remote Variable Access Service (RVAS), a network service developed and used in the distributed control and monitoring system of the TJ-II Heliac, which is under construction at CIEMAT (Madrid, Spain) and devoted to plasma studies in the nuclear fusion field. The architecture of the TJ-II control system consists of one central Sun workstation Sparc 10 and several autonomous subsystems based on VME crates with embedded processors running the OS-9 (V.24) real time operating system. The RVAS service allows state variables in local control processes running in subsystems to be exported to remote processes running in the central control workstation. Thus we extend the concept of exporting of file systems in UNIX machines to variables in processes running in different machines. (Author) 6 refs.
Exporting Variables in a Hierarchically Distributed Control System
International Nuclear Information System (INIS)
Diaz Martin; Martinez Laso, L.
1995-01-01
We describe the Remote Variable Access Service (RVAS), a network service developed and use in the distributed control and monitoring system of the TJ-II Heliac, which is under construction at CIEMAT (Madrid, Spain) and devoted to plasma studies in the nuclear fusion field. The architecture of the TJ-II control system consists of one central Sun workstation Sparc 10 and several autonomous subsystems based on VME crates with embedded processors running the os-9 (V.24) real time operating system. The RVAS service allows state variables in local control processes running in subsystems to be exported to remote processes running in the central control workstation. Thus we extend the concept of exporting of file systems in UNIX machines to variables in processes running in different machines. (Author)
Exporting Variables in a Hierarchically Distributed Control System
International Nuclear Information System (INIS)
Chamizo Llatas, M.
1995-01-01
We describe the Remote Variable Access Service (RVAS), a network service developed and used in the distributed control and monitoring system of the TJ-II Heliac, which is under construction at CIEMAT (Madrid, Spain) and devoted to plasma studies in the nuclear fusion field. The architecture of the TJ-II control system consists of one central Sun workstation Sparc 10 and several autonomous subsystems based on VME crates with embedded processors running the OS-9 (V.24) real time operating system. The RVAS service allows state variables in local control processes running in subsystems to be exported to remote processes running in the central control workstation. Thus we extend the concept of exporting of file systems in UNIX machines to variables in processes running in different machines. (Author) 6 refs
Control of variable speed variable pitch wind turbine based on a disturbance observer
Ren, Haijun; Lei, Xin
2017-11-01
In this paper, a novel sliding mode controller based on disturbance observer (DOB) to optimize the efficiency of variable speed variable pitch (VSVP) wind turbine is developed and analyzed. Due to the highly nonlinearity of the VSVP system, the model is linearly processed to obtain the state space model of the system. Then, a conventional sliding mode controller is designed and a DOB is added to estimate wind speed. The proposed control strategy can successfully deal with the random nature of wind speed, the nonlinearity of VSVP system, the uncertainty of parameters and external disturbance. Via adding the observer to the sliding mode controller, it can greatly reduce the chattering produced by the sliding mode switching gain. The simulation results show that the proposed control system has the effectiveness and robustness.
Adaptive Torque Control of Variable Speed Wind Turbines
Energy Technology Data Exchange (ETDEWEB)
Johnson, K. E.
2004-08-01
The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.
Energy Technology Data Exchange (ETDEWEB)
Imai, Y.; Takahashi, t.; Morita, A. [Mitsubishi Electric Corp., Tokyo (Japan)
1998-03-31
Feedback control has been used to stabilize the steady-state output power of a CO2 laser to overcome the problems caused by the change in the temperature/deterioration of CO2 gas. The transient response, however, is as slow as a few hundred milliseconds because of the slow dynamics of a thermopile power sensor. When machining conditions of a CO2 laser are changed, this rather slow response requires an extra dwell time, resulting in low productivity of the machining. To cope with this problem, the authors have developed adaptive feedforward control for a CO2 laser in addition to conventional feedback control. The model of a CO2 laser is described as a gain, which is varied by the setting parameters; laser power, pulse frequency and duty factor, as well as gas conditions. In this paper, two new variables, effective discharge power and threshold discharge power, are introduced to obtain a compact and adjustable model. With the proposed control system, the step response time of a laser power is reduced to less than ten milliseconds without overshoot, and can be set to desired constant time. The effects of such a fast and stable response on the machining speed and machining quality are examined. The experimental results show that for thin metal line-cutting, neither the melt-off area nor dross is observed even in the no-dwell time case. For thin metal hole-cutting, the machining speed is improved by 30%. 11 refs., 14 figs., 3 tabs.
Modelling for Fuel Optimal Control of a Variable Compression Engine
Nilsson, Ylva
2007-01-01
Variable compression engines are a mean to meet the demand on lower fuel consumption. A high compression ratio results in high engine efficiency, but also increases the knock tendency. On conventional engines with fixed compression ratio, knock is avoided by retarding the ignition angle. The variable compression engine offers an extra dimension in knock control, since both ignition angle and compression ratio can be adjusted. The central question is thus for what combination of compression ra...
International Nuclear Information System (INIS)
Charnock, P.; Jones, R.; Fazakerley, J.; Wilde, R.; Dunn, A. F.
2011-01-01
Data are currently being collected from hospital radiology information systems in the North West of the UK for the purposes of both clinical audit and patient dose audit. Could these data also be used to satisfy quality assurance (QA) requirements according to UK guidance? From 2008 to 2009, 731 653 records were submitted from 8 hospitals from the North West England. For automatic exposure control QA, the protocol from Inst. of Physics and Engineering in Medicine (IPEM) report 91 recommends that milli amperes per second can be monitored for repeatability and reproducibility using a suitable phantom, at 70-81 kV. Abdomen AP and chest PA examinations were analysed to find the most common kilo voltage used with these records then used to plot average monthly milli amperes per second with time. IPEM report 91 also recommends that a range of commonly used clinical settings is used to check output reproducibility and repeatability. For each tube, the dose area product values were plotted over time for two most common exposure factor sets. Results show that it is possible to do performance checks of AEC systems; however more work is required to be able to monitor tube output performance. Procedurally, the management system requires work and the benefits to the workflow would need to be demonstrated. (authors)
VACOSS - variable coding seal system for nuclear material control
International Nuclear Information System (INIS)
Kennepohl, K.; Stein, G.
1977-12-01
VACOSS - Variable Coding Seal System - is intended to seal: rooms and containers with nuclear material, nuclear instrumentation and equipment of the operator, instrumentation and equipment at the supervisory authority. It is easy to handle, reusable, transportable and consists of three components: 1. Seal. The light guide in fibre optics with infrared light emitter and receiver serves as lead. The statistical treatment of coded data given in the seal via adapter box guarantees an extremely high degree of access reliability. It is possible to store the data of two undue seal openings together with data concerning time and duration of the opening. 2. The adapter box can be used for input or input and output of data indicating the seal integrity. 3. The simulation programme is located in the computing center of the supervisory authority and permits to determine date and time of opening by decoding the seal memory data. (orig./WB) [de
Observer Backstepping Control for Variable Speed Wind Turbine
DEFF Research Database (Denmark)
Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens
2013-01-01
. The nonlinear controller aims at regulating the generator torque such that an optimal tip-speed ratio can be obtained. Simply relying on the measured rotor angular velocity the proposed observer backstepping controller guarantees global asymptotic tracking of the desired trajectory while maintaining a globally......This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torque...
Devasia, Santosh
1996-01-01
A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.
A novel multi-drive electric vehicle system control based on multi-input multi-output PID controller
Directory of Open Access Journals (Sweden)
Gasbaoui Brahim
2012-01-01
Full Text Available In-wheel-motor drive electric vehicle (EV is an innovative configuration of the modern EV, in which each wheel is driven individually by an electric motor. The classical traction motor control called the Independent Machine Control Structure (IMCS using a PID speed controller presents major inconveniences in modern EV safety, when the proposed control can not ensure stability of the EV with differing road topology and variations of speed. A new approach is proposed for a control of a two-in-wheel-motor drive EV, called the Maximum Control Structure MCS. This is based on a multivariable PID (MIMO-PID strategy, which is employed to estimate the linear speed error of each of the two back driving wheels, when the error of each wheel is taken into account in the other speed control computations. Simulation results show that the new control system presents increased safety for the EVs compared with the IMCS strategy and can maintain the error slip rate within the optimal range, ensuring the stability of the vehicle either in a straight or a curved line.
Higham, Timothy E; Russell, Anthony P
2010-02-23
Many animals lose and regenerate appendages, and tail autotomy in lizards is an extremely well-studied example of this. Whereas the energetic, ecological and functional ramifications of tail loss for many lizards have been extensively documented, little is known about the behaviour and neuromuscular control of the autotomized tail. We used electromyography and high-speed video to quantify the motor control and movement patterns of autotomized tails of leopard geckos (Eublepharis macularius). In addition to rhythmic swinging, we show that they exhibit extremely complex movement patterns for up to 30 min following autotomy, including acrobatic flips up to 3 cm in height. Unlike the output of most central pattern generators (CPGs), muscular control of the tail is variable and can be arrhythmic. We suggest that the gecko tail is well suited for studies involving CPGs, given that this spinal preparation is naturally occurring, requires no surgery and exhibits complex modulation.
Internal Interdecadal Variability in CMIP5 Control Simulations
Cheung, A. H.; Mann, M. E.; Frankcombe, L. M.; England, M. H.; Steinman, B. A.; Miller, S. K.
2015-12-01
Here we make use of control simulations from the CMIP5 models to quantify the amplitude of the interdecadal internal variability component in Atlantic, Pacific, and Northern Hemisphere mean surface temperature. We compare against estimates derived from observations using a semi-empirical approach wherein the forced component as estimated using CMIP5 historical simulations is removed to yield an estimate of the residual, internal variability. While the observational estimates are largely consistent with those derived from the control simulations for both basins and the Northern Hemisphere, they lie in the upper range of the model distributions, suggesting the possibility of differences between the amplitudes of observed and modeled variability. We comment on some possible reasons for the disparity.
A variable structure tracking controller for robot manipulators
International Nuclear Information System (INIS)
Lee, Jung Hoon; Shin, Hwi Beom
1997-01-01
In this paper, a continuous variable structure tracking controller is designed for the purpose of the control of robot manipulators to follow a given desired planned trajectory with high accuracy. The robustness and continuity of the algorithm are much improved by means of the feedforward compensation technique based on the disturbance observer without any chattering problem. Also the stability of the algorithm is analyzed in detail, further more the usefulness and good performances are verified through computer simulation studies. (author)
Gait variability and motor control in people with knee osteoarthritis
DEFF Research Database (Denmark)
Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle
2015-01-01
fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H...
A current controlled variable delay superconducting transmission line
International Nuclear Information System (INIS)
Anlage, S.M.; Snortland, H.J.; Beasley, M.R.
1989-01-01
The authors present a device concept for a current-controlled variable delay for superconducting transmission line. The device makes use of the change in kinetic inductance of a superconducting transmission line under the application of a DC bias current. The relevant materials parameters and several promising superconducting materials have been identified
LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine
DEFF Research Database (Denmark)
Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe
2014-01-01
Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...
Gait variability and motor control in people with knee osteoarthritis.
Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle; Simonsen, Erik B; Petersen, Nicolas C; Bliddal, Henning; Henriksen, Marius
2015-10-01
Knee osteoarthritis (OA) is a common disease that impairs walking ability and function. We compared the temporal gait variability and motor control in people with knee OA with healthy controls. The purpose was to test the hypothesis that the temporal gait variability would reflect a more stereotypic pattern in people with knee OA compared with healthy age-matched subjects. To assess the gait variability the temporal structure of the ankle and knee joint kinematics was quantified by the largest Lyapunov exponent and the stride time fluctuations were quantified by sample entropy and detrended fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H-reflex amplitude was significantly higher in the knee OA group around heel strike when compared with the controls. The mean group difference in the H-reflex in the initial part of the stance phase (control-knee OA) was -6.6% Mmax (95% CI: -10.4 to -2.7, p=0.041). The present OA group reported relatively small impact of their disease. These results suggest that the OA group in general sustained a normal gait pattern with natural variability but with suggestions of facilitated SO H-reflex in the swing to stance phase transition. We speculate that the difference in SO H-reflex modulation reflects that the OA group increased the excitability of the soleus stretch reflex as a preparatory mechanism to avoid sudden collapse of the knee joint which is not uncommon in knee OA. Copyright © 2015 Elsevier B.V. All rights reserved.
Durbeck, Robert
1988-01-01
Output Hardcopy Devices provides a technical summary of computer output hardcopy devices such as plotters, computer output printers, and CRT generated hardcopy. Important related technical areas such as papers, ribbons and inks, color techniques, controllers, and character fonts are also covered. Emphasis is on techniques primarily associated with printing, as well as the plotting capabilities of printing devices that can be effectively used for computer graphics in addition to their various printing functions. Comprised of 19 chapters, this volume begins with an introduction to vector and ras
Control Method for Variable Speed Wind Turbines to Support Temporary Primary Frequency Control
DEFF Research Database (Denmark)
Wang, Haijiao; Chen, Zhe; Jiang, Quanyuan
2014-01-01
This paper develops a control method for variable speed wind turbines (VSWTs) to support temporary primary frequency control of power system. The control method contains two parts: (1) up-regulate support control when a frequency drop event occurs; (2) down-regulate support control when a frequen...
Control of a Stand-Alone Variable Speed Wind Energy Supply System †
Directory of Open Access Journals (Sweden)
Mohamed M. Hamada
2013-04-01
Full Text Available This paper presents a simple control strategy for the operation of a variable speed stand-alone wind turbine with a permanent magnet synchronous generator (PMSG. The PMSG is connected to a three phase resistive load through a switch mode rectifier and a voltage source inverter. Control of the generator side converter is used to achieve maximum power extraction from the available wind power. Control of the DC-DC bidirectional buck-boost converter, which is connected between batteries bank and DC-link voltage, is used to maintain the DC-link voltage at a constant value. It is also used to make the batteries bank stores the surplus of wind energy and supplies this energy to the load during a wind power shortage. The load side voltage source inverter uses a relatively complex vector control scheme to control the output load voltage in terms of amplitude and frequency. The control strategy works under wind speed variation as well as with variable load. Extensive simulation results have been performed using MATLAB/SIMULINK.
Griffin, Brian Joseph; Burken, John J.; Xargay, Enric
2010-01-01
This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.
Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric
2011-10-15
Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for
Variable structure control of complex systems analysis and design
Yan, Xing-Gang; Edwards, Christopher
2017-01-01
This book systematizes recent research work on variable-structure control. It is self-contained, presenting necessary mathematical preliminaries so that the theoretical developments can be easily understood by a broad readership. The text begins with an introduction to the fundamental ideas of variable-structure control pertinent to their application in complex nonlinear systems. In the core of the book, the authors lay out an approach, suitable for a large class of systems, that deals with system uncertainties with nonlinear bounds. Its treatment of complex systems in which limited measurement information is available makes the results developed convenient to implement. Various case-study applications are described, from aerospace, through power systems to river pollution control with supporting simulations to aid the transition from mathematical theory to engineering practicalities. The book addresses systems with nonlinearities, time delays and interconnections and considers issues such as stabilization, o...
Considering Variable Road Geometry in Adaptive Vehicle Speed Control
Directory of Open Access Journals (Sweden)
Xinping Yan
2013-01-01
Full Text Available Adaptive vehicle speed control is critical for developing Advanced Driver Assistance Systems (ADAS. Vehicle speed control considering variable road geometry has become a hotspot in ADAS research. In this paper, first, an exploration of intrinsic relationship between vehicle operation and road geometry is made. Secondly, a collaborative vehicle coupling model, a road geometry model, and an AVSC, which can respond to variable road geometry in advance, are developed. Then, based on H∞ control method and the minimum energy principle, a performance index is specified by a cost function for the proposed AVSC, which can explicitly consider variable road geometry in its optimization process. The proposed AVSC is designed by the Hamilton-Jacobi Inequality (HJI. Finally, simulations are carried out by combining the vehicle model with the road geometry model, in an aim of minimizing the performance index of the AVSC. Analyses of the simulation results indicate that the proposed AVSC can automatically and effectively regulate speed according to variable road geometry. It is believed that the proposed AVSC can be used to improve the economy, comfort, and safety effects of current ADAS.
International Nuclear Information System (INIS)
Wang Yu; Su Xiaolong; Shen Heng; Tan Aihong; Xie Changde; Peng Kunchi
2010-01-01
One-way quantum computation based on measurement and multipartite cluster entanglement offers the ability to perform a variety of unitary operations only through different choices of measurement bases. Here we present an experimental study toward demonstrating the controlled-X operation, a two-mode gate in which continuous variable (CV) four-partite cluster states of optical modes are utilized. Two quantum teleportation elements are used for achieving the gate operation of the quantum state transformation from input target and control states to output states. By means of the optical cluster state prepared off-line, the homodyne detection and electronic feeding forward, the information carried by the input control state is transformed to the output target state. The presented scheme of the controlled-X operation based on teleportation can be implemented nonlocally and deterministically. The distortion of the quantum information resulting from the imperfect cluster entanglement is estimated with the fidelity.
Ultra-Fast Tracking Power Supply with 4th order Output Filter and Fixed-Frequency Hysteretic Control
DEFF Research Database (Denmark)
Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.
2008-01-01
A practical solution is presented for the design of a non-isolated DC/DC power converter with very low output ripple voltage and very fast output voltage step response. The converter is intended for use as an envelope tracking power supply for an RFPA (Radio Frequency Power Amplifier) in a Tetra2...
Directory of Open Access Journals (Sweden)
Lee Tae-Hoon
2016-12-01
Full Text Available In many cases, a X¯$\\overline X $ control chart based on a performance variable is used in industrial fields. Typically, the control chart monitors the measurements of a performance variable itself. However, if the performance variable is too costly or impossible to measure, and a less expensive surrogate variable is available, the process may be more efficiently controlled using surrogate variables. In this paper, we present a model for the economic statistical design of a VSI (Variable Sampling Interval X¯$\\overline X $ control chart using a surrogate variable that is linearly correlated with the performance variable. We derive the total average profit model from an economic viewpoint and apply the model to a Very High Temperature Reactor (VHTR nuclear fuel measurement system and derive the optimal result using genetic algorithms. Compared with the control chart based on a performance variable, the proposed model gives a larger expected net income per unit of time in the long-run if the correlation between the performance variable and the surrogate variable is relatively high. The proposed model was confined to the sample mean control chart under the assumption that a single assignable cause occurs according to the Poisson process. However, the model may also be extended to other types of control charts using a single or multiple assignable cause assumptions such as VSS (Variable Sample Size X¯$\\overline X $ control chart, EWMA, CUSUM charts and so on.
Directory of Open Access Journals (Sweden)
Andreja Möller Petrun
2014-02-01
Full Text Available In recent years, developments in the measuring of cardiac output and other haemodynamic variables are focused on the so-called minimally invasive methods. The aim of these methods is to simplify the management of high-risk and haemodynamically unstable patients. Due to the need of invasive approach and the possibility of serious complications the use of pulmonary artery catheter has decreased. This article describes the methods for measuring cardiac output, which are based on volume measurement (Fick method, indicator dilution method, pulse wave analysis, Doppler effect, and electrical bioimpedance.
A design method of compensators for multi-variable control system with PID controllers 'CHARLY'
International Nuclear Information System (INIS)
Fujiwara, Toshitaka; Yamada, Katsumi
1985-01-01
A systematic design method of compensators for a multi-variable control system having usual PID controllers in its loops is presented in this paper. The method itself is able: to determine the main manipulating variable corresponding to each controlled variable with a sensitivity analysis in the frequency domain. to tune PID controllers sufficiently to realize adequate control actions with a searching technique of minimum values of cost functionals. to design compensators improving the control preformance and to simulate a total system for confirming the designed compensators. In the phase of compensator design, the state variable feed-back gain is obtained by means of the OPTIMAL REGULATOR THEORY for the composite system of plant and PID controllers. The transfer function type compensators the configurations of which were previously given are, then, designed to approximate the frequency responces of the above mentioned state feed-back system. An example is illustrated for convenience. (author)
Shih, Peter; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A
2009-10-01
A novel reinforcement-learning-based output adaptive neural network (NN) controller, which is also referred to as the adaptive-critic NN controller, is developed to deliver the desired tracking performance for a class of nonlinear discrete-time systems expressed in nonstrict feedback form in the presence of bounded and unknown disturbances. The adaptive-critic NN controller consists of an observer, a critic, and two action NNs. The observer estimates the states and output, and the two action NNs provide virtual and actual control inputs to the nonlinear discrete-time system. The critic approximates a certain strategic utility function, and the action NNs minimize the strategic utility function and control inputs. All NN weights adapt online toward minimization of a performance index, utilizing the gradient-descent-based rule, in contrast with iteration-based adaptive-critic schemes. Lyapunov functions are used to show the stability of the closed-loop tracking error, weights, and observer estimates. Separation and certainty equivalence principles, persistency of excitation condition, and linearity in the unknown parameter assumption are not needed. Experimental results on a spark ignition (SI) engine operating lean at an equivalence ratio of 0.75 show a significant (25%) reduction in cyclic dispersion in heat release with control, while the average fuel input changes by less than 1% compared with the uncontrolled case. Consequently, oxides of nitrogen (NO(x)) drop by 30%, and unburned hydrocarbons drop by 16% with control. Overall, NO(x)'s are reduced by over 80% compared with stoichiometric levels.
Controls on the variability of net infiltration to desert sandstone
Heilweil, Victor M.; McKinney, Tim S.; Zhdanov, Michael S.; Watt, Dennis E.
2007-01-01
As populations grow in arid climates and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration becomes critically important for accurately inventorying water resources and mapping contamination vulnerability. This paper presents a conceptual model of net infiltration to desert sandstone and then develops an empirical equation for its spatial quantification at the watershed scale using linear least squares inversion methods for evaluating controlling parameters (independent variables) based on estimated net infiltration rates (dependent variables). Net infiltration rates used for this regression analysis were calculated from environmental tracers in boreholes and more than 3000 linear meters of vadose zone excavations in an upland basin in southwestern Utah underlain by Navajo sandstone. Soil coarseness, distance to upgradient outcrop, and topographic slope were shown to be the primary physical parameters controlling the spatial variability of net infiltration. Although the method should be transferable to other desert sandstone settings for determining the relative spatial distribution of net infiltration, further study is needed to evaluate the effects of other potential parameters such as slope aspect, outcrop parameters, and climate on absolute net infiltration rates.
Optimization of Drilling Resistance Measurement (DRM) user-controlled variables
Tudor, Dumitrescu; Pesce, Giovanni; Ball, Richard
2017-01-01
Drilling Resistance Measurement (DRM) is recognised as an important on-site micro-invasive procedure for assessment of construction materials. This paper presents a detailed investigation of user-controlled variables and their influence on drilling resistance. The study proves that the ratio of penetration rate/rotational speed (PR/RPM) is proportional to drilling resistance. Data from Bath stone and an artificial reference stone demonstrates how different materials can be compared using thei...
Control Multivariable Centralizado con Desacoplo para Aerogeneradores de Velocidad Variable
Directory of Open Access Journals (Sweden)
Miguel E. González
2010-10-01
Full Text Available Resumen: El diseño de sistemas de control para aerogeneradores de velocidad variable representa un reto importante ya que se trata de procesos multivariables no lineales, con fuertes perturbaciones, diversas restricciones y gran interacción entre sus variables. Bajo este escenario se debe generar eficientemente la potencia eléctrica y al mismo tiempo regular la velocidad de giro de la turbina. En este trabajo se proponen varios esquemas de control multivariable, con el objetivo de mejorar el rendimiento de los aerogeneradores atenuando los efectos de la interacción entre sus variables. La solución propuesta se basa en controladores PID con diseños del tipo descentralizado, centralizado con diversas redes de desacoplo y un esquema con cuatro PI. El comportamiento del aerogenerador se describe mediante un modelo matemático no lineal, que se linealiza para obtener una matriz de funciones de transferencia, a partir de la cual se diseñan los controladores. Finalmente se realiza un análisis comparativo para determinar qué controlador presenta mejores resultados, aplicando perturbaciones con un modelo de la velocidad del viento y cambios aleatorios de la carga eléctrica. Palabras Clave: Aerogenerador, Control Multivariable, Modelado e Interacción
Harman, C. J.
2015-12-01
The unsteadiness of stream water age is now well established, but the controls on the age dynamics, and the adequate representation and prediction of those dynamics, are not. A basic distinction can be made between internal variability that arises from changes in the proportions of flow moving through the diverse flow pathways of a hydrologic system, and external variability that arises from the stochasticity of inputs and outputs (such as precipitation and streamflow). In this talk I will show how these two types of age variability can be formally defined and distinguished within the framework of rank StorAge Selection (rSAS) functions. Internal variability implies variations in time in the rSAS function, while external variability does not. This leads naturally to the definition of several modes of internal variability, reflecting generic ways that system flowpaths may be rearranged. This rearrangement may be induced by fluctuations in the system state (such as catchment wetness), or by longer-term changes in catchment structure (such as land use change). One type of change, the 'inverse storage effect' is characterized by an increase in the release of young water from the system in response to an increase in overall system storage. This effect can be seen in many hydrologic settings, and has important implications for the effect of altered hydroclimatic conditions on solute transport through a landscape. External variability, such as increased precipitation, can induce a decrease in mean transit time (and vice versa), but this effect is greatly enhanced if accompanied by an internal shift in flow pathways that increases the relative importance of younger water. These effects will be illustrated using data from field and experimental studies.
DEFF Research Database (Denmark)
Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios
2017-01-01
This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover......, in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...
He, Xin; Du, Yu-Fan; Lan, Ning
2013-07-01
The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.
Real-time laser cladding control with variable spot size
Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.
2014-03-01
Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.
变速变桨风力机组控制策略研究%Research on the Control Strategy for Variable Speed and Variable Pitch Wind Turbine
Institute of Scientific and Technical Information of China (English)
陈铁军; 汪兆财
2012-01-01
In order to increase the utilization efficiency of wind energy of wind turbine power generation system, and improve the quality of output electric energy, with the chaotic system theory as the core, the control structure of chaotic automation used for variable speed and variable pitch wind turbine is established. In addition, combining with fuzzy control theory, the algorithm of controller is given. The simulation of the control structure and control algorithm shows that comparing with conventional control method, the variable speed and variable pitch wind turbine with chaotic automation control structure and under control algorithm reaches predicted target, the practical control effect is excellent.%为提高风力机发电系统的风能利用效率、改善输出电能质量,针对变速变桨风力发电机组的控制问题,以混杂系统理论为核心,建立了应用于变速变桨风力机组的混杂自动机控制结构.同时,结合模糊控制理论,给出控制器的算法.通过对该控制结构和控制算法的仿真表明,与常规的控制方法相比,采用混杂自动机控制结构和控制算法控制变速变桨风力机组,既提高了风能的利用效率,又很好地改善了风力机输出电能质量,实际控制效果良好.
Investigation of torque control using a variable slip induction generator
Energy Technology Data Exchange (ETDEWEB)
Bossanyi, E A; Gamble, C R
1991-07-01
An investigation of the possibilities of using a variable slip induction generator to control wind turbine transmission torque has been carried out. Such a generator consists of a wound rotor induction generator with its rotor winding connected to an external variable resistance circuit. By controlling the external resistance, the torque-slip characteristic of the generator can be modified, allowing efficient, low-slip operation below rated wind speed and compliant, high-slip operation above rated, where the additional losses are of no consequence but the resulting compliance allows a much reduced duty to be specified for the transmission and gearbox. A number of hardware options have been investigated for the variable resistance rotor circuit, the main options being either a rectifier and DC chopper or an AC regulator. Both of these options use semiconductor switching devices, for which the relative merits of thyristors, MOSFETs, GTOs and transistors have been investigated. A favoured scheme consisting of an AC regulator using GTOs has been provisionally selected. This choice uses some non-standard equipment but is expected to give negligible problems with harmonics. A comprehensive simulation model has been set up and used to investigate the behaviour of the whole system. (author).
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-02-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.
Power system integration and control of variable speed wind turbines
Energy Technology Data Exchange (ETDEWEB)
Eek, Jarle
2009-12-15
A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance
Power Control in Wireless Sensor Networks with Variable Interference
Directory of Open Access Journals (Sweden)
Michele Chincoli
2016-01-01
Full Text Available Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counterproductive effects to network performance. Yet, indiscriminate power boosting may detrimentally affect interference. We are interested in understanding the conditions under which coordinated power reduction may lead to better spectrum efficiency and interference mitigation and, thus, have beneficial effects on network performance. Through simulations, we analyze the performance of sensor nodes in an environment with variable interference. Then we study the relation between transmission power and communication efficiency, particularly in the context of Adaptive and Robust Topology (ART control, showing how appropriate power reduction can benefit both energy and spectrum efficiency. We also identify critical limitations in ART, discussing the potential of more cooperative power control approaches.
Performance of a 3 kW wind turbine generator with variable pitch control system
International Nuclear Information System (INIS)
Nagai, Baku M.; Ameku, Kazumasa; Roy, Jitendro Nath
2009-01-01
A prototype 3 kW horizontal upwind type wind turbine generator of 4 m in diameter has been designed and examined under real wind conditions. The machine was designed based on the concept that even small wind turbines should have a variable pitch control system just as large wind turbines, especially in Japan where typhoons occur at least once a year. A characteristic of the machine is the use of a worm and gear system with a stepping motor installed in the center of the hub, and the rotational main shaft. The machine is constructed with no mechanical breaking system so as to avoid damage from strong winds. In a storm, the wind turbine is slowed down by adjusting the pitch angle and the maximum electrical load. Usually the machine is controlled at several stages depending on the rotational speed of the blades. Two control methods have been applied: the variable pitch angle, and regulation of the generator field current. The characteristics of the generator under each rotational speed and field current are first investigated in the laboratory. This paper describes the performances of the wind turbine in terms of the functions of wind turbine rotational speed, generated outputs, and its stability for wind speed changes. The expected performances of the machine have been confirmed under real wind conditions and compared with numerical simulation results. The wind turbine showed a power coefficient of 0.257 under the average wind speed of 7.3 m/s.
Distributed Variable Droop Curve Control Strategies in Smart Microgrid
Directory of Open Access Journals (Sweden)
Changhong Deng
2017-12-01
Full Text Available In micro grid (MG, active/reactive power sharing for all dis-patchable units is an important issue. To meet fluctuating loads’ active and reactive power demands, the units generally adopt primary P-f and Q-U droop control methods. However, at different state of charge (SOC values, the capability of Lead Acid Battery Bank (LABB based units to take loads varies in a large range; active power should not be shared according to the units P capacities in a constant ratio. Besides, influenced by the output and line impedance between units, reactive power is not able to be shared in proportion to the units Q capacities. Another problem, after MG power balance requirement is satisfied, frequency and voltage are deviating from their rated values thus power quality is reduced. This paper presents a new smart MG which is based on the multi agent system. To solve the problems mentioned above, P-f and Q-U droop curves are adjusted dynamically and autonomously in local agents. To improve the power quality, secondary restoration function is realized in a decentralized way, the computation tasks are assigned to local, the computation capability and communication reliability requirements for central PC are low, and operation reliability is high. Simulation results back the proposed methods.
DEFF Research Database (Denmark)
Liu, Dong; Deng, Fujin; Gong, Zheng
2017-01-01
In this paper, the input-parallel output-parallel (IPOP) three-level (TL) DC/DC converters associated with the interleaving control strategy are proposed for minimizing and balancing the capacitor ripple currents. The proposed converters consist of two four-switch half-bridge three-level (HBTL) DC...
PROCESS VARIABILITY REDUCTION THROUGH STATISTICAL PROCESS CONTROL FOR QUALITY IMPROVEMENT
Directory of Open Access Journals (Sweden)
B.P. Mahesh
2010-09-01
Full Text Available Quality has become one of the most important customer decision factors in the selection among the competing product and services. Consequently, understanding and improving quality is a key factor leading to business success, growth and an enhanced competitive position. Hence quality improvement program should be an integral part of the overall business strategy. According to TQM, the effective way to improve the Quality of the product or service is to improve the process used to build the product. Hence, TQM focuses on process, rather than results as the results are driven by the processes. Many techniques are available for quality improvement. Statistical Process Control (SPC is one such TQM technique which is widely accepted for analyzing quality problems and improving the performance of the production process. This article illustrates the step by step procedure adopted at a soap manufacturing company to improve the Quality by reducing process variability using Statistical Process Control.
Karimi, Hamid Reza; Gao, Huijun
2008-07-01
A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.
International Nuclear Information System (INIS)
Bouafia, Abdelouahab; Krim, Fateh; Gaubert, Jean-Paul
2009-01-01
This paper proposes direct power control (DPC) for three-phase PWM rectifiers using a new switching table, without line voltage sensors. The instantaneous active and reactive powers, directly controlled by selecting the optimum state of the converter, are used as the PWM control variables instead of the phase line currents being used. The main goal of the control system is to maintain the dc-bus voltage at the required level, while input currents drawn from the power supply should be sinusoidal and in phase with respective phase voltages to satisfy the unity power factor (UPF) operation. Conventional PI and a designed fuzzy logic-based controller, in the dc-bus voltage control loop, have been used to provide active power command. A dSPACE based experimental system was developed to verify the validity of the proposed DPC. The steady-state, and dynamic results illustrating the operation and performance of the proposed control scheme are presented. As a result, it was confirmed that the novel DPC is much better than the classical one. Line currents very close to sinusoidal waveforms (THD < 2%) and good regulation of dc-bus voltage are achieved using PI or fuzzy controller. Moreover, fuzzy logic controller gives excellent performance in transient state, a good rejection of impact load disturbance, and a good robustness
evaluation of a multi-variable self-learning fuzzy logic controller
African Journals Online (AJOL)
Dr Obe
2003-03-01
Mar 1, 2003 ... The most challenging aspect of the design of a fuzzy logic controller is ... inaccuracy (or structured uncertainty) and unmodelled ... mathematical analysis on paper is impossible ... output (SISO) system that can self-construct ...
Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.; Aizzuddin, A. M.
2017-10-01
Fibre Bragg Grating (FBG) sensors have been widely utilized in the structural health monitoring (SHM) of structures. However, one of the main challenges of FBGs is the existence of inconsistency in output voltage during wavelength intensity demodulation utilizing photodetector (PD) to convert the light signal into digital voltage readings. Thus, the designation of this experimental work is to develop a robust FBG real-time monitoring system with the benefit of MATLAB graphical user interface (GUI) and voltage normalization algorithm to scale down the voltage inconsistency. Low-cost edge filter interrogation system has been practiced in the experimentation and splitter optical component is make use to reduce the intensity of the high power light source that leads to the formation of noise due to unwanted reflected wavelengths. The results revealed that with the advancement of the proposed monitoring system, the sensitivity of the FBG has been increased from 2.4 mV/N to 3.8 mV/N across the range of 50 N. The redundancy in output voltage variation data points has been reduced from 26 data/minute to 17 data/minute. The accuracy of the FBG in detecting the load induced falls in the acceptable range of total average error which is 1.38 %.
SYNTHESIS OF THE TECHNICAL CONTROL SYSTEMS WITH VARIABLE STRUCTURE
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available Change. Also the object as a result of an adverse effect is considered. The formal problem definition of synthesis of hardy management system is considered. Model choice criteria ensemble is set. The rule of choice algorithm implementation on the basis of different reference functions is provided. The conclusion is drawn that in case of preliminary processing of the available prior data it is possible to select reference functions correctly which reflect physical processes more precisely. The mathematical description of a dynamic object on the basis of a differential equation, or its decision is provided. Defini- tion of function of a trend is given. Criteria for selection of model of damage are given. The recommendation of modifica- tion of Demark trends algorithm by means of the sliding Yazvinsky's window and a method of self-organization for in- crease of accuracy of creation of a predictive model of damage is made. It is offered to realize a model choice by means of more complex logical analysis of an observed vector in the appropriate situation. Logic-functional control task definition is given and approach to its decision is formulated. The conclusion about what the task of synthesis management system con- sists of is given. This article describes the method of synthesis of control system with variable structure provides increasing survivability control system in a significant change of the external environment, as well as the object itself from the adverse impacts.
Automotive engine air intake system with variable noise control
Moenssen, David J.; Hellie, Mark D.; Koston, John D.; Shaw, Christopher E.
2005-09-01
Engine air intake systems are routinely tasked with delivering a specific target sound which involves meeting an overall noise level and, in many cases, desired frequency content over the entire engine speed range. In order to meet these targets, it is generally necessary to incorporate one or more reactive tuning devices, such as Helmholtz resonators, into the intake system. Traditional devices provide deep attenuation at their designed frequency, but they also introduce undesirable sideband resonances at a higher and a lower frequency. Even after the addition of several devices, it may still not be possible to match the desired intake noise targets due to their deep attenuation and sideband amplification. The subject of this work is to introduce an electronically controlled variable noise control (VNC) device for engine air intake systems which is capable of adjusting the air intake system's frequency response as commanded by the engine operating conditions. The VNC device permits the desired amount of attenuation of peaks in the air intake noise without introducing undesirable sideband resonances. In addition, because the tuning is controlled electronically, the VNC device can deliver a target-specific response using the same hardware across multiple vehicle programs.
Wang, Jun-Sheng; Yang, Guang-Hong
2017-07-25
This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.
Naidu, S. V. L. G.; Subapriya, S.; Yeoh, C. N.; Soosai, S.; Shalini, V.; Harwant, S.
2005-11-01
The aim of this study was to assess the effects of low output laser therapy as an adjuvant treatment in grade 1 diabetic foot ulcers. Methods: Sixteen patients were randomly divided equally into two groups. Group A had daily dressing only, while group B had low output laser therapy instituted five days a week in addition to daily dressing. Serial measurement of the ulcer was done weekly using digital photography and analyzed. Results: The rate of healing in group A was 10.42 mm2/week, and in group B was 66.14mm2/week. The difference in the rate of healing was statistically significant, pdiabetic ulcer healing by six times in a six week period.
Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede; Wheeler, Patrick; Siano, Pierluigi; Hammami, Manel
2017-01-01
Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned defic...
LENUS (Irish Health Repository)
Boyle, M A
2012-04-01
Contaminated washbasin taps and output water are an important source of bacteria that may cause nosocomial infection. A five-week pretreatment study of hot and cold water from 15 washbasin taps at Dublin Dental Hospital showed consistently heavy contamination by aerobic heterotrophic bacteria: mean bacterial counts of 482.5 [standard deviation (SD) 293] colony-forming units (cfu)\\/mL and 5022 (SD 4322) cfu\\/mL, respectively.
Directory of Open Access Journals (Sweden)
Yüksel Oğuz
2013-01-01
Full Text Available The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.
Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin
2013-01-01
The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.
Controls of Soil Spatial Variability in a Dry Tropical Forest.
Directory of Open Access Journals (Sweden)
Sandeep Pulla
Full Text Available We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2 soil spatial variability in a seasonally dry tropical forest (SDTF in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm, rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH, and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(--N nor NH4(+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.
Inverter communications using output signal
Chapman, Patrick L.
2017-02-07
Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.
International Nuclear Information System (INIS)
An, Myung-Gi; Mehmood, Asad; Hwang, Jinyeon; Ha, Heung Yong
2016-01-01
This study proposes a novel method for controlling the methanol concentration without using methanol sensors for DMFC (direct methanol fuel cell) systems that have a recycling methanol-feed loop. This method utilizes the amplitudes of output voltage fluctuations of DMFC as a feedback parameter to control the methanol concentration. The relationship between the methanol concentrations and the amplitudes of output voltage fluctuations is correlated under various operating conditions and, based on the experimental correlations, an algorithm to control the methanol concentration with no sensor is established. Feasibility tests of the algorithm have been conducted under various operating conditions including varying ambient temperature with a 200 W-class DMFC system. It is demonstrated that the sensor-less controller is able to control the methanol-feed concentration precisely and to run the DMFC systems more energy-efficiently as compared with other control systems. - Highlights: • A new sensor-less algorithm is proposed to control the methanol concentration without using a sensor. • The algorithm utilizes the voltage fluctuations of DMFC as a feedback parameter to control the methanol feed concentration. • A 200 W DMFC system is operated to evaluate the validity of the sensor-less algorithm. • The algorithm successfully controls the methanol feed concentration within a small error bound.
S-variable approach to LMI-based robust control
Ebihara, Yoshio; Arzelier, Denis
2015-01-01
This book shows how the use of S-variables (SVs) in enhancing the range of problems that can be addressed with the already-versatile linear matrix inequality (LMI) approach to control can, in many cases, be put on a more unified, methodical footing. Beginning with the fundamentals of the SV approach, the text shows how the basic idea can be used for each problem (and when it should not be employed at all). The specific adaptations of the method necessitated by each problem are also detailed. The problems dealt with in the book have the common traits that: analytic closed-form solutions are not available; and LMIs can be applied to produce numerical solutions with a certain amount of conservatism. Typical examples are robustness analysis of linear systems affected by parametric uncertainties and the synthesis of a linear controller satisfying multiple, often conflicting, design specifications. For problems in which LMI methods produce conservative results, the SV approach is shown to achieve greater accuracy...
Detecting Major Genetic Loci Controlling Phenotypic Variability in Experimental Crosses
Rönnegård, Lars; Valdar, William
2011-01-01
Traditional methods for detecting genes that affect complex diseases in humans or animal models, milk production in livestock, or other traits of interest, have asked whether variation in genotype produces a change in that trait’s average value. But focusing on differences in the mean ignores differences in variability about that mean. The robustness, or uniformity, of an individual’s character is not only of great practical importance in medical genetics and food production but is also of scientific and evolutionary interest (e.g., blood pressure in animal models of heart disease, litter size in pigs, flowering time in plants). We describe a method for detecting major genes controlling the phenotypic variance, referring to these as vQTL. Our method uses a double generalized linear model with linear predictors based on probabilities of line origin. We evaluate our method on simulated F2 and collaborative cross data, and on a real F2 intercross, demonstrating its accuracy and robustness to the presence of ordinary mean-controlling QTL. We also illustrate the connection between vQTL and QTL involved in epistasis, explaining how these concepts overlap. Our method can be applied to a wide range of commonly used experimental crosses and may be extended to genetic association more generally. PMID:21467569
Directory of Open Access Journals (Sweden)
Samantha J Westrop
Full Text Available HIV-1(+ individuals who, without therapy, conserve cellular anti-HIV-1 responses, present with high, stable CD4(+ T-cell numbers, and control viral replication, facilitate analysis of atypical viro-immunopathology. In the absence of universal definition, immune function in such HIV controllers remains an indication of non-progression.CD4 T-cell responses to a number of HIV-1 proteins and peptide pools were assessed by IFN-gamma ELISpot and lymphoproliferative assays in HIV controllers and chronic progressors. Thymic output was assessed by sjTRECs levels. Follow-up of 41 HIV-1(+ individuals originally identified as "Long-term non-progressors" in 1996 according to clinical criteria, and longitudinal analysis of two HIV controllers over 22 years, was also performed. HIV controllers exhibited substantial IFN-gamma producing and proliferative HIV-1-specific CD4 T-cell responses to both recombinant proteins and peptide pools of Tat, Rev, Nef, Gag and Env, demonstrating functional processing and presentation. Conversely, HIV-specific T-cell responses were limited to IFN-gamma production in chronic progressors. Additionally, thymic output was approximately 19 fold higher in HIV controllers than in age-matched chronic progressors. Follow-up of 41 HIV-1(+ patients identified as LTNP in 1996 revealed the transitory characteristics of this status. IFN-gamma production and proliferative T-cell function also declines in 2 HIV controllers over 22 years.Although increased thymic output and anti-HIV-1 T-cell responses are observed in HIV controllers compared to chronic progressors, the nature of nonprogressor/controller status appears to be transitory.
Lahiri, Abhirup; Herencsár, Norbert
2012-01-01
This paper proposes a very compact CMOS realization of active RC sinusoidal oscillator capable of generating four quadrature voltage outputs. The oscillator is based on the cascade of lossless and lossy integrators in loop. The governing laws for the condition of oscillation (CO) and the frequency of oscillation (FO) are single-resistance-controlled (SRC) and which allow independent FO tuning. Unlike previously reported SRC-based sinusoidal oscillators based on the active building block (ABB)...
Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh
Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.
2017-12-01
Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three
Variability of sap flow on forest hillslopes: patterns and controls
Hassler, Sibylle; Blume, Theresa
2013-04-01
Sap flow in trees is an essential variable in integrated studies of hydrologic fluxes. It gives indication of transpiration rates for single trees and, with a suitable method of upscaling, for whole stands. This information is relevant for hydrologic and climate models, especially for the prediction of change in water fluxes in the soil-plant-atmosphere continuum under climate change. To this end, we do not only need knowledge concerning the response of sapflow to atmospheric forcing but also an understanding of the main controls on its spatial variability. Our study site consists of several subcatchments of the Attert basin in Luxembourg underlain by schists of the Ardennes massif. Within these subcatchments we measure sap flow in more than 20 trees on a range of forested hillslopes covered by a variety of temperate deciduous tree species such as beech, oak, hornbeam and maple as well as conifers such as firs. Our sap flow sensors are based on the heat pulse velocity method and consist of three needles, one needle acting as the heating device and the other two holding three thermistors each, enabling us to simultaneously measure sap flow velocity at three different depths within the tree. In close proximity to the trees we collect additional data on soil moisture, matric potential and groundwater levels. First results show that the sensor design seems promising for an upscaling of the measured sap flow velocities to sap flow at the tree level. The maximum depth of actively used sapwood as well as the decrease in sap flow velocity with increasing depth in the tree can be determined by way of the three thermistors. Marked differences in sap flow velocity profiles are visible between the different species, resulting in differences in sap flow for trees of similar diameter. We examine the range of tree sap flow values and variation due to species, size class, slope position and exposition and finally relate them to the dynamics of soil moisture conditions with the
Optimal management strategies in variable environments: Stochastic optimal control methods
Williams, B.K.
1985-01-01
Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both
SoC-Based Output Voltage Control for BESS with a Lithium-Ion Battery in a Stand-Alone DC Microgrid
Directory of Open Access Journals (Sweden)
Seung-Yeong Yu
2016-11-01
Full Text Available This paper proposes a new DC output voltage control for a battery energy storage system (BESS with a lithium-ion battery based on the state of charge (SoC. The proposed control scheme was verified through computer simulations for a typical stand-alone DC microgrid, which consists of a BESS, photovoltaic (PV panel, engine generator (EG, and DC load. A scaled hardware prototype for a stand-alone DC microgrid was set up in the lab, in which the proposed control scheme was loaded in a DSP controller. The experimental results were compared with the simulation results for performance verification. The proposed control scheme provides relatively lower variation of the DC grid voltage than the conventional droop control.
Boudreaux, Andrew; Shaffer, Peter S.; Heron, Paula R. L.; McDermott, Lillian C.
2008-02-01
The ability of adult students to reason on the basis of the control of variables was the subject of an extended investigation. This paper describes the part of the study that focused on the reasoning required to decide whether or not a given variable influences the behavior of a system. The participants were undergraduates taking introductory Physics and K-8 teachers studying physics and physical science in inservice institutes and workshops. Although most of the students recognized the need to control variables, many had significant difficulty with the underlying reasoning. The results indicate serious shortcomings in the preparation of future scientists and in the education of a scientifically literate citizenry. There are also strong implications for the professional development of teachers, many of whom are expected to teach control of variables to young students.
Design and Calibration of a Transformer Controlled Variable ...
African Journals Online (AJOL)
A new approach for the design and construction of a variable rainfall simulator using an auto transformer which is aimed at soil erosion research was explored. The method involves using a water pump, a variable voltage regulator and a set of nozzles for the simulation of rainfall. It was found that the variation of rainfall ...
Directory of Open Access Journals (Sweden)
Ruili Wen
2016-08-01
Full Text Available We consider an open-loop system of a fourth order Schrodinger equation with variable coefficients and Neumann boundary control and collocated observation. Using the multiplier method on Riemannian manifold we show that that the system is well-posed in the sense of Salamon. This implies that the exponential stability of the closed-loop system under the direct proportional output feedback control and the exact controllability of open-loop system are equivalent. So in order to conclude feedback stabilization from well-posedness, we study the exact controllability under a uniqueness assumption by presenting the observability inequality for the dual system. In addition, we show that the system is regular in the sense of Weiss, and that the feedthrough operator is zero.
van Asseldonk, Edwin H.F.; Boonstra, Tjitske
2016-01-01
Background Transcranial direct current stimulation (tDCS) can augment force generation and control in single leg joints in healthy subjects and stroke survivors. However, it is unknown whether these effects also result in improved force production and coordination during walking and whether
Directory of Open Access Journals (Sweden)
Gang Qin
2015-01-01
Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.
International Nuclear Information System (INIS)
Dong, Z.
2011-01-01
Because of its strong inherent safety features and the high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR) is the chosen technology for a new generation of nuclear power plants. Such power plants are being considered for industrial applications with a wide range of power levels, thus power-level regulation is very important for their efficient and stable operation. Exploiting the large scale asymptotic closed-loop stability provided by nonlinear controllers, a nonlinear power-level regulator is presented in this paper that is based upon both the techniques of feedback dissipation and well-established backstepping. The virtue of this control strategy, i.e., the ability of globally asymptotic stabilization, is that it takes advantage of the inherent zero-state detectability property of the MHTGR dynamics. Moreover, this newly built power-level regulator is also robust towards modeling uncertainty in the control rod dynamics. If modeling uncertainty of the control rod dynamics is small enough to be omitted, then this control law can be simplified to a classical proportional feedback controller. The comparison of the control performance between the newly-built power controller and the simplified controller is also given through numerical study and theoretical analysis. (author)
Directory of Open Access Journals (Sweden)
Shaohua Luo
2014-01-01
Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.
Directory of Open Access Journals (Sweden)
Zhe Dong
2011-11-01
Full Text Available Because of its strong inherent safety features and the high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR is the chosen technology for a new generation of nuclear power plants. Such power plants are being considered for industrial applications with a wide range of power levels, thus power-level regulation is very important for their efficient and stable operation. Exploiting the large scale asymptotic closed-loop stability provided by nonlinear controllers, a nonlinear power-level regulator is presented in this paper that is based upon both the techniques of feedback dissipation and well-established backstepping. The virtue of this control strategy, i.e., the ability of globally asymptotic stabilization, is that it takes advantage of the inherent zero-state detectability property of the MHTGR dynamics. Moreover, this newly built power-level regulator is also robust towards modeling uncertainty in the control rod dynamics. If modeling uncertainty of the control rod dynamics is small enough to be omitted, then this control law can be simplified to a classical proportional feedback controller. The comparison of the control performance between the newly-built power controller and the simplified controller is also given through numerical study and theoretical analysis.
Abdullahi, Auwalu M.; Mohamed, Z.; Selamat, H.; Pota, Hemanshu R.; Zainal Abidin, M. S.; Ismail, F. S.; Haruna, A.
2018-01-01
Payload hoisting and wind disturbance during crane operations are among the challenging factors that affect a payload sway and thus, affect the crane's performance. This paper proposes a new online adaptive output-based command shaping (AOCS) technique for an effective payload sway reduction of an overhead crane under the influence of those effects. This technique enhances the previously developed output-based command shaping (OCS) which was effective only for a fixed system and without external disturbances. Unlike the conventional input shaping design technique which requires the system's natural frequency and damping ratio, the proposed technique is designed by using the output signal and thus, an online adaptive algorithm can be formulated. To test the effectiveness of the AOCS, experiments are carried out using a laboratory overhead crane with a payload hoisting in the presence of wind, and with different payloads. The superiority of the method is confirmed by 82% and 29% reductions in the overall sway and the maximum transient sway respectively, when compared to the OCS, and two robust input shapers namely Zero Vibration Derivative-Derivative and Extra-Insensitive shapers. Furthermore, the method demonstrates a uniform crane's performance under all conditions. It is envisaged that the proposed method can be very useful in designing an effective controller for a crane system with an unknown payload and under the influence of external disturbances.
Roset, B.J.P.; Lazar, M.; Heemels, W.P.M.H.; Nijmeijer, H.
2007-01-01
Abstract—This paper focuses on the synthesis of nonlinear Model Predictive Controllers that can guarantee robustness with respect to measurement noise. The input-to-state stability framework is employed to analyze the robustness of the resulting Model Predictive Control (MPC) closed-loop system. It
International Nuclear Information System (INIS)
Obara, Shin’ya; Konno, Daisuke; Utsugi, Yuta; Morel, Jorge
2014-01-01
Highlights: • Characteristics of a large-scale power plant using bifacial solar cell is described. • Conversion efficiency of bifacial photovoltaics obtained using 3D-CAD modeling. • Power supply of bifacial PV can be matched with demand by adjusting the orientation. - Abstract: Bifacial photovoltaics are widely investigated with the aim of reducing the amount of silicon used and increasing conversion efficiencies. The output power of bifacial photovoltaics depends on the quantity of solar radiation incident on the reverse face. Furthermore, controlling the orientation can distribute the times of peak power output in the morning and afternoon to better match the demand. In this study, the demand patterns of individual houses or the whole Hokkaido region were analyzed assuming the substitution of a conventional large-scale electric power system with one using bifacial photovoltaics. The supply–demand balances and electrical storage capacities were investigated. When comparing a large scale solar power plant (mega-solar power plant) using monofacial photovoltaics or vertical bifacial photovoltaics (in which the orientation could be adjusted), the supply–demand could be better balanced for individual houses in the latter case, thereby allowing the storage capacity to be reduced. A bifacial solar module was modeled by 3D-CAD (three dimensional computer aided design) and thermal fluid analysis. The module temperature distribution of bifacial photovoltaics was calculated with respect to the environmental conditions (wind flow, direct and diffuse solar radiation, etc.) and internal heat generation, as well as the orientation of the solar panels. Furthermore, the output power of bifacial photovoltaics can be easily obtained from the analysis result of modular temperature distribution and the relation between temperature and output power
What controls the atmospheric methane seasonal variability over India?
Guha, Tania; Tiwari, Yogesh K.; Valsala, Vinu; Lin, Xin; Ramonet, Michel; Mahajan, Anoop; Datye, Amey; Kumar, K. Ravi
2017-01-01
Atmospheric CH4 observations from two ground-based stations within Indian subcontinent, namely, Sinhagad (SNG) and Cape Rama station (CRI) showed a strong seasonality with a minima (∼1800 ± 20 ppb) during southwest monsoon (SWM; i.e. June–September, JJAS) and a maxima (2000 ± 30 ppb) during northeast monsoon (NEM i.e. December–February, DJF) with a peak-to-peak seasonality close to 200 ppb. The Indian summer (winter) monsoon is characterized with strong southwesterly (northeasterly) winds of oceanic origin at the surface level and strong easterly (westerly) jet streams aloft. The monsoon dynamics has pronounced impact on CH4 variability over India and is analyzed with winds, Lagrangian trajectories, and 3-dimentional distributions of CH4 simulated by a general circulation model. The model simulations suggest a consistent annual vertical structure (mean and sub-seasonal uncertainty) of CH4 over India with a stark contrast in concentration from summer to winter at surface levels (below 750 mb) in confirmation with what is identified by the ground-based observations. During SWM (NEM) the air with comparatively lower (higher) CH4 concentrations from southern (northern) hemisphere reduces the CH4 over India by 1814 ± 26 ppb (enhances by 1950 ± 51 ppb). The contribution of local fluxes to this seasonality appears to be albeit weak as the synthesized CH4 fluxes (from EDGAR dataset) of the Indian peninsula itself show a peak in summer and a dip in winter. Similar property of CH4 is also common to nearby oceanic region (i.e. over Arabian Sea, 1765 ± 10 ppb during summer) suggesting the role of monsoon dynamics as the controlling factor. Further the mixing and convection carries the CH4 to the upper atmosphere and advect inward or outward aloft according the seasonal monsoon dynamics.
What controls the atmospheric methane seasonal variability over India?
Guha, Tania
2017-11-28
Atmospheric CH4 observations from two ground-based stations within Indian subcontinent, namely, Sinhagad (SNG) and Cape Rama station (CRI) showed a strong seasonality with a minima (∼1800 ± 20 ppb) during southwest monsoon (SWM; i.e. June–September, JJAS) and a maxima (2000 ± 30 ppb) during northeast monsoon (NEM i.e. December–February, DJF) with a peak-to-peak seasonality close to 200 ppb. The Indian summer (winter) monsoon is characterized with strong southwesterly (northeasterly) winds of oceanic origin at the surface level and strong easterly (westerly) jet streams aloft. The monsoon dynamics has pronounced impact on CH4 variability over India and is analyzed with winds, Lagrangian trajectories, and 3-dimentional distributions of CH4 simulated by a general circulation model. The model simulations suggest a consistent annual vertical structure (mean and sub-seasonal uncertainty) of CH4 over India with a stark contrast in concentration from summer to winter at surface levels (below 750 mb) in confirmation with what is identified by the ground-based observations. During SWM (NEM) the air with comparatively lower (higher) CH4 concentrations from southern (northern) hemisphere reduces the CH4 over India by 1814 ± 26 ppb (enhances by 1950 ± 51 ppb). The contribution of local fluxes to this seasonality appears to be albeit weak as the synthesized CH4 fluxes (from EDGAR dataset) of the Indian peninsula itself show a peak in summer and a dip in winter. Similar property of CH4 is also common to nearby oceanic region (i.e. over Arabian Sea, 1765 ± 10 ppb during summer) suggesting the role of monsoon dynamics as the controlling factor. Further the mixing and convection carries the CH4 to the upper atmosphere and advect inward or outward aloft according the seasonal monsoon dynamics.
Directory of Open Access Journals (Sweden)
O. I. Tarasov
2014-01-01
Full Text Available Modern robotic systems require the use of servo drives. Owing to encoder and negative feedback these drives ensure highly accurate motion parameters. In case of autonomous systems drives must also have high power characteristics. Moreover, in most cases, it was impossible to select the motor so that the speed and torque on its shaft were in compliance with those of required by the actuator. To match these parameters different types of reducers are used. The article justifies and considers a selection criterion of the gear ratios for such transmission. For clarity, there is an example of selecting a motor and a gear for above transmission, taking into account the proposed criterion. In addition, the article discusses the advantages of using hydrostatic transmission in the drive, which monitors the angular position of the output level, in comparison with a mechanical gearbox. Due to the fact that, at the moment, BLDC motors have the best power characteristics, such a servo drive requires a special control system that will take into account the features of variable hydrostatic transmission and electric BLDC motor. Therefore, the paper proposes a structure of such a system and set out the principles of its construction. Various embodiments of sensor types that may be used in this system and their installation scheme explained.
Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control
Nguyen, Nhan T. (Inventor)
2016-01-01
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
International Nuclear Information System (INIS)
Chen, C.-K.; Liao, T.-L.; Yan, J.-J.
2009-01-01
On the basis of variable structure control (VSC), an active queue management (AQM) controller is presented for a class of TCP communication networks. In the TCP/IP networks, the packet drop probability is limited between 0 and 1. Therefore, we modeled TCP/AQM as a rate-based non-linear system with a saturated input. The objective of the VSC-based AQM controller is to achieve the desired queue size and to guarantee the asymptotic stability of the closed-loop TCP non-linear system with saturated input. The performance and effectiveness of the proposed control law are then validated for different network scenarios through numerical simulations in both MATLAB and Network Simulator-2 (NS-2). Both sets of simulation results have confirmed that the proposed scheme outperforms other AQM schemes.
Energy Technology Data Exchange (ETDEWEB)
Chen, C.-K. [Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Liao, T.-L. [Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: tlliao@mail.ncku.edu; Yan, J.-J. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)
2009-04-15
On the basis of variable structure control (VSC), an active queue management (AQM) controller is presented for a class of TCP communication networks. In the TCP/IP networks, the packet drop probability is limited between 0 and 1. Therefore, we modeled TCP/AQM as a rate-based non-linear system with a saturated input. The objective of the VSC-based AQM controller is to achieve the desired queue size and to guarantee the asymptotic stability of the closed-loop TCP non-linear system with saturated input. The performance and effectiveness of the proposed control law are then validated for different network scenarios through numerical simulations in both MATLAB and Network Simulator-2 (NS-2). Both sets of simulation results have confirmed that the proposed scheme outperforms other AQM schemes.
DEFF Research Database (Denmark)
Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede
2017-01-01
voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I) and fuzzy logic closed...... are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions....
Spieth, P. M.; Güldner, A.; Uhlig, C.; Bluth, T.; Kiss, T.; Conrad, C.; Bischlager, K.; Braune, A.; Huhle, R.; Insorsi, A.; Tarantino, F.; Ball, L.; Schultz, M. J.; Abolmaali, N.; Koch, T.; Pelosi, P.; Gama de Abreu, M.
2018-01-01
Experimental studies showed that controlled variable ventilation (CVV) yielded better pulmonary function compared to non-variable ventilation (CNV) in injured lungs. We hypothesized that CVV improves intraoperative and postoperative respiratory function in patients undergoing open abdominal surgery.
Jidin, Razali; Othman, Bahari
2013-06-01
The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.
International Nuclear Information System (INIS)
Jidin, Razali; Othman, Bahari
2013-01-01
The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.
Coral bleaching pathways under the control of regional temperature variability
Langlais, C. E.; Lenton, A.; Heron, S. F.; Evenhuis, C.; Sen Gupta, A.; Brown, J. N.; Kuchinke, M.
2017-11-01
Increasing sea surface temperatures (SSTs) are predicted to adversely impact coral populations worldwide through increasing thermal bleaching events. Future bleaching is unlikely to be spatially uniform. Therefore, understanding what determines regional differences will be critical for adaptation management. Here, using a cumulative heat stress metric, we show that characteristics of regional SST determine the future bleaching risk patterns. Incorporating observed information on SST variability, in assessing future bleaching risk, provides novel options for management strategies. As a consequence, the known biases in climate model variability and the uncertainties in regional warming rate across climate models are less detrimental than previously thought. We also show that the thresholds used to indicate reef viability can strongly influence a decision on what constitutes a potential refugia. Observing and understanding the drivers of regional variability, and the viability limits of coral reefs, is therefore critical for making meaningful projections of coral bleaching risk.
Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi
2017-05-01
In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.
Directory of Open Access Journals (Sweden)
Jalalifar Mehran
2007-01-01
Full Text Available In this paper using adaptive backstepping approach an adaptive rotor flux observer which provides stator and rotor resistances estimation simultaneously for induction motor used in series hybrid electric vehicle is proposed. The controller of induction motor (IM is designed based on input-output feedback linearization technique. Combining this controller with adaptive backstepping observer the system is robust against rotor and stator resistances uncertainties. In additional, mechanical components of a hybrid electric vehicle are called from the Advanced Vehicle Simulator Software Library and then linked with the electric motor. Finally, a typical series hybrid electric vehicle is modeled and investigated. Various tests, such as acceleration traversing ramp, and fuel consumption and emission are performed on the proposed model of a series hybrid vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed IM control approach using for series hybrid electric vehicle.
Yang, Xiaoyan; Cui, Jianwei; Lao, Dazhong; Li, Donghai; Chen, Junhui
2016-05-01
In this paper, a composite control based on Active Disturbance Rejection Control (ADRC) and Input Shaping is presented for TRMS with two degrees of freedom (DOF). The control tasks consist of accurately tracking desired trajectories and obtaining disturbance rejection in both horizontal and vertical planes. Due to un-measurable states as well as uncertainties stemming from modeling uncertainty and unknown disturbance torques, ADRC is employed, and feed-forward Input Shaping is used to improve the dynamical response. In the proposed approach, because the coupling effects are maintained in controller derivation, there is no requirement to decouple the TRMS into horizontal and vertical subsystems, which is usually performed in the literature. Finally, the proposed method is implemented on the TRMS platform, and the results are compared with those of PID and ADRC in a similar structure. The experimental results demonstrate the effectiveness of the proposed method. The operation of the controller allows for an excellent set-point tracking behavior and disturbance rejection with system nonlinearity and complex coupling conditions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Pitch Angle Control for Variable Speed Wind Turbines
Directory of Open Access Journals (Sweden)
Mouna Ben Smida
2015-08-01
Full Text Available Abstract.Pitch control is a practical technique for power regulation above the rated wind speed it is considered as the most efficient and popular power control method. As conventional pitch control usually use PI controller, the mathematical model of the system should be known well.This paper deals with the operation and the control of the direct driven permanent magnet synchronous generator (PMSG.Different conventional strategies of pitch angle control are described and validated through simulation results under Matlab\\Simulink.
Adu, Patrick; Pobee, Richard; Awuah, Aaron; Asiamah, Paul B; Amoani, Festus; Gyabaa, Sampson
2018-01-01
Automobile mechanics and sprayers are at a higher risk of exposure to hazardous chemicals such as polycyclic aromatic hydrocarbons and heavy metals which may cause adverse health outcomes. This study aimed to use reticulocyte count as an indirect measure of the haematological output in automobile mechanics and sprayers in the Cape Coast Metropolis, Ghana. This cross-sectional study recruited 130 participants: 90 cases (57 automobile mechanics and 33 automobile sprayers) and 40 controls (nonautomobile workers). Venous blood samples were drawn from the participants and examined for full blood count and absolute reticulocyte count. Semi-structured questionnaire was used to collect demographic and occupational safety information from participants. 75.6% of cases had never received occupational safety training. Whereas 35.1% of automobile mechanics routinely siphoned fuel, 36.4% of automobile sprayers never used nose masks in the discharge of their duties. Controls had significantly higher WBC counts compared to mechanics ( p = 0.0001; 5.04 ± 1.7 versus 3.81 ± 1.1), or sprayers ( p = 0.0004; 5.04 ± 1.7 versus 3.74 ± 0.9). Lymphocyte, monocyte, and platelet counts were also significantly higher in controls compared to cases. Whereas RBC counts were significantly higher in controls compared to automobile mechanics (4.85 versus 4.66; p = 0.034), haemoglobin levels were significantly higher in automobile sprayers compared to controls (15.13 versus 14.1 g/dl; p = 0.0126). Absolute reticulocyte count was significantly higher in controls compared to cases [ p mechanics)]. Among the cases however, only RBC counts were significantly lower in automobile mechanics compared to automobile sprayers ( p = 0.0088; 4.66 ± 0.4 versus 4.85 ± 0.5). It was evident that both automobile mechanics and sprayers had significantly reduced haematopoietic output. Occupational safety training is not given priority and must be addressed.
A Controlled Study of Variables Related to Counseling Center Use.
Bosmajian, C. Perry, Jr.; Mattson, Robert E.
1980-01-01
Investigated the utility of several variables in discriminating between students who seek counseling and those who do not. Interaction between personal adjustment and help-seeking status was also examined. Alternate sources of help, counseling usefulness, and perceived severity of help-seeker pathology descriminated seekers from nonseekers.…
High-performance control of continuously variable transmissions
Meulen, van der S.H.
2010-01-01
Nowadays, developments with respect to the pushbelt continuously variable transmission (CVT) are mainly directed towards a reduction of the fuel consumption of a vehicle. The fuel consumption of a vehicle is affected by the variator of the CVT, which transfers the torque and varies the transmission
Directory of Open Access Journals (Sweden)
Izaskun Garrido
2016-08-01
Full Text Available Plasma stability is one of the obstacles in the path to the successful operation of fusion devices. Numerical control-oriented codes as it is the case of the widely accepted RZIp may be used within Tokamak simulations. The novelty of this article relies in the hierarchical development of a dynamic control loop. It is based on a current profile Model Predictive Control (MPC algorithm within a multiloop structure, where a MPC is developed at each step so as to improve the Proportional Integral Derivative (PID global scheme. The inner control loop is composed of a PID-based controller that acts over the Multiple Input Multiple Output (MIMO system resulting from the RZIp plasma model of the Tokamak à Configuration Variable (TCV. The coefficients of this PID controller are initially tuned using an eigenmode reduction over the passive structure model. The control action corresponding to the state of interest is then optimized in the outer MPC loop. For the sake of comparison, both the traditionally used PID global controller as well as the multiloop enhanced MPC are applied to the same TCV shot. The results show that the proposed control algorithm presents a superior performance over the conventional PID algorithm in terms of convergence. Furthermore, this enhanced MPC algorithm contributes to extend the discharge length and to overcome the limited power availability restrictions that hinder the performance of advanced tokamaks.
Optimal control of a variable spin speed CMG system for space vehicles. [Control Moment Gyros
Liu, T. C.; Chubb, W. B.; Seltzer, S. M.; Thompson, Z.
1973-01-01
Many future NASA programs require very high accurate pointing stability. These pointing requirements are well beyond anything attempted to date. This paper suggests a control system which has the capability of meeting these requirements. An optimal control law for the suggested system is specified. However, since no direct method of solution is known for this complicated system, a computation technique using successive approximations is used to develop the required solution. The method of calculus of variations is applied for estimating the changes of index of performance as well as those constraints of inequality of state variables and terminal conditions. Thus, an algorithm is obtained by the steepest descent method and/or conjugate gradient method. Numerical examples are given to show the optimal controls.
CADDIS Volume 4. Data Analysis: Advanced Analyses - Controlling for Natural Variability
Methods for controlling natural variability, predicting environmental conditions from biological observations method, biological trait data, species sensitivity distributions, propensity scores, Advanced Analyses of Data Analysis references.
Methods for controlling natural variability, predicting environmental conditions from biological observations method, biological trait data, species sensitivity distributions, propensity scores, Advanced Analyses of Data Analysis references.
Variable Structure PID Control to Prevent Integrator Windup
Hall, C. E.; Hodel, A. S.; Hung, J. Y.
1999-01-01
PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.
Design Method of Active Disturbance Rejection Variable Structure Control System
Directory of Open Access Journals (Sweden)
Yun-jie Wu
2015-01-01
Full Text Available Based on lines cluster approaching theory and inspired by the traditional exponent reaching law method, a new control method, lines cluster approaching mode control (LCAMC method, is designed to improve the parameter simplicity and structure optimization of the control system. The design guidelines and mathematical proofs are also given. To further improve the tracking performance and the inhibition of the white noise, connect the active disturbance rejection control (ADRC method with the LCAMC method and create the extended state observer based lines cluster approaching mode control (ESO-LCAMC method. Taking traditional servo control system as example, two control schemes are constructed and two kinds of comparison are carried out. Computer simulation results show that LCAMC method, having better tracking performance than the traditional sliding mode control (SMC system, makes the servo system track command signal quickly and accurately in spite of the persistent equivalent disturbances and ESO-LCAMC method further reduces the tracking error and filters the white noise added on the system states. Simulation results verify the robust property and comprehensive performance of control schemes.
International Nuclear Information System (INIS)
Takada, Shoji; Funatake, Yoshio; Inagaki, Yoshiyuki
2009-01-01
A design of a MIMO controller, which links magnetic forces of multiple magnetic bearings by feedback of multiple measurement values of vibration of a rotor, was proposed for the radial magnetic bearings for the generator rotor of helium gas turbine with a power output of 300 MWe. The generator rotor is a flexible rotor, which passes over the forth critical speed. A controller transfer function was derived at the forth critical speed, in which the bending vibration mode is similar to the one which is excited by unbalance mass to reduce a modeling error. A 1404-dimensional un-symmetric coefficient matrix of equation of state for the rotating rotor affected by Jayro effect was reduced by a modal decomposition using Schur decomposition to reduce a reduction error. The numerical results showed that unbalance response of rotor was 53 and 80 μm p-p , respectively, well below the allowable limits both at the rated and critical speeds. (author)
International Nuclear Information System (INIS)
Kamimura, Seiji; Toita, Takayuki
2003-01-01
A concept of the SEAGUL system (Snow Enhancing Atomic-power Generation UtiLity) is proposed in this paper. Lowering the temperature of sea water for cooling of atomic-power plant will make a efficiency of power generation better and bring several ten MW additional electric power for 1356 MW class plant. The system concept stands an idea to use huge amount of seasonal storage snow for cooling water temperature control. In a case study for the Kashiwazaki-Kariwa Nuclear Power Station, it is estimated to cool down the sea water of 29degC to 20degC by 80 kt snow for 3 hours in a day would brought 60 MWh electric power per a day. Annually 38.4 Mt of stored snow will bring 1800 MWh electric power. (author)
Zhang, Zhen; Ma, Cheng; Zhu, Rong
2017-08-23
Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.
Directory of Open Access Journals (Sweden)
Zhen Zhang
2017-08-01
Full Text Available Artificial Neural Networks (ANNs, including Deep Neural Networks (DNNs, have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP. The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.
Power control in wireless sensor networks with variable interference
Chincoli, M.; Syed, A.A.; Exarchakos, G.; Liotta, A.
2016-01-01
Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counterproductive
Variable Emissive Smart Radiator for Dynamic Thermal Control
National Aeronautics and Space Administration — Trending towards reduced power and mass budget on satellites with a longer mission life, there is a need for a reliable thermal control system that is more efficient...
Bio-inspired online variable recruitment control of fluidic artificial muscles
Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew
2016-12-01
This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.
Unit 16, CC in GIS; Star, Jeffrey L.
1990-01-01
This unit discusses issues related to GIS output, including the different types of output possible and the hardware for producing each. It describes text, graphic and digital data that can be generated by a GIS as well as line printers, dot matrix printers/plotters, pen plotters, optical scanners and cathode ray tubes (CRTs) as technologies for generating the output.
Tsai, Yu-Lin; Liu, Che-Yu; Krishnan, Chirenjeevi; Lin, Da-Wei; Chu, You-Chen; Chen, Tzu-Pei; Shen, Tien-Lin; Kao, Tsung-Sheng; Charlton, Martin; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung; He, Jr-Hau
2015-01-01
Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is so-called “green gap”. In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boosting light extraction efficiency of LEDs with an enhancement of 78% but also collimating the view angle of LEDs from 131.5゜to 114.0゜. This could be because the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs points the way towards a promising avenue of solid-state lighting.
Tsai, Yu-Lin
2015-11-23
Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is so-called “green gap”. In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boosting light extraction efficiency of LEDs with an enhancement of 78% but also collimating the view angle of LEDs from 131.5゜to 114.0゜. This could be because the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs points the way towards a promising avenue of solid-state lighting.
Directory of Open Access Journals (Sweden)
H. M. Pagkalinawan
2017-11-01
Full Text Available The Agricultural Resources Extraction from LiDAR Surveys (PARMAP project component of the Nationwide Detailed Resources Assessment using LiDAR (Phil-LiDAR 2 Program aims to produce detailed agricultural maps using LiDAR. Agricultural land cover at crop level was classified through object based image analysis using Support Vector Machine as classifier and LiDAR derivatives from point cloud (2 points per sq.m. and orthophoto (0.5-meter resolution as inputs. An accuracy of at least 90 %, assessed using validation points from the field and through image interpretation, was required before proceeding to post-processing and map lay-out. Knowledge sharing and capacity development facilitated by the University of the Philippines Diliman (UPD enabled partner universities across the Philippines to produce outputs for their assigned region. Considering output layers were generated by multiple teams working on different landscape complexities with some degree of data quality variability, quality checking is crucial to ensure accuracy standards were met. UPD PARMap devised a centralized and end-to-end scheme divided into four steps – land classification, GIS post-processing, schema application, and map lay-out. At each step, a block is reviewed and, subsequently, either approved or returned with documentation on required revisions. Turnaround time of review is at least one block (area ranging from 10 to 580 sq. km. per day. For coastal municipalities, an additional integration process to incorporate mapped coastal features was applied. Common problems observed during quality checking include misclassifications, gaps between features, incomplete attributes and missing map elements. Some issues are particular to specific blocks such as problematic LiDAR derivatives. UPD addressed these problems through discussion and mentoring visits to partner universities. As of March 2017, a total of 336 municipal agricultural maps have been turned-over to various
International Nuclear Information System (INIS)
Chen Yun; Wu Xiaofeng; Liu Zhong
2009-01-01
This paper studies global synchronization of non-autonomous chaotic electro-mechanical gyrostat systems via variable substitution control. A master-slave non-autonomous synchronization scheme with variable substitution control is mathematically presented. Based on the scheme, some sufficient algebraic criteria for global chaos synchronization of master and slave electro-mechanical gyrostat systems via various single-variable coupling are derived. The effectiveness of the obtained criteria is numerically illustrated by the examples.
Techniques for controlling variability in gram staining of obligate anaerobes.
Johnson, M J; Thatcher, E; Cox, M E
1995-01-01
Identification of anaerobes recovered from clinical samples is complicated by the fact that certain gram-positive anaerobes routinely stain gram negative; Peptostreptococcus asaccharolyticus, Eubacterium plautii, Clostridium ramosum, Clostridium symbiosum, and Clostridium clostridiiforme are among the nonconformists with regard to conventional Gram-staining procedures. Accurate Gram staining of American Type Culture Collection strains of these anaerobic bacteria is possible by implementing fixing and staining techniques within a gloveless anaerobic chamber. Under anaerobic conditions, gram-positive staining occurred in all test organisms with "quick" fixing techniques with both absolute methanol and formalin. The results support the hypothesis that, when anaerobic bacteria are exposed to oxygen, a breakdown of the physical integrity of the cell wall occurs, introducing Gram stain variability in gram-positive anaerobes. PMID:7538512
Modelling and Multi-Variable Control of Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, Lars Finn Slot; Holm, J. R.
2003-01-01
In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static as the dyn......In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static...... as the dynamic behavior. Based on this model the effects of the cross couplings has been examined. The influence of the cross couplings on the achievable control performance has been investigated. A MIMO controller is designed and the performance is compared with the control performance achieved by using...
Hejazi, Taha Hossein; Amirkabir University of Technology - Iran; Seyyed-Esfahani, Mirmehdi; Amirkabir University of Technology - Iran; Ramezani, Majid; Amirkabir University of Technology - Iran
2014-01-01
Quality control in industrial and service systems requires the correct setting of input factors by which the outputs result at minimum cost with desirable characteristics. There are often more than one input and output in such systems. Response surface methodology in its multiple variable forms is one of the most applied methods to estimate and improve the quality characteristics of products with respect to control factors. When there is some degree of correlation among the variables, the exi...
Control of variable speed wind turbine with doubly-fed induction generator
Energy Technology Data Exchange (ETDEWEB)
Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Iov, F.; Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology, Aalborg (Denmark)
2004-07-01
draIn this paper, a Control method suitable for a variable speed grid connected pitch-controlled wind turbine with doubly-fed induction generator (DFIG) is developed. The targets of the Control system are: 1) to Control the power drawn from the wind turbine in order to track the wind turbine optimum operation point 2) to limit the power in case of high wind speeds and 3) to Control the reactive power interchanged between the wind turbine generator and the grid. The considered configuration of DFIG is an induction generator with a wound rotor connected to the grid through a back-to-back power converter and a stator directly connected to the grid. The paper presents the overall Control system of the variable speed DFIG wind turbine, with focus on the Control strategies and algorithms applied at each hierarchical Control level of the wind turbine. There are two Control levels: a DFIG Control level and wind turbine Control level. The DFIG Control level contains a fast Control of the power converter and of the doubly-fed induction generator and it has as goal to Control the active and reactive power of the wind turbine independently. The wind turbine Control level supervises with Control signals both the DFIG Control level and the hydraulic pitch Control system of the wind turbine. The present Control method is designed for normal continuous operations. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT, which makes possible to investigate the dynamic performance of gid-connected wind turbines as a part of realistic electrical grid models. Several significant simulation results are performed With the overall Control-implemented algorithm applied on a variable speed, variable pitch wind turbine model. (au)
Directory of Open Access Journals (Sweden)
Osley López González
2011-02-01
, considered as a whole, must be able of respond with anadequate precision and speed in response to the randomness and variability of the wind.The relationship between the wind speed, the blade pitch and the generator speed in order to produce themaximum power and also be able to limit the output power for large wind speeds is a very complicated oneand it is very difficult to find its mathematical function.In this paper, the authors, utilizing the MATLABSIMULINK toolboxes, propose representing this functional relation by means of an Artificial Neural Network(ANN. The parameters and characteristics of an existing wind turbine generator are utilized and it isdemonstrated that it is possible to use an ANN in the simulation and control of a variable speed, variablepitch wind turbine that capture the maximum power from the wind.
Adaptive pitch control for variable speed wind turbines
Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO
2012-05-08
An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.
Optimal Control of Thermo--Fluid Phenomena in Variable Domains
Volkov, Oleg; Protas, Bartosz
2008-11-01
This presentation concerns our continued research on adjoint--based optimization of viscous incompressible flows (the Navier--Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem), and occurring in domains with variable boundaries. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing, where the goal is to determine an optimal heat input, so as to obtain a desired shape of the weld pool surface upon solidification. We argue that computation of sensitivities (gradients) in such free--boundary problems requires the use of the shape--differential calculus as a key ingredient. We also show that, with such tools available, the computational solution of the direct and inverse (optimization) problems can in fact be achieved in a similar manner and in a comparable computational time. Our presentation will address certain mathematical and computational aspects of the method. As an illustration we will consider the two--phase Stefan problem with contact point singularities where our approach allows us to obtain a thermodynamically consistent solution.
International Nuclear Information System (INIS)
Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing
2015-01-01
The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system
Control strategy for energy-efficient bipedal walking with variable leg stiffness
Visser, L.C.; Stramigioli, Stefano; Carloni, Raffaella
In this work, we propose a hybrid model for a bipedal walker with controlled variable leg stiffness, and a control strategy for stable gait control. The control reference is a passive gait of the limit-case bipedal spring-loaded inverted pendulum model with massless feet, ensuring that the gait is
Werzowa, Johannes; Pacini, Giovanni; Hecking, Manfred; Fidler, Catharina; Haidinger, Michael; Brath, Helmut; Thomas, Andreas; Säemann, Marcus D; Tura, Andrea
2015-01-01
Posttransplantation diabetes mellitus (PTDM) is a common complication after renal transplantation leading to increased cardiovascular morbidity and mortality. In subjects with type 2 diabetes (T2DM) increased glycemic variability and poor glycemic control have been associated with cardiovascular complications. We therefore aimed at determining glycemic variability and glycemic control in subjects with PTDM in comparison to T2DM subjects. In this observational study we analyzed 10 transplanted subjects without diabetes (Control), 10 transplanted subjects with PTDM, and 8 non-transplanted T2DM subjects using Continuous Glucose Monitoring (CGM). Several indices of glycemic control quality and variability were computed. Many indices of both glycemic control quality and variability were different between control and PTDM subjects, with worse values in PTDM. The indices of glycemic control, such as glucose mean, GRADE and M-value, were similar in PTDM and T2DM, but some indices of glycemic variability, that is CONGA, lability index and shape index, showed a markedly higher (i.e., worse) value in T2DM than in PTDM (P value range: 0.001-0.035). Although PTDM and T2DM subjects showed similar glycemic control quality, glycemic variability was significantly higher in T2DM. These data underscore potential important pathophysiological differences between T2DM and PTDM indicating that increased glycemic variability may not be a key factor for the excess cardiovascular mortality in patients with PTDM. Copyright © 2015 Elsevier Inc. All rights reserved.
Variable Displacement Control of the Concrete Pumping System Based on Dynamic Programming
Directory of Open Access Journals (Sweden)
Ye Min
2017-01-01
Full Text Available To solve the problems of cylinder piston striking cylinder and the hydraulic shocking of the main pump, and causing energy waste problem, the method of variable displacement control of piston stroke was proposed. In order to achieve effective control of the piston stroke, variable displacement control model was established under the physical constraint condition of non-collision between piston and cylinder. And the control process was realized by Dynamic Programming(DP, the simulation and test results show that piston of concrete pumping system don’t strike cylinder and reduce the hydraulic shock of the main pump outlet, meanwhile improve the response speed of the cylinder and achieve energy-saving purposes under varying loads. This control model built in the integration design space of structure variable and control variable is of guiding significance for solving open-loop system’s engineering problems.
Overall control strategy of variable speed doubly-fed induction generator wind turbine
DEFF Research Database (Denmark)
Hansen, A.D.; Iov, F.; Sørensen, Poul Ejnar
2004-01-01
The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind tu......-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions....
Endogenous Money, Output and Prices in India
Das, Rituparna
2009-01-01
This paper proposes to quantify the macroeconometric relationships among the variables broad money, lending by banks, price, and output in India using simultaneous equations system keeping in view the issue of endogeneity.
Critical Speed Control for a Fixed Blade Variable Speed Wind Turbine
Directory of Open Access Journals (Sweden)
Morgan Rossander
2017-10-01
Full Text Available A critical speed controller for avoiding a certain rotational speed is presented. The controller is useful for variable speed wind turbines with a natural frequency in the operating range. The controller has been simulated, implemented and tested on an open site 12 kW vertical axis wind turbine prototype. The controller is based on an adaptation of the optimum torque control. Two lookup tables and a simple state machine provide the control logic of the controller. The controller requires low computational resources, and no wind speed measurement is needed. The results suggest that the controller is a feasible method for critical speed control. The skipping behavior can be adjusted using only two parameters. While tested on a vertical axis wind turbine, it may be used on any variable speed turbine with the control of generator power.
International Nuclear Information System (INIS)
Dupuy, R.
1970-01-01
The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr
Directory of Open Access Journals (Sweden)
Guillaume Rey
2011-02-01
Full Text Available The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.
Directory of Open Access Journals (Sweden)
Mifeng Ren
2014-01-01
Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.
Creation and control of variably shaped plasmas in TCV
International Nuclear Information System (INIS)
Hofmann, F.; Lister, J.B.; Anton, M.
1994-01-01
During the first year of operation, the TCV tokamak has produced a large variety of plasma shapes and magnetic configurations, with 1.0≤B tor ≤1.46T, I p ≤800kA, k≤2.05, -0.7≤δ ≤0.7. A new shape control algorithm, based on a finite element reconstruction of the plasma current in real time, has been implemented. Vertical growth rates of 800 sec -1 , corresponding to a stability margin f=1.15, have been stabilized. Ohmic H-modes, with energy confinement times reaching 80ms, normalized beta (β tor aB/I p ) of 1.9 and τ E /ITER89-P of 2.4 have been obtained in single-null X-point deuterium discharges with the ion grad B drift towards the X-point. Limiter H-modes with maximum line averaged electron densities of 1.7x10 20 m -3 have been observed in D-shaped plasmas with 360kA≤I p ≤600kA. (Author)
Variable solar control using thermotropic core/shell particles
Energy Technology Data Exchange (ETDEWEB)
Muehling, Olaf; Seeboth, Arno; Ruhmann, Ralf; Potechius, Elvira; Vetter, Renate [Fraunhofer Institute for Applied Polymer Research (IAP), Department of Chromogenic Polymers, Volmerstr. 7B, 12489 Berlin (Germany); Haeusler, Tobias [Brandenburg University of Technology (BTU Cottbus), Chair of Applied Physics/Thermophysics, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)
2009-09-15
Subject of our recent investigations is the utilization of a reversible thermotropic material for a self-regulating sun protection glazing that controls the solar energy input in order to avoid overheating. Based on the well-established UV curing technology for laminated glass a superior thermotropic material with tunable switching characteristics and of low material costs was developed. The polymer layer contains core/shell particles homogeneously dispersed in a UV-cured resin. The particle core in turn consists of an n-alkane mixture that is responsible for the temperature-induced clear/opaque switching. To obtain particles of well-defined size and with a narrow size distribution, the miniemulsion polymerization technique was used. The visible and solar optical properties (normal-normal, normal-hemispherical, and normal-diffuse transmittance) in the off (clear) and in the on state (opaque) were determined by UV/Vis/NIR spectroscopy. Samples containing particles of high median diameter (>800 nm) primarily scatter in the forward direction. However, with smaller particles (300-600 nm) a higher backscattering (reflection) efficiency was achieved. The largest difference in the normal-hemispherical transmittance could be found with a particle amount of 6% and a median scattering domain diameter of {proportional_to}380 nm. (author)
Variability in Glycemic Control with Temperature Transitions during Therapeutic Hypothermia
Directory of Open Access Journals (Sweden)
Krystal K. Haase
2017-01-01
Full Text Available Purpose. Patients treated with therapeutic hypothermia (TH and continuous insulin may be at increased risk of hyperglycemia or hypoglycemia, particularly during temperature transitions. This study aimed to evaluate frequency of glucose excursions during each phase of TH and to characterize glycemic control patterns in relation to survival. Methods. Patients admitted to a tertiary care hospital for circulatory arrest and treated with both therapeutic hypothermia and protocol-based continuous insulin between January 2010 and June 2013 were included. Glucose measures, insulin, and temperatures were collected through 24 hours after rewarming. Results. 24 of 26 patients experienced glycemic excursions. Hyperglycemic excursions were more frequent during initiation versus remaining phases (36.3%, 4.3%, 2.5%, and 4.0%, p=0.002. Hypoglycemia occurred most often during rewarming (0%, 7.7%, 23.1%, and 3.8%, p=0.02. Patients who experienced hypoglycemia had higher insulin doses prior to rewarming (16.2 versus 2.1 units/hr, p=0.03. Glucose variation was highest during hypothermia and trended higher in nonsurvivors compared to survivors (13.38 versus 9.16, p=0.09. Frequency of excursions was also higher in nonsurvivors (32.3% versus 19.8%, p=0.045. Conclusions. Glycemic excursions are common and occur more often in nonsurvivors. Excursions differ by phase but risk of hypoglycemia is increased during rewarming.
Overall control strategy of variable speed doubly-fed induction generator wind turbine
Energy Technology Data Exchange (ETDEWEB)
Hansen, Anca D.; Soerensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Iov, Florin; Blaabjerg, Frede [Aalborg Univ. (Denmark). Inst. of Energy Technology
2004-07-01
The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions.
DEFF Research Database (Denmark)
Lascu, Christian; Boldea, Ion; Blaabjerg, Frede
2005-01-01
A sensorless induction machine drive is presented, in which the principles of variable-structure control and direct torque control (DTC) are combined to ensure high-performance operation in the steady state and under transient conditions. The drive employs a new torque and flux controller......, the "linear and variable-structure control", which realizes accurate and robust control in a wide speed range. Conventional DTC transient merits are preserved, while the steady-state behavior is significantly improved. The full-order state observer is a sliding-mode one, which does not require the rotor speed...
Tracer responses and control of vessels with variable flow and volume
International Nuclear Information System (INIS)
Niemi, A.J.
1990-01-01
Continuous flow vessels which are subject to variation of flow and volume are characterized by time-variable parameters. It is shown that their residence time distributions and weighting functions obtained by tracer testing are made invariant with regard to the integrated flow variables which are introduced. Under variable flow but constant volume, one such integrated variable is sufficient. Under variable volume, two different variables are suggested for the residence time distribution and weighting function, while the appropriate variable of the perfect mixer differs distinctly from that of vessels with a distinct velocity profile. It is shown through a number of example cases, that an agreement with their mathematical models is reached. The approach is extended to include also arbitrary, non-analytic response functions obtained by tracer measurements. Applications of the derived models and their incorporation in automatic control algorithms is discussed. (orig.) [de
Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian
2017-09-01
Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.
Synchronization of chaotic systems with parameter uncertainties via variable structure control
International Nuclear Information System (INIS)
Etemadi, Shahram; Alasty, Aria; Salarieh, Hassan
2006-01-01
The Letter introduces a robust control design method to synchronize a pair of different uncertain chaotic systems. The technique is based on sliding-mode and variable structure control theories. Comparison of proposed method with previous works is performed during simulations. It is shown that the proposed controller while appearing in a faster response, is able to overcome random uncertainties of all model parameters
Synchronization of chaotic systems with parameter uncertainties via variable structure control
Energy Technology Data Exchange (ETDEWEB)
Etemadi, Shahram [Centre of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Alasty, Aria [Centre of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)]. E-mail: aalasti@sharif.edu; Salarieh, Hassan [Centre of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2006-08-28
The Letter introduces a robust control design method to synchronize a pair of different uncertain chaotic systems. The technique is based on sliding-mode and variable structure control theories. Comparison of proposed method with previous works is performed during simulations. It is shown that the proposed controller while appearing in a faster response, is able to overcome random uncertainties of all model parameters.
A disturbance decoupling nonlinear control law for variable speed wind turbines
DEFF Research Database (Denmark)
Thomsen, Sven Creutz; Poulsen, Niels Kjølstad
2007-01-01
This paper describes a nonlinear control law for controlling variable speed wind turbines using feedback linearization. The novel aspect of the control law is its ability to decouple the effect of wind fluctuations. Furthermore, the transformation to feedback linearizable coordinates is chosen...
Directory of Open Access Journals (Sweden)
Rajagopalan Parameshwaran
2008-01-01
Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.
Applications of variable speed control for contending with recurrent highway congestion.
2014-07-01
This research project developed vital operational guidelines for design of a variable speed limit (VSL) system and its integrated operations with ramp metering control in contending with recurrent highway congestion. The developed guidelines can serv...
Analytical Model for LLC Resonant Converter With Variable Duty-Cycle Control
DEFF Research Database (Denmark)
Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede
2016-01-01
are identified and discussed. The proposed model enables a better understanding of the operation characteristics and fast parameter design of the LLC converter, which otherwise cannot be achieved by the existing simulation based methods and numerical models. The results obtained from the proposed model......In LLC resonant converters, the variable duty-cycle control is usually combined with a variable frequency control to widen the gain range, improve the light-load efficiency, or suppress the inrush current during start-up. However, a proper analytical model for the variable duty-cycle controlled LLC...... converter is still not available due to the complexity of operation modes and the nonlinearity of steady-state equations. This paper makes the efforts to develop an analytical model for the LLC converter with variable duty-cycle control. All possible operation models and critical operation characteristics...
Differentiating Between Precursor and Control Variables When Analyzing Reasoned Action Theories
Hennessy, Michael; Bleakley, Amy; Fishbein, Martin; Brown, Larry; DiClemente, Ralph; Romer, Daniel; Valois, Robert; Vanable, Peter A.; Carey, Michael P.; Salazar, Laura
2009-01-01
This paper highlights the distinction between precursor and control variables in the context of reasoned action theory. Here the theory is combined with structural equation modeling to demonstrate how age and past sexual behavior should be situated in a reasoned action analysis. A two wave longitudinal survey sample of African-American adolescents is analyzed where the target behavior is having vaginal sex. Results differ when age and past behavior are used as control variables and when they ...
Senkel, Luise
2016-01-01
This edited book aims at presenting current research activities in the field of robust variable-structure systems. The scope equally comprises highlighting novel methodological aspects as well as presenting the use of variable-structure techniques in industrial applications including their efficient implementation on hardware for real-time control. The target audience primarily comprises research experts in the field of control theory and nonlinear dynamics but the book may also be beneficial for graduate students.
Output Current Ripple Reduction Algorithms for Home Energy Storage Systems
Directory of Open Access Journals (Sweden)
Jin-Hyuk Park
2013-10-01
Full Text Available This paper proposes an output current ripple reduction algorithm using a proportional-integral (PI controller for an energy storage system (ESS. In single-phase systems, the DC/AC inverter has a second-order harmonic at twice the grid frequency of a DC-link voltage caused by pulsation of the DC-link voltage. The output current of a DC/DC converter has a ripple component because of the ripple of the DC-link voltage. The second-order harmonic adversely affects the battery lifetime. The proposed algorithm has an advantage of reducing the second-order harmonic of the output current in the variable frequency system. The proposed algorithm is verified from the PSIM simulation and experiment with the 3 kW ESS model.
Time-response shaping using output to input saturation transformation
Chambon, E.; Burlion, L.; Apkarian, P.
2018-03-01
For linear systems, the control law design is often performed so that the resulting closed loop meets specific frequency-domain requirements. However, in many cases, it may be observed that the obtained controller does not enforce time-domain requirements amongst which the objective of keeping a scalar output variable in a given interval. In this article, a transformation is proposed to convert prescribed bounds on an output variable into time-varying saturations on the synthesised linear scalar control law. This transformation uses some well-chosen time-varying coefficients so that the resulting time-varying saturation bounds do not overlap in the presence of disturbances. Using an anti-windup approach, it is obtained that the origin of the resulting closed loop is globally asymptotically stable and that the constrained output variable satisfies the time-domain constraints in the presence of an unknown finite-energy-bounded disturbance. An application to a linear ball and beam model is presented.
DEFF Research Database (Denmark)
Bertelsen, Anders; Lorenzen, Ebbe L; Brink, Carsten
2011-01-01
) as well as BVDR. Using CVDR opposed to BVDR for VMAT has the potential of reducing the treatment time but may lead to lower dosimetric accuracy due to faster moving accelerator parts. Using D7 and a test version of Integrity, differences in ability to control the accelerator, treatment efficiency......Elekta accelerators controlled by the current clinically used accelerator control system, Desktop 7.01 (D7), uses binned variable dose rate (BVDR) for volumetric modulated arc therapy (VMAT). The next version of the treatment control system (Integrity) supports continuously variable dose rate (CVDR...
Model Predictive Control of a Nonlinear System with Known Scheduling Variable
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2012-01-01
Model predictive control (MPC) of a class of nonlinear systems is considered in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By taking the advantage of having future values of the scheduling variable, we will simplify state prediction. Consequently...... the control problem of the nonlinear system is simplied into a quadratic programming. Wind turbine is chosen as the case study and we choose wind speed as the scheduling variable. Wind speed is measurable ahead of the turbine, therefore the scheduling variable is known for the entire prediction horizon....
Method of nuclear reactor control using a variable temperature load dependent set point
International Nuclear Information System (INIS)
Kelly, J.J.; Rambo, G.E.
1982-01-01
A method and apparatus for controlling a nuclear reactor in response to a variable average reactor coolant temperature set point is disclosed. The set point is dependent upon percent of full power load demand. A manually-actuated ''droop mode'' of control is provided whereby the reactor coolant temperature is allowed to drop below the set point temperature a predetermined amount wherein the control is switched from reactor control rods exclusively to feedwater flow
Differentiating between precursor and control variables when analyzing reasoned action theories.
Hennessy, Michael; Bleakley, Amy; Fishbein, Martin; Brown, Larry; Diclemente, Ralph; Romer, Daniel; Valois, Robert; Vanable, Peter A; Carey, Michael P; Salazar, Laura
2010-02-01
This paper highlights the distinction between precursor and control variables in the context of reasoned action theory. Here the theory is combined with structural equation modeling to demonstrate how age and past sexual behavior should be situated in a reasoned action analysis. A two wave longitudinal survey sample of African-American adolescents is analyzed where the target behavior is having vaginal sex. Results differ when age and past behavior are used as control variables and when they are correctly used as precursors. Because control variables do not appear in any form of reasoned action theory, this approach to including background variables is not correct when analyzing data sets based on the theoretical axioms of the Theory of Reasoned Action, the Theory of Planned Behavior, or the Integrative Model.
U.S. Environmental Protection Agency — This dataset contains WRF model output. There are three months of data: July 2012, July 2013, and January 2013. For each month, several simulations were made: A...
National Oceanic and Atmospheric Administration, Department of Commerce — These output tables contain parsed and format validated data from the various VMS forms that are sent from any given vessel, while at sea, from the VMS devices on...
Governmentally amplified output volatility
Funashima, Yoshito
2016-11-01
Predominant government behavior is decomposed by frequency into several periodic components: updating cycles of infrastructure, Kuznets cycles, fiscal policy over business cycles, and election cycles. Little is known, however, about the theoretical impact of such cyclical behavior in public finance on output fluctuations. Based on a standard neoclassical growth model, this study intends to examine the frequency at which public investment cycles are relevant to output fluctuations. We find an inverted U-shaped relationship between output volatility and length of cycle in public investment. This implies that periodic behavior in public investment at a certain frequency range can cause aggravated output resonance. Moreover, we present an empirical analysis to test the theoretical implication, using the U.S. data in the period from 1968 to 2015. The empirical results suggest that such resonance phenomena change from low to high frequency.
U.S. Environmental Protection Agency — CMAQ and CMAQ-VBS model output. This dataset is not publicly accessible because: Files too large. It can be accessed through the following means: via EPA's NCC tape...
Energy Technology Data Exchange (ETDEWEB)
Guo Jindong; Xu Honghua; Zhao Dongli [Inst. of Electrical Engineering, CAS, BJ (China)
2008-07-01
The no-impact-current cutting-in-network control is the key of variable speed constant frequency (VSCF) wind power control system. Based on the stator flux linkage oriented control theory of doubly fed induction generator (DFIG), the field-oriented vector control technique and the internal model controller (IMC) are transplanted into the voltage control of DFIG and a novel cutting-in control strategy is obtained. The strategy does not need the exact inductor generator model, and has perfect performance without overshoot. The structure of the controller is simple, and the only parameter to be adjusted is directly related to system performance, so the strategy is easy to realize. Finally the strategy is studied by simulation using Matlab, the results of the simulation show that the control strategy can effectively control the stator voltage. (orig.)
Control Multivariante Estadístico de Variables Discretas tipo Poisson
GARCIA BUSTOS, SANDRA LORENA
2016-01-01
En algunos casos, cuando el número de defectos de un proceso de producción tiene que ser controlada, la distribución de Poisson se emplea para modelar la frecuencia de estos defectos y para desarrollar un gráfico de control. En este trabajo se analiza el control de características de calidad p> 1 de Poisson . Cuando este control se necesita, hay dos enfoques principales: 1 - Un gráfico para cada variable de Poisson, el esquema múltiple.. 2 -. Sólo una gráfico para todas las variables, el sist...
Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control
Directory of Open Access Journals (Sweden)
Baolian Liu
2014-01-01
Full Text Available The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the above problem, and the design method is given. The simulation and experiment results proved that the proposed variable structure control algorithm can eliminate the chattering problem existing in traditional variable structure control effectively, is insensitive to system disturbance, and has good robustness and fast dynamic response speed and stable DC bus voltage with small fluctuation. The above advantages ensure the compensation effect of APF.
Burgess, Helen J; Park, Margaret; Wyatt, James K; Rizvydeen, Muneer; Fogg, Louis F
2017-06-01
To compare sleep and circadian variability in adults with delayed sleep-wake phase disorder (DSWPD) to healthy controls. Forty participants (22 DSWPD, 18 healthy controls) completed a ten-day protocol, consisting of DLMO assessments on two consecutive nights, a five-day study break, followed by two more DLMO assessments. All participants were instructed to sleep within one hour of their self-reported average sleep schedule for the last four days of the study break. We analyzed the participants' wrist actigraphy data during these four days to examine intraindividual variability in sleep timing, duration and efficiency. We also examined shifts in the DLMO from before and after the study break. Under the same conditions, people with DSWPD had significantly more variable wake times and total sleep time than healthy controls (p ≤ 0.015). Intraindividual variability in sleep onset time and sleep efficiency was similar between the two groups (p ≥ 0.30). The DLMO was relatively stable across the study break, with only 11% of controls but 27% of DSWPDs showed more than a one hour shift in the DLMO. Only in the DSWPD sample was greater sleep variability associated with a larger shift in the DLMO (r = 0.46, p = 0.03). These results suggest that intraindividual variability in sleep can be higher in DSWPD versus healthy controls, and this may impact variability in the DLMO. DSWPD patients with higher intraindividual variability in sleep are more likely to have a shifting DLMO, which could impact sleep symptoms and the optimal timing of light and/or melatonin treatment for DSWPD. Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. Copyright © 2017 Elsevier B.V. All rights reserved.
Stringell, Thomas B; Bamber, Roger N; Burton, Mark; Lindenbaum, Charles; Skates, Lucie R; Sanderson, William G
2013-06-01
Performance assessment, impact detection, and the assessment of regulatory compliance are common scientific problems for the management of protected areas. Some habitats in protected areas, however, are rare and/or variable and are not often selected for study by ecologists because they preclude comparison with controls and high community variability makes meaningful change detection difficult. Shallow coastal saline lagoons are habitats that experience comparatively high levels of stress due to high physical variability. Lagoons are rare, declining habitats found in coastal regions throughout Europe (and elsewhere) where they are identified as one of the habitats most in need of protected area management. The infauna in the sediments of 25 lagoons were sampled. Temporal and spatial variation in three of these [protected] lagoons was investigated further over 5 years. In a multivariate analysis of community structure similarities were found between some lagoons, but in other cases communities were unique or specific to only two sites. The protected lagoons with these unique/specific communities showed significant temporal and spatial variation, yet none of the changes observed were attributed to human impacts and were interpreted as inherent variability. Multivariate control charts can operate without experimental controls and were used to assess community changes within the context of 'normal' lagoon variability. The aim of control chart analysis is to characterize background variability in a parameter and identify when a new observation deviates more than expected. In only 1 year was variability more than expected and corresponded with the coldest December in over 100 years. Multivariate control charts are likely to have wide application in the management of protected areas and other natural systems where variability and/or rarity preclude conventional analytical and experimental approaches but where assessments of condition, impact or regulatory compliance are
Regulation of the output power at the resonant converter
Energy Technology Data Exchange (ETDEWEB)
Stefanov, Goce G.; Sarac, Vasilija J. [University Goce Delecev-Stip, Faculty of Electrical Engineering, Radovis (Macedonia, The Former Yugoslav Republic of); Karadzinov, Ljupco V., E-mail: goce.stefanov@ugd.edu.mk [University Kiril and Methodyus-Skopje, FEIT Skopje(Macedonia, The Former Yugoslav Republic of)
2011-07-01
In this paper a method for regulating an alternating current voltage source with pair of IGBT transistor’s modules, in a full bridge configuration with series resonant converter is given. With the developed method a solution is obtained which can regulate the phase difference between output voltage and current through the inductor, in order to maintain maximum output power. Control electronic via feedback signals regulates the energy transfer to the tank by changing the pulse width of signals which are used as inputs to the gates of the IGBTs. By increasing or decreasing the pulse width transmitted to the various gates of the IGBT the energy transfer to the tank is increased or decreased . PowerSim simulations program is used for development of controlling methodology. Developed method is practically implemented in a prototype of the device for phase control of resonant converter with variable the resonant load. Key words: pulse width method, phase regulation , power converter.
Pedreño Santos, Ana
2015-01-01
To know how marketing variables affect customer value is essential for a company in order to be market and customer oriented, and to improve investment efficiency in both attracting and retaining customers. Thus, the assessment of the influence of marketing variables in customer value is of prime importance. This is recognized in many empirical studies of these variables, which address the impact of a single variable (or sets of a few variables) on customer value. A comprehensive, integrated ...
Oomen, T.A.E.; Meulen, van der S.H.
2013-01-01
Optimal operation of continuously variable transmissions (CVTs) is essential to meet tightening emission and fuel consumption requirements. This is achieved by accurately tracking a prescribed transmission ratio reference and simultaneously optimizing the internal efficiency of the CVT. To reduce
A Monte Carlo Study on Multiple Output Stochastic Frontiers
DEFF Research Database (Denmark)
Henningsen, Géraldine; Henningsen, Arne; Jensen, Uwe
, dividing all other output quantities by the selected output quantity, and using these ratios as regressors (OD). Another approach is the stochastic ray production frontier (SR) which transforms the output quantities into their Euclidean distance as the dependent variable and their polar coordinates......In the estimation of multiple output technologies in a primal approach, the main question is how to handle the multiple outputs. Often an output distance function is used, where the classical approach is to exploit its homogeneity property by selecting one output quantity as the dependent variable...... of both specifications for the case of a Translog output distance function with respect to different common statistical problems as well as problems arising as a consequence of zero values in the output quantities. Although, our results partly show clear reactions to statistical misspecifications...
International Nuclear Information System (INIS)
Du, Haiping; Li, Weihua; Zhang, Nong
2011-01-01
This paper presents a study on continuously variable stiffness control of vehicle seat suspension using a magnetorheological elastomer (MRE) isolator. A concept design for an MRE isolator is proposed in the paper and its behavior is experimentally evaluated. An integrated seat suspension model, which includes a quarter-car suspension and a seat suspension with a driver body model, is used to design a sub-optimal H ∞ controller for an active isolator. The desired control force generated by this active isolator is then emulated by the MRE isolator through its continuously variable stiffness property when the actuating condition is met. The vibration control effect of the MRE isolator is evaluated in terms of driver body acceleration responses under both bump and random road conditions. The results show that the proposed control strategy achieves better vibration reduction performance than conventional on–off control
Nutritional variables and work-related accidents: a case-control study.
de Medeiros, M A T; Zangirolani, Lia Thieme Oikawa; Cordeiro, Ricardo Carlos; da Costa, Proença Rossana Pacheco; Diez-Garcia, Rosa Wanda
2014-01-01
Nutritional aspects are important for the prevention of diseases and disorders, and few studies have focused on the relationship between risk of work injury and nutritional variables. This study aimed to verify whether nutritional variables constitute risk factors for work-related accidents. 1,422 industrial workers (600 cases plus 822 controls). A case-control study was carried out in an industrial city in south-east Brazil. A multiple logistic regression model was adjusted using work-related accidents as the response variable and nutritional variables as predictors. The associations were assessed by Odds Ratio (OR), with a p-value work-related accidents were (a) attending formal education for an above average number of years (OR=0.91, pwork-related accidents. This indicates the need, during the formulation of policies for these kinds of government benefits, to include nutrition aspects in order to minimize work-related accidents risks.
International Nuclear Information System (INIS)
Durnev, V.N.; Mitelman, M.G.
2001-01-01
The presentation presents main conclusions on the basis of analysis of the existing situation with assurance of observability and controllability of the reactor installation. A methodology of classification of variables of the controlled object state and proposals on selection and substantiation of measurement and inspection monitoring techniques is given. Main problems associated with assurance of observability and controllability of the reactor installation are presented for various operation modes. (Authors)
Control of variable speed wind turbines with doubly-fed induction generators
Energy Technology Data Exchange (ETDEWEB)
Hansen, A.D.; Soerensen, P.; Iov, F.; Blaabjerg, F.
2005-07-01
The paper presents an overall control method for variable speed pitch controlled wind turbines with doubly-fed induction generators (DFIG). Emphasis is on control strategies and algorithms applied at each hierarchical control level of the wind turbine. The objectives of the control system are: 1) to control the power drawn from the wind turbine in order to track the wind turbine maximum power operation point, 2) to limit the power in case of large wind speeds, and 3) to control the reactive power interchanged between the wind turbine generator and the grid. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wide range of wind speeds. The model of the variable speed, variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DlgSILENT PowerFactory which allows investigation of the dynamic performance of grid-connected wind turbines within realistic electrical grid models. Simulation results are presented and analysed in different normal operating conditions. (author)
Variable Delay Element For Jitter Control In High Speed Data Links
Livolsi, Robert R.
2002-06-11
A circuit and method for decreasing the amount of jitter present at the receiver input of high speed data links which uses a driver circuit for input from a high speed data link which comprises a logic circuit having a first section (1) which provides data latches, a second section (2) which provides a circuit generates a pre-destorted output and for compensating for level dependent jitter having an OR function element and a NOR function element each of which is coupled to two inputs and to a variable delay element as an input which provides a bi-modal delay for pulse width pre-distortion, a third section (3) which provides a muxing circuit, and a forth section (4) for clock distribution in the driver circuit. A fifth section is used for logic testing the driver circuit.
Ionescu, Clara A.; De Keyser, Robin; Torrico, Bismark Claure; De Smet, Tom; Struys, Michel M. R. F.; Normey-Rico, Julio E.
This paper presents the application of predictive control to drug dosing during anesthesia in patients undergoing surgery. The performance of a generic predictive control strategy in drug dosing control, with a previously reported anesthesia-specific control algorithm, has been evaluated. The
Evidence for a time-invariant phase variable in human ankle control.
Directory of Open Access Journals (Sweden)
Robert D Gregg
Full Text Available Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms. In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control.
International Nuclear Information System (INIS)
Farivar, Faezeh; Aliyari Shoorehdeli, Mahdi; Nekoui, Mohammad Ali; Teshnehlab, Mohammad
2012-01-01
Highlights: ► A systematic procedure for GPS of unknown heavy chaotic gyroscope systems. ► Proposed methods are based on Lyapunov stability theory. ► Without calculating Lyapunov exponents and Eigen values of the Jacobian matrix. ► Capable to extend for a variety of chaotic systems. ► Useful for practical applications in the future. - Abstract: This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to
General Output Feedback Stabilization for Fractional Order Systems: An LMI Approach
Directory of Open Access Journals (Sweden)
Yiheng Wei
2014-01-01
Full Text Available This paper is concerned with the problem of general output feedback stabilization for fractional order linear time-invariant (FO-LTI systems with the fractional commensurate order 0<α<2. The objective is to design suitable output feedback controllers that guarantee the stability of the resulting closed-loop systems. Based on the slack variable method and our previous stability criteria, some new results in the form of linear matrix inequality (LMI are developed to the static and dynamic output feedback controllers synthesis for the FO-LTI system with 0<α<1. Furthermore, the results are extended to stabilize the FO-LTI systems with 1≤α<2. Finally, robust output feedback control is discussed. Numerical examples are given to illustrate the effectiveness of the proposed design methods.
Modelling and control of variable speed wind turbines for power system studies
DEFF Research Database (Denmark)
Michalke, Gabriele; Hansen, Anca Daniela
2010-01-01
and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...
Variable speed wind turbine generator system with current controlled voltage source inverter
International Nuclear Information System (INIS)
Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.
2011-01-01
highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.
Variable speed wind turbine generator system with current controlled voltage source inverter
Energy Technology Data Exchange (ETDEWEB)
Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)
2011-07-15
highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.
Complex state variable- and disturbance observer-based current controllers for AC drives
DEFF Research Database (Denmark)
Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede
2013-01-01
In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components...... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....
Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable
DEFF Research Database (Denmark)
Mihet-Popa, Lucian; Blaabjerg, Frede; Boldea, Ion
2004-01-01
the interaction between a wind turbine and the power system. The model is intended to simulate the behaviour of the wind turbine using induction generators both during normal operation. Sample simulation results for two induction generators (2/0.5 MW) validate the fundamental issues.......To optimise the power produced in a wind turbine, the speed of the turbine should vary with the wind speed. A simple control method is proposed that will allow an induction machine to run a turbine at its maximum power coefficient. Various types of power control strategies have been suggested...... for application in variable speed wind turbines. The usual strategy is to control the power or the torque acting on the wind turbine shafts. This paper presents an alternative control strategy, where the rotational speed is the controlled variable. The paper describes a model, which is being developed to simulate...
A novel technology for control of variable speed pumped storage power plant
Institute of Scientific and Technical Information of China (English)
Seyed Mohammad Hassan Hosseini; Mohammad Reza Semsar
2016-01-01
Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control (DTFC) of a variable speed pumped storage power plant (VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP’s control strategies is studied. At the first, a wind turbine with the capacity 2.2 kW and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts (including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter (2LVSC) and three-level voltage source converter (3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion (THD) and ripple of rotor torque and flux.
Tuning method for multi-variable control system with PID controllers
International Nuclear Information System (INIS)
Fujiwara, Toshitaka
1983-01-01
Control systems, including thermal and nuclear power plants, generally and mainly use PID controllers consisting of proportional, integral and differential actions. These systems consist of multiple control loops which interfere with each other. Therefore, it is present status that the fine control of the system is carried out by the trial and error method because the adjusting procedure for a single control loop cannot be applied to a multi-loop system in most cases. In this report, a method to effectively adjust PID controller parameters in a short time in a control system which consists of multi-loops that interfere with each other. This method makes adjustment by using the control area as the evaluation function, which is the time-dependent integration of control deviation, the input to the PID controllers. In other words, the evaluation function is provided for each control result for every parameter (gain constant, reset rate, and differentiation time), and all parameters are simultaneously changed in the direction of minimizing the values of these evaluation functions. In the report, the principle of tuning method, the evaluation function for each of three parameters, and the adjusting system configuration for separately using for actual plant tuning and for control system design are described. It also shows the examples of application to the actual tuning of the control system for a thermal power plant and to a control system design. (Wakatsuki, Y.)
Directory of Open Access Journals (Sweden)
Jing Lei
2013-01-01
Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.
The optimal operation of cooling tower systems with variable-frequency control
Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing
2018-02-01
This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.
Oil output's changing fortunes
International Nuclear Information System (INIS)
Eldridge, D.
1994-01-01
The Petroleum Economist, previously the Petroleum Press Service, has been making annual surveys of output levels of petroleum in all the oil-producing countries since its founding in 1934. This article documents trends and changes in the major oil-producing countries output from 1934 until the present. This analysis is linked with the political and historical events accompanying these changes, notably the growth of Middle Eastern oil production, the North Sea finds and most recently, Iraq's invasion of Kuwait in 1990. (UK)
Modeling, Simulation and Control of Matrix Convert for Variable Speed Wind Turbine System
Directory of Open Access Journals (Sweden)
M. Alizadeh Moghadam
2015-09-01
Full Text Available This paper presents modeling, simulation and control of matrix converter (MC for variable speed wind turbine (VSWT system including permanent magnet synchronous generator (PMSG. At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independent control maximum power point tracking (MPPT of generator side and regulate reactive power of grid side for the operation of the VSWT system. The MPPT is implemented by a new control system. This control system is based on control of zero d-axis current (ZDC. The ZDC control can be realized by transfer the three-phase stator current in the stationary reference frame into d-and q-axis components in the synchronous reference frame. Also this paper is presented, a novel control strategy to regulate the reactive power supplied by a variable speed wind energy conversion system. This control strategy is based on voltage oriented control (VOC. The simulation results based on Simulink/Matlab software show that the controllers can extract maximum power and regulate reactive power under varying wind velocities.
Connected variable speed limits control and vehicle acceleration control to resolve moving jams
Wang, M.; Daamen, W.; Hoogendoorn, S.P.; Van Arem, B.
2015-01-01
The vision of intelligent vehicles traveling in road networks has prompted numerous concepts to control future traffic flow, one of which is the in-vehicle actuation of traffic control signals. The key of this concept is using intelligent vehicles as actuators for traffic control systems, replacing
Modeling and control of PMSG-based variable-speed wind turbine
Energy Technology Data Exchange (ETDEWEB)
Kim, Hong-Woo; Ko, Hee-Sang [Wind Energy Research Center, Korea Institute of Energy Research, Yuseong-gu Jang-Dong 71-2,305-343 Daejeon (Korea); Kim, Sung-Soo [Chungbuk National University (Korea)
2010-01-15
This paper presents a control scheme of a variable-speed wind turbine with a permanent-magnetic synchronous generator (PMSG) and full-scale back-to-back voltage source converter. A comprehensive dynamical model of the PMSG wind turbine and its control scheme is presented. The control scheme comprises both the wind-turbine control itself and the power-converter control. In addition, since the PMSG wind turbine is able to support actively the grid due to its capability to control independently active and reactive power production to the imposed set-values with taking into account its operating state and limits, this paper presents the supervisory reactive power control scheme in order to regulate/contribute the voltage at a remote location. The ability of the control scheme is assessed and discussed by means of simulations, based on a candidate site of the offshore wind farm in Jeju, Korea. (author)
Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario
2014-09-01
In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.
The Selection, Use, and Reporting of Control Variables in International Business Research
DEFF Research Database (Denmark)
Nielsen, Bo Bernhard; Raswant, Arpit
2018-01-01
This study explores the selection, use, and reporting of control variables in studies published in the leading international business (IB) research journals. We review a sample of 246 empirical studies published in the top five IB journals over the period 2012–2015 with particular emphasis...... on selection, use, and reporting of controls. Approximately 83% of studies included only half of what we consider Minimum Standard of Practice with regards to controls, whereas only 38% of the studies met the 75% threshold. We provide recommendations on how to effectively identify, use and report controls...
Performance comparison of control schemes for variable-speed wind turbines
Bottasso, C. L.; Croce, A.; Savini, B.
2007-07-01
We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies.
Performance comparison of control schemes for variable-speed wind turbines
International Nuclear Information System (INIS)
Bottasso, C L; Croce, A; Savini, B
2007-01-01
We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies
UDE-based control of variable-speed wind turbine systems
Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang
2017-01-01
In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.
Gaudez, C; Gilles, M A; Savin, J
2016-03-01
For several years, increasing numbers of studies have highlighted the existence of movement variability. Before that, it was neglected in movement analysis and it is still almost completely ignored in workstation design. This article reviews motor control theories and factors influencing movement execution, and indicates how intrinsic movement variability is part of task completion. These background clarifications should help ergonomists and workstation designers to gain a better understanding of these concepts, which can then be used to improve design tools. We also question which techniques--kinematics, kinetics or muscular activity--and descriptors are most appropriate for describing intrinsic movement variability and for integration into design tools. By this way, simulations generated by designers for workstation design should be closer to the real movements performed by workers. This review emphasises the complexity of identifying, describing and processing intrinsic movement variability in occupational activities. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Halo control, beam matching, and new dynamical variables for beam distributions
International Nuclear Information System (INIS)
Lysenko, W.; Parsa, Z.
1997-01-01
We present the status of our work on physics models that relate release to the understanding and control of beam halo, which is a cause of particle loss in high power ion linear accelerators. We can minimize these particle losses, even in the presence of nonlinearities, by ensuring the beam is matched to high order. Our goal is to determine new dynamical variables that enable us to more directly solve for the evolution of the halo. We considered moments and several new variables, using a Lie-Poisson formulation whenever possible. Using symbolic techniques, we computed high-order matches and mode invariants (analogs of moment invariants) in the new variables. A promising new development developments is that of the variables we call weighted moments, which allow us to compute high-order nonlinear effects (like halos) while making use of well-developed existing results and computational techniques developed for studying first order effects. copyright 1997 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Boukhezzar, B
2006-02-15
The research work is dealing with variable speed wind turbines modelling and control design, in order to achieve the objectives of maximizing the extracted energy from the wind, below the rated power area in the one hand and in the other hand regulating the electric power production, above the rated power area, while reducing mechanical transient loads. For this purpose, we have studied various control strategies from linear to nonlinear based. some of the controllers that we have developed, herein appear for the first time in the relevant domain, the remaining others are an adaptation of well know controllers to the adopted wind turbine models. as matter of fact, we have derived two wind turbine models as well as a wind speed estimator. Indeed, the estimator allows obtaining the effective wind speed which cannot be measured, since the wind profile around the rotor is variable in time and space. As results, it has been shown that single input control by means of pitch angle or generator control cannot succeed to simultaneously drive the electric power output regulation and the rotor speed reference tracking. So then, our idea is to combine nonlinear dynamic state feedback torque control and pitch linear based control which turns out to be the best strategy. In addition, the validation of the controllers performance, using a high turbulence wind speed profile, has been performed through wind turbine simulators provided by nrel (national renewable energy laboratory, golden, co), has confirmed the theoretical results and has led to quite satisfactory conclusions in terms of energy capture optimization, power regulation and disturbances strong rejection as well. (author)
Independently variable phase and stroke control for a double acting Stirling engine
Berchowitz, David M.
1983-01-01
A phase and stroke control apparatus for the pistons of a Stirling engine includes a ring on the end of each piston rod in which a pair of eccentrics is arranged in series, torque transmitting relationship. The outer eccentric is rotatably mounted in the ring and is rotated by the orbiting ring; the inner eccentric is mounted on an output shaft. The two eccentrics are mounted for rotation together within the ring during normal operation. A device is provided for rotating one eccentric with respect to another to change the effective eccentricity of the pair of eccentrics. A separately controlled phase adjustment is provided to null the phase change introduced by the change in the orientation of the outer eccentric, and also to enable the phase of the pistons to be changed independently of the stroke change.
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Alavi, S. M. Mahdi; Hayes, M. J.
2008-01-01
An integrated quantitative feedback design and frequency-based fault detection and isolation (FDI) approach is presented for single-input/single-output systems. A novel design methodology, based on shaping the system frequency response, is proposed to generate an appropriate residual signal...
Kerfoot, Henry B.
Based on instructional experiences at Charles County Community College, Maryland, this report examines the pedagogical advantage of teaching atomic absorption (AA) spectroscopy with an AA spectrophotometer that is equipped with a microprocessor and video output mechanism. The report first discusses the growing importance of AA spectroscopy in…
Energy Technology Data Exchange (ETDEWEB)
Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)
2011-05-15
This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)
Potential electricity savings by variable speed control of compressor for air conditioning systems
Energy Technology Data Exchange (ETDEWEB)
Nasution, Henry [Bung Hatta University, Department of Mechanical Engineering, Faculty of Industrial Engineering, Padang, West Sumatera (Indonesia); Wan Hassan, Mat Nawi [Universiti Teknologi Malaysia, Faculty of Mechanical Engineering, Skudai, Johor Bahru-Darul Ta' zim (Malaysia)
2006-05-15
The potential of a variable-speed compressor running on a controller to provide enhanced load-matching capability, energy saving and thermal comfort for application in air-conditioning system is demonstrated. An air-conditioning system, originally operated on a constant speed mode, is retrofitted with an inverter and a PID controller. The system was installed to a thermal environmental room together with a data acquisition system to monitor energy consumption and temperature of the room. Measurements were taken 2 h daily at a time interval of 5 min for an on/off and an inverter variable-speed conditions. The results indicate that thermal comfort of the room together with energy saving can be obtained through a proper selection of K for the controller. At a temperature setting of 22 C, the energy saving for the system is estimated to reach 25.3% for PID controllers. (orig.)
Design of a variable width pulse generator feasible for manual or automatic control
Energy Technology Data Exchange (ETDEWEB)
Vegas, I., E-mail: ignacio.vegas@pas.ucm.es; Antoranz, P.; Miranda, J.M.; Franco, F.J.
2017-01-01
A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications.
International Nuclear Information System (INIS)
Nakabayashi, Hiroko; Ohta, Yasuharu; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio
2013-01-01
Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1 −/− A y /a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the Arnt
Energy Technology Data Exchange (ETDEWEB)
Nakabayashi, Hiroko; Ohta, Yasuharu, E-mail: yohta@yamaguchi-u.ac.jp; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio, E-mail: tanizawa@yamaguchi-u.ac.jp
2013-05-03
Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the
On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?
Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.
2016-05-01
The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2012-01-01
Robust model predictive control (RMPC) of a class of nonlinear systems is considered in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By taking the advantage of having future values of the scheduling variable, we will simplify state prediction. Because...... of the special structure of the problem, uncertainty is only in the B matrix (gain) of the state space model. Therefore by taking advantage of this structure, we formulate a tractable minimax optimization problem to solve robust model predictive control problem. Wind turbine is chosen as the case study and we...... choose wind speed as the scheduling variable. Wind speed is measurable ahead of the turbine, therefore the scheduling variable is known for the entire prediction horizon....
Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control
Liu, Baolian; Ding, Zujun; Zhao, Huanyu; Jin, Defei
2014-01-01
The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF) operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the ...
Heart Rate Variability as a Measure of Airport Ramp-Traffic Controllers Workload
Hayashi, Miwa; Dulchinos, Victoria Lee
2016-01-01
Heart Rate Variability (HRV) has been reported to reflect the person's cognitive and emotional stress levels, and may offer an objective measure of human-operator's workload levels, which are recorded continuously and unobtrusively to the task performance. The present paper compares the HRV data collected during a human-in-the-loop simulation of airport ramp-traffic control operations with the controller participants' own verbal self-reporting ratings of their workload.
FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM
The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...
van der Zwan, J.E.; de Vente, W.; Huizink, A.C.; Bögels, S.M.; de Bruin, E.I.
2015-01-01
In contemporary western societies stress is highly prevalent, therefore the need for stress-reducing methods is great. This randomized controlled trial compared the efficacy of self-help physical activity (PA), mindfulness meditation (MM), and heart rate variability biofeedback (HRV-BF) in reducing
Diepeveen, N.F.B.; Jarquin-Laguna, A.
2014-01-01
In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near
Integrated Variable Speed Limits Control and Ramp Metering for Bottleneck Regions on Freeway
Directory of Open Access Journals (Sweden)
Ming-hui Ma
2015-01-01
Full Text Available To enhance the efficiency of the existing freeway system and therefore to mitigate traffic congestion and related problems on the freeway mainline lane-drop bottleneck region, the advanced strategy for bottleneck control is essential. This paper proposes a method that integrates variable speed limits and ramp metering for freeway bottleneck region control to relieve the chaos in bottleneck region. To this end, based on the analyses of spatial-temporal patterns of traffic flow, a macroscopic traffic flow model is extended to describe the traffic flow operating characteristic by considering the impacts of variable speed limits in mainstream bottleneck region. In addition, to achieve the goal of balancing the priority of the vehicles on mainline and on-ramp, increasing capacity, and reducing travel delay on bottleneck region, an improved control model, as well as an advanced control strategy that integrates variable speed limits and ramp metering, is developed. The proposed method is tested in simulation for a real freeway infrastructure feed and calibrates real traffic variables. The results demonstrate that the proposed method can substantially improve the traffic flow efficiency of mainline and on-ramp and enhance the quality of traffic flow at the investigated freeway mainline bottleneck.
Lyapunov-based constrained engine torque control using electronic throttle and variable cam timing
Feru, E.; Lazar, M.; Gielen, R.H.; Kolmanovsky, I.V.; Di Cairano, S.
2012-01-01
In this paper, predictive control of a spark ignition engine equipped with an electronic throttle and a variable cam timing actuator is considered. The objective is to adjust the throttle angle and the engine cam timing in order to reduce the exhaust gas emissions while maintaining fast and
Model-based servo hydraulic control of a continuously variable transmission
Cools, S.J.M.; Veenhuizen, P.A.; Pauwelussen, J.P.
2004-01-01
In order to reduce the power consumption of a transmission, maximum tracking accuracy should be achieved of both ratio and pressures in the variator. A control strategy is proposed to steer a variator, actuated with a newly developed hydraulic system, of a Continuously Variable Transmission (CVT).
Van der Giessen, D.; Branje, S.; Keijsers, L.; Van Lier, P.A.C.; Koot, H.M.; Meeus, W.
2014-01-01
The aim of this study was to examine relations of emotional variability during mother-adolescent conflict interactions in early adolescence with adolescent disclosure and maternal control in early and late adolescence. Data were used from 92 mother-adolescent dyads (M age T1 = 13.05; 65.20% boys)
Karimi, Hamid; O'Brian, Sue; Onslow, Mark; Jones, Mark; Menzies, Ross; Packman, Ann
2013-01-01
Purpose: Stuttering varies between and within speaking situations. In this study, the authors used statistical process control charts with 10 case studies to investigate variability of stuttering frequency. Method: Participants were 10 adults who stutter. The authors counted the percentage of syllables stuttered (%SS) for segments of their speech…