WorldWideScience

Sample records for variable charge soils

  1. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    Science.gov (United States)

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  2. Adsorption properties of subtropical and tropical variable charge soils: Implications from climate change and biochar amendment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren-Kou; Qafoku, Nikolla; Van Ranst, Eric; Li, Jiu-yu; Jiang, Jun

    2016-01-25

    This review paper attempts to summarize the progress made in research efforts conducted over the last years to study the surface chemical properties of the tropical and subtropical soils, usually called variable charge soils, and the way they response to different management practices. The paper is composed of an introductory section that provides a brief discussion on the surface chemical properties of these soils, and five other review sections. The focus of these sections is on the evolution of surface chemical properties during the development of the variable charge properties (second section), interactions between oppositely charged particles and the resulting effects on the soil properties and especially on soil acidity (third section), the surface effects of low molecular weight organic acids sorbed to mineral surfaces and the chemical behavior of aluminum (fourth section), and the crop straw derived biochar induced changes of the surface chemical properties of these soils (fifth section). A discussion on the effect of climate change variables on the properties of the variable charge soils is included at the end of this review paper (sixth section).

  3. Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils

    International Nuclear Information System (INIS)

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Naidu, Ravi

    2013-01-01

    Highlights: ► Demonstrates the nexus between sorption and bioavailability of As and Cd in variable-charge soils. ► Liming variable-charge soils increase negative charge, thereby decreasing Cd bioavailability. ► Ageing of As and Cd increases their immobilization, thereby decreasing bioavailability. ► Phosphate enhances desorption and phytoavailability of As from sheep dip soil. ► Metal(loid)s transfer to food chain can be managed by controlling sorption reactions. -- Abstract: In this work, the nexus between sorption and bioavailability of arsenic (As) and cadmium (Cd) as affected by soil type, soil pH, ageing, and mobilizing agents were examined. The adsorption of As and Cd was examined using a number of allophanic and non-allophanic soils which vary in their charge components. The effect of pH and ageing on the bioavailability of As and Cd was examined using spiked soils in a plant growth experiment. The effect of phosphate (P)-induced mobility of As on its bioavailability was examined using a naturally contaminated sheep dip soil. The results indicated that the adsorption of both As and Cd varied amongst the soils, and the difference in Cd adsorption is attributed to the difference in surface charge. An increase in soil pH increased net negative charge by an average of 45.7 mmol/kg/pH thereby increasing cation (Cd) adsorption; whereas, the effect of pH on anion (As) adsorption was inconsistent. The bioavailability of As and Cd decreased by 3.31- and 2.30-fold, respectively, with ageing which may be attributed to increased immobilization. Phosphate addition increased the mobility and bioavailability of As by 4.34- and 3.35-fold, respectively, in the sheep dip soil. However, the net effect of P on As phytoavailability depends on the extent of P-induced As mobilization in soils and P-induced competition for As uptake by roots. The results demonstrate the nexus between sorption and bioavailability of As and Cd in soils, indicating that the effects of

  4. Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, Nanthi, E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA (Australia); CRC for Contamination Assessment and Remediation in the Environment, University of South Australia, Mawson Lakes, SA (Australia); Mahimairaja, Santiago [Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (India); Kunhikrishnan, Anitha [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA (Australia); CRC for Contamination Assessment and Remediation in the Environment, University of South Australia, Mawson Lakes, SA (Australia)

    2013-10-15

    Highlights: ► Demonstrates the nexus between sorption and bioavailability of As and Cd in variable-charge soils. ► Liming variable-charge soils increase negative charge, thereby decreasing Cd bioavailability. ► Ageing of As and Cd increases their immobilization, thereby decreasing bioavailability. ► Phosphate enhances desorption and phytoavailability of As from sheep dip soil. ► Metal(loid)s transfer to food chain can be managed by controlling sorption reactions. -- Abstract: In this work, the nexus between sorption and bioavailability of arsenic (As) and cadmium (Cd) as affected by soil type, soil pH, ageing, and mobilizing agents were examined. The adsorption of As and Cd was examined using a number of allophanic and non-allophanic soils which vary in their charge components. The effect of pH and ageing on the bioavailability of As and Cd was examined using spiked soils in a plant growth experiment. The effect of phosphate (P)-induced mobility of As on its bioavailability was examined using a naturally contaminated sheep dip soil. The results indicated that the adsorption of both As and Cd varied amongst the soils, and the difference in Cd adsorption is attributed to the difference in surface charge. An increase in soil pH increased net negative charge by an average of 45.7 mmol/kg/pH thereby increasing cation (Cd) adsorption; whereas, the effect of pH on anion (As) adsorption was inconsistent. The bioavailability of As and Cd decreased by 3.31- and 2.30-fold, respectively, with ageing which may be attributed to increased immobilization. Phosphate addition increased the mobility and bioavailability of As by 4.34- and 3.35-fold, respectively, in the sheep dip soil. However, the net effect of P on As phytoavailability depends on the extent of P-induced As mobilization in soils and P-induced competition for As uptake by roots. The results demonstrate the nexus between sorption and bioavailability of As and Cd in soils, indicating that the effects of

  5. Application of nanoparticle of rock phosphate and biofertilizer in increasing some soil chemical characteristics of variable charge soil

    Science.gov (United States)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Hudaya, Ridha; Oktaviani, Nurul

    2018-02-01

    Soils in Indonesia are dominated by variable charge soils where the technology like fertilization did not give the same result as the soils with permanent charge. The objectives of this research is to increase some chemical characteristic of variable charge soils by using the high negative charge ameliorations like rock phosphate in nanoparticle combined with biofertilizer. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of rock phosphate consists of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The second factor was biofertilizer consisted of two doses (without biofertilizer and 1 g.kg-1 soil biofertilizer). The combination treatments replicated three times. Variable charge soil used was Andisol. Andisol and the treatments were incubated for 4 months. Soil samples were taken after one and four months during incubation period to be analyzed for P-retention, available P and potential P. The result showed that all combinations of rock phosphate and biofertilizer decreased the P-retention to 75-77% after one month. Independently, application of 7.5% of rock phosphate decreased P-retention to 87.22% after four months, increased available P (245.37 and 19.12 mg.kg-1) and potential P (1354.78 and 3000.99 mg/100) after one and four months. Independently, biofertilizer increased the P-retention to 91.66% after four months, decreased available P to 121.55 mg.kg-1 after one month but increased to 12.55 mg.kg-1 after four months, decreased potential P to 635.30 after one month but increased to 1810.40 mg.100 g-1 after four months.

  6. Surface Complexation Modeling in Variable Charge Soils: Charge Characterization by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation, considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.

  7. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed...

  8. Effect of Crop-Straw Derived Biochars on Pb(II) Adsorption in Two Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    JIANG Tian-yu; XU Ren-kou; GU Tian-xia; JIANG Jun

    2014-01-01

    Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH signiifcantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume-straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.

  9. Surface Complexation Modeling in Variable Charge Soils: Prediction of Cadmium Adsorption

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.

  10. Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados Structural and variable electric charges of highly weathered tropical soils

    Directory of Open Access Journals (Sweden)

    Oscarlina Lucia dos Santos Weber

    2005-12-01

    Full Text Available Os solos tropicais altamente intemperizados apresentam teor significativo de colóides com carga elétrica variável. Entretanto, são poucas as referências em relação à quantificação destas cargas, principalmente em solos ácricos, que representam o extremo na escala de intemperismo. Neste estudo, foram determinadas as cargas permanentes e as variáveis de dois Latossolos Vermelhos acriférricos, um Latossolo Amarelo ácrico e um Latossolo Amarelo acriférrico, que foram comparados a um Nitossolo Vermelho eutroférrico, com carga predominantemente permanente. As amostras foram investigadas pelo método da adsorção do íon césio (Cs+, que mede a carga estrutural permanente (sigmao e baseia-se na preferência do Cs+ sobre o Li+ na superfície da siloxana de grupos de superfície ionizáveis de menor seletividade ao íon Cs+. A carga variável representou mais que 50 % da carga total dos solos estudados. Dois dos quatro Latossolos com propriedades ácricas exibiram quantidade significativa de carga permanente, provavelmente em razão da presença de vermiculita com hidróxi entrecamadas e clorita. A quantidade de carga permanente apresentada pelo Nitossolo foi até cinco vezes maior se comparada à dos Latossolos, o que pode ser atribuído à diferença na constituição mineralógica. O método da adsorção de Cs foi capaz de identificar teores significativos de carga permanente estrutural, mesmo em solos com baixo teor de minerais 2:1.Highly weathered tropical soils present high amount of colloids with variable electrical charge. However, there are few references related to the quantification of such charges, mainly in soils with acric attributes, which represent one of the extremes in the weathering scale. In this study permanent and variable charges were determined in four Oxisols and compared to an Alfisol with predominantly permanent charge. Samples were investigated using the Cs+ adsorption method, which measures the structural

  11. Soil variability in mountain areas

    OpenAIRE

    Zanini, E.; Freppaz, M.; Stanchi, S.; Bonifacio, E.; Egli, M.

    2015-01-01

    The high spatial variability of soils is a relevant issue at local and global scales, and determines the complexity of soil ecosystem functions and services. This variability derives from strong dependencies of soil ecosystems on parent materials, climate, relief and biosphere, including human impact. Although present in all environments, the interactions of soils with these forming factors are particularly striking in mountain areas.

  12. Review of Variable Generation Integration Charges

    Energy Technology Data Exchange (ETDEWEB)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  13. Soil variability in engineering applications

    Science.gov (United States)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random

  14. Kinetics of particle ensembles with variable charges

    International Nuclear Information System (INIS)

    Ivlev, A. V.; Zhdanov, S.; Klumov, B.; Morfill, G.; Tsytovich, V. N.; Angelis, U. de

    2005-01-01

    One of the remarkable features distinguishing complex (dusty) plasmas from usual plasmas is that charges on the grains are not constant, but fluctuate in time around some equilibrium value which, in then, is some function of spatial coordinates. Generally, ensembles of particles with variable charges are non-Hamiltonian systems where the mutual collisions do not conserve energy. Therefore, the use of thermodynamic potentials to describe such systems is not really valid. An appropriate way to investigate their evolution is to employ the kinetic approach. We studied (both analytical and numerically) two cases: (a) inhomogeneous charge-it depends on the particle coordinate but does not change in time, and (b)fluctuating charge-it changes in time around the equilibrium value, which is constant in space. For both cases we used the Fokker-Planck approach to derive the collision integral which describes the momentum and energy transfer in mutual particle collisions as well as in the collisions with neutrals. We obtained that the mean particle energy grows in time when the neutral friction is below a certain threshold (as shown in Fig. 1). In case (a) the energy changes as ∞(t c r-t)''2, in case (b) it scales as ∞(t c r-t)''-1, exhibiting the explosion-like growth with t c r a critical time scale. The obtained solutions can be of significant importance for laboratory dusty plasmas as well as for space plasma environments, where inhomogeneous charge distributions are often present. For instance, the instability can cause dust heating in low-pressure complex plasma experiments, it can be responsible for the melting of plasma crystals, it might operate in protoplanetary disks and effect the kinetics of the planet formation, etc. (Author)

  15. Copper desorption in a soil with variable charge Dessorção de cobre em solo com carga variável

    Directory of Open Access Journals (Sweden)

    José Carlos Casagrande

    2004-04-01

    Full Text Available Adsorption processes of heavy metals in soils have been more extensively studied than desorption, in spite of this latter process being related to nutrient bioavailability in the soil solution. Copper desorption from surface (0-0.2 m and subsurface (1.0 - 1.2 m samples of an Anionic Acrudox was studied at two pH values (4.5 and 7.5. Soil samples were incubated with Cu rates varying from 0 to 400 mg kg-1, during 4 and 12 weeks, in the presence of CaCl2 as support electrolyte at concentrations of 0.01 and 0.001 mol L-1. Complete soil adsorption of added Cu was observed at pH 7.5 in all incubation periods, indicating that a 24h-shaking period was enough to reach equilibrium and maximum adsorption. Copper adsorption varied with the incubation period and was much lower at pH 4.5 than at pH 7.5, after the 24 hour-incubation period. After 4 and 12 weeks, Cu adsorption values were higher and similar for all soil samples, irrespective of pH or depth of sampling. The effect of the incubation period on soil Cu adsorption surpassed the pH effect for all Cu rates. The hysteresis was expressive, suggesting that Cu enhances high-energy bonds with the soil colloids. Calcium chloride was not efficient in promoting native soil Cu desorption in the studied concentrations.A adsorção de metais pesados aos solos é mais estudada do que sua dessorção. No entanto, o processo de dessorção está diretamente relacionado à disponibilidade dos elementos às plantas. A dessorção de cobre em amostras superficiais (0-0,2 m e subsuperficiais (1,0-1,2 m de um Latossolo Vermelho acriférrico foi estudada em dois valores de pH (4,5 e 7,5. Foram adicionados até 400 mg kg-1 de Cu em amostras incubadas por 4 e 12 semanas, tendo o CaCl2 como eletrólito suporte nas concentrações de 0,01 e 0,001 mol L-1. No pH mais elevado (7,5, em todos os períodos de incubação, as amostras adsorveram praticamente todo o cobre adicionado, indicando que o tempo de 24 h de agitação para

  16. Predictor variable resolution governs modeled soil types

    Science.gov (United States)

    Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...

  17. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.

    1983-01-01

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  18. Seasonal variability of soil aggregate stability

    Czech Academy of Sciences Publication Activity Database

    Rohošková, M.; Kodešová, R.; Jirků, V.; Žigová, Anna; Kozák, J.

    2009-01-01

    Roč. 11, - (2009), , , EGU2009-6341-3-EGU2009-6341-3 ISSN 1029-7006. [European Geosciences Union General Assembly. 19.04.2009-24.04.2009, Vienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : seasonal variability * soil aggregate stability * soil types Subject RIV: DF - Soil Science

  19. The variable charge of andisols as affected by nanoparticles of rock phosphate and phosphate solubilizing bacteria

    Science.gov (United States)

    Arifin, M.; Nurlaeny, N.; Devnita, R.; Fitriatin, B. N.; Sandrawati, A.; Supriatna, Y.

    2018-02-01

    Andisols has a great potential as agriculture land, however, it has a high phosphorus retention, variable charge characteristics and high value of zero net charge or pH0. The research is aimed to study the effects of nanoparticles of rock phosphate (NPRP) and biofertilizer (phosphate solubilizing bacteria/PSB) on soil pH, pHo (zero point of charge, ZPC) and organic-C in one subgroup of Andisols, namely Acrudoxic Durudands, Ciater Region West Java. The research was conducted from October 2016 to February 2017 in Soil Physics Laboratory and Laboratory of Soil Chemistry and Fertility, Soil Science Department, Faculty of Agriculture, Universitas Padjadjaran. This experiment used a completely randomized factorial design, consisting of two factors and three replications. The first factor was nanoparticles of rock phosphate consist of 4 doses 0; 25; 50 and 75 g/1 kg soil and the second factor was biofertilizer dose consist of g/1 kg soil and without biofertilizer. Total treatment combinations were 8 with 3 replications, so there were 24 experimental plots. The results showed that in general NPRR and biofertilizer will decrease the value of soil pH throughout the incubation periods. There is an interaction between nanoparticles of rock phosphate and biofertilizer in decreasing pHo in the first month of incubation, but after 4-month incubation period, NPRP increased. Interaction between 75 g nanoparticles of rock phosphate with 1 g biofertilizer/1 kg soil in fourth months of incubation decreased soil organic-C to 3.35%.

  20. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  1. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant ...

  2. Topographic variability influences the carbon sequestration potential of arable soils

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Elsgaard, Lars; Thomsen, Ingrid Kaag

    2012-01-01

    There is presently limited knowledge on the influence of field spatial variability on the carbon (C) sink-source relationships in arable landscapes. This is accompanied by the fact that our understanding of soil profile C dynamics is also limited. This study aimed at investigating how spatial...... results indicated that variability across arable landscapes makes footslope soils both a larger sink of buried soil C and a bigger potential CO2 source than upslope soils....

  3. Soil erodibility variability in laboratory and field rainfall simulations

    Science.gov (United States)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán

    2017-04-01

    Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?

  4. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2009-01-01

    The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...

  5. Spatial variability of physical properties of tropical soil

    International Nuclear Information System (INIS)

    Reichardt, K.; Libardi, P.L.; Queiroz, S.V.; Grohmann, F.

    1976-04-01

    A basic study with objectives of improving the use of soil and water resources under a particular condition and of developing means for controlling the dynamics of soil-water movement are presented. Special emphasis is given to the variability in space of geometric soil properties such as bulk density, particle density and texture in order to make it possible to define representative means which ideed will be usable to describe the movement of water and of salt in the entire field

  6. Coagulation of dielectric dust grains due to variable asymmetric charging

    International Nuclear Information System (INIS)

    Manweiler, Jerry W.; Armstrong, Thomas P.; Cravens, Thomas E.

    1998-01-01

    Observational evidence of electrical forces acting significantly on small solids is present for both the modern solar system in Saturn's rings and the ancient solar system in chondritic meteorites. It is likely that grain-grain coagulation rates are affected by the distribution of charges on small grains. Plasma particle impacts and photoelectric effects can provide the charges. It appears that some charging is inevitable and that plasma grain interactions need to be evaluated to determine the size of the effect on coagulation rates. We apply the results of our previous charging work to models of the protoplanetary nebula. It is expected that the protoplanetary nebula is weakly ionized except in certain instances and locations such as: solar flares in the interior, ultraviolet radiation at the outer boundary, and during enhanced luminosity of the star. Since the grains we study are non-conducting and show strong dipole moments in flowing plasma, we modify the geometric cross sections to include the effects of flowing plasma on non-conducting grains with plasma mediated shielding. This paper provides results showing how plasma flow affects the processes involved in charging the grains--total charge and charge distribution. We calculate the modifications to the cross sections and subsequent changes in the coagulation rates

  7. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  8. Nonlinear periodic waves in dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal; Bharuthram, R.

    2002-01-01

    Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves

  9. Role of environmental variables on radon concentration in soil

    International Nuclear Information System (INIS)

    Climent, H.; Bakalowicz, M.; Monnin, M.

    1998-01-01

    In the frame of an European project, radon concentrations in soil and measurements of environmental variables such as the nature of the soil or climatic variables were monitored. The data have been analysed by time-series analysis methods, i.e. Correlation and Spectrum Analysis, to point out relations between radon concentrations and some environmental variables. This approach is a compromise between direct observation and modelling. The observation of the rough time series is unable to point out the relation between radon concentrations and an environmental variable because of the overlapping of the influences of several variables, and the time delay induced by the medium. The Cross Spectrum function between the time series of radon and of an environmental variable describes the nature of the relation and gives the response time in the case of a cause to effect relation. It requires the only hypothesis that the environmental variable is the input function and radon concentration the output function. This analysis is an important preliminary study for modelling. By that way the importance of soil nature has been pointed out. The internal variables of the medium (permeability, porosity) appear to restrain the influence of the environmental variables such as humidity, temperature or atmospheric pressure. (author)

  10. Variability of Measured Runoff and Soil Loss from Field Plots

    Directory of Open Access Journals (Sweden)

    F. Asadzadeh

    2016-02-01

    Full Text Available Introduction: Field plots are widely used in studies related to the measurements of soil loss and modeling of erosion processes. Research efforts are needed to investigate factors affecting the data quality of plots. Spatial scale or size of plots is one of these factors which directly affects measuring runoff and soil loss by means of field plots. The effect of plot size on measured runoff or soil loss from natural plots is known as plot scale effect. On the other hand, variability of runoff and sediment yield from replicated filed plots is a main source of uncertainty in measurement of erosion from plots which should be considered in plot data interpretation processes. Therefore, there is a demand for knowledge of soil erosion processes occurring in plots of different sizes and of factors that determine natural variability, as a basis for obtaining soil loss data of good quality. This study was carried out to investigate the combined effects of these two factors by measurement of runoff and soil loss from replicated plots with different sizes. Materials and Methods: In order to evaluate the variability of runoff and soil loss data seven plots, differing in width and length, were constructed in a uniform slope of 9% at three replicates at Koohin Research Station in Qazvin province. The plots were ploughed up to down slope in September 2011. Each plot was isolated using soil beds with a height of 30 cm, to direct generated surface runoff to the lower part of the plots. Runoff collecting systems composed of gutters, pipes and tankswere installed at the end of each plot. During the two-year study period of 2011-2012, plots were maintained in bare conditions and runoff and soil loss were measured for each single event. Precipitation amounts and characteristics were directly measured by an automatic recording tipping-bucket rain gauge located about 200 m from the experimental plots. The entire runoff volume including eroded sediment was measured on

  11. The spatial variability in studies of soil physical condition

    International Nuclear Information System (INIS)

    Madero M, Edgar; Herrera G Oscar A; Castano C, Alirio

    2000-01-01

    The testing procedure was carried out in 1996-2 at the experimental station of the Universidad Nacional de Colombia in Palmira using vertical tillage (by chiseling) in coherent vertisol (typic Haplustert isohiperthermic fine loamy 1%). eight physical properties in depth of 15-25 cm were studied. the sampling methodology for soil physical properties and corn yield accounted the regionalized variable, and the analysis of results was carried out accounting a map of each variable. the results proved that geostatystics is versatile and give accuracy results. it showed in most of the area that vertical tillage was more favorable than conventional tillage to improve coherence (more soil penetrability without degradation) in seedbed zone. it was not found influence over corn yield. soil organic matter; clay and silt had influence over the soil response to mechanical strengths

  12. Infiltration Variability in Agricultural Soil Aggregates Caused by Air Slaking

    Science.gov (United States)

    Korenkova, L.; Urik, M.

    2018-04-01

    This article reports on variation in infiltration rates of soil aggregates as a result of phenomenon known as air slaking. Air slaking is caused by the compression and subsequent escape of air captured inside soil aggregates during water saturation. Although it has been generally assumed that it occurs mostly when dry aggregates are rapidly wetted, the measurements used for this paper have proved that it takes place even if the wetting is gradual, not just immediate. It is a phenomenon that contributes to an infiltration variability of soils. In measuring the course of water flow through the soil, several small aggregates of five agricultural soils were exposed to distilled water at zero tension in order to characterize their hydraulic properties. Infiltration curves obtained for these aggregates demonstrate the effect of entrapped air on the increase and decrease of infiltration rates. The measurements were performed under various moisture conditions of the A-horizon aggregates using a simple device.

  13. Seasonal variability of microbial biomass phosphorus in urban soils.

    Science.gov (United States)

    Halecki, W; Gąsiorek, M

    2015-01-01

    Urban soils have been formed through human activities. Seasonal evaluation with time-control procedure are essential for plant, and activity of microorganisms. Therefore, these processes are crucial in the urban area due to geochemical changes in the past years. The purpose of this study was to investigate the changes of content of microbial biomass phosphorus (P) in the top layer of soils throughout the season. In this research, the concentration of microbial biomass P ranged from 0.01 to 6.29 mg·kg(-1). We used single-factor repeated-measure analysis of variance to test the effect of season on microbial biomass P content of selected urban soils. We found no statistically significant differences between the concentration of microbial biomass P in the investigated urban and sub-urban soils during the growing season. This analysis explicitly recognised that environmental urban conditions are steady. Specifically, we have studied how vegetation seasonality and ability of microbial biomass P are useful for detecting quality deviations, which affect the equilibrium of urban soil. In conclusion, seasonal variability of the stringency of assurance across the different compounds of soil reveals, as expected, the stable condition of the urban soils. Seasonal responses in microbial biomass P under urban soil use should establish a framework as a reference to the activity of the microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest

    Science.gov (United States)

    Tana Wood; M. Detto; W.L. Silver

    2013-01-01

    Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal...

  15. Year-round estimation of soil moisture content using temporally variable soil hydraulic parameters

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav

    2017-01-01

    Roč. 31, č. 6 (2017), s. 1438-1452 ISSN 0885-6087 R&D Projects: GA ČR GA16-05665S Institutional support: RVO:67985874 Keywords : hydrological modelling * pore-size distribution * saturated hydraulic conductivity * seasonal variability * soil hydraulic parameters * soil moisture Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 3.014, year: 2016

  16. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  17. Spatial variability of soil erosion and soil quality on hillslopes in the Chinese loess plateau

    International Nuclear Information System (INIS)

    Li, Y.; Lindstrom, M.J.; Zhang, J.; Yang, J.

    2000-01-01

    Soil erosion rates and soil quality indicators were measured along two hillslope transects in the Loess Plateau near Yan'an, China. The objectives were to: (a) quantify spatial patterns and controlling processes of soil redistribution due to water and tillage erosion, and (b) correlate soil quality parameters with soil redistribution along the hillslope transects for different land use management systems. Water erosion data were derived from 137 Cs measurements and tillage erosion from the simulation of a Mass Balance Model along the hillslope transects. Soil quality measurements, i.e. soil organic matter, bulk density and available nutrients were made at the same sampling locations as the 137 Cs measurements. Results were compared at the individual site locations and along the hillslope transect through statistical and applied time series analysis. The results showed that soil loss due to water erosion and soil deposition from tillage are the dominant soil redistribution processes in range of 23-40 m, and soil deposition by water erosion and soil loss by tillage are dominant processes occurring in range of more than 80 m within the cultivated landscape. However, land use change associated with vegetation cover can significantly change both the magnitudes and scale of these spatial patterns within the hillslope landscapes. There is a strong interaction between the spatial patterns of soil erosion processes and soil quality. It was concluded that soil loss by water erosion and deposition by tillage are the main cause for the occurrence of significant scale dependency of spatial variability of soil quality along hillslope transects. (author)

  18. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    Science.gov (United States)

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  19. On the role of "internal variability" on soil erosion assessment

    Science.gov (United States)

    Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone

    2017-04-01

    Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).

  20. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    Science.gov (United States)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  1. Spatial variability of atrazine dissipation in an allophanic soil.

    Science.gov (United States)

    Müller, Karin; Smith, Roger E; James, Trevor K; Holland, Patrick T; Rahman, Anis

    2003-08-01

    The small-scale variability (0.5 m) of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) concentrations and soil water contents in a volcanic silt loam soil (Haplic Andosol, FAO system) was studied in an area of 0.1 ha. Descriptive and spatial statistics were used to analyse the data. On average we recovered 102% of the applied atrazine 2 h after the herbicide application (CV = 35%). An increase in the CV of the concentrations with depth could be ascribed to a combination of extrinsic and intrinsic factors. Both variables, atrazine concentrations and soil water content, showed a high horizontal variability. The semivariograms of the atrazine concentrations exhibited the pure nugget effect, no pattern could be determined along the 15.5-m long transects on any of the seven sampling days over a 55-day period. Soil water content had a weak spatial autocorrelation with a range of 6-10 m. The dissipation of atrazine analysed using a high vertical sampling resolution of 0.02 m to 0.2 m showed that 70% of the applied atrazine persisted in the upper 0.02-m layer of the soil for 12 days. After 55 days and 410 mm of rainfall the centre of the pesticide mass was still at a soil depth of 0.021 m. The special characteristics of the soil (high organic carbon content, allophanic clay) had a strong influence on atrazine sorption and mobility. The mass recovery after 55 days was low. The laboratory degradation rate for atrazine, determined in a complementary incubation study and corrected for the actual field temperature using the Arrhenius equation, only accounted for about 35% of the losses that occurred in the field. Results suggest field degradation rates to be more changeable in time and much faster than under controlled conditions. Preferential flow is discussed as a component of the field transport process.

  2. Comparing the Ability of Conventional and Digital Soil Maps to Explain Soil Variability using Diversity Indices

    Directory of Open Access Journals (Sweden)

    zohreh mosleh

    2017-06-01

    Full Text Available Introduction: Effective and sustainable soil management requires knowledge about the spatial patterns of soil variation and soil surveys are important and useful sources of data that can be used. Prior knowledge about the spatial distribution of the soils is the first essential step for this aim but this requires the collection of large amounts of soil information. However, the conventional soil surveys are usually not useful for providing quantitative information about the spatial distribution of soil properties that are used in many environmental studies. Recently, by the rapid development of the computers and technology together with the availability of new types of remote sensing data and digital elevation models (DEMs, digital and quantitative approaches have been developed. These new techniques relies on finding the relationships between soil properties or classes and the auxiliary information that explain the soil forming factors or processes and finally predict soil patterns on the landscape. Different types of the machine learning approaches have been applied for digital soil mapping of soil classes, such as the logistic and multinomial logistic regressions, neural networks and classification trees. In reality, soils are physical outcomes of the interactions happening among the geology, climate, hydrology and geomorphic processes. Diversity is a way of measuring soil variation. Ibanez (9 first introduced ecological diversity indices as measures of diversity. Application of the diversity indices in soil science have considerably increased in recent years. Taxonomic diversity has been evaluated in the most previous researches whereas comparing the ability of different soil mapping approaches based on these indices was rarely considered. Therefore, the main objective of this study was to compare the ability of the conventional and digital soil maps to explain the soil variability using diversity indices in the Shahrekord plain of

  3. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com

    2009-05-11

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  4. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2009-01-01

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  5. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences

  6. Spatial variability of nitrogen-15 and its relation to the variability of other soil properties

    International Nuclear Information System (INIS)

    Selles, F.; Karamanos, R.E.; Kachanoski, R.G.

    1986-01-01

    The spatial variability of natural 15 N abundance of a cultivated Chernozemic soil and its native prairie counterpart were smaller than that of total N, organic C, and the C/N ratio. Further, the number of samples required to estimate the true mean of total N with a given precision at various probability levels were twofold those required to estimate the true mean of total N with a given precision at various probability levels were twofold those required to determine the mean 15 N abundance of total soil N in the surface horizons may reflect the isotopic composition of the nitrogenous substances entering the soil system or changes in the isotopic composition of soil N due to humification processes, probably induced by variations in topographic and microrelief features of the soil

  7. Soil fauna and its relation with environmental variables in soil management systems

    Directory of Open Access Journals (Sweden)

    Dilmar Baretta

    Full Text Available The present study aims to generate knowledge about the soil fauna, its relation to other explanatory environmental variables, and, besides it, to select edaphic indicators that more contribute to separate the land use systems (LUS. Five different LUS were chosen: conventional tillage with crop rotation (CTCR; no-tillage with crop rotation (NTCR; conventional tillage with crop succession (CTCS; no-tillage with crop succession (NTCS and minimum tillage with crop succession (MTCS. The samples were made in the counties Chapecó, Xanxerê and Ouro Verde located in the state of Santa Catarina, Brazil, and were considered the true replicates of the LUS. In each site, nine points were sampled in a sampling grid of 3 x 3. At the same points, soil was sampled for the physical, chemical and biological attributes (environmental variables. Pitfall traps were used to evaluate the soil fauna. Data were analyzed using principal component analysis (PCA and canonical discriminant analysis (CDA. The soil fauna presented potential to be used as indictors of soil quality, since some groups proved to be sensible to changes of the environmental variables and to soil management and tillage. The soil management using crop rotation (NTCR and CTCR presented higher diversity, compared to the systems using crop succession (NTCS, MTCS and NTCS, evidencing the importance of the soil tillage, independent of the season (summer or winter. The variable that better contributed to explain these changes were the chemical variables (potassium, pH, calcium, organic matter, available phosphorus, potential acidity, and biological variables (Shannon diversity index, Collembola, Pielou equitability index and microbial biomass carbon, respectively.

  8. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    KAUST Repository

    Singh, Gurjeet

    2016-05-05

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA’s Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  9. Phenomena of charged particles transport in variable magnetic fields

    International Nuclear Information System (INIS)

    Savane, Sy Y.; Faza Barry, M.; Vladmir, L.; Diaby, I.

    2002-11-01

    This present work is dedicated to the study of the dynamical phenomena for the transport of ions in the presence of variable magnetic fields in front of the Jupiter wave shock. We obtain the spectrum of the accelerated ions and we study the conditions of acceleration by solving the transport equation in the planetocentric system. We discuss the theoretical results obtained and make a comparison with the experimental parameters in the region of acceleration behind the Jupiter wave shock. (author)

  10. Spatial variability of chemical properties of soil under pasture

    Directory of Open Access Journals (Sweden)

    Samuel Ferreira da Silva

    2016-04-01

    Full Text Available The objective of this study was to analyze the spatial variability of soil chemical attributes under pasture, as well as lime and fertilizer recommendations based on the interpretation of soil chemical analysis from two sampling methods: conventional and systematic depths of 0 to 10 and 10 to 20 cm. The study was conducted at IFES-campus Alegre-ES. Data analysis was performed using descriptive statistics and geostatistics. Results indicate that the spatial method enabled the identification of deficit areas and excessive liming and fertilization, which could not be defined by the conventional method.

  11. Horizontal and vertical variability of soil moisture in savanna ecosystems

    Science.gov (United States)

    Caylor, K.; D'Odorico, P.; Rodriguez-Iturbe, I.

    2004-12-01

    Soil moisture is a key hydrological variable that mediates the interactions between climate, soil, and vegetation dynamics in water-limited ecosystems. Because of the importance of water limitation in savannas, a number of theoretical models of tree-grass coexistence have been developed which differ in their underlying assumptions about the ways in which trees and grasses access and use soil moisture. However, clarification of the mechanisms that allow savanna vegetation to persist as a mixture of grasses and trees remains a vexing problem in both hydrological and vegetation science. A particular challenge is the fact that the spatial pattern of vegetation is both a cause and effect of variation in water availability in semiarid ecosystems. At landscape to regional scales, climatic and geologic constraints on soil moisture availability are primary determinants of vegetation structural pattern. However, at local to landscape scales the patchy vegetation structural mosaic serves to redistribute the availability of soil moisture in ways that have important consequences for structural dynamics and community composition. In this regard, the emerging field of ecohydrology is well suited to investigate questions concerning couplings between the patchy structural mosaic of savanna vegetation and the kinds self-organizing dynamics known to exist in other light and nutrient-limited vegetation systems. Here we address the role of patchy vegetation structure through the use of a lumped model of soil moisture dynamics that accounts for the effect of tree canopy on the lateral and vertical distribution of soil moisture. The model includes mechanisms for the drying of the ground surface due to soil evaporation in the sites with no tree cover, and for the lateral water uptake due to root invading areas with no canopy cover located in the proximity of trees. The model, when applied to a series of sites along a rainfall gradient in southern Africa, is able to explain the cover

  12. Mapping The Temporal and Spatial Variability of Soil Moisture Content Using Proximal Soil Sensing

    Science.gov (United States)

    Virgawati, S.; Mawardi, M.; Sutiarso, L.; Shibusawa, S.; Segah, H.; Kodaira, M.

    2018-05-01

    In studies related to soil optical properties, it has been proven that visual and NIR soil spectral response can predict soil moisture content (SMC) using proper data analysis techniques. SMC is one of the most important soil properties influencing most physical, chemical, and biological soil processes. The problem is how to provide reliable, fast and inexpensive information of SMC in the subsurface from numerous soil samples and repeated measurement. The use of spectroscopy technology has emerged as a rapid and low-cost tool for extensive investigation of soil properties. The objective of this research was to develop calibration models based on laboratory Vis-NIR spectroscopy to estimate the SMC at four different growth stages of the soybean crop in Yogyakarta Province. An ASD Field-spectrophotoradiometer was used to measure the reflectance of soil samples. The partial least square regression (PLSR) was performed to establish the relationship between the SMC with Vis-NIR soil reflectance spectra. The selected calibration model was used to predict the new samples of SMC. The temporal and spatial variability of SMC was performed in digital maps. The results revealed that the calibration model was excellent for SMC prediction. Vis-NIR spectroscopy was a reliable tool for the prediction of SMC.

  13. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Directory of Open Access Journals (Sweden)

    Sandeep Pulla

    Full Text Available We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2 soil spatial variability in a seasonally dry tropical forest (SDTF in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm, rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH, and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(--N nor NH4(+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  14. Temporal Changes in the Spatial Variability of Soil Nutrients

    Energy Technology Data Exchange (ETDEWEB)

    Hoskinson, Reed Louis; Hess, John Richard; Alessi, Randolph Samuel

    1999-07-01

    This paper reports the temporal changes in the spatial variability of soil nutrient concentrations across a field during the growing season, over a four-year period. This study is part of the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. Uniform fertilization did not produce a uniform increase in fertility. During the growing season, several of the nutrients and micronutrients showed increases in concentration although no additional fertilization had occurred. Potato plant uptake did not explain all of these changes. Some soil micronutrient concentrations increased above levels considered detrimental to potatoes, but the plants did not show the effects in reduced yield. All the nutrients measured changed between the last sampling in the fall and the first sampling the next spring prior to fertilization. The soil microbial community may play a major role in the temporal changes in the spatial variability of soil nutrient concentrations. These temporal changes suggest potential impact when determining fertilizer recommendations, and when evaluating the results of spatially varying fertilizer application.

  15. Spatial Variability of Soil Morphorlogical and Physico-Chemical ...

    African Journals Online (AJOL)

    Spatial Variability of Soil Morphorlogical and Physico-Chemical Properties in Ladoke Akintola University of Technology Cashew Plantation, Ogbomoso. ... Colour (AP, B1 B2 and B3), structure (B2 and B3), stoniness (B1, B2 and B3), concretion (AP B1, B2 and B3) and boundary forms (B1, B2 and B3) have extremely ...

  16. Modelling carbon and nitrogen turnover in variably saturated soils

    Science.gov (United States)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  17. Geochemical variability of natural soils and reclaimed minespoil soils in the San Juan Basin, New Mexico

    Science.gov (United States)

    Gough, L.P.; Severson, R.C.

    1981-01-01

    An inventory of total-and extractable-element concentrations in soils was made for three areas of the San Juan Basin in New Mexico: (1) the broad area likely to be affected by energy-related development. (2) an area of soils considered to have potential for use as topsoil in mined-land reclamation. and (3) an area of the San Juan coal mine that has been regraded. topsoiled, and revegetated. Maps made of concentrations of 16 elements in area 1 soils show no gradational pattern across the region. Further. these maps do not correspond to those showing geology or soil types. Sodic or saline problems, and a possible but unproven deficiency of zinc available to plants. may make some of the soils in this area undesirable for use as topsoil in mined-land reclamation. Taxonomic great groups of soil in this area cannot be distinguished because each great group tends to have a large within-group variability if compared to the between-group variability. In area 2 the major soils sampled were of the Sheppard. Shiprock. and Doak association. These soils are quite uniform in chemical composition and are not greatly saline or sodic. As in area 1 soils. zinc deficiency may cause a problem in revegetating most of these soils. It is difficult to distinguish soil taxonomic families by using their respective chemical compositions. because of small between-family variability. Topsoil from a reclaimed area of the San Juan mine (area 3) most closely resembles the chemical composition of natural C horizons of soil from area 1. Spoil material that has not been topsoiled is likely to cause sodic-and saline-related problems in revegetation and may cause boron toxicity in plants. Topsoiling has apparently ameliorated these potential problems for plant growth on mine spoil. Total and extractable concentrations for elements and other parameters for each area of the San Juan Basin provide background information for the evaluation of the chemical quality of soils in each area.

  18. Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil Moisture

    Directory of Open Access Journals (Sweden)

    Bert Veenendaal

    2009-12-01

    Full Text Available Passive microwave remote sensing is one of the most promising techniques for soil moisture retrieval. However, the inversion of soil moisture from brightness temperature observations is not straightforward, as it is influenced by numerous factors such as surface roughness, vegetation cover, and soil texture. Moreover, the relationship between brightness temperature, soil moisture and the factors mentioned above is highly non-linear and ill-posed. Consequently, Artificial Neural Networks (ANNs have been used to retrieve soil moisture from microwave data, but with limited success when dealing with data different to that from the training period. In this study, an ANN is tested for its ability to predict soil moisture at 1 km resolution on different dates following training at the same site for a specific date. A novel approach that utilizes information on the variability of soil moisture, in terms of its mean and standard deviation for a (sub region of spatial dimension up to 40 km, is used to improve the current retrieval accuracy of the ANN method. A comparison between the ANN with and without the use of the variability information showed that this enhancement enables the ANN to achieve an average Root Mean Square Error (RMSE of around 5.1% v/v when using the variability information, as compared to around 7.5% v/v without it. The accuracy of the soil moisture retrieval was further improved by the division of the target site into smaller regions down to 4 km in size, with the spatial variability of soil moisture calculated from within the smaller region used in the ANN. With the combination of an ANN architecture of a single hidden layer of 20 neurons and the dual-polarized brightness temperatures as input, the proposed use of variability and sub-region methodology achieves an average retrieval accuracy of 3.7% v/v. Although this accuracy is not the lowest as comparing to the research in this field, the main contribution is the ability of ANN in

  19. Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.

    2017-04-01

    Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of the proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.

  20. Transverse Motion of a Particle with an Oscillating Charge and Variable Mass in a Magnetic Field

    Science.gov (United States)

    Alisultanov, Z. Z.; Ragimkhanov, G. B.

    2018-03-01

    The problem of motion of a particle with an oscillating electric charge and variable mass in an uniform magnetic field has been solved. Three laws of mass variation have been considered: linear growth, oscillations, and stepwise growth. Analytical expressions for the particle velocity at different time dependences of the particle mass are obtained. It is established that simultaneous consideration of changes in the mass and charge leads to a significant change in the particle trajectory.

  1. EXPERIMENTAL DETERMINATION OF VARIABILITY IN PERMEABILITY OF SANDY SILT SOIL MIXED WITH FLY ASH IN PROPORTIONATE

    OpenAIRE

    Rasna Sharma*, Dr. M.K. Trivedi

    2016-01-01

    This paper presents the experimental determination of variability in permeability of sandy silt soil by blending with fly ash. The grain size, porosity, structure of the soil, specific gravity of the soil, viscosity and temperature are important factors in varying the permeability of the soil. Permeability is the flow conduction property of the soil. The void ratio with in the soil plays a vital role in varying the permeability. By blending with finer grains like fly ash in the soil with sand...

  2. Anomalous Threshold Voltage Variability of Nitride Based Charge Storage Nonvolatile Memory Devices

    Directory of Open Access Journals (Sweden)

    Meng Chuan Lee

    2013-01-01

    Full Text Available Conventional technology scaling is implemented to meet the insatiable demand of high memory density and low cost per bit of charge storage nonvolatile memory (NVM devices. In this study, effect of technology scaling to anomalous threshold voltage ( variability is investigated thoroughly on postcycled and baked nitride based charge storage NVM devices. After long annealing bake of high temperature, cell’s variability of each subsequent bake increases within stable distribution and found exacerbate by technology scaling. Apparent activation energy of this anomalous variability was derived through Arrhenius plots. Apparent activation energy (Eaa of this anomalous variability is 0.67 eV at sub-40 nm devices which is a reduction of approximately 2 times from 110 nm devices. Technology scaling clearly aggravates this anomalous variability, and this poses reliability challenges to applications that demand strict control, for example, reference cells that govern fundamental program, erase, and verify operations of NVM devices. Based on critical evidence, this anomalous variability is attributed to lateral displacement of trapped charges in nitride storage layer. Reliability implications of this study are elucidated. Moreover, potential mitigation methods are proposed to complement technology scaling to prolong the front-runner role of nitride based charge storage NVM in semiconductor flash memory market.

  3. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel [Plasma Physics Group, Faculty of Sciences-Physics, Theoretical Physics Laboratory, University of Bab-Ezzouar, USTHB BP 32, El Alia, Algiers 16111 (Algeria)], E-mail: mtribeche@usthb.dz

    2009-09-15

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  4. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel

    2009-01-01

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  5. Spatial Variability and Geostatistical Prediction of Some Soil Hydraulic Coefficients of a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moosavi

    2017-02-01

    Full Text Available Introduction: Saturated hydraulic conductivity and the other hydraulic properties of soils are essential vital soil attributes that play role in the modeling of hydrological phenomena, designing irrigation-drainage systems, transportation of salts and chemical and biological pollutants within the soil. Measurement of these hydraulic properties needs some special instruments, expert technician, and are time consuming and expensive and due to their high temporal and spatial variability, a large number of measurements are needed. Nowadays, prediction of these attributes using the readily available soil data using pedotransfer functions or using the limited measurement with applying the geostatistical approaches has been receiving high attention. The study aimed to determine the spatial variability and prediction of saturated (Ks and near saturated (Kfs hydraulic conductivity, the power of Gardner equation (α, sorptivity (S, hydraulic diffusivity (D and matric flux potential (Фm of a calcareous soil. Material and Methods: The study was carried out on the soil series of Daneshkadeh located in the Bajgah Agricultural Experimental Station of Agricultural College, Shiraz University, Shiraz, Iran (1852 m above the mean sea level. This soil series with about 745 ha is a deep yellowish brow calcareous soil with textural classes of loam to clay. In the studied soil series 50 sampling locations with the sampling distances of 16, 8 , and 4 m were selected on the relatively regular sampling design. The saturated hydraulic conductivity (Ks, near saturated hydraulic conductivity (Kfs, the power of Gardner equation (α, sorptivity (S, hydraulic diffusivity (D and matric flux potential (Фm of the aforementioned sampling locations was determined using the Single Ring and Droplet methods. After, initial statistical processing, including a normality test of data, trend and stationary analysis of data, the semivariograms of each studied hydraulic attributes were

  6. (KP) equation in warm dusty plasma with variable dust charge, two ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev–Petviashvili (KP) equation is derived. The energy of the soliton and the linear dispersion relation are obtained ...

  7. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Science.gov (United States)

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  8. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Scoffield, Don R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smart, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  9. Cosmic ray muon charge ratio derived from the new scaling variable model

    CERN Document Server

    Bhattacharya, D P

    1980-01-01

    The charge ratio of sea level muons has been estimated from the new scaling variable model and the CERN Intersecting Storage Ring data of Capiluppi et al. (1974) for pp to pi /sup +or-/X and pp to K/sup +or- /X inclusive reactions. The estimated muon charge ratio is found to be 1.21 and the result has been compared with the experimental data of Parker et al. (1969), Burnet et al. (1973), Ashley et al., and Muraki et al. (1979). (20 refs).

  10. effective hydraulic conductivity for a soil of variable pore size

    African Journals Online (AJOL)

    eobe

    Keywords: hydraulic conductivity, soil, infiltration, permeability, water. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. Accurate determination of hydraulic conductivity is very crucial for infiltration and runoff estimation. Factors which affect water infiltration in the soil include hydraulic conductivity, wetting front and soil.

  11. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  12. On the variably-charged black holes in general relativity: Hawking's radiation and naked singularities

    International Nuclear Information System (INIS)

    Ibohal, Ng

    2002-01-01

    In this paper variably-charged non-rotating Reissner-Nordstrom and rotating Kerr-Newman black holes are discussed. Such a variable charge e with respect to the polar coordinate r in the field equations is referred to as an electrical radiation of the black hole. It is shown that every electrical radiation e(r) of the non-rotating black hole leads to a reduction in its mass M by some quantity. If one considers such electrical radiation taking place continuously for a long time, then a continuous reduction of the mass may take place in the black-hole body and the original mass of the black hole may be evaporated completely. At that stage, the gravity of the object may depend only on the electromagnetic field, not on the mass. Immediately after the complete evaporation of the mass, if the next radiation continues, there may be creation of a new mass leading to the formation of a negative mass naked singularity. It appears that this new mass of the naked singularity would never decrease, but might increase gradually as the radiation continues forever. A similar investigation is also discussed in the case of a variably-charged rotating Kerr-Newman black hole. Thus, it has been shown by incorporating Hawking's evaporation of radiating black holes in the form of spacetime metrics, every electrical radiation of variably-charged rotating and non-rotating black holes may produce a change in the mass of the body without affecting the Maxwell scalar

  13. Integrated assessment of space, time, and management-related variability of soil hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Es, H.M. van; Ogden, C.B.; Hill, R.L.; Schindelbeck, R.R.; Tsegaye, T.

    1999-12-01

    Computer-based models that simulate soil hydrologic processes and their impacts on crop growth and contaminant transport depend on accurate characterization of soil hydraulic properties. Soil hydraulic properties have numerous sources of variability related to spatial, temporal, and management-related processes. Soil type is considered to be the dominant source of variability, and parameterization is typically based on soil survey databases. This study evaluated the relative significance of other sources of variability: spatial and temporal at multiple scales, and management-related factors. Identical field experiments were conducted for 3 yr. at two sites in New York on clay loam and silt loam soils, and at two sites in Maryland on silt loam and sandy loam soils, all involving replicated plots with plow-till and no-till treatments. Infiltrability was determined from 2054 measurements using parameters, and Campbell's a and b parameters were determined based on water-retention data from 875 soil cores. Variance component analysis showed that differences among the sites were the most important source of variability for a (coefficient of variation, CV = 44%) and b (CV = 23%). Tillage practices were the most important source of variability for infiltrability (CV = 10%). For all properties, temporal variability was more significant than field-scale spatial variability. Temporal and tillage effects were more significant for the medium- and fine-textured soils, and correlated to initial soil water conditions. The parameterization of soil hydraulic properties solely based on soil type may not be appropriate for agricultural lands since soil-management factors are more significant. Sampling procedures should give adequate recognition to soil-management and temporal processes at significant sources of variability to avoid biased results.

  14. Geochemical variability of soils and biogeochemical variability of plants in the Piceance Basin, Colorado

    Science.gov (United States)

    Tuttle, M.L.; Severson, R.C.; Dean, W.E.; Klusman, R.W.

    1986-01-01

    , and DTPA-extractable boron, copper, iron, magnesium, and nickel have lower concentrations in topsoil than in the spent oil shale; whereas, silicon, titanium, ytterbium, clay, quartz, and DTPA-extractable potassium have greater concentrations in the topsoil than in the spent oil shale. In western wheatgrass, molybdenum has a lower concentration in grasses growing on the topsoil than in grasses on the spent oil shale; whereas, barium, calcium, manganese, strontium, zinc, and ash have greater concentrations in grasses growing on the topsoil than on the spent oil shale. When compared to baseline values, soils in the revegetation plot are significantly higher in concentrations of lead, zinc, organic and total carbon, and DTP A-extractable cadmium, iron, manganese, nickel, phosphorus, and zinc. Whereas, western wheatgrass grown within the revegetation plot has concentrations which fall within the baseline values established in the regional study. The equations used in predicting concentrations of elements in plants from native and altered sites are cumbersome because of the large number of variables required to adequately predict expected concentrations and are of limited use because many explained only a small proportion of the total variation.

  15. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, Jason W. [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Neaman, Alexander [Facultad de Agronomia, P. Universidad Catolica de Valparaiso, Centro Regional de Estudios en Alimentos Saludables (Chile); Ravella, Ramesh; Komarneni, Sridhar [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Martinez, Carmen Enid [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States)], E-mail: cem17@psu.edu

    2009-01-15

    This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg{sup -1} and Sector 3: pH 4.2, total Cu = 112 mg Cu kg{sup -1}) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg{sup -1} (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils. - In situ remediation of Cu-contaminated soils with a synthetic mica (Na-2-mica) will aid in re-vegetative efforts.

  16. Moisture variability resulting from water repellency in Dutch soils

    NARCIS (Netherlands)

    Dekker, L.W.

    1998-01-01

    The present study suggests that many soils in the Netherlands, in natural as well as in agricultural areas, may be water repellent to some degree, challenging the common perception that soil water repellency is only an interesting aberration. When dry, water repellent soils resist or retard

  17. Spatial Variability of Soil Morphorlogical and Physico- Chemical ...

    African Journals Online (AJOL)

    user

    The available moisture of soil was very low thus water holding capacity (WHC) and wilting point (WP) of the soil was ... with spatial distribution of soil properties and its effect on ... Pore size and root .... nutrient and have better stability. Thus.

  18. Assessment of soil variability of South moravian region based on the satellite imagery

    Czech Academy of Sciences Publication Activity Database

    Novák, J.; Lukas, V.; Rodriguez Moreno, Fernando; Křen, J.

    2018-01-01

    Roč. 66, č. 1 (2018), s. 119-129 ISSN 1211-8516 Institutional support: RVO:86652079 Keywords : Coefficient of variation * lpis * ndvi * pca * RapidEye * Remote sensing * sentinel 2 * Soil variability Subject RIV: DF - Soil Science OBOR OECD: Soil science

  19. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability

    Science.gov (United States)

    Colin B. Fuss; Charles T. Driscoll; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer; Jorge Durán; Jennifer L. Morse

    2016-01-01

    Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on...

  20. Temporal variability of structure and hydraulic properties of topsoil of three soil types

    Czech Academy of Sciences Publication Activity Database

    Jirků, V.; Kodešová, R.; Nikodem, A.; Mühlhanselová, M.; Žigová, Anna

    204/205, August (2013), s. 43-58 ISSN 0016-7061 R&D Projects: GA ČR GA526/08/0434 Institutional support: RVO:67985831 Keywords : aggragate stability * soil -water retention curve * hydraulic conductivity * soil micromorphology * seasonal and annual variability Subject RIV: DF - Soil Science Impact factor: 2.509, year: 2013

  1. Temporal variability of selected chemical and physical propertires of topsoil of three soil types

    Czech Academy of Sciences Publication Activity Database

    Jirků, V.; Kodešová, R.; Nikodem, A.; Mühlhanselová, M.; Žigová, Anna

    2013-01-01

    Roč. 15, - (2013) ISSN 1607-7962. [EGU General Assembly /10./. 07.04.2013-12.04.2013, Vienna] R&D Projects: GA ČR GA526/08/0434 Institutional support: RVO:67985831 Keywords : soil properties * soil types * temporal variability Subject RIV: DF - Soil Science http://meetingorganizer.copernicus.org/EGU2013/EGU2013-7650-1.pdf

  2. Generalized Density-Corrected Model for Gas Diffusivity in Variably Saturated Soils

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per

    2011-01-01

    models. The GDC model was further extended to describe two-region (bimodal) soils and could describe and predict Dp/Do well for both different soil aggregate size fractions and variably compacted volcanic ash soils. A possible use of the new GDC model is engineering applications such as the design...... of highly compacted landfill site caps....

  3. The study of operating variables in soil washing with EDTA

    International Nuclear Information System (INIS)

    Zou Zeli; Qiu Rongliang; Zhang Weihua; Dong Hanying; Zhao Zhihao; Zhang Tao; Wei Xiange; Cai Xinde

    2009-01-01

    This study discusses the operating variables for removal of metals from soils using EDTA, including the type of EDTA, reaction time, solution pH, dose, temperature, agitation, ultrasound and number of extractions. For As, Cd, Cu, Pb and Zn, the removal efficiency order was: H 4 -EDTA > Na 2 EDTA > (NH 4 ) 2 EDTA. At low EDTA concentrations the removal increased progressively with increasing dose while above 0.4 mmol/g only small increases in extraction efficiency were observed. EDTA induced a two-step process including a rapid desorption within the first hour, and a gradual release in the following hours. The extraction efficiency of metals decreased with increasing pH in the range of 2-10. Consecutive extractions using low concentrations were more effective than a single extraction with concentrated EDTA if the same dose of EDTA was used. - Consecutive extractions using low concentrations are more effective than a single extraction with concentrated EDTA if the same dose of EDTA is used

  4. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  5. Variability in urban soils influences the health and growth of native tree seedlings

    Science.gov (United States)

    Clara C. Pregitzer; Nancy F. Sonti; Richard A. Hallett

    2016-01-01

    Reforesting degraded urban landscapes is important due to the many benefits urban forests provide. Urban soils are highly variable, yet little is known about how this variability in urban soils influences tree seedling performance and survival. We conducted a greenhouse study to assess health, growth, and survival of four native tree species growing in native glacial...

  6. The Spatial Variability of Soil Dehydrogenase Activity: A Survey in Urban Soils

    OpenAIRE

    Kizilkaya, Ridvan; Aşkin, Tayfun

    2007-01-01

    Information on soil microorganisms and their activity used to determine microbiological characteristics are very important for soil quality and productivity. Studies of enzyme activities provide information on the biochemical processes occurring in soil. There is growing evidence that soil biological parameters may be potential and sensitive indicators of soil ecological conditions and soil management. Soil microbiological parameters may be evaluated statistically due to application of geosta...

  7. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    Science.gov (United States)

    Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan

    2003-12-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to

  8. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    Science.gov (United States)

    Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team

    2003-04-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T

  9. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    Science.gov (United States)

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    Time (s). A. Amplitude of the soil thermal wave at any depth (. ◦. C). A0. Amplitude of thermal ... system, soil moisture has a long memory (Pielke et al 1999; Wu et al .... measurements of the short wave radiation compo- nents as follows: α = Su.

  11. Variability of soil moisture and its relationship with surface albedo

    Indian Academy of Sciences (India)

    Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76° 59′E longitude and 8° 30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed.

  12. A Simple Model of the Variability of Soil Depths

    Directory of Open Access Journals (Sweden)

    Fang Yu

    2017-06-01

    Full Text Available Soil depth tends to vary from a few centimeters to several meters, depending on many natural and environmental factors. We hypothesize that the cumulative effect of these factors on soil depth, which is chiefly dependent on the process of biogeochemical weathering, is particularly affected by soil porewater (i.e., solute transport and infiltration from the land surface. Taking into account evidence for a non-Gaussian distribution of rock weathering rates, we propose a simple mathematical model to describe the relationship between soil depth and infiltration flux. The model was tested using several areas in mostly semi-arid climate zones. The application of this model demonstrates the use of fundamental principles of physics to quantify the coupled effects of the five principal soil-forming factors of Dokuchaev.

  13. The variability of standard artificial soils: Behaviour, extractability and bioavailability of organic pollutants

    International Nuclear Information System (INIS)

    Hofman, Jakub; Hovorková, Ivana; Semple, Kirk T.

    2014-01-01

    Highlights: • Artificial soils from different laboratories revealed different fates, behaviour and bioavailability of lindane and phenanthrene. • Lindane behaviour was related to organic carbon. • Phenanthrene behaviour was significantly affected by degrading microorganisms from peat. • Sterilization of artificial soils might reduce unwanted variability. -- Abstract: Artificial soil is an important standard medium and reference material for soil ecotoxicity bioassays. Recent studies have documented the significant variability of their basic properties among different laboratories. Our study investigated (i) the variability of ten artificial soils from different laboratories by means of the fate, extractability and bioavailability of phenanthrene and lindane, and (ii) the relationships of these results to soil properties and ageing. Soils were spiked with 14 C-phenanthrene and 14 C-lindane, and the total residues, fractions extractable by hydroxypropyl-β-cyclodextrin, and the fractions of phenanthrene mineralizable by bacteria were determined after 1, 14, 28 and 56 days. Significant temporal changes in total residues and extractable and mineralizable fractions were observed for phenanthrene, resulting in large differences between soils after 56 days. Phenanthrene mineralization by indigenous peat microorganisms was suggested as the main driver of that, outweighing the effects of organic matter. Lindane total residues and extractability displayed much smaller changes over time and smaller differences between soils related to organic matter. Roughly estimated, the variability between the artificial soils was comparable to natural soils. The implications of such variability for the results of toxicity tests and risk assessment decisions should be identified. We also suggested that the sterilization of artificial soils might reduce unwanted variability

  14. The variability of standard artificial soils: Behaviour, extractability and bioavailability of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Jakub, E-mail: hofman@recetox.muni.cz [Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500 (Czech Republic); Hovorková, Ivana [Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500 (Czech Republic); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2014-01-15

    Highlights: • Artificial soils from different laboratories revealed different fates, behaviour and bioavailability of lindane and phenanthrene. • Lindane behaviour was related to organic carbon. • Phenanthrene behaviour was significantly affected by degrading microorganisms from peat. • Sterilization of artificial soils might reduce unwanted variability. -- Abstract: Artificial soil is an important standard medium and reference material for soil ecotoxicity bioassays. Recent studies have documented the significant variability of their basic properties among different laboratories. Our study investigated (i) the variability of ten artificial soils from different laboratories by means of the fate, extractability and bioavailability of phenanthrene and lindane, and (ii) the relationships of these results to soil properties and ageing. Soils were spiked with {sup 14}C-phenanthrene and {sup 14}C-lindane, and the total residues, fractions extractable by hydroxypropyl-β-cyclodextrin, and the fractions of phenanthrene mineralizable by bacteria were determined after 1, 14, 28 and 56 days. Significant temporal changes in total residues and extractable and mineralizable fractions were observed for phenanthrene, resulting in large differences between soils after 56 days. Phenanthrene mineralization by indigenous peat microorganisms was suggested as the main driver of that, outweighing the effects of organic matter. Lindane total residues and extractability displayed much smaller changes over time and smaller differences between soils related to organic matter. Roughly estimated, the variability between the artificial soils was comparable to natural soils. The implications of such variability for the results of toxicity tests and risk assessment decisions should be identified. We also suggested that the sterilization of artificial soils might reduce unwanted variability.

  15. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Science.gov (United States)

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P variable temperature mainly influenced SOC mineralization by changing microbial community activity rather than by changing microbial quantity.

  16. Response of three soil water sensors to variable solution electrical conductivity in different soils

    Science.gov (United States)

    Commercial dielectric soil water sensors may improve management of irrigated agriculture by providing continuous field soil water information. Use of these sensors is partly limited by sensor sensitivity to variations in soil salinity and texture, which force expensive, time consuming, soil specific...

  17. An examination of the spatial variability of CO2 in the profile of managed forest soils

    International Nuclear Information System (INIS)

    Black, M.; Kellman, L.; Beltrami, H.

    2005-01-01

    Soil carbon dioxide (CO 2 ) profiles are typically used in soil-gas exchange studies. Although surface flux measuring methods may be more efficient for deriving surface soil CO 2 exchange budgets, they do not provide enough information about the generation of gas through depth. This poses a challenge in quantifying the CO 2 generated from different zones and soil carbon pools through time. The combination of subsurface concentration profiles and estimates of soil diffusivity reveal where CO 2 is being generated in the soil. This combined approach offers greater awareness into processes controlling CO 2 production in soils through depth, and clarifies how soil CO 2 exchange processes in these ecosystems can be changed by management regimes and climate change. Although information about spatial variability in subsurface concentrations within forested soils is limited, it is assumed to be high because of the high spatial variability in soil CO 2 flux estimates and the large variation in vegetation distribution and topography within sites. In this study, the soil CO 2 profile was monitored during the fall of 2004 at depths of 0, 5, 20 and 35 cm at 10 microsites of a clear-cut and an 80 year old intact mixed forest in Atlantic Canada. Microsites were about 10 meters apart and represented a range of microtopographical conditions that typically encompass extremes in soil CO 2 profile patterns. Preliminary results reveal predictable patterns in concentration profiles through depth, and increasing CO 2 concentration with depth, consistent with a large soil source of CO 2 . The significant variability in the soil carbon profile between microsites in the clear-cut and intact forest sites will be investigated to determine if distinct microsite patterns can be identified. The feasibility of using this method for providing process-based versus soil C exchange budgeting information at forested sites will also be examined

  18. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    Science.gov (United States)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  19. Modeling Short-Range Soil Variability and its Potential Use in Variable-Rate Treatment of Experimental Plots

    Directory of Open Access Journals (Sweden)

    A Moameni

    2011-02-01

    Full Text Available Abstract In Iran, the experimental plots under fertilizer trials are managed in such a way that the whole plot area uniformly receives agricultural inputs. This could lead to biased research results and hence to suppressing of the efforts made by the researchers. This research was conducted in a selected site belonging to the Gonbad Agricultural Research Station, located in the semiarid region, northeastern Iran. The aim was to characterize the short-range spatial variability of the inherent and management-depended soil properties and to determine if this variation is large and can be managed at practical scales. The soils were sampled using a grid 55 m apart. In total, 100 composite soil samples were collected from topsoil (0-30 cm and were analyzed for calcium carbonate equivalent, organic carbon, clay, available phosphorus, available potassium, iron, copper, zinc and manganese. Descriptive statistics were applied to check data trends. Geostatistical analysis was applied to variography, model fitting and contour mapping. Sampling at 55 m made it possible to split the area of the selected experimental plot into relatively uniform areas that allow application of agricultural inputs with variable rates. Keywords: Short-range soil variability, Within-field soil variability, Interpolation, Precision agriculture, Geostatistics

  20. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  1. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9 allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v as well as other EMI instruments (e.g. DUALEM-421 can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  2. Mapping Spatial Variability of Soil Salinity in a Coastal Paddy Field Based on Electromagnetic Sensors

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  3. Variability of soil-to-crop transfer factor

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Kamada, Hiroshi; Yokosuka, Setsuko; Ohmomo, Yoichiro

    1987-01-01

    Many European countries have nuclear facilities in inland areas, where extremely low level radioactive waste liquid is discharged to rivers. In those nations, therefore, many studies have been made oncerning the transfer of radioisotopes into plants. In Japan, greater attention has been attracted to such radioisotope transfer into plants and then into human bodies. Thus the present report reviews various studies on this issue. The key parameter for this process is the transfer factor (also called concentration factor, coefficient or ratio). The factor largely depends on various other factors including the characteristics of different nuclides, properties of soil (pH, oxidation-reduction potential, grain size distribution, contents of clay minerals, contents of organic matters, water content, etc.), characteristics of crops and cultivation conditions. It has been reported that I is absorbed by plants more rapidly than IO 3 . Of the various soil parameters, the pH of soil has the greatest effect on the transfer factor. Soil is mostly alkaline in Europe and America while acid soil account for a great part in Japan, suggesting that the transfer factor would be greater in Japan. The total potassium content in soil has the second largest effect on the factor. Radioactive iodine has shown to be transferred into soy beans and spinach 30 times more rapidly than into fruit vegetables. The oxidation-reduction potential also has a significant influence on the transfer factor. (Nogami, K.)

  4. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing

    International Nuclear Information System (INIS)

    Dal Magro, Fabio; Meneghetti, Antonella; Nardin, Gioacchino; Savino, Stefano

    2015-01-01

    Highlights: • A system based on phase change material is inserted into the off-gas-line of a continuous charge electric arc furnace. • The off-gas temperature profile after scrap preheating is smoothed. • A heat transfer fluid through phase change material containers allows to control overheating issues. • The smoothed off-gas profiles enable efficient downstream power generation. • The recovery system investment cost is decreased due to lower sizes of components. - Abstract: In order to allow an efficient energy recovery from off-gas in the steel industry, the high variability of heat flow should be managed. A temperature smoothing device based on phase change materials at high temperatures is inserted into the off-gas line of a continuous charge electric arc furnace process with scrap preheating. To address overheating issues, a heat transfer fluid flowing through containers is introduced and selected by developing an analytical model. The performance of the smoothing system is analyzed by thermo-fluid dynamic simulations. The reduced maximum temperature of off-gas allows to reduce the size and investment cost of the downstream energy recovery system, while the increased minimum temperature enhances the steam turbine load factor, thus increasing its utilization. Benefits on environmental issues due to dioxins generation are also gained

  5. Obliquely propagating cnoidal waves in a magnetized dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, L. L.; Sayal, V. K.

    2009-01-01

    We have studied obliquely propagating dust-acoustic nonlinear periodic waves, namely, dust-acoustic cnoidal waves, in a magnetized dusty plasma consisting of electrons, ions, and dust grains with variable dust charge. Using reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, we have derived Korteweg-de Vries (KdV) equation for the plasma. It is found that the contribution to the dispersion due to the deviation from plasma approximation is dominant for small angles of obliqueness, while for large angles of obliqueness, the dispersion due to magnetic force becomes important. The cnoidal wave solution of the KdV equation is obtained. It is found that the frequency of the cnoidal wave depends on its amplitude. The effects of the magnetic field, the angle of obliqueness, the density of electrons, the dust-charge variation and the ion-temperature on the characteristics of the dust-acoustic cnoidal wave are also discussed. It is found that in the limiting case the cnoidal wave solution reduces to dust-acoustic soliton solution.

  6. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta

    DEFF Research Database (Denmark)

    Siewert, Matthias Benjamin; Hugelius, Gustaf; Heim, Birgit

    2016-01-01

    To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50...... in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2 ± 2.0 kg C m− 2. Our...... results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m2 followed by the Holocene river terrace. The Pleistocene terrace affected...

  7. Amplification and dampening of soil respiration by changes in temperature variability

    Science.gov (United States)

    C.A. Sierra; M.E. Harmon; E.A. Thomann; S.S. Perakis; H.W. Loescher

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic...

  8. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  9. Analysis of the spatial variability of crop yield and soil properties in small agricultural plots

    Directory of Open Access Journals (Sweden)

    Vieira Sidney Rosa

    2003-01-01

    Full Text Available The objective of this study was to assess spatial variability of soil properties and crop yield under no tillage as a function of time, in two soil/climate conditions in São Paulo State, Brazil. The two sites measured approximately one hectare each and were cultivated with crop sequences which included corn, soybean, cotton, oats, black oats, wheat, rye, rice and green manure. Soil fertility, soil physical properties and crop yield were measured in a 10-m grid. The soils were a Dusky Red Latossol (Oxisol and a Red Yellow Latossol (Ultisol. Soil sampling was performed in each field every two years after harvesting of the summer crop. Crop yield was measured at the end of each crop cycle, in 2 x 2.5 m sub plots. Data were analysed using semivariogram analysis and kriging interpolation for contour map generation. Yield maps were constructed in order to visually compare the variability of yields, the variability of the yield components and related soil properties. The results show that the factors affecting the variability of crop yield varies from one crop to another. The changes in yield from one year to another suggest that the causes of variability may change with time. The changes with time for the cross semivariogram between phosphorus in leaves and soybean yield is another evidence of this result.

  10. Soil variability and effectiveness of soil and water conservation in the Sahel.

    NARCIS (Netherlands)

    Hien, F.G.; Rietkerk, M.; Stroosnijder, L.

    1997-01-01

    Sahelian sylvopastoral lands often degrade into bare and crusted areas where regeneration of soil and vegetation is impossible in the short term unless soil and water conservation measures are implemented. Five combinations of tillage with and without mulch on three crust type/soil type combinations

  11. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    KAUST Repository

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra Belur

    2016-01-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA’s Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected

  12. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  13. Genetic Variability in Soybean (Glycine max L.) for Low Soil ...

    African Journals Online (AJOL)

    Abush Tesfaye

    component analysis also revealed that the first five principal components (PCs) accounted for more ... nutritional value with 40% protein and 20% oil (Fekadu et al., 2009) that makes it an important raw ...... protein and oil content under both conditions using molecular marker technologies. ... for global modeling. Soil Use and ...

  14. A study of soil moisture variability for landmine detection by the neutron technique

    OpenAIRE

    Avdić Senada

    2007-01-01

    This paper is focused on the space and temporal variability of soil moisture experimental data acquired at a few locations near landmine fields in the Tuzla Canton, as well as on the quantification of the statistical nature of soil moisture data on a small spatial scale. Measurements of soil water content at the surface were performed by an electro-magnetic sensor over 1 25, and 100 m2 grids, at intervals of 0.2, 0.5, and 1 m, respectively. The sampling of soil moisture at different spatial r...

  15. Spatial variability of soil potassium in sugarcane areas subjected to the application of vinasse

    Directory of Open Access Journals (Sweden)

    LAÉRCIO A. DE CARVALHO

    2014-12-01

    Full Text Available When deposited on land the vinasse can promote improvement in fertility, however, often fertilizer application occurs in areas considered homogeneous, without taking into account the variability of the soil. The objective of this study was to evaluate the effect of vinasse application on potassium content in two classes of soils cultivated with sugarcane, and characterize the spatial variability of soil using geostatistical techniques. In the 2010 and 2011 crop year, soil samples were collected from an experimental grid at 0-0.2 and 0.2-0.4 m depth in three soils cultivated with sugarcane, totaling 90 samplings in each grid, for the determination of pH, calcium (Ca, magnesium (Mg, potassium (K, phosphorus (P, aluminum (Al and potential acidity (H + Al. The data have been submitted to analysis of descriptive statistics and the K attribute was subjected to geostatistical analysis. The coefficient of variation indicated medium and high variability of K for the three soils. The results showed that the spatial dependence of K increased in depth to FRce and decreased to PHlv, indicating that the attribute could have followed the pattern of distribution of clay in depth. The investigation of the spatial variability of K on the surface and subsurface soils provided the definition of management zones with different levels of fertility, which can be organized into sub-areas for a more efficient management of the resources and the environment.

  16. Field Scale Studies on the Spatial Variability of Soil Quality Indicators in Washington State, USA

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Smith

    2011-01-01

    Full Text Available Arable lands are needed for sustainable agricultural systems to support an ever-growing human population. Soil quality needs to be defined to assure that new land brought into crop production is sustainable. To evaluate soil quality, a number of soil attributes will need to be measured, evaluated, and integrated into a soil-quality index using the multivariable indicator kriging (MVIK procedure. This study was conducted to determine the spatial variability and correlation of indicator parameters on a field scale with respect to soil quality and suitability for use with MVIK. The variability of the biological parameters decreased in the order of respiration > enzyme assays and qCO2 > microbial biomass C. The distribution frequency of all parameters except respiration were normal although the spatial distribution across the landscape was highly variable. The biological parameters showed little correlation with each other when all data points were considered; however, when grouped in smaller sections, the correlations were more consistent with observed patterns across the field. To accurately assess soil quality, and arable land use, consideration of spatial and temporal variability, soil conditions, and other controlling factors must be taken into account.

  17. Spatial variability of soil CO2 emission in different topographic positions

    Directory of Open Access Journals (Sweden)

    Liziane de Figueiredo Brito

    2010-01-01

    Full Text Available The spatial variability of soil CO2 emission is controlled by several properties related to the production and transport of CO2 inside the soil. Considering that soil properties are also influenced by topography, the objective of this work was to investigate the spatial variability of soil CO2 emission in three different topographic positions in an area cultivated with sugarcane, just after mechanical harvest. One location was selected on a concave-shaped form and two others on linear-shaped form (in back-slope and foot-slope. Three grids were installed, one in each location, containing 69 points and measuring 90 x 90 m each. The spatial variability of soil CO2 emission was characterized by means of semivariance. Spatial variability models derived from soil CO2 emission were exponential in the concave location while spherical models fitted better in the linear shaped areas. The degree of spatial dependence was moderate in all cases and the range of spatial dependence for the CO2 emission in the concave area was 44.5 m, higher than the mean value obtained for the linear shaped areas (20.65 m. The spatial distribution maps of soil CO2 emission indicate a higher discontinuity of emission in the linear form when compared to the concave form.

  18. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    Science.gov (United States)

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2  = 0.43 to 0.59). Our results suggested that beside considering average

  19. Land agroecological quality assessment in conditions of high spatial soil cover variability at the Pereslavskoye Opolye.

    Science.gov (United States)

    Morev, Dmitriy; Vasenev, Ivan

    2015-04-01

    The essential spatial variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest soils has been further complicated by a specific land-use history and human impacts. For demand-driven land-use planning and decision making the quantitative analysis and agroecological interpretation of representative soil cover spatial variability is an important and challenging task that receives increasing attention from private companies, governmental and environmental bodies. Pereslavskoye Opolye is traditionally actively used in agriculture due to dominated high-quality cultivated soddy-podzoluvisols which are relatively reached in organic matter (especially for conditions of the North part at the European territory of Russia). However, the soil cover patterns are often very complicated even within the field that significantly influences on crop yield variability and have to be considered in farming system development and land agroecological quality evaluation. The detailed investigations of soil regimes and mapping of the winter rye yield have been carried in conditions of two representative fields with slopes sharply contrasted both in aspects and degrees. Rye biological productivity and weed infestation have been measured in elementary plots of 0.25 m2 with the following analysis the quality of the yield. In the same plot soil temperature and moisture have been measured by portable devices. Soil sampling was provided from three upper layers by drilling. The results of ray yield detailed mapping shown high differences both in average values and within-field variability on different slopes. In case of low-gradient slope (field 1) there is variability of ray yield from 39.4 to 44.8 dt/ha. In case of expressed slope (field 2) the same species of winter rye grown with the same technology has essentially lower yield and within-field variability from 20 to 29.6 dt/ha. The

  20. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.

    Science.gov (United States)

    Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Van Hees, May; Wannijn, Jean; Smolders, Erik

    2016-03-01

    Food chain contamination with radiocaesium (RCs) in the aftermath of the Fukushima accident calls for an analysis of the specific factors that control the RCs transfer. Here, soil-to-plant transfer factors (TF) of RCs for grass were predicted from the potassium concentration in soil solution (mK) and the Radiocaesium Interception Potential (RIP) of the soil using existing mechanistic models. The mK and RIP were (a) either measured for 37 topsoils collected from the Fukushima accident affected area or (b) predicted from the soil clay content and the soil exchangeable potassium content using the models that had been calibrated for European soils. An average ammonium concentration was used throughout in the prediction. The measured RIP ranged 14-fold and measured mK varied 37-fold among the soils. The measured RIP was lower than the RIP predicted from the soil clay content likely due to the lower content of weathered micas in the clay fraction of Japanese soils. Also the measured mK was lower than that predicted. As a result, the predicted TFs relying on the measured RIP and mK were, on average, about 22-fold larger than the TFs predicted using the European calibrated models. The geometric mean of the measured TFs for grass in the affected area (N = 82) was in the middle of both. The TFs were poorly related to soil classification classes, likely because soil fertility (mK) was obscuring the effects of the soil classification related to the soil mineralogy (RIP). This study suggests that, on average, Japanese soils are more vulnerable than European soils at equal soil clay and exchangeable K content. The affected regions will be targeted for refined model validation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Spatial Variability of Dielectric Properties in Field Soils

    National Research Council Canada - National Science Library

    Hendrickx, J

    2001-01-01

    ... since it directly influences the three other properties The variability of these properties may be such that either potential land mine signatures are overshadowed or false alarms result In this paper...

  2. A study of soil moisture variability for landmine detection by the neutron technique

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2007-01-01

    Full Text Available This paper is focused on the space and temporal variability of soil moisture experimental data acquired at a few locations near landmine fields in the Tuzla Canton, as well as on the quantification of the statistical nature of soil moisture data on a small spatial scale. Measurements of soil water content at the surface were performed by an electro-magnetic sensor over 1 25, and 100 m2 grids, at intervals of 0.2, 0.5, and 1 m, respectively. The sampling of soil moisture at different spatial resolutions and over different grid sizes has been investigated in order to achieve the quantification of the statistical nature of soil moisture distribution. The statistical characterization of spatial variability was performed through variogram and correlogram analysis of measurement results. The temporal variability of the said samples was examined over a two-season period. For both sampling periods, the spatial correlation length is about 1 to 2 m, respectively, or less. Thus, sampling should be done on a larger spatial scale, in order to capture the variability of the investigated areas. Since the characteristics of many landmine sensors depend on soil moisture, the results of this study could form a useful data base for multisensor landmine detection systems with a promising performance.

  3. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange

    Science.gov (United States)

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.

    2017-12-01

    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional

  4. Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes

    Science.gov (United States)

    Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.

    2017-12-01

    Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation

  5. Effects of short term bioturbation by common voles on biogeochemical soil variables.

    Directory of Open Access Journals (Sweden)

    Burkhard Wilske

    Full Text Available Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35-150 individuals ha-1 mth-1. Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC and total nitrogen (N, CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10-20 and 20-30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15-30 cm decreased and the C/N ratio at 5-10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools.

  6. McMaster Mesonet soil moisture dataset: description and spatio-temporal variability analysis

    Directory of Open Access Journals (Sweden)

    K. C. Kornelsen

    2013-04-01

    Full Text Available This paper introduces and describes the hourly, high-resolution soil moisture dataset continuously recorded by the McMaster Mesonet located in the Hamilton-Halton Watershed in Southern Ontario, Canada. The McMaster Mesonet consists of a network of time domain reflectometer (TDR probes collecting hourly soil moisture data at six depths between 10 cm and 100 cm at nine locations per site, spread across four sites in the 1250 km2 watershed. The sites for the soil moisture arrays are designed to further improve understanding of soil moisture dynamics in a seasonal climate and to capture soil moisture transitions in areas that have different topography, soil and land cover. The McMaster Mesonet soil moisture constitutes a unique database in Canada because of its high spatio-temporal resolution. In order to provide some insight into the dominant processes at the McMaster Mesonet sites, a spatio-temporal and temporal stability analysis were conducted to identify spatio-temporal patterns in the data and to suggest some physical interpretation of soil moisture variability. It was found that the seasonal climate of the Great Lakes Basin causes a transition in soil moisture patterns at seasonal timescales. During winter and early spring months, and at the meadow sites, soil moisture distribution is governed by topographic redistribution, whereas following efflorescence in the spring and summer, soil moisture spatial distribution at the forested site was also controlled by vegetation canopy. Analysis of short-term temporal stability revealed that the relative difference between sites was maintained unless there was significant rainfall (> 20 mm or wet conditions a priori. Following a disturbance in the spatial soil moisture distribution due to wetting, the relative soil moisture pattern re-emerged in 18 to 24 h. Access to the McMaster Mesonet data can be provided by visiting www.hydrology.mcmaster.ca/mesonet.

  7. Key indicator tools for shallow slope failure assessment using soil chemical property signatures and soil colour variables.

    Science.gov (United States)

    Othman, Rashidi; Hasni, Shah Irani; Baharuddin, Zainul Mukrim; Hashim, Khairusy Syakirin Has-Yun; Mahamod, Lukman Hakim

    2017-10-01

    Slope failure has become a major concern in Malaysia due to the rapid development and urbanisation in the country. It poses severe threats to any highway construction industry, residential areas, natural resources and tourism activities. The extent of damages that resulted from this catastrophe can be lessened if a long-term early warning system to predict landslide prone areas is implemented. Thus, this study aims to characterise the relationship between Oxisols properties and soil colour variables to be manipulated as key indicators to forecast shallow slope failure. The concentration of each soil property in slope soil was evaluated from two different localities that consist of 120 soil samples from stable and unstable slopes located along the North-South Highway (PLUS) and East-West Highway (LPT). Analysis of variance established highly significant difference (P shallow slope failure were high value of L*(62), low values of c* (20) and h* (66), low concentration of iron (53 mg kg -1 ) and aluminium oxide (37 mg kg -1 ), low soil TOC (0.5%), low CEC (3.6 cmol/kg), slightly acidic soil pH (4.9), high amount of sand fraction (68%) and low amount of clay fraction (20%).

  8. Changes in canopy structure and ant assemblages affect soil ecosystem variables as a foundation species declines

    DEFF Research Database (Denmark)

    Kendrick, Joseph A.; Ribbons, Relena Rose; Classen, Aimee Taylor

    2015-01-01

    in ant species composition would interact to alter soil ecosystem variables. In the Harvard Forest Hemlock Removal Experiment (HF-HeRE), established in 2003, T. canadensis in large plots were killed in place or logged and removed to mimic adelgid infestation or salvage harvesting, respectively. In 2006...... (richness and abundance) of ants increases rapidly as T. canadensis is lost from the stands. Because ants live and forage at the litter-soil interface, we hypothesized that environmental changes caused by hemlock loss (e.g., increased light and warmth at the forest floor, increased soil pH) and shifts......, we built ant exclosure subplots within all of the canopy manipulation plots to examine direct and interactive effects of canopy change and ant assemblage composition on soil and litter variables. Throughout HF-HeRE, T. canadensis was colonized by the adelgid in 2009, and the infested trees are now...

  9. Inter-Annual Variability of Soil Moisture Stress Function in the Wheat Field

    Science.gov (United States)

    Akuraju, V. R.; Ryu, D.; George, B.; Ryu, Y.; Dassanayake, K. B.

    2014-12-01

    Root-zone soil moisture content is a key variable that controls the exchange of water and energy fluxes between land and atmosphere. In the soil-vegetation-atmosphere transfer (SVAT) schemes, the influence of root-zone soil moisture on evapotranspiration (ET) is parameterized by the soil moisture stress function (SSF). Dependence of actual ET: potential ET (fPET) or evaporative fraction to the root-zone soil moisture via SSF can also be used inversely to estimate root-zone soil moisture when fPET is estimated by remotely sensed land surface states. In this work we present fPET versus available soil water (ASW) in the root zone observed in the experimental farm sites in Victoria, Australia in 2012-2013. In the wheat field site, fPET vs ASW exhibited distinct features for different soil depth, net radiation, and crop growth stages. Interestingly, SSF in the wheat field presented contrasting shapes for two cropping years of 2012 and 2013. We argue that different temporal patterns of rainfall (and resulting soil moisture) during the growing seasons in 2012 and 2013 are responsible for the distinctive SSFs. SSF of the wheat field was simulated by the Agricultural Production Systems sIMulator (APSIM). The APSIM was able to reproduce the observed fPET vs. ASW. We discuss implications of our findings for existing modeling and (inverse) remote sensing approaches relying on SSF and alternative growth-stage-dependent SSFs.

  10. Incorporating soil variability in continental soil water modelling: a trade-off between data availability and model complexity

    Science.gov (United States)

    Peeters, L.; Crosbie, R. S.; Doble, R.; van Dijk, A. I. J. M.

    2012-04-01

    Developing a continental land surface model implies finding a balance between the complexity in representing the system processes and the availability of reliable data to drive, parameterise and calibrate the model. While a high level of process understanding at plot or catchment scales may warrant a complex model, such data is not available at the continental scale. This data sparsity is especially an issue for the Australian Water Resources Assessment system, AWRA-L, a land-surface model designed to estimate the components of the water balance for the Australian continent. This study focuses on the conceptualization and parametrization of the soil drainage process in AWRA-L. Traditionally soil drainage is simulated with Richards' equation, which is highly non-linear. As general analytic solutions are not available, this equation is usually solved numerically. In AWRA-L however, we introduce a simpler function based on simulation experiments that solve Richards' equation. In the simplified function soil drainage rate, the ratio of drainage (D) over storage (S), decreases exponentially with relative water content. This function is controlled by three parameters, the soil water storage at field capacity (SFC), the drainage fraction at field capacity (KFC) and a drainage function exponent (β). [ ] D- -S- S = KF C exp - β (1 - SFC ) To obtain spatially variable estimates of these three parameters, the Atlas of Australian Soils is used, which lists soil hydraulic properties for each soil profile type. For each soil profile type in the Atlas, 10 days of draining an initially fully saturated, freely draining soil is simulated using HYDRUS-1D. With field capacity defined as the volume of water in the soil after 1 day, the remaining parameters can be obtained by fitting the AWRA-L soil drainage function to the HYDRUS-1D results. This model conceptualisation fully exploits the data available in the Atlas of Australian Soils, without the need to solve the non

  11. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil.

    Science.gov (United States)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0-30 and the 0-100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km(2) and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m(-2), respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    Science.gov (United States)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  13. Environmental and management impacts on temporal variability of soil hydraulic properties

    Science.gov (United States)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2012-04-01

    Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10

  14. Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.F.; Henderson-Sellers, A.; Dickinson, R.E.; Kennedy, P.J.

    1987-03-01

    The soils data of Wilson and Henderson-Sellers have been incorporated into the land-surface parameterization scheme of the NCAR Community Climate Model after Dickinson. A stand-alone version of this land-surface scheme, termed the Biosphere-Atmosphere Transfer Scheme (BATS), has been tested in a series of sensitivity experiments designed to assess the sensitivity of the scheme to the inclusion of variable soil characteristics. The cases investigated were for conditions designed to represent a low-latitude, evergreen forest; a low-latitude sand desert; a high-latitude coniferous forest; high-latitude tundra; and prairie grasslands, each for a specified time of year. The tundra included spring snowmelt and the grassland incorporated snow accumulation. The sensitivity experiments included varying the soil texture from a coarse texture typical of sand through a medium texture typical of loam to a fine texture typical of clay. The sensitivity of the formation to the specified total and upper soil column depth and the response to altering the parameterization of the soil albedo dependence upon soil wetness and snow-cover were also examined. The biosphere-atmosphere transfer scheme showed the greatest sensitivity to the soil texture variation, particularly to the associated variation in the hydraulic conductivity and diffusivity parameters. There was only a very small response to the change in the soil albedo dependence on wetness and, although the sensitivity to the snow-covered soil albedo via the response to roughness length/snowmasking depth was significant, the results were predictable. Soil moisture responses can also be initiated by changes in vegetation characteristics such as the stomatal resistance through changed canopy interaction which modify the radiation and water budgets of the soil surface.

  15. Selecting minimum dataset soil variables using PLSR as a regressive multivariate method

    Science.gov (United States)

    Stellacci, Anna Maria; Armenise, Elena; Castellini, Mirko; Rossi, Roberta; Vitti, Carolina; Leogrande, Rita; De Benedetto, Daniela; Ferrara, Rossana M.; Vivaldi, Gaetano A.

    2017-04-01

    Long-term field experiments and science-based tools that characterize soil status (namely the soil quality indices, SQIs) assume a strategic role in assessing the effect of agronomic techniques and thus in improving soil management especially in marginal environments. Selecting key soil variables able to best represent soil status is a critical step for the calculation of SQIs. Current studies show the effectiveness of statistical methods for variable selection to extract relevant information deriving from multivariate datasets. Principal component analysis (PCA) has been mainly used, however supervised multivariate methods and regressive techniques are progressively being evaluated (Armenise et al., 2013; de Paul Obade et al., 2016; Pulido Moncada et al., 2014). The present study explores the effectiveness of partial least square regression (PLSR) in selecting critical soil variables, using a dataset comparing conventional tillage and sod-seeding on durum wheat. The results were compared to those obtained using PCA and stepwise discriminant analysis (SDA). The soil data derived from a long-term field experiment in Southern Italy. On samples collected in April 2015, the following set of variables was quantified: (i) chemical: total organic carbon and nitrogen (TOC and TN), alkali-extractable C (TEC and humic substances - HA-FA), water extractable N and organic C (WEN and WEOC), Olsen extractable P, exchangeable cations, pH and EC; (ii) physical: texture, dry bulk density (BD), macroporosity (Pmac), air capacity (AC), and relative field capacity (RFC); (iii) biological: carbon of the microbial biomass quantified with the fumigation-extraction method. PCA and SDA were previously applied to the multivariate dataset (Stellacci et al., 2016). PLSR was carried out on mean centered and variance scaled data of predictors (soil variables) and response (wheat yield) variables using the PLS procedure of SAS/STAT. In addition, variable importance for projection (VIP

  16. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    Science.gov (United States)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average

  17. A stochastic analysis of the influence of soil and climatic variability on the estimate of pesticide ground water polution potential

    Science.gov (United States)

    Jury, William A.; Gruber, Joachim

    1989-12-01

    Soil and climatic variability contribute in an unknown manner to the leaching of pesticides below the surface soil zone where degradation occurs at maximum levels. In this paper we couple the climatic variability model of Eagleson (1978) to the soil variability transport model of Jury (1982) to produce a probability density distribution of residual mass fraction (RMF) remaining after leaching below the surface degradation zone. Estimates of the RMF distribution are shown to be much more sensitive to soil variability than climatic variability, except when the residence time of the chemical is shorter than one year. When soil variability dominates climatic variability, the applied water distribution may be replaced by a constant average water application rate without serious error. Simulations of leaching are run with 10 pesticides in two climates and in two representative soil types with a range of soil variability. Variability in soil or climate act to produce a nonnegligible probability of survival of a small value of residual mass even for relatively immobile compounds which are predicted to degrade completely by a simple model which neglects variability. However, the simpler model may still be useful for screening pesticides for groundwater pollution potential if somewhat larger residual masses of a given compound are tolerated. Monte Carlo simulations of the RMF distribution agreed well with model predictions over a wide range of pesticide properties.

  18. Spatial variability of caesium-137 activities in soils in the Jura mountains

    International Nuclear Information System (INIS)

    Pimou-Heumou, G.; Lucot, E.; Crini, N.; Briot, M.; Badot, P.M.

    2011-01-01

    275 soil samples were taken in the catchment area of the upper part of the Doubs river located in the Jura mountains according to a sampling strategy designed to evaluate the extent of the spatial variability of 137 Cs activities and to identify its main sources. 137 Cs activities ranged between about 1000 and 12000 Bq.m -2 with an average of approximately 3600 Bq.m -2 . The spatial variability of the contamination is high: 137 Cs activity shows statistically significant links with altitude, soil organic matter and land cover, whereas the other studied parameters, i.e. soil type and topographic position, do not constitute significant sources of variation. These results are discussed in terms of evaluation of the radioactive contamination on a regional scale. They show that to be satisfactory, a sampling strategy must necessarily take into account the various types of land cover. (authors)

  19. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Poulsen, Tjalfe; Mortensen, Lars

    2010-01-01

    for biodegradation was highly variable, which from autoregressive state-space modeling was partly explained by changes in soil air-filled porosity and gravimetric water content. The results suggest considering biological heterogeneity when evaluating the fate of contaminants in the subsurface.......Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused...... on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16-m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analyzed values of essential soil properties. The subsurface of the site was highly layered...

  20. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    Science.gov (United States)

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  1. Areal variability of the mineral soil cover in a reclaimed soda waste dumping site

    Directory of Open Access Journals (Sweden)

    Klatka Sławomir

    2017-03-01

    Full Text Available Areal variability of the mineral soil cover in a reclaimed soda waste dumping site. This paper provides an analysis of the areal variability of the thickness and selected physical and chemical properties of the mineral cover formed in the process of settling ponds reclamation at the former Krakow Soda Plant “Solvay”. The topsoil is intended to provide a substrate for plants, therefore, its quality is the main determinant of the development for herbaceous and woody vegetation. Areal variability of the topsoil parameters was determined by kriging. In the context of the envisaged direction of management of the settling ponds, the analysis showed that electrical conductivity, thickness of the soil cover and the sand fraction content have potentially the highest impact on the diversification of vegetation. Understanding the spatial variability of the soil cover parameters, that are essential for vegetation, may contribute to increasing the efficiency of biological reclamation and also to cost reduction. Precise selection of the areas unsuitable for plant growth makes it possible to improve soil parameters on limited areas similarly as in the precision agriculture.

  2. Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data

    NARCIS (Netherlands)

    Mulder, V.L.; Bruin, de S.; Schaepman, M.E.

    2013-01-01

    This paper presents a sparse, remote sensing-based sampling approach making use of conditioned Latin Hypercube Sampling (cLHS) to assess variability in soil properties at regional scale. The method optimizes the sampling scheme for a defined spatial population based on selected covariates, which are

  3. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  4. Landsat thematic mapper (TM) soil variability analysis over Webster County, Iowa

    Science.gov (United States)

    Thompson, D. R.; Henderson, K. E.; Pitts, D. E.

    1984-01-01

    Thematic mapper simulator (TMS) data acquired June 7, June 23, and July 31, 1982, and Landsat thematic mapper (TM) data acquired August 2, September 3, and October 21, 1982, over Webster County, Iowa, were examined for within-field soil effects on corn and soybean spectral signatures. It was found that patterns displayed on various computer-generated map products were in close agreement with the detailed soil survey of the area. The difference in spectral values appears to be due to a combination of subtle soil properties and crop growth patterns resulting from the different soil properties. Bands 4 (0.76-.90 micron), 5 (1.55-1.75 micron), and 7 (2.08-2.35 micron) were found to be responding to the within-field soil variability even with increasing ground cover. While these results are preliminary, they do indicate that the soil influence on the vegetation is being detected by TM and should provide improved information relating to crop and soil properties.

  5. Spatial Variability of Physical Soil Quality Index of an Agricultural Field

    Directory of Open Access Journals (Sweden)

    Sheikh M. Fazle Rabbi

    2014-01-01

    Full Text Available A field investigation was carried out to evaluate the spatial variability of physical indicators of soil quality of an agricultural field and to construct a physical soil quality index (SQIP map. Surface soil samples were collected using 10  m×10 m grid from an Inceptisol on Ganges Tidal Floodplain of Bangladesh. Five physical soil quality indicators, soil texture, bulk density, porosity, saturated hydraulic conductivity (KS, and aggregate stability (measured as mean weight diameter, MWD were determined. The spatial structures of sand, clay, and KS were moderate but the structure was strong for silt, bulk density, porosity, and MWD. Each of the physical soil quality indicators was transformed into 0 and 1 using threshold criteria which are required for crop production. The transformed indicators were the combined into SQIP. The kriged SQIP map showed that the agricultural field studied could be divided into two parts having “good physical quality” and “poor physical soil quality.”

  6. Study of the action of blast deck charge in rocky soils

    Directory of Open Access Journals (Sweden)

    Boiko V.V.

    2017-04-01

    Full Text Available Blasting (B in the industry, including the mining extraction of minerals, are carried out mostly with the use of blasthole charges that systematically distributed on the block that is undermined, by individual groups. The latter are blasted according to the scheme of short-delay firing (SDF through the intervals that are accepted not less than 20 Ms. Thus, the seismic effect of group charge explosion, consisting of individual blasthole charges and that actually is a group located charge determined by the formula of concentrated charge. Blast deck charges are effectively used in the driving of the trenches in the mining, formation of screens and cracks near the security objects. Only this method of performing blasting allows to define seismic effect in the transition from one diameter of a charge to another, as well as to determine the actual number of detonated charges in one group, which may differ from the calculated in drilling and blasting project. The work analyzes the physical essence of processes happened while blasting of blast deck charges. The effect of the orientation of the seismic action of blasting of blast deck charges towards the allocation line of charges is investigated. The results of generalized dependence of the speed of the displacement of the ground by the blast parameters and epicentral distance are obtained. We demonstrate with specific examples that blast deck charges that blasting simultaneously make a major chain of the career massive explosions at mining. Keywords: seismic fluctuations; the number of charges; the interaction of charges; the distance between the charges; the coefficients of the seismicity and the attenuation of the intensity of the waves; the unit charge; blast deck and blasthole charges; phase shifting; effective charge.

  7. Variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive electron velocity distribution

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2010-01-01

    A first theoretical work is presented to study variable charge dust acoustic solitons within the theoretical framework of the Tsallis statistical mechanics. Our results reveal that the spatial patterns of the variable charge solitary wave are significantly modified by electron nonextensive effects. In particular, it may be noted that for -1 d becomes more negative and the dust grains localization (accumulation) less pronounced. The electrons are locally expelled and pushed out of the region of the soliton's localization. This electron depletion becomes less effective as the electrons evolve far away from their thermal equilibrium. The case q>1 provides qualitatively opposite results: electron nonextensivity makes the solitary structure more spiky. Our results should help in providing a good fit between theoretical and experimental results.

  8. Controls on the spatial variability of key soil properties: comparing field data with a mechanistic soilscape evolution model

    Science.gov (United States)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2016-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  9. Spatio-temporal soil moisture variability in Southwest Germany observed with a new monitoring network within the COPS domain

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Liane; Kottmeier, Christoph [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Meteorology and Climate Research; Hauck, Christian [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Meteorology and Climate Research; Fribourg Univ. (Switzerland). Dept. of Geosciences

    2010-12-15

    Within the 'Convective and Orographically-induced Precipitation Study' (COPS) 2007 in Southwest Germany and Northeast France a soil moisture monitoring network was installed. The aim of the network is to identify the interaction between the temporal and spatial variability of the soil moisture field and its influence on the energy balance and the moisture availability in the planetary boundary layer. The network is comprised of a large number of newly developed low-cost soil moisture sensors based on the frequency-domain reflectometry method (FDR). In total 47 soil moisture stations within the COPS domain were each equipped with two to four sensors simultaneously measuring vertical profiles of soil moisture and soil temperature down to 50 cm depth. This contribution describes the soil moisture network, its installation procedure and the calibration of the sensor output signal. Furthermore we discuss the soil texture distribution within the study area and present first analyses of the spatio-temporal soil moisture variability during a 13 month period from June 2007 till June 2008 based on regional differences and site specific properties (altitude and soil texture). Results show that the altitude plays a key role for the overall soil moisture pattern relative to the area mean due to the direct linkage to precipitation patterns. Soil texture controls the vertical soil moisture gradient relative to the near surface soil moisture, as their properties control water storage and drainage characteristics. Both factors significantly influence regional soil moisture patterns in Southwest Germany. (orig.)

  10. Recalcitrant soil organic matter : how useful is radiocarbon for estimating its amount and variability?

    International Nuclear Information System (INIS)

    Tate, K.; Parshotam, A.; Scott, Neal

    1997-01-01

    The role of the terrestrial biosphere in the global carbon (C) cycle is poorly understood because of the complex biology underlying C storage, the spatial variability of vegetation and soils, and the effects of land use. Little is known about the nature, amount and variability of recalcitrant C in soils, despite the importance of determining whether soils behave as sources or sinks of CO 2 . 14 C dating indicates that most soils contain this very stable C fraction, with turnover times of millennia. The amount of this fraction, named the Inert Organic Matter (IOM) in one model, is estimated indirectly using the 'bomb' 14 C content of soil. In nine New Zealand grassland and forest ecosystems, amounts of IOM-C ranged between 0.03 to 2.9 kg C m -2 (1-18% of soil C to 0.25m depth). A decomposable C fraction, considered to be more susceptible to the effects of climate and land use, was estimated by subtracting the IOM-C fraction from the total soil organic C. Turnover times ranged between 8 and 36 years, and were inversely related to mean annual temperature (R 2 0.91, P 13 C NMR and pyrolysis-mass spectrometry as alkyl C. Paradoxically, for some ecosystems, the variation in IOM-C appears to be best explained by differences in soil hydrological conditions rather than by the accumulation of a discrete C fraction. Thus characterisation of environmental factors that constrain decomposition could be most useful for explaining the differences observed in IOM across different ecosystems, climates and soils. Despite the insights the modelling approach using 'bomb' 14 C provides into mechanisms for organic matter stabilisation, on theoretical grounds the validity of using 14 C measurements to estimate a recalcitrant C fraction that by definition contains no 14 C is questionable. We conclude that more rigorous models are needed with pools that can be experimentally verified, to improve understanding of the spatial variability of soil C storage. (author)

  11. Evaluation of spatial variability of metal bioavailability in soils using geostatistics

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Hauschild, Michael Zwicky; Rosenbaum, Ralph K.

    2012-01-01

    Soil properties show signifficant spatial variability at local, regional and continental scales. This is a challenge for life cycle impact assessment (LCIA) of metals, because fate, bioavailability and effect factors are controlled by environmental chemistry and can vary orders of magnitude...... is performed using ArcGIS Geostatistical Analyst. Results show that BFs of copper span a range of 6 orders of magnitude, and have signifficant spatial variability at local and continental scales. The model nugget variance is signifficantly higher than zero, suggesting the presence of spatial variability...

  12. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  13. Soil structure interaction model and variability of parameters in seismic analysis of nuclear island connected building

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Palekar, S.M.; Bavare, M.S.; Mapari, H.A.; Patel, S.C.; Pillai, C.S.

    2005-01-01

    This paper provides salient features of the Soil Structure Interaction analysis of Nuclear Island Connected Building (NICB). The dynamic analysis of NICB is performed on a full 3D model accounting for the probable variation in the stiffness of the founding medium. A range analyses was performed to establish the effect of variability of subgrade parameters on the results of seismic analyses of NICB. This paper presents details of various analyses with respect to the subgrade model, uncertainties in subgrade properties, results of seismic analyses and a study of effect of the variability of parameters on the results of these analyses. The results of this study indicate that the variability of soil parameters beyond a certain value of shear wave velocity does not influence the response and in fact the response marginally diminishes. (authors)

  14. Spatial variability of detrended soil plow layer penetrometer resistance transect in a sugarcane field

    Science.gov (United States)

    Pérez, Luis D.; Cumbrera, Ramiro; Mato, Juan; Millán, Humberto; Tarquis, Ana M.

    2015-04-01

    Spatial variability of soil properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns (Brouder et al., 2001; Millán et al., 2012). The objective of the present work was to quantify the spatial structure of soil penetrometer resistance (PR) collected from a transect data consisted of 221 points equidistant. In each sampling, readings were obtained from 0 cm till 70 cm of depth, with an interval of 5 cm (Pérez, 2012). The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years (Pérez et al., 2010). Recently, scaling approach has been applied on the determination of the scaling data properties (Tarquis et al., 2008; Millán et al., 2012; Pérez, 2012). We focus in the Hurst analysis to characterize the data variability for each depth. Previously a detrended analysis was conducted in order to better study de intrinsic variability of the series. The Hurst exponent (H) for each depth was estimated showing a characteristic pattern and differentiating PR evolution in depth. References Brouder, S., Hofmann, B., Reetz, H.F., 2001. Evaluating spatial variability of soil parameters for input management. Better Crops 85, 8-11. Millán, H; AM Tarquís, Luís D. Pérez, Juan Mato, Mario González-Posada, 2012. Spatial variability patterns of some Vertisol properties at a field scale using standardized data. Soil and Tillage Research, 120, 76-84. Pérez, Luís D. 2012. Influencia de la maquinaria agrícola sobre la variabilidad espacial de la compactación del suelo. Aplicación de la metodología geoestadística-fractal. PhD thesis, UPM (In Spanish). Pérez, Luís D., Humberto Millán, Mario González-Posada 2010. Spatial complexity of soil plow layer penetrometer resistance as influenced by sugarcane harvesting: A prefractal approach. Soil and Tillage

  15. Spatiotemporal predictions of soil properties and states in variably saturated landscapes

    Science.gov (United States)

    Franz, Trenton E.; Loecke, Terrance D.; Burgin, Amy J.; Zhou, Yuzhen; Le, Tri; Moscicki, David

    2017-07-01

    Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil conditions is challenging given the highly dynamic nature of GHG fluxes in both space and time, dubbed hot spots, and hot moments. On one hand, our ability to directly monitor these processes is limited by sparse in situ and surface chamber observational networks. On the other hand, remote sensing approaches provide spatial data sets but are limited by infrequent imaging over time. We use a robust statistical framework to merge sparse sensor network observations with reconnaissance style hydrogeophysical mapping at a well-characterized site in Ohio. We find that combining time-lapse electromagnetic induction surveys with empirical orthogonal functions provides additional environmental covariates related to soil properties and states at high spatial resolutions ( 5 m). A cross-validation experiment using eight different spatial interpolation methods versus 120 in situ soil cores indicated an 30% reduction in root-mean-square error for soil properties (clay weight percent and total soil carbon weight percent) using hydrogeophysical derived environmental covariates with regression kriging. In addition, the hydrogeophysical derived environmental covariates were found to be good predictors of soil states (soil temperature, soil water content, and soil oxygen). The presented framework allows for temporal gap filling of individual sensor data sets as well as provides flexible geometric interpolation to complex areas/volumes. We anticipate that the framework, with its flexible temporal and spatial monitoring options, will be useful in designing future monitoring networks as well as support the next generation of hyper-resolution hydrologic and biogeochemical models.

  16. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceddia, Marcos Bacis, E-mail: marcosceddia@gmail.com [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Villela, André Luis Oliveira [Colégio Técnico da UFRRJ, RJ, Seropédica 23890-000 (Brazil); Pinheiro, Érika Flávia Machado [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Wendroth, Ole [Department of Plant & Soil Sciences, University of Kentucky, College of Agriculture, Lexington, KY (United States)

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km{sup 2} and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m{sup −2}, respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m{sup −2}, respectively. • SOC stocks were 34 and 16

  17. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    International Nuclear Information System (INIS)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-01-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km 2 and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m −2 , respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m −2 , respectively. • SOC stocks were 34 and 16%, respectively

  18. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    Science.gov (United States)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  19. Amplification and dampening of soil respiration by changes in temperature variability

    Directory of Open Access Journals (Sweden)

    C. A. Sierra

    2011-04-01

    Full Text Available Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature. Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long-term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen the release of carbon through soil respiration as climate regimes change. These effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  20. Amplification and dampening of soil respiration by changes in temperature variability

    Science.gov (United States)

    Sierra, C.A.; Harmon, M.E.; Thomann, E.; Perakis, S.S.; Loescher, H.W.

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feed backs related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature vari-ability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature.Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen there release of carbon through soil respiration as climate regimes change. The effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  1. Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping.

    Science.gov (United States)

    Hamalainen, Sampsa; Geng, Xiaoyuan; He, Juanxia

    2017-04-01

    Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping. Sampsa Hamalainen, Xiaoyuan Geng, and Juanxia, He. AAFC - Agriculture and Agr-Food Canada, Ottawa, Canada. The Latin Hypercube Sampling (LHS) approach to assist with Digital Soil Mapping has been developed for some time now, however the purpose of this work was to complement LHS with use of multiple spatial resolutions of covariate datasets and variability in the range of sampling points produced. This allowed for specific sets of LHS points to be produced to fulfil the needs of various partners from multiple projects working in the Ontario and Prince Edward Island provinces of Canada. Secondary soil and environmental attributes are critical inputs that are required in the development of sampling points by LHS. These include a required Digital Elevation Model (DEM) and subsequent covariate datasets produced as a result of a Digital Terrain Analysis performed on the DEM. These additional covariates often include but are not limited to Topographic Wetness Index (TWI), Length-Slope (LS) Factor, and Slope which are continuous data. The range of specific points created in LHS included 50 - 200 depending on the size of the watershed and more importantly the number of soil types found within. The spatial resolution of covariates included within the work ranged from 5 - 30 m. The iterations within the LHS sampling were run at an optimal level so the LHS model provided a good spatial representation of the environmental attributes within the watershed. Also, additional covariates were included in the Latin Hypercube Sampling approach which is categorical in nature such as external Surficial Geology data. Some initial results of the work include using a 1000 iteration variable within the LHS model. 1000 iterations was consistently a reasonable value used to produce sampling points that provided a good spatial representation of the environmental

  2. Dynamics of Oxidation of Aluminum Nanoclusters using Variable Charge Molecular-Dynamics Simulations on Parallel Computers

    Science.gov (United States)

    Campbell, Timothy; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Ogata, Shuji; Rodgers, Stephen

    1999-06-01

    Oxidation of aluminum nanoclusters is investigated with a parallel molecular-dynamics approach based on dynamic charge transfer among atoms. Structural and dynamic correlations reveal that significant charge transfer gives rise to large negative pressure in the oxide which dominates the positive pressure due to steric forces. As a result, aluminum moves outward and oxygen moves towards the interior of the cluster with the aluminum diffusivity 60% higher than that of oxygen. A stable 40 Å thick amorphous oxide is formed; this is in excellent agreement with experiments.

  3. Variability of soil fertility properties in areas planted to sugarcane in the State of Goias, Brazil

    Directory of Open Access Journals (Sweden)

    José Avelino Cardoso

    2014-04-01

    Full Text Available Soil sampling should provide an accurate representation of a given area so that recommendations for amendments of soil acidity, fertilization and soil conservation may be drafted to increase yield and improve the use of inputs. The aim of this study was to evaluate the variability of soil fertility properties of Oxisols in areas planted to sugarcane in the State of Goias, Brazil. Two areas of approximately 8,100 m² each were selected, representing two fields of the Goiasa sugarcane mill in Goiatuba. The sugarcane crop had a row spacing of 1.5 m and subsamples were taken from 49 points in the row and 49 between the row with a Dutch auger at depths of 0.0-0.2 and 0.2-0.4 m, for a total of 196 subsamples for each area. The samples were individually subjected to chemical analyses of soil fertility (pH in CaCl2, potential acidity, organic matter, P, K, Ca and Mg and particle size analysis. The number of subsamples required to compose a sample within the acceptable ranges of error of 5, 10, 20 and 40 % of each property were computed from the coefficients of variation and the Student t-value for 95 % confidence. The soil properties under analysis exhibited different variabilities: high (P and K, medium (potential acidity, Ca and Mg and low (pH, organic matter and clay content. Most of the properties analyzed showed an error of less than 20 % for a group of 20 subsamples, except for P and K, which were capable of showing an error greater than 40 % around the mean. The extreme variability in phosphorus, particularly at the depth of 0.2-0.4 m, attributed to banded application of high rates of P fertilizers at planting, places limitations on assessment of its availability due to the high number of subsamples required for a composite sample.

  4. Soil Carbon Variability and Change Detection in the Forest Inventory Analysis Database of the United States

    Science.gov (United States)

    Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.

    2014-12-01

    The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.

  5. CO and H2 uptake and emissions by soil: variability of fluxes and their isotopic signatures

    Science.gov (United States)

    Popa, Maria Elena; Chen, Qianjie; Ferrero Lopez, Noelia; Röckmann, Thomas

    2017-04-01

    In order to study the uptake and release of H2 and CO by soil, we performed long term, high frequency measurements with an automatic soil chamber at two sites in the Netherlands (Cabauw - grassland, and Speuld - forest). The measurements were performed over different seasons and cover in total a cumulated interval of about one year. These measurements allow determining separately, for each species, the two distinct fluxes i.e. uptake and release, and investigating their temporal variability and dependencies on environmental variables. Additional experiments were performed for determining the isotopic signatures of the H2 and CO uptake and release by soil. Flask samples were filled from the soil chamber, and then analyzed in the laboratory for the stable isotopic composition of H2 (δD) and CO (δ13C and δ18O). We find that both uptake and release are present at all times, regardless of the direction of the net flux. The emissions are significant for both species and at Cabauw, there are times and places where emissions outweigh the soil uptake. For each species, the two fluxes have different behavior and dependence on external variables, which indicates that they have different origins. The isotope results also support that, for both H2 and CO, uptake and emission occur simultaneously. We were able to determine separately the isotopic effects of the two fluxes. For both H2 and CO, soil uptake is associated with a small positive fractionation (the lighter molecule is taken up faster). The soil uptake fractionation (α = kheavy/klight) was 0.945 ± 0.004 for H2; for CO, the fractionation was 0.992 for 13C and 0.985 for 18O. The isotopic composition of the H2 emitted from the grassland was -530 ± 40 ‰, less depleted that what is expected from the isotopic equilibrium of H2 with water. For CO, the isotopic composition of the soil emission is depleted in 13C compared to atmospheric CO, and lower than the average isotopic composition of plant or soil organic matter.

  6. Agriculture at the Edge: Landscape Variability of Soil C Stocks and Fluxes in the Tropical Andes

    Science.gov (United States)

    Riveros-Iregui, D. A.; Peña, C.

    2015-12-01

    Paramos, or tropical alpine grasslands occurring right above the forest tree-line (2,800 - 4,700 m), are among the most transformed landscapes in the humid tropics. In the Tropical Andes, Paramos form an archipelago-like pattern from Northern Colombia to Central Peru that effectively captures atmospheric moisture originated in the Amazon-Orinoco basins, while marking the highest altitude capable of sustaining vegetation growth (i.e., 'the edge'). This study investigates the role of land management on mediating soil carbon stocks and fluxes in Paramo ecosystems of the Eastern Cordillera of Colombia. Observations were collected at a Paramo site strongly modified by land use change, including active potato plantations, pasture, tillage, and land abandonment. Results show that undisturbed Paramos soils have high total organic carbon (TOC), high soil water content (SWC), and low soil CO2 efflux (RS) rates. However, Paramo soils that experience human intervention show lower TOC, higher and more variable RS rates, and lower SWC. This study demonstrates that changes in land use in Paramos affect differentially the accumulation and exchange of soil carbon with the atmosphere and offers implications for management and protection strategies of what has been deemed the fastest evolving biodiversity ecosystem in the world.

  7. Variable pore connectivity model linking gas diffusivity and air-phase tortuosity to soil matric potential

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per

    2012-01-01

    information on soil functional pore structure, e.g., pore network tortuosity and connectivity, can also be revealed from Dp/Do–ψ relations. Based on Dp/Do measurements in a wide range of soil types across geographically remote vadose zone profiles, this study analyzed pore connectivity for the development...... of a variable pore connectivity factor, X, as a function of soil matric potential, expressed as pF (=log |−ψ|), for pF values ranging from 1.0 to 3.5. The new model takes the form of X = X* (F/F*)A with F = 1 + pF−1, where X* is the pore network tortuosity at reference F (F*) and A is a model parameter......- and intraaggregate pore regions of aggregated soils. We further suggest that the new model with parameter values of X* = 1.7 and A = 0 may be used for upper limit Dp/Do predictions in risk assessments of, e.g., fluxes of toxic volatile organics from soil to indoor air at polluted soil sites....

  8. Spatial and temporal variability of soil moisture in a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified, and soil moisture is a key environmental variable controlling this functionality. Restored sections of rivers often are characterized by a dynamic mosaic of riparian zones with varying exposure to flooding. In this presentation, the spatial and temporal variability of soil moisture in riparian soils of a restored reach of the Alpine river Thur in northeastern Switzerland is shown. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three functional processing zones (FPZ) representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is loamy sand to sandy loam composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits with a loamy fine earth. (iii) The mixed forest is a mature riparian hardwood forest with ash and maple as dominant trees developed on older overbank sediments with a silty loamy fine earth. The study period was between spring 2009 and winter 2009/2010 including three flood events in June, July and December 2009. The first and third flood inundated the grass zone and lower part of the bush zone while the second flood was bigger and swept through all the FPZs. Water contents in several soil depths were measured continuously in 30 minute intervals using Decagon EC-5 and EC-TM sensors. There were six spatial

  9. Variability of soil CO2 efflux in a semi-arid grassland in Arizona

    Science.gov (United States)

    Krishnan, P.; Meyers, T. P.; Heuer, M.

    2017-12-01

    Soil surface CO2 efflux or soil respiration (RS) is one of the most important components of the global carbon cycle. So it is critical to evaluate the response of soil respiration to environmental conditions to predict how future climate and land cover changes influence the ecosystem carbon balance. Continuous half-hourly measurements of RS were made between the end of March to December 2015 in a semi-arid temperate grassland located on the Audubon Research Ranch in south western Arizona (31.5907N, 110.5104W, elevation 1496 m), USA. This first time measurements of Rs over this site using an automated soil chamber were used to investigate the seasonal and diurnal variation of Rs and its relationship to environmental variables. The mean annual air temperature and precipitation at this site were 16 deg C and 370 mm with more than 60% of the annual precipitation was received during the North American monsoon period (July-September). Following the onset of the monsoon, drastic changes in vegetation growth occured turning the ecosystem to a carbon sink by August. Temporal variability in Rs was closely related to the changes in near surface soil temperature at 2 cm (Ts) and soil water content at 5 cm (θ). Half -hourly Rs varied from nearly 0.1 μmol m-2 s-1 in the winter months to a maximum of 5 μmol m-2 s-1 in the peak growing season in August. During the dry pre-monsoon period (May -June), Rs was relatively low ( 0.0.08 m3 m-3, RS was positively correlated to soil temperature at the 2 cm depth following an exponential relationship. Below this value of θ, RS was largely decoupled from TS dropping to less than half of their maximum values during wet soil conditions. Analysis of daily mean nighttime Rs for the year showed that for periods with θ below the threshold, the sensitivity of RS to temperature were substantially reduced resulting in a Q10 significantly < 2, thereby confirming that RS was less affected by soil temperature under low soil water conditions at this

  10. Using Environmental Variables for Studying of the Quality of Sampling in Soil Mapping

    Directory of Open Access Journals (Sweden)

    A. Jafari

    2016-02-01

    profiles, which were then described, sampled, analyzed and classified according to the USDA soil classification system (16. The basic rationale is to set up a hypercube, the axes of which are the quantiles of rasters of environmental covariates, e.g., digital elevation model. Sampling evaluation was made using the HELS algorithm. This algorithm was written based on the study of Carre et al., 2007 (3 and run in R. Results and Discussion: The covariate dataset is represented by elevation, slope and wetness index (Table 2. All data layers were interpolated to a common grid of 30 m resolution. The size of the raster layer is 421 by 711 grid cells. Each of the three covariates is divided into four quantiles (Table 2. The hypercube character space has 43, i.e. 64 strata (Figure 5. The average number of grid cells within each stratum is therefore 4677 grid cells. The map of the covariate index (Figure 6 shows some patterns representative of the covariate variability. The values of the covariate index range between 0.0045 and 5.95. This means that some strata are very dense compared to others. This index allows us to explain if high or low relative weight of the sampling units (see below is due to soil sampling or covariate density. The strata with the highest density are in the areas with high geomorphology diversity. It means that geomorphology processes can cause the diversity and variability and it is in line with the geomorphology map (Figure 2. Of the 64 strata, 30.4% represent under-sampling, 60.2% represent adequate sampling and 9.4% represent over-sampling. Regarding the covariate index, most of the under-sampling appears in the high covariate index, where soil covariates are then highly variable. Actually, it is difficult to collect field samples in these highly variable areas (Figure 7. Also, most of the over-sampling was observed in areas with alow covariate index (Figure 7. We calculated the weights of all the sampling units and showed the results in Figure 8. One 64

  11. Rapid Estimation Method for State of Charge of Lithium-Ion Battery Based on Fractional Continual Variable Order Model

    Directory of Open Access Journals (Sweden)

    Xin Lu

    2018-03-01

    Full Text Available In recent years, the fractional order model has been employed to state of charge (SOC estimation. The non integer differentiation order being expressed as a function of recursive factors defining the fractality of charge distribution on porous electrodes. The battery SOC affects the fractal dimension of charge distribution, therefore the order of the fractional order model varies with the SOC at the same condition. This paper proposes a new method to estimate the SOC. A fractional continuous variable order model is used to characterize the fractal morphology of charge distribution. The order identification results showed that there is a stable monotonic relationship between the fractional order and the SOC after the battery inner electrochemical reaction reaches balanced. This feature makes the proposed model particularly suitable for SOC estimation when the battery is in the resting state. Moreover, a fast iterative method based on the proposed model is introduced for SOC estimation. The experimental results showed that the proposed iterative method can quickly estimate the SOC by several iterations while maintaining high estimation accuracy.

  12. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Badawi, N.; Aamand, Jens

    2014-01-01

    across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance......Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we...... critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates...

  14. Analysis of the variability of some properties of a semi-deciduous forest soil

    International Nuclear Information System (INIS)

    Okae-Anti, D.; Ogoe, J.I.

    2003-05-01

    The formation of soils in any region is influenced by many factors such as the parent materials and the secondary materials derived from them, the vegetation and the history of land use. These factors vary from place to place and they contribute to the spatial variation in properties of the soil. Quantification of the magnitude, location and causes of spatial variability is an essential but insufficient ingredient of soil surveys. We took soil samples from the 0-20 cm depth covering soils in the Asuansi-Akroso-Nta-Ofin compound association (Lixisol, Cambisol and Fluvisol association) at the study site, following the nested balanced hierarchical sampling technique. This covered distances between 100 and 0.80 m. Standard laboratory analyses were performed to quantify the selected properties, namely, pH, organic carbon, total nitrogen, total phosphorus, exchangeable potassium and content of sand, silt and clay. Classical statistics and geostatistical procedures were performed on the data and models fitted to the variability patterns. Physical and the more stable properties such as sand, silt and clay were fitted with spherical variogram models. These models indicate a high level of spatial dependence and therefore such properties may be said to be fairly stable in the field. On the contrary, chemical properties such as exchangeable potassium, were fitted with exponential variogram models, indicating that these properties were less stable and showed dependence over longer distances. The scale of variation of the properties ranged between 35 m - 62 m. The degree of uncertainty associated with time and space can be reduced by improved documentation of field variability using the tools of geostatistics. (author)

  15. Comparing measured and modelled soil carbon: which site-specific variables are linked to high stability?

    Science.gov (United States)

    Robertson, Andy; Schipanski, Meagan; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Changes in soil carbon (C) stocks have been studied in depth over the last two decades, as net greenhouse gas (GHG) sinks are highlighted to be a partial solution to the causes of climate change. However, the stability of this soil C is often overlooked when measuring these changes. Ultimately a net sequestration in soils is far less beneficial if labile C is replacing more stable forms. To date there is no accepted framework for measuring soil C stability, and as a result there is considerable uncertainty associated with the simulated impacts of land management and land use change when using process-based systems models. However, a recent effort to equate measurable soil C fractions to model pools has generated data that help to assess the impacts of land management, and can ultimately help to reduce the uncertainty of model predictions. Our research compiles this existing fractionation data along with site metadata to create a simplistic statistical model able to quantify the relative importance of different site-specific conditions. Data was mined from 23 published studies and combined with original data to generate a dataset of 100+ land use change sites across Europe. For sites to be included they required soil C fractions isolated using the Zimmermann et al. (2007) method and specific site metadata (mean annual precipitation, MAP; mean annual temperature, MAT; soil pH; land use; altitude). Of the sites, 75% were used to develop a generalized linear mixed model (GLMM) to create coefficients where site parameters can be used to predict influence on the measured soil fraction C stocks. The remaining 25% of sites were used to evaluate uncertainty and validate this empirical model. Further, four of the aforementioned sites were used to simulate soil C dynamics using the RothC, DayCent and RZWQM2 models. A sensitivity analysis (4096 model runs for each variable applying Latin hypercube random sampling techniques) was then used to observe whether these models place

  16. Addressing Geographic Variability in the Comparative Toxicity Potential of Copper and Nickel in Soils

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Huijbregts, Mark A. J.

    2013-01-01

    Comparative toxicity potentials (CTP), in life cycle impact assessment also known as characterization factors (CF), of copper (Cu) and nickel (Ni) were calculated for a global set of 760 soils. An accessibility factor (ACF) that takes into account the role of the reactive, solid-phase metal pool...... findings stress the importance of dealing with geographic variability in the calculation of CTPs for terrestrial ecotoxicity of metals....

  17. The effect of short-range spatial variability on soil sampling uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)], E-mail: m.vanderperk@geo.uu.nl; De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Laboratori, Misure ed Attivita di Campo, Via di Castel Romano, 100-00128 Roma (Italy); Fajgelj, Ales; Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-1400 Vienna (Austria); Jeran, Zvonka; Jacimovic, Radojko [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2008-11-15

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  18. The effect of short-range spatial variability on soil sampling uncertainty.

    Science.gov (United States)

    Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko

    2008-11-01

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  19. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    Science.gov (United States)

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  20. Dimensioning the Irrigation Variables for Table Grape Vineyards in Litho-soils

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2010-10-01

    Full Text Available The pedo-climatic and farm characteristics of Bari’s hinterland have allowed for the diffusion of prestigious table viticulture. The typical “tendone” vineyard structure is set up after managing the surface of the soil. The karstic nature of the region and the thermo-rainfall trend during the vegetative season impede the vineyard from producing adequately without irrigation. Given the importance of water contributions to table grapes, it is necessary to correctly measure the water variables for economic and environmental reasons. Farmers often irrigate according to “fixed” turns and volumes, against the rules of “good irrigation practice” which consider monitoring the water status of the soil or plant as a prerequisite of irrigation scheduling. During this experiment, two methods of irrigation management were compared: “fixed-turn” and “on demand”. For “on demand” irrigation, the irrigation volume is calculated on the basis of the soil water status (estimated according to the “water balance” method described in the “Paper n. 56 FAO” and the irrigation is scheduled on the basis of the experimental relationship between “pre-dawn” leaf water potential and the water available in the soil. For this comparison, data from a 2-year “on farm” experimentation, in an area typical of table grape cultivation in Southern Italy, have been used. The results obtained show that, in respect to the “fixed-turn” management, the “on demand” management allows for a 20% reduction in water volumes, without compromising production. The water balance method proved to be a promising criterion for irrigation scheduling in these shallow soils, rich in stones (litho-soils. This only held true when the depth of the soil layer explored by the root system was defined by the “equivalent depth” and not by the actual soil’s depth.

  1. Modeling impacts of human footprint and soil variability on the potential distribution of invasive plant species in different biomes

    Science.gov (United States)

    Wan, Ji-Zhong; Wang, Chun-Jing; Yu, Fei-Hai

    2017-11-01

    Human footprint and soil variability may be important in shaping the spread of invasive plant species (IPS). However, until now, there is little knowledge on how human footprint and soil variability affect the potential distribution of IPS in different biomes. We used Maxent modeling to project the potential distribution of 29 IPS with wide distributions and long introduction histories in China based on various combinations of climatic correlates, soil characteristics and human footprint. Then, we evaluated the relative importance of each type of environmental variables (climate, soil and human footprint) as well as the difference in range and similarity of the potential distribution of IPS between different biomes. Human footprint and soil variables contributed to the prediction of the potential distribution of IPS, and different types of biomes had varying responses and degrees of impacts from the tested variables. Human footprint and soil variability had the highest tendency to increase the potential distribution of IPS in Montane Grasslands and Shrublands. We propose to integrate the assessment in impacts of human footprint and soil variability on the potential distribution of IPS in different biomes into the prevention and control of plant invasion.

  2. Variability in uptake of Cs isotopes by fenugreek plant from three soils

    Energy Technology Data Exchange (ETDEWEB)

    Pulhani, V; Dafauti, S; Dahiya, S; Hedge, A G [Environmental Studies Section, Health Physics Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-07-01

    Soil to plant transfer via root uptake is one of the major compartments in the radionuclide transfer pathways to man and can be used to assess the internal radiation dose via ingestion. The variability in the Transfer Factor (TF) of Cs isotopes was investigated in three different soils from nuclear power plant sites at Rajasthan and Narora with alkaline sandy loam alluvial and Madras with acidic coastal sandy loam alluvial soil. The soils were characterized for soil properties like texture, pH, EC, organic carbon, CaCO{sub 3} (%), CEC, silt, clay sand etc. and spiked with a mixture of 800 Bq {sup 137}Cs, 300 Bq {sup 134}Cs and 10mg of {sup 133}Cs (stable). Fenugreek (Trigonella foenum-graecum L.) from Leguminosae family an annual plant commonly used as a vegetable was grown in these soils to study the uptake of Cs. The uptake of heavy toxic elements like Pb, Cd, Ni, Cr etc. and nutrients Fe, Co, Cu, Zn, Mn, Ca, Mg, Na and K was also studied. The uptake of heavy toxic elements like Pb, Cd, Ni, Cr etc. and nutrients Fe, Co, Cu, Zn, Mn, Ca, Mg, Na and K was also studied. {sup 137}Cs and{sup 134}Cs was estimated using HPGe detector (15% Relative Efficiency, 54cc-coaxial, 2keV resolution at 1332keV of {sup 60}Co). Stable Cs, K and Na were determined by the Atomic Emission Spectrophotometry and Pb, Cd, Cr etc. by Atomic Absorption Spectrophotometry. Among the three soils the transfer factor for all the elements and Cs was highest for MAPS due to higher organic matter content and acidic pH followed by NAPS and RAPS. The {sup 137}Cs and {sup 134}Cs isotopes have been taken up to the same extent from soil and transfer factors are similar to each other. But the stable Cs uptake appears to be slightly high, probably because of excess of {sup 133}Cs (mg level) added as compared to the radioactive isotopes. In spite of this high difference in the soil concentrations of Cs isotopes, uptake of {sup 133}Cs is not very high indicating to a physiological limiting process for uptake

  3. ASSESSMENT SPATIAL VARIABILITY OF SOIL ERODIBILITY BY USING OF GEOSTATISTIC AND GIS (Case study MEHR watershed of SABZEVAR

    Directory of Open Access Journals (Sweden)

    Ayoubi, S.A

    2005-05-01

    Full Text Available Soil erodibility is one of the key factors on some sediment and soil erosion models such as USLE, MUSLE, RUSLE, AUSLE (USLE modified in LS factor and MMF and represents like K factor and is function of particle distribution, organic mater, soil structure and ermeability. Traditional methods do not take spatial variability and estimate precision of variables in to consideration and amount of them are constant across the whole of soil series .This study was performed to assess spatial variability of soil erodibility and its relevant variables at MEHR watershed from Khorasan province, in northern Iran. Interested network was designed by 110 samples like nested- systematic with distance about 50, 100, 250 and 500 meter across the study area by preparing point map at GIS. Sampling points were identified in field by an Global Positioning system. Soil sampling was done at depth of 0-5cm of ground surface and permeability was studied at depth of 5-30 cm. Some soil properties such as particle distribution and organic mater were measured at laboratory. Particle size distribution was determined by Hydrometer method and Organic matter was measured by wet oxidation approach. Then spatial analysis was done. Variography analysis on soil attributes according to soil erodibility, showed that Gaussian, exponential and spherical models were the most models to predict spatial variability of soil parameters. The range of spatial dependencies was changed from 320 to 3200 m. Soil attribute maps prepared by kriging technique using models parameters. Then soil attributes were composed by Wischmeier (1978 formula in Illwis media to calculate K factor. Amount of soil erodibility changed from 0.13 to 0.91 that it's maximum and minimum was identified in east and southwest of studiedarea. Soil spatial variability pattern, is similar to silt pattern due to high effect of silt on soil rodibility, Also that is partially confirmed with geology map, indicated which soil

  4. Collection efficiency of charges in ionization chambers in presence of constant or variable radiation intensity

    International Nuclear Information System (INIS)

    Decuyper, J.

    1970-01-01

    The theoretical and experimental study of the collection of carriers built up by ionization in standard chambers, is made by varying the value of different acting parameters. In the presence of constant ionization intensity and under a D.C. and A.C. voltage, the effect of geometry, recombination, diffusion and attachment is analyzed. The compensation of thermal neutron D.C. chambers is equally considered. Under a time dependent ionization intensity and D.C. voltage, is then studied the effect of recombination on current response, and on the collection efficiency of all formed charges. (author) [fr

  5. Alaskan soil carbon stocks: spatial variability and dependence on environmental factors

    Directory of Open Access Journals (Sweden)

    U. Mishra

    2012-09-01

    Full Text Available The direction and magnitude of soil organic carbon (SOC changes in response to climate change depend on the spatial and vertical distributions of SOC. We estimated spatially resolved SOC stocks from surface to C horizon, distinguishing active-layer and permafrost-layer stocks, based on geospatial analysis of 472 soil profiles and spatially referenced environmental variables for Alaska. Total Alaska state-wide SOC stock was estimated to be 77 Pg, with 61% in the active-layer, 27% in permafrost, and 12% in non-permafrost soils. Prediction accuracy was highest for the active-layer as demonstrated by highest ratio of performance to deviation (1.5. Large spatial variability was predicted, with whole-profile, active-layer, and permafrost-layer stocks ranging from 1–296 kg C m−2, 2–166 kg m−2, and 0–232 kg m−2, respectively. Temperature and soil wetness were found to be primary controllers of whole-profile, active-layer, and permafrost-layer SOC stocks. Secondary controllers, in order of importance, were found to be land cover type, topographic attributes, and bedrock geology. The observed importance of soil wetness rather than precipitation on SOC stocks implies that the poor representation of high-latitude soil wetness in Earth system models may lead to large uncertainty in predicted SOC stocks under future climate change scenarios. Under strict caveats described in the text and assuming temperature changes from the A1B Intergovernmental Panel on Climate Change emissions scenario, our geospatial model indicates that the equilibrium average 2100 Alaska active-layer depth could deepen by 11 cm, resulting in a thawing of 13 Pg C currently in permafrost. The equilibrium SOC loss associated with this warming would be highest under continuous permafrost (31%, followed by discontinuous (28%, isolated (24.3%, and sporadic (23.6% permafrost areas. Our high-resolution mapping of soil carbon stock reveals the

  6. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    Directory of Open Access Journals (Sweden)

    Arnaud eDechesne

    2014-12-01

    Full Text Available Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays nonrandom spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH and some agricultural management practices (pesticide application, tillage, while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modelling and experimental systems that do not include soil’s full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil.

  7. Relative spatial soil geochemical variability along two transects across the United States and Canada

    Science.gov (United States)

    Garrett, Robert G.

    2009-01-01

    To support the development of protocols for the proposed North American Soil Geochemical Landscapes project, whose objective is to establish baselines for the geochemistry of North American soils, two continental-scale transects across the United States and Canada were sampled in 2004. The sampling employed a spatially stratified random sampling design in order to estimate the variability between 40-km linear sampling units, within them, at sample sites, and due to sample preparation and analytical chemical procedures. The 40-km scale was chosen to be consistent with the density proposed for the continental-scale project. The two transects, north–south (N–S) from northern Manitoba to the USA–Mexico border near El Paso, Texas, and east–west (E–W) from the Virginia shore north of Washington, DC, to north of San Francisco, California, closely following the 38th parallel, have been studied individually. The purpose of this study was to determine if statistically significant systematic spatial variation occurred along the transects. Data for 38 major, minor and trace elements in A- and C-horizon soils where less than 5% of the data were below the detection limit were investigated by Analysis of Variance (ANOVA). A total of 15 elements (K, Na, As, Ba, Be, Ce, La, Mn, Nb, P, Rb, Sb, Th, Tl and W) demonstrated statistically significant (p<0.05) variability at the between-40-km scale for both horizons along both transects. Only Cu failed to demonstrate significant variability at the between-40-km scale for both soil horizons along both transects.

  8. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    International Nuclear Information System (INIS)

    Puspitasari, W.; Human, S.; Wirnas, D.; Trikoesoemaningtyas

    2012-01-01

    High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P) deficiency and aluminum (Al) toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content (author)

  9. The contribution of hydroxylamine content to spatial variability of N2O formation in soil of a Norway spruce forest

    Science.gov (United States)

    Liu, Shurong; Herbst, Michael; Bol, Roland; Gottselig, Nina; Pütz, Thomas; Weymann, Daniel; Wiekenkamp, Inge; Vereecken, Harry; Brüggemann, Nicolas

    2016-04-01

    Hydroxylamine (NH2OH), a reactive intermediate of several microbial nitrogen turnover processes, is a potential precursor of nitrous oxide (N2O) formation in the soil. However, the contribution of soil NH2OH to soil N2O emission rates in natural ecosystems is unclear. Here, we determined the spatial variability of NH2OH content and potential N2O emission rates of organic (Oh) and mineral (Ah) soil layers of a Norway spruce forest, using a recently developed analytical method for the determination of soil NH2OH content, combined with a geostatistical Kriging approach. Potential soil N2O emission rates were determined by laboratory incubations under oxic conditions, followed by gas chromatographic analysis and complemented by ancillary measurements of soil characteristics. Stepwise multiple regressions demonstrated that the potential N2O emission rates, NH2OH and nitrate (NO3-) content were spatially highly correlated, with hotspots for all three parameters observed in the headwater of a small creek flowing through the sampling area. In contrast, soil ammonium (NH4+) was only weakly correlated with potential N2O emission rates, and was excluded from the multiple regression models. While soil NH2OH content explained the potential soil N2O emission rates best for both layers, also NO3- and Mn content turned out to be significant parameters explaining N2O formation in both soil layers. The Kriging approach was improved markedly by the addition of the co-variable information of soil NH2OH and NO3- content. The results indicate that determination of soil NH2OH content could provide crucial information for the prediction of the spatial variability of soil N2O emissions.

  10. Assessing soil hydrological variability at the cm- to dm-scale using air permeameter measurements

    Science.gov (United States)

    Beerten, K.; Vandersmissen, N.; Rogiers, B.; Mallants, D.

    2012-04-01

    Soils and surficial sediments are crucial elements in the hydrological cycle since they are the medium through which infiltrating precipitation percolates to the aquifer. At the same time, soil horizons and shallow stratigraphy may act as hydraulic barriers that can promote runoff or interflow and hamper deep infiltration. For most catchments little is known about the small-scale horizontal and vertical variability of soil hydrological properties. Such information is however required to calculate detailed soil water flow paths and estimate small scale spatial variability in recharge and run-off. We present the results from field air permeameter measurements to assess the small-scale variability of saturated hydraulic conductivity in heterogeneous 2-D soil profiles. To this end, several outcrops in the unsaturated zone (sandy soils with podzolisation) of an interfluve in the Kleine Nete river catchment (Campine area, Northern Belgium) were investigated using a hand-held permeameter. Measurements were done each 10 cm on ~ 2 x 1 m or ~ 2 x 0.5 m grids. The initial results of the measurements (air permeability Kair; millidarcy) are recalculated to saturated hydraulic conductivity (Ks; m/s) using specific transfer functions (Loll et al., 1999; Iversen et al., 2003). Validation of the results is done with independent lab-based constant head Ks measurements. The results show that field based Ks values generally range between 10-3 m/s and 10-7 m/s within one profile, but extremely high values (up to 10-1 m/s) have been measured as well. The lowest values are found in the organic- and silt-rich Bh horizon of podzol soils observed within the profiles (~ 10-6-10-7m/s), while the highest values are observed in overlying dune sands less than 40 cm deep (up to 10-3 m/s with outliers to 10-1 m/s). Comparison of field and laboratory based Ks data reveals there is fair agreement between both methods, apart from several outliers. Scatter plots indicate that almost all points

  11. The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields

    Science.gov (United States)

    Zhao, Y.; Estes, L. D.; Vergopolan, N.

    2017-12-01

    Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water

  12. Variability of atmospheric depositions of artificial radioelements and their transfer into soils

    International Nuclear Information System (INIS)

    Pourcelot, Laurent

    2008-01-01

    In this Habilitation thesis, I present the results and prospects of the main research topics that contribute to bettering our knowledge of the behaviour of artificial radioelements in the geosphere and biosphere. In the first chapter I present a summary of the research carried out for my thesis on the Oklo reactors. In the subsequent chapters I present my research work at the IRSN. The second chapter concerns the atmospheric depositions of radioactive contaminants. I have studied the principal environmental parameters involved in the empirical modelling of the transfer of artificial radioelements from the atmosphere to the soil. Here I essentially use measurements of artificial radioelements ( 137 Cs, plutonium, americium) in soils that reveal the variability of accidental depositions further to the Chernobyl disaster (paragraph 2.1) and chronic radioactive depositions coming from the atmospheric testing of nuclear weapons (paragraph 2.2). In the third chapter I address the problem of transfers of artificial radioelements into the soil. The interest of this lies in the fact that these transfers represent serious risks for man. Taken over the long term (in the months and years that follow the depositing of radioactive elements on the ground and plants), the transfers of radioactive pollutants into the soil are responsible for the contamination of both plants (transfer via the roots) and underground water and surface water (transfer after vertical migration). My research work into the transfers of radioactive pollutants in soils is centred on vertical migrations and root transfers, as both these processes can be studied through environmental samplings and measurements. More precisely, I have studied the migrations of radioactive pollutants and their geochemical analogues in different types of soils (paragraph 3.1) and the variability of the activities of radiostrontium and radiocesium in the compartments of permanent grassland zones (soil, grass, milk and cheese

  13. Mercury in urban soils: A comparison of local spatial variability in six European cities

    International Nuclear Information System (INIS)

    Rodrigues, S.; Pereira, M.E.; Duarte, A.C.; Ajmone-Marsan, F.; Davidson, C.M.; Grcman, H.; Hossack, I.; Hursthouse, A.S.; Ljung, K.; Martini, C.; Otabbong, E.; Reinoso, R.; Ruiz-Cortes, E.; Urquhart, G.J.; Vrscaj, B.

    2006-01-01

    The objective of this study was to quantify and assess for the first time the variability of total mercury in urban soils at a European level, using a systematic sampling strategy and a common methodology. We report results from a comparison between soil samples from Aveiro (Portugal), Glasgow (Scotland), Ljubljana (Slovenia), Sevilla (Spain), Torino (Italy) and Uppsala (Sweden). At least 25 sampling points (in about 4-5 ha) from a park in each city were sampled at two depths (0-10 and 10-20 cm). Total mercury was determined by pyrolysis atomic absorption spectrometry with gold amalgamation. The quality of results was monitored using certified reference materials (BCR 142R and BCR 141R). Measured total mercury contents varied from 0.015 to 6.3 mg kg -1 . The lowest median values were found in Aveiro, for both surface (0-10 cm) and sub-surface (10-20 cm) samples (0.055 and 0.054 mg kg -1 , respectively). The highest median mercury contents in soil samples were found in samples from Glasgow (1.2 and 1.3 mg kg -1 , for surface and sub-surface samples, respectively). High variability of mercury concentrations was observed, both within each park and between cities. This variability reflecting contributions from natural background, previous anthropogenic activities and differences in the ages of cities and land use, local environmental conditions as well as the influence of their location within the urban area. Short-range variability of mercury concentrations was found to be up to an order of magnitude over the distance of only a few 10 m

  14. Landscape structure control on soil CO2 efflux variability in complex terrain: Scaling from point observations to watershed scale fluxes

    Science.gov (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn

    2009-01-01

    We investigated the spatial and temporal variability of soil CO2 efflux across 62 sites of a 393-ha complex watershed of the northern Rocky Mountains. Growing season (83 day) cumulative soil CO2 efflux varied from ~300 to ~2000 g CO2 m-2, depending upon landscape position, with a median of 879.8 g CO2 m-2. Our findings revealed that highest soil CO2 efflux rates were...

  15. Spatial variability of soil magnetic susceptibility in an agricultural field located in Eastern Ukraine

    Science.gov (United States)

    Menshov, Oleksandr; Pereira, Paulo; Kruglov, Oleksandr

    2015-04-01

    Magnetic susceptibility (MS) have been used to characterize soil properties. It gives an indirect information about heavy metals content and degree of human impacts on soil contamination derived from atmospheric pollution (Girault et al., 2011). This method is inexpensive in relation to chemical analysis and very useful to track soil pollution, since several toxic components deposited on soil surface are rich in particulates produced by oxidation processes (Boyko et al., 2004; Morton-Bernea et al., 2009). Thus, identify the spatial distribution of MS is of major importance, since can give an indirect information of high metals content (Dankoub et al., 2012). This allows also to distinguish the pedogenic and technogenic origin magnetic signal. For example Ukraine chernozems contain fine-grained oxidized magnetite and maghemite of pedogenic origin formed by weathering of the parent material (Jeleńska et al., 2004). However, to a correct understanding of variables distribution, the identification of the most accurate interpolation method is fundamental for a better interpretation of map information (Pereira et al., 2013). The objective of this work is to study the spatial variability of soil MS in an agricultural fields located in the Tcherkascy Tishki area (50.11°N, 36.43 °E, 162 m a.s.l), Ukraine. Soil MS was measured in 77 sampling points in a north facing slope. To estimate the best interpolation method, several interpolation methods were tested, as inverse distance to a weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial (LP) with the power of 1 and 2, Global Polynomial (GP), radial basis functions - spline with tension (SPT), completely regularized spline (CRS), multiquatratic (MTQ), inverse multiquatratic (IMTQ), and thin plate spline (TPS) - and some geostatistical methods as, ordinary kriging (OK), Simple Kriging (SK) and Universal Kriging (UK), used in previous works (Pereira et al., 2014). On average, the soil MS of the studied plot had 686

  16. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    Science.gov (United States)

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal

  17. Soil salinity and acidity : spatial variabil[it]y and effects on rice production in West Africa's mangrove zone

    NARCIS (Netherlands)

    Sylla, M.

    1994-01-01

    In the mangrove environment of West Africa, high spatial and temporal variability of soil constraints (salinity and acidity) to rice production is a problem for the transfer and adoption of new agronomic techniques, for land use planning, and for soil and water management. Recently, several

  18. Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations

    Directory of Open Access Journals (Sweden)

    Jesús Álvarez-Mozos

    2009-01-01

    Full Text Available Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values.

  19. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of

  20. Assessing the Biophysical Impact and Financial Viability of Soil Management Technologies Under Variable Climate in Cabo Verde Drylands

    NARCIS (Netherlands)

    Baptista, Isaurinda; Irvine, Brian; Fleskens, Luuk; Geissen, Violette; Ritsema, Coen

    2016-01-01

    Field trials have demonstrated the potential of soil conservation technologies but have also shown significant spatial-temporal yield variability. This study considers the Pan-European Soil Erosion Risk Assessment - Desertification Mitigation Cost-Effectiveness modelling approach to capture a

  1. The effect of Cs-137 short-range spatial variability on soil after the Chernobyl disaster

    Science.gov (United States)

    Martynenko, Vladimir; Vakulovsky, Sergey; Linnik, Vitaly

    2014-05-01

    After the Chernobyl accident of 1986, large areas of Russia were contaminated by 137Cs. Post-depositional redistribution of 137Cs fallout across the land surface resulting from mechanical, physical, chemical, and biological processes operating in the soil system and the grain size selectivity associated with soil erosion and sediment transport processes. Therefore of uppermost importance are data on evaluating 137Cs variability at short distances, obtained at the early period after the accident. Measurements of 137Cs deposit at the territory of Russia exposed to radioactive contamination were mainly conducted with the help of air-gamma survey, and were verified by soil sampling on test plots with size 10x10 m with control soil sampling using "envelope" method of fivefold soil sampling (1 sampling at the centre and 4 along the edges of the plot under study). Presented here are evaluation data of 137Cs contamination, obtained in the Bryansk, Yaroslav and Rostov regions in 1991. Test plots were selected at the distance of 50-100 m away from a road on matted areas with undisturbed soil structure. Test routes of sampling were made perpendicularly to directions crossing basic traces of radioactive contamination. Sampling measurements were carried out at Canberra and Ortec gamma spectrometers. Each of the 5 samples of the "envelope" was measured separately, soil mixing was not applied. 137Cs value for the Bryansk Region varied from 2,6 kBq/m2 to 2294 kBq/m2, at the territories of the Yaroslav and Rostov regions 137Cs value varied from 0,44 kBq/m2 to 5,1 kBq/m2 and 0,56 kBq/m2 to 22,2 kBq/m2, respectively. Statistical analysis of 137Cs deposit at different plots is a solid argumentation in favour of nonuniform distribution in various landscapes and at a different distance from the Chernobyl NPP. Such nonuniformity of 137Cs soil contamination in the limits of 10 m of the plot is most likely to be related to initial aerosol contamination nonuniformity at the moment of

  2. A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil

    Science.gov (United States)

    Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa

    2017-12-01

    In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.

  3. Soil fertility dynamics in a semiarid basin: impact of scale level in weighing the effect of the landscape variables

    International Nuclear Information System (INIS)

    Ruiz-Navarro, A.; Barbera, G. G.; Albaladejo, J.

    2009-01-01

    Arid and semi-arid Mediterranean soils are particularly sensitive to degradation processes, and soil fertility could play important role in restoration/conservation practices. Our objective was to study the relationships between soil and landscape at different scales in order to understand the main drivers of soil fertility on a semiarid catchment. A stratified sampling plan was carried out to take soil and landscape representative variability. Multivariate statistic techniques were used to elucidate the relationship between both. The results showed that soil fertility are positively related with density of vegetation and topographical conditions favourable to soil moisture at small scale, while negatively with topographical factors that contributed erosion dynamic on ero debility lithologies at medium and large scale. (Author) 8 refs.

  4. Simulating maize yield and bomass with spatial variability of soil field capacity

    Science.gov (United States)

    Ma, Liwang; Ahuja, Lajpat; Trout, Thomas; Nolan, Bernard T.; Malone, Robert W.

    2015-01-01

    Spatial variability in field soil properties is a challenge for system modelers who use single representative values, such as means, for model inputs, rather than their distributions. In this study, the root zone water quality model (RZWQM2) was first calibrated for 4 yr of maize (Zea mays L.) data at six irrigation levels in northern Colorado and then used to study spatial variability of soil field capacity (FC) estimated in 96 plots on maize yield and biomass. The best results were obtained when the crop parameters were fitted along with FCs, with a root mean squared error (RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. When running the model using each of the 96 sets of field-estimated FC values, instead of calibrating FCs, the average simulated yield and biomass from the 96 runs were close to measured values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 for biomass. When an average of the 96 FC values for each soil layer was used, simulated yield and biomass were also acceptable with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for biomass. Therefore, when there are large numbers of FC measurements, an average value might be sufficient for model inputs. However, when the ranges of FC measurements were known for each soil layer, a sampled distribution of FCs using the Latin hypercube sampling (LHS) might be used for model inputs.

  5. Collection efficiency of charges in ionization chambers in presence of constant or variable radiation intensity; Efficacite de la collection des charges dans les chambres d'ionisation en presence d'une intensite de rayonnement ionisant constante ou variable

    Energy Technology Data Exchange (ETDEWEB)

    Decuyper, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    The theoretical and experimental study of the collection of carriers built up by ionization in standard chambers, is made by varying the value of different acting parameters. In the presence of constant ionization intensity and under a D.C. and A.C. voltage, the effect of geometry, recombination, diffusion and attachment is analyzed. The compensation of thermal neutron D.C. chambers is equally considered. Under a time dependent ionization intensity and D.C. voltage, is then studied the effect of recombination on current response, and on the collection efficiency of all formed charges. (author) [French] L'etude theorique et experimentale de la collection des porteurs crees par ionisation dans les chambres couramment utilisees est entreprise en fonction de la valeur des differents parametres agissants. En presence d'une ionisation constante et sous une tension d'alimentation d'abord continue puis alternative, on analyse l'influence de la geometrie, de la recombinaison, de la diffusion et de l'attachement. La compensation des chambres a courant continu de mesure neutronique est egalement examinee. Ensuite, sous une intensite d'ionisation variable dans le temps et en alimentation continue, on etudie l'effet de la recombinaison sur la reponse en courant et sur l'efficacite de la collection de la charge totale liberee. (auteur)

  6. Analysis of national pay-as-you-drive insurance systems and other variable driving charges

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.

    1995-07-01

    Under Pay as You Drive insurance (PAYD), drivers would pay part of their automobile insurance premium as a per-gallon surcharge every time they filled their gas tank. By transfering a portion of the cost of owning a vehicle from a fixed cost to a variable cost, PAYD would discourage driving. PAYD has been proposed recently in California as a means of reforming how auto insurance is provided. PAYD proponents claim that, by forcing drivers to purchase at least part of their insurance every time they refuel their car, PAYD would reduce or eliminate the need for uninsured motorist coverage. Some versions of PAYD proposed in California have been combined with a no-fault insurance system, with the intention of further reducing premiums for the average driver. Other states have proposed PAYD systems that would base insurance premiums on annual miles driven. In this report we discuss some of the qualitative issues surrounding adoption of PAYD and other policies that would convert other fixed costs of driving (vehicle registration, safety/emission control system inspection, and driver license renewal) to variable costs. We examine the effects of these policies on two sets of objectives: objectives related to auto insurance reform, and those related to reducing fuel consumption, CO{sub 2} emissions, and vehicle miles traveled. We pay particular attention to the first objective, insurance reform, since this has generated the most interest in PAYD to date, at least at the state level.

  7. 17 CFR 274.303 - Form N-27I-2, notice of withdrawal right and statement of charges for variable life insurance...

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form N-27I-2, notice of withdrawal right and statement of charges for variable life insurance contractholders required pursuant to... variable life insurance contractholders required pursuant to Rule 6e-2 (§ 270.6e-2 of this chapter). [41 FR...

  8. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    Science.gov (United States)

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  9. Reconfigurable Charge Pump Circuit with Variable Pumping Frequency Scheme for Harvesting Solar Energy under Various Sunlight Intensities

    Directory of Open Access Journals (Sweden)

    Jeong Heon Kim

    2014-01-01

    Full Text Available We propose variable pumping frequency (VPF scheme which is merged with the previous reconfigurable charge pump (RCP circuit that can change its architecture according to a given sunlight condition. Here, merging the VPF scheme with the architecture reconfiguration can improve percentage output currents better by 21.4% and 22.4% than RCP circuit with the fixed pumping frequencies of 7 MHz and 15 MHz, respectively. Comparing the VPF scheme with real maximum power points (MPP, the VPF can deliver 91.9% of the maximum amount of output current to the load on average. In terms of the power and area overheads, the VPF scheme proposed in this paper consumes the power by 0.4% of the total power consumption and occupies the layout area by 1.61% of the total layout area.

  10. Probing Quantum Chromodynamics with the ATLAS Detector: Charged-Particle Event Shape Variables and the Dijet Cross-Section

    CERN Document Server

    Hülsing, Tobias

    Quantum chromodynamics, QCD, the theory of the strong interaction is split into two regimes. Scattering processes of the proton constituents, the partons, with a high momentum transfer $Q^2$ can be calculated and predicted with perturbative calculations. At low momentum transfers between the scattering particles perturbation theory is not applicable anymore, and phenomenological methods are used to describe the physics in this regime. The ATLAS experiment at the Large Hadron Collider, LHC, provides the possibility to analyze QCD processes at both ends of the momentum scale. Two measurements are presented in this thesis, emphasizing one of the two regimes each: The measurement of charged-particle event shape variables in inelastic proton–proton collisions at a center-of-mass energy of $\\sqrt{s}$ = 7 TeV analyses the transverse momentum flow and structure of hadronic events. Due to the, on average, low momentum transfer, predictions of these events are mainly driven by non-perturbative models. Three event sha...

  11. SPATIAL MODELLING FOR DESCRIBING SPATIAL VARIABILITY OF SOIL PHYSICAL PROPERTIES IN EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    Igor Bogunović

    2016-06-01

    Full Text Available The objectives of this study were to characterize the field-scale spatial variability and test several interpolation methods to identify the best spatial predictor of penetration resistance (PR, bulk density (BD and gravimetric water content (GWC in the silty loam soil in Eastern Croatia. The measurements were made on a 25 x 25-m grid which created 40 individual grid cells. Soil properties were measured at the center of the grid cell deep 0-10 cm and 10-20 cm. Results demonstrated that PR and GWC displayed strong spatial dependence at 0-10 cm BD, while there was moderate and weak spatial dependence of PR, BD and GWC at depth of 10-20 cm. Semi-variogram analysis suggests that future sampling intervals for investigated parameters can be increased to 35 m in order to reduce research costs. Additionally, interpolation models recorded similar root mean square values with high predictive accuracy. Results suggest that investigated properties do not have uniform interpolation method implying the need for spatial modelling in the evaluation of these soil properties in Eastern Croatia.

  12. Using Environmental Variables for Studying of the Quality of Sampling in Soil Mapping

    OpenAIRE

    A. Jafari; Norair Toomanian; R. Taghizadeh Mehrjerdi

    2016-01-01

    Introduction: Methods of soil survey are generally empirical and based on the mental development of the surveyor, correlating soil with underlying geology, landforms, vegetation and air-photo interpretation. Since there are no statistical criteria for traditional soil sampling; this may lead to bias in the areas being sampled. In digital soil mapping, soil samples may be used to elaborate quantitative relationships or models between soil attributes and soil covariates. Because the relationshi...

  13. Cs adsorption on the clay-sized fraction of various soils: effect of organic matter destruction and charge compensating cation

    International Nuclear Information System (INIS)

    Staunton, S.; Levacic, P.

    1999-01-01

    The association of organic matter with clay minerals may decrease their affinity for Cs and thus enhance its bioavailability. We have investigated this hypothesis by comparing Cs adsorption on several soils, both topsoils and the corresponding subsoils, before and after organic matter destruction with H 2 O 2 . The clay-sized fractions were homoionic in either K, Na or Ca, to avoid artefacts due to variable composition of the exchange complex. All experiments were carried out in dilute suspension under controlled conditions. The affinity of the clay-sized fractions for Cs and the value of the Freundlich b parameter are typical of illites. This supports the hypothesis that the adsorption properties of soils are dominated by small amounts of illite. However, if this is the case, the affinity of soil illites is higher than that of reference illites. The destruction of organic matter has a variable effect. In some cases, a marked enhancement is observed, in others there is no significant effect, or a small decrease. There is no clear pattern relating the effect of organic matter destruction and either dominant clay mineralogy or organic matter content. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Variability of Effective Micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens

    NARCIS (Netherlands)

    Shin, Keumchul; Diepen, van G.; Blok, W.; Bruggen, van A.H.C.

    2017-01-01

    The microbial inoculant ‘Effective Microorganisms’ (EM) has been used to promote soil fertility and plant growth in agriculture. We tested effects of commercial EM products on suppression of soil-borne diseases, microbial activity and bacterial composition in organically managed sandy soils. EM was

  15. Spatial Variability of Tree Transpiration Along a Soil Drainage Gradient of Boreal Black Spruce Forest

    Science.gov (United States)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2008-12-01

    Boreal forests are an integral component in obtaining a predictive understanding of global climate change because they comprise 33% of the world's forests and store large amounts of carbon. Much of this carbon storage is a result of peat formation in cold, poorly-drained soils. Transpiration plays a crucial role in the interaction between carbon and water cycles due to stomatal control of these fluxes. The primary focus of this study is to quantify the spatial variability and drivers of tree transpiration in boreal forest stands across a well- to poorly-drained soil drainage gradient. Species composition of this region of boreal forest changes during succession in well-drained soils from being primarily dominated by Picea mariana with co-dominant Pinus banksiana and Populus tremuloides in younger stands to being dominated solely by Picea marianain older stands. Poorly-drained soils are dominated by Picea mariana and change little with succession. Previous work in well-drained stands showed that 1) tree transpiration changed substantially with stand age due to sapwood-to-leaf area ratio dynamics and 2) minimum leaf water potential (Ψ) was kept constant to prevent excessive cavitation. We hypothesized that 1) minimum Ψ would be constant, 2) transpiration would be proportional to the sapwood-to-leaf area ratio across a soil drainage gradient, and 3) spatial relationships between trees would vary depending on stomatal responses to vapor pressure deficit (D). We tested these hypotheses by measuring Ψ of 33 trees and sap flux from 204 trees utilizing cyclic sampling constructed to study spatial relationships. Measurements were conducted at a 42-year-old stand representing maximum tree diversity during succession. There were no significant differences between growing season averaged Ψ in well- (-0.35 and -1.37 for pre-dawn and mid-day respectively) and poorly- drained soil conditions (-0.38 and -1.41 for pre-dawn and mid-day respectively) for Picea mariana. Water use

  16. Measurement of charged-particle event shape variables in $\\sqrt{s}$ = 7 TeV proton-proton interactions with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guindon, Stefan; Gul, Umar; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huelsing, Tobias Alexander; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-08-06

    The measurement of several event shape variables is presented in minimum bias pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor and transverse sphericity, each defined using the momenta perpendicular to the beam direction of the final state charged particles. Events with at least six charged particles are selected. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged particle transverse momentum, charged particle multiplicity and summed transverse momentum is presented. Predictions from several Monte Carlo models have been compared with data and they show significant deviations from data.

  17. Spatial variability of soil carbon, pH, available phosphorous and potassium in organic farm located in Mediterranean Croatia

    Science.gov (United States)

    Bogunović, Igor; Pereira, Paulo; Šeput, Miranda

    2016-04-01

    Soil organic carbon (SOC), pH, available phosphorus (P), and potassium (K) are some of the most important factors to soil fertility. These soil parameters are highly variable in space and time, with implications to crop production. The aim of this work is study the spatial variability of SOC, pH, P and K in an organic farm located in river Rasa valley (Croatia). A regular grid (100 x 100 m) was designed and 182 samples were collected on Silty Clay Loam soil. P, K and SOC showed moderate heterogeneity with coefficient of variation (CV) of 21.6%, 32.8% and 51.9%, respectively. Soil pH record low spatial variability with CV of 1.5%. Soil pH, P and SOC did not follow normal distribution. Only after a Box-Cox transformation, data respected the normality requirements. Directional exponential models were the best fitted and used to describe spatial autocorrelation. Soil pH, P and SOC showed strong spatial dependence with nugget to sill ratio with 13.78%, 0.00% and 20.29%, respectively. Only K recorded moderate spatial dependence. Semivariogram ranges indicate that future sampling interval could be 150 - 200 m in order to reduce sampling costs. Fourteen different interpolation models for mapping soil properties were tested. The method with lowest Root Mean Square Error was the most appropriated to map the variable. The results showed that radial basis function models (Spline with Tension and Completely Regularized Spline) for P and K were the best predictors, while Thin Plate Spline and inverse distance weighting models were the least accurate. The best interpolator for pH and SOC was the local polynomial with the power of 1, while the least accurate were Thin Plate Spline. According to soil nutrient maps investigated area record very rich supply with K while P supply was insufficient on largest part of area. Soil pH maps showed mostly neutral reaction while individual parts of alkaline soil indicate the possibility of penetration of seawater and salt accumulation in the

  18. Spatial and temporal variability of grass cover in two olive grove catchments on contrasting soil types

    Science.gov (United States)

    Aguilera, Laura; Taguas, Encarnación V.; Gimeno, Enrique; Gómez, José A.

    2013-04-01

    Mediterranean climate conditions -characterized by the concentration of the precipitation in the seasons of autumn and spring, the low temperatures in winter and extremely warm and dry summers- determine that ground cover by adventitious (or cover crop) vegetation shows significant seasonal and annual variability. In addition, its spatial variability associates also, partially, to water availability among the landscape. This is especially relevant in olive orchards, an agricultural system under high erosion risk in the region where the establishment of herbaceous cover has proved to improve soil protection reducing erosion risk, as well as the improvement of soil properties (Gómez et al., 2009). All these benefits are based on small scale studies where full ground cover by the cover crop is relatively easy to obtain. However, few information is available about the actual ground cover achieved at farm scale, although preliminary observations suggests that this might be extremely variable (Gómez and Giráldez, 2009). This study presents the preliminary results evaluating the spatial and temporal evolution of ground cover by adventitious vegetation (the preferred option by farmers to achieve a cover crop) in two commercial olive farms during 2 hydrological years (2011-2012). The study was conducted in two farms located in the province of Cordoba, Southern Spain. Both were olive orchards grown under deficit irrigation systems and present a gauge station where rainfall, runoff and sediment loads have been measured from the year 2005. The soil management in "La Conchuela" farm was based in the use of herbicide in the line of olive trees to keep the bare soil all year round, and the application of selective herbicide in the lane between the olive trees to promote the grown of graminaceae grasses . In addition, the grass is mechanically killed in June. In the another farm, "Arroyo Blanco", the grass spontaneous cover is allowed until mid-spring in which is also

  19. The effects of spatial variability of the aggressiveness of soil on system reliability of corroding underground pipelines

    International Nuclear Information System (INIS)

    Sahraoui, Yacine; Chateauneuf, Alaa

    2016-01-01

    In this paper, a probabilistic methodology is presented for assessing the time-variant reliability of corroded underground pipelines subjected to space-variant soil aggressiveness. The Karhunen-Loève expansion is used to model the spatial variability of soil as a correlated stochastic field. The pipeline is considered as a series system for which the component and system failure probabilities are computed by Monte Carlo simulations. The probabilistic model provides a realistic time and space modelling of stochastic variations, leading to appropriate estimation of the lifetime distribution. The numerical analyses allow us to investigate the impact of various parameters on the reliability of underground pipelines, such as the soil aggressiveness, the pipe design variables, the soil correlation length and the pipeline length. The results show that neglecting the effect of spatial variability leads to pessimistic estimation of the residual lifetime and can lead to condemn prematurely the structure. - Highlights: • The role of soil heterogeneity in pipeline reliability assessment has been shown. • The impact of pipe length and soil correlation length has been examined. • The effect of the uncertainties related to design variables has been observed. • Pipe thickness design for homogeneous reliability has been proposed.

  20. Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria

    Science.gov (United States)

    Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.

    2018-01-01

    Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.

  1. Variability of standard artificial soils: Physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction

    International Nuclear Information System (INIS)

    Bielská, Lucie; Hovorková, Ivana; Komprdová, Klára; Hofman, Jakub

    2012-01-01

    The study is focused on artificial soil which is supposed to be a standardized “soil like” medium. We compared physico-chemical properties and extractability of Phenanthrene from 25 artificial soils prepared according to OECD standardized procedures at different laboratories. A substantial range of soil properties was found, also for parameters which should be standardized because they have an important influence on the bioavailability of pollutants (e.g. total organic carbon ranged from 1.4 to 6.1%). The extractability of Phe was measured by supercritical fluid extraction (SFE) at harsh and mild conditions. Highly variable Phe extractability from different soils (3–89%) was observed. The extractability was strongly related (R 2 = 0.87) to total organic carbon content, 0.1–2 mm particle size, and humic/fulvic acid ratio in the following multiple regression model: SFE (%) = 1.35 * sand (%) − 0.77 * TOC (%)2 + 0.27 * HA/FA. - Highlights: ► We compared properties and extractability of Phe from 25 different artificial soils. ► Substantial range of soil properties was found, also for important parameters. ► Phe extractability was measured by supercritical fluid extraction (SFE) at 2 modes. ► Phe extractability was highly variable from different soils (3–89%). ► Extractability was strongly related to TOC, 0.1–2 mm particles, and HA/FA. - Significant variability in physico-chemical properties exists between artificial soils prepared at different laboratories and affects behavior of contaminants in these soils.

  2. Spatial Variability of Soil-Water Storage in the Southern Sierra Critical Zone Observatory: Measurement and Prediction

    Science.gov (United States)

    Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.

    2017-12-01

    Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.

  3. Regional Variability of Cd, Hg, Pb and C Concentrations in Different Horizons of Swedish Forest Soils

    International Nuclear Information System (INIS)

    Alriksson, A.

    2001-01-01

    Contents of cadmium (Cd), mercury (Hg), lead (Pb) and carbon(C) in the O, B and C horizons of podzolized forest soils in Sweden were surveyed. Concentrations and storage of Cd, Hg and Pb in the O and B horizons were high in southern Sweden and gradually decreased towards the north, though with considerable local variability. This pattern reflects the influence of anthropogenic emissions of these metals, as well as the effects of soil-forming processes. Parent till material, as represented by the C horizon concentration of the respective metal, accounted for little of the variation in metal concentration in the O horizon. For Cd and Pb, the correlations were not significant or slightly negative (R 2 = 0.12 and 0.09 respectively) depending on region, while for Hg the correlation was not significant or slightly positive (R 2 = 0.03 and 0.08). Furthermore, parent till material accounted for more of the variation in metal concentrations in the B horizons in the northern part of Sweden than in the middle and southernmost parts, where the concentration of total carbon had more influence. The correlation between the metal concentrations in the B and C horizon was strongest for Pb (R 2 = 0.63 and 0.36 in the two northernmost regions), lower for Cd (R 2 = 0.19 and 0.16) and not significant for Hg. For all soil horizons, total C concentration accounted for much of the variation in Hg concentration in particular (O-horizon R 2 = 0.15-0.69, B horizon R 2 = 0.36-0.50, C horizon R 2 = 0.23-0.50 and ns in one region). Ratios of metal concentrations between the B and C horizons were highest for Hg(maximum value of 30), indicating a relatively larger addition or retention of Hg compared to Cd and Pb (maximum value of 10)in the B horizon. This study indicate that factors other than parent material account for the large scale variation in O horizon concentrations of metals but patterns correspond well with those of atmospheric deposition of heavy metals and acidifying substances

  4. Variability of soil properties within large termite mounds in South Katanga, DRC - origins and applications.

    Science.gov (United States)

    Erens, Hans; Bazirake Mujinya, Basile; Boeckx, Pascal; Baert, Geert; Mees, Florias; Van Ranst, Eric

    2014-05-01

    The miombo woodlands of South Katanga (D.R. Congo) are characterized by a high spatial density of large conic termite mounds built by Macrotermes falciger (3 to 5 ha-1). With an average height of 5.05 m and diameter of 14.88 m, these are some of the largest biogenic structures in the world. The mound material is known to differ considerably from the surrounding Ferralsols. Specifically, mound material exhibits a finer texture, higher CEC and exchangeable basic cation content, lower organic matter content, and an accumulation of phosphorous, nitrate and secondary carbonates. However, as demonstrated by the present study, these soil properties are far from uniform within the volume of the mound. The termites' nesting and foraging activity, combined with pedogenic processes over extended periods of time, generates a wide range of physical, chemical, and biological conditions in different parts of the mound. Analysis of samples taken along a cross-section of a large active mound allowed generating contour plots, thus visualizing the variability of soil properties within the mound. The central columns of three other mounds were sampled to confirm apparent trends. The contour plots show that the mounds comprise four functional zones: (i) the active nest, found at the top; (ii) an accumulation zone , in more central parts of the mound; (iii) a dense inactive zone, surrounding the accumulation zone and consisting of accumulated erosion products from former active nests; and (iv) the outer mantle, characterized by intense varied biological activity and by a well-developed soil structure. Intermittent leaching plays a key role in explaining these patterns. Using radiocarbon dating, we found that some of these mounds are at least 2000 years old. Their current size and shape is likely the result of successive stages of erosion and rebuilding, in the course of alternating periods of mound abandonment and recolonization. Over time, termite foraging combined with limited leaching

  5. Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production

    Directory of Open Access Journals (Sweden)

    Nahuel R. Peralta

    2015-12-01

    Full Text Available The spatial variability in soils used for livestock production (i.e. Natraquoll and Natraqualf at farm and paddock scale is usually very high. Understanding this spatial variation within a field is the first step for site-specific crop management. For this reason, we evaluated whether apparent electrical conductivity (ECa, a widely used proximal soil sensing technology, is a potential estimator of the edaphic variability in these types of soils. ECa and elevation data were collected in a paddock of 16 ha. Elevation was negatively associated with ECa. Geo-referenced soil samples were collected and analyzed for soil organic matter (OM content, pH, the saturation extract electrical conductivity (ECext, available phosphorous (P, and anaerobically incubated Nitrogen (Nan. Relationships between soil properties and ECa were analyzed using regression analysis, principal components analysis (PCA, and stepwise regression. Principal components (PC and the PC-stepwise were used to determine which soil properties have an important influence on ECa. In this experiment elevation was negatively associated with ECa. The data showed that pH, OM, and ECext exhibited a high correlation with ECa (R2=0.76; 0.70 and 0.65, respectively. Whereas P and Nan showed a lower correlation (R2=0.54 and 0.11 respectively. The model resulting from the PC-stepwise regression analysis explained slightly more than 69% of the total variation of the measured ECa, only retaining PC1. Therefore, ECext, pH and OM were considered key latent variables because they substantially influence the relationship between the PC1 and the ECa (loading factors>0.4. Results showed that ECa is associated with the spatial distribution of some important soil properties. Thus, ECa can be used as a support tool to implement site-specific management in soils for livestock use.

  6. Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, N.R.; Cicore, P.L.; Marino, M.A.; Marques da Silva, J. R.; Costa, J.L.

    2015-07-01

    The spatial variability in soils used for livestock production (i.e. Natraquoll and Natraqualf) at farm and paddock scale is usually very high. Understanding this spatial variation within a field is the first step for site-specific crop management. For this reason, we evaluated whether apparent electrical conductivity (ECa), a widely used proximal soil sensing technology, is a potential estimator of the edaphic variability in these types of soils. ECa and elevation data were collected in a paddock of 16 ha. Elevation was negatively associated with ECa. Geo-referenced soil samples were collected and analyzed for soil organic matter (OM) content, pH, the saturation extract electrical conductivity (ECext), available phosphorous (P), and anaerobically incubated Nitrogen (Nan). Relationships between soil properties and ECa were analyzed using regression analysis, principal components analysis (PCA), and stepwise regression. Principal components (PC) and the PC-stepwise were used to determine which soil properties have an important influence on ECa. In this experiment elevation was negatively associated with ECa. The data showed that pH, OM, and ECext exhibited a high correlation with ECa (R2=0.76; 0.70 and 0.65, respectively). Whereas P and Nan showed a lower correlation (R2=0.54 and 0.11 respectively). The model resulting from the PC-stepwise regression analysis explained slightly more than 69% of the total variation of the measured ECa, only retaining PC1. Therefore, ECext, pH and OM were considered key latent variables because they substantially influence the relationship between the PC1 and the ECa (loading factors>0.4). Results showed that ECa is associated with the spatial distribution of some important soil properties. Thus, ECa can be used as a support tool to implement site-specific management in soils for livestock use. (Author)

  7. Extracting Archaeological Feautres from GPR Surveys Conducted with Variable Soil Moisture Conditions

    Science.gov (United States)

    Morris, I. M.; Glisic, B.; Gonciar, A.

    2017-12-01

    As a common tool for subsurface archaeological prospection, ground penetrating radar (GPR) is a useful method for increasing the efficiency of archaeological excavations. Archaeological sites are often temporally and financially constrained, therefore having limited ability to reschedule surveys compromised by weather. Furthermore, electromagnetic GPR surveys are especially sensitive to variations in water content, soil type, and site-specific interference. In this work, GPR scans of a partially excavated Roman villa consisting of different construction materials and phases (limestone, andesite, brick) in central Romania are compared. Surveys were conducted with a 500 MHz GPR antenna in both dry (pre-rain event) and wet (post-rain event) conditions. Especially in time or depth slices, wet surveys present additional archaeological features that are not present or clear in the standard dry conditions, while simultaneously masking the clutter present in those scans. When dry, the limestone has a similar dielectric constant to the soil and does not provide enough contrast in electromagnetic properties for strong reflections despite the significant difference in their physical properties. Following precipitation, however, the electromagnetic properties of these two materials is dominated by their respective water content and the contrast is enhanced. For this reason, the wet surveys are particularly necessary for revealing reflections from the limestone features often invisible in dry surveys. GPR surveys conducted in variable environmental conditions provide unique archaeological information, with potential near-surface geophysical applications in nondestructive material characterization and identification.

  8. Spatial variability of soil CO2 emission in a sugarcane area characterized by secondary information

    Directory of Open Access Journals (Sweden)

    Daniel De Bortoli Teixeira

    2013-06-01

    Full Text Available Soil CO2 emission (FCO2 is governed by the inherent properties of the soil, such as bulk density (BD. Mapping of FCO2 allows the evaluation and identification of areas with different accumulation potential of carbon. However, FCO2 mapping over larger areas is not feasible due to the period required for evaluation. This study aimed to assess the quality of FCO2 spatial estimates using values of BD as secondary information. FCO2 and BD were evaluated on a regular sampling grid of 60 m × 60 m comprising 141 points, which was established on a sugarcane area. Four scenarios were defined according to the proportion of the number of sampling points of FCO2 to those of BD. For these scenarios, 67 (F67, 87 (F87, 107 (F107 and 127 (F127 FCO2 sampling points were used in addition to 127 BD sampling points used as supplementary information. The use of additional information from the BD provided an increase in the accuracy of the estimates only in the F107, F67 and F87 scenarios, respectively. The F87 scenario, with the approximate ratio between the FCO2 and BD of 1.00:1.50, presented the best relative improvement in the quality of estimates, thereby indicating that the BD should be sampled at a density 1.5 time greater than that applied for the FCO2. This procedure avoided problems related to the high temporal variability associated with FCO2, which enabled the mapping of this variable to be elaborated in large areas.

  9. Método da adsorção de césio para determinação da carga estrutural em solos altamente intemperizados Method of cesium adsorption for determination of structural charge in highly weathered soils

    Directory of Open Access Journals (Sweden)

    Oscarlina Lúcia dos Santos Weber

    2005-01-01

    Full Text Available O conhecimento das cargas elétricas, permanente e variável, é fundamental para a compreensão e previsão do destino de elementos químicos no solo. Foram investigadas propriedades de carga de superfície de dois Latossolos Vermelhos acriférricos, dois Latossolos Amarelos ácricos e um Nitossolo Vermelho eutroférrico, usado como referência, por apresentar carga predominantemente permanente. Essas amostras foram investigadas pelo método da adsorção do íon césio (Cs+, que mede a carga estrutural permanente (sigmaO. O método baseia-se na preferência de sítios siloxanos de superfície para Cs+ sobre Li+ e de grupos de superfície ionizáveis de menor seletividade ao íon Cs+. Nos Latossolos acriférricos, a carga permanente diminuiu à medida que o índice de intemperização (Ki diminuiu. O método da adsorção de césio quantificou significativa carga permanente, mesmo em solos altamente intemperizados.The knowledge of permanent and variable charge is of high importance to a better understanding of the fate of chemical elements in soil. Four Brazilian Oxisols presenting acric character were investigated by an ion adsorption method that measures the structural charge density (sigmaO and were compared to an Alfisol (NV, which had predominantly permanent charge. The method is based on the preference of siloxane surface sites for cesium over lithium and on the lower selectivity of ionizable surface group for the ion cesium. In the Acrudoxes, the permanent charge decreased as the weathering index (Ki decreased. The cesium adsorption method quantified significant amounts of structural charge, even in highly weathered soils.

  10. Spatio-temporal variability of soil respiration in a spruce-dominated headwater catchment in western Germany

    Science.gov (United States)

    Bossa, A. Y.; Diekkrüger, B.

    2014-08-01

    CO2 production and transport from forest floors is an important component of the carbon cycle and is closely related to the global atmosphere CO2 concentration. If we are to understand the feedback between soil processes and atmospheric CO2, we need to know more about the spatio-temporal variability of this soil respiration under different environmental conditions. In this study, long-term measurements were conducted in a spruce-dominated forest ecosystem in western Germany. Multivariate analysis-based similarities between different measurement sites led to the detection of site clusters along two CO2 emission axes: (1) mainly controlled by soil temperature and moisture condition, and (2) mainly controlled by root biomass and the forest floor litter. The combined effects of soil temperature and soil moisture were used as a time-dependent rating factor affecting the optimal CO2 production and transport at cluster level. High/moderate/weak time-dependent rating factors were associated with the different clusters. The process-based, most distant clusters were identified using specified pattern characteristics: the reaction rates in the soil layers, the activation energy for bio-chemical reactions, the soil moisture dependency parameter, the root biomass factor, the litter layer factor and the organic matter factor. A HYDRUS-1D model system was inversely used to compute soil hydraulic parameters from soil moisture measurements. Heat transport parameters were calibrated based on observed soil temperatures. The results were used to adjust CO2 productions by soil microorganisms and plant roots under optimal conditions for each cluster. Although the uncertainty associated with the HYDRUS-1D simulations is higher, the results were consistent with both the multivariate clustering and the time-dependent rating of site production. Finally, four clusters with significantly different environmental conditions (i.e. permanent high soil moisture condition, accumulated litter amount

  11. Measurements of the fallout flux of beryllium-7 and its variability in the soil

    Directory of Open Access Journals (Sweden)

    Avacir Casanova Andrello

    2010-02-01

    Full Text Available The aim of this study was to examine the beryllium-7 behavior in the soil. Natural variability of beryllium-7 concentration was calculated to be about 23% (relative standard deviation, and the depth distribution could be approximated by an exponential decay in bare soil, with an average penetration depth in the soil about 1 cm. The nuclide was not found below 2 cm depth, which confirmed its utilization to infer the erosion processes as a tracer of soil surface. The maximum beryllium-7 concentration in the analyzed period was about 40 Bq.kg-1.Berílio-7 é um radionuclídeo cosmogênico, com meia-vida de 53 dias, produzido pelo processo de espalação de átomos de oxigênio e nitrogênio dentro da troposfera e estratosfera. Após sua produção, este é transportado até a superfície terrestre pela deposição úmida e seca. A precipitação seca contribui somente com 3-8% do inventário total. Medidas de berílio-7 no solo podem serem usadas para indicar movimento de solo da camada superficial e este estudo objetiva examinar o comportamento de berílio-7 no solo. Variabilidade natural do inventário de berílio-7 é em torno de 23% (desvio padrão relativo. A distribuição em profundidade de berílio-7 pode ser aproximada por uma função exponencial no solo nu, com uma profundidade média de distribuição no solo em torno de 1 cm. O berílio-7 não foi encontrado abaixo da profundidade de 2 cm para o tipo de solo estudado, o que confirma sua utilização para avaliar processo de erosão superficial como um traçador de solo superficial. A concentração máxima de berílio-7 no período analisado é em torno de 40 Bq.kg-1.

  12. Pro-glacial soil variability and geomorphic activity - the case of three Swiss valleys

    NARCIS (Netherlands)

    Temme, A.J.A.M.; Lange, de K.

    2014-01-01

    Soils in pro-glacial areas are often approached from a chronosequence viewpoint. In the chronosequence approach, the objective is to derive rates of soil formation from differences in properties between soils of different age. For this reason, in chronosequence studies, soils are sampled in

  13. Atomic scale simulations of pyrochlore oxides with a tight-binding variable-charge model: implications for radiation tolerance

    International Nuclear Information System (INIS)

    Sattonnay, G; Tétot, R

    2014-01-01

    Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd 2 Ti 2 O 7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd 2 Zr 2 O 7 . Therefore, the defect stability in A 2 B 2 O 7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd 2 Ti 2 O 7 amorphization induced by irradiation. (paper)

  14. The response of archaeal species to seasonal variables in a subtropical aerated soil: insight into the low abundant methanogens.

    Science.gov (United States)

    Xie, Wei; Jiao, Na; Ma, Cenling; Fang, Sa; Phelps, Tommy J; Zhu, Ruixin; Zhang, Chuanlun

    2017-08-01

    Archaea are cosmopolitan in aerated soils around the world. While the dominance of Thaumarchaeota has been reported in most soils, the methanogens are recently found to be ubiquitous but with low abundances in the aerated soil globally. However, the seasonal changes of Archaea community in the aerated soils are still in the mist. In this study, we investigated the change of Archaea in the context of environmental variables over a period of 12 months in a subtropical soil on the Chongming Island, China. The results showed that Nitrososphaera spp. were the dominant archaeal population while the methanogens were in low proportions but highly diverse (including five genera: Methanobacterium, Methanocella, Methanosaeta, Methanosarcina, and Methanomassiliicoccus) in the aerated soil samples determined by high throughput sequencing. A total of 126 LSA correlations were found in the dataset including all the 72 archaeal OTUs and 8 environmental factors. A significance index defined as the pagerank score of each OTU divided by its relative abundance was used to evaluate the significance of each OTU. The results showed that five out of 17 methanogen OTUs were significantly positively correlated with temperature, suggesting those methanogens might increase with temperature rather than being dormant in the aerated soils. Given the metabolic response of methanogens to temperature under aerated soil conditions, their contribution to the global methane cycle warrants evaluation.

  15. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica.

    Science.gov (United States)

    Thomazini, A; Francelino, M R; Pereira, A B; Schünemann, A L; Mendonça, E S; Almeida, P H A; Schaefer, C E G R

    2016-08-15

    Soils and vegetation play an important role in the carbon exchange in Maritime Antarctica but little is known on the spatial variability of carbon processes in Antarctic terrestrial environments. The objective of the current study was to investigate (i) the soil development and (ii) spatial variability of ecosystem respiration (ER), net ecosystem CO2 exchange (NEE), gross primary production (GPP), soil temperature (ST) and soil moisture (SM) under four distinct vegetation types and a bare soil in Keller Peninsula, King George Island, Maritime Antarctica, as follows: site 1: moss-turf community; site 2: moss-carpet community; site 3: phanerogamic antarctic community; site 4: moss-carpet community (predominantly colonized by Sanionia uncinata); site 5: bare soil. Soils were sampled at different layers. A regular 40-point (5×8 m) grid, with a minimum separation distance of 1m, was installed at each site to quantify the spatial variability of carbon exchange, soil moisture and temperature. Vegetation characteristics showed closer relation with soil development across the studied sites. ER reached 2.26μmolCO2m(-2)s(-1) in site 3, where ST was higher (7.53°C). A greater sink effect was revealed in site 4 (net uptake of 1.54μmolCO2m(-2)s(-1)) associated with higher SM (0.32m(3)m(-3)). Spherical models were fitted to describe all experimental semivariograms. Results indicate that ST and SM are directly related to the spatial variability of CO2 exchange. Heterogeneous vegetation patches showed smaller range values. Overall, poorly drained terrestrial ecosystems act as CO2 sink. Conversely, where ER is more pronounced, they are associated with intense soil carbon mineralization. The formations of new ice-free areas, depending on the local soil drainage condition, have an important effect on CO2 exchange. With increasing ice/snow melting, and resulting widespread waterlogging, increasing CO2 sink in terrestrial ecosystems is expected for Maritime Antarctica. Copyright

  16. Spatial variability and response of soil organic carbon stocks to land abandonment and erosion in mountainous drylands (Invited)

    Science.gov (United States)

    De Baets, S. L.; Meersmans, J.; Vanacker, V.; Quine, T. A.; van oost, K.

    2013-12-01

    This research focuses on understanding the impact of human activities on C dynamics in a mountainous and semi-arid environment. Despite the low C status of drylands, soil organic carbon (SOC) is the largest C pool in these systems and hence possess a large restoration capacity. Still, regional estimates of SOC stocks and insights in their determining factors are lacking. This study therefore aims 1) to interpret the variability of soil organic carbon in relation to key soil, topographical and land use variables and 2) to quantify the effects of land regeneration following abandonment on SOC stocks. Soil profiles were taken in the Sierra de los Filabres (SE Spain) in different land units along geomorphic and degradation gradients. SOC contents were modelled using recovery period, soil and topographical variables. Sample depth, topographical position, altitude, recovery period and stone content are identified as the main factors for predicting SOC concentrations. SOC stocks in 1 m depth of soil vary between 3.16 and 76.44 t ha-1. Recovery period (years since abandonment), topographical position and altitude were used to predict and map SOC stocks in the top 0.2 m. The results show that C accumulates fast during the first 10-50 years following abandonment, whereafter the stocks evolve towards a steady state level. The erosion zones in the study area demonstrate a higher potential to increase their SOC stocks when abandoned. Deposition zones have higher SOC stocks, although their C accumulation rate is lower compared to erosion dominated landscapes in the first 10-50 years following abandonment. Therefore, full understanding of the C sequestration potential of land use change in areas of complex topography requires knowledge of spatial variability in soil properties and in particular SOC.

  17. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    International Nuclear Information System (INIS)

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J.

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation

  18. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Fernández, A. [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain); Lobo-Bedmar, M.C. [Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid (Spain); González-Muñoz, M.J., E-mail: mariajose.gonzalez@uah.es [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain)

    2015-01-15

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.

  19. Influence of plant productivity over variability of soil respiration: a multi-scale approach

    Science.gov (United States)

    Curiel Yuste, J.

    2009-04-01

    general controlled by the seasonality of substrate supply by plants (via photosynthates translocation and/or litter) to soil. Although soil temperature and soil moisture exert a strong influence over the variation in SR, our results indicates that substrate supply by plant activity could exert a more important than previously expected role in the variability of soil respiration. 1. CREAF (Centre de Recerca Ecológica i Aplicacions Forestals), Unitat d'Ecofisiologia i Canvi Global CREAF-CEAB-CSIC, BELLATERRA (Barcelona), Spain (j.curiel@creaf.uab.es) 2. University of Antwerp (UA), Antwerp, Belgium (ivan.janssens@ua.ac.be) 3. Institute of Ecology, University of Innsbruck, Innsbruck, Austria (michael.bahn@uibk.ac.at) 4. UMR Ecologie et Ecophysiologie Forestières, Centre INRA de Nancy, France (longdoz@nancy.inra.fr) 5. ESPM, University of Calicornia at Berkeley, Berkeley, CA, US (baldocchi@nature.berkeley.edu) 6. The Woods Hole Research Center, Falmouth, USA (edavidson@whrc.org) 7. Max-Planck-Institute for Biogeochemistry, Jena, Germany (markus.reichstein@bgc-jena.mpg.de) 8. Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Czech Republic (manuel@brno.cas.cz) 9. Università degli studi della Tuscia, Viterbo, Italy (arriga@unitus.it) 10. Laurence Berkeley lab, Berkeley, CA, USA (mstorn@lbl.gov) 11. Gembloux Agricultural University, Gembloux, Belgium (aubinet.m@fsagx.ac.be) 12. Fundacion CEAM(Centro de Estudios Ambientales del Mediterráneo), Valencia, Spain (arnaud@ceam.es) 13. Institute of Hydrology and Meteorology, Technische Universität Dresden, Pienner, Germany (gruenwald@forst.tu-dresden.de) 14. Department of Environmental Sciences, Second University of Naples, Caserta, Italy (ilaria.inglima@unina2.it) 15. CNRS-CEFE Montpellier, France (Laurent.MISSON@cefe.cnrs.fr) 16. Agenzia Provinciale per l'Ambiente, Bolzano, Italy (leonar@inwind.it) 17. University of Helsinki Department of Forest Ecology, Helsinki, Finland (jukka

  20. Solitary waves of the Kadomstev-Petviashvili equation in warm dusty plasma with variable dust charge, two temperature ion and nonthermal electron

    International Nuclear Information System (INIS)

    Pakzad, Hamid Reza

    2009-01-01

    The propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev-Petviashivili (KP) equation is derived. Existence of rarefactive and compressive solitons is analyzed.

  1. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    Energy Technology Data Exchange (ETDEWEB)

    El Sebai, T. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Lagacherie, B. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Soulas, G. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Martin-Laurent, F. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France)]. E-mail: fmartin@dijon.inra.fr

    2007-02-15

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass.

  2. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    International Nuclear Information System (INIS)

    El Sebai, T.; Lagacherie, B.; Soulas, G.; Martin-Laurent, F.

    2007-01-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass

  3. [Effects of land use and environmental factors on the variability of soil quality indicators in hilly Loess Plateau region of China].

    Science.gov (United States)

    Xu, Ming-Xiang; Liu, Guo-Bin; Zhao, Yun-Ge

    2011-02-01

    Classical statistics methods were adopted to analyze the soil quality variability, its affecting factors, and affecting degree at a regional scale (700 km2) in the central part of hilly Loess Plateau region of China. There existed great differences in the variability of test soil quality indicators. Soil pH, structural coefficient, silt content, specific gravity, bulk density, total porosity, capillary porosity, and catalase activity were the indicators with weak variability; soil nutrients (N, P, and K) contents, CaCO3 content, cation exchange capacity (CEC), clay content, micro-aggregate mean mass diameter, aggregate mean mass diameter, water-stable aggregates, respiration rate, microbial quotient, invertase and phosphatase activities, respiratory quotient, and microbial carbon and nitrogen showed medium variation; while soil labile organic carbon and phosphorus contents, erosion-resistance, permeability coefficient, and urease activity were the indicators with strong variability. The variability of soil CaCO3, total P and K, CEC, texture, and specific gravity, etc. was correlated with topography and other environmental factors, while the variability of dynamic soil quality indicators, including soil organic matter content, nitrogen content, water-stable aggregates, permeability, microbial biomass carbon and nitrogen, enzyme activities, and respiration rate, was mainly correlated with land use type. Overall, land use pattern explained 97% of the variability of soil quality indicators in the region. It was suggested that in the evaluation of soil quality in hilly Loess Plateau region, land use type and environmental factors should be fully considered.

  4. Field Soil Water Retention of the Prototype Hanford Barrier and Its Variability with Space and Time

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.

    2015-08-14

    Engineered surface barriers are used to isolate underlying contaminants from water, plants, animals, and humans. To understand the flow processes within a barrier and the barrier’s ability to store and release water, the field hydraulic properties of the barrier need to be known. In situ measurement of soil hydraulic properties and their variation over time is challenging because most measurement methods are destructive. A multiyear test of the Prototype Hanford Barrier (PHB) has yielded in situ soil water content and pressure data for a nine-year period. The upper 2 m layer of the PHB is a silt loam. Within this layer, water content and water pressure were monitored at multiple depths at 12 water balance stations using a neutron probe and heat dissipation units. Valid monitoring data from 1995 to 2003 for 4 depths at 12 monitoring stations were used to determine the field water retention of the silt loam layer. The data covered a wide range of wetness, from near saturation to the permanent wilt point, and each retention curve contained 51 to 96 data points. The data were described well with the commonly used van Genuchten water retention model. It was found that the spatial variation of the saturated and residual water content and the pore size distribution parameter were relatively small, while that of the van Genuchten alpha was relatively large. The effects of spatial variability of the retention properties appeared to be larger than the combined effects of added 15% w/w pea gravel and plant roots on the properties. Neither of the primary hydrological processes nor time had a detectible effect on the water retention of the silt loam barrier.

  5. Sensitivity analysis of tracer transport in variably saturated soils at USDA-ARS OPE3 field site

    Science.gov (United States)

    The objective of this study was to assess the effects of uncertainties in hydrologic and geochemical parameters on the results of simulations of the tracer transport in variably saturated soils at the USDA-ARS OPE3 field site. A tracer experiment with a pulse of KCL solution applied to an irrigatio...

  6. A Bézier-Spline-based Model for the Simulation of Hysteresis in Variably Saturated Soil

    Science.gov (United States)

    Cremer, Clemens; Peche, Aaron; Thiele, Luisa-Bianca; Graf, Thomas; Neuweiler, Insa

    2017-04-01

    Most transient variably saturated flow models neglect hysteresis in the p_c-S-relationship (Beven, 2012). Such models tend to inadequately represent matrix potential and saturation distribution. Thereby, when simulating flow and transport processes, fluid and solute fluxes might be overestimated (Russo et al., 1989). In this study, we present a simple, computationally efficient and easily applicable model that enables to adequately describe hysteresis in the p_c-S-relationship for variably saturated flow. This model can be seen as an extension to the existing play-type model (Beliaev and Hassanizadeh, 2001), where scanning curves are simplified as vertical lines between main imbibition and main drainage curve. In our model, we use continuous linear and Bézier-Spline-based functions. We show the successful validation of the model by numerically reproducing a physical experiment by Gillham, Klute and Heermann (1976) describing primary drainage and imbibition in a vertical soil column. With a deviation of 3%, the simple Bézier-Spline-based model performs significantly better that the play-type approach, which deviates by 30% from the experimental results. Finally, we discuss the realization of physical experiments in order to extend the model to secondary scanning curves and in order to determine scanning curve steepness. {Literature} Beven, K.J. (2012). Rainfall-Runoff-Modelling: The Primer. John Wiley and Sons. Russo, D., Jury, W. A., & Butters, G. L. (1989). Numerical analysis of solute transport during transient irrigation: 1. The effect of hysteresis and profile heterogeneity. Water Resources Research, 25(10), 2109-2118. https://doi.org/10.1029/WR025i010p02109. Beliaev, A.Y. & Hassanizadeh, S.M. (2001). A Theoretical Model of Hysteresis and Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous Media. Transport in Porous Media 43: 487. doi:10.1023/A:1010736108256. Gillham, R., Klute, A., & Heermann, D. (1976). Hydraulic properties of a porous

  7. Release of dissolved phosphorus from riparian wetlands: Evidence for complex interactions among hydroclimate variability, topography and soil properties.

    Science.gov (United States)

    Gu, Sen; Gruau, Gérard; Dupas, Rémi; Rumpel, Cornélia; Crème, Alexandra; Fovet, Ophélie; Gascuel-Odoux, Chantal; Jeanneau, Laurent; Humbert, Guillaume; Petitjean, Patrice

    2017-11-15

    In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations. Two main drivers of seasonal dissolved P release were identified: i) soil rewetting during water-table rise after dry periods and ii) reductive dissolution of soil Fe (hydr)oxides during prolonged water saturation periods. These mechanisms were shown to vary greatly in space (according to topography) and time (according to intra- and interannual hydroclimate variability). The concentration and speciation of the released dissolved P also varied spatially depending on soil chemistry and local topography. Comparison of sites revealed a similar correlation between soil P speciation (percentage of organic P ranging from 35-70%) and the concentration and speciation of the released P (MRDP from topography and soil chemistry must be considered to decrease the risk of remobilizing legacy soil P when establishing riparian buffer zones in agricultural landscapes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    Science.gov (United States)

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  9. Soil Moisture Variability and its Effects on Herbage Production in Semi-arid Rangelands of Kenya

    International Nuclear Information System (INIS)

    Too, D.K.; Trlica, M.J.; Swift, D.M.; Musembi, D.K.

    1999-01-01

    Results obtained from recent studies focused on rangelands potential as influenced by human activity and climatic factors in the semi-arid and arid pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document primary production in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory, field and numerical methods were employed over several seasons and years. Forb and grass production was more variable than that of the browse (dwarf shrub) layer. Compared to forbs and dwarf shrubs, the grass layer contributed less to the total production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variation in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal differences were very evident, with highest estimates in the long rainy and the lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential were identified to be moisture deficiency, resource-use conflicts, an increasing and partially sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can improve rangeland production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information Systems, GIS); (b) technical interventions (i.e. soil and water conservation, restoration of degraded areas, fodder production); (c) social-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development improvement of livestock marketing channels etc.) and (d) continued

  10. Interpolation Approaches for Characterizing Spatial Variability of Soil Properties in Tuz Lake Basin of Turkey

    Science.gov (United States)

    Gorji, Taha; Sertel, Elif; Tanik, Aysegul

    2017-12-01

    Soil management is an essential concern in protecting soil properties, in enhancing appropriate soil quality for plant growth and agricultural productivity, and in preventing soil erosion. Soil scientists and decision makers require accurate and well-distributed spatially continuous soil data across a region for risk assessment and for effectively monitoring and managing soils. Recently, spatial interpolation approaches have been utilized in various disciplines including soil sciences for analysing, predicting and mapping distribution and surface modelling of environmental factors such as soil properties. The study area selected in this research is Tuz Lake Basin in Turkey bearing ecological and economic importance. Fertile soil plays a significant role in agricultural activities, which is one of the main industries having great impact on economy of the region. Loss of trees and bushes due to intense agricultural activities in some parts of the basin lead to soil erosion. Besides, soil salinization due to both human-induced activities and natural factors has exacerbated its condition regarding agricultural land development. This study aims to compare capability of Local Polynomial Interpolation (LPI) and Radial Basis Functions (RBF) as two interpolation methods for mapping spatial pattern of soil properties including organic matter, phosphorus, lime and boron. Both LPI and RBF methods demonstrated promising results for predicting lime, organic matter, phosphorous and boron. Soil samples collected in the field were used for interpolation analysis in which approximately 80% of data was used for interpolation modelling whereas the remaining for validation of the predicted results. Relationship between validation points and their corresponding estimated values in the same location is examined by conducting linear regression analysis. Eight prediction maps generated from two different interpolation methods for soil organic matter, phosphorus, lime and boron parameters

  11. Variations in Carabidae assemblages across the farmland habitats in relation to selected environmental variables including soil properties

    Directory of Open Access Journals (Sweden)

    Beáta Baranová

    2018-03-01

    Full Text Available The variations in ground beetles (Coleoptera: Carabidae assemblages across the three types of farmland habitats, arable land, meadows and woody vegetation were studied in relation to vegetation cover structure, intensity of agrotechnical interventions and selected soil properties. Material was pitfall trapped in 2010 and 2011 on twelve sites of the agricultural landscape in the Prešov town and its near vicinity, Eastern Slovakia. A total of 14,763 ground beetle individuals were entrapped. Material collection resulted into 92 Carabidae species, with the following six species dominating: Poecilus cupreus, Pterostichus melanarius, Pseudoophonus rufipes, Brachinus crepitans, Anchomenus dorsalis and Poecilus versicolor. Studied habitats differed significantly in the number of entrapped individuals, activity abundance as well as representation of the carabids according to their habitat preferences and ability to fly. However, no significant distinction was observed in the diversity, evenness neither dominance. The most significant environmental variables affecting Carabidae assemblages species variability were soil moisture and herb layer 0-20 cm. Another best variables selected by the forward selection were intensity of agrotechnical interventions, humus content and shrub vegetation. The other from selected soil properties seem to have just secondary meaning for the adult carabids. Environmental variables have the strongest effect on the habitat specialists, whereas ground beetles without special requirements to the habitat quality seem to be affected by the studied environmental variables just little.

  12. Using scaling factors for evaluating spatial and temporal variability of soil hydraulic properties within one elevation transect

    Science.gov (United States)

    Nikodem, Antonín; Kodešová, Radka; Jakšík, Ondřej; Fér, Miroslav; Klement, Aleš

    2016-04-01

    This study was carried out in Southern Moravia, in the Czech Republic. The original soil unit in the wider area is a Haplic Chernozem developed on loess. The intensive agricultural exploitation in combination with terrain morphology has resulted in a highly diversified soil spatial pattern. Nowadays the original soil unit is preserved only on top of relatively flat parts, and is gradually transformed by water erosion up to Regosols on the steepest slopes, while colluvial soils are formed in terrain depressions and at toe slopes due to sedimentation of previously eroded material. Soils within this area has been intensively investigated during the last several years (e.g. Jakšík et al., 2015; Vašát et al., 2014, 2015a,b). Soil sampling (disturbed and undisturbed 100-cm3 soil samples) was performed at 5 points of one elevation transect in November 2010 (after wheat sowing) and August 2011 (after wheat harvest). Disturbed soil samples were used to determine basic soil properties (grain size distribution and organic carbon content etc.). Undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. Scaling factors (alpha-h for pressure head, alpha-theta for soil water contents and alpha-k for hydraulic conductivities) were used here to express soil hydraulic properties variability. Evaluated scaling factors reflected position within the elevation transect as well as time of soil sampling. In general large values of alpha-h, lower values of alpha-k and similar values of alpha-theta were obtained in 2010 in comparison to values obtained in 2011, which indicates development of soil structure during the vegetation season. Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O., Kapička, A. (2015): Soil aggregate stability within morphologically diverse areas. Catena, 127, 287-299. Vašát, R., Kode

  13. Small scale variability of soil parameters in different land uses on the southern slopes of Mount Kilimanjaro

    Science.gov (United States)

    Bogner, Christina; Kühnel, Anna; Hepp, Johannes; Huwe, Bernd

    2016-04-01

    indicator of vegetation patterns. First results support our general hypotheses. In the coffee plantation anisotropic variation of soil parameters clearly showed the anthropogenic influence like compaction due to agricultural machinery. However, soil bulk density and penetration resistance in the homegarden were also quite variable at the sites. The larger variability of throughfall in the homegarden is reflected in the patterns of soil moisture. Regarding the larger scale, where we compared different homegardens and coffee plantations along the southern slope of the mountain, soil parameters of the coffee plots were less diverse than those of the homegardens.

  14. Spatial variability of soil pH based on GIS combined with geostatistics in Panzhihua tobacco area

    International Nuclear Information System (INIS)

    Du Wei; Wang Changquan; Li Bing; Li Qiquan; Du Qian; Hu Jianxin; Liu Chaoke

    2012-01-01

    GIS and geostatistics were utilized to study the spatial variability of soil pH in Panzhihua tobacco area. Results showed that pH values in this area ranged from 4.5 to 8.3, especially 5.5 to 6.5, and in few areas were lower than 5.0 or higher than 7.0 which can meet the need of high-quality tobacco production. The best fitting model of variogram was exponential model with the nugget/sill of soil pH in 13.61% indicating strong spatial correlation. The change process was 5.40 km and the coefficient of determination was 0.491. The spatial variability of soil pH was mainly caused by structural factors such as cane, topography and soil type. The soil pH in Panzhihua tobacco area also showed a increasing trend of northwest to southeast trend. The pH of some areas in Caochang, Gonghe and Yumen were lower, and in Dalongtan were slightly higher. (authors)

  15. Vertical and lateral variability of soils structure – potentials for environmental reconstruction. Case study of the Middle Paeleoithic alluvial plain of the Wallertheim site (Germany).

    OpenAIRE

    Becze-Deák, Judit; Langohr, Judit

    2017-01-01

    This study highlights the potential contributions of soil studies to the environmental reconstructions in terrestrial context. The soils structure of the soil-sedimentary sequence of the Middle Palaeolithic site of Wallertheim has been analysed in details. The observation of the vertical and lateral variability of the soils characteristics as well as their related distribution on large section enabled to detect the impact of various and changing climatic and environmental conditions. As such ...

  16. Characterization of soils in terms of pedological variability under different physiography of Damodar command area (part, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Ranjan Bera

    2015-12-01

    Full Text Available Five representative soil profiles occurring on four different physiography under subtropical environment of Damodar command area, India, were studied for soil pedological variability. Two way approaches were taken to evaluate the extent of profile development. Firstly different extractants were used to determine various forms of Fe and Al and their different ratios. Average contents of Fe and Al, extracted by different extracting reagents were found to be in descending order, as follows: Aldith > Aloxa > Alpyr and Fedith > Feoxa > Fepyr. Analysis of pyrophosphate (pyr, oxalate (oxa, and dithionate (dith extractable Fe and Al fractions indicated that with increasing soil age, the content of crystalline Fe and Al oxides increased at the expense of the poorly crystalline forms. The mean content of amorphous Fe and Al, crystalline Fe and Al, and their ratios estimated the degree of soil development. In the second part, elemental analysis was done, silica to sesquioxide ratio as well as ratio of alkali cations was measured and weathering index of each horizon was determined. The ratios and weathering indices indicated that except Madhpur soil series, all other soils were young and pedological development was still in progress in Damodar command area.

  17. The estimation of soil parameters using observations on crop biophysical variables and the crop model STICS improve the predictions of agro environmental variables.

    Science.gov (United States)

    Varella, H.-V.

    2009-04-01

    Dynamic crop models are very useful to predict the behavior of crops in their environment and are widely used in a lot of agro-environmental work. These models have many parameters and their spatial application require a good knowledge of these parameters, especially of the soil parameters. These parameters can be estimated from soil analysis at different points but this is very costly and requires a lot of experimental work. Nevertheless, observations on crops provided by new techniques like remote sensing or yield monitoring, is a possibility for estimating soil parameters through the inversion of crop models. In this work, the STICS crop model is studied for the wheat and the sugar beet and it includes more than 200 parameters. After a previous work based on a large experimental database for calibrate parameters related to the characteristics of the crop, a global sensitivity analysis of the observed variables (leaf area index LAI and absorbed nitrogen QN provided by remote sensing data, and yield at harvest provided by yield monitoring) to the soil parameters is made, in order to determine which of them have to be estimated. This study was made in different climatic and agronomic conditions and it reveals that 7 soil parameters (4 related to the water and 3 related to the nitrogen) have a clearly influence on the variance of the observed variables and have to be therefore estimated. For estimating these 7 soil parameters, a Bayesian data assimilation method is chosen (because of available prior information on these parameters) named Importance Sampling by using observations, on wheat and sugar beet crop, of LAI and QN at various dates and yield at harvest acquired on different climatic and agronomic conditions. The quality of parameter estimation is then determined by comparing the result of parameter estimation with only prior information and the result with the posterior information provided by the Bayesian data assimilation method. The result of the

  18. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  19. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  20. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland.

    Science.gov (United States)

    Gruba, Piotr; Socha, Jarosław; Błońska, Ewa; Lasota, Jarosław

    2015-07-15

    In this study we investigated the effect of fine (ϕclay (FF) content in soils, site moisture, metal (Al and Fe) of soil organic matter (SOM) and forest species composition on the spatial distribution of carbon (C) pools in forest soils at the landscape scale. We established 275 plots in regular 200×200m grid in a forested area of 14.4km(2). Fieldwork included soil sampling of the organic horizon, mineral topsoil and subsoil down to 40cm deep. We analysed the vertical and horizontal distribution of soil organic carbon (SOC) stocks, as well as the quantity of physically separated fractions including the free light (fLF), occluded light (oLF) and mineral associated fractions (MAF) in the mineral topsoil (A, AE) horizons. Distribution of C in soils was predominantly affected by the variation in the FF content. In soils richer in the FF more SOC was accumulated in mineral horizons and less in the organic horizons. Accumulation of SOC in mineral soil was also positively affected by the degree of saturation of SOM with Al and Fe. The increasing share of beech influenced the distribution of C stock in soil profiles by reducing the depth of O horizon and increasing C stored in mineral soil. The content of FF was positively correlated with the content of C in MAF and fLF fractions. The content of oLF and MAF fractions was also positively influenced by a higher degree of metal saturation, particularly Al. Our results confirmed that Al plays an important role in the stabilization of SOM inside aggregates (CoLF) and as in CMAF fractions. We also found a significant, positive effect of beech on the CfLF and fir on the CoLF content. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Soil Organic Carbon Variability in High-Andean Ecosystems: Bringing Together Machine Learning and Proximal Soil Sensing

    Science.gov (United States)

    Gavilan, C.; Grunwald, S.; Quiroz, R.

    2017-12-01

    The Andes represent the largest and highest mountain range in the tropics and is considered an important reserve of biodiversity, water provision and soil organic carbon (SOC) stocks. Nevertheless, limited attention has been given to estimate these stocks due to the lack of recent soil data, the poor accessibility and the wide range of coexistent ecosystems. In addition, conventional methods to determine SOC are usually time consuming and expensive to use in large-scale studies, hindering the possibility to have an accurate SOC assessment in the region. Proximal soil sensing techniques, such as visible near infrared (VNIR) and mid infrared (MIR) spectroscopy, have proven to be useful as an alternative to conventional methods for characterizing SOC but have not been tested in Andean soils. The aim of this study was to evaluate the potential of using VNIR and MIR spectroscopy to predict SOC content in the Central Andean region, using multivariate methods. Three study areas were selected across the Peruvian Central Andes. A total of 400 topsoil samples (0-30 cm) were collected and analyzed for SOC. The VNIR and MIR reflectance of the soil samples was measured in the laboratory. Three modeling approaches: Partial least squares regression (PLSR), random forest (RF) and support vector machine (SVM) were used to predict SOC from VNIR and MIR spectra in the study areas. The data was preprocessed in order to minimize the noise and optimize the accuracy of predictions. The models, for each study area, were assessed using 10-fold cross validation. Independent validation was implemented in the whole dataset (400 observations) by splitting it into calibration (70 %) and validation (30%) sets. Overall, the results indicate potential for both VNIR and MIR spectra to predict SOC content in the Andean soils. SOC content predictions from MIR spectra outperformed those from VNIR spectra. The evaluation of model performance shows that RF and SVM provide more accurate SOC predictions

  2. Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation

    Directory of Open Access Journals (Sweden)

    Prashant K. Srivastava

    2017-10-01

    Full Text Available Reference Evapotranspiration (ETo and soil moisture deficit (SMD are vital for understanding the hydrological processes, particularly in the context of sustainable water use efficiency in the globe. Precise estimation of ETo and SMD are required for developing appropriate forecasting systems, in hydrological modeling and also in precision agriculture. In this study, the surface temperature downscaled from Weather Research and Forecasting (WRF model is used to estimate ETo using the boundary conditions that are provided by the European Center for Medium Range Weather Forecast (ECMWF. In order to understand the performance, the Hamon’s method is employed to estimate the ETo using the temperature from meteorological station and WRF derived variables. After estimating the ETo, a range of linear and non-linear models is utilized to retrieve SMD. The performance statistics such as RMSE, %Bias, and Nash Sutcliffe Efficiency (NSE indicates that the exponential model (RMSE = 0.226; %Bias = −0.077; NSE = 0.616 is efficient for SMD estimation by using the Observed ETo in comparison to the other linear and non-linear models (RMSE range = 0.019–0.667; %Bias range = 2.821–6.894; NSE = 0.013–0.419 used in this study. On the other hand, in the scenario where SMD is estimated using WRF downscaled meteorological variables based ETo, the linear model is found promising (RMSE = 0.017; %Bias = 5.280; NSE = 0.448 as compared to the non-linear models (RMSE range = 0.022–0.707; %Bias range = −0.207–−6.088; NSE range = 0.013–0.149. Our findings also suggest that all the models are performing better during the growing season (RMSE range = 0.024–0.025; %Bias range = −4.982–−3.431; r = 0.245–0.281 than the non−growing season (RMSE range = 0.011–0.12; %Bias range = 33.073–32.701; r = 0.161–0.244 for SMD estimation.

  3. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands.

    Science.gov (United States)

    Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma

    2015-02-15

    Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz

    2014-06-01

    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  5. Toxicity screening of soils from different mine areas—A contribution to track the sensitivity and variability of Arthrobacter globiformis assay

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Catarina R., E-mail: crmarques@ua.pt [Departamento de Biologia and CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Caetano, Ana L. [Departamento de Biologia and CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Haller, Andreas [ECT Oekotoxikologie GmbH, Böttgerstraße 2–14, D-65439 Flörsheim a. M. (Germany); Gonçalves, Fernando [Departamento de Biologia and CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pereira, Ruth [Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto (Portugal); Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, P 4050-123 Porto (Portugal); Römbke, Jörg [ECT Oekotoxikologie GmbH, Böttgerstraße 2–14, D-65439 Flörsheim a. M. (Germany)

    2014-06-01

    Highlights: • The assay gave rapid and feasible discrimination of toxic soils to A. globiformis. • Sensitive and low variability response to soils from different regions. • Soil properties may interfere with metal toxicity and fluorescence measurements. • Proposal of a toxicity threshold for the contact assay regarding soils. • A. globiformis assay should be included in the Tier I of risk assessment frameworks. - Abstract: This study used the Arthrobacter globiformis solid-contact test for assessing the quality of soils collected in areas subjected to past and present mine activities in Europe (uranium mine, Portugal) and North Africa (phosphogypsum pile, Tunisia; iron mine, Morocco). As to discriminate the influence of soils natural variability from the effect of contaminants, toxicity thresholds were derived for this test, based on the dataset of each study area. Furthermore, the test sensitivity and variability was also evaluated. As a result, soils that inhibited A. globiformis dehydrogenase activity above 45% or 50% relatively to the control, were considered to be toxic. Despite the soil metal content determined, the properties of soils seemed to influence dehydrogenase activity. Overall, the contact test provided a coherent outcome comparing to other more time-consuming and effort-demanding ecotoxicological assays. Our results strengthened the feasibility and ecological relevance of this assay, which variability was quite reduced hence suggesting its potential integration within the test battery of tier 1 of soil risk assessment schemes.

  6. Toxicity screening of soils from different mine areas—A contribution to track the sensitivity and variability of Arthrobacter globiformis assay

    International Nuclear Information System (INIS)

    Marques, Catarina R.; Caetano, Ana L.; Haller, Andreas; Gonçalves, Fernando; Pereira, Ruth; Römbke, Jörg

    2014-01-01

    Highlights: • The assay gave rapid and feasible discrimination of toxic soils to A. globiformis. • Sensitive and low variability response to soils from different regions. • Soil properties may interfere with metal toxicity and fluorescence measurements. • Proposal of a toxicity threshold for the contact assay regarding soils. • A. globiformis assay should be included in the Tier I of risk assessment frameworks. - Abstract: This study used the Arthrobacter globiformis solid-contact test for assessing the quality of soils collected in areas subjected to past and present mine activities in Europe (uranium mine, Portugal) and North Africa (phosphogypsum pile, Tunisia; iron mine, Morocco). As to discriminate the influence of soils natural variability from the effect of contaminants, toxicity thresholds were derived for this test, based on the dataset of each study area. Furthermore, the test sensitivity and variability was also evaluated. As a result, soils that inhibited A. globiformis dehydrogenase activity above 45% or 50% relatively to the control, were considered to be toxic. Despite the soil metal content determined, the properties of soils seemed to influence dehydrogenase activity. Overall, the contact test provided a coherent outcome comparing to other more time-consuming and effort-demanding ecotoxicological assays. Our results strengthened the feasibility and ecological relevance of this assay, which variability was quite reduced hence suggesting its potential integration within the test battery of tier 1 of soil risk assessment schemes

  7. The water budget of heterogeneous areas : impact of soil and rainfall variability

    NARCIS (Netherlands)

    Kim, C.P.

    1995-01-01

    In this thesis the heterogeneity of the soil water budget components is investigated. Heterogeneity of soil hydraulic properties and rainfall rate are taken into account by using stochastic methods. The importance of lateral groundwater flow in causing heterogeneity of the water budget

  8. Heavy metal accumulation in earthworms exposed to spatially variable soil contamination

    NARCIS (Netherlands)

    Marinussen, M.

    1997-01-01

    Ecotoxicity of contaminated soil is commonly tested in standard laboratory tests. Extrapolation of these data to the field scale is complicated due to considerable differences between conditions in laboratory tests and conditions in situ in contaminated soils. In this

  9. On the remote measurement of evaporation rates from bare wet soil under variable cloud cover

    Science.gov (United States)

    Auer, S.

    1976-01-01

    Evaporation rates from a natural wet soil surface are calculated from an energy balance equation at 0.1-hour intervals. A procedure is developed for calculating the heat flux through the soil surface from a harmonic analysis of the surface temperature curve. The evaporation integrated over an entire 24-hour period is compared with daily evaporation rates obtained from published models.

  10. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    Science.gov (United States)

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Impact of Hydrologic and Micro-topographic Variabilities on Spatial Distribution of Mean Soil-Nitrogen Age

    Science.gov (United States)

    Woo, D.; Kumar, P.

    2015-12-01

    Excess reactive nitrogen in soils of intensively managed agricultural fields causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a 3-dimensional model to characterize the spatially distributed ``age" of soil-nitrogen (nitrate and ammonia-ammonium) across a watershed. We use the general theory of age, which provides an assessment of the elapsed time since nitrogen is introduced into the soil system. Micro-topographic variability incorporates heterogeneity of nutrient transformations and transport associated with topographic depressions that form temporary ponds and produce prolonged periods of anoxic conditions, and roadside agricultural ditches that support rapid surface movement. This modeling effort utilizes 1-m Light Detection and Ranging (LiDAR) data. We find a significant correlation between hydrologic variability and mean nitrate age that enables assessment of preferential flow paths of nitrate leaching. The estimation of the mean nitrogen age can thus serve as a tool to disentangle complex nitrogen dynamics by providing the analysis of the time scales of soil-nitrogen transformation and transport processes without introducing additional parameters.

  12. Responses of plant available water and forest productivity to variably layered coarse textured soils

    Science.gov (United States)

    Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie

    2010-05-01

    Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil

  13. Maxwell's Law Based Models for Liquid and Gas Phase Diffusivities in Variably-Saturated Soil

    DEFF Research Database (Denmark)

    Mamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2012-01-01

    -s,D-l). Different percolation threshold terms adopted from recent studies for gas (D-s,D-g) and solute (D-s,D-l) diffusion were applied. For gas diffusion, epsilon(th) was a function of bulk density (total porosity), while for solute diffusion theta(th) was best described by volumetric content of finer soil...... particles (clay and organic matter), FINESvol. The resulting LIquid and GAs diffusivity and tortuosity (LIGA) models were tested against D-s,D-g and D-s,D-l data for differently-textured soils and performed well against the measured data across soil types. A sensitivity analysis using the new Maxwell's Law...... based LIGA models implied that the liquid phase but not the gaseous-phase tortuosity was controlled by soil type. The analyses also suggested very different pathways and fluid-phase connectivity for gas and solute diffusion in unsaturated soil...

  14. Functional interpretation of representative soil spatial-temporal variability at the Central region of European territory of Russia

    Science.gov (United States)

    Vasenev, I.

    2012-04-01

    The essential spatial and temporal variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest and forest-steppe soils has been further complicated by a specific land-use history and different-direction soil successions due to environmental changes and human impacts. For demand-driven land-use planning and decision making the quantitative analysis, modeling and functional-ecological interpretation of representative soil cover patterns spatial variability is an important and challenging task that receives increasing attention from scientific society, private companies, governmental and environmental bodies. On basis of long-term different-scale soil mapping, key plot investigation, land quality and land-use evaluation, soil forming and degradation processes modeling, functional-ecological typology of the zonal set of elementary soil cover patterns (ESCP) has been done in representative natural and man transformed ecosystems of the forest, forest-steppe and steppe zones at the Central region of European territory of Russia (ETR). The validation and ranging of the limiting factors of functional quality and ecological state have been made for dominating and most dynamical components of ESCP regional-typological forms - with application of local GIS, traditional regression kriging and correlation tree models. Development, zonal-regional differentiation and verification of the basic set of criteria and algorithms for logically formalized distinguishing of the most "stable" & "hot" areas in soil cover patterns make it possible for quantitative assessment of dominating in them elementary landscape, soil-forming and degradation processes. The received data essentially expand known ranges of the soil forming processes (SFP) rate «in situ». In case of mature forests mutual for them the windthrow impacts and lateral processes make SFPs more active and complex both in

  15. Variability of Soil Strength Parameters and its Effect on the Slope Stability of the Želazny Most Tailing Dam

    OpenAIRE

    Stella A. Arnaouti; Demos C. Angelides; Theodoros N. Chatzigogos; Witold M. Pytel

    2012-01-01

    The Želazny Most tailing pond is one of the largest facilities worldwide for waste disposal from the copper mines located in South-West Poland. A potential failure of the dam would allow more than 10 million cubic meters of contaminated slurry to flow to the valley, causing immense environmental problems to the surrounding area. Thus, the determination of the strength properties of the dam's soils and their variability is of utmost importance. An extensive site investigat...

  16. Variable response of three Trifolium repens ecotypes to soil flooding by seawater.

    Science.gov (United States)

    White, Anissia C; Colmer, Timothy D; Cawthray, Greg R; Hanley, Mick E

    2014-08-01

    Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts. Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering. There was substantial Cl(-) and Na(+) accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil. The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Hot regions of labile and stable soil organic carbon in Germany - Spatial variability and driving factors

    Science.gov (United States)

    Vos, Cora; Jaconi, Angélica; Jacobs, Anna; Don, Axel

    2018-06-01

    Atmospheric carbon dioxide levels can be mitigated by sequestering carbon in the soil. Sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools, as labile pools with a high turnover may be accumulated much faster but are also more vulnerable to losses. The aims of this study were to (1) assess how soil organic carbon (SOC) is distributed among SOC fractions on a national scale in Germany, (2) identify factors influencing this distribution and (3) identify regions with high vulnerability to SOC losses. The SOC content and proportion of two different SOC fractions were estimated for more than 2500 mineral topsoils (soil texture, bulk soil C / N ratio, total SOC content and pH. For some regions, the drivers were linked to the land-use history of the sites. Arable topsoils in central and southern Germany were found to contain the highest proportions and contents of stable SOC fractions, and therefore have the lowest vulnerability to SOC losses. North-western Germany contains an area of sandy soils with unusually high SOC contents and high proportions of light SOC fractions, which are commonly regarded as representing a labile carbon pool. This is true for the former peat soils in this area, which have already lost and are at high risk of losing high proportions of their SOC stocks. Those black sands can, however, also contain high amounts of stable SOC due to former heathland vegetation and need to be treated and discussed separately from non-black sand agricultural soils. Overall, it was estimated that, in large areas all over Germany, over 30 % of SOC is stored in easily mineralisable forms. Thus, SOC-conserving management of arable soils in these regions is of great importance.

  18. Vegetation-induced spatial variability of soil redox properties in wetlands

    Science.gov (United States)

    Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin

    2016-04-01

    Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in

  19. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.

    Science.gov (United States)

    Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A

    2018-06-13

    Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.

  20. Variable Charge and Electrical Double Layer of Mineral-Water Interfaces: Silver Halides versus Metal (Hydr)Oxides

    NARCIS (Netherlands)

    Hiemstra, T.

    2012-01-01

    Classically, silver (Ag) halides have been used to understand thermodynamic principles of the charging process and the corresponding development of the electrical double layer (EDL). A mechanistic approach to the processes on the molecular level has not yet been carried out using advanced surface

  1. State-space approach to evaluate spatial variability of field measured soil water status along a line transect in a volcanic-vesuvian soil

    Directory of Open Access Journals (Sweden)

    A. Comegna

    2010-12-01

    Full Text Available Unsaturated hydraulic properties and their spatial variability today are analyzed in order to use properly mathematical models developed to simulate flow of the water and solute movement at the field-scale soils. Many studies have shown that observations of soil hydraulic properties should not be considered purely random, given that they possess a structure which may be described by means of stochastic processes. The techniques used for analyzing such a structure have essentially been based either on the theory of regionalized variables or to a lesser extent, on the analysis of time series. This work attempts to use the time-series approach mentioned above by means of a study of pressure head h and water content θ which characterize soil water status, in the space-time domain. The data of the analyses were recorded in the open field during a controlled drainage process, evaporation being prevented, along a 50 m transect in a volcanic Vesuvian soil. The isotropic hypothesis is empirical proved and then the autocorrelation ACF and the partial autocorrelation functions PACF were used to identify and estimate the ARMA(1,1 statistical model for the analyzed series and the AR(1 for the extracted signal. Relations with a state-space model are investigated, and a bivariate AR(1 model fitted. The simultaneous relations between θ and h are considered and estimated. The results are of value for sampling strategies and they should incite to a larger use of time and space series analysis.

  2. Soil Physical and Environmental Conditions Controlling Patterned-Ground Variability at a Continuous Permafrost Site, Svalbard

    DEFF Research Database (Denmark)

    Watanabe, Tatsuya; Matsuoka, Norikazu; Christiansen, Hanne Hvidtfeldt

    2017-01-01

    properties and principal component analysis indicate that the distribution of patterned ground depends primarily on soil texture, soil moisture and the winter ground thermal regime associated with snow cover. Mudboils and composite patterns (mudboils surrounded by small polygons) occupy well-drained areas...... composed of clay-rich aeolian sediments. Compared to mudboils, composite patterns show a sharper contrast in soil texture between barren centres and vegetated rims. Hummocks filled with organic materials develop on poorly drained lowlands associated with a shallow water table. Ice-wedge polygons...

  3. Determining baselines and variability of elements in plants and soils near the Kenai National Wildlife Refuge, Alaska

    Science.gov (United States)

    Crock, J.G.; Severson, R.C.; Gough, L.P.

    1992-01-01

    Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell for Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to

  4. Spatiotemporal Variability and Covariability of Temperature, Precipitation, Soil Moisture, and Vegetation in North America for Regional Climate Model Applications

    Science.gov (United States)

    Castro, C. L.; Beltran-Przekurat, A. B.; Pielke, R. A.

    2007-05-01

    Previous work has established that the dominant modes of Pacific SSTs influence the summer climate of North America through large-scale forcing, and this effect is most pronounced during the early part of the season. It is hypothesized, then, that land surface influences become more dominant in the latter part of the season as remote teleconnection influences diminish. As a first step toward investigation of this hypothesis in a regional climate model (RCM) framework, the statistically signficant spatiotemporal patterns of variability and covariability in North American precipitation (specified by the standardized precipitation index, or SPI), soil moisture, and vegetation are determined for timescales from a month to six months. To specify these respective data we use: CPC gauge- derived precipitation (1950-2000), Variable Infiltration Capacity (VIC) Model and NOAH Model NLDAS soil moisture and temperature, and the Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS-NDVI). The principal statistical tool used is multiple taper frequency singular value decomposition (MTM-SVD), and this is supplemented by wavelet analysis for specific areas of interest. The significant interannual variability in all of these data occur at a timescale of about 7 to 9 years and appears to be the integrated effect of remote SST forcing from the Pacific. Considering the entire year, the spatial pattern for precipitation resembles the typical ENSO winter signature. If the summer season is considered seperately, the out of phase relationship between precipitation anomalies in the central U.S. and core monsoon region is apparent. The largest soil moisture anomalies occur in the central U.S., since precipitation in this region has a consistent relationship to Pacific SSTs for the entire year. This helps to explain the approximately 20 year periodicity in drought conditions there. Unlike soil moisture, the largest anomalies in vegetation occur in the

  5. Capturing the Initiation and Spatial Variability of Runoff on Soils Affected by Wildfire

    Science.gov (United States)

    Martin, D. A.; Wickert, A. D.; Moody, J. A.

    2011-12-01

    Rainfall after wildfire often leads to intense runoff and erosion, since fire removes ground cover that impedes overland flow and water is unable to efficiently infiltrate into the fire-affected soils. In order to understand the relation between rainfall, infiltration, and runoff, we modified a camera to be triggered by a rain gage to take time-lapse photographs of the ground surface every 10 seconds until the rain stops. This camera allows us to observe directly the patterns of ground surface ponding, the initiation of overland flow, and erosion/deposition during single rainfall events. The camera was deployed on a hillslope (average slope = 23 degrees) that was severely burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado. The camera's field of view is approximately 3 m2. We integrate the photographs with rainfall and overland flow measurements to determine thresholds for the initiation of overland flow and erosion. We have recorded the spatial variability of wetted patches of ground and the connection of these patches together to initiate overland flow. To date we have recorded images for rain storms with 30-minute maximum intensities ranging from 5 mm/h (our threshold to trigger continuous photographs) to 32 mm/h. In the near future we will update the camera's control system to 1) include a clock to enable time-lapse photographs at a lower frequency in addition to the event-triggered images, and 2) to add a radio to allow the camera to be triggered remotely. Radio communication will provide a means of starting the camera in response to non-local events, allowing us to capture images or video of flash flood surge fronts and debris flows, and to synchronize the operations of multiple cameras in the field. Schematics and instructions to build this camera station, which can be used to take either photos or video, are open-source licensed and are available online at http://instaar.colorado.edu/~wickert/atvis. It is our hope that this tool can be used by

  6. Modeling Air Permeability in Variably Saturated Soil from Two Natural Clay Gradients

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda T K K; Arthur, Emmanuel; Møldrup, Per

    2013-01-01

    measurements from two Danish arable fields, each located on natural clay gradients, this study presents a pore tortuosity–disconnectivity analysis to characterize the soil–gas phase. The main objective of this study is to investigate the effect of soil–moisture condition, clay content, and other potential......Understanding soil–gas phase properties and processes is important for finding solutions to critical environmental problems such as greenhouse gas emissions and transport of gaseous-phase contaminants in soils. Soil–air permeability, ka (μm2), is the key parameter governing advective gas movement...... in soil and is controlled by soil physical characteristics representing soil texture and structure. Models predicting ka as a function of air-filled porosity (ɛ) often use a reference-point measurement, for example, ka,1000 at ɛ1000 (where the measurement is done at a suction of –1000 cm H2O). Using ka...

  7. Transport properties and pore-network structure in variably-saturated Sphagnum peat soil

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Dissanayaka, Shiromi Himalika; Kawamoto, K.

    2016-01-01

    Gas and water transport in peat soil are of increasing interest because of their potentially large environmental and climatic effects under different types of land use. In this research, the water retention curve (WRC), gas diffusion coefficient (Dg) and air and water permeabilities (ka and kw......) of layers in peat soil from two profiles were measured under different moisture conditions. A two-region Archie's Law (2RAL)-type model was applied successfully to the four properties; the reference point was taken at -9.8kPa of soil-water matric potential where volume shrinkage typically started to occur....... For WRC in the very decomposed peat soil, the 2RAL saturation exponents (n) obtained for both the wetter (nw) and drier regions (nd) were smaller than those for the less decomposed peat. For Dg, the saturation exponent in the wetter region was larger than that in the drier one for all layers, which...

  8. A probabilistic analysis of the dynamic response of monopile foundations: Soil variability and its consequences

    DEFF Research Database (Denmark)

    Damgaard, M.; Andersen, L.V.; Ibsen, L.B.

    2015-01-01

    The reliability of offshore wind turbines is highly influenced by the uncertainties related to the subsoil conditions. Traditionally, the evaluation of the dynamic structural behaviour is based on a computational model with deterministic soil properties. Using this approach, however, provides...... on a Monte Carlo method facilitating the derivation of the probability densities of the modal properties and the fatigue loading. The main conclusion of the presented work is that the dynamic structural behaviour of the wind turbine and its support structure is strongly affected by the stochastic soil......-analytical impedance functions of a monopile embedded in a stochastic linear viscoelastic soil layer, fully coupled aero-hydro-elastic simulations are conducted in the nonlinear multi-body code Hawc2. The probabilistic analysis accounts for the uncertainty of soil properties (e.g. damping and stiffness) and relies...

  9. Spatio-temporal effects of soil and bedrock variability on grapevine water status in hillslope vineyards.

    Science.gov (United States)

    Brillante, Luca; Bois, Benjamin; Mathieu, Olivier; Leveque, Jean

    2014-05-01

    Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France. Plots were distributed along a topolithosequence from 330 to 270 metres a.s.l. Grapevine water status was monitored weekly by surveying water potential, and, at the end of the season, by the use of the δ13C analysis of grape juice. Soil profile of each plot was described and analysed (soil texture, gravel content, organic carbon, total nitrogen, pH, CEC). Soil volumetric humidity was measured weekly, using TDR probes. A pedotransfer function was developed to transform Electrical Resistivity Imaging (ERI) into soil volume wetness and therefore to spatialise and observe variation in the Fraction of Transpirable Soil Water (FTSW). During the three years of monitoring, grapevines experienced great variation in water status, which ranged from low to considerable water deficit (as expressed by pre-dawn leaf water potential and δ13C analysis of grape juice). With ERI imaging, it was possible to observe differences in water absorption pattern by roots, in different soils, and at different depth. In addition, significant differences were observed in grapevine water status in relation to variations in the physical characteristics of the terroir along the hillslope (i.e. the geo-pedological context, the elevation etc.). Grapevine water behaviour and plant-soil water relationships on the hillslope of Corton Hill have been extensively characterised in this study by ultimate technologies, allowing to present this terroir as a very interesting example for future generalisation and modelling of the hillslope vineyard water dynamics.

  10. Assessment of soil hydrology variability of a new weighing lysimeter facility

    Science.gov (United States)

    Brown, S. E.; Wagner-Riddle, C.; Berg, A. A.

    2017-12-01

    Diversifying annual crop rotations is a strategy that mimics natural ecosystems and is postulated to increase agricultural resilience to climate change, soil quality and provision of soil ecosystem services. However, diverse cropping systems could increase soil mineral N levels and lead to greater leaching and/or N2O emissions; which raises the questions: (i) are diverse cropping systems actually beneficial for air and water quality? (ii) what are the trade-offs between soil, water, and air quality upon implementing a diverse cropping rotation? It can be difficult to fully evaluate the interactions between the two N-pollution pathways simultaneously in traditional field studies as drainage is largely unconstrained. Weighing lysimeters solve this issue by providing a closed system to measure N outputs via drainage and soil gas fluxes. A set of 18 weighting lysimeters were installed in Elora, Ontario, Canada in May 2016, to establish a long-term study of N-leaching and greenhouse gas emission from traditional and diverse cropping rotations for two different soil types. Each lysimeter is equipped with an automated chamber for continuous measurement of soil N2O and CO2 fluxes. A full characterization of variations of physical properties that may affect GHG emissions and N-leaching (e.g., soil temperature, moisture, drainage and evapotranspiration rates) amongst the lysimeters is required prior to application and assessment of the management treatments. Novel techniques such as wavelet analysis is required as standard statistical analyses are not applicable to the time series data. A full description of the lysimeters will be presented along with results of the characterization.

  11. SOIL VARIABILITY IN DIFFERENT LANDSCAPE POSITIONS IN THE PORTO ALEGRE BOTANICAL GARDEN, SOUTHERN BRAZIL

    OpenAIRE

    Silva,Luís Fernando da; Nascimento,Paulo César do; Inda,Alberto Vasconcellos; Silva,Edsleine Ribeiro

    2015-01-01

    ABSTRACTKnowledge of soil characteristics in areas where activities related to the environment are developed, such as Porto Alegre Botanical Garden (JB-PoA), is a fundamental condition for the sustainable use of this natural resource. The objective of this study was to characterize, classify and evaluate some issues about soil formation in Porto Alegre Botanical Garden, as well as relate their distribution on the landscape according to environmental characteristics. For the morphological desc...

  12. Effects of seasonal and well construction variables on soil vapor extraction pilot tests

    International Nuclear Information System (INIS)

    Campbell, R.; Hudon, N.; Bass, D.

    1995-01-01

    The selection and design of an effective soil vapor extraction system is dependent upon data generated from pilot testing. Therefore, it is critical to understand factors that may affect the testing prior to selecting or designing a system. In Sebago Lake Village, Maine, two adjacent gasoline stations experienced a release. Gasoline migrated through fine sand into the groundwater and discharged to a small stream. Soil vapor extraction was investigated as a remedial alternative to reduce volatile organic compounds in the unsaturated soil. Three soil vapor extraction pilot tests were performed at one of the sites and one test at the other site. The results of the testing varied. Data collected during a summer test indicated soil vapor extraction was less likely to work. The wells tested were installed using an excavator. An adequate surface seal was not present in any of the tested wells. An additional test was performed in the winter using wells installed by a drill rig. Winter test results indicated that soil vapor extraction could be effective. Another test was performed after a horizontal soil vapor extraction system with a surface seal was installed. The results of this testing indicated that soil vapor extraction was more effective than predicted by the earlier tests. Tests performed on the other property indicated that the horizontal wells were more effective than the vertical wells. Testing results were affected by the well installation method, well construction, proximity to manmade structures, and the season in which testing was performed. Understanding factors that affect the testing is critical in selecting and designing the system

  13. Role of Micro-Topographic Variability on the Distribution of Inorganic Soil-Nitrogen Age in Intensively Managed Landscape

    Science.gov (United States)

    Woo, Dong K.; Kumar, Praveen

    2017-10-01

    How does the variability of topography structure the spatial heterogeneity of nutrient dynamics? In particular, what role does micro-topographic depression play in the spatial and temporal dynamics of nitrate, ammonia, and ammonium? We explore these questions using the 3-D simulation of their joint dynamics of concentration and age. To explicitly resolve micro-topographic variability and its control on moisture, vegetation, and carbon-nitrogen dynamics, we use a high-resolution LiDAR data over an agricultural site under a corn-soybean rotation in the Intensively Managed landscapes Critical Zone Observatory in the U.S. Midwest. We utilize a hybrid CPU-GPU parallel computing architecture to reduce the computational cost associated with such high-resolution simulations. Our results show that in areas that present closed topographic depressions, relatively lower nitrate concentration and age are observed compared to elsewhere. The periodic ponding in depressions increases the downward flux of water that carries more dissolved nitrate to the deeper soil layer. However, the variability in the depressions is relatively higher as a result of the episodic ponding pattern. When aggregate efflux from the soil domain at the bottom of the soil is considered, we find a gradual decrease in the age on the rising limb of nitrate efflux and a gradual increase on the falling limb. In addition, the age of the nitrate efflux ranges from 4 to 7 years. These are significantly higher as compared to the ages associated with a nonreactive tracer indicating that they provide an inaccurate estimate of residence time of a reactive constituent through the soil column.

  14. Charged amino acid variability related to N-glyco -sylation and epitopes in A/H3N2 influenza: Hem -agglutinin and neuraminidase.

    Directory of Open Access Journals (Sweden)

    Zhong-Zhou Huang

    Full Text Available The A/H3N2 influenza viruses circulated in humans have been shown to undergo antigenic drift, a process in which amino acid mutations result from nucleotide substitutions. There are few reports regarding the charged amino acid mutations. The purpose of this paper is to explore the relations between charged amino acids, N-glycosylation and epitopes in hemagglutinin (HA and neuraminidase (NA.A total of 700 HA genes (691 NA genes of A/H3N2 viruses were chronologically analyzed for the mutational variants in amino acid features, N-glycosylation sites and epitopes since its emergence in 1968.It was found that both the number of HA N-glycosylation sites and the electric charge of HA increased gradually up to 2016. The charges of HA and HA1 increased respectively 1.54-fold (+7.0 /+17.8 and 1.08-fold (+8.0/+16.6 and the number of NGS in nearly doubled (7/12. As great diversities occurred in 1990s, involving Epitope A, B and D mutations, the charged amino acids in Epitopes A, B, C and D in HA1 mutated at a high frequency in global circulating strains last decade. The charged amino acid mutations in Epitopes A (T135K has shown high mutability in strains near years, resulting in a decrease of NGT135-135. Both K158N and K160T not only involved mutations charged in epitope B, but also caused a gain of NYT158-160. Epitope B and its adjacent N-glycosylation site NYT158-160 mutated more frequently, which might be under greater immune pressure than the rest.The charged amino acid mutations in A/H3N2 Influenza play a significant role in virus evolution, which might cause an important public health issue. Variability related to both the epitopes (A and B and N-glycosylation is beneficial for understanding the evolutionary mechanisms, disease pathogenesis and vaccine research.

  15. Simulated optimization of crop yield through irrigation system design and operation based on the spatial variability of soil hydrodynamic properties

    International Nuclear Information System (INIS)

    Gurovich, L.; Stern, J.; Ramos, R.

    1983-01-01

    Spatial autocorrelation and kriging techniques were applied to soil infiltrability data from a 20 hectare field, to separate homogeneous irrigation units. Border irrigation systems were designed for each unit and combinations of units by using DESIGN, a computer model based on soil infiltrability and hydraulics of surface water flow, which enables optimal irrigation systems to be designed. Water depths effectively infiltrated at different points along the irrigation run were determined, and the agronomic irrigation efficiency of the unit evaluated. A modification of Hanks' evapotranspiration model, PLANTGRO, was used to evaluate plant growth, relative crop yield and soil-water economy throughout the growing season, at several points along each irrigation unit. The effect of different irrigation designs on total field yield and total water used for irrigation was evaluated by integrating yield values corresponding to each point, volume and inflow time during each irrigation. For relevant data from winter wheat grown in the central area of Chile during 1981, simulation by an interactive and sequentially recurrent use of DESIGN and PLANTGRO models, was carried out. The results obtained indicate that, when a field is separated into homogeneous irrigation units on the basis of the spatial variability of soil infiltrability and the border irrigation systems are designed according to soil characteristics, both a significant yield increase and less water use can be obtained by comparison with other criteria of field zonification for irrigation management. The use of neutrometric determinations to assess soil-water content during the growing season, as a validation of the results obtained in this work, is discussed. (author)

  16. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    Science.gov (United States)

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between

  17. Determinação do ponto de carga zero em solos Determination of the zero point of charge in soils

    Directory of Open Access Journals (Sweden)

    Bernardo van Raij

    1973-01-01

    Full Text Available São apresentados os fundamentos e dois métodos de determinação do ponto de carga zero (PCZ em solos. Por um dos métodos o PCZ foi determinado como sendo o pH do ponto de cruzamento de curvas de titulação dos solos em soluções de NaCl 1; 0.1; 0 01; c 0,001N. Pelo outro método o PCZ foi determinado por extrapolação ou interpolação da carga líquida dos solos, determinada por retenção de íons em soluções de NaCl 0,2N, CaCl2 0,01N e MgSO4 0,01N, ao valor de pH em que a carga líquida era nula.The zero point of charge (ZPC of soils was determined by the crossing point of acid-base potenciometric titration curves in different concentrations of NaCl. Alternatively, the ZPC was found by extrapolating or interpolating the net electric charge of soils, determined by direct adsorption of ions from solution of NaCl, CaCl2 and MgSO4, to the pH of charge zero.

  18. An alternative approach to exact wave functions for time-dependent coupled oscillator model of charged particle in variable magnetic field

    International Nuclear Information System (INIS)

    Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol

    2010-01-01

    The quantum states of time-dependent coupled oscillator model for charged particles subjected to variable magnetic field are investigated using the invariant operator methods. To do this, we have taken advantage of an alternative method, so-called unitary transformation approach, available in the framework of quantum mechanics, as well as a generalized canonical transformation method in the classical regime. The transformed quantum Hamiltonian is obtained using suitable unitary operators and is represented in terms of two independent harmonic oscillators which have the same frequencies as that of the classically transformed one. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators. One can easily take a complete description of how the charged particle behaves under the given Hamiltonian by taking advantage of these analytical wave functions.

  19. Spatial variability of forage yield and soil physical attributes of a Brachiaria decumbens pasture in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Cristiano Magalhães Pariz

    2011-10-01

    Full Text Available The objective of this study was to analyze variability, linear and spatial correlations of forage dry mass yield (FDM and dry matter percentage (DM% of Brachiaria decumbens with the bulk density (BD, gravimetric (GM and volumetric (VM moisture, mechanical resistance to penetration (RP and organic matter content (OM, at depths 1 (0-0.10 m and 2 (0.10-0.20 m, in a Red Latosol (Oxisol, in order to select an indicator of soil physical quality and identify possible causes of pasture degradation. The geostatistical grid was installed to collect soil and plant data, with 121 sampling points, over an area of 2.56 ha. The linear correlation between FDM × DM% and FDM × BD2 was low, but highly significant. Spatial correlations varied inversely and positively, respectively. Except for DM% and BD, at both depths, the other attributes showed average to high variability, indicating a heterogeneous environment. Thus, geostatistics emerges as an important tool in understanding the interactions in pasture ecosystems, in order to minimize possible causes of degradation and indicate better alternatives for soil-plant-animal management. The decrease in FDM and increased BD1 are indicators of physical degradation (compaction of Red Latosol (Oxisol, particularly in the places with the highest concentration of animals and excessive trampling, in Cerrado conditions, in the municipality of Selvíria, Mato Grosso do Sul State, Brazil.

  20. Beyond clay: Towards an improved set of variables for predicting soil organic matter content

    Science.gov (United States)

    Rasmussen, Craig; Heckman, Katherine; Wieder, William R.; Keiluweit, Marco; Lawrence, Corey R.; Berhe, Asmeret Asefaw; Blankinship, Joseph C.; Crow, Susan E.; Druhan, Jennifer; Hicks Pries, Caitlin E.; Marin-Spiotta, Erika; Plante, Alain F.; Schadel, Christina; Schmiel, Joshua P.; Sierra, Carlos A.; Thompson, Aaron; Wagai, Rota

    2018-01-01

    Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.

  1. Short-term cover crop decomposition inorganic and conventional soils : Soil microbial and nutrient cycling indicator variables associated with different levels of soil suppressiveness to Pythium aphanidermatum

    NARCIS (Netherlands)

    Grünwald, N.J.; Hu, S.; Bruggen, van A.H.C.

    2000-01-01

    Stages of oat–vetch cover crop decomposition were characterized over time in terms of carbon and nitrogen cycling, microbial activity and community dynamics in organically and conventionally managed soils in a field experiment and a laboratory incubation experiment. We subsequently determined which

  2. Assessment of soil nutrient depletion and its spatial variability on smallholders' mixed farming systems in Ethiopia using partial versus full nutrient balances

    NARCIS (Netherlands)

    Haileslassie, A.; Priess, J.; Veldkamp, E.; Teketay, D.; Lesschen, J.P.

    2005-01-01

    Soil fertility depletion in smallholder farms is one of the fundamental biophysical causes for declining per capita food production in Ethiopia. In the present study, we assess soil nutrient depletion and its spatial variability for Ethiopia and its regional states, using nutrient balances as a

  3. Ultrahigh Dimensional Variable Selection for Interpolation of Point Referenced Spatial Data: A Digital Soil Mapping Case Study

    Science.gov (United States)

    Lamb, David W.; Mengersen, Kerrie

    2016-01-01

    Modern soil mapping is characterised by the need to interpolate point referenced (geostatistical) observations and the availability of large numbers of environmental characteristics for consideration as covariates to aid this interpolation. Modelling tasks of this nature also occur in other fields such as biogeography and environmental science. This analysis employs the Least Angle Regression (LAR) algorithm for fitting Least Absolute Shrinkage and Selection Operator (LASSO) penalized Multiple Linear Regressions models. This analysis demonstrates the efficiency of the LAR algorithm at selecting covariates to aid the interpolation of geostatistical soil carbon observations. Where an exhaustive search of the models that could be constructed from 800 potential covariate terms and 60 observations would be prohibitively demanding, LASSO variable selection is accomplished with trivial computational investment. PMID:27603135

  4. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Science.gov (United States)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  5. A Molecular Investigation of Soil Organic Carbon Composition, Variability, and Spatial Distribution Across an Alpine Catchment

    Science.gov (United States)

    Hsu, H. T.; Lawrence, C. R.; Winnick, M.; Druhan, J. L.; Williams, K. H.; Maher, K.; Rainaldi, G. R.; McCormick, M. E.

    2016-12-01

    The cycling of carbon through soils is one of the least understood aspects of the global carbon cycle and represents a key uncertainty in the prediction of land-surface response to global warming. Thus, there is an urgent need for advanced characterization of soil organic carbon (SOC) to develop and evaluate a new generation of soil carbon models. We hypothesize that shifts in SOC composition and spatial distribution as a function of soil depth can be used to constrain rates of transformation between the litter layer and the deeper subsoil (extending to a depth of approximately 1 m). To evaluate the composition and distribution of SOC, we collected soil samples from East River, a shale-dominated watershed near Crested Butte, CO, and characterized relative changes in SOC species as a function of depth using elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR) and bulk C X-ray absorption spectroscopy (XAS). Our results show that total organic carbon (TOC) decreases with depth, and high total inorganic carbon (TIC) content was found in deeper soils (after 75 cm), a characteristic of the bedrock (shale). The distribution of aliphatic C relative to the parent material generally decreases with depth and that polysaccharide can be a substantial component of SOC at various depths. On the other hand, the relative distribution of aromatic C, traditionally viewed as recalcitrant, only makes up a very small part of SOC regardless of depth. These observations confirm that molecular structure is not the only determinant of SOC turnover rate. To study other contributors to SOC decomposition, we studied changes in the spatial correlation of SOC and minerals using X-ray fluorescence spectroscopy (XRF) and scanning transmission X-ray microscopy (STXM). We found that aromatics mostly locate on the surface of small soil aggregates (1-10 μm). Polysaccharides and proteins, both viewed as labile traditionally, are more evenly distributed over the interior of the

  6. Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties.

    Science.gov (United States)

    Boluwade, Alaba; Madramootoo, Chandra

    2013-01-01

    Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km 2 area) in southern Quebec, Canada. SWAT is a process-based model that predicts the impacts of climate and land use management on water yield, sediment, and nutrient fluxes. SWAT requires geographical information system inputs such as the digital elevation model as well as soil and land use maps. Mean values of soil properties are used in soil polygons (soil series); thus, the spatial variability of these properties is neglected. The primary objective of this study was to quantify the impacts of spatial variability of soil properties on the prediction of runoff, sediment, and total phosphorus using SWAT. The spatial clustering of the measured soil properties was undertaken using the regionalized with dynamically constrained agglomerative clustering and partitioning method. Measured soil data were clustered into 5, 10, 15, 20, and 24 heterogeneous regions. Soil data from the Castor watershed which have been used in previous studies was also set up and termed "Reference". Overall, there was no significant difference in runoff simulation across the five configurations including the reference. This may be attributable to SWAT's use of the soil conservation service curve number method in flow simulation. Therefore having high spatial resolution inputs for soil data may not necessarily improve predictions when they are used in hydrologic modeling.

  7. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China.

    Science.gov (United States)

    Ye, Siyuan; Krauss, Ken W; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F

    2016-01-01

    Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.

  9. The Effect of Restoration Treatments on the Spatial Variability of Soil Processes under Longleaf Pine Trees

    Directory of Open Access Journals (Sweden)

    John K. Hiers

    2012-08-01

    Full Text Available The objectives of this study were to (1 characterize tree-based spatial patterning of soil properties and understory vegetation in frequently burned (“reference state” and fire-suppressed longleaf pine forests; and (2 determine how restoration treatments affected patterning. To attain these objectives, we used an experimental manipulation of management types implemented 15 years ago in Florida. We randomly located six mature longleaf pine trees in one reference and four restoration treatments (i.e., burn, control, herbicide, and mechanical, for a total of 36 trees. In addition to the original treatments and as part of a monitoring program, all plots were subjected to several prescribed fires during these 15 years. Under each tree, we sampled mineral soil and understory vegetation at 1 m, 2 m, 3 m and 4 m (vegetation only away from the tree. At these sites, soil carbon and nitrogen were higher near the trunk while graminoids, forbs and saw palmetto covers showed an opposite trend. Our results confirmed that longleaf pine trees affect the spatial patterning of soil and understory vegetation, and this patterning was mostly limited to the restoration sites. We suggest frequent burning as a probable cause for a lack of spatial structure in the “reference state”. We attribute the presence of spatial patterning in the restoration sites to accumulation of organic materials near the base of mature trees.

  10. County-Scale Spatial Variability of Macronutrient Availability Ratios in Paddy Soils

    Directory of Open Access Journals (Sweden)

    Mingkai Qu

    2014-01-01

    Full Text Available Macronutrients (N, P, and K are essential to plants but also can be harmful to the environment when their available concentrations in soil are excessive. Availability ratios (available concentration/total concentration of macronutrients may reflect their transforming potential between fixed and available forms in soil. Understanding their spatial distributions and impact factors can be, therefore, helpful to applying specific measures to modify the availability of macronutrients for agricultural and environmental management purposes. In this study, 636 topsoil samples (0–15 cm were collected from paddy fields in Shayang County, Central China, for measuring soil properties. Factors influencing macronutrient availability ratios were investigated, and total and available concentrations of macronutrients were mapped using geostatistical method. Spatial distribution maps of macronutrient availability ratios were further derived. Results show that (1 availability of macronutrients is controlled by multiple factors, and (2 macronutrient availability ratios are spatially varied and may not always have spatial patterns identical to those of their corresponding total and available concentrations. These results are more useful than traditional soil macronutrient average content data for guiding site-specific field management for agricultural production and environmental protection.

  11. Spatial Variability of Heavy Metals in Soils and Sediments of “La Zacatecana” Lagoon, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio A. Covarrubias

    2018-01-01

    Full Text Available Anthropogenic activities have greatly increased heavy metal pollution worldwide. Due to inadequate waste management, mining is one of the chief causes. One particularly affected area in Mexico is the “La Zacatecana” Lagoon, in the municipality of Guadalupe, Zacatecas. From colonial times until the mid-nineteenth century, about 20 million tons of mine tailings were deposited at this site. Here, we catalogue the heavy metal content and their distribution in soils and sediments of La Zacatecana. The mobility of lead in soils was also assayed by sequential extraction. Concentrations of the different metals analysed were as follows: Pb > Cr > As > Ni > Hg > Cd. Site VIII accumulated the highest amount of Pb (3070 mg·kg−1 sevenfold more than the limit established by the Mexican standards for agricultural soils (i.e., 400 mg·kg−1. On the other hand, the contents of Cd, Cr, and Ni were within the levels accepted by the above normativity, set at 37, 280, and 1600 mg·kg−1, respectively. Concentrations of Hg and Pb were highest in the north-northwest zone of the lagoon and decreased towards the southeast. Except for Site VIII where 30% of the Pb was in an interchangeable form or bound to carbonates, most Pb in La Zacatecana soils was present in an unavailable form, associated with Fe-Mn oxides.

  12. Electromagnetic soil properties variability in a mine-field trial site in Cambodia

    NARCIS (Netherlands)

    Gorriti, A.G.; Rañada-Shaw, A.; Schoolderman, A.J.; Rhebergen, J.B.; Slob, E.C.

    2006-01-01

    In this paper, the characterization of the electromagnetic soil properties of a blind lane used in a trial for a dual-sensor mine detector is presented. Several techniques are used and are compared here; Time Domain Reflectometry, gravimetric techniques and Frequency Domain Reflection and

  13. Variable temperature sensitivity of soil organic carbon in North American forests

    Science.gov (United States)

    Cinzia Fissore; Christian P. Giardina; Christopher W. Swanston; Gary M. King; Randall K. Kolka

    2009-01-01

    We investigated mean residence time (MRT) for soil organic carbon (SOC) sampled from paired hardwood and pine forests located along a 22 °C mean annual temperature (MAT) gradient in North America. We used acid hydrolysis fractionation, radiocarbon analyses, long-term laboratory incubations (525-d), and a three-pool model to describe the size and kinetics of...

  14. Variability and scaling of hydraulic properties for 200 Area soils, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R.; Freeman, E.J.

    1995-10-01

    Over the years, data have been obtained on soil hydraulic properties at the Hanford Site. Much of these data have been obtained as part of recent site characterization activities for the Environmental Restoration Program. The existing data on vadose zone soil properties are, however, fragmented and documented in reports that have not been formally reviewed and released. This study helps to identify, compile, and interpret all available data for the principal soil types in the 200 Areas plateau. Information on particle-size distribution, moisture retention, and saturated hydraulic conductivity (K{sub s}) is available for 183 samples from 12 sites in the 200 Areas. Data on moisture retention and K{sub s} are corrected for gravel content. After the data are corrected and cataloged, hydraulic parameters are determined by fitting the van Genuchten soil-moisture retention model to the data. A nonlinear parameter estimation code, RETC, is used. The unsaturated hydraulic conductivity relationship can subsequently be predicted using the van Genuchten parameters, Mualem`s model, and laboratory-measured saturated hydraulic conductivity estimates. Alternatively, provided unsaturated conductivity measurements are available, the moisture retention curve-fitting parameters, Mualem`s model, and a single unsaturated conductivity measurement can be used to predict unsaturated conductivities for the desired range of field moisture regime.

  15. Variability of soil types in wetland meadows in the south of the Chilean Patagonia

    Czech Academy of Sciences Publication Activity Database

    Filipová, L.; Hédl, Radim; Covacevich, N. C.

    2010-01-01

    Roč. 70, č. 2 (2010), s. 266-277 ISSN 0718-5820 R&D Projects: GA ČR GA206/08/0389 Institutional research plan: CEZ:AV0Z60050516 Keywords : histosols * fluvisols * soil properties Subject RIV: EF - Botanics Impact factor: 0.385, year: 2010

  16. [The influence of variable and constant magnetic fields on biota and biological activity of ordinary chernozem soils].

    Science.gov (United States)

    Denisova, T V; Kazeev, K Sh

    2007-01-01

    In model experiments on influence variable magnetic fields of industrial frequency (50 Hz) an induction of 1500 and of 6000 mkTl and the constant magnetic field an induction of 6000 mkTl and of 15000 mkTl during 5 days of exposure on biological properties of chernozem ordinary is shown, that the soil microflora is more sensitive to magnetic fields, than enzymes activity. Bacteria are more sensitive, than microscopic mushrooms. Dehydrogenase it is steady against influence of all variants. Constant magnetic field by the induction of 15000 mkTl rendered practically identical authentic overwhelming influence on catalase and saccharase activity - on 51 and 47% accordingly.

  17. Charged Higgs production from polarized top-quark decay in the 2HDM considering the general-mass variable-flavor-number scheme

    Science.gov (United States)

    Abbaspour, S.; Mohammad Moosavi Nejad, S.

    2018-05-01

    Charged Higgs bosons are predicted by some non-minimal Higgs scenarios, such as models containing Higgs triplets and two-Higgs-doublet models, so that the experimental observation of these bosons would indicate physics beyond the Standard Model. In the present work, we introduce a channel to indirect search for the charged Higgses through the hadronic decay of polarized top quarks where a top quark decays into a charged Higgs H+ and a bottom-flavored meson B via the hadronization process of the produced bottom quark, t (↑) →H+ + b (→ B + jet). To obtain the energy spectrum of produced B-mesons we present, for the first time, an analytical expression for the O (αs) corrections to the differential decay width of the process t →H+ b in presence of a massive b-quark in the General-Mass Variable-Flavor-Number (GM-VFN) scheme. We find that the most reliable predictions for the B-hadron energy spectrum are made in the GM-VFN scheme, specifically, when the Type-II 2HDM scenario is concerned.

  18. Climate, soil, and vegetation controls on the temporal variability of vadose zone transport

    NARCIS (Netherlands)

    Harman, C.J.; Rao, P.S.C.; Basu, N.B.; McGrath, G.S.; Kumar, P.; Sivapalan, M.

    2011-01-01

    Temporal patterns of solute transport and transformation through the vadose zone are driven by the stochastic variability of water fluxes. This is determined by the hydrologic filtering of precipitation variability into infiltration, storage, drainage, and evapotranspiration. In this work we develop

  19. Simulating the Fate and Transport of Coal Seam Gas Chemicals in Variably-Saturated Soils Using HYDRUS

    Directory of Open Access Journals (Sweden)

    Dirk Mallants

    2017-05-01

    Full Text Available The HYDRUS-1D and HYDRUS (2D/3D computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this paper is to provide a brief overview of the HYDRUS models and their add-on modules, and to demonstrate possible applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the soil. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the HP1 module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in a soil leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration in soil is complexation of

  20. PAHs contamination in urban soils from Lisbon: spatial variability and potential risks

    Science.gov (United States)

    Cachada, Anabela; Pereira, Ruth; Ferreira da Silva, Eduardo; Duarte, Armando

    2015-04-01

    Polycyclic Aromatic hydrocarbons (PAHs) can become major contaminants in urban and industrial areas, due to the existence of a plethora of diffuse and point sources. Particularly diffuse pollution, which is normally characterized by continuous and long-term emission of contaminants below risk levels, can be a major problem in urban areas. Since PAHs are persistent and tend to accumulate in soils, levels are often above the recommended guidelines indicating that ecological functions of soils may be affected. Moreover, due to the lipophilic nature, hydrophobicity and low chemical and biological degradation rates of PAHs, which leads to their bioconcentration and bioamplification, they may reach toxicological relevant concentrations in organisms. The importance and interest of studying this group of contaminants is magnified due to their carcinogenic, mutagenic and endocrine disrupting effects. In this study, a risk assessment framework has been followed in order to evaluate the potential hazards posed by the presence of PAHs in Lisbon urban soils. Hence, the first step consisted in screening the total concentrations of PAHs followed by the calculation of risks based on existing models. Considering these models several samples were identified as representing a potential risk when comparing with the guidelines for soil protection. Moreover, it was found that for 38% of samples more than 50% of species can be potentially affected by the mixture of PAHs. The use of geostatistical methods allowed to visualize the predicted distribution of PAHs in Lisbon area and identify the areas where possible risk to the environment are likely occurring However, it is known that total concentration may not allow a direct prediction of environmental risk, since in general only a fraction of total concentration is available for partitioning between soil and solution and thus to be uptake or transformed by organisms (bioacessible or bioavailable) or to be leached to groundwater. The

  1. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    Science.gov (United States)

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Hao, Xiuzhen; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (Ic, 0–50 mM NaCl) conditions in the presence of 10 mg L−1 humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension Ic in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of Ic in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.

  2. Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content

    Science.gov (United States)

    Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

    2014-08-01

    As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good

  3. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  4. Spatial variability of soil carbon across Mexico and the United States

    Science.gov (United States)

    Vargas, R.; Guevara, M.; Cruz Gaistardo, C.; Paz, F.; de Jong, B.; Etchevers, J.

    2015-12-01

    Soil organic carbon (SOC) is directly linked to soil quality, food security, and land use/global environmental change. We use publicly available information on SOC and couple it with digital elevation models and derived terrain attributes using a machine learning approach. We found a strong spatial dependency of SOC across the United States, but less spatial dependency of SOC across Mexico. Using High Performance Computing (HPC) we derived a 1 km resolution map of SOC across Mexico and the United States. We tested different machine learning methods (e.g., kernel based, tree based and/or Geo-statistics approaches) for computational efficiency and statistical accuracy. Using random forest combined with geo-statistics we were able to explain >70% of SOC variance for Mexico and >40% in the case of the United States via cross validation. These results compare with other published estimates of SOC at 1km resolution that only explain <30% of SOC variance across the world. Topographic attributes derived from digital elevation models are freely available globally at fine spatial resolution (<100 m), and this information allowed us to make predictions of SOC at fine scales. We further tested this approach using SOC information from the International Soil Carbon Network to predict SOC in other regions of the world. We conclude that this approach (using public information and open source platforms for data analysis) could be implemented to predict detailed explicit information of SOC across different spatial scales.

  5. Spatial and temporal variability of nitrate sinks and sources in riparian soils of a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg; Huber, Benjamin; Shrestha, Juna; Samaritani, Emanuela; Niklaus, Pascal A.

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified. Of particular interest is the ability of riparian functional processing zones (FPZ) to remove nitrate from infiltrating river water or agricultural runoff. Processes involved are removal of nitrate by denitrification and immobilisation of nitrogen in plant or microbial biomass. On the other hand, mineralisation followed by nitrification can lead to an increase in leachable nitrate. The latter process is fueled by the frequent input of fresh dissolved or particle bound organic matter, characteristic for temporarily flooded riparian zones. The objective of this study was to characterize the spatial and temporal variability of nitrate concentrations in the soil solution of a restored reach of the Alpine river Thur in northeastern Switzerland. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three FPZ representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits. (iii) The mixed forest is a mature riparian hardwood forest developed on older overbank sediments with ash and maple as dominant trees. The study period was between summer 2008 and winter 2009/2010 including three flood events in August 2008, June 2009 and July 2009. The second flood inundated the

  6. Spatial variability of the physical and mineralogical properties of the soil from the areas with variation in landscape shapes

    Directory of Open Access Journals (Sweden)

    Zigomar Menezes de Souza

    2009-04-01

    Full Text Available The objective of this work it was to use the geostatistics methods to investigate the spatial relationships between the physical and mineralogical properties of an oxisol planted with the sugarcane in an area of slight variations in the landform. The soil was sampled at 10 m regular intervals in the crossing points of a 100 x 100 m grid. At each point, the soil was collected at 0.0-0.2 m, 0.2-0.4 m and 0.4-0.6 m depths for the analyzes of physical properties and at 0.6-0.8 m for the mineralogical analyses. Both the Kt/Kt+Gb ratio and Kt relative crystallization level were higher in the compartment I than in the compartment II. As a consequence, the soil penetration resistance and bulk density were higher in the compartment I, while the macroporosity and Ksat were lower. Therefore, it was concluded that both the identification and mapping of a landform were efficient for understanding the spatial variability of the soil properties. Moreover, variations in the landscape shape promoted the differentiated variability of the physical and mineralogical soil properties: the more variable the landscape, the more variable was the soil properties.Este trabalho teve como objetivo avaliar a influência das formas do relevo na variabilidade espacial de atributos físicos e suas relações com a mineralogia da argila de um Latossolo Vermelho eutroférrico, utilizando a técnica da geoestatística. Os solos foram amostrados nos pontos de cruzamento de uma malha, com intervalos regulares de 10 m, nas profundidades de 0,0-0,2 m, 0,2-0,4 m e 0,4-0,6 m para os atributos físicos e 0,6-0,8 m para os atributos mineralógicos. Os valores médios para a densidade do solo e resistência do solo à penetração são maiores no compartimento I onde a relação Ct/Ct+Gb é relativamente maior, indicando a presença de maior teor de caulinita. No compartimento II a condutividade hidráulica e a macroporsidade são maiores, influenciados provavelmente pelo predomínio da

  7. Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment

    NARCIS (Netherlands)

    Famiglietti, J.S.; Devereaux, J.A.; Laymon, C.A.; Tsegaye, T.; Houser, P.R.; Jackson, T.J.; Graham, S.T.; Rodell, M.; Oevelen, van P.J.

    1999-01-01

    Surface soil moisture content is highly variable in both space and time. While remote sensing provides an effective methodology for mapping surface moisture content over large areas, it averages within-pixel variability thereby masking the underlying heterogeneity observed at the land surface. This

  8. Use of latent variables representing psychological motivation to explore citizens’ intentions with respect to congestion charging reform in Jakarta

    Directory of Open Access Journals (Sweden)

    Sugiarto Sugiarto

    2015-01-01

    Full Text Available The aim of this paper is to investigate the intentions of Jakarta citizens with respect to the electronic road pricing (ERP reform proposed by the city government. Utilizing data from a stated preference survey conducted in 2013, we construct six variables representing latent psychological motivations (appropriateness of ERP adoption; recognition that ERP can mitigate congestion and improve the environment; car dependency (CDC; awareness of the problems of cars in society; inhibition of freedom movement caused by ERP; and doubts about the ability of ERP to mitigate congestion and environment problems. A multiple-indicators multiple-causes (MIMIC model is developed to investigate the effects of respondents’ socio-demographics (causes on the latent constructs in order to gain better understanding of the relationship between respondents’ intentions and the observed individual’s responses (indicators obtained from the stated preference survey. The MIMIC model offers a good account of whether and how socio-demographic attributes and individual indicators predict the latent variables of psychological motivation constructs. Then, we further verify the influences of the latent variables, combining them with levy rate patterns and daily mobility attributes to investigate significant determining factors for social acceptance of the ERP proposal. A latent variable representations based on the generalized ordered response model are employed in our investigations to allow more flexibility in parameter estimation across outcomes. The results confirm that there is a strong correlation between latent psychological motivations and daily mobility attributes and the level of social acceptance for the ERP proposal. This empirical investigation demonstrates that the latent variables play more substantial role in determining scheme’s acceptance. Moreover, elasticity measures show that latent attributes are more sensitive compared to levies and daily mobility

  9. Multiscale analysis of the spatial variability of heavy metals and organic matter in soils and groundwater across Spain

    Science.gov (United States)

    Luque-Espinar, J. A.; Pardo-Igúzquiza, E.; Grima-Olmedo, J.; Grima-Olmedo, C.

    2018-06-01

    During the last years there has been an increasing interest in assessing health risks caused by exposure to contaminants found in soil, air, and water, like heavy metals or emerging contaminants. This work presents a study on the spatial patterns and interaction effects among relevant heavy metals (Sb, As and Pb) that may occur together in different minerals. Total organic carbon (TOC) have been analyzed too because it is an essential component in the regulatory mechanisms that control the amount of metal in soils. Even more, exposure to these elements is associated with a number of diseases and environmental problems. These metals can have both natural and anthropogenic origins. A key component of any exposure study is a reliable model of the spatial distribution the elements studied. A geostatistical analysis have been performed in order to show that selected metals are auto-correlated and cross-correlated and type and magnitude of such cross-correlation varies depending on the spatial scale under consideration. After identifying general trends, we analyzed the residues left after subtracting the trend from the raw variables. Three scales of variability were identified (compounds or factors) with scales of 5, 35 and 135 km. The first factor (F1) basically identifies anomalies of natural origin but, in some places, of anthropogenics origin as well. The other two are related to geology (F2 and F3) although F3 represents more clearly geochemical background related to large lithological groups. Likewise, mapping of two major structures indicates that significant faults have influence on the distribution of the studied elements. Finally, influence of soil and lithology on groundwater by means of contingency analysis was assessed.

  10. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  11. fractionation of lead-acid battery soil amended with biochar 36

    African Journals Online (AJOL)

    USER

    Biochar has a high surface area, highly porous, variablecharge organic material that has the potential to ... Keywords: Biochar, Lead–acid Battery, Fractionation and Heavy metals. INTRODUCTION .... toxicity of heavy metal ions in the soils.

  12. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    Science.gov (United States)

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  13. SOIL VARIABILITY IN DIFFERENT LANDSCAPE POSITIONS IN THE PORTO ALEGRE BOTANICAL GARDEN, SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Luís Fernando da Silva

    2015-10-01

    Full Text Available ABSTRACTKnowledge of soil characteristics in areas where activities related to the environment are developed, such as Porto Alegre Botanical Garden (JB-PoA, is a fundamental condition for the sustainable use of this natural resource. The objective of this study was to characterize, classify and evaluate some issues about soil formation in Porto Alegre Botanical Garden, as well as relate their distribution on the landscape according to environmental characteristics. For the morphological description and collecting samples four profiles were selected (P1 to P4, located in the summit-shoulder transition, backslope, footslope and toeslope, respectively. Granulometric distribution of the P1 and P3 profiles indicated sharp textural gradient, with presence of textural and "plânico" B horizons, respectively, according to Brazilian System of Soil Classification. There is predominance of low values of pH, and low base saturation, with exception of P4, indicating probable deposition of solution material at this area. The Fed/Fes relationship was greater in the profile located in the summit-shoulder transition (P1, indicating higher weathering. The Feo/Fed relationship increased in P3 and P4 profiles, indicating greater participation of iron oxides of low crystallinity in reducing environment. The occurrence of some pedogenic processes may be inferred, like lessivage in P1 (Ultic Hapludalf, due to clay skins and higher values of fine clay:total clay relationship in subsurface; ferrolysis and gleization, by low pH value and high Feo/Fed relationship in E and EB horizons of P3 (Oxyaquic Hapludalf, being the last also present in P4 (Humaqueptic Endoaquent, indicating gleization occurrence.

  14. Fractionation of lead-acid battery soil amended with Biochar ...

    African Journals Online (AJOL)

    Mobile (bio)available metal concentration in contaminated soils can be minimized through biological immobilization and stabilization methods using a range of organic compounds, such as “biochar.” Biochar has a high surface area, highly porous, variablecharge organic material that has the potential to increase soil ...

  15. Land use and soil organic matter in South Africa 1: A review on spatial variability and the influence of rangeland stock production

    Directory of Open Access Journals (Sweden)

    Pearson N.S. Mnkeni

    2011-05-01

    Full Text Available Degradation of soil as a consequence of land use poses a threat to sustainable agriculture in South Africa, resulting in the need for a soil protection strategy and policy. Development of such a strategy and policy require cognisance of the extent and impact of soil degradation processes. One of the identified processes is the decline of soil organic matter, which also plays a central role in soil health or quality. The spatial variability of organic matter and the impact of grazing and burning under rangeland stock production are addressed in this first part of the review. Data from uncoordinated studies showed that South African soils have low organic matter levels. About 58% of soils contain less than 0.5% organic carbon and only 4% contain more than 2% organic carbon. Furthermore, there are large differences in organic matter content within and between soil forms, depending on climatic conditions, vegetative cover, topographical position and soil texture. A countrywide baseline study to quantify organic matter contents within and between soil forms is suggested for future reference. Degradation of rangeland because of overgrazing has resulted in significant losses of soil organic matter, mainly as a result of lower biomass production. The use of fire in rangeland management decreases soil organic matter because litter is destroyed by burning. Maintaining or increasing organic matter levels in degraded rangeland soils by preventing overgrazing and restricting burning could contribute to the restoration of degraded rangelands. This restoration is of the utmost importance because stock farming uses the majority of land in South Africa.

  16. Combustion and emissions control in diesel-methane dual fuel engines: The effects of methane supply method combined with variable in-cylinder charge bulk motion

    International Nuclear Information System (INIS)

    Carlucci, Antonio P.; Laforgia, Domenico; Saracino, Roberto; Toto, Giuseppe

    2011-01-01

    presence and to calculate an average luminance value over the whole frame. These luminance values, chosen as indicators of the combustion intensity, were represented over crank angle position and, then, an analysis of the resulting curves was performed. Results showed that the charge bulk motion associated to the swirl port, improving the charge mixing of the diesel spray and the propagation of the turbulent flame fronts, is capable to enhance the oxidation of air-methane mixture, both at low and high engine loads. Furthermore, at low loads, the analysis of combustion images and luminance curves showed that methane port injection can significantly affect the intensity and the spreading of the flame during dual fuel combustion, especially when a suitable in-cylinder bulk motion is obtained. Concerning the engine emissions, some correlations with what observed during the analysis of the combustion development were found. Furthermore, it was revealed that, for several combinations of the engine operating parameters, methane port injection was always associated to the lowest emission levels, demonstrating that this methane supply method is a very effective strategy to reduce unburned hydrocarbons and nitric oxides concentrations, especially when implemented with variable intake geometry systems.

  17. The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns–Tsallis complex plasma

    Science.gov (United States)

    El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; Elbendary, A. A.; Taha, R. M.

    2018-05-01

    The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns-Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov-Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.

  18. Effects of Direct Fuel Injection Strategies on Cycle-by-Cycle Variability in a Gasoline Homogeneous Charge Compression Ignition Engine: Sample Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2015-01-01

    Full Text Available In this study we summarize and analyze experimental observations of cyclic variability in homogeneous charge compression ignition (HCCI combustion in a single-cylinder gasoline engine. The engine was configured with negative valve overlap (NVO to trap residual gases from prior cycles and thus enable auto-ignition in successive cycles. Correlations were developed between different fuel injection strategies and cycle average combustion and work output profiles. Hypothesized physical mechanisms based on these correlations were then compared with trends in cycle-by-cycle predictability as revealed by sample entropy. The results of these comparisons help to clarify how fuel injection strategy can interact with prior cycle effects to affect combustion stability and so contribute to design control methods for HCCI engines.

  19. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations

    International Nuclear Information System (INIS)

    Jeremić, B.; Tafazzoli, N.; Ancheta, T.; Orbović, N.; Blahoianu, A.

    2013-01-01

    Highlights: • Full 3D, inclined, incoherent seismic motions used for modeling SSI of an NPP. • Analyzed effects of variable and uniform soil/rock layering profiles on SSI. • Surface and embedded foundations were modeled and differences analyzed. - Abstract: Presented here is an investigation of the seismic response of a massive NPP structures due to full 3D, inclined, un-correlated input motions for different soil and rock profiles. Of particular interest are the effects of soil and rock layering on the response and the changes of input motions (frequency characteristics) due to such layering. In addition to rock/soil layering effects, investigated are also effects of foundation embedment on dynamic response. Significant differences were observed in dynamic response of containment and internal structure founded on surface and on embedded foundations. These differences were observed for both rock and soil profiles. Select results are used to present most interesting findings

  20. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.).

    Science.gov (United States)

    Pan, Yunyu; Koopmans, Gerwin F; Bonten, Luc T C; Song, Jing; Luo, Yongming; Temminghoff, Erwin J M; Comans, Rob N J

    2016-12-01

    Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still limited. Here, a field-contaminated paddy soil was subjected to two flooding and drainage cycles in a pot experiment with two rice plant cultivars, exhibiting either high or low Cd accumulation characteristics. Flooding led to a strong vertical gradient in the redox potential (Eh). The pH and Mn, Fe, and dissolved organic carbon concentrations increased with decreasing Eh and vice versa. During flooding, trace metal solubility decreased markedly, probably due to sulfide mineral precipitation. Despite its low solubility, the Cd content in rice grains exceeded the food quality standards for both cultivars. Trace metal contents in different rice plant tissues (roots, stem, and leaves) increased at a constant rate during the first flooding and drainage cycle but decreased after reaching a maximum during the second cycle. As such, the high temporal variability in trace metal solubility was not reflected in trace metal uptake by rice plants over time. This might be due to the presence of aerobic conditions and a consequent higher trace metal solubility near the root surface, even during flooding. Trace metal solubility in the rhizosphere should be considered when linking water management to trace metal uptake by rice over time.

  1. Wettability of poultry litter biochars at variable pyrolysis temperatures and their impact on soil wettability and water retention relationships

    Science.gov (United States)

    Yi, S. C.; Witt, B.; Guo, M.; Chiu, P.; Imhoff, P. T.

    2012-12-01

    To reduce the impact of poultry farming on greenhouse gas emissions, poultry farming waste - poultry litter - can be converted to biofuel and biochar through slow-pyrolysis, with the biochar added to agricultural soil for nutrient enrichment and carbon sequestration. While biochars from source materials other than poultry litter have been shown to sequester carbon and increase soil fertility, there is considerable variability in biochar behavior - even with biochars created from the same source material. This situation is exacerbated by our limited understanding of how biochars alter physical, chemical, and biological processes in agricultural soils. The focus of this work is to develop a mechanistic understanding of how poultry litter (PL) biochars affect the hydrology, microbial communities, N2O emissions, and nitrogen cycling in agricultural soils. The initial focus is on the impact of PL biochar on soil hydrology. PL from Perdue AgriRecycle, LLC (Seaford, Delaware) was used to produce biochars at pyrolysis temperatures from 300°C to 600°C. To explore the impact of these biochars on soil wettability, the PL biochars were mixed with a 30/40 Accusand in mass fractions from 0% to 100%. The water contact angle was then measured using a goniometer on these sand/biochar mixtures using the sessile drop method and a single layer of sample particles. The PL biochars produced at temperatures between 300°C to 400°C were hydrophobic, while those pyrolized at > 400°C were hydrophilic. Water contact angles for samples with 100% biochar varied systematically with pyrolysis temperature, decreasing from 101.12° to 20.57° as the pyrolysis temperature increased from 300 to 600°C. Even for small amounts of hydrophobic biochar added to the hydrophilic sand, the contact angle of the mixture was altered: for sand/biochar mixtures containing only 2% hydrophobic PL biochar by weight, the contact angle of the mixture increased from ~ 8° (0% biochar) to 20° (2% biochar). For

  2. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau

    Science.gov (United States)

    Cao, W.; Sheng, Y.

    2017-12-01

    The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different

  3. Weather-induced variability of cesium 137 content in overground part of automorphic soil plants

    International Nuclear Information System (INIS)

    Eliashevich, H.V.

    2000-01-01

    Daily variability of specific cesium 137 content in plants (12 species) from 30-km zone of Chernobyl NPP in summer time under the influence of climatic factors is shown. The rise of residual solar radiation (exceeding 2 MJ/m 2 in a day) and average diurnal temperature over 10 - 15 degrees centigrade (for different species) induced decrease in activity of overground phyto mass while precipitation takes opposite effect. A threshold and non-threshold type of cesium 137 accumulation in plants was recorded at higher daily fall-out. Critical sum of diurnal precipitation for the latter case in 5 species (Agropyron repens (L.) P.B., Bromus inermis Leyss., Origanum vulgare L., Festuca arundinacea Shreb., Acer plata noides L.) is in the range of 20 - 25 mm

  4. Spatio-temporal variability of the molecular fingerprint of soil dissolved organic matter in a headwater agricultural catchment

    Science.gov (United States)

    Jeanneau, Laurent; Pierson-Wickmann, Anne-Catherine; Jaffrezic, Anne; Lambert, Thibault; Gruau, Gérard

    2013-04-01

    Dissolved organic matter (DOM) is implied in (i) ecosystem services such as the support of biodiversity, (ii) the alteration of the drinkable water quality by formation of trihalomethane and (iii) the transfer of micropollutants from soils to rivers. Moreover, since DOM connects soils and oceans that are interacting with the atmosphere, understanding its biogeochemistry will help in investigating the carbon cycle and in creating strategies to mitigate climate change. DOM in headwater stream ecosystems is mainly inherited from allochtonous inputs with different reservoirs being mobilized during storm and interstorm events at the scale of an hydrological year. Those changes in DOM reservoirs, if accompanied by composition and reactivity changes, may impact DOM ecosystem services and drinking water production processes. Elucidating the compositional changes due to changes in the source of DOM in rivers has thus become a important axis of DOM research. The aim of this study is to test the ability of the molecular tools of the organic geochemistry and more specifically the combination of thermochemiolysis and gas chromatography - mass spectrometry (THM-GC-MS) to (i) link the variability of the river DOM composition to different DOM reservoirs in catchment soils and (ii) provide hypothesis on the nature and the mechanisms of formation (microbial growth, litter decomposition) of those reservoirs. This analytical method seems particularly adapted since it allows the differentiation between vegetal and microbial inputs and the determination of the extent of the biodegradation process of biomolecules such as lignin. To test this method, the molecular fingerprint of soil DOM has been investigated in the wetland area of a small (500 ha) agricultural catchment (the so-called Kervidy-Naizin catchment) located in Brittany, western France. The soil DOM was sampled fortnightly at three depths using zero-tension lysimeters during the hydrological year 2010-2011. The samples were

  5. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Reiffarth, D.G., E-mail: Dominic.Reiffarth@unbc.ca [Natural Resources and Environmental Studies Program, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Petticrew, E.L., E-mail: Ellen.Petticrew@unbc.ca [Geography Program and Quesnel River Research Centre, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Owens, P.N., E-mail: Philip.Owens@unbc.ca [Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9 (Canada); Lobb, D.A., E-mail: David.Lobb@umanitoba.ca [Watershed Systems Research Program, University of Manitoba, 13 Freedman Crescent, Winnipeg, MB R3T 2N2 (Canada)

    2016-09-15

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C{sub 16} and C{sub 18}. - Highlights: • Compound-specific stable isotopes (CSSIs) of carbon may be used as soil tracers. • The variables affecting CSSI data are: biological, environmental and analytical. • Understanding sources of variability will lead

  6. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review

    International Nuclear Information System (INIS)

    Reiffarth, D.G.; Petticrew, E.L.; Owens, P.N.; Lobb, D.A.

    2016-01-01

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C 16 and C 18 . - Highlights: • Compound-specific stable isotopes (CSSIs) of carbon may be used as soil tracers. • The variables affecting CSSI data are: biological, environmental and analytical. • Understanding sources of variability will lead to more

  7. Vertical random variability of the distribution coefficient in the soil and its effect on the migration of fallout radionuclides

    International Nuclear Information System (INIS)

    Bunzl, K.

    2002-01-01

    In the field, the distribution coefficient, K d , for the sorption of a radionuclide by the soil cannot be expected to be constant. Even in a well defined soil horizon, K d will vary stochastically in horizontal as well as in vertical direction around a mean value. The horizontal random variability of K d produce a pronounced tailing effect in the concentration depth profile of a fallout radionuclide, much less is known on the corresponding effect of the vertical random variability. To analyze this effect theoretically, the classical convection-dispersion model in combination with the random-walk particle method was applied. The concentration depth profile of a radionuclide was calculated one year after deposition assuming constant values of the pore water velocity, the diffusion/dispersion coefficient, and the distribution coefficient (K d = 100 cm 3 x g -1 ) and exhibiting a vertical variability for K d according to a log-normal distribution with a geometric mean of 100 cm 3 x g -1 and a coefficient of variation of CV 0.53. The results show that these two concentration depth profiles are only slightly different, the location of the peak is shifted somewhat upwards, and the dispersion of the concentration depth profile is slightly larger. A substantial tailing effect of the concentration depth profile is not perceivable. Especially with respect to the location of the peak, a very good approximation of the concentration depth profile is obtained if the arithmetic mean of the K d -values (K d = 113 cm 3 x g -1 ) and a slightly increased dispersion coefficient are used in the analytical solution of the classical convection-dispersion equation with constant K d . The evaluation of the observed concentration depth profile with the analytical solution of the classical convection-dispersion equation with constant parameters will, within the usual experimental limits, hardly reveal the presence of a log-normal random distribution of K d in the vertical direction in

  8. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    Science.gov (United States)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting

  9. Control of fast non linear systems - application to a turbo charged SI engine with variable valve timing; controle des systemes rapides non lineaires - application au moteur a allumage commande turbocompresse a distribution variable

    Energy Technology Data Exchange (ETDEWEB)

    Colin, G.

    2006-10-15

    Spark ignition engine control has become a major issue for the compliance with emissions legislation while ensuring driving comfort. Engine down-sizing is one of the promising ways to reduce fuel consumption and resulting CO{sub 2} emissions. Combining several existing technologies such as supercharging and variable valve actuation, down-sizing is a typical example of the problems encountered in Spark Ignited (SI) engine control: nonlinear systems with saturation of actuators; numerous major physical phenomena not measurable; limited computing time; control objectives (consumption, pollution, performance) often competing. A methodology of modelling and model-based control (internal model and predictive control) for these systems is also proposed and applied to the air path of the down-sized engine. Models, physicals and generics, are built to estimate in-cylinder air mass, residual burned gases mass and air scavenged mass from the intake to the exhaust. The complete and generic engine torque control architecture for the turbo-charged SI engine with variable cam-shaft timing was tested in simulation and experimentally (on engine and vehicle). These tests show that new possibilities are offered in order to decrease pollutant emissions and optimize engine efficiency. (author)

  10. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    Science.gov (United States)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  11. Impact of Seasonal Variability in Water, Plant and Soil Nutrient Dynamics in Agroecosystems

    Science.gov (United States)

    Pelak, N. F., III; Revelli, R.; Porporato, A. M.

    2017-12-01

    Agroecosystems cover a significant fraction of the Earth's surface, making their water and nutrient cycles a major component of global cycles across spatial and temporal scales. Most agroecosystems experience seasonality via variations in precipitation, temperature, and radiation, in addition to human activities which also occur seasonally, such as fertilization, irrigation, and harvesting. These seasonal drivers interact with the system in complex ways which are often poorly characterized. Crop models, which are widely used for research, decision support, and prediction of crop yields, are among the best tools available to analyze these systems. Though normally constructed as a set of dynamical equations forced by hydroclimatic variability, they are not often analyzed using dynamical systems theory and methods from stochastic ecohydrology. With the goal of developing this viewpoint and thus elucidating the roles of key feedbacks and forcings on system stability and on optimal fertilization and irrigation strategies, we develop a minimal dynamical system which contains the key components of a crop model, coupled to a carbon and nitrogen cycling model, driven by seasonal fluctuations in water and nutrient availability, temperature, and radiation. External drivers include seasonally varying climatic conditions and random rainfall forcing, irrigation and fertilization as well as harvesting. The model is used to analyze the magnitudes and interactions of the effects of seasonality on carbon and nutrient cycles, crop productivity, nutrient export of agroecosystems, and optimal management strategies with reference to productivity, sustainability and profitability. The impact of likely future climate scenarios on these systems is also discussed.

  12. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.

    Science.gov (United States)

    Forkuor, Gerald; Hounkpatin, Ozias K L; Welp, Gerhard; Thiel, Michael

    2017-01-01

    Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness

  13. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.

    Directory of Open Access Journals (Sweden)

    Gerald Forkuor

    Full Text Available Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat, terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC, soil organic carbon (SOC and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR, random forest regression (RFR, support vector machine (SVM, stochastic gradient boosting (SGB-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices

  14. Improved intact soil-core carbon determination applying regression shrinkage and variable selection techniques to complete spectrum laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bricklemyer, Ross S; Brown, David J; Turk, Philip J; Clegg, Sam M

    2013-10-01

    Laser-induced breakdown spectroscopy (LIBS) provides a potential method for rapid, in situ soil C measurement. In previous research on the application of LIBS to intact soil cores, we hypothesized that ultraviolet (UV) spectrum LIBS (200-300 nm) might not provide sufficient elemental information to reliably discriminate between soil organic C (SOC) and inorganic C (IC). In this study, using a custom complete spectrum (245-925 nm) core-scanning LIBS instrument, we analyzed 60 intact soil cores from six wheat fields. Predictive multi-response partial least squares (PLS2) models using full and reduced spectrum LIBS were compared for directly determining soil total C (TC), IC, and SOC. Two regression shrinkage and variable selection approaches, the least absolute shrinkage and selection operator (LASSO) and sparse multivariate regression with covariance estimation (MRCE), were tested for soil C predictions and the identification of wavelengths important for soil C prediction. Using complete spectrum LIBS for PLS2 modeling reduced the calibration standard error of prediction (SEP) 15 and 19% for TC and IC, respectively, compared to UV spectrum LIBS. The LASSO and MRCE approaches provided significantly improved calibration accuracy and reduced SEP 32-55% over UV spectrum PLS2 models. We conclude that (1) complete spectrum LIBS is superior to UV spectrum LIBS for predicting soil C for intact soil cores without pretreatment; (2) LASSO and MRCE approaches provide improved calibration prediction accuracy over PLS2 but require additional testing with increased soil and target analyte diversity; and (3) measurement errors associated with analyzing intact cores (e.g., sample density and surface roughness) require further study and quantification.

  15. Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya

    NARCIS (Netherlands)

    Arias-navarro, C.; Díaz-pinés, E.; Klatt, S.; Brandt, P.; Rufino, M.C.; Butterbach-bahl, K.; Verchot, L.V.

    2017-01-01

    Quantifying and understanding the small-scale variability of nitrous oxide (N2O) and carbon dioxide (CO2) emission are essential for reporting accurate ecosystem greenhouse gas budgets. The objective of this study was to evaluate the spatial pattern of soil CO2 and N2O emissions and their relation

  16. Availability of potassium in biomass combustion ashes and gasification biochars after application to soils with variable pH and clay content

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Rubæk, Gitte Holton; Sørensen, Peter

    2017-01-01

    .8–7.8) and clay contents (3–17%). Exchangeable K in the product-soil mixture was determined, and the K recovery rate from the applied products varied from 31 to 86%. The relative recovery compared to applied KCl was used to indicate K availability and was 50–86% across all soils, but lower for two sewage sludge....... The objective of this study was to evaluate the potassium (K) availability in various types of biomass ashes and gasification biochars (GBs) derived from straw, wood, sewage sludge and poultry manure when mixed with soil. A 16-week incubation study was conducted with three contrasting soils of variable pH (5...

  17. Towards the development of multifunctional molecular indicators combining soil biogeochemical and microbiological variables to predict the ecological integrity of silvicultural practices.

    Science.gov (United States)

    Peck, Vincent; Quiza, Liliana; Buffet, Jean-Philippe; Khdhiri, Mondher; Durand, Audrey-Anne; Paquette, Alain; Thiffault, Nelson; Messier, Christian; Beaulieu, Nadyre; Guertin, Claude; Constant, Philippe

    2016-05-01

    The impact of mechanical site preparation (MSP) on soil biogeochemical structure in young larch plantations was investigated. Soil samples were collected in replicated plots comprising simple trenching, double trenching, mounding and inverting site preparation. Unlogged natural mixed forest areas were used as a reference. Analysis of soil nutrients, abundance of bacteria and gas exchanges unveiled no significant difference among the plots. However, inverting site preparation resulted in higher variations of gas exchanges when compared with trenching, mounding and unlogged natural forest. A combination of the biological and physicochemical variables was used to define a multifunctional classification of the soil samples into four distinct groups categorized as a function of their deviation from baseline ecological conditions. According to this classification model, simple trenching was the approach that represented the lowest ecological risk potential at the microsite level. No relationship was observed between MSP method and soil bacterial community structure as assessed by high-throughput sequencing of bacterial 16S rRNA gene; however, indicator genotypes were identified for each multifunctional soil class. This is the first identification of multifunctional molecular indicators for baseline and disturbed ecological conditions in soil, demonstrating the potential of applied microbial ecology to guide silvicultural practices and ecological risk assessment. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Why is seed production so variable among individuals? A ten-year study with oaks reveals the importance of soil environment.

    Science.gov (United States)

    Pérez-Ramos, Ignacio M; Aponte, Cristina; García, Luis V; Padilla-Díaz, Carmen M; Marañón, Teodoro

    2014-01-01

    Mast-seeding species exhibit not only a large inter-annual variability in seed production but also considerable variability among individuals within the same year. However, very little is known about the causes and consequences for population dynamics of this potentially large between-individual variability. Here, we quantified seed production over ten consecutive years in two Mediterranean oak species - the deciduous Quercus canariensis and the evergreen Q. suber - that coexist in forests of southern Spain. First, we calibrated likelihood models to identify which abiotic and biotic variables best explain the magnitude (hereafter seed productivity) and temporal variation of seed production at the individual level (hereafter CVi), and infer whether reproductive effort results from the available soil resources for the plant or is primarily determined by selectively favoured strategies. Second, we explored the contribution of between-individual variability in seed production as a potential mechanism of satiation for predispersal seed predators. We found that Q. canariensis trees inhabiting moister and more fertile soils were more productive than those growing in more resource-limited sites. Regarding temporal variation, individuals of the two studied oak species inhabiting these resource-rich environments also exhibited larger values of CVi. Interestingly, we detected a satiating effect on granivorous insects at the tree level in Q. suber, which was evident in those years where between-individual variability in acorn production was higher. These findings suggest that individual seed production (both in terms of seed productivity and inter-annual variability) is strongly dependent on soil resource heterogeneity (at least for one of the two studied oak species) with potential repercussions for recruitment and population dynamics. However, other external factors (such as soil heterogeneity in pathogen abundance) or certain inherent characteristics of the tree might be

  19. Instrumenting an upland research catchment in Canterbury, New Zealand to study controls on variability of soil moisture, shallow groundwater and streamflow

    Science.gov (United States)

    McMillan, Hilary; Srinivasan, Ms

    2015-04-01

    Hydrologists recognise the importance of vertical drainage and deep flow paths in runoff generation, even in headwater catchments. Both soil and groundwater stores are highly variable over multiple scales, and the distribution of water has a strong control on flow rates and timing. In this study, we instrumented an upland headwater catchment in New Zealand to measure the temporal and spatial variation in unsaturated and saturated-zone responses. In NZ, upland catchments are the source of much of the water used in lowland agriculture, but the hydrology of such catchments and their role in water partitioning, storage and transport is poorly understood. The study area is the Langs Gully catchment in the North Branch of the Waipara River, Canterbury: this catchment was chosen to be representative of the foothills environment, with lightly managed dryland pasture and native Matagouri shrub vegetation cover. Over a period of 16 months we measured continuous soil moisture at 32 locations and near-surface water table (versus hillslope locations, and convergent versus divergent hillslopes. We found that temporal variability is strongly controlled by the climatic seasonal cycle, for both soil moisture and water table, and for both the mean and extremes of their distributions. Groundwater is a larger water storage component than soil moisture, and the difference increases with catchment wetness. The spatial standard deviation of both soil moisture and groundwater is larger in winter than in summer. It peaks during rainfall events due to partial saturation of the catchment, and also rises in spring as different locations dry out at different rates. The most important controls on spatial variability are aspect and distance from stream. South-facing and near-stream locations have higher water tables and more, larger soil moisture wetting events. Typical hydrological models do not explicitly account for aspect, but our results suggest that it is an important factor in hillslope

  20. Incorporating the site variability and laboratory/in-situ testing variability of soil properties in geotechnical engineering design : research project capsule : technology transfer program.

    Science.gov (United States)

    2016-04-01

    While structural engineering deals with mostly homogeneous manmade materials : (e.g., concrete and steel), geotechnical engineering typically involves highly varied : natural materials (e.g., soil and rock). As a result, high variance of the resistan...

  1. Variability in the growth and nodulation of soybean in response to elevation and soil properties in the himalayan region of kashmir-pakistan

    International Nuclear Information System (INIS)

    Rahim, N.; Abbasi, M.K.

    2017-01-01

    This study was conducted to examine the variability of soybean nodulation and growth in relation to elevation and soil properties across the slopping uplands of the Himalayan region of Rawalakot Azad Jammu and Kashmir (AJK), Pakistan in order to find efficient native N2 fixing bacteria adapted to local soil and climatic characteristics. Soils from twenty two different sites with variable altitude were collected and analyzed for different physico-chemical characteristics including the quantitative estimation of rhizobium population through most probable number (MPN) technique. Soybean cultivar William-82 was grown in these soils under greenhouse condition for determining the nodulation potential (number and mass) and plant growth characteristics. Morphology of the nodules were observed through optical and transmission electron microscopy. Principal component analysis (PCA) and Biplot graph were used to jointly interpret the relationship between variables and soils (treatments). Soil altitude ranged from 855 m to 3000 m while organic matter content varied between 0.8% to 3.5% and pH from 6.0 to 8.1. The indigenous rhizobia population varied between 5.0 x104 to 8.0 x106 CFU g-1 showing the existence of a substantial rhizobial population in these soils. The number of nodules per plant varied from 7 to 40 (CV 38%) suggesting site/location as an important factor contributing towards rhizobia population and impacting root nodulation. The electron microscopy of green plant nodules showed densely populated bacteria in these cells and nodule tissue cells were completely infected with bacteria. The growth characteristics of soybean i.e. shoot length, shoot fresh and dry weight, root length, root fresh and dry weight varied among the sites but in general a vigorous and healthy plant growth was observed reflecting N assimilation from native soils. Results showed a substantial variability between sites and this is likely to be due to inter/intra species diversity, as well as

  2. Variability of δ15N in soil and plants at a New Zealand hill country site: correlations with soil chemistry and nutrient inputs

    International Nuclear Information System (INIS)

    Hawke, D.J.

    2000-01-01

    This study investigated 15 N enrichment and nutrient cycling in hill country used for semi-extensive pastoral agriculture, at a site where pre-European seabird breeding occurred. Soil (>15 cm) and plant samples were taken from 18 ridgeline and sideslope transects. Three stock camps (locations which grazing animals frequent) were identified within the study area, two on the ridgeline and one on the sideslope. Soil 15 N enrichment was greatest at stock camps, and lowest where stock input was minimal. Soil natural abundance 15 N (815N) was therefore an index of stock nutrient inputs. Soil δ 15 N increased with decreasing C:N ratio, consistent with N loss through volatilisation and/or nitrate leaching from net mineralisation. Plant δ 15 N from stock camps was lower than its associated soil, implying that 15 N enrichment of plant-available N was lower than that of total soil N. However, the correlation between plant δ 15 N and soil δ 15 N varied between stock camps, indicating differences in N cycling. Olsen P was higher at stock camps, although again differences were found between stock camps. Total P and N were correlated neither with stock camps nor topography, but were higher than expected from parent material concentrations and literature results, respectively. It is postulated that significant contributions of both elements from former seabird breeding remain in the soil. Copyright (2000) CSIRO Publishing

  3. Windthrow and fallow-forest successions impacts in soil carbon stocks and GHG fluxes spatial variability and dynamics in the Central Russia' reserve spruce ecosystems

    Science.gov (United States)

    Vasenev, Ivan; Ivanov, Alexey; Komarova, Tatyana; Valentini, Riccardo

    2015-04-01

    High spatial and temporal variability is mutual feature for most forest soils that is especially obvious in case of their carbon stocks and GHG fluxes. This phenomenon is generally well-known but not so often becomes the object of special precision investigation in detail and small scales so there are still serious gaps in its principal factors understanding due to their high bioclimatic, regional, landscape, tree species and temporal variability. Southern taiga is one of the most environmentally important world zonal forest ecosystems due to its still comparatively intensive carbon biogeochemical cycle and huge area in the northern Eurasia with strong anthropogenic impacts by Western & Central European and Southern & Eastern Asian regions. Central Forest Biospheric Reserve (Tver region, 360 km to North-West from Moscow) is the principal southern-taiga reserve in the European territory of Russia. Since start of its research activity in 1939 the reserve became the regional center of mature spruce ecosystem structure and dynamics investigation. In 1970-1980-s there have been done complex investigations of windthrow soil patterns and fallow-forest successions. Since middle of 1990-s the ecosystem-level GHG fluxes have been observed by eddy covariance method. Since 2012 the detailed year-round monitoring is running in the southern-taiga zonal station of the regional system RusFluxNet with especial attention on the soil carbon stocks and GHG fluxes spatial variability and dynamics due to windthrow and fallow-forest successions (in frame of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266). Soil carbon dynamics is investigated in decades-hundred-year chronosequences of dominated parcels and different-size windthrow soil cover patterns, including direct investigation during last 33 years with detailed mapping, soil profile morphometrics and bulk density, morphogenetic and statistical analysis of mass data. Morphogenetic analysis of microrelief, soil profile

  4. Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A.

    Science.gov (United States)

    Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.

    2016-01-01

    Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.

  5. Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO2 enrichment

    Directory of Open Access Journals (Sweden)

    M. A. Gonzalez-Meler

    2011-10-01

    Full Text Available Soil respiration (RS is a major flux in the global carbon (C cycle. Responses of RS to changing environmental conditions may exert a strong control on the residence time of C in terrestrial ecosystems and in turn influence the atmospheric concentration of greenhouse gases. Soil respiration consists of several components oxidizing soil C from different pools, age and chemistry. The mechanisms underlying the temporal variability of RS components are poorly understood. In this study, we used the long-term whole-ecosystem 13C tracer at the Duke Forest Free Air CO2 Enrichment site to separate forest RS into its autotrophic (RR and heterotrophic components (RH. The contribution of RH to RS was further partitioned into litter decomposition (RL, and decomposition of soil organic matter (RSOM of two age classes – up to 8 yr old and SOM older than 8 yr. Soil respiration was generally dominated by RSOM during the growing season (44% of daytime RS, especially at night. The contribution of heterotrophic respiration (RSOM and RL to RS was not constant, indicating that the seasonal variability in RR alone cannot explain seasonal variation in RS. Although there was no diurnal variability in RS, there were significant compensatory differences in the contribution of individual RS components to daytime and nighttime rates. The average contribution of RSOM to RS was greater at night (54% than during the day (44%. The average contribution of RR to total RS was ~30% during the day and ~34% during the night. In contrast, RL constituted 26% of RS during the day and only 12% at night. About 95% of the decomposition of soil C older than 8 yr (Rpre-tr originated from RSOM and showed more pronounced and consistent diurnal variability than any other RS component; nighttime rates were on average 29% higher than daytime rates. In contrast, the decomposition of more recent, post-treatment C (Rpre-tr did not vary diurnally. None of the diurnal variations in components of RH

  6. Variability of apparently homogeneous soilscapes in São Paulo state, Brazil: II. quality of soil maps

    Directory of Open Access Journals (Sweden)

    M. van Den Berg

    2000-06-01

    Full Text Available The quality of semi-detailed (scale 1:100.000 soil maps and the utility of a taxonomically based legend were assessed by studying 33 apparently homogeneous fields with strongly weathered soils in two regions in São Paulo State: Araras and Assis. An independent data set of 395 auger sites was used to determine purity of soil mapping units and analysis of variance within and between mapping units and soil classification units. Twenty three soil profiles were studied in detail. The studied soil maps have a high purity for some legend criteria, such as B horizon type (> 90% and soil texture class (> 80%. The purity for the "trophic character" (eutrophic, dystrophic, allic was only 55% in Assis. It was 88% in Araras, where many soil units had been mapped as associations. In both regions, the base status of clay-textured soils was generally better than suggested by the maps. Analysis of variance showed that mapping was successful for "durable" soil characteristics such as clay content (> 80% of variance explained and cation exchange capacity (≥ 50% of variance explained of 0-20 and 60-80 cm layers. For soil characteristics that are easily modified by management, such as base saturation of the 0-20 cm layer, the maps had explained very little ( 100 m; (b taking advantage of correlations between easily measured soil characteristics and chemical soil properties and, (c unbending the link between legend criteria and a taxonomic system. The maps are well suited to obtain an impression of land suitability for high-input farming. Additional field work and data on former land use/management are necessary for the evaluation of chemical properties of surface horizons.

  7. Seasonal variability in soil-surface CO{sub 2} efflux in selected young tree plantations in semi-arid eco-climate of Madurai

    Energy Technology Data Exchange (ETDEWEB)

    Saraswathi, S.G.; Lalrammawia, C.; Paliwal, K. [Madurai Kamaraj Univ., Madurai (India). Dept. of Plant Sciences

    2008-07-10

    Atmospheric CO{sub 2} concentrations have been increasing in response to the disruption of the global carbon cycle by anthropogenic activities such as deforestation, agricultural practices and burning of fossil fuels. This has resulted in large shifts among carbon pools. The efflux of CO{sub 2} from soil results from the combined rates of autotrophic (root) and heterotrophic (microbial and soil fauna) respiration. It is often called soil respiration. The response of soil respiration (SR) to varying soil temperature and soil moisture was studied in three year-old plantation sites of Dalbergia sissoo, Dalbergia latifolia, Albizia lebbeck, Hardwickia binata and Cassia siamea during 2005--06. Significant seasonal differences in SR rates were observed in each site (P {<=} 0.001). The highest rates of soil CO{sub 2} efflux were generally found during the rainy season and the lowest during summer in all the study sites. Highest SR rates were found in D. sissoo, 9.89 {+-} 0.78 {mu}mol m{sup -2} s{sup -1} in November and December, followed by H. binata, 9.68 {+-} 0.45 {mu}mol m{sup -2} s{sup -1} in September and October 2005, A. lebbeck, 8.84 {+-} 0.43 {mu}mol m{sup -2} s{sup -1} between November 2005 and January 2006, D. latifolia, 7.6 {+-} 0.12 {mu}mol m{sup -2} s{sup -1} in November and December 2005 and C. siamea, 7.3 {mu}mol m{sup -2} s{sup -1} in December 2005. There was a positive and significant (P {<=} 0.001) relationship between SR rates and soil moisture in all the sites (r{sup 2} above 0.60), except C. siamea (r{sup 2} = 0.30). A poor relationship was observed between SR and soil temperature in all the sites (r{sup 2} below 0.2). Examination of the seasonal pattern of SR rates suggests that much of the variability could be attributed to variations in soil moisture. There was a strong indication suggesting that the soil-water deficits served to reduce SR rates during summer and after subsequent rain events. Overall sensitivity of SR rate to soil moisture seems to

  8. Analyzing spatial variability of soil properties in the urban park before and after reconstruction to support decision-making in landscaping

    Science.gov (United States)

    Romzaikina, Olga; Vasenev, Viacheslav; Khakimova, Rita

    2017-04-01

    On-going urbanization stresses a necessity for structural and aesthetically organized urban landscapes to improve citizen's life quality. Urban soils and vegetation are the main components of urban ecosystems. Urban greenery regulates the climate, controls and air quality and supports biodiversity in urban areas. Soils play a key role in supporting urban greenery. However, soils of urban parks also perform other important environmental functions. Urban soils are influenced by a variety of environmental and anthropogenic factors and, in the result, are highly heterogeneous and dynamic. Reconstructions of green zones and urban parks, usually occurring in cities, alter soil properties. Analyzing spatial variability and dynamics of soil properties is important to support decision-making in landscaping. Therefore, the research aimed to analyze the spatial distribution of the key soil properties (acidity, soil organic carbon (SOC) and nutrient contents) in the urban park before and after reconstruction to support decision-making in selecting ornamental plants for landscaping. The research was conducted in the urban park named after Artyom Borovik in Moscow before (2012) and after (2014) the reconstruction. Urban soil's properties maps for both periods were created by interpolation of the field data. The observed urban soils included recreazems, urbanozems and constuctozems. Before the reconstruction soils were sampled using the uniform design (the net with 100 m side and key plots with 50m size). After the reconstructions the additional samples were collected at locations, where the land cover and functional zones changed in a result of the reconstruction.We sample from the depths 0-30, 30-50 and 50-100 cm. The following soil properties were measured: pH, SOC, K2O and P2O5. The maps of the analyzed properties were developed using open QGIS2.4 software by IDW. The vegetation in the park was examined using the scale of the visual assessment. The results of the visual

  9. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment

    Science.gov (United States)

    Ferreira, C. S. S.; Walsh, R. P. D.; Steenhuis, T. S.; Shakesby, R. A.; Nunes, J. P. N.; Coelho, C. O. A.; Ferreira, A. J. D.

    2015-06-01

    Planning of semi-urban developments is often hindered by a lack of knowledge on how changes in land-use affect catchment hydrological response. The temporal and spatial patterns of overland flow source areas and their connectivity in the landscape, particularly in a seasonal climate, remain comparatively poorly understood. This study investigates seasonal variations in factors influencing runoff response to rainfall in a peri-urban catchment in Portugal characterized by a mosaic of landscape units and a humid Mediterranean climate. Variations in surface soil moisture, hydrophobicity and infiltration capacity were measured in six different landscape units (defined by land-use on either sandstone or limestone) in nine monitoring campaigns at key times over a one-year period. Spatiotemporal patterns in overland flow mechanisms were found. Infiltration-excess overland flow was generated in rainfalls during the dry summer season in woodland on both sandstone and limestone and on agricultural soils on limestone due probably in large part to soil hydrophobicity. In wet periods, saturation overland flow occurred on urban and agricultural soils located in valley bottoms and on shallow soils upslope. Topography, water table rise and soil depth determined the location and extent of saturated areas. Overland flow generated in upslope source areas potentially can infiltrate in other landscape units downslope where infiltration capacity exceeds rainfall intensity. Hydrophilic urban and agricultural-sandstone soils were characterized by increased infiltration capacity during dry periods, while forest soils provided potential sinks for overland flow when hydrophilic in the winter wet season. Identifying the spatial and temporal variability of overland flow sources and sinks is an important step in understanding and modeling flow connectivity and catchment hydrologic response. Such information is important for land managers in order to improve urban planning to minimize flood risk.

  10. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  11. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  12. Hydrological Variables and Dissolved Phosphorus in the Runoff from No-tilled Soil after Application of Swine Liquid

    Science.gov (United States)

    Barbosa, F. T.; Bertol, I.; de Amaral, A. J.; Grahl dos Santos, P.; Ramos, R. R.; Werner, R. S.; Miras Avalos, J. M.

    2012-04-01

    Swine manure is used as a soil fertilizer in South Brazil. Commonly, it is applied continuously and in great amounts over surfaces with an important relief and without facilities that avoid water erosion. Thus, this manure is a potential risk of environmental pollution, mainly for the eutrophication of water bodies due to a runoff rich in nutrients. The aim of this work was to assess some soil hydrological parameters and to quantify the dissolved phosphorus losses in the runoff from no-tilled soils after the application of swine liquid manure. The experiment was carried out in the Highlands of Santa Catarina State, Brazil, in June 2009, over a Nitisol. On field plots, a 90-minute simulated rainfall test was performed with a rotating boom rainfall simulator and rainfall intensity of 70 mm h-1. Prior to the rainfall simulation, sowing was performed using a disk planter either with or without tines. Spacing between lines was 0.5 m. Swine liquid manure was applied at rates of 0.0, 30 and 60 m3ha-1 to the plots planted using tines; whereas it was applied at 15, 45 e 75 m3ha-1 to the plots were no tines were used for planting. During rainfall simulation, readings of runoff rate were taken each five minutes; total water loss was calculated by integrating all the 5-minute readings. Runoff samples were collected at 10 minutes intervals, and they were filtered through a 0.45 μm filter to determine dissolved phosphorus. Hydrological variables were significantly affected by the use of tines, which favoured infiltration and reduced runoff as compared to the non-use of tines. Runoff started at 28 and 11 minutes, water losses were 252 and 467 m3 ha-1, maximum runoff rate were 29 and 42 mm h-1 and constant rates of infiltration were 41 and 28 mm h-1, for treatments with and without tines, respectively. Dissolved phosphorus increased with the rate of swine liquid manure applied, with a trend to decrease from the beginning to the end of rainfall. The highest concentration was 0

  13. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter.

    Science.gov (United States)

    Craig, Matthew E; Turner, Benjamin L; Liang, Chao; Clay, Keith; Johnson, Daniel J; Phillips, Richard P

    2018-03-24

    Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long-term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM-dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition-e.g. most AM-dominated forests-enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM-dominance in three temperate forests. By focusing on sites where AM- and ECM-plants co-occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM-dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM. © 2018 John Wiley & Sons Ltd.

  14. Spatial variability of soil electrical conductivity under the mole rats (Spalax microphthalmus digging activity at the different scales

    Directory of Open Access Journals (Sweden)

    A. V. Zhukov

    2012-07-01

    Full Text Available The soil mounds emerged owing to the mole rats’ digging activity have been shown to be characterised by less electrical conductivity than surrounded soil. This effect is due to the changes of the mounds bulk’s density and moisture. The effect of the mole rats’ digging activity on the soil electrical conductivity has been found not to be restricted by the geometrical border of the mounds. The mounds are surrounded by 1–1.5 m halo of increased soil electrical conductivity. The halo size is increased with the aging of the mound and with the compacting of their aggregation.

  15. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  16. Variabilidade espacial de atributos físicos do solo sob diferentes usos e manejos Spatial variability of physical attributes of soil under different use and management conditions

    Directory of Open Access Journals (Sweden)

    Eloiza G. S. Cavalcante

    2011-03-01

    Full Text Available O preparo de solo e as espécies vegetais têm expressivo efeito na variabilidade espacial do solo. Portanto, objetivou-se com este trabalho estudar a variabilidade espacial de alguns atributos físicos de um Latossolo Vermelho do cerrado do Mato Grosso do Sul, sob diferentes usos e manejos. O solo foi amostrado em uma malha, com intervalos regulares de 2,0 m, perfazendo o total de 64 pontos, nas profundidades de 0-0,10 m e 0,10-0,20 m para densidade do solo e nas profundidades de 0-0,15 m; 0,15-0,30 m; 0,30-0,45 m e 0,45-0,60 m para resistência do solo à penetração e teor de água no solo, em áreas com vegetação natural (cerrado, plantio direto, preparo convencional e pastagem. O maior coeficiente de variação e efeito pepita ocorreram para a resistência do solo à penetração. O sistema plantio direto apresentou maior alcance quando comparado com o do cerrado, preparo convencional e área com pastagem. As formas de uso e de manejo empregadas induziram, em ordem crescente, plantio direto, preparo convencional e pastagem à degradação dos atributos físicos do solo em relação ao cerrado.The soil tillage and the vegetable species have expressive effect on spatial variability of soil. The objective of this work was to study the spatial variability of some physical attributes of savannah soil (Oxisol of Mato Grosso do Sul, Brazil, under different management. The soil samples were collected in a grid, with regular intervals of 2.0 m, total of 64 points, in the depths of 0-0.10 m and 0.10-0.20 m for bulk density and in the depths 0-0.15 m; 0.15-0.30 m; 0.30-0.45 m and 0.45-0.60 m for the soil resistance to the penetration and soil water content, in the areas with native vegetation (savannah, no-tillage, conventional system and pasture. The greatest variability measured through the variation coefficient and nugget effect was observed for the soil resistance to penetration. The no-tillage showed major range when compared to native

  17. VARIABILITY IN SOILS AND VEGETATION ASSOCIATED WITH HARVESTER ANT (POGONOMYRMEX RUGOSUS) NESTS ON A CHIHUAHUAN DESERT WATERSHED

    Science.gov (United States)

    The effects of harvester ant (Pogonomyrmex rugosus) nests on the density and cover of spring annual plants and on soil characteristics were measured at three locations characterized by different soils and dominant vegetation on a desert watershed. There were few differences in ve...

  18. Variability and correlation of physical attributes of soils cultivated with cacao trees in two climate zones in southern Bahia, Brazil

    Science.gov (United States)

    Cacao (Theobroma cacao) is a very important crop in southern Bahia, Brazil, which needs good climate and soil conditions and management for great productivity. In this region, the culture is developed in a large variety of soils, which indicates differentiated products. The aim of this study was to ...

  19. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables.

    Science.gov (United States)

    McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon

    2014-11-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada.

    Science.gov (United States)

    Singh, A K; Hamel, C; Depauw, R M; Knox, R E

    2012-03-01

    Crop nutrient- and water-use efficiency could be improved by using crop varieties highly compatible with arbuscular mycorrhizal fungi (AMF). Two greenhouse experiments demonstrated the presence of genetic variability for this trait in modern durum wheat ( Triticum turgidum L. var. durum Desf.) germplasm. Among the five cultivars tested, 'AC Morse' had consistently low levels of AM root colonization and DT710 had consistently high levels of AM root colonization, whereas 'Commander', which had the highest colonization levels under low soil fertility conditions, developed poor colonization levels under medium fertility level. The presence of genetic variability in durum wheat compatibility with AMF was further evidenced by significant genotype × inoculation interaction effects in grain and straw biomass production; grain P, straw P, and straw K concentrations under medium soil fertility level; and straw K and grain Fe concentrations at low soil fertility. Mycorrhizal dependency was an undesirable trait of 'Mongibello', which showed poor growth and nutrient balance in the absence of AMF. An AMF-mediated reduction in grain Cd under low soil fertility indicated that breeding durum wheat for compatibility with AMF could help reduce grain Cd concentration in durum wheat. Durum wheat genotypes should be selected for compatibility with AMF rather than for mycorrhizal dependency.

  1. Heterogeneity of soil surface ammonium concentration and other characteristics, related to plant specific variability in a Mediterranean-type ecosystem

    International Nuclear Information System (INIS)

    Cruz, Cristina; Bio, Ana M.F.; Jullioti, Aldo; Tavares, Alice; Dias, Teresa; Martins-Loucao, Maria Amelia

    2008-01-01

    Heterogeneity and dynamics of eight soil surface characteristics essential for plants-ammonium and nitrate concentrations, water content, temperature, pH, organic matter, nitrification and ammonification rates-were studied in a Mediterranean-type ecosystem on four occasions over a year. Soil properties varied seasonally and were influenced by plant species. Nitrate and ammonium were present in the soil at similar concentrations throughout the year. The positive correlation between them at the time of greatest plant development indicates that ammonium is a readily available nitrogen source in Mediterranean-type ecosystems. The results presented here suggest that plant cover significantly affects soil surface characteristics. - In Mediterranean-type ecosystems ammonium is present in the soil throughout the year and its concentration is dependent on plant cover

  2. Variabilidad espacial y diaria del contenido de humedad en el suelo en tres sistemas agroforestales Spatial and daily variability of soil moisture content in three agroforestry systems

    Directory of Open Access Journals (Sweden)

    Mariela Rivera Peña

    2009-04-01

    Full Text Available En seis puntos de tres transectos (102 m paralelos (9 m en tres sistemas de uso del terreno (Quesungual menor de dos años, SAQThe objective of this study was to determine the level of soil spatial variability in an area consisting of the land uses: Quesungual slash and mulch agroforestry system with less than two years (QSMAS<2, Slash-and-burn traditional system (SB and Secondary forest (SF. Soil samples were taken in three parallel transects of 102 m in length, separated 9 meters. The profile was sampled in the depths from 0 to 5 cm, 5 to 10 cm, 10 to 20 cm and 20 to 40 cm in 6 points (09, 11 am and 05 during 9 days. Coefficient of variation for soil properties varied for bulk density (0.76 and 15.1%, organic carbon (30.4 and 54.3%, volumetric moisture (9.5 and 23.5%, sand (12.8 and 22.5% and clay (14.0 and 29.2%. The geo-statistical analysis showed that the random component of the spatial dependence was predominant over the nugget effect. The functions of semivariograms, structured for each variable were used to generate maps of interpolated contours at a fine scale. The Moran (I autocorrelation indicated that sampling ranges less than 9 m would be adequate to detect spatial structure of the volumetric moisture variable.

  3. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition. © 2014 John Wiley & Sons Ltd.

  4. Small scale spatial variability and pattern of soil respiration and water content in wet and a dry temperate grasslands and bare soil

    Czech Academy of Sciences Publication Activity Database

    Fóti, S.; Nagy, Z.; Balogh, J.; Bartha, S.; Acosta, Manuel; Czóbel, S.; Péli, E.; Marek, Michal V.; Tuba, Z.

    2009-01-01

    Roč. 28, č. 4 (2009), s. 389-398 ISSN 1335-342X Institutional research plan: CEZ:AV0Z60870520 Institutional support: RVO:67179843 Keywords : chamber technique * coefficient of variation * semivariance * Soil respiration * spatial pattern Subject RIV: EH - Ecology, Behaviour

  5. Soil type, management history and current resource allocation: Three dimensions regulating variability in crop productivity on African smallholder farms

    NARCIS (Netherlands)

    Zingore, S.; Murwira, H.K.; Delve, R.J.; Giller, K.E.

    2007-01-01

    Soil fertility varies markedly within and between African smallholder farms, both as a consequence of inherent factors and differential management. Fields closest to homesteads (homefields) typically receive most nutrients and are more fertile than outlying fields (outfields), with implications for

  6. Spatial Variability of Soil Physical Properties Obtained with Laboratory Methods and Their Relation to Field Electrical Resistivity Measurements

    Science.gov (United States)

    Dathe, A.; Nemes, A.; Bloem, E.; Patterson, M.; Gimenez, D.; Angyal, A.; Koestel, J. K.; Jarvis, N.

    2017-12-01

    Soil spatial heterogeneity plays a critical role for describing water and solute transport processes in the unsaturated zone. Although we have a sound understanding of the physical properties underlying this heterogeneity (like macropores causing preferential water flow), their quantification in a spatial context is still a challenge. To improve existing knowledge and modelling approaches we established a field experiment on an agriculturally used silty clay loam (Stagnosol) in SE Norway. Centimeter to decimeter scale heterogeneities were investigated in the field using electrical resistivity tomography (ERT) in a quasi-3D and a real 3D approach. More than 100 undisturbed soil samples were taken in the 2x1x1 m3plot investigated with 3D ERT to determine soil water retention, saturated and unsaturated hydraulic conductivities and bulk density in the laboratory. A subset of these samples was scanned at the computer tomography (CT) facility at the Swedish University of Agricultural Sciences in Uppsala, Sweden, with special emphasis on characterizing macroporosity. Results show that the ERT measurements captured the spatial distribution of bulk densities and reflected soil water contents. However, ERT could not resolve the large variation observed in saturated hydraulic conductivities from the soil samples. Saturated hydraulic conductivity was clearly related to the macroporosity visible in the CT scans obtained from the respective soil cores. Hydraulic conductivities close to saturation mainly changed with depths in the soil profile and therefore with bulk density. In conclusion, to quantify the spatial heterogeneity of saturated hydraulic conductivities scanning methods with a resolution smaller than the size of macropores have to be used. This is feasible only when the information obtained from for example CT scans of soil cores would be upscaled in a meaningful way.

  7. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    Science.gov (United States)

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Spatial variability and temporal changes in the trace metal content of soils: implications for mine restoration plan.

    Science.gov (United States)

    Chandra, Rachna; Prusty, B Anjan Kumar; Azeez, P A

    2014-06-01

    Trace metals in soils may be inherited from the parent materials or added to the system due to anthropogenic activities. In proposed mining areas, trace metals become an integral part of the soil system. Usually, researchers undertake experiments on plant species selection (for the restoration plan) only after the termination of mining activities, i.e. without any pre-mining information about the soil-plant interactions. Though not shown in studies, it is clear that several recovery plans remain unsuccessful while carrying out restoration experiments. Therefore, we hypothesize that to restore the area effectively, it is imperative to consider the pre-mining scenario of metal levels in parent material as well as the vegetation ecology of the region. With these specifics, we examined the concentrations of trace metals in parent soils at three proposed bauxite locations in the Eastern Ghats, India, and compared them at a spatio-temporal scale. Vegetation quantification and other basic soil parameters accounted for establishing the connection between soil and plants. The study recorded significant spatial heterogeneity in trace metal concentrations and the role of vegetation on metal availability. Oxidation reduction potential (ORP), pH and cation exchange capacity (CEC) directly influenced metal content, and Cu and Ni were lithogenic in origin. It implies that for effective restoration plant species varies for each geological location.

  9. Spatial variability in soil properties and diagnostic leaf characteristics of apple (Malus domestica) in apple growing region of Dheerkot Azad Jammu and Kashmir (AJK), Pakistan

    International Nuclear Information System (INIS)

    Arjumend, T.; Abbasi, M. K.

    2016-01-01

    Scientific information on the spatial variability in soil properties and nutrient status is important for understanding ecosystem processes and evaluating agricultural land management practices. This study aims to characterize the spatial variation of selected soil properties and the nutrient status of ten representative sites of apple growing region, and also to evaluate the nutrient contents of apple leaves of the same sites from sub-division Dheerkot, Azad Jammu and Kashmir, (AJK) Pakistan. The sampling sites were: Hill, Chamankot, Chamyati-1 (upper), Chamyati-2 (lower), Dheerkot, Kotli, Karry, Sanghar, Neelabut, and Hanschoki. The treatments included; sites = 10; depths = 04 (0-15, 15-30, 30-45, and 45-60 cm) with 3 replications. Results indicated that texture of all the sites (except one) were loam or clay loam having silt and clay the dominant soil fractions. The soils were neutral to slightly alkaline, pH ranging from 7.2 to 8.3, non-saline, and moderately calcareous (CaCO/sub 3/ 0.00-8.97 percent). The nutrient index (NI) value for soil organic matter (SOM), available P and K were 2.5, 1.5 and 2.1 showing high, medium, and medium range, respectively. The concentration of AB-DTPA extractable Fe, Mn, Cu, and Zn showed high levels of Fe (10.2-16.8 mg kg-1) and Mn (0.90-2.71 mg kg/sup -1/) while Zn (0.42-2.31 mg kg/sup -1/) deficiency was observed in few samples. All the sites were severely deficient in Cu concentration (1.35-2.05 mg kg/sup -1/). The diagnosis of apples leaves indicated that none of the samples was deficient in N (2.30-3.49 percent) and P (0.13-0.33 percent) while out of ten sites, nine sites showed severe deficiency of K (0.85-1.40 percent). The study demonstrated a significant variation in different physico-chemical properties of the soils collected from the same ecological region. In order to overcome the deficiency of some of the nutrients observed both in soil and plant samples, proper fertilization especially the use of organic manures is

  10. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity.

    Science.gov (United States)

    De la Varga, Herminia; Agueda, Beatriz; Martínez-Peña, Fernando; Parladé, Javier; Pera, Joan

    2012-01-01

    The availability of most edible ectomycorrhizal mushrooms depends on their natural fructification. Sporocarp formation of these fungi is linked to habitat characteristics and climate conditions, but these data alone do not explain all the trends of fungal fruiting and dynamics. It could be hypothesized that the amount of soil mycelia could also be related to the production of carpophores. Soil samples (five cylinders of 250 cm(3) per plot) were taken monthly, from September to November, in five fenced permanent plots (5 × 5 m) in Pinar Grande (Soria, Spain), a Pinus sylvestris stand situated in the north of the Sistema Ibérico mountain range. Plots were chosen to establish a gradient of Boletus edulis productivity from 0 to 38.5 kg/ha year, according to the mean fresh weight of sporocarps collected during the last 10 years. B. edulis ectomycorrhizal root tips were identified in each soil sample according to its morphology and counted. DNA extractions were performed with the PowerSoil(TM) DNA Isolation Kit and quantification of extraradical soil mycelium by real-time polymerase chain reaction using specific primers and a TaqMan® probe. The concentration of soil mycelium of B. edulis (mg mycelium/g soil) did not differ significantly between plots (p = 0.1397), and sampling time (p = 0.7643) within the fructification period. The number of mycorrhizal short roots per soil volume showed significant differences between the plots (p = 0.0050) and the three sampling times (p < 0.0001). No significant correlation between the number of mycorrhizas and the productivity of the plot (kg of B. edulis/ha year) was detected (p = 0.615). A statistically significant positive correlation (p = 0.0481) was detected between the concentration of mycelia of B. edulis in the soil samples and the presence of short roots mycorrhizal with B. edulis in these samples. The productivity of the plots, in terms of sporocarps produced during the last 10 years, was not correlated either with the

  11. Componentes principais como preditores no mapeamento digital de classes de solos Principal components as predictor variables in digital mapping of soil classes

    Directory of Open Access Journals (Sweden)

    Alexandre ten Caten

    2011-07-01

    Full Text Available Tecnologias disponíveis para a observação da Terra oferecem uma grande gama de informações sobre componentes ambientais que, por estarem relacionadas com a formação dos solos, podem ser usadas como variáveis preditoras no Mapeamento Digital de Solos (MDS. No entanto, modelos com um grande número de preditores, bem como a existência de multicolinearidade entre os dados, podem ser ineficazes no mapeamento de classes e propriedades do solo. O objetivo deste estudo foi empregar a Análise de Componentes Principais (ACP visando a selecionar e diminuir o número de preditores na regressão logística múltipla multinomial (RLMM utilizada no mapeamento de classes de solos. Nove covariáveis ambientais, ligadas ao fator de formação relevo, foram derivadas de um Modelo Digital de Elevação e denominadas variáveis originais, estas foram submetidas à ACP e transformadas em Componentes Principais (CP. As RLMM foram desenvolvidas utilizando-se atributos de terreno e as CP como variáveis explicativas. O mapa de solos gerado a partir de três CP (65,6% da variância original obteve um índice kappa de 37,3%, inferior aos 48,5% alcançado pelo mapa de solos gerado a partir de todas as nove variáveis originais.Available technologies for Earth observation offer a wide range of predictors relevant to Digital Soil Mapping (DSM. However, models with a large number of predictors, as well as, the existence of multicollinearity among the data, may be ineffective in the mapping of classes and soil properties. The aim of this study was to use the Principal Component Analysis (PCA to reduce the number of predictors in the multinomial logistic regression (MLR used in soil mapping. Nine environmental covariates, related to the relief factor of soil formation, were derived from a digital elevation model and named the original variables, which were submitted to PCA and transformed into principal components (PC. The MLR were developed using the terrain

  12. Quantitative physical and chemical variables used to assess erosion and fertility loss in tropical Dominican and Haitian soils

    Science.gov (United States)

    Pastor, J.; Alexis, S.; Vizcayno, C.; Hernández, A. J.

    2009-04-01

    The Pedernales province (Dominican Republic) has the main part of the only Biosphere Reserve in that Caribbean Island, including the Bahoruco and Jaragua National Parks. In these Parks is possible to find almost the totality of tropical forest ecosystems (evergreen rain forest, latifoliated forest, dry forest and mangrove forest on mainland), as well as the most frequent soil uses in the Dominican country. The consulted bibliography about the soils is very scarce and it does not give any information relating to this natural resource, which is basic for a sustainable development management in this territory. When Christopher Columbus reached the island, its plant cover constituted 95% of the land. This was largely because the limited, rudimentary tools used by the Indians to exploit the soil, allowed them to maintain a well-balanced ecological system. The initial type of agriculture practised by the indigenous inhabitants was scarcely destructive and based on vegetatively reproducing crops propagated through cuttings, but later forest burning was an especially significant management practice aimed at releasing nutrients into the soil, in an environment in which under natural conditions, particularly those of the rainforest, these were mostly locked within plant structures. The colonial system, on the contrary, brought with it more elaborate methods and utensils enabling them to cultivate cereals (somewhat unknown to the native Indians) and to rear livestock (cows, goats) yet contributed to the growth of deforestation. Agricultural activities were not confined to the plains; even the virgin woods of the mountains were exploited. The monocrops grown across vast expanses rapidly rid the soil of its productive capacity. Cutting down and burning forest for agricultural uses, and also industrial exploitation of bauxite and limestone produced also important alterations in the soil processes. Agricultural activities were not confined to the plains; even the virgin woods of

  13. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus

    International Nuclear Information System (INIS)

    Hossain, M.B.; Jahiruddin, M.; Panaullah, G.M.; Loeppert, R.H.; Islam, M.R.; Duxbury, J.M.

    2008-01-01

    Spatial distribution of arsenic (As) concentrations of irrigation water, soil and plant (rice) in a shallow tube-well (STW) command area (8 ha), and their relationship with Fe, Mn and P were studied. Arsenic concentrations of water in the 110 m long irrigation channel clearly decreased with distance from the STW point, the range being 68-136 μg L -1 . Such decreasing trend was also noticed with Fe and P concentrations, but the trend for Mn concentrations was not remarkable. Concerning soil As, the concentration showed a decreasing tendency with distance from the pump. The NH 4 -oxalate extractable As contributed 36% of total As and this amount of As was associated with poorly crystalline Fe-oxides. Furthermore only 22% of total As was phosphate extractable so that most of the As was tightly retained by soil constituents and was not readily exchangeable by phosphate. Soil As (both total and extractable As) was significantly and positively correlated with rice grain As (0.296 ± 0.063 μg g -1 , n = 56). Next to drinking water, rice could be a potential source of As exposure of the people living in the As affected areas of Bangladesh. - Arsenic concentrations of irrigation water, soil and rice decreased with distance from STW point and it was related with iron and phosphorus concentrations

  14. Compilation and evaluation of radioecological data on soil/plant transfer in consideration of local variabilities in Germany

    International Nuclear Information System (INIS)

    Cierjacks, A.; Albers, B.

    2004-01-01

    Publications on soil-to-plant transfer factors (TFs) for radiocesium, radiostrontium, plutonium and iodine-129 in Germany were evaluated. Over 100 publications with relevant TFs were identified, whereof 54 were intensively analyzed and rated according to quality criteria. A database was created which gives a comprehensive survey of the transfer factors, important related soil and plant parameters and peculiarities of sampling and analyses. For better comparability, TFs were standardized and expressed in units of [Bq kg -1 plant dry matter / Bq kg -1 soil dry matter]. To enable statistical analyses, soil and plant parameters were standardized, too. Standardization also prepares data as input for modelling. The database contains 4800 records which represent singular and aggregated values of more than 7300 samples taken in Germany. Mean values of individual combinations radionuclide/crop can be queried easily using a special software module. Additional information about the experimental design, nuclide contents in plants and soil, important parameters and detailed remarks allow a classification of each record

  15. Effect of external magnetic field and variable dust electrical charge on the shape and propagation of solitons in the two nonthermal ions dusty plasma

    International Nuclear Information System (INIS)

    Ghalambor Dezfuly, S.; Dorranian, D.

    2012-01-01

    In this manuscript, the effect of dust electrical charge, nonthermal ions, and external magnetic field on the shape and propagation of solitons in dusty plasma with two nonthermal ions is studied theoretically. Using the reductive perturbation theory, the Zakharov-Kuznetsov equation for propagation of dust acoustic waves is extracted. Results show that external magnetic field does not affect the amplitude of solitary wave but width of solitons are effectively depend on the magnitude of external magnetic field. With increasing the charge of dust particles the amplitude of solution will increase while their width will decrease. Increasing the nonthermal ions lead to opposite effect.

  16. Charge imbalance

    International Nuclear Information System (INIS)

    Clarke, J.

    1981-01-01

    This article provides a long theoretical development of the main ideas of charge imbalance in superconductors. Concepts of charge imbalance and quasiparticle charge are introduced, especially in regards to the use of tunnel injection in producing and detecting charge imbalance. Various mechanisms of charge relaxation are discussed, including inelastic scattering processes, elastic scattering in the presence of energy-gap anisotropy, and various pair-breaking mechanisms. In each case, present theories are reviewed in comparison with experimental data

  17. Short term spatio-temporal variability of soil water-extractable calcium and magnesium after a low severity grassland fire in Lithuania.

    Science.gov (United States)

    Pereira, Paulo; Martin, David

    2014-05-01

    Fire has important impacts on soil nutrient spatio-temporal distribution (Outeiro et al., 2008). This impact depends on fire severity, topography of the burned area, type of soil and vegetation affected, and the meteorological conditions post-fire. Fire produces a complex mosaic of impacts in soil that can be extremely variable at small plot scale in the space and time. In order to assess and map such a heterogeneous distribution, the test of interpolation methods is fundamental to identify the best estimator and to have a better understanding of soil nutrients spatial distribution. The objective of this work is to identify the short-term spatial variability of water-extractable calcium and magnesium after a low severity grassland fire. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire, it was designed in a burned area a plot with 400 m2 (20 x 20 m with 5 m space between sampling points). Twenty five samples from top soil (0-5 cm) were collected immediately after the fire (IAF), 2, 5, 7 and 9 months after the fire (a total of 125 in all sampling dates). The original data of water-extractable calcium and magnesium did not respected the Gaussian distribution, thus a neperian logarithm (ln) was applied in order to normalize data. Significant differences of water-extractable calcium and magnesium among sampling dates were carried out with the Anova One-way test using the ln data. In order to assess the spatial variability of water-extractable calcium and magnesium, we tested several interpolation methods as Ordinary Kriging (OK), Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ) Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) - and Local Polynomial (LP) with the power of 1 and 2. Interpolation tests were carried out with Ln data. The best interpolation method was assessed using the

  18. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    Science.gov (United States)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Calvet, J.-C.; Martin, E.; Moulin, S.; Marloie, O.

    2015-10-01

    Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m-2) compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG satellite (-12 W m-2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by -12 and -16 W m-2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The

  19. Gis-approach for variability assessment of soil electric conductivity under pedoturbation activity of mole rat (Spalax microphthalmus

    Directory of Open Access Journals (Sweden)

    T. М. Konovalova

    2010-06-01

    Full Text Available The results of the investigation of the impact of the mole rat’s activity on soil electric conductivity have been presented. GIS-technology have been shown to be effective for assessment of the pedoturbation activity effect on the soil surface heterogeneity formation. Method of the one-dimension spatial coordinated array transformation into matrix form has been proposed for following multidimension statistic analysis application. The quantity estimation of the mole rats role in formation of the habitat nanorelief-level diversity has been obtained by means of indexes of the landscape complexity and diversity.

  20. Variáveis relacionadas à estabilidade de complexos organo-minerais em solos tropicais e subtropicais brasileiros Selected soil-variables related to the stability of organo-minerals complexes in tropical and subtropical brazilian soils

    Directory of Open Access Journals (Sweden)

    Alberto Vasconcellos Inda Junior

    2007-10-01

    Full Text Available A estabilidade de complexos organo-minerais é uma característica importante quanto à química e física de solos tropicais e subtropicais. O objetivo deste estudo foi identificar variáveis relacionadas à estabilidade de complexos organo-minerais, avaliada pela energia de ultra-som necessária para a dispersão total do solo em partículas primárias, em seis solos das regiões Sul e Centro-Oeste do Brasil com textura e mineralogia distintas. A energia de ultra-som necessária para dispersão total dos solos variou de 239 a 2.389J mL-1, sendo diretamente relacionada aos teores de carbono orgânico (R²=0,799, PThe stability of organo-mineral complexes is an important characteristic related to the soil chemistry and physics of tropical and subtropical soils. This study was aimed at identifing the variables related to the stability of organo-mineral complexes, evaluated by ultrasonic energy necessary to complete soil dispersion, of six soils from South and West-Center regions of Brazil with distint texture and mineralogy. The ultrasonic energy to complete soil dispersion varied from 239 a 2389J mL-1, and was positively related to the soil organic carbon concentrations (R²=0.799, P<0.05. The clay mineralogy had an important role to the stability of organo-mineral complexes, which were related to the content of low cristalinity iron oxides (R²=0.586, P<0.10, but did not had relationship with the total pedogenic iron oxides. The qualitative analysis of the clay mineralogy, by X-ray diffraction, evidenced that gibbsite and goethite are the main clay minerals related to the stability of organo-mineral complexes, reinforcing the importance of these minerals on the physical protection and coloidal stability of the soil organic matter in the tropical and subtropical soils.

  1. Footprint radius of a cosmic-ray neutron probe for measuring soil-water content and its spatiotemporal variability in an alpine meadow ecosystem

    Science.gov (United States)

    Zhu, Xuchao; Cao, Ruixue; Shao, Mingan; Liang, Yin

    2018-03-01

    Cosmic-ray neutron probes (CRNPs) have footprint radii for measuring soil-water content (SWC). The theoretical radius is much larger at high altitude, such as the northern Tibetan Plateau, than the radius at sea level. The most probable practical radius of CRNPs for the northern Tibetan Plateau, however, is not known due to the lack of SWC data in this hostile environment. We calculated the theoretical footprint of the CRNP based on a recent simulation and analyzed the practical radius of a CRNP for the northern Tibetan Plateau by measuring SWC at 113 sampling locations on 21 measuring occasions to a depth of 30 cm in a 33.5 ha plot in an alpine meadow at 4600 m a.s.l. The temporal variability and spatial heterogeneity of SWC within the footprint were then analyzed. The theoretical footprint radius was between 360 and 420 m after accounting for the influences of air humidity, soil moisture, vegetation and air pressure. A comparison of SWCs measured by the CRNP and a neutron probe from access tubes in circles with different radii conservatively indicated that the most probable experimental footprint radius was >200 m. SWC within the CRNP footprint was moderately variable over both time and space, but the temporal variability was higher. Spatial heterogeneity was weak, but should be considered in future CRNP calibrations. This study provided theoretical and practical bases for the application and promotion of CRNPs in alpine meadows on the Tibetan Plateau.

  2. Spatial-temporal variability of soil water content in a cropland-shelterbelt-desert site in an arid inland river basin of Northwest China

    Science.gov (United States)

    Shen, Qin; Gao, Guangyao; Hu, Wei; Fu, Bojie

    2016-09-01

    Knowledge of the spatial-temporal variability of soil water content (SWC) is critical for understanding a range of hydrological processes. In this study, the spatial variance and temporal stability of SWC were investigated in a cropland-shelterbelt-desert site at the oasis-desert ecotone in the middle of the Heihe River Basin, China. The SWC was measured on 65 occasions to a depth of 2.8 m at 45 locations during two growing seasons from 2012 to 2013. The standard deviation of the SWC versus the mean SWC exhibited a convex upward relationship in the shelterbelt with the greatest spatial variation at the SWC of around 22.0%, whereas a linearly increasing relationship was observed for the cropland, desert, and land use pattern. The standard deviation of the relative difference was positively linearly correlated with the SWC (p < 0.05) for the land use pattern, whereas such a relationship was not found in the three land use types. The spatial pattern of the SWC was more time stable for the land use pattern, followed by desert, shelterbelt, and cropland. The spatial pattern of SWC changed dramatically among different soil layers. The locations representing the mean SWC varied with the depth, and no location could represent the whole soil profile due to different soil texture, root distribution and irrigation management. The representative locations of each soil layer could be used to estimate the mean SWC well. The statistics of temporal stability of the SWC could be presented equally well with a low frequency of observation (30-day interval) as with a high frequency (5-day interval). Sampling frequency had little effect on the selection of the representative locations of the field mean SWC. This study provides useful information for designing the optimal strategy for sampling SWC at the oasis-desert ecotone in the arid inland river basin.

  3. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil

    Czech Academy of Sciences Publication Activity Database

    Šnajdr, Jaroslav; Valášková, Vendula; Merhautová, Věra; Herinková, Jana; Cajthaml, Tomáš; Baldrian, Petr

    2008-01-01

    Roč. 40, č. 9 (2008), s. 2068-2075 ISSN 0038-0717 R&D Projects: GA MŠk LC06066; GA MZe QH72216; GA AV ČR KJB600200516 Institutional research plan: CEZ:AV0Z50200510 Keywords : enzyme activity * forest soil * lignocellulose Subject RIV: EE - Microbiology, Virology Impact factor: 2.926, year: 2008

  4. Effect of mine tailing on the spatial variability of soil nematodes from lead pollution in La Union (Spain).

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Gutiérrez, Carmen; Escuer, Miguel; García-González, Ma Teresa; Campos-Herrera, Raquel; Aguila, Nancy

    2014-03-01

    The Cartagena-La Union mining district, exploited since the end of the 3rd century BC, was one of the world's largest lead producers in the 19th century. Although activity ceased in 1991, today mining residues pose a huge pollution problem. This study characterises lead contents (total and DPTA) and other soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.) using multivariate geostatistical methods in relation to nematode diversity. In this work, trophic groups and metabolic footprints of soil nematodes were measured using 193 samples from the mining, natural and agricultural areas in this district. We explored the relationship between soil health and nematode communities. High lead concentrations were quantified: mean 8,500 mg kg(-1) for total and 340 mg kg(-1) for DPTA in this mining area. Although nematode diversity was broad (81 taxa), their diversity, abundance and metabolic footprints significantly reduced in the mining area. Significant differences in the nematode community structure were observed, and the relative abundance of predators was sensitive to mine and agricultural activities, whilst omnivores reduced only in the agricultural area, and bacterial feeders exhibited a differential response to both anthropogenic disturbances. The total abundance of nematodes, trophic groups and c-p groups correlated negatively with soil Pb contents, and a positive relationship was found with SOM and N, P and K contents. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Meta-analysis of field scale spatial variability of grassland soil CO2 efflux: Interaction of biotic and abiotic drivers

    Czech Academy of Sciences Publication Activity Database

    Fóti, S.; Balogh, J.; Herbst, M.; Papp, M.; Koncz, P.; Bartha, S.; Zimmermann, Z.; Komoly, C.; Szabó, G.; Margóczi, G.; Acosta, Manuel; Nagy, Z.

    2016-01-01

    Roč. 143, aug (2016), s. 78-89 ISSN 0341-8162 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Cross-variogram * Principal component analysis * Soil CO2 efflux * Spatial pattern * Variogram Subject RIV: EH - Ecology, Behaviour Impact factor: 3.191, year: 2016

  6. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Pan, Yunyu; Koopmans, Gerwin F.; Bonten, Luc T.C.; Song, Jing; Luo, Yongming; Temminghoff, Erwin J.M.; Comans, Rob N.J.

    2016-01-01

    Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still

  7. Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers

    NARCIS (Netherlands)

    Suleiman, A.K.A.; Gonzatto, Rogerio; Aita, Celso; Lupatini, M.; Jacques, Rodrigo; Kuramae, E.E.; Antoniolli, Zaida; Roesch, Luiz

    2016-01-01

    In modern agriculture, mineral and organic fertilization account for most of the global anthropogenic N2O emissions. A strategy to prevent or to reduce emissions of greenhouse gases such as N2O is the use of nitrification inhibitors, which temporarily inhibit the microbial conversion of soil

  8. Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile

    Science.gov (United States)

    L.M. Egerton-Warburton; R.C. Graham; K.R. Hubbert

    2003-01-01

    We documented the spatial distribution, abundance and molecular diversity of mycorrhizal hyphae and physical and chemical properties of soil-weathered bedrock in a chaparral community that experiences seasonal drought. Because plants in this community were known to rely on bedrock-stored water during the summer, the data were used to evaluate the potential role of...

  9. Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Herath, Lasantha; Møldrup, Per

    2016-01-01

    Highlights •Bacterial richness and Shannon diversity showed strong spatial autocorrelations. •Fungal richness and Shannon diversity did not show any clear spatial autocorrelations. •Ratio of clay to organic carbon was found a best predictor of bacterial richness and diversities. •Soil water...

  10. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    Science.gov (United States)

    Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...

  11. Organic N cycling in Arctic ecosystems: Quantifying root uptake kinetics and temporal variability of soil amino acids.

    Science.gov (United States)

    Homyak, P. M.; Iverson, S. L.; Slessarev, E.; Marchus, K.; Schimel, J.

    2017-12-01

    Arctic ecosystems are undergoing shifts in plant community composition with increased warming. How these changes may alter ecosystem function is not well constrained, owing in part to uncertainties on how plant-soil feedbacks influence nutrient cycling. For nitrogen (N), in particular, understanding how these feedbacks may alter cycling rates is challenging because i) Arctic plants take up organic N (i.e., amino acids; AA) when inorganic N is limiting, yet ii) it has never been quantified, for any plant species growing in the wild, how much of its N demand is actually met by taking up AA. To advance fundamental understanding of plant-soil feedbacks as the Arctic warms, we are integrating field measurements of AA availability in N-limited tussock tundra (E. vaginatum) and a comparably less N-limited birch shrub tundra (Betula nana and Salix spp.) with a root uptake model. We used soil microdialysis to determine available AA concentrations in the soil solution and potential rates of AA diffusion and mass flow to roots at the Toolik Field Station in Alaska. These measurements are being combined with AA root uptake kinetic experiments using E. vaginatum to establish actual AA root uptake rates. We found that in the early growing season (June), total AA concentrations in the soil solution averaged 104 µg N L-1 and were similar to NH4+ across sites. In the late growing season (August), AA were the dominant form of N averaging 75 µg N L-1 while NH4+ decreased to 13 µg N L-1. In the early growing season AA diffusion rates in the soil averaged 200 ng N cm-2 s-1 and declined to 150 ng N cm-2 s-1 in the late growing season. Lysine, serine, and arginine were the most abundant AA and differences in the N status of sites did not affect total AA concentrations. Amino acids made up at least half of the N diffusing through the soil solution, suggesting they can subsidize the N demand of arctic plants. Ongoing field experiments at Toolik will be used to constrain actual AA root

  12. Irrational Charge from Topological Order

    Science.gov (United States)

    Moessner, R.; Sondhi, S. L.

    2010-10-01

    Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.

  13. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem

    DEFF Research Database (Denmark)

    Blue, Jarrod D.; Souza, Lara; Classen, Aimée T.

    2011-01-01

    in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth...... not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient...

  14. The effects of precipitation variability on C4 photosynthesis, net primary production and soil respiration in a Chihuahuan desert grassland

    Science.gov (United States)

    Michell L. Thomey

    2012-01-01

    Although the Earth's climate system has always been inherently variable, the magnitude and rate of anthropogenic climate change is subjecting ecosystems and the populations that they contain to novel environmental conditions. Because water is the most limiting resource, arid-semiarid ecosystems are likely to be highly responsive to future climate variability. The...

  15. Seasonal variability of mercury concentration in soils, buds and leaves of Acer platanoides and Tilia platyphyllos in central Poland.

    Science.gov (United States)

    Kowalski, Artur; Frankowski, Marcin

    2016-05-01

    In this paper, we present the results of mercury concentration in soils, buds and leaves of maple (Acer platanoides-Ap) and linden (Tilia platyphyllos-Tp) collected in four periods of the growing season of trees, i.e. in April (IV), June (VI), August (VIII) and November (IX) in 2013, from the area of Poznań city (Poland). The highest average concentration of mercury for 88 samples was determined in soils and it equaled 65.8 ± 41.7 ng g(-1) (range 14.5-238.9 ng g(-1)); lower average concentration was found in Ap samples (n = 66): 55.4 ± 18.1 ng g(-1) (range 26.5-106.9 ng g(-1)); in Tp samples 50.4 ± 15.8 ng g(-1) (range 23.1-88.7 ng g(-1)) and in 22 samples of Tp buds 40.8 ± 22.7 ng g(-1) (range 12.4-98.7 ng g(-1)) and Ap buds 28.2 ± 13.6 ng g(-1) (range 8.0-59.5 ng g(-1)). Based on the obtained results, it was observed that the highest concentration of mercury in soils occurred in the centre of Poznań city (95.5 ± 39.1 ng g(-1)), and it was two times higher than the concentration of mercury in other parts of the city. Similar dependencies were not observed for the leaf samples of Ap and Tp. It was found that mercury concentrations in the soil and leaves of maple and linden were different depending on the period of the growing season (April to November). Mercury content in the examined samples was higher in the first two research periods (April IV, June VI), and then, in the following periods, the accumulation of mercury decreased both in soil and leaf samples of the two tree species. There was no correlation found between mercury concentration in leaves and mercury concentration in soils during the four research periods (April-November). When considering the transfer coefficient, it was observed that the main source of mercury in leaves is the mercury coming from the atmosphere.

  16. Charge collection efficiency in SI GaAs grown from melts with variable composition as a material for solar neutrino detection

    CERN Document Server

    Verbitskaya, E; Ivanov, A; Strokan, N; Vasilev, V; Markov, A; Polyakov, A; Gavrin, V; Kozlova, Y; Veretenkin, E; Bowles, T J

    2000-01-01

    The results on electrical characteristics and charge collection efficiency in the detectors from bulk SI GaAs developed as a material for solar neutrino spectroscopy are presented. SI GaAs crystals were grown by the Czochralski method. The changes in the stoichiometric components are permanently controlled. It is shown that the performance of GaAs p sup + -i-n sup + structures provided the range of operational reverse voltage up to 1 kV. Measurement of deep level spectra and their analysis reveal the dominant deep levels - hole traps E sub v +0.51 and +0.075 eV in GaAs grown from stoichiometric and nonstoichiometric melts, respectively. Investigation of carrier transport properties and bulk homogeneity evinced in charge collection efficiency has shown advantageous results for SI GaAs grown from stoichiometric melt. The reduction of carrier transport parameters and charge collection efficiency in GaAs grown from nonstoichiometric melt is analyzed taking into consideration formation of the hole trap E sub v +0....

  17. Charge collection efficiency in SI GaAs grown from melts with variable composition as a material for solar neutrino detection

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ivanov, A.; Strokan, N.; Vasilev, V.; Markov, A.; Polyakov, A.; Gavrin, V.; Kozlova, Yu.; Veretenkin, E.; Bowles, T.J.

    2000-01-01

    The results on electrical characteristics and charge collection efficiency in the detectors from bulk SI GaAs developed as a material for solar neutrino spectroscopy are presented. SI GaAs crystals were grown by the Czochralski method. The changes in the stoichiometric components are permanently controlled. It is shown that the performance of GaAs p + -i-n + structures provided the range of operational reverse voltage up to 1 kV. Measurement of deep level spectra and their analysis reveal the dominant deep levels - hole traps E v +0.51 and +0.075 eV in GaAs grown from stoichiometric and nonstoichiometric melts, respectively. Investigation of carrier transport properties and bulk homogeneity evinced in charge collection efficiency has shown advantageous results for SI GaAs grown from stoichiometric melt. The reduction of carrier transport parameters and charge collection efficiency in GaAs grown from nonstoichiometric melt is analyzed taking into consideration formation of the hole trap E v +0.075 eV, presumably assigned to Ga antisite and its influence on the concentration of the ionized deep donor level EL2 +

  18. Centimeter-scale spatial variability in 2-methyl-4-chlorophenoxyacetic acid mineralization increases with depth in agricultural soil

    DEFF Research Database (Denmark)

    Badawi, Nora; Johnsen, Anders R.; Sørensen, Jan

    2013-01-01

    Mineralization of organic chemicals in soil is typically studied using large homogenized samples, but little is known about the small-scale spatial distribution of mineralization potential. We studied centimeter-scale spatial distribution of 2-methyl-4-chlorophenoxyacetic acid (MCPA) mineralization...... was mineralized in all samples in the plow layer, but only about 60% in the transition zone immediately below the plow layer showed mineralization; at greater depth even fewer samples showed mineralization. A patchy spatial distribution of mineralization activity was observed from right below the plow layer...... activity at different depths (8-115 cm) in a Danish agricultural soil profi le using a 96-well microplate C-radiorespirometric method for small-volume samples. The heterotrophic microbial population and specifi c MCPA degraders decreased 10- to 100-fold from the plow layer to a depth of 115 cm. MCPA...

  19. Spatial variability of soil carbon and nitrogen in two hybrid poplar-hay crop systems in southern Quebec, Canada

    Science.gov (United States)

    Winans, K. S.

    2013-12-01

    Canadian agricultural operations contribute approximately 8% of national GHG emissions each year, mainly from fertilizers, enteric fermentation, and manure management (Environment Canada, 2010). With improved management of cropland and forests, it is possible to mitigate GHG emissions through carbon (C) sequestration while enhancing soil and crop productivity. Tree-based intercropped (TBI) systems, consisting of a fast-growing woody species such as poplar (Populus spp.) planted in widely-spaced rows with crops cultivated between tree rows, were one of the technologies prioritized for investigation by the Agreement for the Agricultural Greenhouse Gases Program (AAGGP), because fast growing trees can be a sink for atmospheric carbon-dioxide (CO2) as well as a long-term source of farm income (Montagnini and Nair, 2004). However, there are relatively few estimates of the C sequestration in the trees or due to tree inputs (e.g., fine root turnover, litterfall that gets incorporated into SOC), and hybrid poplars grow exponentially in the first 8-10 years after planting. With the current study, our objectives were (1) to evaluate spatial variation in soil C and nitrogen (N) storage, CO2 and nitrogen oxide (N20), and tree and crop productivity for two hybrid poplar-hay intercrop systems at year 9, comparing TBI vs. non-TBI systems, and (2) to evaluate TBI systems in the current context of C trading markets, which value C sequestration in trees, unharvested crop components, and soils of TBI systems. The study results will provide meaningful measures that indicate changes due to TBI systems in the short-term and in the long-term, in terms of GHG mitigation, enhanced soil and crop productivity, as well as the expected economic returns in TBI systems.

  20. Geochemical variability of heavy metals in soil after land use conversions in Northeast China and its environmental applications.

    Science.gov (United States)

    Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Liu, Bing; Wang, Fangli

    2014-04-01

    The long-term agricultural reclamation since the 1950s has resulted in significant land use change from natural landscape to cultivated land in the Sanjiang Plain of Northeast China, which has had important consequences for many soil physical, chemical and biological processes. To understand the impact of land use conversions on heavy metal geochemistry, soil samples were collected from natural wetland, natural forestland, paddy land and dry farmland in a case study area and analyzed for total concentrations and chemical fractions of six heavy metals. Results showed that the natural wetland reclamation for the paddy land has caused obvious losses of Cd, Cu and Zn from the soils. In addition, a significant decrease in the Zn concentration was found after the land conversion from natural forestland to dry farmland. Because all the analyzed heavy metals predominated in the stable residual fraction regardless of the land use type, the response of metal mobility to the land use conversions was generally weak. Consequently, soil erosion was identified as the major factor that enhances heavy metal losses in the cultivated lands, especially in the paddy land. The close link between heavy metal loss and the reduction of clay and organic matter contents after land reclamation suggested that the diffuse heavy metal pollution occurred mainly in small erosion events. Considering the continuous paddy land expansion, special attention should be paid to the bioaccumulation of Pb in the paddy rice. Overall, these findings can help to improve the sustainability and safety of intensive agricultural activities in Northeast China as well as other similar areas.

  1. Influence of soil physical and chemical variables on species composition and richness of plants in the arid region of Tabuk, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Al-Mutairi Khalid Awadh

    2017-06-01

    Full Text Available The present study aims to investigate the effect of soil physical and chemical variables on the species richness and the floristic composition in four sites (Alwaz, Alqan, Sharma and Zetah of Tabuk region in the Northwestern part of Arabian Peninsula. Only organic matter (OM, pH and calcium (Ca showed significant differences (P < 0.05 amongst the four studied sites. Only magnesium and sodium were selected in the forward regression model and showed to be strong drivers of species richness of plants in Tabuk region (Adj-R2 = 0.438, F2,13 = 6.85, P = 0.009. The multivariate analysis of canonical correspondence analysis (CCA was applied to reveal the effect of the physical and chemical variables on the species composition of the plants. The CCA classifies the plant species into three groups based on their preference to the environmental variables. The first group of plant species (Group 1 is characterised by positive preference to the chloride (Cl and negative relationship with OM and pH. The second group (Group 2 is positively correlated with most of the soil variables such as OM, calcium (Ca, potassium (K, bicarbonate (HCO3, electrical conductivity (EC, sulphate (SO4 and sodium (Na. The third group (Group 3 has positive relationship with carbonate (CO3 and negative relationship with EC and magnesium (Mg. The chloride, sodium, sulphate, EC and carbonate are the main environmental factors influencing the plant species composition in Tabuk region. The cluster analysis based on the Euclidian measure shows that Alqan and Zetah have closer species composition compared to Sharma.

  2. Land Cover Land Use change and soil organic carbon under climate variability in the semi-arid West African Sahel (1960-2050)

    Science.gov (United States)

    Dieye, Amadou M.

    Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project LCLU change is of considerable interest for mitigation and adaptation measures in response to climate change. A combination of remote sensing analyses, qualitative social survey techniques, and biogeochemical modeling was used to study the relationships between climate change, LCLU change and soil organic carbon in the semi-arid rural zone of Senegal between 1960 and 2050. For this purpose, four research hypotheses were addressed. This research aims to contribute to an understanding of future land cover land use change in the semi-arid West African Sahel with respect to climate variability and human activities. Its findings may provide insights to enable policy makers at local to national levels to formulate environmentally and economically adapted policy decisions. This dissertation research has to date resulted in two published and one submitted paper.

  3. Circumpolar assessment of rhizosphere priming shows limited increase in carbon loss estimates for permafrost soils but large regional variability

    Science.gov (United States)

    Wild, B.; Keuper, F.; Kummu, M.; Beer, C.; Blume-Werry, G.; Fontaine, S.; Gavazov, K.; Gentsch, N.; Guggenberger, G.; Hugelius, G.; Jalava, M.; Koven, C.; Krab, E. J.; Kuhry, P.; Monteux, S.; Richter, A.; Shazhad, T.; Dorrepaal, E.

    2017-12-01

    Predictions of soil organic carbon (SOC) losses in the northern circumpolar permafrost area converge around 15% (± 3% standard error) of the initial C pool by 2100 under the RCP 8.5 warming scenario. Yet, none of these estimates consider plant-soil interactions such as the rhizosphere priming effect (RPE). While laboratory experiments have shown that the input of plant-derived compounds can stimulate SOC losses by up to 1200%, the magnitude of RPE in natural ecosystems is unknown and no methods for upscaling exist so far. We here present the first spatial and depth explicit RPE model that allows estimates of RPE on a large scale (PrimeSCale). We combine available spatial data (SOC, C/N, GPP, ALT and ecosystem type) and new ecological insights to assess the importance of the RPE at the circumpolar scale. We use a positive saturating relationship between the RPE and belowground C allocation and two ALT-dependent rooting-depth distribution functions (for tundra and boreal forest) to proportionally assign belowground C allocation and RPE to individual soil depth increments. The model permits to take into account reasonable limiting factors on additional SOC losses by RPE including interactions between spatial and/or depth variation in GPP, plant root density, SOC stocks and ALT. We estimate potential RPE-induced SOC losses at 9.7 Pg C (5 - 95% CI: 1.5 - 23.2 Pg C) by 2100 (RCP 8.5). This corresponds to an increase of the current permafrost SOC-loss estimate from 15% of the initial C pool to about 16%. If we apply an additional molar C/N threshold of 20 to account for microbial C limitation as a requirement for the RPE, SOC losses by RPE are further reduced to 6.5 Pg C (5 - 95% CI: 1.0 - 16.8 Pg C) by 2100 (RCP 8.5). Although our results show that current estimates of permafrost soil C losses are robust without taking into account the RPE, our model also highlights high-RPE risk in Siberian lowland areas and Alaska north of the Brooks Range. The small overall impact of

  4. Variabilidade espacial de atributos químicos do solo sob diferentes usos e manejos Spatial variability of chemical attributes of a soil under different uses and managements

    Directory of Open Access Journals (Sweden)

    Eloiza Gomes Silva Cavalcante

    2007-12-01

    Full Text Available O uso e manejo do solo e da cultura são importantes condicionadores da variabilidade de atributos do solo. O trabalho foi desenvolvido em Selvíria (MS, com o objetivo de avaliar a variabilidade espacial do pH, potássio (K, cálcio (Ca, magnésio (Mg e saturação por bases (V em Latossolo Vermelho sob diferentes usos e manejos. Os solos foram amostrados em malha, com intervalos regulares de 2 m, perfazendo o total de 64 pontos, nas profundidades de 0,0-0,1 e 0,1-0,2 m, nas seguintes áreas: vegetação natural (Cerrado, plantio direto, plantio convencional e pastagem. As maiores variabilidades, medidas por meio do coeficiente de variação, foram observadas para K, Mg e Ca; o pH apresentou o menor coeficiente de variação nos diferentes usos e manejo do solo, e o atributo V, coeficiente de variação médio. Os sistemas preparo convencional e pastagem apresentaram os menores alcances quando comparado aos sistemas Cerrado e plantio direto.The use and management of soil and crop condition the variability of soil attributes directly. This study was conducted in Selvíria-MS, Brazil with the objective of evaluating the spatial variability of pH, potassium (K, calcium (Ca, magnesium (Mg and base saturation (% BS in an Oxisol under