WorldWideScience

Sample records for variability parametric instability

  1. Parametric Instabilities of Electromagnetic Waves in Plasmas,

    Science.gov (United States)

    A simple formalism for the parametric decay of an intense, coherent electromagnetic wave into an electrostatic wave and scattered electromagnetic ... waves in a homogeneous plasma is developed. Various instabilities including Brillouin and Raman backscattering, Compton scattering, filamentation and

  2. Nonlinear parametric instability of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear terms caused by centrifugal and Coriolis forces when formulated in a moving frame of reference. Assuming harmonically varying support point motions from the tower, the nonlinear parametric instability...

  3. White-light parametric instabilities in plasmas.

    Science.gov (United States)

    Santos, J E; Silva, L O; Bingham, R

    2007-06-08

    Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.

  4. Numerical parametric studies of spray combustion instability

    Science.gov (United States)

    Pindera, M. Z.

    1993-01-01

    A coupled numerical algorithm has been developed for studies of combustion instabilities in spray-driven liquid rocket engines. The model couples gas and liquid phase physics using the method of fractional steps. Also introduced is a novel, efficient methodology for accounting for spray formation through direct solution of liquid phase equations. Preliminary parametric studies show marked sensitivity of spray penetration and geometry to droplet diameter, considerations of liquid core, and acoustic interactions. Less sensitivity was shown to the combustion model type although more rigorous (multi-step) formulations may be needed for the differences to become apparent.

  5. Parametric instabilities in picosecond time scales

    Energy Technology Data Exchange (ETDEWEB)

    Baldis, H.A. [Lawrence Livermore National Lab., CA (United States); Rozmus, W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S. [Ecole Polytechnique, Palaiseau (France); Tikhonchuk, V.T. [P.N. Lebedev Physics Inst., Moscow (Russian Federation)

    1993-03-01

    The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.

  6. Mechanism for an absolute parametric instability of an inhomogeneous plasma

    Science.gov (United States)

    Arkhipenko, V. I.; Budnikov, V. N.; Gusakov, E. Z.; Romanchuk, I. A.; Simonchik, L. V.

    1984-05-01

    The structure of plasma oscillations in a region of parametric spatial amplification has been studied experimentally for the first time. A new mechanism for an absolute parametric instability has been observed. This mechanism operates when a pump wave with a spatial structure more complicated than a plane wave propagates through a plasma which is inhomogeneous along more than one dimension.

  7. Magnetic field generation via parametric instabilities in collisional plasmas

    Science.gov (United States)

    Katoh, K.

    1982-06-01

    A formalism for the parametric instability with low-frequency magnetic field generation in a collisional plasma is developed. The spontaneous low-frequency magnetic field results from a resonant decay instability of an intense pump wave into a magneto-static wave which appears only in a collisional plasma. The growth rate for a resonant decay instability of an intense electromagnetic wave into a Langmuir wave and a magneto-static wave is obtained.

  8. Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

    OpenAIRE

    Huan Mao; Hezhen Yang

    2016-01-01

    Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some exp...

  9. Parametric instability of a nonuniform plasma near a linear focus

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipenko, V.I.; Budnikov, V.N.; Gusakov, E.Z.; Romanchuk, I.A.; Simonchik, L.V.

    1985-02-01

    Parametric instability l ..-->.. l'+s resulting in anomalous reflection of oblique Langmuir waves in a two-dimensionally nonuniform plasma is studied experimentally and theoretically. The experimental results confirm the theoretical prediction that for low input powers, the instability consists in the spatial amplification of ion-sound noise. The scattered signal is found to rise abruptly for spatial gains s> or approx. =10/sup 4/ because the threshold for absolute instability l ..-->.. l'+s is approached. The absolute instability saturates due to depletion of the pump wave, which is almost completely reflected. A mechanism for the generation of cascade parametric turbulence spectra is identified which is specific to nonuniform plasmas.

  10. Parametric Instability Rates in Periodically Driven Band Systems

    Science.gov (United States)

    Lellouch, S.; Bukov, M.; Demler, E.; Goldman, N.

    2017-04-01

    In this work, we analyze the dynamical properties of periodically driven band models. Focusing on the case of Bose-Einstein condensates, and using a mean-field approach to treat interparticle collisions, we identify the origin of dynamical instabilities arising from the interplay between the external drive and interactions. We present a widely applicable generic numerical method to extract instability rates and link parametric instabilities to uncontrolled energy absorption at short times. Based on the existence of parametric resonances, we then develop an analytical approach within Bogoliubov theory, which quantitatively captures the instability rates of the system and provides an intuitive picture of the relevant physical processes, including an understanding of how transverse modes affect the formation of parametric instabilities. Importantly, our calculations demonstrate an agreement between the instability rates determined from numerical simulations and those predicted by theory. To determine the validity regime of the mean-field analysis, we compare the latter to the weakly coupled conserving approximation. The tools developed and the results obtained in this work are directly relevant to present-day ultracold-atom experiments based on shaken optical lattices and are expected to provide an insightful guidance in the quest for Floquet engineering.

  11. Absolute parametric instability in a nonuniform plane plasma ...

    Indian Academy of Sciences (India)

    The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered.

  12. Absolute parametric instability in a nonuniform plane plasma ...

    Indian Academy of Sciences (India)

    parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense ... wave in anisotropic nonuniform plasma has been previously investigated using a special method based on the separation of .... (10) corresponds to the 'spatial' (stationary) part of the problem. If the profile of plasma.

  13. Parametric Instability of Square Laminated Plates in Hygrothermal Environment

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Rath

    2013-01-01

    Full Text Available The present paper investigates the parametric instability of square laminated plates subjected to periodic dynamic loadings in hygrothermal environment. The effects of various parameters like the increase in static load factor and the degree of orthotropy of simply supported composite plates at elevated temperatures and moisture concentrations on the principal instability regions are investigated using finite element method. The effects of transverse shear deformation and rotary inertia are used to study the antisymmetric angle-ply square plates. A simple laminated plate model is developed for the parametric instability of square laminated plates subjected to hygrothermal loading. A computer program based on FEM in MATLAB environment is developed to perform all necessary computations. The results show that instability of square laminated plates occurs for different parameters with an increase in temperature and moisture environment. The onset of instability occurs earlier, and the width of dynamic instability regions increases with a rise in temperature and moisture for different parameters. The effect of damping shows that there is a finite critical value of dynamic load factor for each instability region below which the square laminated plates cannot become unstable.

  14. Internal gravity waves: parametric instability and deep ocean mixing

    Science.gov (United States)

    Staquet, Chantal

    2007-09-01

    The Boussinesq approximation provides a convenient framework to describe the dynamics of stably-stratified fluids. A fundamental motion in these fluids consists of internal gravity waves, whatever the strength of the stratification. These waves may be unstable through parametric instability, which results in turbulence and mixing. After a brief review of the main properties of internal gravity waves, we show how the parametric instability of a monochromatic internal gravity wave organizes itself in space and time, using energetics arguments and a simple kinematic model. We provide an example, in the deep ocean, where such instability is likely to occur, as estimates of mixing from in situ measurements suggest. We eventually discuss the fundamental role of internal gravity wave mixing in the maintenance of the abyssal thermal stratification. To cite this article: C. Staquet, C. R. Mecanique 335 (2007).

  15. Parametric Instability of a Leipholz Column Under Periodic Excitation

    Science.gov (United States)

    KANG, B.; TAN, C. A.

    2000-02-01

    In this paper, the parametric instability of a Leipholz column under four boundary conditions is examined. The study of this prototypical model is intended to provide a basic understanding of the disc brake pad instability. The distributed, follower-type axial load is assumed to be uniform and periodic. Instability regions are obtained and the existence of combination resonances of the sum and difference types is discussed for each set of boundary conditions. It is found that the combination resonance of the sum type exists in all the cases of boundary conditions considered, but the difference type exists only in the cases of clamped-simply supported and clamped-free boundary conditions. The combination resonance is shown to be as important as the simple parametric resonance. Results, when compared to a column under a periodic end load, show that the instability characteristics of these two columns are considerably different. The effect of a constant axial load is to shift the instability regions along the frequency axis.

  16. Observations of parametric instabilities in long-scalelength plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Max, C.E.; Phillion, D.W.; Turner, R.E.; Estabrooke, K.; Laskinski, B.; Kruer, W.L.; Mead, W.C.

    1983-03-22

    This paper is organized in the following manner. In the second section we discussed absorption; the dependence of scattered light signatures of parametric instabilities occurring at n/sub e/ less than or equal to n/sub c//4 on corona size is shown in section three; and evidence for suprathermal electron production in these long-scale length plasmas is presented in section four. The results and conclusions are finally summarized in section five.

  17. Bispectra of Internal Tides and Parametric Subharmonic Instability

    CERN Document Server

    Frajka-Williams, Eleanor; MacKinnon, Jennifer A

    2014-01-01

    Bispectral analysis of the nonlinear resonant interaction known as parametric subharmonic instability (PSI) for a coherence semidiurnal internal tide demonstrates the ability of the bispectrum to identify and quantify the transfer rate. Assuming that the interaction is confined to a vertical plane, energy equations transform in such a way that nonlinear terms become the third-moment spectral quantity known as the bispectrum. Bispectral transfer rates computed on PSI in an idealized, fully-nonlinear, non-hydrostatic Boussinesq model compare well to model growth rates of daughter waves. Bispectra also identify the nonlinear terms responsible for energy transfer. Using resonance conditions for an M2 tide, the locus of PSI wavenumber triads is determined as a function of parent-wave frequency and wavenumbers, latitude and range of daughter-wave frequencies. The locus is used to determine the expected bispectral signal of PSI in wavenumber space. Bispectra computed using velocity profiles from the HOME experiment ...

  18. Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

    Directory of Open Access Journals (Sweden)

    Huan Mao

    2016-01-01

    Full Text Available Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO. Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

  19. Study of a mechanism of growing absolute parametric instability of an inhomogeneous plasma

    Energy Technology Data Exchange (ETDEWEB)

    Archipenko, V.I.; Budnikov, V.N.; Gusakov, E.Z.; Romanchuk, I.A.; Simonchik, L.V. (AN Belorusskoj SSR, Minsk. Inst. Fiziki; AN SSSR, Moscow. Fiziko-Tekhnicheskij Inst.)

    1984-05-25

    The structure of plasma oscillations has been investigated experimentally for the first time in the region of parametric space enhancement. A new mechanism of excitation of the absolute parametric instability is discovered which is realized in the case of a pumping wave of developed space structure propagating in a plasma with configuration other than one-dimensional.

  20. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    The excitation of low frequency modes of oscillations in a magnetized bi-ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.

  1. Parametric Instability of Static Shafts-Disk System Using Finite Element Method

    Science.gov (United States)

    Wahab, A. M.; Rasid, Z. A.; Abu, A.

    2017-10-01

    Parametric instability condition is an important consideration in design process as it can cause failure in machine elements. In this study, parametric instability behaviour was studied for a simple shaft and disk system that was subjected to axial load under pinned-pinned boundary condition. The shaft was modelled based on the Nelson’s beam model, which considered translational and rotary inertias, transverse shear deformation and torsional effect. The Floquet’s method was used to estimate the solution for Mathieu equation. Finite element codes were developed using MATLAB to establish the instability chart. The effect of additional disk mass on the stability chart was investigated for pinned-pinned boundary conditions. Numerical results and illustrative examples are given. It is found that the additional disk mass decreases the instability region during static condition. The location of the disk as well has significant effect on the instability region of the shaft.

  2. Study of parametric instability in gravitational wave detectors with silicon test masses

    Science.gov (United States)

    Zhang, Jue; Zhao, Chunnong; Ju, Li; Blair, David

    2017-03-01

    Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors, leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector, the LIGO Voyager blue design, with cooled silicon test masses of size 45 cm in diameter and 55 cm in thickness. It is shown that there would be about two unstable modes per test mass at an arm cavity power of 3 MW, with the highest parametric gain of  ∼76. While this is less than the predicted number of unstable modes for Advanced LIGO (∼40 modes with max gain of  ∼32 at the designed operating power of 830 kW), the importance of developing suitable instability suppression schemes is emphasized.

  3. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    Email: n.cramer@physics.usyd.edu.au. MS received 1 April 2003; accepted 31 July 2003. Abstract. The excitation of low frequency modes of oscillations in a magnetized bi-ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and ...

  4. The Parametric Instability of Alfven Waves: Effects of Temperature Anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tenerani, A.; Velli, M.; Hellinger, Petr

    2017-01-01

    Roč. 851, č. 2 (2017), 99/1-99/9 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : instabilities * plasmas * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  5. Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands

    Science.gov (United States)

    Vinas, A. F.; Goldstein, M. L.

    1992-01-01

    This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.

  6. Absolute parametric instability of low-frequency waves in a 2D ...

    Indian Academy of Sciences (India)

    Using the separation method, absolute parametric instability (API) of electrostatic waves in a magnetized pumped warm plasma is investigated. In this case the effect of static strong magnetic field is considered. The problem of strong magnetic field is solved in two-dimensional (2D) nonuniform plane plasma. Equations ...

  7. Knee motion variability in patients with knee osteoarthritis: the effect of self-reported instability

    Science.gov (United States)

    Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn

    2015-01-01

    Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (pknee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536

  8. Parametric analytical study of instability-related delamination growth

    Science.gov (United States)

    Whitcomb, J. D.

    1986-01-01

    The effect of various parameters on instability-related delamination growth was studied analytially. The configuration studied consisted of a thick composite laminate with a single through-width delamination located near one surface. Both mechanical and thermal loads were considered. All conclusions were based on the assumption that GI and GII govern delamination growth. An approximate superposition stress analysis was developed which gives closed form expressions for GI and GII. The simplicity of the analysis permitted examination of numerous configurations. Both GI and GII were found to be very sensitive to delamination length and location through the thickness. The magnitude of GI was also very sensitive to initial imperfections, which might be the results of an inclusion of finite thickness in the delamination. Critical loads for delamination growth were calculated based on three growth criteria. Large differences in the predictions highlight the need for a verified mixed-mode delamination growth criterion.

  9. Structure in the nonlinear saturation spectrum of parametric instabilities.

    Science.gov (United States)

    Fejer, J. A.; Kuo, Y.-Y.

    1973-01-01

    The nonlinear saturation spectrum of the decay instability is obtained in the limit of small spontaneous emission, for comparable ion and electron temperatures, from numerical solutions of a kinetic equation based on an accurate expression for the nonlinearity. The spectral energy occupies several pairs of isolated saucer-shaped regions in wave-vector space. The regions increase in thickness, angular diameter, and number as the pump power is increased. The theory thus predicts the generation of waves propagating in directions which can differ substantially from the direction of the pump field. Ionospheric observations confirm this prediction; they were difficult to reconcile with the predictions of previous theories based on an approximated expression for the nonlinearity. The present work also corrects the results of previous one-dimensional theories that used an accurate expression for the nonlinearity and predicted 'spectral lines' in the limit of vanishing spontaneous emission.

  10. The influence of dual-recycling on parametric instabilities at Advanced LIGO

    Science.gov (United States)

    Green, A. C.; Brown, D. D.; Dovale-Álvarez, M.; Collins, C.; Miao, H.; Mow-Lowry, C. M.; Freise, A.

    2017-10-01

    Laser interferometers with high circulating power and suspended optics, such as the LIGO gravitational wave detectors, experience an optomechanical coupling effect known as a parametric instability: the runaway excitation of a mechanical resonance in a mirror driven by the optical field. This can saturate the interferometer sensing and control systems and limit the observation time of the detector. Current mitigation techniques at the LIGO sites are successfully suppressing all observed parametric instabilities, and focus on the behaviour of the instabilities in the Fabry-Perot arm cavities of the interferometer, where the instabilities are first generated. In this paper we model the full dual-recycled Advanced LIGO design with inherent imperfections. We find that the addition of the power- and signal-recycling cavities shapes the interferometer response to mechanical modes, resulting in up to four times as many peaks. Changes to the accumulated phase or Gouy phase in the signal-recycling cavity have a significant impact on the parametric gain, and therefore which modes require suppression.

  11. Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Spencer [New York University-Polytechnic School of Engineering, 5 Metrotech Center, Brooklyn, New York 11201 (United States); Snyder, Arnold [NorthWest Research Associates, P.O. Box 530, Stockton Springs, Maine 04981 (United States); Lee, M. C. [Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 (United States); Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-06-15

    Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below the upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.

  12. Parametric decay instability of an obliquely propagating ordinary wave in the electron cyclotron frequency range

    Science.gov (United States)

    Gusakov, E. Z.; Popov, A. Yu.

    2018-01-01

    The possibility of the low-power-threshold parametric decay of an obliquely propagating ordinary wave to an upper hybrid wave and a low-hybrid wave is analysed under conditions of nonmonotonic plasma density profile in a magnetic trap. The instability threshold and growth rate are derived explicitly. The analytical results are illustrated under the conditions typical of the ordinary mode fundamental electron cyclotron resonance heating harmonic experiments at the FTU tokamak.

  13. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    DEFF Research Database (Denmark)

    Hansen, Søren Kjer; Nielsen, Stefan Kragh; Salewski, Mirko

    2017-01-01

    of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also...... account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments....

  14. Parametric and cadaveric models of lumbar flexion instability and flexion restricting dynamic stabilization system.

    Science.gov (United States)

    Fielding, Louis C; Alamin, Todd F; Voronov, Leonard I; Carandang, Gerard; Havey, Robert M; Patwardhan, Avinash G

    2013-12-01

    Development of a dynamic stabilization system often involves costly and time-consuming design iterations, testing and computational modeling. The aims of this study were (1) develop a simple parametric model of lumbar flexion instability and use this model to identify the appropriate stiffness of a flexion restricting stabilization system (FRSS), and (2) in a cadaveric experiment, validate the predictive value of the parametric model. Literature was surveyed for typical parameters of intact and destabilized spines: stiffness in the high flexibility zone (HFZ) and high stiffness zone, and size of the HFZ. These values were used to construct a bilinear parametric model of flexion kinematics of intact and destabilized lumbar spines. FRSS implantation was modeled by iteratively superimposing constant flexion stiffnesses onto the parametric model. Five cadaveric lumbar spines were tested intact; after L4-L5 destabilization (nucleotomy, midline decompression); and after FRSS implantation. Specimens were loaded in flexion/extension (8 Nm/6 Nm) with 400 N follower load to characterize kinematics for comparison with the parametric model. To accomplish the goal of reducing ROM to intact levels and increasing stiffness to approximately 50 % greater than intact levels, flexion stiffness contributed by the FRSS was determined to be 0.5 Nm/deg using the parametric model. In biomechanical testing, the FRSS restored ROM of the destabilized segment from 146 ± 13 to 105 ± 21 % of intact, and stiffness in the HFZ from 41 ± 7 to 135 ± 38 % of intact. Testing demonstrated excellent predictive value of the parametric model, and that the FRSS attained the desired biomechanical performance developed with the model. A simple parametric model may allow efficient optimization of kinematic design parameters.

  15. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  16. First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO

    Science.gov (United States)

    Blair, Carl; Gras, Slawek; Abbott, Richard; Aston, Stuart; Betzwieser, Joseph; Blair, David; DeRosa, Ryan; Evans, Matthew; Frolov, Valera; Fritschel, Peter; Grote, Hartmut; Hardwick, Terra; Liu, Jian; Lormand, Marc; Miller, John; Mullavey, Adam; O'Reilly, Brian; Zhao, Chunnong; Abbott, B. P.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gray, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Mittleman, R.; Moreno, G.; Mueller, G.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2017-04-01

    Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.

  17. Parametric instabilities of a large-amplitude circularly polarized Alfven wave - Linear growth in two-dimensional geometries

    Science.gov (United States)

    Ghosh, S.; Vinas, A. F.; Goldstein, M. L.

    1993-01-01

    The growth of parametric instabilities, which may lead to the development of a turbulent cascade, is studied using an MHD code that permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Parametric instabilities associated with a parallel-propagating decay instability are found to dominate the low-beta case. An obliquely propagating filamentationlike instability dominates the high-beta case. The nonlinear growth of the nth harmonic of a daughter wave growing as a factor of n times the fundamental's growth rate is found in both cases. Nonlinear saturation is caused by the parallel decay instability in the low-beta case and by the oblique filamentationlike instability in the high-beta case.

  18. Parametric instabilities of a large-amplitude circularly polarized Alfven wave: Linear growth in two-dimensional geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.; Vinas, A.F.; Goldstein, M.L. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1993-09-01

    The growth of parametric instabilities, which may lead to the development of a turbulent cascade, is studied using a magnetohydrodynamic (MHD) code that permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Parametric instabilities associated with a parallel-propagating decay instability are found to dominate the low-beta case. An obliquely propagating filamentationlike instability dominates the high-beta case. The nonlinear growth of the nth harmonic of a daughter wave growing as a factor of n times the fundamental`s growth rate is found in both cases. Nonlinear saturation is caused by the parallel decay instability in the low-beta case and by the oblique filamentationlike instability in the high-beta case. 31 refs., 7 figs.

  19. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    Science.gov (United States)

    Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team

    2017-10-01

    In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.

  20. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves

    CERN Document Server

    Krupa, Katarzyna; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-01-01

    Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-nanosecond pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parame...

  1. Parametric instabilities in a quantum magnetoplasma with electron exchange-correlations

    Science.gov (United States)

    Rozina, Ch.; Ali, S.; Maryam, N.; Amina, N.

    2017-10-01

    Relying on the density functional theory, we have examined the impact of electron exchange-correlations on the nonlinear dispersion relations and associated parametric instabilities induced by nonlinear couplings of high-frequency quantum upper-hybrid waves (QUHWs) with different low-frequency waves, like quantum lower-hybrid waves (QLHWs), quantum ion-cyclotron waves (QICWs), and quantum Alfvén waves (QAWs) in a dense quantum magnetoplasma. For theoretical description of waves, we make use of quantum hydrodynamic equations to account for the electron exchange-correlation and Bohm potentials, strongly dependent on the density fluctuations. At quantum scales, nonlinear dispersion equations are derived for QUHWs, QICWs, QLHWs, and QAWs and then Fourier transformed for obtaining the nonlinear dispersion relations and growth rates involving the three wave decay and modulational instabilities in dense quantum magnetoplasmas. The relevance to nonlinear interactions due to high- and low-frequency waves in perspective of electron exchange-correlations is highlighted.

  2. The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves

    Science.gov (United States)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2017-10-01

    We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.

  3. Saturation of radiation-induced parametric instabilities by excitation of Langmuir turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, D.F.; Rose, H.A. [Los Alamos National Lab., NM (United States); Russell, D. [Lodestar Research Inc., Boulder, CO (United States)

    1995-12-01

    Progress made in the last few years in the calculation of the saturation spectra of parametric instabilities which involve Langmuir daughter waves will be reviewed. These instabilities include the ion acoustic decay instability, the two plasmon decay instability (TPDI), and stimulated Raman scattering (SRS). In particular I will emphasize spectral signatures which can be directly compared with experiment. The calculations are based on reduced models of driven Laugmuir turbulence. Thomson scattering from hf-induced Langmuir turbulence in the unpreconditioned ionosphere has resulted in detailed agreement between theory and experiment at early times. Strong turbulence signatures dominate in this regime where the weak turbulence approximation fails completely. Recent experimental studies of the TPDI have measured the Fourier spectra of Langmuir waves as well as the angular and frequency, spectra of light emitted near 3/2 of the pump frequency again permitting some detailed comparisons with theory. The experiments on SRS are less detailed but by Thomson scattering the secondary decay of the daughter Langmuir wave has been observed. Scaling laws derived from a local model of SRS saturation are compared with full simulations and recent Nova experiments.

  4. Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere

    Science.gov (United States)

    Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.

    2018-01-01

    Aims: Twisted magnetic flux ropes (MFRs) in the solar atmosphere have been researched extensively because of their close connection to many solar eruptive phenomena, such as flares, filaments, and coronal mass ejections (CMEs). In this work, we performed a set of 3D isothermal magnetohydrodynamic (MHD) numerical simulations, which use analytical twisted MFR models and study dynamical processes parametrically inside and around current-carrying twisted loops. We aim to generalize earlier findings by applying finite plasma β conditions. Methods: Inside the MFR, approximate internal equilibrium is obtained by pressure from gas and toroidal magnetic fields to maintain balance with the poloidal magnetic field. We selected parameter values to isolate best either internal or external kink instability before studying complex evolutions with mixed characteristics. We studied kink instabilities and magnetic reconnection in MFRs with low and high twists. Results: The curvature of MFRs is responsible for a tire tube force due to its internal plasma pressure, which tends to expand the MFR. The curvature effect of toroidal field inside the MFR leads to a downward movement toward the photosphere. We obtain an approximate internal equilibrium using the opposing characteristics of these two forces. A typical external kink instability totally dominates the evolution of MFR with infinite twist turns. Because of line-tied conditions and the curvature, the central MFR region loses its external equilibrium and erupts outward. We emphasize the possible role of two different kink instabilities during the MFR evolution: internal and external kink. The external kink is due to the violation of the Kruskal-Shafranov condition, while the internal kink requires a safety factor q = 1 surface inside the MFR. We show that in mixed scenarios, where both instabilities compete, complex evolutions occur owing to reconnections around and within the MFR. The S-shaped structures in current distributions

  5. Parametric instabilities of circularly polarized large-amplitude dispersive Alfven waves: excitation of parallel-propagating electromagnetic daughter waves

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, A.F.; Goldstein, M.L. (National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center)

    1991-08-01

    The parametric decay and modulational instabilities of a large-amplitude circularly polarized dispersive Alfven wave are investigated. The treatment is more general than that of previous derivations based on the two-fluid equations in that allowance is made for propagation of the unstable daughter waves at arbitrary angles to the background magnetic field, although the main concern is the exploration of new aspects of propagation parallel to the DC magnetic field. In addition to the well-known coupling of pump waves to electrostatic daughter waves, a new parametric channel is found where the pump wave couples directly to electromagnetic daughter waves. The growth rate of the electromagnetic instability increases monotonically with increasing pump wave amplitude. Analysis confirms that, for decay, the dominant process is coupling to electrostatic daughter waves, at least for parallel propagation. For modulation, the coupling to electromagnetic daughter waves usually dominates, suggesting that the parametric modulational instability is really an electromagnetic phenomena. (author).

  6. Parametric Instabilities During High Power Helicon Wave Injection on DIII-D

    Directory of Open Access Journals (Sweden)

    Porkolab M.

    2017-01-01

    Full Text Available High power helicon (whistler waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high temperature plasmas. In this work we show that under typical experimental conditions in present day tokamaks with 1 MW of RF power coupled per antenna, the associated perpendicular electric fields of the order of 40 kV/m can drive strong parametric decay instabilities near the lower hybrid layer. The EXB and polarization drift velocities which are the dominant driver of the PDI can be comparable to the speed of sound in the outer plasma layers, a key measure of driving PDI instabilities. Here we calculate growth rates and convective thresholds for PDIs, and we find that decay waves into hot ion lower hybrid waves and ion cyclotron quasi modes dominate in the vicinity of the lower hybrid layer, possibly leading to pump depletion. Such instabilities in future reactor grade high temperature plasmas are less likely.

  7. Parametric Instabilities During High Power Helicon Wave Injection on DIII-D

    Science.gov (United States)

    Porkolab, M.; Pinsker, R. I.

    2017-10-01

    High power helicon (whistler) waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD) which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high temperature plasmas. In this work we show that under typical experimental conditions in present day tokamaks with 1 MW of RF power coupled per antenna, the associated perpendicular electric fields of the order of 40 kV/m can drive strong parametric decay instabilities near the lower hybrid layer. The EXB and polarization drift velocities which are the dominant driver of the PDI can be comparable to the speed of sound in the outer plasma layers, a key measure of driving PDI instabilities. Here we calculate growth rates and convective thresholds for PDIs, and we find that decay waves into hot ion lower hybrid waves and ion cyclotron quasi modes dominate in the vicinity of the lower hybrid layer, possibly leading to pump depletion. Such instabilities in future reactor grade high temperature plasmas are less likely.

  8. Effects of three-body interactions in the parametric and modulational instabilities of Bose–Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Wamba, Etienne, E-mail: wambaetienne@yahoo.fr [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon); Mohamadou, Alidou, E-mail: mohdoufr@yahoo.fr [Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, P.O. Box 24157, Douala (Cameroon); The Abdus Salam International Center for Theoretical Physics, P.O. Box 586, Strada Costiera, 11, I-34014 Trieste (Italy); Ekogo, Thierry B. [Departement de Physique, Université des Sciences et Techniques de Masuku, B.P. 943, Franceville (Gabon); Atangana, Jacque [High Teachers Training College of Yaounde, P.O. Box 47, Yaounde (Cameroon); Kofane, Timoleon C. [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon); The Abdus Salam International Center for Theoretical Physics, P.O. Box 586, Strada Costiera, 11, I-34014 Trieste (Italy)

    2011-11-21

    The parametric modulational instability for a discrete nonlinear Schrödinger equation with a cubic–quintic nonlinearity is analyzed. This model describes the dynamics of BECs, with both two- and three-body interatomic interactions trapped in an optical lattice. We identify and discuss the salient features of the three-body interaction in the parametric modulational instability. It is shown that the three-body interaction term can both, shift as well as narrow the window of parametric instability, and also change the behavior of a modulationally stable and parametrically unstable BEC with attractive two-body interaction. We explore this instability through the multiple-scale analysis and identify it numerically. The effect of the three body losses have also been investigated. -- Highlights: ► The parametric MI for the 1D GPE with a cubic–quintic nonlinearity is analyzed. ► The two- and three-body recombination and time-dependent scattering length is considered. ► We generate bright matter waves soliton through MI.

  9. Gravitoturbulence and the excitation of small-scale parametric instability in astrophysical discs

    Science.gov (United States)

    Riols, A.; Latter, H.; Paardekooper, S.-J.

    2017-10-01

    Young protoplanetary discs and the outer radii of active galactic nuclei may be subject to gravitational instability and, as a consequence, fall into a 'gravitoturbulent' state. While in this state, appreciable angular momentum can be transported; alternatively, the gas may collapse into bound clumps, the progenitors of planets or stars. In this paper, we numerically characterize the properties of 3D gravitoturbulence, focusing especially on its dependence on numerical parameters (resolution, domain size) and its excitation of small-scale dynamics. Via a survey of vertically stratified shearing-box simulations with pluto and rodeo, we find (a) evidence that certain gravitoturbulent properties are independent of horizontal box size only when the box is larger than ≃40H, where H is the scaleheight, (b) at high resolution, small-scale isotropic turbulence appears off the mid-plane around z ≃ 0.5-1H and (c) this small-scale dynamics results from a parametric instability, involving the coupling of inertial waves with a large-scale axisymmetric epicyclic mode. This mode oscillates at a frequency close to Ω and is naturally excited by gravitoturbulence via a non-linear process to be determined. The small-scale turbulence we uncover has potential implications for a wide range of disc physics, e.g. turbulent saturation levels, fragmentation, turbulent mixing and dust settling.

  10. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    2Department of AEIE, Dream Institute of Technology, Kolkata, India. ∗. Corresponding author. E-mail: mridulbose@yahoo.co.in. MS received 15 February 2012; accepted 12 October 2012. Abstract. The dust-acoustic instability driven by recombination of electrons and ions on the sur- face of charged and variably-charged ...

  11. Characterization of onset of parametric decay instability of lower hybrid waves

    Science.gov (United States)

    Baek, S. G.; Bonoli, P. T.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Porkolab, M.; Takase, Y.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B. L.; Lau, C.

    2014-02-01

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (n¯e) increases above 1020m-3. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near n¯e≈1.2×1020m-3. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi

  12. Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface.

    Science.gov (United States)

    McFarland, Jacob A; Greenough, Jeffrey A; Ranjan, Devesh

    2011-08-01

    A computational study of the Richtmyer-Meshkov instability for an inclined interface is presented. The study covers experiments to be performed in the Texas A&M University inclined shock tube facility. Incident shock wave Mach numbers from 1.2 to 2.5, inclination angles from 30° to 60°, and gas pair Atwood numbers of ∼0.67 and ∼0.95 are used in this parametric study containing 15 unique combinations of these parameters. Qualitative results are examined through a time series of density plots for multiple combinations of these parameters, and the qualitative effects of each of the parameters are discussed. Pressure, density, and vorticity fields are presented in animations available online to supplement the discussion of the qualitative results. These density plots show the evolution of two main regions in the flow field: a mixing region containing driver and test gas that is dominated by large vortical structures, and a more homogeneous region of unmixed fluid which can separate away from the mixing region in some cases. The interface mixing width is determined for various combinations of the parameters listed at the beginning of the Abstract. A scaling method for the mixing width is proposed using the interface geometry and wave velocities calculated using one-dimensional gas dynamic equations. This model uses the transmitted wave velocity for the characteristic velocity and an initial offset time based on the travel time of strong reflected waves. It is compared to an adapted Richtmyer impulsive model scaling and shown to scale the initial mixing width growth rate more effectively for fixed Atwood number.

  13. Comment on "Parametric Instability Induced by X-Mode Wave Heating at EISCAT" by Wang et al. (2016)

    Science.gov (United States)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.

    2017-12-01

    In their recent article Wang et al. (2016) analyzed observations from EISCAT (European Incoherent Scatter) Scientific Association Russian X-mode heating experiments and claimed to explain the potential mechanisms for the parametric decay instability (PDI) and oscillating two-stream instability (OTSI). Wang et al. (2016) claim that they cannot separate the HF-enhanced plasma and ion lines excited by O or X mode in the EISCAT UHF radar spectra. Because of this they distinguished the parametric instability excited by O-/X-mode heating waves according to their different excitation heights. Their reflection heights were determined from ionosonde records, which provide a rough measure of excitation altitudes and cannot be used for the separation of the O- and X-mode effects. The serious limitation in their analysis is the use of a 30 s integration time of the UHF radar data. There are also serious disagreements between their analysis and the real observational facts. The fact is that it is the radical difference in the behavior of the X- and O-mode plasma and ion line spectra derived with a 5 s resolution, which provides the correct separation of the X- and O-mode effects. It is not discussed and explained how the parallel component of the electric field under X-mode heating is generated. Apart from the leakage to the O mode, results by Wang et al. (2016) do not explain the potential mechanisms for PDI and OTSI and add nothing to understanding the physical factors accounting for the parametric instability generated by an X-mode HF pump wave.

  14. Parametric instabilities of circularly polarized large-amplitude dispersive Alfven waves: excitation of obliquely-propagating daughter and side-band waves

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, A.F.; Goldstein, M.L. (National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center)

    1991-08-01

    The parametric instabilities of a large-amplitude circularly polarized dispersive parallel-propagating Alfven wave are investigated. The treatment is more general than that of previous derivations based on the two-fluid equations in that allowance is made for propagation of the unstable daughter and side-band waves at arbitrary angles to the background (DC) magnetic field. The characteristics of the decay and modulational instabilities as functions of propagation angle are presented. It is found that in addition to the well-known decay and modulational instabilities, that at oblique and perpendicular propagation there is another parametric instability, namely the filamentation instability, which is characterized by a broad band-width in wavenumber. A second parametric process at oblique and perpendicular angles of propagation, namely the parametric magneto-acoustic instability is also investigated. The magneto-acoustic instability extends over a broad angular range, but has a very narrow band-width in wavenumber. The dispersive characteristics of the filamentation and magneto-acoustic instabilities as functions of plasma {beta}, dispersion {kappa} and pump amplitude {eta} for arbitrary propagation angles are reported. (author).

  15. Influence of Variable Acceleration on Parametric Roll Motion of a Container Ship

    Directory of Open Access Journals (Sweden)

    Emre PEŞMAN

    2016-09-01

    Full Text Available Ship operators increase or decrease thrust force of ships to avoid parametric roll motion. These operations cause varying acceleration values. In this study, influence of variable acceleration and deceleration of ships on roll motion is investigated in longitudinal waves. The method which is referred as simple model is utilized for analysis. Simple Model is one degree of freedom nonlinear parametric roll motion equation which contains changing velocity and restoring moment in waves with respect to time. Ship velocities in waves are predicted by XFlow software for various thrust forces. Results indicate that variable acceleration has significant effect on parametric roll phenomenon.

  16. Characterization of onset of parametric decay instability of lower hybrid waves

    Energy Technology Data Exchange (ETDEWEB)

    Baek, S. G.; Bonoli, P. T.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B. L.; Lau, C. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States); Takase, Y. [The University of Tokyo, Kashiwa (Japan)

    2014-02-12

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (nÐœ„{sub e}) increases above 10{sup 20}m{sup −3}. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near nÐœ„{sub e}≈1.2×10{sup 20}m{sup −3}. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an

  17. Changing space and sound: Parametric design and variable acoustics

    Science.gov (United States)

    Norton, Christopher William

    This thesis examines the potential for parametric design software to create performance based design using acoustic metrics as the design criteria. A former soundstage at the University of Southern California used by the Thornton School of Music is used as a case study for a multiuse space for orchestral, percussion, master class and recital use. The criteria used for each programmatic use include reverberation time, bass ratio, and the early energy ratios of the clarity index and objective support. Using a panelized ceiling as a design element to vary the parameters of volume, panel orientation and type of absorptive material, the relationships between these parameters and the design criteria are explored. These relationships and subsequently derived equations are applied to Grasshopper parametric modeling software for Rhino 3D (a NURBS modeling software). Using the target reverberation time and bass ratio for each programmatic use as input for the parametric model, the genomic optimization function of Grasshopper - Galapagos - is run to identify the optimum ceiling geometry and material distribution.

  18. Using X-ray spectroscopy of relativistic laser plasma interaction to reveal parametric decay instabilities : A modeling tool for astrophysics

    OpenAIRE

    Oks, E; Dalimier, E.; Faenov, A. Ya; Angelo, P.; Pikuz, S. A.; Tubman, E.; Butler, N. M H; Dance, R. J.; Pikuz, T. A.; Skobelev, I. Yu.; Alkhimova, M. A.; Booth, N.; Green, J.; Gregory, C; Andreev, A.

    2017-01-01

    By analyzing profiles of experimental x-ray spectral lines of Si XIV and Al XIII, we found that both Langmuir and ion acoustic waves developed in plasmas produced via irradiation of thin Si foils by relativistic laser pulses (intensities ∼1021 W/cm2). We prove that these waves are due to the parametric decay instability (PDI). This is the first time that the PDI-induced ion acoustic turbulence was discovered by the x-ray spectroscopy in laser-produced plasmas. These conclusions are also suppo...

  19. Kinetic Effects in Parametric Instabilities of Finite Amplitude Alfven Waves in a Drifting Multi-Species Plasma

    Science.gov (United States)

    Maneva, Y. G.; Araneda, J. A.; Poedts, S.

    2014-12-01

    We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.

  20. Growth rates of new parametric instabilities occurring in a plasma with streaming He(2+)

    Science.gov (United States)

    Jayanti, V.; Hollweg, Joseph V.

    1994-01-01

    We consider parametic instabilities of a circularly polarized pump Alfven wave, which propagates parallel to the ambient magnetic field; the daughter waves are also parallel-propagating. We follow Hollweg et al. (1993) and consider several new instabilites that owe their existence to the presence of streaming alpha particles. One of the new instabilites is similar to the famililar decay instability, but the daughter waves are a forward going alpha sound wave and a backward going Alfven wave. The growth rate of this instability is usually small if the alpha abundance is small. The other three new instabilities occur at high frequencies and small wavelengths. We find that the new instability which involves the proton cyclotron wave and alpha sound (i.e., the +f, - alpha) instability, which involves both the proton and alpha cycltron resonances, but if the pump wave must have low frequency and large amplitude. These instabilities may be a means of heating and accelerating alpha particles in the solar wind, but this claim is unproven until a fully kinetic study is carried out.

  1. A Parametric Investigation of Geometric Variation on Fluid Dynamic Instabilities in Axial Compression Systems

    Directory of Open Access Journals (Sweden)

    Ananth Sivaramakrishnan Malathi

    2012-01-01

    Full Text Available The ability to predict the nature of instabilities is highly important from the compressor design point of view since their consequences could result in widely varying difficulties with the fluid dynamic performance of the systems. Even though the behavior of surge and rotating stall is reported in many literatures, it is noticed that an in-depth analysis is not undertaken. Hence in view of the importance for a deeper understanding, the present paper is aimed at tracking the chaos of these instabilities in a more detailed manner. Primarily the influence of geometric parameters on the nature of surge and rotating stall is investigated. The effect of each of the major geometric parameters such as compressor effective length, annulus area, and plenum volume is discussed. The physical reason for the onset of instabilities is also explained in each case, and the well-accepted Moore-Greitzer model has been used for the present study. The combined effect of physical parameters is determined through the Greitzer parameter. The results shown in this paper clearly elucidate the dominating effect of the geometric parameters on the development of flow instabilities like rotating stall and surge and hence can serve as a design guideline to avoid such instabilities.

  2. Stochastic Parametrization for the Impact of Neglected Variability Patterns

    Science.gov (United States)

    Kaiser, Olga; Hien, Steffen; Achatz, Ulrich; Horenko, Illia

    2017-04-01

    An efficient description of the gravity wave variability and the related spontaneous emission processes requires an empirical stochastic closure for the impact of neglected variability patterns (subgridscales or SGS). In particular, we focus on the analysis of the IGW emission within a tangent linear model which requires a stochastic SGS parameterization for taking the self interaction of the ageostrophic flow components into account. For this purpose, we identify the best SGS model in terms of exactness and simplicity by deploying a wide range of different data-driven model classes, including standard stationary regression models, autoregression and artificial neuronal networks models - as well as the family of nonstationary models like FEM-BV-VARX model class (Finite Element based vector autoregressive time series analysis with bounded variation of the model parameters). The models are used to investigate the main characteristics of the underlying dynamics and to explore the significant spatial and temporal neighbourhood dependencies. The best SGS model in terms of exactness and simplicity is obtained for the nonstationary FEM-BV-VARX setting, determining only direct spatial and temporal neighbourhood as significant - and allowing to drastically reduce the number of informations that are required for the optimal SGS. Additionally, the models are characterized by sets of vector- and matrix-valued parameters that must be inferred from big data sets provided by simulations - making it a task that can not be solved without deploying high-performance computing facilities (HPC).

  3. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma

    Science.gov (United States)

    Zhao, Yao; Weng, Suming; Chen, Min; Zheng, Jun; Zhuo, Hongbin; Ren, Chuang; Sheng, Zhengming; Zhang, Jie

    2017-11-01

    A theoretical analysis for the stimulated Raman scattering (SRS) instability driven by two laser beams with a certain frequency difference is presented. It is found that strong coupling and enhanced SRS take place only when the unstable regions corresponding to the two beams are overlapped in the wavenumber space. Hence, a threshold of the beam frequency difference for their decoupling is found as a function of their intensity and plasma density. Based upon this, a strategy to suppress the SRS instability with decoupled broadband lasers (DBLs) is proposed. A DBL can be composed of tens or even hundreds of beamlets, where the beamlets are distributed uniformly in a broad spectrum range such as over 10% of the central frequency. Decoupling among the beamlets is found due to the limited beamlet energy and suitable frequency difference between neighboring beamlets. Particle-in-cell simulations demonstrate that SRS can be almost completely suppressed with DBLs at the laser intensity of ˜1015 W/cm2. Moreover, stimulated Brillouin scattering (SBS) will be suppressed simultaneously with DBLs as long as SRS is suppressed. DBLs can be attractive for driving inertial confined fusion.

  4. Characterization of onset of parametric decay instability of lower hybrid waves in ITER-relevant high-density plasmas

    Science.gov (United States)

    Baek, Seung Gyou; Bonoli, P. T.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Porkolab, M.; Takase, Y.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; Labombar, B. L.; Lau, C.

    2013-10-01

    Lower hybrid (LH) current drive experiments on Alcator C-Mod have revealed that the density corresponding to the onset of parametric decay instability (PDI) is as low as ne ~ 1 ×1020m-3 suggesting that PDI may be a remaining parasitic loss mechanism to explain the observed loss of current drive efficiency in high density plasmas. Convective growth due to parallel coupling is most likely to explain the observed PDI. Depending on the magnetic configurations, PDI is excited at different locations with different strength, while a similar level of hard X-ray is observed as long as ne is similar. PDI is excited at the high-field side edge in lower null plasmas with the decrease in the pump power, indicating that the single pass absorption is weak and pump depletion can occur below conventional PDI limit. In upper null plasmas, PDI is excited at the low-field side edge with no apparent indication of pump depletion. More extensive spectral measurements are necessary to fully understand the role of this seemingly weak PDI at the LFS to gauge the effect of the observed PDI in high single-pass absorption plasmas as will be in ITER. Supported by USDoE award DE-FC02-99ER54512.

  5. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Baek, S. G., E-mail: sgbaek@mit.edu; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Takase, Y. [University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-06-15

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n{sup ¯}{sub e}) increases above ∼1 × 10{sup 20} m{sup −3}. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  6. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    Science.gov (United States)

    Baek, S. G.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C.

    2014-06-01

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n¯e) increases above ˜1 × 1020 m-3. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  7. Variability of motion in individuals with mechanical or functional ankle instability during a stop jump maneuver.

    Science.gov (United States)

    Brown, Cathleen N; Padua, Darin A; Marshall, Stephen W; Guskiewicz, Kevin M

    2009-11-01

    Movement variability may influence episodes of instability following lateral ankle sprain. Sixty-three recreational athletes with a history of moderate-severe ankle sprain were recruited. Mechanically and functionally unstable ankle groups had 2 episodes of instability in the last year. Mechanically unstable had clinically lax lateral ankle ligaments; functionally unstable and copers did not. Copers had a history of sprain but no residual instability. Lower extremity 3-dimensional kinematics and ground reaction forces were measured during a 2-legged stop jump. Average ensemble curves of eight trials normalized to 100% of stance phase were created. The coefficient of variation and average standard deviation of the ensemble curves of each variable were identified. A log(e) (ln) transformation was performed on the data. One-way ANOVAs with Tukey post hoc testing were utilized with alpha=0.05. The functionally unstable group demonstrated greater mean (standard deviation) ln coefficient of variation ankle inversion/eversion 3.56 (1.19) than the mechanically unstable 2.77 (0.95) and copers 2.74 (1.05) (P=0.05 and P=0.04; eta(p)(2)=0.12), and greater ln standard deviation ankle inversion/eversion 1.07 (0.78) than copers 0.61 (0.31) (eta(p)(2)=0.13). The mechanically unstable group demonstrated greater ln coefficient of variation anterior-posterior ground reaction force 3.69 (0.27) than functionally unstable 3.43 (0.25) (P=0.02; eta(p)(2)=0.13). Functionally unstable individuals demonstrated greater ankle frontal plane movement variability during a stop jump, which may increase risk of instability. Mechanically unstable participants demonstrated greater anterior-posterior ground reaction force variability, which may indicate difficulty mitigating landing forces with lax ligaments. Movement variability may influence episodes of ankle instability.

  8. Electron acoustic waves and parametric instabilities in a 4-component relativistic quantum plasma with Thomas-Fermi distributed electrons

    Science.gov (United States)

    Ikramullah, Ahmad, Rashid; Sharif, Saqib; Khattak, Fida Younus

    2018-01-01

    The interaction of Circularly Polarized Electro-Magnetic (CPEM) waves with a 4-component relativistic quantum plasma is studied. The plasma constituents are: relativistic-degenerate electrons and positrons, dynamic degenerate ions, and Thomas-Fermi distributed electrons in the background. We have employed the Klein-Gordon equations for the electrons as well as for the positrons, while the ions are represented by the Schrödinger equation. The Maxwell and Poisson equations are used for electromagnetic waves. Three modes are observed: one of the modes is associated with the electron acoustic wave, a second mode at frequencies greater than the electron acoustic wave mode could be associated with the positrons, and the third one at the lowest frequencies could be associated with the ions. Furthermore, Stimulated Raman Scattering (SRS), Modulational, and Stimulated Brillouin Scattering (SBS) instabilities are studied. It is observed that the growth rates of both the SRS and SBS instabilities decrease with increase in the quantum parameter of the plasma. It is also observed that the scattering spectra in both the SRS and SBS get restricted to very small wavenumber regions. It is shown that for low amplitude CPEM wave interaction with the quantum plasma, the positron concentration has no effect on the SRS and SBS spectra. In the case of large amplitude CPEM wave interaction, however, one observes spectral changes with varying positron concentrations. An increase in the positron concentration also enhances the scattering instability growth rates. Moreover, the growth rate first increases and then decreases with increasing intensity of the CPEM wave, indicating an optimum value of the CPEM wave intensity for the growth of these scattering instabilities. The modulational instability also shows dependence on the quantum parameter as well as on the positron concentration.

  9. On a new scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an extraordinary wave in the inhomogeneous plasma of magnetic traps

    Energy Technology Data Exchange (ETDEWEB)

    Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-10-15

    The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.

  10. LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability.

    Directory of Open Access Journals (Sweden)

    Marcos R H Estécio

    Full Text Available BACKGROUND: Alterations in DNA methylation in cancer include global hypomethylation and gene-specific hypermethylation. It is not clear whether these two epigenetic errors are mechanistically linked or occur independently. This study was performed to determine the relationship between DNA hypomethylation, hypermethylation and microsatellite instability in cancer. METHODOLOGY/PRINCIPAL FINDINGS: We examined 61 cancer cell lines and 60 colorectal carcinomas and their adjacent tissues using LINE-1 bisulfite-PCR as a surrogate for global demethylation. Colorectal carcinomas with sporadic microsatellite instability (MSI, most of which are due to a CpG island methylation phenotype (CIMP and associated MLH1 promoter methylation, showed in average no difference in LINE-1 methylation between normal adjacent and cancer tissues. Interestingly, some tumor samples in this group showed increase in LINE-1 methylation. In contrast, MSI-showed a significant decrease in LINE-1 methylation between normal adjacent and cancer tissues (P<0.001. Microarray analysis of repetitive element methylation confirmed this observation and showed a high degree of variability in hypomethylation between samples. Additionally, unsupervised hierarchical clustering identified a group of highly hypomethylated tumors, composed mostly of tumors without microsatellite instability. We extended LINE-1 analysis to cancer cell lines from different tissues and found that 50/61 were hypomethylated compared to peripheral blood lymphocytes and normal colon mucosa. Interestingly, these cancer cell lines also exhibited a large variation in demethylation, which was tissue-specific and thus unlikely to be resultant from a stochastic process. CONCLUSION/SIGNIFICANCE: Global hypomethylation is partially reversed in cancers with microsatellite instability and also shows high variability in cancer, which may reflect alternative progression pathways in cancer.

  11. Diagnosis of the instability of the cooling behaviour of flat steel products through parametric characterisation, neural networks and statistics.

    Science.gov (United States)

    Colla, Valentina; Vannucci, Marco; Dimatteo, Antonella

    2010-04-01

    This paper presents a mathematical model developed by means of an analytical function whose shape depends on the values of a few parameters for the run-out table cooling which is used in hot strip mills. The system relies on a first-order differential equation for describing the temperature loss along the run-out table. Neural networks have been applied in order to find correlations between the model parameters and the steel and process variables. Then, traditional statistical techniques have been applied in order to evaluate the stability of the cooling behaviour. Numerical results obtained on an industrial database are presented and discussed. Copyright 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Parametric and non-parametric approaches to assess spatial variability of As and F- concentrations in uncertain geological settings of Tanzania.

    Science.gov (United States)

    Ijumulana, Julian; Bhattacharya, Prosun; Ligate, Fanuel J.; Irunde, Regina; Mtalo, Felix

    2017-04-01

    Groundwater pollution is becoming a serious problem to human health worldwide and affects sustainable Water Quality Management Plan in many countries. The occurrence of such pollutants can either be geogenic or anthropogenic of which geogenic pollutants are reported to be more dangerous due to uncertainty in their occurrence, interaction with groundwater and how they affect human health through drinking water supplies. Therefore, understanding the spatial variability of groundwater As and F concentrations is a critical issue to be considered in developing a sustainable Water Quality Management Plan in any country. In northern parts of Tanzania, due to lack of alternative drinking water sources, adjurisdiction and insufficient technology to detect and remove or lower pollutants concentrations, the maximum permissible concentration has been set to 4 mg/L and 0.05 mg/L for F and As respectively, contrary to the WHO drinking water guideline values of 1.5 mg/L F and 0.01mg/L As. The current study on groundwater contamination in Tanzania is focused on understanding the spatial variability of F and As concentrations and characterising regions with high concentrations that do not comply with drinking water guidelines. Due to limited data coverage, we are using both stochastic and nonparametric statistical approaches to understand their spatial distribution and associated uncertainty. In parametric approaches, we are developing geostatistical methods based on regression kriging (RK) and simulations to generate a series of images showing spatial distribution of As and F concentrations based on sample data. In nonparametric methods we are using ranked sums approaches to assess the relationship between detected concentrations in shallow wells, springs, boreholes, deep shallow wells and rivers in different geological settings. The resulting simulation images are classified using rule-based classifier to detect contaminated and uncontaminated areas and associated model of

  13. Macromechanical Parametric Amplification

    DEFF Research Database (Denmark)

    Neumeyer, Stefan

    Parametric amplification is obtained by adding parametric excitation to direct (externally driven) excitation for boosting near-resonant oscillations. It is utilized for mass and force sensing, switching and signal processing, filtering, timing, signal amplification, and appears promising...... for energy harvesting. Using analytical, numerical, and experimental methods, the thesis focuses on superthreshold pumping (above the systems parametric instability threshold), nonlinear effects, frequency response backbones, and frequency detuning effects for parametric amplifiers. Part one of the thesis...... but parametrically excited frequency response backbone is proposed instead of the classic unforced and undamped backbone. With the modified and more general backbone, it is shown how the response of a superthreshold pumped amplifier is related to respectively the pure directly and pure parametrically excited...

  14. Update on Multi-Variable Parametric Cost Models for Ground and Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2012-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper reports on recent revisions and improvements to our ground telescope cost model and refinements of our understanding of space telescope cost models. One interesting observation is that while space telescopes are 50X to 100X more expensive than ground telescopes, their respective scaling relationships are similar. Another interesting speculation is that the role of technology development may be different between ground and space telescopes. For ground telescopes, the data indicates that technology development tends to reduce cost by approximately 50% every 20 years. But for space telescopes, there appears to be no such cost reduction because we do not tend to re-fly similar systems. Thus, instead of reducing cost, 20 years of technology development may be required to enable a doubling of space telescope capability. Other findings include: mass should not be used to estimate cost; spacecraft and science instrument costs account for approximately 50% of total mission cost; and, integration and testing accounts for only about 10% of total mission cost.

  15. Towards a Multi-Variable Parametric Cost Model for Ground and Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd

    2016-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost approximately (X) D(exp (1.75 +/- 0.05)) lambda(exp(-0.5 +/- 0.25) T(exp -0.25) e (exp (-0.04)Y). Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  16. The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

    Science.gov (United States)

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2017-04-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

  17. Towards Stabilizing Parametric Active Contours

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2014-01-01

    Numerical instability often occurs in evolving of parametric active contours. This is mainly due to the undesired change of parametrization during evolution. In this paper, we propose a new tangential diffusion term to compensate this undesired change. As a result, the parametrization will converge...... to a parametrization that is proportional to the natural parametrization which implies that the control points of the contour are uniformly distributed. We theoretically prove that this tangential diffusion term is bounded and therefore numerically stable. Several experiments were conducted and verified...

  18. Variable Sweep Transition Flight Experiment (VSTFE)-Parametric Pressure Distribution Boundary Layer Stability Study and Wing Glove Design Task

    Science.gov (United States)

    Rozendaal, Rodger A.

    1986-01-01

    The Variable Sweep Transition Flight Experiment (VSTFE) was initiated to establish a boundary-layer transition data base for laminar flow wing design. For this experiment, full-span upper-surface gloves will be fitted to a variable sweep F-14 aircraft. The results of two initial tasks are documented: a parametric pressure distribution/boundary-layer stability study and the design of an upper-surface glove for Mach 0.8. The first task was conducted to provide a data base from which wing-glove pressure distributions could be selected for glove designs. Boundary-layer stability analyses were conducted on a set of pressure distributions for various wing sweep angles, Mach numbers, and Reynolds number in the range of those anticipated for the flight-test program. The design procedure for the Mach 0.8 glove is described, and boundary-layer stability calculations and pressure distributions are presented both at design and off-design conditions. Also included is the analysis of the clean-up glove (smoothed basic wing) that will be flight-tested initially and the analysis of a Mach 0.7 glove designed at the NASA Langley Research Center.

  19. Parametric Sensivity Study of Operating and Design Variables in Wellbore Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    G. Michael Shook; Gopi Nalla; Gregory L. Mines; K. Kit Bloomfield

    2004-05-01

    This report documents the results of an extensive sensitivity study conducted by the Idaho National Engineering and Environmental Laboratory. This study investigated the effects of various operating and design parameters on wellbore heat exchanger performance to determine conditions for optimal thermal energy extraction and evaluate the potential for using a wellbore heat exchanger model for power generation. Variables studied included operational parameters such as circulation rates, wellbore geometries and working fluid properties, and regional properties including basal heat flux and formation rock type. Energy extraction is strongly affected by fluid residence time, heat transfer contact area, and formation thermal properties. Water appears to be the most appropriate working fluid. Aside from minimal tubing insulation, tubing properties are second order effects. On the basis of the sensitivity study, a best case model was simulated and the results compared against existing low-temperature power generation plants. Even assuming ideal work conversion to electric power, a wellbore heat exchange model cannot generate 200 kW (682.4e+3 BTU/h) at the onset of pseudosteady state. Using realistic conversion efficiency, the method is unlikely to generate 50 kW (170.6e+3 BTU/h).

  20. Parametric Sensitivity Study of Operating and Design Variables in Wellbore Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, G.; Shook, G.M.; Mines, G.L.; Bloomfield, K.K.

    2004-05-01

    This report documents the results of an extensive sensitivity study conducted by the Idaho National Engineering and Environmental Laboratory. This study investigated the effects of various operating and design parameters on wellbore heat exchanger performance to determine conditions for optimal thermal energy extraction and evaluate the potential for using a wellbore heat exchanger model for power generation. Variables studied included operational parameters such as circulation rates, wellbore geometries and working fluid properties, and regional properties including basal heat flux and formation rock type. Energy extraction is strongly affected by fluid residence time, heat transfer contact area, and formation thermal properties. Water appears to be the most appropriate working fluid. Aside from minimal tubing insulation, tubing properties are second order effects. On the basis of the sensitivity study, a best case model was simulated and the results compared against existing low-temperature power generation plants. Even assuming ideal work conversion to electric power, a wellbore heat exchange model cannot generate 200 kW (682.4e+3 BTU/h) at the onset of pseudosteady state. Using realistic conversion efficiency, the method is unlikely to generate 50 kW (170.6e+3 BTU/h).

  1. Taylor instability of partially-ionized plasma in porous medium in the presence of variable magnetic field

    Science.gov (United States)

    Sharma, R. C.; Sharma, Y. D.

    1989-05-01

    Consideration is given to the frictional effect of collisions between ionized and neutral atoms on the Taylor instability of a composite plasma in a porous medium in the presence of a variable horizontal magnetic field. It is found that the system is stable for stable density stratification. It is shown that the magnetic field can stabilize a system that was unstable in the absence of the field. The effect of the permeability of the medium on growth rates is discussed.

  2. Parametric diagram

    DEFF Research Database (Denmark)

    Hermund, Anders

    2010-01-01

    This paper will introduce the PhD research into applied 3d modeling and parametric design outlining the idea of a parametric diagram linked to philosophical and applied examples.......This paper will introduce the PhD research into applied 3d modeling and parametric design outlining the idea of a parametric diagram linked to philosophical and applied examples....

  3. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    Parametric resonance is a resonant phenomenon which takes place in systems characterized by periodic variations of some parameters. While seen as a threatening condition, whose onset can drive a system into instability, this chapter advocates that parametric resonance may become an advantage...... if the system undergoing it could transform the large amplitude motion into, for example, energy. Therefore the development of control strategies to induce parametric resonance into a system can be as valuable as those which aim at stabilizing the resonant oscillations. By means of a mechanical equivalent...... the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...

  4. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    Science.gov (United States)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  5. PARAMETRIC IMAGING AND TEST-RETEST VARIABILITY OF 11C-(+)-PHNO BINDING TO D2/D3 DOPAMINE RECEPTORS IN HUMANS ON THE HRRT PET SCANNER

    Science.gov (United States)

    Gallezot, Jean-Dominique; Zheng, Ming-Qiang; Lim, Keunpoong; Lin, Shu-fei; Labaree, David; Matuskey, David; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E.; Malison, Robert T.

    2014-01-01

    11C-(+)-PHNO is an agonist radioligand for imaging dopamine D2 and D3 receptors in the human brain with PET. In this study we evaluated the reproducibility of 11C-(+)-PHNO binding parameters using a within-day design and assessed parametric imaging methods. Methods Repeated studies were performed in eight subjects, with simultaneous measurement of the arterial input function and plasma free fraction. Two 11C-(+)-PHNO scans on the same subject were separated by 5.4±0.7 h. After evaluating compartment models, 11C-(+)-PHNO volumes of distribution VT and VT/fP and binding potentials BPND, BPP and BPF were quantified using the multilinear analysis MA1, with the cerebellum as reference region. Parametric images of BPND were also computed using SRTM and SRTM2. Results The test-retest variability of 11C-(+)-PHNO BPND was 9% in D2-rich regions (caudate and putamen). Among D3-rich regions, variability was low in pallidum (6%), but higher in substantia nigra (19%), thalamus (14%) and hypothalamus (21%). No significant mass carry-over effect was observed in D3-rich regions, although a trend in BPND was present in substantia nigra (−14±15%). Due to the relatively fast kinetics, low noise BPND parametric images were obtained with both SRTM and SRTM2 without spatial smoothing. Conclusion 11C-(+)-PHNO can be used to compute low noise parametric images in both D2 and D3 rich regions in humans. PMID:24732151

  6. Frontal-Plane Variability in Foot Orientation During Fatiguing Running Exercise in Individuals With Chronic Ankle Instability.

    Science.gov (United States)

    McGrath, Denise; Patterson, Matthew; Persson, Ulrik McCarthy; Caulfield, Brian

    2017-11-08

      Researchers have reported increased variability in frontal-plane movement at the ankle during jumping in individuals with chronic ankle instability (CAI), which may increase their risk of recurrent ankle sprain. It is not known if this behavior is present during running gait or how fatigue affects the amount of frontal-plane-movement variability in individuals with CAI.   To investigate the amount of roll-angle variability at the foot during a fatiguing exercise protocol in participants with CAI.   Controlled laboratory study.   Motion-analysis research laboratory.   A total of 18 volunteers with CAI (10 men, 8 women; age = 29.8 ± 9.2 years, height = 175.8 ± 11.2 cm, mass = 75.4 ± 10.7 kg) and 17 volunteers serving as controls (8 men, 9 women; age = 28.2 ± 6.3 years, height = 172.3 ± 10.6 cm, mass = 68.8 ± 12.9 kg).   Kinematic data for foot position were collected while participants performed a functional fatigue protocol based on shuttle runs.   Variability (ie, standard deviation) of the roll angle of the foot about the x-axis, corresponding to inversion-eversion, was measured at 2 discrete times: 50 milliseconds before foot strike and 65% of stance.   No differences in roll-angle range or variability were observed between limbs in either group. At 65% of stance, we found a main effect for time, whereby both groups demonstrated decreased roll-angle ranges at the end of the fatigue protocol (P = .01). A between-groups effect in the roll-angle variability at 65% of stance was noted (P = .04), with the CAI group exhibiting higher levels of variability. No between-groups differences were observed at 50 milliseconds before foot strike.   Chronic ankle instability is a complex, multifactorial condition that can affect patients in diverse ways. Identifying excessive foot-position variability in particular situations could potentially inform targeted rehabilitation programs.

  7. A breast cancer meta-analysis of two expression measures of chromosomal instability reveals a relationship with younger age at diagnosis and high risk histopathological variables

    DEFF Research Database (Denmark)

    Endesfelder, David; McGranahan, Nicholas; Birkbak, Nicolai Juul

    2011-01-01

    , assessed by the two independently derived CIN expression signatures, is significantly associated with increased tumour size, ER negative or HER2 positive disease, higher tumour grade and younger age at diagnosis in ER negative breast cancer. These data support the hypothesis that chromosomal instability......Breast cancer in younger patients often presents with adverse histopathological features, including increased frequency of estrogen receptor negative and lymph node positive disease status. Chromosomal instability (CIN) is increasingly recognised as an important prognostic variable in solid tumours...

  8. Modulation of brain activity by multiple lexical and word form variables in visual word recognition: A parametric fMRI study.

    Science.gov (United States)

    Hauk, Olaf; Davis, Matthew H; Pulvermüller, Friedemann

    2008-09-01

    Psycholinguistic research has documented a range of variables that influence visual word recognition performance. Many of these variables are highly intercorrelated. Most previous studies have used factorial designs, which do not exploit the full range of values available for continuous variables, and are prone to skewed stimulus selection as well as to effects of the baseline (e.g. when contrasting words with pseudowords). In our study, we used a parametric approach to study the effects of several psycholinguistic variables on brain activation. We focussed on the variable word frequency, which has been used in numerous previous behavioural, electrophysiological and neuroimaging studies, in order to investigate the neuronal network underlying visual word processing. Furthermore, we investigated the variable orthographic typicality as well as a combined variable for word length and orthographic neighbourhood size (N), for which neuroimaging results are still either scarce or inconsistent. Data were analysed using multiple linear regression analysis of event-related fMRI data acquired from 21 subjects in a silent reading paradigm. The frequency variable correlated negatively with activation in left fusiform gyrus, bilateral inferior frontal gyri and bilateral insulae, indicating that word frequency can affect multiple aspects of word processing. N correlated positively with brain activity in left and right middle temporal gyri as well as right inferior frontal gyrus. Thus, our analysis revealed multiple distinct brain areas involved in visual word processing within one data set.

  9. Variability of accretion disks surrounding black holes: The role of inertial-acoustic mode instabilities

    Science.gov (United States)

    Chen, Xingming; Taam, Ronald E.

    1995-01-01

    The global nonlinear time-dependent evolution of the inertial-acoustic mode instability in accretion disks surrounding black holes has been investigated. The viscous stress is assumed to be proportional to the gas pressure only, i.e., tau = alphap(sub g). It is found that an oscillatory nonsteady behavior exists in the inner regions of disks (r is less than 10r(sub g) where r(sub g) is the Schwarzschild radius) for sufficiently large alpha(greater than or approximately equal to 0.2) and for mass accretion rates less than about 0.3 times the Eddington value. The variations of the integrated bolometric luminosity from the disk, Delta L/L, are less than 3%. A power spectrum analysis of these variations reveals a power spectrum which can be fitted to a power-law function of the frequency Pis proportional to f(exp -gamma), with index gamma = 1.4-2.3 and a low-frequency feature at about 4 Hz in one case. In addition, a narrow peak centered at a frequency corresponding to the maximum epicyclic frequency of the disk at approximately 100-130 Hz and its first harmonic is also seen. The low-frequency modulations are remarkably similar to those observed in black hole candidate systems. The possible existence of a scattering corona in the inner region of the disk and/or other processes contributing to the power at high frequencies in the inner region of the accretion disk may make the detection of the high-frequency component difficult.

  10. Flow structure and variability in the subtropical Indian Ocean: instability of the South Indian Ocean countercurrent

    NARCIS (Netherlands)

    Palastanga, V.|info:eu-repo/dai/nl/313947112; van Leeuwen, P.J.|info:eu-repo/dai/nl/102655758; Schouten, M.W.; de Ruijter, W.P.M.|info:eu-repo/dai/nl/068476760

    2007-01-01

    The origin of the eddy variability around the 25 S band in the Indian Ocean is investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar, and to the north by the westward flowing South

  11. HIV-1 Epitope Variability Is Associated with T Cell Receptor Repertoire Instability and Breadth.

    Science.gov (United States)

    Balamurugan, Arumugam; Claiborne, Deon; Ng, Hwee L; Yang, Otto O

    2017-08-15

    Mutational escape of HIV-1 from HIV-1-specific CD8(+) T lymphocytes (CTLs) is a major barrier for effective immune control. Each epitope typically is targeted by multiple clones with distinct T cell receptors (TCRs). While the clonal repertoire may be important for containing epitope variation, determinants of its composition are poorly understood. We investigate the clonal repertoire of 29 CTL responses against 23 HIV-1 epitopes longitudinally in nine chronically infected untreated subjects with plasma viremia of epitope varied considerably in stability over time, although clonal stability (Sorensen index) was not significantly time dependent within this interval. However, TCR stability inversely correlated with epitope variability in the Los Alamos HIV-1 Sequence Database, consistent with TCR evolution being driven by epitope variation. Finally, a robust inverse correlation of TCR breadth against each epitope versus epitope variability further suggested that this variability drives TCR repertoire diversification. In the context of studies demonstrating rapidly shifting HIV-1 sequences in vivo, our findings support a variably dynamic process of shifting CTL clonality lagging in tandem with viral evolution and suggest that preventing escape of HIV-1 may require coordinated direction of the CTL clonal repertoire to simultaneously block escape pathways.IMPORTANCE Mutational escape of HIV-1 from HIV-1-specific CD8(+) T lymphocytes (CTLs) is a major barrier to effective immune control. The number of distinct CTL clones targeting each epitope is proposed to be an important factor, but the determinants are poorly understood. Here, we demonstrate that the clonal stability and number of clones for the CTL response against an epitope are inversely associated with the general variability of the epitope. These results show that CTLs constantly lag epitope mutation, suggesting that preventing HIV-1 escape may require coordinated direction of the CTL clonal repertoire to

  12. The use of fluctuating asymmetry and phenotypic variability as indicators of developmental instability: a test of a new method employing clonal organisms and high temperature stress

    DEFF Research Database (Denmark)

    Kristensen, TN; Pertoldi, C; Andersen, DH

    2003-01-01

    Developmental instability, as estimated by two measures - fluctuating asymmetry and phenotypic variability - was examined using sternopleural bristle number and two wing traits in a clonal strain of Drosophila mercatorum. Eggs were exposed to short-term (30 min) heat stress in water baths...... variability of both wing measures were significantly higher in adults developed from heat-stressed eggs than in adults developed from eggs kept at 25degreesC. For both wing measures, there was a tendency for the highest fluctuating asymmetry and phenotypic variability to be observed at temperatures of 37......-39degreesC, suggesting that individuals who experienced the greatest developmental instability at very high temperatures (39.5-40degreesC) did not survive the heat stress. For the two wing measures, the fluctuating asymmetry and phenotypic variability were significantly correlated, but this was not the case...

  13. Parametric Variable Selection in Generalized Partially Linear Models with an Application to Assess Condom Use by HIV-infected Patients

    Science.gov (United States)

    Leng, Chenlei; Liang, Hua; Martinson, Neil

    2011-01-01

    To study significant predictors of condom use in HIV-infected adults, we propose the use of generalized partially linear models and develop a variable selection procedure incorporating a least squares approximation. Local polynomial regression and spline smoothing techniques are used to estimate the baseline nonparametric function. The asymptotic normality of the resulting estimate is established. We further demonstrate that, with the proper choice of the penalty functions and the regularization parameter, the resulting estimate performs as well as an oracle procedure. Finite sample performance of the proposed inference procedure is assessed by Monte Carlo simulation studies. An application to assess condom use by HIV-infected patients gains some interesting results, which can not be obtained when an ordinary logistic model is used. PMID:21465515

  14. Selecting variables in non-parametric regression models for binary response. An application to the computerized detection of breast cancer.

    Science.gov (United States)

    Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Tahoces, Pablo G; Lado, María J

    2009-01-30

    In many biomedical applications, interest lies in being able to distinguish between two possible states of a given response variable, depending on the values of certain continuous predictors. If the number of predictors, p, is high, or if there is redundancy among them, it then becomes important to decide on the selection of the best subset of predictors that will be able to obtain the models with greatest discrimination capacity. With this aim in mind, logistic generalized additive models were considered and receiver operating characteristic (ROC) curves were applied in order to determine and compare the discriminatory capacity of such models. This study sought to develop bootstrap-based tests that allow for the following to be ascertained: (a) the optimal number q system dedicated to early detection of breast cancer. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. SPECIES-SPECIFIC FOREST VARIABLE ESTIMATION USING NON-PARAMETRIC MODELING OF MULTI-SPECTRAL PHOTOGRAMMETRIC POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    J. Bohlin

    2012-07-01

    Full Text Available The recent development in software for automatic photogrammetric processing of multispectral aerial imagery, and the growing nation-wide availability of Digital Elevation Model (DEM data, are about to revolutionize data capture for forest management planning in Scandinavia. Using only already available aerial imagery and ALS-assessed DEM data, raster estimates of the forest variables mean tree height, basal area, total stem volume, and species-specific stem volumes were produced and evaluated. The study was conducted at a coniferous hemi-boreal test site in southern Sweden (lat. 58° N, long. 13° E. Digital aerial images from the Zeiss/Intergraph Digital Mapping Camera system were used to produce 3D point-cloud data with spectral information. Metrics were calculated for 696 field plots (10 m radius from point-cloud data and used in k-MSN to estimate forest variables. For these stands, the tree height ranged from 1.4 to 33.0 m (18.1 m mean, stem volume from 0 to 829 m3 ha-1 (249 m3 ha-1 mean and basal area from 0 to 62.2 m2 ha-1 (26.1 m2 ha-1 mean, with mean stand size of 2.8 ha. Estimates made using digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet showed RMSEs (in percent of the surveyed stand mean of 7.5% for tree height, 11.4% for basal area, 13.2% for total stem volume, 90.6% for pine stem volume, 26.4 for spruce stem volume, and 72.6% for deciduous stem volume. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.

  16. Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2012-01-01

    Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.

  17. Parametric 3D Atmospheric Reconstruction in Highly Variable Terrain with Recycled Monte Carlo Paths and an Adapted Bayesian Inference Engine

    Science.gov (United States)

    Langmore, Ian; Davis, Anthony B.; Bal, Guillaume; Marzouk, Youssef M.

    2012-01-01

    We describe a method for accelerating a 3D Monte Carlo forward radiative transfer model to the point where it can be used in a new kind of Bayesian retrieval framework. The remote sensing challenge is to detect and quantify a chemical effluent of a known absorbing gas produced by an industrial facility in a deep valley. The available data is a single low resolution noisy image of the scene in the near IR at an absorbing wavelength for the gas of interest. The detected sunlight has been multiply reflected by the variable terrain and/or scattered by an aerosol that is assumed partially known and partially unknown. We thus introduce a new class of remote sensing algorithms best described as "multi-pixel" techniques that call necessarily for a 3D radaitive transfer model (but demonstrated here in 2D); they can be added to conventional ones that exploit typically multi- or hyper-spectral data, sometimes with multi-angle capability, with or without information about polarization. The novel Bayesian inference methodology uses adaptively, with efficiency in mind, the fact that a Monte Carlo forward model has a known and controllable uncertainty depending on the number of sun-to-detector paths used.

  18. Thermal Instability in Rivlin-Ericksen Elastico-Viscous Fluid in the Presence of Finite Larmor Radius and Variable Gravity in Porous Medium

    Science.gov (United States)

    Prakash, Kirti; Kumar, Naresh

    1999-04-01

    The effect of the finite Larmor radius (FLR) and variable gravity force in the thermal instability of Rivlin-Ericksen elastico-viscous fluid in porous medium is considered. It is found that the presence of magnetic field (hence of FLR) and visco-elasticity introduces oscillatory modes, when gravity is increasing upward but oscillatory modes are non-existent in their absence. It is also found that system is stable, when gravity decreases upward. When instability sets in as stationary convection finite Larmor radius have stabilizing effect whereas magnetic field and medium permeability has stabilizing or destabilizing effect under certain conditions. The sufficient conditions for the non-existence of overstability are also found.

  19. Thermal instability of a Walters' (model B') elastico-viscous fluid in the presence of variable gravity field and rotation in porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V.; Rana, G.C. [Himachal Pradesh Univ., Shimla (India). Dept. of Mathematics

    2001-07-01

    The problem of thermal instability of a Walters' (model B') viscoelastic fluid in a porous medium is considered in the presence of a variable gravity field and rotation. It is found that the principle of exchange of stabilities is valid under certain conditions. For stationary convection, the Walters' (model B') elastico-viscous fluid behaves like a Newtonian fluid. It is found that rotation has stabilizing effect as gravity increases upward and a destabilizing effect as gravity decreases upward, the medium permeability has stabilizing/destabilizing effects depending on the rotation parameter, gravity is considered to be increasing upward from its value g (i.e. {lambda} > 0). The effects of rotation and the medium permeability on thermal instability have also been shown graphically. The sufficient conditions for the non-existence of overstability are also obtained. (orig.)

  20. Parametric and Non-Parametric System Modelling

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg

    1999-01-01

    the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...... considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how....... For this purpose non-parametric methods together with additive models are suggested. Also, a new approach specifically designed to detect non-linearities is introduced. Confidence intervals are constructed by use of bootstrapping. As a link between non-parametric and parametric methods a paper dealing with neural...

  1. A study and classification of non-linear high frequency ionospheric instabilities by coupled mode theory.

    Science.gov (United States)

    Harker, K. J.

    1972-01-01

    Two basic high-frequency ionospheric instabilities are discussed - i.e., the three-wave parametric interaction, and the oscillating two-stream instability. In the parametric instability, the ion-acoustic wave has a complex frequency, whereas in the oscillating two-stream instability the ion-acoustic frequency is purely imaginary. The parametric instability is shown to be the only one whose threshold depends on the ion collision frequency. A coupled-mode theory is proposed which permits study and classification of high-frequency instabilities on a unified basis.

  2. PARAMETRIC RESONANSE IN STATICALLY INDETERMINATE FRAMES

    Directory of Open Access Journals (Sweden)

    Yu.V. Vorona

    2014-12-01

    Full Text Available The technique for development and reduction of discrete dynamics models of frames is presented. Construction of the models is carried out using finite element method, generalized coordinates and tools of modern computer software. Parametric resonance in a statically indeterminate frame caused by external excitations is investigated. Main instability domains of the frame are determined.

  3. Why preferring parametric forecasting to nonparametric methods?

    Science.gov (United States)

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Parametric programming of CNC machine tools

    Directory of Open Access Journals (Sweden)

    Gołębski Rafał

    2017-01-01

    Full Text Available The article presents the possibilities of parametric programming of CNC machine tools for the SINUMERIK 840D sl control system. The kinds and types of the definition of variables for the control system under discussion described. On the example of the longitudinal cutting cycle, parametric programming possibilities are shown. The program’s code and its implementation in the control system is described in detail. The principle of parametric programming in a high-level language is also explained.

  5. Ince-Strutt stability charts for ship parametric roll resonance in irregular waves

    Science.gov (United States)

    Zhang, Xiao; Yang, He-zhen; Xiao, Fei; Xu, Pei-ji

    2017-08-01

    Ince-Strutt stability chart of ship parametric roll resonance in irregular waves is conducted and utilized for the exploration of the parametric roll resonance in irregular waves. Ship parametric roll resonance will lead to large amplitude roll motion and even wreck. Firstly, the equation describing the parametric roll resonance in irregular waves is derived according to Grim's effective theory and the corresponding Ince-Strutt stability charts are obtained. Secondly, the differences of stability charts for the parametric roll resonance in irregular and regular waves are compared. Thirdly, wave phases and peak periods are taken into consideration to obtain a more realistic sea condition. The influence of random wave phases should be taken into consideration when the analyzed points are located near the instability boundary. Stability charts for different wave peak periods are various. Stability charts are helpful for the parameter determination in design stage to better adapt to sailing condition. Last, ship variables are analyzed according to stability charts by a statistical approach. The increase of the metacentric height will help improve ship stability.

  6. Parametric Study Of Window Frame Geometry

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    This paper describes a parametric study on window frame geometry with the goal of designing frames with very good thermal properties. Three different parametric frame models are introduced, deseribed by a number of variables. In the first part of the study, a process of sensitivity analysis...

  7. Hodnocení variability dynamických parametrů chůze u osob s jednostrannou trans-tibiální amputací The variability assessment of the dynamic gait parameters of persons with unilateral trans-tibial amputation

    Directory of Open Access Journals (Sweden)

    Milan Elfmark

    2006-02-01

    Full Text Available Při analýze pohybové činnosti člověka musíme vždy řešit otázky, které se vztahují k validitě naměřených hodnot. Realizace každého pohybu, tedy i chůze, se vyznačuje určitou mírou variability. Přitom variabilitu v určitém rozsahu nelze považovat jako něco negativního, co může být způsobeno problémy v nervovém nebo kosterně-svalovém systému. "Přirozená" variabilita (varia bilita ve "fyziologickém" rozsahu je součástí zdravých biologických systémů. Reedukace chůze u osob s trans-tibiální amputací se projevuje ve změně variability kinematických a dynamických charakteristik. Pro možnost kvantifikace těchto změn a pro určení vlivu různých typů protetických chodidel (klasické – SACH, dynamické – SUREFLEX jsme provedli dynamickou analýzu chůze u 11 mužů (věk 46,1 ± 12,0 roku, hmotnost 82,5 ± 13,9 kg s jednostrannou trans-tibiální amputací. Interindividuální variabilita v rámci dané skupiny je větší v porovnání s intraindividuální variabilitou. Hodnoty koeficientu reliability jsou pro měřené parametry (čas, síla, impuls síly v antero-posteriorním a ve vertikálním směru větší než 0,976. Jejich velikost souvisí s individuálními vlastnostmi sledovaných osob. Pro oba typy protetického chodidla, podobně jako pro zdravou končetinu, jsou tendence pro stabilitu dynamických parametrů podobné. Stabilita měřených parametrů v medio-laterálním směru se významně snižuje uvnitř sledované skupiny i pro jednotlivé osoby. Velikost variability při různé rychlosti chůze souvisí se zdravotním stavem a se stupněm pohybové aktivity daného probanda. Pro osoby, které vykonávají běžné denní aktivity v omezeném rozsahu, je variabilita dynamických parametrů chůze nižší při použití klasického chodidla. Human gait is a genetically fixed motion model. The use of prosthesis changes the structure of the gait, the distribution of

  8. Anatomy of a population cycle: the role of density dependence and demographic variability on numerical instability and periodicity.

    Science.gov (United States)

    Row, Jeffrey R; Wilson, Paul J; Murray, Dennis L

    2014-07-01

    Determining the causes of cyclic fluctuations in population size is a central tenet in population ecology and provides insights into population regulatory mechanisms. We have a firm understanding of how direct and delayed density dependence affects population stability and cyclic dynamics, but there remains considerable uncertainty in the specific processes contributing to demographic variability and consequent change in cyclic propensity. Spatiotemporal variability in cyclic propensity, including recent attenuation or loss of cyclicity among several temperate populations and the implications of habitat fragmentation and climate change on this pattern, highlights the heightened need to understand processes underlying cyclic variation. Because these stressors can differentially impact survival and productivity and thereby impose variable time delays in density dependence, there is a specific need to elucidate how demographic vital rates interact with the type and action of density dependence to contribute to population stability and cyclic variation. Here, we address this knowledge gap by comparing the stability of time series derived from general and species-specific (Canada lynx: Lynx canadensis; small rodents: Microtus, Lemmus and Clethrionomys spp.) matrix population models, which vary in their demographic rates and the direct action of density dependence. Our results reveal that density dependence acting exclusively on survival as opposed to productivity is destabilizing, suggesting that a shift in the action of population regulation toward reproductive output may decrease cyclic propensity and cycle amplitude. This result was the same whether delayed density dependence was pulsatile and acted on a single time period (e.g. t-1, t-2 or t-3) vs. more constant by affecting a successive range of years (e.g. t-1,…, t-3). Consistent with our general models, reductions in reproductive potential in both the lynx and small rodent systems led to notably large drops in

  9. Shoulder Instability

    Science.gov (United States)

    ... Causes & Risk FactorsIs shoulder instability the same as shoulder dislocation?No. The signs of dislocation and instability might ... the same to you–weakness and pain. However, dislocation occurs when your shoulder goes completely out of place. The shoulder ligaments ...

  10. Multiple Frequency Parametric Sonar

    Science.gov (United States)

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...a method for increasing the bandwidth of a parametric sonar system by using multiple primary frequencies rather than only two primary frequencies...2) Description of Prior Art [0004] Parametric sonar generates narrow beams at low frequencies by projecting sound at two distinct primary

  11. Modulational instability, nonautonomous breathers and rogue waves for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei, E-mail: wanglei2239@126.com; Li, Min [Department of Mathematics and Physics, North China Electric Power University, Beijing 102206 (China); Qi, Feng-Hua [School of Information, Beijing Wuzi University, Beijing 101149 (China); Xu, Tao [College of Science, China University of Petroleum, Beijing 102249 (China)

    2015-03-15

    Under investigation in this paper is a variable-coefficient derivative nonlinear Schrödinger (vc-DNLS) equation modeling the nonlinear Alfvén waves in the inhomogeneous plasmas. The modulation instability is examined for this inhomogeneous nonlinear model. The nonautonomous breather and rogue wave solutions of the vc-DNLS equation are obtained via the modified Darboux transformation. It is found that the velocity and amplitude of the breather can be controlled by the inhomogeneous magnetic field and nonuniform density. Such novel phenomena as breather amplification and nonlinear Talbot effect-like property are demonstrated with the proper choices of the inhomogeneous parameters. Furthermore, dynamics of the fundamental rogue wave, periodical rogue wave, and composite rogue wave are graphically discussed. The trajectories and amplitudes of the rogue waves can be manipulated by the inhomogeneous magnetic field and nonuniform density. In addition, the nonlinear tunneling of the rogue waves and breathers is studied. As an application, a sample model is treated with our results, and the graphical illustrations exhibit the compressing, expanding, and fluctuating phenomena of the Alfvén rogue waves.

  12. On Parametric (and Non-Parametric Variation

    Directory of Open Access Journals (Sweden)

    Neil Smith

    2009-11-01

    Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.

  13. Parametric resonance induced chaos in magnetic damped driven pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Khomeriki, Giorgi, E-mail: giokhomeriki123@gmail.com

    2016-07-15

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments. - Highlights: • A damped magnetic pendulum is considered driven by off resonant magnetic field. • Our system is chaotic only when the conditions for parametric resonance are fulfilled. • Conducted experiments give a good agreement with theory and numerical simulations. • Calculated Lyapunov exponents are compared with parametric instability growth rates.

  14. Semi-parametric Models for Satisfaction with Income

    NARCIS (Netherlands)

    Bellemare, C.; Melenberg, B.; van Soest, A.H.O.

    2002-01-01

    An overview is presented of some parametric and semi-parametric models, estimators, and specification tests that can be used to analyze ordered response variables.In particular, limited dependent variable models that generalize or-dered probit are compared to regression models that generalize the

  15. Parametrization of translational surfaces

    OpenAIRE

    Perez-Diaz, Sonia; Shen, Liyong

    2014-01-01

    The algebraic translational surface is a typical modeling surface in computer aided design and architecture industry. In this paper, we give a necessary and sufficient condition for that algebraic surface having a standard parametric representation and our proof is constructive. If the given algebraic surface is translational, then we can compute a standard parametric representation for the surface.

  16. Shoulder instability

    African Journals Online (AJOL)

    2011-09-02

    Sep 2, 2011 ... Honorary Consultant, Shoulder and Elbow Unit, Department of Orthopaedic Surgery, University of Cape Town. Basil Vrettos is a shoulder ... Head, Shoulder and Elbow Unit, Princess Alice Orthopaedic Unit, Groote Schuur Hospital. Steve Roche heads ..... tidirectional instability is physiotherapy. • Surgery for ...

  17. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  18. A non-parametric model for the cosmic velocity field

    NARCIS (Netherlands)

    Branchini, E; Teodoro, L; Frenk, CS; Schmoldt, [No Value; Efstathiou, G; White, SDM; Saunders, W; Sutherland, W; Rowan-Robinson, M; Keeble, O; Tadros, H; Maddox, S; Oliver, S

    1999-01-01

    We present a self-consistent non-parametric model of the local cosmic velocity field derived from the distribution of IRAS galaxies in the PSCz redshift survey. The survey has been analysed using two independent methods, both based on the assumptions of gravitational instability and linear biasing.

  19. Parametric Human Movements

    DEFF Research Database (Denmark)

    Herzog, Dennis

    in a table-top scenario (e.g., pointing to, or relocating an object), which are are highly context-dependent (parametric) as they depend on object locations. Suitable models in such a context are generative stochastic models such as the parametric hidden Markov model (PHMM). --- The thesis begins...... with an investigation of PHMM training methods and structures to utilize the PHMM as a unified representation of parametric primitives, which is adequate for recognition and for synthesis. This is evaluated on a large motion data set. Main contributions of the thesis are the development and evaluation of approaches...

  20. Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla

    Science.gov (United States)

    Dieringer, Matthias A.; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I.; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of

  1. Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.

    Directory of Open Access Journals (Sweden)

    Matthias A Dieringer

    Full Text Available INTRODUCTION: Visual but subjective reading of longitudinal relaxation time (T1 weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+ uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. METHODS: T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. RESULTS: Phantom experiments showed a mean T1 estimation error of (-63±1.5% for slice profile uncorrected 2D VFA and (0.2±1.4% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2 mm2, which equals a scan time reduction of more than 99% compared to the reference method. CONCLUSION: Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance

  2. Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.

    Science.gov (United States)

    Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and

  3. Parametrics in Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2013-01-01

    the given time and resource limits. And again, the lay person, whether she is a resident, a local business person, or a NGO representative, is left with little influence, when it comes to the design of urban space. With the advent of parametric design tools, this need no longer be the case. Rather than...... making one-off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing for a level of detailing which is high enough to facilitate an understanding of the generic qualities of proposed designs...... by the “Twitter revolution” and other social media phenomena in recent years – may also form the basis of this approach, adding a different reach to it. While different parametric design tools have different strengths and weaknesses, the CityEngine software programme is dedicated to parametric simulation...

  4. Multimode phase-locking in a Josephson parametric oscillator

    Science.gov (United States)

    Bengtsson, Andreas; Wustmann, Waltraut; Shumeiko, Vitaly; Delsing, Per; Bylander, Jonas

    Frequency-tunable resonators are versatile tools for microwave amplification at the quantum limit of sensitivity, interaction between qubits and radiation in the circuit-QED architecture, and strong-coupling microwave quantum optics. We investigated non-degenerate parametric resonance in multimode microwave superconducting resonators. Pumping is realized by modulating magnetic flux through the SQUID attached to the cavity. Pumping at the sum-frequency of two modes provides parametric amplification. For low pumping strength, we observe the generation of two-mode squeezed states, i.e., entangled modes when the input is the vacuum. For high pumping strength, exceeding a parametric instability threshold, self-sustained parametric oscillations are observed in each mode. The sum of the phases of the mode fields is fixed, while the difference is uncertain in the classical limit, and undergoes diffusion under the effect of quantum noise. This phenomenon significantly changes the statistics of entangled modes in the oscillator state.

  5. About Bifurcational Parametric Simplification

    CERN Document Server

    Gol'dshtein, V; Yablonsky, G

    2015-01-01

    A concept of "critical" simplification was proposed by Yablonsky and Lazman in 1996 for the oxidation of carbon monoxide over a platinum catalyst using a Langmuir-Hinshelwood mechanism. The main observation was a simplification of the mechanism at ignition and extinction points. The critical simplification is an example of a much more general phenomenon that we call \\emph{a bifurcational parametric simplification}. Ignition and extinction points are points of equilibrium multiplicity bifurcations, i.e., they are points of a corresponding bifurcation set for parameters. Any bifurcation produces a dependence between system parameters. This is a mathematical explanation and/or justification of the "parametric simplification". It leads us to a conjecture that "maximal bifurcational parametric simplification" corresponds to the "maximal bifurcation complexity." This conjecture can have practical applications for experimental study, because at points of "maximal bifurcation complexity" the number of independent sys...

  6. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.

    Science.gov (United States)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-08

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  7. Faraday instability of crystallization waves in 4He

    Science.gov (United States)

    Abe, H.; Ueda, T.; Morikawa, M.; Saitoh, Y.; Nomura, R.; Okuda, Y.

    2007-12-01

    Periodic modulation of the gravity acceleration makes a flat surface of a fluid unstable and standing waves are parametrically excited on the surface. This phenomenon is called Faraday instability. Since a crystal-superfluid interface of 4He at low temperatures is very mobile and behaves like a fluid surface, Saarloos and Weeks predicted that Faraday instability of the crystallization waves exists in 4He and that the threshold excitation for the instability depends on the crystal growth coefficient. We successfully observed the Faraday instability of the crystal-liquid interface at 160 mK. Faraday waves were parametrically generated at one half of the driving frequency 90 Hz. Amplitude of the Faraday wave becomes smaller at higher temperature due to decrease of the crystal growth coefficient and disappears above 200 mK.

  8. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...

  9. Parametric compositional data types

    DEFF Research Database (Denmark)

    Bahr, Patrick; Hvitved, Tom

    2012-01-01

    's parametric higher-order abstract syntax (PHOAS). We show how a generalisation from functors to difunctors enables us to capture PHOAS while still maintaining the features of the original implementation of CDTs, in particular its modularity. Unlike previous approaches, we avoid so-called exotic terms without...

  10. Parametric modal transition systems

    DEFF Research Database (Denmark)

    Beneš, Nikola; Křetínský, Jan; Larsen, Kim Guldstrand

    2011-01-01

    in the refinement process like exclusive, conditional and persistent choices. We introduce a new model called parametric modal transition systems (PMTS) together with a general modal refinement notion that overcome many of the limitations and we investigate the computational complexity of modal refinement checking....

  11. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  12. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  13. MEMS digital parametric loudspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-03-23

    This paper reports on the design and fabrication of MEMS actuator arrays suitable for Digital Sound reconstruction and Parametric Directional Loudspeakers. Two distinct versions of the device were fabricated: one using the electrostatic principle actuation and the other one, the piezoelectric principle. Both versions used similar membrane dimensions, with a diameter of 500 μm. These devices are the smallest Micro-Machined Ultrasound Transducer (MUT) arrays that can be operated for both modes: Digital Sound Reconstruction and Parametric Loudspeaker. The chips consist of an array with 256 transducers, in a footprint of 12 mm by 12 mm. The total single chip size is: 2.3 cm by 2.3 cm, including the contact pads. © 2016 IEEE.

  14. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  15. Taming contact line instability for pattern formation

    Science.gov (United States)

    Deblais, A.; Harich, R.; Colin, A.; Kellay, H.

    2016-08-01

    Coating surfaces with different fluids is prone to instability producing inhomogeneous films and patterns. The contact line between the coating fluid and the surface to be coated is host to different instabilities, limiting the use of a variety of coating techniques. Here we take advantage of the instability of a receding contact line towards cusp and droplet formation to produce linear patterns of variable spacings. We stabilize the instability of the cusps towards droplet formation by using polymer solutions that inhibit this secondary instability and give rise to long slender cylindrical filaments. We vary the speed of deposition to change the spacing between these filaments. The combination of the two gives rise to linear patterns into which different colloidal particles can be embedded, long DNA molecules can be stretched and particles filtered by size. The technique is therefore suitable to prepare anisotropic structures with variable properties.

  16. Role of intrinsic flame instability in the excitation of combustion chamber instability

    Science.gov (United States)

    Akkerman, V'yacheslav; Law, Chung K.

    2011-11-01

    While considerable progress was made on understanding the various modes of flame instability at the fundamental level, and substantial empirical information and phenomenological descriptions was also accumulated on combustion instability within combustion chambers such as those of rocket engines, few attempts were made to explore the possible macro-scale excitation of the latter through the micro-scale manifestation of the former. Here we present an initial attempt towards identifying such a possibility and the associated coupling mechanisms. We shall incorporate the flame parameters into the classical theories of liquid-propellant rocket engines, and then implement the rocket dynamics into the analyses of premixed and diffusion flame segments. The analyses are conducted for the various instability modes, including the diffusional-thermal, Darrieus-Landau, and Rayleigh-Taylor (body-force) instabilities for premixed flames, and the Kelvin-Helmholtz and body-force instabilities for diffusion flames. The role of chamber-generated sound on stabilizing the inherent flame instabilities and triggering the parametric instability is also considered.

  17. On the Feasibility of Stabilizing Parametric Roll with Active Bifurcation Control

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens

    2007-01-01

    to dynamically modify the instability region where parametric roll can occur. It is shown how a control strategy for roll stabilization could be modi…ed to change a bifurcation in roll motion and stabilize the motion, even after parametric resonance has started. The paper addresses issues of achievable...... performance and demonstrates the approach on a yaw-sway-roll-surge model of a containership....

  18. Low-threshold parametric decay of the ordinary wave in ECRH experiments at toroidal devices

    Science.gov (United States)

    Gusakov, E. Z.; Popov, A. Yu; Saveliev, A. N.; Sysoeva, E. V.

    2017-07-01

    In this paper we analyse low-threshold parametric decay instability (PDI) of the ordinary wave in first harmonic O-mode ECRH experiments at toroidal devices. The corresponding expressions for the PDI power threshold and its growth rate are derived analytically and evaluated numerically for the conditions of the ECRH experiments on the W7-A stellarator. The possibility of low-threshold parametric decay of the pump ordinary wave on the FTU tokamak is also considered.

  19. New instability strip for hot degenerates

    Energy Technology Data Exchange (ETDEWEB)

    Starrfield, S.G.; Cox, A.N.; Hodson, S.W.

    1980-01-01

    A new kind of variable star, designated as PG1159-035 is distinguished not only by the complete lack of hydrogen in its spectrum but also by an effective temperature that exceeds 8 x 10/sup 4/ K. The star does not fall near any of the known regions of instability in the HR diagram which suggests that the instability mechanism will not be helium and hydrogen ionization as in the Cepheid variables. The more unusual compositions are examined in order to discover the cause of the instability in PG1159-035. (GHT)

  20. Tuneable, non-degenerated, nonlinear, parametrically-excited amplifier

    Science.gov (United States)

    Dolev, Amit; Bucher, Izhak

    2016-01-01

    The proposed parametric amplifier scheme can be tuned to amplify a wide range of input frequencies by altering the parametric excitation with no need to physically modify the oscillator. Parametric amplifiers had been studied extensively, although most of the work focused on amplifiers that are parametrically excited at a frequency twice the amplifier's natural frequency. These amplifiers are confined to amplifying predetermined frequencies. The proposed parametric amplifier's bandwidth is indeed tuneable to nearly any input frequency, not bound to be an integer multiple of a natural frequency. In order to tune the stiffness and induce a variable frequency parametric excitation, a digitally controlled electromechanical element must be incorporated in the realization. We introduce a novel parametric amplifier with nonlinearity, Duffing type hardening, that bounds the otherwise unlimited amplitude. Moreover, we present a multi degree of freedom system in which a utilization of the proposed method enables the projection of low frequency vector forces on any eigenvector and corresponding natural frequency of the system, and thus to transform external excitations to a frequency band where signal levels are considerably higher. Using the method of multiple scales, analytical expressions for the responses have been retrieved and verified numerically. Parametric studies of the amplifiers' gain, sensitivities and spatial projection of the excitation on the system eigenvectors were carried out analytically. The results demonstrate the advantage of the proposed approach over existing schemes. Practical applications envisaged for the proposed method will be outlined.

  1. Pattern formation in singly resonant second-harmonic generation with competing parametric oscillation

    DEFF Research Database (Denmark)

    Lodahl, P.; Saffman, M.

    1999-01-01

    fundamental field, and its coupling to a pair of nondegenerate parametric fields. The parametric fields are driven by the nonresonant second-harmonic field. Analysis indicates the existence of transverse instability of the pump field alone, as well as the possibility of simultaneous instability of the pump......We theoretically investigate the generation of spatial patterns in intracavity second-harmonic generation. We consider a cavity with planar mirrors that is resonant at the fundamental frequency, but not at the second-harmonic frequency. A mean-field model is derived that describes the resonant...

  2. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  3. Parametric Trace Slicing

    Science.gov (United States)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  4. Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models.

    Science.gov (United States)

    Wey, Andrew; Connett, John; Rudser, Kyle

    2015-07-01

    For estimating conditional survival functions, non-parametric estimators can be preferred to parametric and semi-parametric estimators due to relaxed assumptions that enable robust estimation. Yet, even when misspecified, parametric and semi-parametric estimators can possess better operating characteristics in small sample sizes due to smaller variance than non-parametric estimators. Fundamentally, this is a bias-variance trade-off situation in that the sample size is not large enough to take advantage of the low bias of non-parametric estimation. Stacked survival models estimate an optimally weighted combination of models that can span parametric, semi-parametric, and non-parametric models by minimizing prediction error. An extensive simulation study demonstrates that stacked survival models consistently perform well across a wide range of scenarios by adaptively balancing the strengths and weaknesses of individual candidate survival models. In addition, stacked survival models perform as well as or better than the model selected through cross-validation. Finally, stacked survival models are applied to a well-known German breast cancer study. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Fuzzy parametrized fuzzy soft topology

    Directory of Open Access Journals (Sweden)

    Serkan Atmaca

    2016-01-01

    Full Text Available Recently, researches have contributed a lot towards fuzzification of Soft Set Theory. In this paper, we introduce the topological structure of fuzzyfying soft sets called fuzzy parametrized soft sets. We define the notion of quasi-coincidence for fuzzy parametrized soft sets and investigated basic properties of it. We study the closure, interior, base, continuity and compactness in the content of fuzzy parametrized soft topological spaces.

  6. Electron heat flux instability

    Science.gov (United States)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  7. Tidal instability in exoplanetary systems evolution

    Directory of Open Access Journals (Sweden)

    Le Gal P.

    2011-02-01

    Full Text Available A new element is proposed to play a role in the evolution of extrasolar planetary systems: the tidal (or elliptical instability. It comes from a parametric resonance and takes place in any rotating fluid whose streamlines are (even slightly elliptically deformed. Based on theoretical, experimental and numerical works, we estimate the growth rate of the instability for hot-jupiter systems, when the rotation period of the star is known. We present the physical process, its application to stars, and preliminary results obtained on a few dozen systems, summarized in the form of a stability diagram. Most of the systems are trapped in the so-called "forbidden zone", where the instability cannot grow. In some systems, the tidal instability is able to grow, at short timescales compared to the system evolution. Implications are discussed in the framework of misaligned transiting systems, as the rotational axis of the star would be unstable in systems where this elliptical instability grows.

  8. Parametric decay of linearly polarized shear Alfvén waves in oblique propagation: One and two-dimensional hybrid simulations

    National Research Council Canada - National Science Library

    Lorenzo Matteini; Simone Landi; Luca Del Zanna; Marco Velli; Petr Hellinger

    2010-01-01

      The parametric instability of a monochromatic shear Alfvén wave in oblique propagation with respect the ambient magnetic field is investigated in a kinetic regime, performing one-dimensional (1-D...

  9. Evaluating shoulder instability treatment

    NARCIS (Netherlands)

    van der Linde, J.A.

    2016-01-01

    Shoulder instability common occurs. When treated nonoperatively, the resulting societal costs based on health care utilization and productivity losses are significant. Shoulder function can be evaluated using patient reported outcome measurements (PROMs). For shoulder instability, these include the

  10. Use of parametric and non-parametric survival analysis techniques ...

    African Journals Online (AJOL)

    This paper presents parametric and non-parametric survival analysis procedures that can be used to compare acaricides. The effectiveness of Delta Tick Pour On and Delta Tick Spray in knocking down tsetse flies were determined. The two formulations were supplied by Chemplex. The comparison was based on data ...

  11. Frequent LOH at hMLH1, a highly variable SNP in hMSH3, and negligible coding instability in ovarian cancer

    DEFF Research Database (Denmark)

    Arzimanoglou, I.I.; Hansen, L.L.; Chong, D.

    2002-01-01

    the mismatch DNA repair genes in ovarian cancer (OC), using a sensitive, accurate and reliable protocol we have developed. MATERIALS AND METHODS: A combination of high-resolution GeneScan software analysis and automated DNA cycle sequencing was used. RESULTS: Negligible coding MSI was observed in selected...... sequences of mismatch DNA repair genes in our series of sixty-two ovarian tumors and matched blood DNAs. Unlike MSI, loss of one hMLH1 allele was scored in almost half (47%) of the informative cases. In addition, an SNP in hMSH3/intron 5 was found to be highly variable in OC patients. CONCLUSION: 1) Coding...... mismatch DNA repair and/or critical genes....

  12. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  13. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  14. Parametric Design Studies on a Direct Liquid Feed Fuel Cell

    Science.gov (United States)

    Frank, H. A.; Narayanan, S. R.; Nakamura, B.; Surampudi, S.; Halpert, G.

    1995-01-01

    Parametric design studies were carried out on a direct methanol liquid feed fuel cell employing 1 M MeOH fuel, air and oxygen as oxidant in a 2 inch x 2 inch cell employing polymeric electrolyte membranes. Measurements include voltage-current output parameters, methanol crossover rate, and impedance as a function of several design and operational variables. Design variables are described.

  15. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  16. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  17. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment.

    Directory of Open Access Journals (Sweden)

    Octavio Martinez Manzanera

    Full Text Available In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth

  18. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment.

    Science.gov (United States)

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H; Maurits, Natasha M

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration

  19. Parametric generation of Alfven and sound waves in the solar atmosphere. Isothermal atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, N.S.; Fajnshtejn, S.M. (Gor' kovskij Politekhnicheskij Inst. (USSR))

    The parametric instability of Alfven and sound waves in an isothermal layer of the solar plasma is investigated. Conditions of the wave generation are found under the condition that the velocities of Alfven waves and isothermal sound are constant. The results obtained are used for the interpretation of attenuation of Alfven wave fluxes in solar spots.

  20. Modification of the collective Thomson scattering radiometer in the search for parametric decay on TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bongers, W.

    2012-01-01

    Strong scattering of high-power millimeter waves at 140 GHz has been shown to take place in heating and current-drive experiments at TEXTOR when a tearing mode is present in the plasma. The scattering signal is at present supposed to be generated by the parametric decay instability. Here we descr...... with independent backscattering radiometer data....

  1. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  2. Shoulder instability; Schulterinstabilitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Kreitner, Karl-Friedrich [Mainiz Univ. (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2014-06-15

    In the shoulder, the advantages of range of motion are traded for the disadvantages of vulnerability to injury and the development of instability. Shoulder instability and the lesion it produces represent one of the main causes of shoulder discomfort and pain. Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to their causative factors as the pathogenesis of instability plays an important role with respect to treatment options: instabilities are classified in traumatic and atraumatic instabilities as part of a multidirectional instability syndrome, and in microtraumatic instabilities. Plain radiographs ('trauma series') are performed to document shoulder dislocation and its successful reposition. Direct MR arthrography is the most important imaging modality for delineation the different injury patterns on the labral-ligamentous complex and bony structures. Monocontrast CT-arthrography with use of multidetector CT scanners may be an alternative imaging modality, however, regarding the younger patient age, MR imaging should be preferred in the diagnostic work-up of shoulder instabilities. (orig.)

  3. Parametric Verification of Weighted Systems

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Hansen, Mikkel; Mariegaard, Anders

    2015-01-01

    This paper addresses the problem of parametric model checking for weighted transition systems. We consider transition systems labelled with linear equations over a set of parameters and we use them to provide semantics for a parametric version of weighted CTL where the until and next operators...... are themselves indexed with linear equations. The parameters change the model-checking problem into a problem of computing a linear system of inequalities that characterizes the parameters that guarantee the satisfiability. To address this problem, we use parametric dependency graphs (PDGs) and we propose...

  4. Parametric Mass Reliability Study

    Science.gov (United States)

    Holt, James P.

    2014-01-01

    The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.

  5. Parametric scramjet analysis

    Science.gov (United States)

    Choi, Jongseong

    The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.

  6. Multi-level approach for parametric roll analysis

    Directory of Open Access Journals (Sweden)

    Taeyoung Kim

    2011-03-01

    Full Text Available The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF, and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude-Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

  7. A probabilistic strategy for parametric catastrophe insurance

    Science.gov (United States)

    Figueiredo, Rui; Martina, Mario; Stephenson, David; Youngman, Benjamin

    2017-04-01

    Economic losses due to natural hazards have shown an upward trend since 1980, which is expected to continue. Recent years have seen a growing worldwide commitment towards the reduction of disaster losses. This requires effective management of disaster risk at all levels, a part of which involves reducing financial vulnerability to disasters ex-ante, ensuring that necessary resources will be available following such events. One way to achieve this is through risk transfer instruments. These can be based on different types of triggers, which determine the conditions under which payouts are made after an event. This study focuses on parametric triggers, where payouts are determined by the occurrence of an event exceeding specified physical parameters at a given location, or at multiple locations, or over a region. This type of product offers a number of important advantages, and its adoption is increasing. The main drawback of parametric triggers is their susceptibility to basis risk, which arises when there is a mismatch between triggered payouts and the occurrence of loss events. This is unavoidable in said programmes, as their calibration is based on models containing a number of different sources of uncertainty. Thus, a deterministic definition of the loss event triggering parameters appears flawed. However, often for simplicity, this is the way in which most parametric models tend to be developed. This study therefore presents an innovative probabilistic strategy for parametric catastrophe insurance. It is advantageous as it recognizes uncertainties and minimizes basis risk while maintaining a simple and transparent procedure. A logistic regression model is constructed here to represent the occurrence of loss events based on certain loss index variables, obtained through the transformation of input environmental variables. Flood-related losses due to rainfall are studied. The resulting model is able, for any given day, to issue probabilities of occurrence of loss

  8. Elbow joint instability

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Henriksen, M G; Søjbjerg, Jens Ole

    1994-01-01

    The effect of simultaneous ulnar and radial collateral ligament division on the kinematics of the elbow joint is studied in a cadaveric model. Severance of the anterior part of the ulnar collateral ligament and the annular ligament led to significant elbow joint instability in valgus and varus...... of the specimens was recorded. The reproducibility of the instability pattern suggests that this model is suitable for evaluating stabilizing procedures aimed at correction of elbow joint instability before these procedures are introduced into patient care....

  9. Parametric Optimization of Hospital Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning; Christoffersen, L.D.

    2013-01-01

    Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements...

  10. Planar Parametrization in Isogeometric Analysis

    DEFF Research Database (Denmark)

    Gravesen, Jens; Evgrafov, Anton; Nguyen, Dang-Manh

    2012-01-01

    Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing...... and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric analysis to shape optimization, where the geometry varies from one optimization iteration to another. We propose a general framework for handling the geometry parametrization in isogeometric analysis and shape...... are suitable for our framework. The non-linear methods we consider are based on solving a constrained optimization problem numerically, and are divided into two classes, geometry-oriented methods and analysis-oriented methods. Their performance is illustrated through a few numerical examples....

  11. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.

    2011-08-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques. The algorithm features two key steps: (i) a dynamic programming step, in which the mp-MPC problem is decomposed into a set of smaller subproblems in which only the current control, state variables, and constraints are considered, and (ii) a multi-parametric programming step, in which each subproblem is solved as a convex multi-parametric programming problem, to derive the control variables as an explicit function of the states. The key feature of the proposed method is that it overcomes potential limitations of previous methods for solving multi-parametric programming problems with dynamic programming, such as the need for global optimization for each subproblem of the dynamic programming step. © 2011 Elsevier Ltd. All rights reserved.

  12. Lecture on beam instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.

    1999-12-21

    These lectures treat some of the common collective beam instability effects encountered in accelerators. In choosing the material for these lectures, it is attempted to introduce this subject with a more practical approach, instead of a more theoretical approach starting with first principles. After introducing the terminologies, emphasis will be placed on how to apply the lecture material to perform calculations and to make estimates of various instability effects. In the first half of the lectures, after briefly introducing the concepts of impedance and wake field, the authors will discuss a selected list of formulas for the impedances of various accelerator components. Detailed derivations are omitted, allowing time for the students to think through the process of how to apply the knowledge learned. The list of impedances to be covered include: space charge, resistive wall, resonator, wall roughness, and small perturbation on the vacuum chamber wall. Assuming impedances are known, the second half of the lectures addresses the question of how to calculate the power of beam heating, the growth rates, and the thresholds for a list of selected beam instability effects. Again with minimal detailed derivations, the aim is to introduce a collection of formulas, and apply them to linear as well as circular accelerators. The list of beam instability effects to be covered include: loss factor, beam break-up, BNS damping, bunch lengthening, resistive wall instability, head-tail instability, longitudinal head-tail instability, Landau damping, microwave instability, and mode coupling instability.

  13. Imaging of shoulder instability

    Science.gov (United States)

    Martínez Martínez, Alberto; Tomás Muñoz, Pablo; Pozo Sánchez, José; Zarza Pérez, Antonio

    2017-01-01

    This extended review tries to cover the imaging findings of the wide range of shoulder injuries secondary to shoulder joint instability. Usefulness of the different imaging methods is stressed, including radiography, computed tomography (CT) and magnetic resonance. The main topics to be covered include traumatic, atraumatic and minor instability syndromes. Radiography may show bone abnormalities associated to instability, including developmental and post-traumatic changes. CT is the best technique depicting and quantifying skeletal changes. MR-arthrography is the main tool in diagnosing the shoulder instability injuries. PMID:28932699

  14. Self-designing parametric geometries

    OpenAIRE

    Sobester, Andras

    2015-01-01

    The thesis of this paper is that script-based geometry modelling offers the possibility of building `self-designing' intelligence into parametric airframe geometries. We show how sophisticated heuristics (such as optimizers and complex decision structures) can be readily integrated into the parametric geometry model itself using a script-driven modelling architecture. The result is an opportunity for optimization with the scope of conceptual design and the fidelity of preliminary design. Addi...

  15. Competing Turing and Faraday instabilities in longitudinally modulated passive resonators

    CERN Document Server

    Copie, Francois; Kudlinski, Alexandre; Trillo, Stefano; Mussot, Arnaud

    2015-01-01

    We experimentally investigate the interplay of Turing and Faraday (modulational) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  16. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability.

  17. Upper Extremity Injured Workers Stratified by Current Work Status: An Examination of Health Characteristics, Work Limitations and Work Instability

    Directory of Open Access Journals (Sweden)

    D Pichora

    2010-06-01

    Full Text Available Background: Upper extremity injured workers are an under-studied population. A descriptive comparison of workers with shoulder, elbow and hand injuries reporting to a Canadian Workplace Safety and Insurance Board (WSIB clinic was undertaken. Objective: To determine if differences existed between injury groups stratified by current work status. Methods: All WSIB claimants reporting to our upper extremity clinic between 2003 and 2008 were approached to participate in this descriptive study. 314 working and 146 non-working WSIB claimants completed the Disabilities of the Arm, Shoulder and Hand questionnaire (DASH; Short Form health survey (SF36; Worker’s Limitations Questionnaire and the Work Instability Scale. Various parametric and non-parametric analyses were used to assess significant differences between groups on demographic, work and health related variables. Results: Hand, followed by the shoulder and elbow were the most common site of injury. Most non-workers listed their current injury as the reason for being off work, and attempted to return to work once since their injury occurrence. Non-workers and a subset of workers at high risk for work loss showed significantly worse mental functioning. Workers identified physical demands as the most frequent injury-related on the job limitation. 60% of current workers were listed as low risk for work loss on the Work Instability Scale. Conclusions: Poorer mental functioning, being female and sustaining a shoulder injury were risk factors for work instability. Our cohort of injured non-workers were unable to return to work due to their current injury, reinforcing the need to advocate for modified duties, shorter hours and a work environment where stress and injury recurrence is reduced. Future studies examining pre-injury depression as a risk factor for prolonged work absences are warranted.

  18. Posterior Shoulder Instability.

    Science.gov (United States)

    Antosh, Ivan J; Tokish, John M; Owens, Brett D

    Posterior shoulder instability has become more frequently recognized and treated as a unique subset of shoulder instability, especially in the military. Posterior shoulder pathology may be more difficult to accurately diagnose than its anterior counterpart, and commonly, patients present with complaints of pain rather than instability. "Posterior instability" may encompass both dislocation and subluxation, and the most common presentation is recurrent posterior subluxation. Arthroscopic and open treatment techniques have improved as understanding of posterior shoulder instability has evolved. Electronic databases including PubMed and MEDLINE were queried for articles relating to posterior shoulder instability. Clinical review. Level 4. In low-demand patients, nonoperative treatment of posterior shoulder instability should be considered a first line of treatment and is typically successful. Conservative treatment, however, is commonly unsuccessful in active patients, such as military members. Those patients with persistent shoulder pain, instability, or functional limitations after a trial of conservative treatment may be considered surgical candidates. Arthroscopic posterior shoulder stabilization has demonstrated excellent clinical outcomes, high patient satisfaction, and low complication rates. Advanced techniques may be required in select cases to address bone loss, glenoid dysplasia, or revision. Posterior instability represents about 10% of shoulder instability and has become increasingly recognized and treated in military members. Nonoperative treatment is commonly unsuccessful in active patients, and surgical stabilization can be considered in patients who do not respond. Isolated posterior labral repairs constitute up to 24% of operatively treated labral repairs in a military population. Arthroscopic posterior stabilization is typically considered as first-line surgical treatment, while open techniques may be required in complex or revision settings.

  19. PARAMETRIC DISTANCE WEIGHTING OF LANDSCAPE INFLUENCE ON STREAMS

    Science.gov (United States)

    We present a parametric model for estimating the areas within watersheds whose land use best predicts indicators of stream ecological condition. We regress a stream response variable on the distance-weighted proportion of watershed area that has a specific land use, such as agric...

  20. Parametric functional principal component analysis.

    Science.gov (United States)

    Sang, Peijun; Wang, Liangliang; Cao, Jiguo

    2017-09-01

    Functional principal component analysis (FPCA) is a popular approach in functional data analysis to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). Most existing FPCA approaches use a set of flexible basis functions such as B-spline basis to represent the FPCs, and control the smoothness of the FPCs by adding roughness penalties. However, the flexible representations pose difficulties for users to understand and interpret the FPCs. In this article, we consider a variety of applications of FPCA and find that, in many situations, the shapes of top FPCs are simple enough to be approximated using simple parametric functions. We propose a parametric approach to estimate the top FPCs to enhance their interpretability for users. Our parametric approach can also circumvent the smoothing parameter selecting process in conventional nonparametric FPCA methods. In addition, our simulation study shows that the proposed parametric FPCA is more robust when outlier curves exist. The parametric FPCA method is demonstrated by analyzing several datasets from a variety of applications. © 2017, The International Biometric Society.

  1. Parametric infrared tunable laser system

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.; Sutter, J. R.

    1980-01-01

    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.

  2. Parametric Fires for Structural Design

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2012-01-01

    The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants and contra......The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants...... and contractors have asked for a reference in English in order to make the guide-lines and the background for them available internationally. The paper therefore presents recommendations from the design guide especially concerning how to assess parametric design fires based on the opening factor method for large...

  3. Parametric Thinking in Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai

    2010-01-01

    The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without the appli......The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without...

  4. Classification rates: non‐parametric verses parametric models using ...

    African Journals Online (AJOL)

    Estimations of the conditional mean and the marginal effects for particular small changes in the covariates have been of interest in financial, economics and even educational sectors. The standard approach has been to specify a parametric model such as probit or logit and then estimating the coefficients by maximum ...

  5. Bacterial Genome Instability

    Science.gov (United States)

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  6. Spondylolisthesis and Posterior Instability

    Energy Technology Data Exchange (ETDEWEB)

    Niggemann, P.; Beyer, H.K.; Frey, H.; Grosskurth, D. (Privatpraxis fuer Upright MRT, Koeln (Germany)); Simons, P.; Kuchta, J. (Media Park Klinik, Koeln (Germany))

    2009-04-15

    We present the case of a patient with a spondylolisthesis of L5 on S1 due to spondylolysis at the level L5/S1. The vertebral slip was fixed and no anterior instability was found. Using functional magnetic resonance imaging (MRI) in an upright MRI scanner, posterior instability at the level of the spondylolytic defect of L5 was demonstrated. A structure, probably the hypertrophic ligament flava, arising from the spondylolytic defect was displaced toward the L5 nerve root, and a bilateral contact of the displaced structure with the L5 nerve root was shown in extension of the spine. To our knowledge, this is the first case described of posterior instability in patients with spondylolisthesis. The clinical implications of posterior instability are unknown; however, it is thought that this disorder is common and that it can only be diagnosed using upright MRI.

  7. Instabilities in passive dispersion oscillating fiber ring cavities

    Science.gov (United States)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Biancalana, Fabio; Trillo, Stefano

    2017-05-01

    We investigate theoretically and experimentally the development of instabilities in passive ring cavities with stepwise longitudinal variation of the dispersion. We derive an extended version of the Lugiato-Lefever equation that permits to model dispersion oscillating cavities and we demonstrate that this equation is valid well beyond the mean field approximation. We review the theory of Turing (modulational) and Faraday (parametric) instability in inhomogeneous fiber cavities. We report the experimental demonstration of the generation of stable Turing and Faraday temporal patterns in the same device, which can be controlled by changing the detuning and/or the input power. Moreover, we experimentally record the round-trip-to-round-trip dynamics of the spectrum, which shows that Turing and Faraday instabilities not only differ by their characteristic frequency but also by their dynamical behavior. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  8. Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates

    Directory of Open Access Journals (Sweden)

    Saeed Banihashemi

    2015-12-01

    Full Text Available In line with the growing global trend toward energy efficiency in buildings, this paper aims to first; investigate the energy performance of double-glazed windows in different climates and second; analyze the most dominant used parametric and non-parametric tests in dimension reduction for simulating this component. A four-story building representing the conventional type of residential apartments for four climates of cold, temperate, hot-arid and hot-humid was selected for simulation. 10 variables of U-factor, SHGC, emissivity, visible transmittance, monthly average dry bulb temperature, monthly average percent humidity, monthly average wind speed, monthly average direct solar radiation, monthly average diffuse solar radiation and orientation constituted the parameters considered in the calculation of cooling and heating loads of the case. Design of Experiment and Principal Component Analysis methods were applied to find the most significant factors and reduction dimension of initial variables. It was observed that in two climates of temperate and hot-arid, using double glazed windows was beneficial in both cold and hot months whereas in cold and hot-humid climates where heating and cooling loads are dominant respectively, they were advantageous in only those dominant months. Furthermore, an inconsistency was revealed between parametric and non-parametric tests in terms of identifying the most significant variables.

  9. Hydrodynamic instability of meandering channels

    Science.gov (United States)

    Ali, Sk Zeeshan; Dey, Subhasish

    2017-12-01

    In this paper, we explore the hydrodynamic instability of meandering channels driven by the turbulent flow. The governing equations of channel dynamics with suitable boundary conditions are closed with the fluid and granular constitutive relationships. A regular expansion of the fundamental variables is employed to linearize the parent equations by superimposing the perturbations on the basic unperturbed flow. The channel dynamics reveal a resonance phenomenon which occurs when the key variables fall in the vicinity of the distinct critical values. The resonance phenomenon preserves its distinctive signature in different flow regimes which are guided by the characteristic values of the shear Reynolds number. The hydrodynamic analysis indicates that the fluid friction and the volumetric sediment flux play a decisive role to characterize the channel instability in different flow regimes. The growths of azimuthal velocity perturbation in phase with curvature, bed topography perturbation, bend amplification rate, and meander propagation speed in different flow regimes are investigated by varying the meander wavenumber, Shields number, channel aspect ratio, and relative roughness number. The analysis is capable to capture the effects of grain size on azimuthal velocity perturbation, bed topography perturbation, bend amplification rate, and meandering propagation speed over a wide range of shear Reynolds numbers. The variations of resonant wavenumbers in different flow regimes with the Shields number, channel aspect ratio, and relative roughness number are addressed. For a specific flow regime, the upstream and downstream migrations of meandering channels are typically governed by the Shields number, channel aspect ratio, and relative roughness number.

  10. Parametric programming of industrial robots

    Directory of Open Access Journals (Sweden)

    Szulczyński Paweł

    2015-06-01

    Full Text Available This article proposes the use of parametric design software, commonly used by architects, in order to obtain complex trajectory and program code for industrial robots. The paper describes the drawbacks of existing solutions and proposes a new script to obtain a correct program. The result of the algorithm was verified experimentally.

  11. PARAMETRIC MODEL OF LUMBAR VERTEBRA

    Directory of Open Access Journals (Sweden)

    CAPPETTI Nicola

    2010-11-01

    Full Text Available The present work proposes the realization of a parametric/variational CAD model of a normotype lumbar vertebra, which could be used for improving the effectiveness of actual imaging techniques in informational augmentation of the orthopaedic and traumatological diagnosis. In addition it could be used for ergonomic static and dynamical analysis of the lumbar region and vertebral column.

  12. Propagating Instabilities in Solids

    Science.gov (United States)

    Kyriakides, Stelios

    1998-03-01

    Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this

  13. Aircraft Trajectory Optimization Using Parametric Optimization Theory

    OpenAIRE

    Valenzuela Romero, Alfonso

    2012-01-01

    In this thesis, a study of the optimization of aircraft trajectories using parametric optimization theory is presented. To that end, an approach based on the use of predefined trajectory patterns and parametric optimization is proposed. The trajectory pat

  14. Revisiting Parametric Types and Virtual Classes

    DEFF Research Database (Denmark)

    Madsen, Anders Bach; Ernst, Erik

    2010-01-01

    This paper presents a conceptually oriented updated view on the relationship between parametric types and virtual classes. The traditional view is that parametric types excel at structurally oriented composition and decomposition, and virtual classes excel at specifying mutually recursive families...

  15. IS POLARIS LEAVING THE CEPHEID INSTABILITY STRIP?

    OpenAIRE

    Turner, D. G.

    2017-01-01

    Although Polaris is generally regarded as an overtone pulsator that may soon switch to pulsation in the fundamental mode, it is argued that the variable is actually crossing the instability strip for the first time and is in the process of leaving the instability strip altogether. The luminosity of Polaris inferred from its optical F3 V companion, as well as from A, F, and G-type stars lying within a few degrees of it and populating a group main sequence coincident with that for Polaris B...

  16. Parametric tools in architecture: a comparative study

    OpenAIRE

    Hanna, R

    2012-01-01

    Parametric tools have recently increased in eminence in\\ud architectural practice with several claims made about their potential as a creative design iteration tool to enhance design decision making and problem solving. This paper carried out a survey of two types of architectural practices: one that predominantly uses non-parametric CAD tools and another that primarily employs parametric CAD. The results from the survey were analysed statistically. The findings show that parametric tools did...

  17. Dynamic instability of dielectric elastomer actuators subjected to unequal biaxial prestress

    Science.gov (United States)

    Sharma, Atul Kumar; Bajpayee, S.; Joglekar, D. M.; Joglekar, M. M.

    2017-11-01

    The paper presents a Hamiltonian approach for extracting the dynamic instability parameters of homogeneously deforming dielectric elastomer actuators subjected to an unequal biaxial prestress, and driven by a suddenly applied electric load. The approach relies on setting up the balance between the kinetic, strain, and electrostatic energy at the point of maximum overshoot in an oscillation cycle. The equation of the stagnation curve, obtained by invoking aforestated statement of energy-balance, is operated upon by the condition of instability to determine the instability parameters. The underlying principles of the approach are elucidated by considering the Ogden family of hyperelastic material models. The approach is however portrayed generically, and hence, can be extended to the other hyperelastic material models of interest. The estimates of the dynamic instability parameters are corroborated by examining the saddle-node bifurcation points in the time-history response obtained by integrating the equation of motion. A parametric study is conducted to bring out the effect of unequal biaxial prestress, and the trends of variation of the critical electric field and the thickness-stretch on the onset of dynamic instability are presented. A quantitative comparison with the static instability parameters reveals that the dynamic instability gets triggered for electric fields that are lower than those corresponding to the static instability. In contrast, the maximum stretch experienced by the actuator at the dynamic instability is significantly higher than that at the static instability. The crucial inferences can find their potential use in the design of DEAs subjected to a transient motion.

  18. Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems

    Science.gov (United States)

    Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain

    2018-01-01

    Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.

  19. Efficient primary and parametric resonance excitation of bistable resonators

    KAUST Repository

    Ramini, Abdallah

    2016-09-12

    We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

  20. Scattering-initiated parametric noise in optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Wang, Jing; Ma, Jingui; Yuan, Peng; Tang, Daolong; Zhou, Binjie; Xie, Guoqiang; Qian, Liejia

    2015-07-15

    We experimentally study a new kind of parametric noise that is initiated from signal scattering and enhanced through optical parametric amplification. Such scattering-initiated parametric noise behaves similarly to parametric super-fluorescence in the spatial domain, yet is typically much stronger. In the time domain it inherits the chirp of signal pulses and can be well compressed. We demonstrate that scattering-initiated parametric noise has little influence on the pulse contrast but can degrade the energy conversion efficiency substantially.

  1. Bayesian adjustment for covariate measurement errors: a flexible parametric approach.

    Science.gov (United States)

    Hossain, Shahadut; Gustafson, Paul

    2009-05-15

    In most epidemiological investigations, the study units are people, the outcome variable (or the response) is a health-related event, and the explanatory variables are usually environmental and/or socio-demographic factors. The fundamental task in such investigations is to quantify the association between the explanatory variables (covariates/exposures) and the outcome variable through a suitable regression model. The accuracy of such quantification depends on how precisely the relevant covariates are measured. In many instances, we cannot measure some of the covariates accurately. Rather, we can measure noisy (mismeasured) versions of them. In statistical terminology, mismeasurement in continuous covariates is known as measurement errors or errors-in-variables. Regression analyses based on mismeasured covariates lead to biased inference about the true underlying response-covariate associations. In this paper, we suggest a flexible parametric approach for avoiding this bias when estimating the response-covariate relationship through a logistic regression model. More specifically, we consider the flexible generalized skew-normal and the flexible generalized skew-t distributions for modeling the unobserved true exposure. For inference and computational purposes, we use Bayesian Markov chain Monte Carlo techniques. We investigate the performance of the proposed flexible parametric approach in comparison with a common flexible parametric approach through extensive simulation studies. We also compare the proposed method with the competing flexible parametric method on a real-life data set. Though emphasis is put on the logistic regression model, the proposed method is unified and is applicable to the other generalized linear models, and to other types of non-linear regression models as well. (c) 2009 John Wiley & Sons, Ltd.

  2. Parametric Modeling for Fluid Systems

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  3. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator

    Science.gov (United States)

    Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas

    2016-01-01

    We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185±15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing. PMID:27156732

  4. Handbook on plasma instabilities

    CERN Document Server

    Cap, Ferdinand F

    1982-01-01

    Handbook on Plasma Instabilities, Volume 3, is primarily intended to serve as a sourcebook for obtaining quick information and literature references pertaining to a specific topic. Such a handbook has to be formulated in a way that enables understanding of any one section without requiring full understanding of any other section. Volume 1 (Chapters 1-13) presents the fundamental concepts of plasma physics with applications, and has more the nature of a textbook treating basic plasma physics, containment, waves, and macroscopic instabilities. Volume 2 (Chapters 14-17) covers various aspects of

  5. Non-Parametric Bayesian Updating within the Assessment of Reliability for Offshore Wind Turbine Support Structures

    DEFF Research Database (Denmark)

    Ramirez, José Rangel; Sørensen, John Dalsgaard

    2011-01-01

    This work illustrates the updating and incorporation of information in the assessment of fatigue reliability for offshore wind turbine. The new information, coming from external and condition monitoring can be used to direct updating of the stochastic variables through a non-parametric Bayesian...... updating approach and be integrated in the reliability analysis by a third-order polynomial chaos expansion approximation. Although Classical Bayesian updating approaches are often used because of its parametric formulation, non-parametric approaches are better alternatives for multi-parametric updating...... with a non-conjugating formulation. The results in this paper show the influence on the time dependent updated reliability when non-parametric and classical Bayesian approaches are used. Further, the influence on the reliability of the number of updated parameters is illustrated....

  6. Isentropic thermal instability in atomic surface layers of photodissociation regions

    Science.gov (United States)

    Krasnobaev, K. V.; Tagirova, R. R.

    2017-08-01

    We consider the evolution of an isentropic thermal instability in the atomic zone of a photodissociation region (PDR). In this zone, gas heating and cooling are associated mainly with photoelectric emission from dust grains and fine-structure lines ([C II] 158, [O I] 63 and [O I] 146 μm), respectively. The instability criterion has a multi-parametric dependence on the conditions of the interstellar medium. We found that instability occurs when the intensity of the incident far-ultraviolet field G0 and gas density n are high. For example, we have 3 × 103 360 waves is L ˜ 10-3-5 × 10-2 pc. For objects that are older than tinst and have sizes of the atomic zone larger than L, we expect that instability influences the PDR structure significantly. The presence of multiple shock waves, turbulent velocities of several kilometres per second and inhomogeneities with higher density and temperature than the surrounding medium can characterize isentropic thermal instability in PDRs.

  7. Parametric and Non-Parametric Clustering for Segmentation

    Science.gov (United States)

    Greenspan, Hayit; Syeda-Mahmood, Tanveer

    In this chapter, we contrast the medical image segmentation problem with general image segmentation and introduce several state-of-the-art segmentation techniques based on clustering. Specifically, we will consider two types of clustering, one parametric, and the other non-parametric, to group pixels into contiguous regions. In the first approach which is a statistical clustering scheme based on parametric Gaussian Mixture Models (GMMs), we develop the basic formalism and add variations and extensions to include a priori knowledge or context of the task at hand. In this formalism, each cluster is modeled as a Gaussian in the feature space. Each model component (Gaussian) can be assigned a semantic meaning; its automated extraction can be translated to the detection of an important image region, its segmentation as well as its tracking in time. We will demonstrate the GMM approach for segmentation of MR brain images. This will illustrate how the use of statistical modeling tools, in particular unsupervised clustering using Expectation- Maximization (EM) and modeling the image content via GMM, provides for robust tissue segmentation as well as brain lesion detection, segmentation and tracking in time. In the second approach, we take a non-parameterized graph-theoretic clustering approach to segmentation, and demonstrate how spatio-temporal features could be used to improve graphical clustering. In this approach, the image information is represented as a graph and the image segmentation task is positioned as a graph partitioning problem. A global criterion for graph partitioning based on normalized cuts is used. However, the weights of the edges now reflect spatio-temporal similarity between pixels. We derive a robust way of estimating temporal (motion) information in such imagery using a variant of Demon's algorithm. This approach will be illustrated in the domain of cardiac echo videos as an example of moving medical imagery.

  8. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus,...

  9. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Abstract. We derive relativistic fluid set of equations for neutrinos and electrons from relativistic. Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dis- persion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming ...

  10. Chronic Ankle Instability

    Science.gov (United States)

    ... was not rehabilitated completely. When you sprain your ankle, the connective tissues (ligaments) are stretched or torn. The ability to balance ... Repeated ankle sprains often cause—and perpetuate—chronic ankle ... of the ligaments, resulting in greater instability and the likelihood of ...

  11. Posterolateral elbow joint instability

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Søjbjerg, Jens Ole; Nielsen, K K

    1998-01-01

    Thirty-five osteoligamentous elbows were included in a study on the kinematics of posterolateral elbow joint instability during the pivot shift test (PST) before and after separate ligament cuttings in the lateral collateral ligament complex (LCLC). Division of the annular ligament or the lateral...

  12. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  13. Validation of a parametric finite element human femur model.

    Science.gov (United States)

    Klein, Katelyn F; Hu, Jingwen; Reed, Matthew P; Schneider, Lawrence W; Rupp, Jonathan D

    2017-05-19

    Finite element (FE) models with geometry and material properties that are parametric with subject descriptors, such as age and body shape/size, are being developed to incorporate population variability into crash simulations. However, the validation methods currently being used with these parametric models do not assess whether model predictions are reasonable in the space over which the model is intended to be used. This study presents a parametric model of the femur and applies a unique validation paradigm to this parametric femur model that characterizes whether model predictions reproduce experimentally observed trends. FE models of male and female femurs with geometries that are parametric with age, femur length, and body mass index (BMI) were developed based on existing statistical models that predict femur geometry. These parametric FE femur models were validated by comparing responses from combined loading tests of femoral shafts to simulation results from FE models of the corresponding femoral shafts whose geometry was predicted using the associated age, femur length, and BMI. The effects of subject variables on model responses were also compared with trends in the experimental data set by fitting similarly parameterized statistical models to both the results of the experimental data and the corresponding FE model results and then comparing fitted model coefficients for the experimental and predicted data sets. The average error in impact force at experimental failure for the parametric models was 5%. The coefficients of a statistical model fit to simulation data were within one standard error of the coefficients of a similarly parameterized model of the experimental data except for the age parameter, likely because material properties used in simulations were not varied with specimen age. In simulations to explore the effects of femur length, BMI, and age on impact response, only BMI significantly affected response for both men and women, with increasing

  14. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure.

    Science.gov (United States)

    Merchant, Samer S; Gomez, Arnold David; Morgan, James L; Hsu, Edward W

    2016-09-01

    Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.

  15. A parametric level-set approach for topology optimization of flow domains

    DEFF Research Database (Denmark)

    Pingen, Georg; Waidmann, Matthias; Evgrafov, Anton

    2010-01-01

    and the versatility of topology optimization methods for fluidic systems can be improved by employing a parametric level-set description. In general, level-set methods allow controlling the smoothness of boundaries, yield a non-local influence of design variables, and decouple the material description from the flow...... field discretization. The parametric level-set method used in this study utilizes a material distribution approach to represent flow boundaries, resulting in a non-trivial mapping between design variables and local material properties. Using a hydrodynamic lattice Boltzmann method, we study...... the performance of our level-set approach in comparison to a traditional material distribution approach. By numerical examples, the parametric level-set approach is validated through comparison with traditional material distribution based methods. While the parametric level-set approach leads to similar optimal...

  16. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    Science.gov (United States)

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  18. Approximate solution algorithm for multi-parametric non-convex programming problems with polyhedral constraints

    Directory of Open Access Journals (Sweden)

    Abay Molla Kassa

    2014-07-01

    Full Text Available In this paper, we developed a novel algorithmic approach for thesolution of multi-parametric non-convex programming problems withcontinuous decision variables. The basic idea of the proposedapproach is based on successive convex relaxation of each non-convexterms and sensitivity analysis theory. The proposed algorithm isimplemented using MATLAB software package and numericalexamples are presented to illustrate the effectiveness andapplicability of the proposed method on multi-parametric non-convexprogramming problems with polyhedral constraints.

  19. Efficient detection of symmetries polynomially parametrized curves

    OpenAIRE

    Alcázar Arribas, Juan Gerardo

    2014-01-01

    We present efficient algorithms for detecting central and mirror symmetry for the case of algebraic curves defined by means of polynomial parametrizations. The algorithms are based on an algebraic relationship between proper parametrizations of a same curve, which leads to a triangular polynomial system that can be solved in a very fast way; in particular, curves parametrized by polynomials of serious degrees/coefficients can be analyzed in a few seconds. In our analysis we provide a good num...

  20. LPT - A Tool for Parametric TPN Validation

    OpenAIRE

    Godary-Dejean, Karen; Richard, Romain; Angles, Gregory; Andreu, David

    2012-01-01

    International audience; This article deals with the problem of temporal and parametric formal validation for discrete event systems. It particularly focuses on the time Petri nets formalism, for which the parametric property verification with model checking is still a non resolved problem. A method is proposed, combining no parametric timed model checking with classical iterative algorithms to avoid combinatory explosion of the analysis process. Algorithms are proposed for the verification of...

  1. Instability and internet design

    Directory of Open Access Journals (Sweden)

    Sandra Braman

    2016-09-01

    Full Text Available Instability - unpredictable but constant change in one’s environment and the means with which one deals with it - has replaced convergence as the focal problem for telecommunications policy in general and internet policy in particular. Those who designed what we now call the internet during the first decade of the effort (1969-1979, who in essence served simultaneously as its policy-makers, developed techniques for coping with instability of value for network designers today and for those involved with any kind of large-scale sociotechnical infrastructure. Analysis of the technical document series that was medium for and record of that design process reveals coping techniques that began with defining the problem and went on to include conceptual labour, social practices, and technical approaches.

  2. Beam-beam instability

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1983-08-01

    The subject of beam-beam instability has been studied since the invention of the colliding beam storage rings. Today, with several colliding beam storage rings in operation, it is not yet fully understood and remains an outstanding problem for the storage ring designers. No doubt that good progress has been made over the years, but what we have at present is still rather primitive. It is perhaps possible to divide the beam-beam subject into two areas: one on luminosity optimization and another on the dynamics of the beam-beam interaction. The former area concerns mostly the design and operational features of a colliding beam storage ring, while the later concentrates on the experimental and theoretical aspects of the beam-beam interaction. Although both areas are of interest, our emphasis is on the second area only. In particular, we are most interested in the various possible mechanisms that cause the beam-beam instability.

  3. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-05-01

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models. © 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  4. Detection of Parametric Roll on Ships

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2012-01-01

    Recent years have shown several incidents with dramatic damage on container vessels caused by parametric resonance. When the resonance starts, the roll oscillation at a sub-harmonic frequency of the wave excitation may be completely unexpected. Timely warning about the onset of the resonance...... phenomenon could make the navigator change ship’s speed and heading, and these remedial actions could make the vessel escape the bifurcation. This chapter proposes non-parametric methods to detect the onset of parametric roll resonance. Theoretical conditions for parametric resonance are re...

  5. Evaporation and Antievaporation instabilities

    OpenAIRE

    Addazi, Andrea; Marciano, Antonino

    2017-01-01

    We review (anti)evaporation phenomena within the context of quantum gravity and extended theories of gravity. The (anti)evaporation effect is an instability of the black hole horizon discovered in many different scenarios: quantum dilaton-gravity, $f(R)$-gravity, $f(T)$-gravity, string inspired black holes and brane-world cosmology. Evaporating and antievaporating black holes seem to have completely different thermodynamical features compared to standard semiclassical black holes. The purpose...

  6. Maintaining sleep and physical activity alleviate mood instability.

    Science.gov (United States)

    Bowen, Rudy; Balbuena, Lloyd; Baetz, Marilyn; Schwartz, Laura

    2013-11-01

    Building on previous work indicating that mood instability is the hallmark of neuroticism, our aim was to examine whether changes in exercise, sleep duration and leisure predicted decreases in mood instability with time. We used data from 3374 participants of the British Health and Lifestyle Study who answered the Eysenck Personality Inventory-Neuroticism subscale (EPI-N) and the General Health Questionnaire on two occasions 7 years apart. We predicted mood instability scores derived from the EPI-N at follow-up using self-reported changes in exercise, sleep duration and leisure hours between the two time points as independent variables. We confirmed the observation that mood instability decreases with age. Maintaining one's exercise at baseline level decreased mood instability (beta=-0.21) while sleeping less increased mood instability (beta=0.14). Change in leisure time was not independently related to mood instability after accounting for the two other lifestyle factors. Personality, at least with regard to mood instability, can be modified by lifestyle factors. Exercise and sleep support mood stability and could be important components of preventative mental health (as well as physical health) benefits. © 2013.

  7. Instability of warped discs

    Science.gov (United States)

    Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-01-01

    Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which in general yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term which would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.

  8. A geometrical view of modulation instability in optical fibers

    CERN Document Server

    Hernandez, S M; Bonetti, J; Sánchez, A D; Grosz, D F

    2016-01-01

    We derive a simple geometrical description of the gain of modulation instability (MI) in optical fibers based on a model which takes into account all relevant linear and nonlinear effects. This novel approach allows us to relate the shape of the MI gain to any arbitrary dispersion profile of the waveguide in a simple manner. It also yields a straightforward explanation of the non-trivial dependence of the cutoff power on high-order dispersion. Further, we show that the power level maximizing the MI gain, a unique feature enabled by self-steepening, is greatly influenced by high-order dispersion and can be explicitly obtained. Finally, our model provides a powerful tool to synthesize a desired MI gain profile by appropriate waveguide design, with the potential application to a vast number of parametric-amplification and supercontinuum-generation devices whose functioning relies upon modulation instability.

  9. Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study

    Science.gov (United States)

    Landman, Bennett A.; Huang, Alan J.; Gifford, Aliya; Vikram, Deepti S.; Lim, Issel Anne L.; Farrell, Jonathan A.D.; Bogovic, John A.; Hua, Jun; Chen, Min; Jarso, Samson; Smith, Seth A.; Joel, Suresh; Mori, Susumu; Pekar, James J.; Barker, Peter B.; Prince, Jerry L.; van Zijl, Peter C.M.

    2010-01-01

    Modern MRI image processing methods have yielded quantitative, morphometric, functional, and structural assessments of the human brain. These analyses typically exploit carefully optimized protocols for specific imaging targets. Algorithm investigators have several excellent public data resources to use to test, develop, and optimize their methods. Recently, there has been an increasing focus on combining MRI protocols in multi-parametric studies. Notably, these have included innovative approaches for fusing connectivity inferences with functional and/or anatomical characterizations. Yet, validation of the reproducibility of these interesting and novel methods has been severely hampered by the limited availability of appropriate multi-parametric data. We present an imaging protocol optimized to include state-of-the-art assessment of brain function, structure, micro-architecture, and quantitative parameters within a clinically feasible 60 minute protocol on a 3T MRI scanner. We present scan-rescan reproducibility of these imaging contrasts based on 21 healthy volunteers (11 M/10 F, 22–61 y/o). The cortical gray matter, cortical white matter, ventricular cerebrospinal fluid, thalamus, putamen, caudate, cerebellar gray matter, cerebellar white matter, and brainstem were identified with mean volume-wise reproducibility of 3.5%. We tabulate the mean intensity, variability and reproducibility of each contrast in a region of interest approach, which is essential for prospective study planning and retrospective power analysis considerations. Anatomy was highly consistent on structural acquisition (~1–5% variability), while variation on diffusion and several other quantitative scans was higher (~parametric imaging protocols. PMID:21094686

  10. Bayesian non parametric modelling of Higgs pair production

    Directory of Open Access Journals (Sweden)

    Scarpa Bruno

    2017-01-01

    Full Text Available Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART to describe the atoms in the Dirichlet process.

  11. Explicit free parametrization of the modified tetrahedron equation

    CERN Document Server

    Gehlen, G V; Sergeev, S

    2003-01-01

    The modified tetrahedron equation (MTE) with affine Weyl quantum variables at the Nth root of unity is solved by a rational mapping operator which is obtained from the solution of a linear problem. We show that the solutions can be parametrized in terms of eight free parameters and 16 discrete phase choices, thus providing a broad starting point for the construction of three-dimensional integrable lattice models. The Fermat-curve points parametrizing the representation of the mapping operator in terms of cyclic functions are expressed in terms of the independent parameters. An explicit formula for the density factor of the MTE is derived. For the example N=2 we write the MTE in full detail.

  12. Bayesian non parametric modelling of Higgs pair production

    Science.gov (United States)

    Scarpa, Bruno; Dorigo, Tommaso

    2017-03-01

    Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART) to describe the atoms in the Dirichlet process.

  13. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  14. Design of parametric software tools

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits; Mullins, Michael

    2011-01-01

    fulfilment of evidence-based design criterion regarding light distribution and location in relation to patient safety in architectural health care design proposals. The study uses 2D/3D CAD modelling software Rhinoceros 3D with plug-in Grasshopper to create parametric tool prototypes to exemplify......The studies investigate the field of evidence-based design used in architectural design practice and propose a method using 2D/3D CAD applications to: 1) enhance integration of evidence-based design knowledge in architectural design phases with a focus on lighting and interior design and 2) assess...... the operations and functions of the design method. To evaluate the prototype potentials, surveys with architectural and healthcare design companies are conducted. Evaluation is done by the administration of questionnaires being part of the development of the tools. The results show that architects, designers...

  15. Characterization of Josephson parametric amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Pogorzalek, Stefan; Fedorov, Kirill; Zhong, Ling; Bitzenbichler, Martin; Haeberlein, Max; Schwarz, Manuel J.; Eder, Peter; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Baust, Alexander; Marx, Achim; Menzel, Edwin P.; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Propagating quantum microwaves are a promising building block for quantum communication. In particular, such itinerant quantum microwaves can be generated in the form of squeezed photon states using Josephson parametric amplifiers (JPA). A thorough experimental characterization of JPAs is therefore an essential prerequisite for further experiments towards quantum communication. For implementing JPAs we employ an established λ/4 bi-coplanar microwave resonator design where a dc-SQUID is biased by an external flux to tune the resonant frequency. An inductively coupled antenna acts as a pump for the JPA. We characterize several JPAs and evaluate the data within standard Josephson junction theory and the input-output formalism. In particular, we investigate hysteretic and bifurcation behavior of the JPAs in addition to usual non-degenerate JPA gain measurements.

  16. Parametric form of QCD travelling waves

    OpenAIRE

    Peschanski, R.

    2005-01-01

    We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.

  17. Studying the Bridge-Type Parametric Scatterer

    Science.gov (United States)

    Babanov, N. Yu.; Klyuev, A. V.; Lartsov, S. V.; Samarin, V. P.

    2017-10-01

    We study a parametric scatterer representing a quadripole of four bridge-type parametric circuits with antennas connected to the circuit arms and tuned to the pump signal and its half-wave subharmonic on the basis of simulation and full-scale experiments in the frequency range near 800 MHz.

  18. Spontaneous emission from saturated parametric amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Ott, Johan Raunkjær; Steffensen, Henrik

    2009-01-01

    Noise performance of parametric amplifiers is typically calculated assuming un-depleted operation. However, in many applications especially when applied as regenerative amplifiers in systems based on phase shift keyed modulation schemes, this assumption is not valid. Here we show the impact...... on accumulated spontaneous emission for a parametric amplifier operated in saturation....

  19. NUMERICAL SOLUTIONS OF SOME PARAMETRIC EFFECTS DUE ...

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    ISSN 1597-6343. Numerical Solutions of Some Parametric Effects Due to Electromagnetic Wave. Scattering by an Infinite Circular Cylinder. NUMERICAL SOLUTIONS OF SOME PARAMETRIC EFFECTS DUE. TO ELECTROMAGNETIC WAVE SCATTERING BY AN INFINITE. CIRCULAR CYLINDER. *1 Suleiman A. B. and 1 ...

  20. Parametric Methods for Order Tracking Analysis

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm

    2017-01-01

    Order tracking analysis is often used to find the critical speeds at which structural resonances are excited by a rotating machine. Typically, order tracking analysis is performed via non-parametric methods. In this report, however, we demonstrate some of the advantages of using a parametric method...

  1. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    In this paper a parametric beamformer, which can handle all imaging modalities including synthetic aperture imaging, is presented. The image lines and apodization coefficients are specified parametrically, and the lines can have arbitrary orientation and starting point in 3D coordinates...

  2. Centrale parametre til karakterisering af bygningers indeklima

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Clausen, Geo; Bekö, Gabriel

    Denne rapport omhandler arbejdet med identifikation af de parametre, der i vores indeklima påvirker vores komfort og/eller sundhed. Rapporten skal ses som en afrapportering af de overvejelser og valg, der er truffet forud for identifikationen af de centrale parametre, som kommer til at danne...

  3. Radiation Induced Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  4. Validation of two (parametric vs non-parametric) daily weather generators

    Science.gov (United States)

    Dubrovsky, M.; Skalak, P.

    2015-12-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series

  5. Parametric excitation of a linear oscillator

    Science.gov (United States)

    Butikov, Eugene I.

    2004-07-01

    The phenomenon of parametric resonance is explained and investigated both analytically and with the help of a computer simulation. Parametric excitation is studied for the example of the rotary oscillations of a simple linear system—mechanical torsion spring pendulum excited by periodic variations of its moment of inertia. Conditions and characteristics of parametric resonance and regeneration are found and discussed in detail. Ranges of frequencies within which parametric excitation is possible are determined. Stationary oscillations at the boundaries of these ranges are investigated. The simulation experiments aid greatly an understanding of basic principles and peculiarities of parametric excitation and complement the analytical study of the subject in a manner that is mutually reinforcing.

  6. Parametric excitation of a linear oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Butikov, Eugene I [St Petersburg State University, St Petersburg (Russian Federation)

    2004-07-16

    The phenomenon of parametric resonance is explained and investigated both analytically and with the help of a computer simulation. Parametric excitation is studied for the example of the rotary oscillations of a simple linear system-mechanical torsion spring pendulum excited by periodic variations of its moment of inertia. Conditions and characteristics of parametric resonance and regeneration are found and discussed in detail. Ranges of frequencies within which parametric excitation is possible are determined. Stationary oscillations at the boundaries of these ranges are investigated. The simulation experiments aid greatly an understanding of basic principles and peculiarities of parametric excitation and complement the analytical study of the subject in a manner that is mutually reinforcing.

  7. Parametric Design Strategies for Collaborative Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Yıldırım, Miray Baş; Özkar, Mine

    2013-01-01

    Taking its point of departure in a student workshop on parametric urban design, this paper explores some potentials of a parametric design approach for collaborative urban design. In the workshop, the CityEngine software was used as the design tool, and the object of the design was a contested...... urban space, subject to urban renewal. A key aspect of the workshop therefore, was to develop different design scenarios and to use parametric design software to communicate the scenarios spatially, as well as to mediate between them. Parametric urban design is a potentially powerful tool...... for collaborative urban design processes. Rather than making one-off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing for a level of detailing which is high enough to facilitate an understanding...

  8. Developing a Parametric Urban Design Tool

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2014-01-01

    Parametric urban design is a potentially powerful tool for collaborative urban design processes. Rather than making one- off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing...... for a level of detailing which is high enough to facilitate an understan- ding of the generic qualities of proposed designs. Starting from a brief overview of parametric design, this paper presents initial findings from the development of a parametric urban design tool with regard to developing a structural...... logic which is flexible and expandable. It then moves on to outline and discuss further development work. Finally, it offers a brief reflection on the potentials and shortcomings of the software – CityEngine – which is used for developing the parametric urban design tool....

  9. Calculations of superconducting parametric amplifiers performances

    Science.gov (United States)

    Goto, T.; Takeda, M.; Saito, S.; Shimakage, H.

    2017-07-01

    A superconducting parametric amplifier is an electromagnetic wave amplifier with high-quality characteristics such as a wide bandwidth, an extremely low noise, and a high dynamic range. In this paper, we report on the estimations of a YBCO superconducting parametric amplifier characteristic. The YBCO thin films were deposited on an MgO substrate by a pulsed laser deposition method. Based on the measured YBCO thin film parameters, theoretical calculations were implemented for evaluations of kinetic inductance nonlinearities and parametric gains. The nonlinearity of the YBCO thin film was estimated to be stronger than a single crystal NbTiN thin film. It is indicated that the YBCO parametric amplifier has a potential to be realized the amplifier with the high parametric gain. It is also expected that it could be operated in the range of the high frequency band, at the high temperature, and low applied current.

  10. Evaporation and Antievaporation Instabilities

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2017-10-01

    Full Text Available We review (antievaporation phenomena within the context of quantum gravity and extended theories of gravity. The (antievaporation effect is an instability of the black hole horizon discovered in many different scenarios: quantum dilaton-gravity, f ( R -gravity, f ( T -gravity, string-inspired black holes, and brane-world cosmology. Evaporating and antievaporating black holes seem to have completely different thermodynamical features compared to standard semiclassical black holes. The purpose of this review is to provide an introduction to conceptual and technical aspects of (antievaporation effects, while discussing problems that are still open.

  11. Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures.

    Science.gov (United States)

    Howard, Réka; Carriquiry, Alicia L; Beavis, William D

    2014-04-11

    Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. Copyright © 2014 Howard et al.

  12. Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators.

    Science.gov (United States)

    Liu, Jian; Torres, F A; Ma, Yubo; Zhao, C; Ju, L; Blair, D G; Chao, S; Roch-Jeune, I; Flaminio, R; Michel, C; Liu, K-Y

    2014-02-10

    Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46  MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies ∼400  kHz and quality-factors ∼7.5×10(5) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×10(4) with 30 mW of input power.

  13. Size effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2006-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  14. Instability of enclosed horizons

    CERN Document Server

    Kay, Bernard S

    2013-01-01

    We study the classical massless scalar wave equation on the region of 1+1-dimensional Minkowski space between the two branches of the hyperbola $x^2-t^2=1$ with vanishing boundary conditions on it. We point out that there are initially finite-energy initially, say, right-going waves for which the stress-energy tensor becomes singular on the null-line $t+x=0$. We also construct the quantum theory of this system and show that, while there is a regular Hartle-Hawking-Israel-like state, there are coherent states built on this for which there is a similar singularity in the expectation value of the renormalized stress-energy tensor. We conjecture that in 1+3-dimensional situations with 'enclosed horizons' such as a (maximally extended) Schwarzschild black hole in equilibrium in a stationary box or the (maximally extended) Schwarzschild-AdS spacetime, there will be a similar singularity at the horizon and that would signal an instability when matter perturbations and/or gravity are switched on. Such an instability ...

  15. Orbital angular momentum exchange in parametric down conversion

    Science.gov (United States)

    Huguenin, J. A. O.; Martinelli, M.; Caetano, D. P.; Coutinho Dos Santos, B.; Almeida, M. P.; Souto Ribeiro, P. H.; Nussenzveig, P.; Khoury, A. Z.

    2006-05-01

    Orbital angular momentum exchange, both in cavity free stimulated parametric down conversion and in an optical parametric oscillator, is studied. In both cases, the conditions for parametric amplification are discussed in terms of the orbital angular momentum exchange between the interacting fields. It is shown that in cavity free parametric down conversion, parametric amplification is conditioned to conserve orbital angular momentum. However, for parametric oscillation, cavity and anisotropy effects play a crucial role in the orbital angular momentum exchange between the interacting fields.

  16. Nonlinear Development and Secondary Instability of Traveling Crossflow Vortices

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian; Chang, Chau-Lyan

    2014-01-01

    Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper builds upon prior effort targeting the laminar breakdown mechanisms associated with stationary crossflow instability over a swept-wing configuration relevant to subsonic aircraft with laminar flow technology. Specifically, transition via secondary instability of traveling crossflow modes is investigated as an alternate scenario for transition. Results show that, for the parameter range investigated herein, secondary instability of traveling crossflow modes becomes insignificant in relation to the secondary instability of the stationary modes when the relative initial amplitudes of the traveling crossflow instability are lower than those of the stationary modes by approximately two orders of magnitudes or more. Linear growth predictions based on the secondary instability theory are found to agree well with those based on PSE and DNS, with the most significant discrepancies being limited to spatial regions of relatively weak secondary growth, i.e., regions where the primary disturbance amplitudes are smaller in comparison to its peak amplitude. Nonlinear effects on secondary instability evolution is also investigated and found to be initially stabilizing, prior to breakdown.

  17. The Correlation Between Self-Reported Instability, Balance and Health Status in Individuals with Chronic Functional Ankle Instability

    Directory of Open Access Journals (Sweden)

    Tara Azaran

    2016-12-01

    Full Text Available Background Functional ankle instability (FAI, characterized by feeling of “giving way” and instability of ankle, is the most prevalent problem following ankle sprains which causes deficits in balance and health status. However, little is known about the correlation between ankle instability measuring tools in individuals with FAI. Objectives The present study aimed at evaluating the correlation between self-reported instability with balance and health status in individuals with FAI. Methods Twenty-three patients with unilateral FAI and 23 healthy individuals participated in the present study. Ankle instability index and SF-36 questionnaire were completed by the participants; then balance error scoring system (BESS was used to measure static balance. To compare balance and health status between the 2 groups, independent sample and Mann-Whitney tests were used; moreover, Spearman correlation coefficient was used to determine the correlation between the main variables. Results BESS scores in FAI group was significantly more than the control group (P 0.05. However, no significant correlation was found between the balance tests scores and the instability index. Conclusions The results of the present study suggest that the individuals with FAI had greater activity limitations and participation restrictions compared with the control group. There were deficits in balance status in FAI group. Moreover, a significant correlation was observed between the ankle instability index and the subjective measures of health status.

  18. Efficient Characterization of Parametric Uncertainty of Complex (Biochemical Networks.

    Directory of Open Access Journals (Sweden)

    Claudia Schillings

    2015-08-01

    Full Text Available Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  19. Linear Parametric Model Checking of Timed Automata

    DEFF Research Database (Denmark)

    Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle

    2001-01-01

    We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...... of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach...

  20. A parametric analysis of HELSTAR

    Science.gov (United States)

    Miklasevich, J.

    1983-12-01

    The HELSTAR program is analyzed with a view towards verification and validation. The program is divided into three major areas for parametric study: battle management, laser system and battle scenario. The effects of atmospheric attenuation of laser energy, total number of attacking missiles, type of satellite orbit, and time-dependent launches on total system effectiveness are analyzed. In the course of the study, the effect of constellation altitude was found to have a significant effect on the size of the final optimum constellation. Since this altitude is determined by the program during initialization and cannot be controlled by the user, it can be considered to be a limitation of the program. Also, during the investigation of time-dependent launches, an error was found that led to invalid results. The exact location of this error could not be determined. Aside from the above mentioned limitations, the program was found to generate logical results. It was felt that potential users could use the program with a high degree of confidence that the engagements between ICBM's and space-based lasers were being modelled correctly.

  1. Flow Instability in Channel Flow with a Streamwise-periodic Array of Circular Cylinders

    Science.gov (United States)

    Lee, Kyongjun; Yoon, Dong-Hyeog; Yang, Kyung-Soo

    2011-11-01

    A parametric study has been carried out to elucidate the characteristics of flow instability in laminar channel flow with a streamwise-periodic array of circular cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to a significant change in flow instability. There exist two kinds of instability; flow undergoes a primary instability (Hopf bifurcation) at a low Reynolds number, and the resulting time-periodic two-dimensional flow subsequently becomes unstable to three-dimensional disturbances at a higher Reynolds number (secondary instability). We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent time-periodic 2D flow, including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinders and the channel wall. We also present a Floquet stability analysis on the time-periodic 2D flows to identify the onset of the secondary instability leading to 3D flow. This work was supported by UVRC, Korea.

  2. Instability and Information

    CERN Document Server

    Patzelt, Felix

    2015-01-01

    Many complex systems exhibit extreme events far more often than expected for a normal distribution. This work examines how self-similar bursts of activity across several orders of magnitude can emerge from first principles in systems that adapt to information. Surprising connections are found between two apparently unrelated research topics: hand-eye coordination in balancing tasks and speculative trading in financial markets. Seemingly paradoxically, locally minimising fluctuations can increase a dynamical system's sensitivity to unpredictable perturbations and thereby facilitate global catastrophes. This general principle is studied in several domain-specific models and in behavioural experiments. It explains many findings in both fields and resolves an apparent antinomy: the coexistence of stabilising control or market efficiency and perpetual instabilities resembling critical phenomena in physical systems.

  3. Saturation of equatorial inertial instability

    NARCIS (Netherlands)

    Kloosterziel, R.C.; Orlandi, P.; Carnevale, G.F.

    2015-01-01

    Inertial instability in parallel shear flows and circular vortices in a uniformly rotating system ( $f$f-plane) redistributes absolute linear momentum or absolute angular momentum in such a way as to neutralize the instability. In previous studies we showed that, in the absence of other

  4. Microsatellite instability in bladder cancer

    DEFF Research Database (Denmark)

    Gonzalez-Zulueta, M; Ruppert, J M; Tokino, K

    1993-01-01

    Somatic instability at microsatellite repeats was detected in 6 of 200 transitional cell carcinomas of the bladder. Instabilities were apparent as changes in (GT)n repeat lengths on human chromosome 9 for four tumors and as alterations in a (CAG)n repeat in the androgen receptor gene on the X chr...

  5. Liquid propellant rocket combustion instability

    Science.gov (United States)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  6. Multi-parametric variational data assimilation for hydrological forecasting

    Science.gov (United States)

    Alvarado-Montero, R.; Schwanenberg, D.; Krahe, P.; Helmke, P.; Klein, B.

    2017-12-01

    Ensemble forecasting is increasingly applied in flow forecasting systems to provide users with a better understanding of forecast uncertainty and consequently to take better-informed decisions. A common practice in probabilistic streamflow forecasting is to force deterministic hydrological model with an ensemble of numerical weather predictions. This approach aims at the representation of meteorological uncertainty but neglects uncertainty of the hydrological model as well as its initial conditions. Complementary approaches use probabilistic data assimilation techniques to receive a variety of initial states or represent model uncertainty by model pools instead of single deterministic models. This paper introduces a novel approach that extends a variational data assimilation based on Moving Horizon Estimation to enable the assimilation of observations into multi-parametric model pools. It results in a probabilistic estimate of initial model states that takes into account the parametric model uncertainty in the data assimilation. The assimilation technique is applied to the uppermost area of River Main in Germany. We use different parametric pools, each of them with five parameter sets, to assimilate streamflow data, as well as remotely sensed data from the H-SAF project. We assess the impact of the assimilation in the lead time performance of perfect forecasts (i.e. observed data as forcing variables) as well as deterministic and probabilistic forecasts from ECMWF. The multi-parametric assimilation shows an improvement of up to 23% for CRPS performance and approximately 20% in Brier Skill Scores with respect to the deterministic approach. It also improves the skill of the forecast in terms of rank histogram and produces a narrower ensemble spread.

  7. Beam instability Workshop - plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions.

  8. Long-term stable operation and absolute frequency stabilization of a doubly resonant parametric oscillator

    Science.gov (United States)

    Al-Tahtamouni, R.; Bencheikh, K.; Storz, R.; Schneider, K.; Lang, M.; Mlynek, J.; Schiller, S.

    1998-06-01

    We demonstrate a doubly resonant optical parametric oscillator that operated on a single mode pair for 18 h without mode hops, and whose output frequencies can be tuned by almost 10 GHz without mode hops by the tuning of the pump laser frequency. The tuning range is limited by the available pump tuning range. Active stabilization is used that minimizes the detuning of the parametrically generated waves with respect to the DRO cavity resonances. Absolute frequency stabilization of the idler wave is achieved by locking its frequency to an ultra-stable cryogenic reference resonator, using the pump laser frequency as control parameter. The frequency instability reached is below the 1-kHz level.

  9. Ranking Forestry Investments With Parametric Linear Programming

    Science.gov (United States)

    Paul A. Murphy

    1976-01-01

    Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.

  10. Parametrically disciplined operation of a vibratory gyroscope

    Science.gov (United States)

    Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  11. Parametric Portfolio Policies with Common Volatility Dynamics

    DEFF Research Database (Denmark)

    Ergemen, Yunus Emre; Taamouti, Abderrahim

    A parametric portfolio policy function is considered that incorporates common stock volatility dynamics to optimally determine portfolio weights. Reducing dimension of the traditional portfolio selection problem significantly, only a number of policy parameters corresponding to first- and second...

  12. Parametric methods for spatial point processes

    DEFF Research Database (Denmark)

    Møller, Jesper

    (This text is submitted for the volume ‘A Handbook of Spatial Statistics' edited by A.E. Gelfand, P. Diggle, M. Fuentes, and P. Guttorp, to be published by Chapmand and Hall/CRC Press, and planned to appear as Chapter 4.4 with the title ‘Parametric methods'.) 1 Introduction This chapter considers...... inference procedures for parametric spatial point process models. The widespread use of sensible but ad hoc methods based on summary statistics of the kind studied in Chapter 4.3 have through the last two decades been supplied by likelihood based methods for parametric spatial point process models....... The increasing development of such likelihood based methods, whether frequentist or Bayesian, has lead to more objective and efficient statistical procedures. When checking a fitted parametric point process model, summary statistics and residual analysis (Chapter 4.5) play an important role in combination...

  13. Parametric optimization of inverse trapezoid oleophobic surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2012-01-01

    In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure...

  14. Optimal parametric modelling of measured short waves

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    the importance of selecting a suitable sampling interval for better estimates of parametric modelling and also for better statistical representation. Implementation of the above algorithms in a structural monitoring system has the potential advantage of storing...

  15. Parametric Design and Digital Fabrication: Journey with parametric design and digital fabrication in architecture

    OpenAIRE

    Maksoud, Aref

    2017-01-01

    Complexity and Strategies for parametric design in architecture. An application of practice led research. Nowadays a new specialist design role is emerging in the construction industry. The primary task related to this role is focused on the control, development and sharing of geometric information with members of the design team in order to develop a design solution. Individuals engaged in this role can be described as a parametric designers. Parametric design involves the ...

  16. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  17. Optical Vortex Solitons in Parametric Wave Mixing

    OpenAIRE

    Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    1999-01-01

    We analyze two-component spatial optical vortex solitons supported by parametric wave mixing processes in a nonlinear bulk medium. We study two distinct cases of such localised waves, namely, parametric vortex solitons due to phase-matched second-harmonic generation in an optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component ...

  18. Mechanical instability of normal and aneurysmal arteries.

    Science.gov (United States)

    Lee, Avione Y; Sanyal, Arnav; Xiao, Yangming; Shadfan, Ramsey; Han, Hai-Chao

    2014-12-18

    Tortuous arteries associated with aneurysms have been observed in aged patients with atherosclerosis and hypertension. However, the underlying mechanism is poorly understood. The objective of this study was to determine the effect of aneurysms on arterial buckling instability and the effect of buckling on aneurysm wall stress. We investigated the mechanical buckling and post-buckling behavior of normal and aneurysmal carotid arteries and aorta's using computational simulations and experimental measurements to elucidate the interrelationship between artery buckling and aneurysms. Buckling tests were done in porcine carotid arteries with small aneurysms created using elastase treatment. Parametric studies were done for model aneurysms with orthotropic nonlinear elastic walls using finite element simulations. Our results demonstrated that arteries buckled at a critical buckling pressure and the post-buckling deflection increased nonlinearly with increasing pressure. The presence of an aneurysm can reduce the critical buckling pressure of arteries, although the effect depends on the aneurysm's dimensions. Buckled aneurysms demonstrated a higher peak wall stress compared to unbuckled aneurysms under the same lumen pressure. We conclude that aneurysmal arteries are vulnerable to mechanical buckling and mechanical buckling could lead to high stresses in the aneurysm wall. Buckling could be a possible mechanism for the development of tortuous aneurysmal arteries such as in the Loeys-Dietz syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. On Topological Structures of Fuzzy Parametrized Soft Sets

    Directory of Open Access Journals (Sweden)

    Serkan Atmaca

    2014-01-01

    Full Text Available We introduce the topological structure of fuzzy parametrized soft sets and fuzzy parametrized soft mappings. We define the notion of quasi-coincidence for fuzzy parametrized soft sets and investigated its basic properties. We study the closure, interior, base, continuity, and compactness and properties of these concepts in fuzzy parametrized soft topological spaces.

  20. Parametric analysis of glenoid implant design and fixation type.

    Science.gov (United States)

    Geraldes, Diogo M; Hansen, Ulrich; Amis, Andrew A

    2017-04-01

    Common post-operative problems in shoulder arthroplasty such as glenoid loosening and joint instability may be reduced by improvements in glenoid design, shape, material choice, and fixation method. A framework for parametric analysis of different implant fixation configurations was developed in order to efficiently sift through potential glenoid component designs. We investigated the influence of design factors such as fixation type, component thickness, and peg position, number, diameter, and length in a multi-factorial design investigation. The proposed method allowed for simultaneous comparison of the mechanical performance of 344 different parametric variations of 10 different reference geometries with either large central fixation features or small peripheral pegs, undergoing four different worst-case scenario loading conditions, and averaging 64.7 s per model. The impact of design parameters were assessed for different factors responsible for post-operative problems in shoulder arthroplasty, such as bone volume preservation, stresses in the implant, central displacement or fixation stability, and the worst performing geometries all relied on conventional central fixation. Of the remaining geometries, four peripheral fixation configurations produced von Mises stresses comfortably below the material's yield strength. We show that the developed method allows for simple, direct, rapid, and repeatable comparison of different design features, material choices, or fixation methods by analyzing how they influence the bone-implant mechanical environment. The proposed method can provide valuable insight in implant design optimization by screening through multiple potential design modifications at an early design evaluation stage and highlighting the best performing combinations according to the failure mechanism to mitigate. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:775-784, 2017. © 2016 Orthopaedic Research Society

  1. Affective instability in borderline personality disorder: experience sampling findings.

    Science.gov (United States)

    Nica, Elena Irina; Links, Paul S

    2009-02-01

    Affective instability, defined as repeated, rapid, and abrupt shifts in mood, is considered the core pathology in borderline personality disorder. The temporal pattern of affective instability can be best captured with the experience sampling method-longitudinal assessment of people's affective states as they occur in real time and in their natural environment. A review of the experience sampling studies published to date for borderline personality disorder suggests the following mood variability pattern: intense negative mood, more frequent and abrupt mood changes than healthy controls and patients with major depression, and partial triggering of affect by external events. The method also has great potential to investigate the links between affective instability and other psychological and behavioral correlates of the disorder, such as suicide, lack of self-esteem, and erratic behaviors. However, the method requires systematic study to determine best data collection designs and mathematical models of mood variability.

  2. Simulations of Astrophysical fluid instabilities

    Science.gov (United States)

    Calder, A. C.; Fryxell, B.; Rosner, R.; Dursi, L. J.; Olson, K.; Ricker, P. M.; Timmes, F. X.; Zingale, M.; MacNeice, P.; Tufo, H. M.

    2001-10-01

    We present direct numerical simulations of mixing at Rayleigh-Taylor unstable interfaces performed with the FLASH code, developed at the ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. We present initial results of single-mode studies in two and three dimensions. Our results indicate that three-dimensional instabilities grow significantly faster than two-dimensional instabilities and that grid resolution can have a significant effect on instability growth rates. We also find that unphysical diffusive mixing occurs at the fluid interface, particularly in poorly resolved simulations. .

  3. Multi-parametric neuroimaging reproducibility: a 3-T resource study.

    Science.gov (United States)

    Landman, Bennett A; Huang, Alan J; Gifford, Aliya; Vikram, Deepti S; Lim, Issel Anne L; Farrell, Jonathan A D; Bogovic, John A; Hua, Jun; Chen, Min; Jarso, Samson; Smith, Seth A; Joel, Suresh; Mori, Susumu; Pekar, James J; Barker, Peter B; Prince, Jerry L; van Zijl, Peter C M

    2011-02-14

    Modern MRI image processing methods have yielded quantitative, morphometric, functional, and structural assessments of the human brain. These analyses typically exploit carefully optimized protocols for specific imaging targets. Algorithm investigators have several excellent public data resources to use to test, develop, and optimize their methods. Recently, there has been an increasing focus on combining MRI protocols in multi-parametric studies. Notably, these have included innovative approaches for fusing connectivity inferences with functional and/or anatomical characterizations. Yet, validation of the reproducibility of these interesting and novel methods has been severely hampered by the limited availability of appropriate multi-parametric data. We present an imaging protocol optimized to include state-of-the-art assessment of brain function, structure, micro-architecture, and quantitative parameters within a clinically feasible 60-min protocol on a 3-T MRI scanner. We present scan-rescan reproducibility of these imaging contrasts based on 21 healthy volunteers (11 M/10 F, 22-61 years old). The cortical gray matter, cortical white matter, ventricular cerebrospinal fluid, thalamus, putamen, caudate, cerebellar gray matter, cerebellar white matter, and brainstem were identified with mean volume-wise reproducibility of 3.5%. We tabulate the mean intensity, variability, and reproducibility of each contrast in a region of interest approach, which is essential for prospective study planning and retrospective power analysis considerations. Anatomy was highly consistent on structural acquisition (~1-5% variability), while variation on diffusion and several other quantitative scans was higher (~parametric imaging protocols. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Design of an ignition target for the laser megajoule, mitigating parametric instabilities

    Science.gov (United States)

    Laffite, S.; Loiseau, P.

    2010-10-01

    Laser plasma interaction (LPI) is a critical issue in ignition target design. Based on both scaling laws and two-dimensional calculations, this article describes how we can constrain a laser megajoule (LMJ) [J. Ebrardt and J. M. Chaput, J. Phys.: Conf. Ser. 112, 032005 (2008)] target design by mitigating LPI. An ignition indirect drive target has been designed for the 2/3 LMJ step. It requires 0.9 MJ and 260 TW of laser energy and power, to achieve a temperature of 300 eV in a rugby-shaped Hohlraum and give a yield of about 20 MJ. The study focuses on the analysis of linear gain for stimulated Raman and Brillouin scatterings. Enlarging the focal spot is an obvious way to reduce linear gains. We show that this reduction is nonlinear with the focal spot size. For relatively small focal spot area, linear gains are significantly reduced by enlarging the focal spot. However, there is no benefit in too large focal spots because of necessary larger laser entrance holes, which require more laser energy. Furthermore, this leads to the existence, for a given design, of a minimum value for linear gains for which we cannot go below.

  5. Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions

    Directory of Open Access Journals (Sweden)

    Riconda C.

    2013-11-01

    Full Text Available Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS, and Brillouin- (SBS, side/backscattering as well as Two-Plasmon-Decay (TPD are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.

  6. Experimental observation of parametric instabilities at laser intensities relevant for shock ignition

    Czech Academy of Sciences Publication Activity Database

    Cristoforetti, G.; Colaïtis, A.; Antonelli, L.; Atzeni, S.; Baffigi, F.; Batani, D.; Barbato, F.; Boutoux, G.; Dudžák, Roman; Koester, P.; Krouský, Eduard; Labate, L.; Nicolaï, P.; Renner, Oldřich; Skoric, M.; Tikhonchuk, V.; Gizzi, L.A.

    2017-01-01

    Roč. 117, č. 3 (2017), č. článku 35001. ISSN 0295-5075 R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014; GA MŠk EF15_008/0000162 EU Projects: European Commission(XE) 633053 - EUROfusion Grant - others:EU - ICT(XE) COST Action IC1208; ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : laser intensity regime * Stimulated Brillouin Scattering (SBS) * Stimulated Raman Scattering (SRS) * Two-Plasmon Decay (TPD) Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 1.957, year: 2016 https://doi.org/10.1209/0295-5075/117/35001

  7. Parametric Instabilities During High Power Helicon Wave Injection on DIII-D

    OpenAIRE

    Porkolab M.; Pinsker R.I.

    2017-01-01

    High power helicon (whistler) waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD) which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high tem...

  8. Sensitivity analysis of point and parametric pedotransfer functions for estimating water retention of soils in Algeria

    Science.gov (United States)

    Touil, Sami; Degre, Aurore; Nacer Chabaca, Mohamed

    2016-12-01

    Improving the accuracy of pedotransfer functions (PTFs) requires studying how prediction uncertainty can be apportioned to different sources of uncertainty in inputs. In this study, the question addressed was as follows: which variable input is the main or best complementary predictor of water retention, and at which water potential? Two approaches were adopted to generate PTFs: multiple linear regressions (MLRs) for point PTFs and multiple nonlinear regressions (MNLRs) for parametric PTFs. Reliability tests showed that point PTFs provided better estimates than parametric PTFs (root mean square error, RMSE: 0.0414 and 0.0444 cm3 cm-3, and 0.0613 and 0.0605 cm3 cm-3 at -33 and -1500 kPa, respectively). The local parametric PTFs provided better estimates than Rosetta PTFs at -33 kPa. No significant difference in accuracy, however, was found between the parametric PTFs and Rosetta H2 at -1500 kPa with RMSE values of 0.0605 cm3 cm-3 and 0.0636 cm3 cm-3, respectively. The results of global sensitivity analyses (GSAs) showed that the mathematical formalism of PTFs and their input variables reacted differently in terms of point pressure and texture. The point and parametric PTFs were sensitive mainly to the sand fraction in the fine- and medium-textural classes. The use of clay percentage (C %) and bulk density (BD) as inputs in the medium-textural class improved the estimation of PTFs at -33 kPa.

  9. Fundamental Insights into Combustion Instability Predictions in Aerospace Propulsion

    Science.gov (United States)

    Huang, Cheng

    in conjunction with a Galerkin procedure to reduce the governing partial differential equation to an ordinary differential equation, which constitutes the ROM. Once the ROM is established, it can then be used as a lower-order test-bed to predict detailed results within certain parametric ranges at a fraction of the cost of solving the full governing equations. A detailed assessment is performed on the method in two parts. In part one, a one-dimensional scalar reaction-advection model equation is used for fundamental investigations, which include verification of the POD eigen-basis calculation and of the ROM development procedure. Moreover, certain criteria during ROM development are established: 1. a necessary number of POD modes that should be included to guarantee a stable ROM; 2. the need for the numerical discretization scheme to be consistent between the original CFD and the developed ROM. Furthermore, the predictive capabilities of the resulting ROM are evaluated to test its limits and to validate the values of applying broadband forcing in improving the ROM performance. In part two, the exploration is extended to a vector system of equations. Using the one-dimensional Euler equation is used as a model equation. A numerical stability issue is identified during the ROM development, the cause of which is further studied and attributed to the normalization methods implemented to generate coupled POD eigen-bases for vector variables. (Abstract shortened by UMI.).

  10. Detection of genomic instability in hypospadias patients by random ...

    African Journals Online (AJOL)

    DIRECTOR

    2011-05-16

    May 16, 2011 ... based technique, was adopted using ten random primers in twelve cases and twelve controls. The primer detectability on .... control sample was used as a criterion of genomic instability. RESULTS AND DISCUSSION .... Fingerprinting and assessment of genetic variability of Varroa destructor in Egypt.

  11. Developmental instability as an estimator of genetic stress

    DEFF Research Database (Denmark)

    Pertoldi, C; Kristensen, TN; Andersen, DH

    2006-01-01

    To set conservation priorities, scientists should be able to assess the relative threats posed by the effects of loss of genetic variability, inbreeding and outbreeding as these can generate `genetic stress'. Developmental instability (DI) has been suggested as an indicator of stress, possibly be...

  12. Hidden instabilities in the Ti:sapphire Kerr lens mode-locked laser.

    Science.gov (United States)

    Kovalsky, M G; Hnilo, A A; González Inchauspe, C M

    1999-11-15

    It is experimentally shown that pulse-to-pulse instabilities in the output of Kerr lens mode-locked Ti:sapphire lasers are usual and that they can affect some of the pulse variables (e.g., the spot size) and not others (e.g., pulse duration and energy). These instabilities are not detectable in the averaged signals (such as the autocorrelation of the pulse) that are customarily used for controlling the laser. But, if they are present but are disregarded, these instabilities have undesirable consequences in almost any application. A simple way to detect and eliminate the instabilities is described.

  13. Assessing pupil and school performance by non-parametric and parametric techniques

    NARCIS (Netherlands)

    de Witte, K.; Thanassoulis, E.; Simpson, G.; Battisti, G.; Charlesworth-May, A.

    2010-01-01

    This paper discusses the use of the non-parametric free disposal hull (FDH) and the parametric multi-level model (MLM) as alternative methods for measuring pupil and school attainment where hierarchical structured data are available. Using robust FDH estimates, we show how to decompose the overall

  14. Comparison of reliability techniques of parametric and non-parametric method

    Directory of Open Access Journals (Sweden)

    C. Kalaiselvan

    2016-06-01

    Full Text Available Reliability of a product or system is the probability that the product performs adequately its intended function for the stated period of time under stated operating conditions. It is function of time. The most widely used nano ceramic capacitor C0G and X7R is used in this reliability study to generate the Time-to failure (TTF data. The time to failure data are identified by Accelerated Life Test (ALT and Highly Accelerated Life Testing (HALT. The test is conducted at high stress level to generate more failure rate within the short interval of time. The reliability method used to convert accelerated to actual condition is Parametric method and Non-Parametric method. In this paper, comparative study has been done for Parametric and Non-Parametric methods to identify the failure data. The Weibull distribution is identified for parametric method; Kaplan–Meier and Simple Actuarial Method are identified for non-parametric method. The time taken to identify the mean time to failure (MTTF in accelerating condition is the same for parametric and non-parametric method with relative deviation.

  15. Relative efficiency of non-parametric error rate estimators in multi ...

    African Journals Online (AJOL)

    parametric error rate estimators in 2-, 3- and 5-group linear discriminant analysis. The simulation design took into account the number of variables (4, 6, 10, 18) together with the size sample n so that: n/p = 1.5, 2.5 and 5. Three values of the ...

  16. WELLBORE INSTABILITY: CAUSES AND CONSEQUENCES

    Directory of Open Access Journals (Sweden)

    Borivoje Pašić

    2007-12-01

    Full Text Available Wellbore instability is one of the main problems that engineers meet during drilling. The causes of wellbore instability are often classified into either mechanical (for example, failure of the rock around the hole because of high stresses, low rock strength, or inappropriate drilling practice or chemical effects which arise from damaging interaction between the rock, generally shale, and the drilling fluid. Often, field instances of instability are a result of a combination of both chemical and mechanical. This problem might cause serious complication in well and in some case can lead to expensive operational problems. The increasing demand for wellbore stability analyses during the planning stage of a field arise from economic considerations and the increasing use of deviated, extended reach and horizontal wells. This paper presents causes, indicators and diagnosing of wellbore instability as well as the wellbore stresses model.

  17. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  18. Beam Instabilities in Hadron Synchrotrons

    CERN Document Server

    Métral, E; Bartosik, H; Biancacci, N; Buffat, X; Esteban Muller, J F; Herr, W; Iadarola, G; Lasheen, A; Li, K; Oeftiger, A; Pieloni, T; Quartullo, D; Rumolo, G; Salvant, B; Schenk, M; Shaposhnikova, E; Tambasco, C; Timko, H; Zannini, C; Burov, A; Banfi, D; Barranco, J; Mounet, N; Boine-Frankenheim, O; Niedermayer, U; Kornilov, V; White, S

    2016-01-01

    Beam instabilities cover a wide range of effects in particle accelerators and they have been the subjects of intense research for several decades. As the machines performance was pushed new mechanisms were revealed and nowadays the challenge consists in studying the interplays between all these intricate phenomena, as it is very often not possible to treat the different effects separately. The aim of this paper is to review the main mechanisms, discussing in particular the recent developments of beam instability theories and simulations.

  19. Microsatellite instability in bladder cancer

    DEFF Research Database (Denmark)

    Gonzalez-Zulueta, M; Ruppert, J M; Tokino, K

    1993-01-01

    Somatic instability at microsatellite repeats was detected in 6 of 200 transitional cell carcinomas of the bladder. Instabilities were apparent as changes in (GT)n repeat lengths on human chromosome 9 for four tumors and as alterations in a (CAG)n repeat in the androgen receptor gene on the X...... or larger (> 2 base pairs) alterations in repeat length. All six tumors were low stage (Ta-T1), suggesting that these alterations can occur early in bladder tumorigenesis....

  20. Material Instabilities in Particulate Systems

    Science.gov (United States)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  1. Parametric Mapping of Contrasted Ovarian Transvaginal Sonography

    Science.gov (United States)

    Korhonen, Katrina; Moore, Ryan; Lyshchik, Andrej; Fleischer, Arthur C.

    2014-01-01

    The purpose of this study was to assess the accuracy of parametric analysis of transvaginal contrast-enhanced ultrasound (TV-CEUS) for distinguishing benign versus malignant ovarian masses. A total of 48 ovarian masses (37 benign and 11 borderline/malignant) were examined with TV-CEUS (Definity, Lantheus, North Bilreca, MA; Philips iU22, Bothell, WA). Parametric images were created offline with a quantification software (Bracco Suisse SA, Geneva, Switzerland) with map color scales adjusted such that abnormal hemodynamics were represented by the color red and the presence of any red color could be used to differentiate benign and malignant tumors. Using these map color scales, low values of the perfusion parameter were coded in blue, and intermediate values of the perfusion parameter were coded in yellow. Additionally, for each individual color (red, blue, or yellow), a darker shade of that color indicated a higher intensity value. Our study found that the parametric mapping method was considerably more sensitive than standard ROI analysis for the detection of malignant tumors but was also less specific than standard ROI analysis. Parametric mapping allows for stricter cut-off criteria, as hemodynamics are visualized on a finer scale than ROI analyses, and as such, parametric maps are a useful addition to TV-CEUS analysis by allowing ROIs to be limited to areas of highest malignant potential. PMID:26002525

  2. History of shoulder instability surgery.

    Science.gov (United States)

    Randelli, Pietro; Cucchi, Davide; Butt, Usman

    2016-02-01

    The surgical management of shoulder instability is an expanding and increasingly complex area of study within orthopaedics. This article describes the history and evolution of shoulder instability surgery, examining the development of its key principles, the currently accepted concepts and available surgical interventions. A comprehensive review of the available literature was performed using PubMed. The reference lists of reviewed articles were also scrutinised to ensure relevant information was included. The various types of shoulder instability including anterior, posterior and multidirectional instability are discussed, focussing on the history of surgical management of these topics, the current concepts and the results of available surgical interventions. The last century has seen important advancements in the understanding and treatment of shoulder instability. The transition from open to arthroscopic surgery has allowed the discovery of previously unrecognised pathologic entities and facilitated techniques to treat these. Nevertheless, open surgery still produces comparable results in the treatment of many instability-related conditions and is often required in complex or revision cases, particularly in the presence of bone loss. More high-quality research is required to better understand and characterise this spectrum of conditions so that successful evidence-based management algorithms can be developed. IV.

  3. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  4. Parametric Raman anti-Stokes laser

    Energy Technology Data Exchange (ETDEWEB)

    Grasiuk, A.Z.; Losev, L.L.; Lutsenko, A.P.; Sazonov, S.N. (Fizicheskii Institut, Moscow (USSR))

    1990-10-01

    A parametric Raman anti-Stokes laser utilizing compressed (50 atm) hydrogen is reported in which anti-Stokes emission at a wavelength of 433 nm (pulse width, 15 ns) is generated due to the parametric interaction between the pumping (530 nm, 50 ns) and Stokes (680 nm) beams. The parametric Raman coupling of the light fields is achieved by the positioning of a Stokes emission resonator at a phase synchronism angle relative to the pumping radiation. A power conversion efficiency of 6 percent has been demonstrated experimentally. Numerical calculations suggest that a conversion efficiency of 40 percent is possible in the stationary mode for pumping with a divergence of not more than 0.0001 rad. 5 refs.

  5. Parametric Conversion Using Custom MOS Varactors

    Directory of Open Access Journals (Sweden)

    Iniewski Krzysztof (Kris

    2006-01-01

    Full Text Available The possible role of customized MOS varactors in amplification, mixing, and frequency control of future millimeter wave CMOS RFICs is outlined. First, the parametric conversion concept is revisited and discussed in terms of modern RF communications systems. Second, the modeling, design, and optimization of MOS varactors are reconsidered in the context of their central role in parametric circuits. Third, a balanced varactor structure is proposed for robust oscillator frequency control in the presence of large extrinsic noise expected in tightly integrated wireless communicators. Main points include the proposal of a subharmonic pumping scheme based on the MOS varactor, a nonequilibrium elastance-voltage model, optimal varactor layout suggestions, custom m-CMOS varactor design and measurement, device-level balanced varactor simulations, and parametric circuit evaluation based on measured device characteristics.

  6. Parametric pendulum based wave energy converter

    Science.gov (United States)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  7. Ku band low noise parametric amplifier

    Science.gov (United States)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  8. Interactive flutter analysis and parametric study for conceptual wing design

    Science.gov (United States)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  9. Instabilities in a nonlinear model of a passive damper

    Science.gov (United States)

    Tinker, Michael L.; Cutchins, Malcolm A.

    1991-01-01

    During a study of the dynamic characteristics of a wire rope vibration isolation system constructed with helical isolatoars, an interesting instability was observed. In addition to experimental investigation of this system, a semi-empirical model having nonlinear stiffness, nth-power velocity damping, and variable Coulomb-type friction damping was developed. Results obtained using ACSL compare well with experimental data. The primary emphasis of this paper, however, centers on the instabilities and largea-response behavior of this semi-empirical model. Stabilizing effects are discussed.

  10. Parametric amplification by coupled flux qubits

    Science.gov (United States)

    Rehák, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Hübner, U.; Il'ichev, E.; Meyer, H.-G.

    2014-04-01

    We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10-3) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

  11. Probabilistic Reachability for Parametric Markov Models

    DEFF Research Database (Denmark)

    Hahn, Ernst Moritz; Hermanns, Holger; Zhang, Lijun

    2011-01-01

    Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression...... of states (n(log n)).We therefore proceed differently, by tightly intertwining the regular expression computation with its evaluation. This allows us to arrive at an effective method that avoids this blow up in most practical cases. We give a detailed account of the approach, also extending to parametric...

  12. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  13. A Comparison of Parametric and Non-Parametric Methods Applied to a Likert Scale.

    Science.gov (United States)

    Mircioiu, Constantin; Atkinson, Jeffrey

    2017-05-10

    A trenchant and passionate dispute over the use of parametric versus non-parametric methods for the analysis of Likert scale ordinal data has raged for the past eight decades. The answer is not a simple "yes" or "no" but is related to hypotheses, objectives, risks, and paradigms. In this paper, we took a pragmatic approach. We applied both types of methods to the analysis of actual Likert data on responses from different professional subgroups of European pharmacists regarding competencies for practice. Results obtained show that with "large" (>15) numbers of responses and similar (but clearly not normal) distributions from different subgroups, parametric and non-parametric analyses give in almost all cases the same significant or non-significant results for inter-subgroup comparisons. Parametric methods were more discriminant in the cases of non-similar conclusions. Considering that the largest differences in opinions occurred in the upper part of the 4-point Likert scale (ranks 3 "very important" and 4 "essential"), a "score analysis" based on this part of the data was undertaken. This transformation of the ordinal Likert data into binary scores produced a graphical representation that was visually easier to understand as differences were accentuated. In conclusion, in this case of Likert ordinal data with high response rates, restraining the analysis to non-parametric methods leads to a loss of information. The addition of parametric methods, graphical analysis, analysis of subsets, and transformation of data leads to more in-depth analyses.

  14. Coupled oscillators in identification of nonlinear damping of a real parametric pendulum

    Science.gov (United States)

    Olejnik, Paweł; Awrejcewicz, Jan

    2018-01-01

    A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.

  15. Radiation-induced chromosomal instability

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S. [GSI, Biophysics, Darmstadt (Germany)

    1999-03-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/{mu}m) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  16. Instability Prediction and Disruption Avoidance

    Science.gov (United States)

    Turnbull, A. D.; Liu, Y. Q.; Hanson, J. M.; Turco, F.; Ferraro, N. M.

    2017-10-01

    Disruption avoidance requires both a prediction of the instability proximity and an estimate of the `disruptability' - the likelihood that the instability will ultimately result in a disruptive event. MHD spectroscopy is a promising option for obtaining information on the proximity of instabilities. Both the direct response and the antenna impedance provide valuable information on the low frequency global normal modes corresponding to stabilized kink modes. Data from DIII-D experiments and available nonlinear simulations are used to define quantitative criteria that signify when instabilities ultimately disrupt and when they saturate or dissipate. The key distinction in this approach is the use of physical characteristics of the modes rather than more accessible operation parameters. Simple characteristics of the linear instability for example include the linear growth or damping rate and the mode spatial extent. Criteria can also involve identifying sources of free energy in the nonlinear evolution. Work supported in part by the US DOE under DE-FC02-04ER54698 & DE-FG02-95ER54309.

  17. The Unique Relations between Emotional Awareness and Facets of Affective Instability.

    Science.gov (United States)

    Thompson, Renee J; Dizén, Mügé; Berenbaum, Howard

    2009-10-01

    The relation between affective instability and two facets of emotional awareness, attention to emotion and clarity of emotion, was examined in two community samples (Ns = 303, 101) and one student sample (N=409). Affective instability was positively associated with attention to emotion and negatively associated with clarity of emotion. The two facets of affective instability, affect intensity and emotional variability, were differentially associated with the two components of emotional awareness. As hypothesized, affect intensity was uniquely associated with attention to emotion, whereas emotional variability was uniquely (inversely) associated with clarity of emotion even after taking into account shared variance with neuroticism and gender.

  18. Instability of (CTGn•(CAGn trinucleotide repeats and DNA synthesis

    Directory of Open Access Journals (Sweden)

    Liu Guoqi

    2012-02-01

    Full Text Available Abstract Expansion of (CTGn•(CAGn trinucleotide repeat (TNR microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTGn and (CAGn repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTGn•(CAGn instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTGn•(CAGn TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTGn•(CAGn instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTGn•(CAGn TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.

  19. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    coupled double-well Duffing oscillators (DDOs) and showed that synchronization was characterized by boundary crisis of the chaotic attractors. In our previous work [23,25], only numerical results were presented. In this paper, we extend our results to parametrically excited systems and in particular obtain sufficient crite-.

  20. Measurement selection for parametric IC fault diagnosis

    Science.gov (United States)

    Wu, A.; Meador, J.

    1991-01-01

    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.

  1. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  2. Parametric binaural synthesis: Background, applications and standards

    NARCIS (Netherlands)

    Breebaart, D.J.; Nater, F.; Kohlrausch, A.G.

    2010-01-01

    The amount of information present in HRTFs and the required processing capabilities for real-time and inter-active binaural rendering have long been a challenge for many applications for binaural rendering. More recently, parametric methods to capture the perceptually-relevant information from HRTFs

  3. Interdisciplinary parametric design : The XXL experience

    NARCIS (Netherlands)

    Turrin, M.; Sariyildiz, I.S.; Paul, J.C.

    2015-01-01

    Focusing on large span structures for sport buildings, the paper tackles the role of parametric modelling and performance simulations, to enhance the integration between architectural and engineering design. The general approach contrasts post-engineering processes. In post-engineering, technical

  4. A Decomposition Algorithm for Parametric Design

    NARCIS (Netherlands)

    Jauregui Becker, Juan Manuel; Schotborgh, W.O.; van Houten, Frederikus J.A.M.; Culley, T.C.; Hicks, B.J.; McAloone, T.C.; Howard, T.J.; Dong, A.

    2011-01-01

    This paper presents a recursive division algorithm to decompose an under constraint parametric design problem. The algorithm defines the separation of the problem at the hand of two complexity measures that are calculated for each parameter in the problem, namely, the effort E and the influence Inf.

  5. Fast Parametric Beamformer for Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-01-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3-D by their origin, direction...

  6. Parametric uncertainty modeling for robust control

    DEFF Research Database (Denmark)

    Rasmussen, K.H.; Jørgensen, Sten Bay

    1999-01-01

    The dynamic behaviour of a non-linear process can often be approximated with a time-varying linear model. In the presented methodology the dynamics is modeled non-conservatively as parametric uncertainty in linear lime invariant models. The obtained uncertainty description makes it possible...

  7. Parametric Architectural Design with Point-clouds

    DEFF Research Database (Denmark)

    Zwierzycki, Mateusz; Evers, Henrik Leander; Tamke, Martin

    2016-01-01

    This paper investigates the efforts and benefits of the implementation of point clouds into architectural design processes and tools. Based on a study on the principal work processes of designers with point clouds the prototypical plugin/library - Volvox - was developed for the parametric modelling...

  8. Refinement Checking on Parametric Modal Transition Systems

    DEFF Research Database (Denmark)

    Benes, Nikola; Kretínsky, Jan; Larsen, Kim Guldstrand

    2015-01-01

    in the refinement process like exclusive, conditional and persistent choices. We introduce a new model called parametric modal transition systems (PMTS) together with a general modal refinement notion that overcomes many of the limitations. We investigate the computational complexity of modal and thorough...

  9. Parametric Primitives for Hand Gesture Recognition

    DEFF Research Database (Denmark)

    Baby, Sanmohan; Krüger, Volker

    2009-01-01

    Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper  an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding...

  10. Recursive Delay Calculation Unit for Parametric Beamformer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2006-01-01

    This paper presents a recursive approach for parametric delay calculations for a beamformer. The suggested calculation procedure is capable of calculating the delays for any image line defined by an origin and arbitrary direction. It involves only add and shift operations making it suitable...

  11. Parametric HMMs for Movement Recognition and Synthesis

    DEFF Research Database (Denmark)

    Herzog, Dennis; Krüger, Volker

    2009-01-01

    , we develop an exemplar-based parametric hidden Markov model (PHMM) that allows to represent movements of a particular type. Since we use model interpolation to reduce the necessary amount of training data, we had to develop a method to setup local models in a synchronized way. In our experiments we...

  12. Exercise in Configurable Products using Creo parametric

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2017-01-01

    Family tables is a long know method with ProEngineer/Creo parametric to make families of products – like families of bolts and roller bearings. Configurable Products expand these possibilities in two major ways: First it makes configurable assemblies possible where one topologically different...

  13. Statistical prediction of parametric roll using FORM

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Choi, Ju-hyuck; Nielsen, Ulrik Dam

    2017-01-01

    Previous research has shown that the First Order Reliability Method (FORM) can be an efficient method for estimation of outcrossing rates and extreme value statistics for stationary stochastic processes. This is so also for bifurcation type of processes like parametric roll of ships. The present...

  14. Robustness analysis for real parametric uncertainty

    Science.gov (United States)

    Sideris, Athanasios

    1989-01-01

    Some key results in the literature in the area of robustness analysis for linear feedback systems with structured model uncertainty are reviewed. Some new results are given. Model uncertainty is described as a combination of real uncertain parameters and norm bounded unmodeled dynamics. Here the focus is on the case of parametric uncertainty. An elementary and unified derivation of the celebrated theorem of Kharitonov and the Edge Theorem is presented. Next, an algorithmic approach for robustness analysis in the cases of multilinear and polynomic parametric uncertainty (i.e., the closed loop characteristic polynomial depends multilinearly and polynomially respectively on the parameters) is given. The latter cases are most important from practical considerations. Some novel modifications in this algorithm which result in a procedure of polynomial time behavior in the number of uncertain parameters is outlined. Finally, it is shown how the more general problem of robustness analysis for combined parametric and dynamic (i.e., unmodeled dynamics) uncertainty can be reduced to the case of polynomic parametric uncertainty, and thus be solved by means of the algorithm.

  15. Parametric diffusion tensor imaging of the breast.

    Science.gov (United States)

    Eyal, Erez; Shapiro-Feinberg, Myra; Furman-Haran, Edna; Grobgeld, Dov; Golan, Talia; Itzchak, Yacov; Catane, Raphael; Papa, Moshe; Degani, Hadassa

    2012-05-01

    To investigate the ability of parametric diffusion tensor imaging (DTI), applied at 3 Tesla, to dissect breast tissue architecture and evaluate breast lesions. All protocols were approved and a signed informed consent was obtained from all subjects. The study included 21 healthy women, 26 women with 33 malignant lesions, and 14 women with 20 benign lesions. Images were recorded at 3 Tesla with a protocol optimized for breast DTI at a spatial resolution of 1.9 × 1.9 × (2-2.5) mm3. Image processing algorithms and software, applied at pixel resolution, yielded vector maps of prime diffusion direction and parametric maps of the 3 orthogonal diffusion coefficients and of the fractional anisotropy and maximal anisotropy. The DTI-derived vector maps and parametric maps revealed the architecture of the entire mammary fibroglandular tissue and allowed a reliable detection of malignant lesions. Cancer lesions exhibited significantly lower values of the orthogonal diffusion coefficients, λ1, λ2, λ3, and of the maximal anisotropy index λ1-λ3 as compared with normal breast tissue (P architecture. Parametric maps of λ1 and λ1-λ3 facilitate the detection and diagnosis of breast cancer.

  16. A parametric reconstruction of the deceleration parameter

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamon, Abdulla [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)

    2017-07-15

    The present work is based on a parametric reconstruction of the deceleration parameter q(z) in a model for the spatially flat FRW universe filled with dark energy and non-relativistic matter. In cosmology, the parametric reconstruction technique deals with an attempt to build up a model by choosing some specific evolution scenario for a cosmological parameter and then estimate the values of the parameters with the help of different observational datasets. In this paper, we have proposed a logarithmic parametrization of q(z) to probe the evolution history of the universe. Using the type Ia supernova, baryon acoustic oscillation and the cosmic microwave background datasets, the constraints on the arbitrary model parameters q{sub 0} and q{sub 1} are obtained (within 1σ and 2σ confidence limits) by χ{sup 2}-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter ω{sub tot}, the jerk parameter and have compared the reconstructed results of q(z) with other well-known parametrizations of q(z). We have also shown that two model selection criteria (namely, the Akaike information criterion and Bayesian information criterion) provide a clear indication that our reconstructed model is well consistent with other popular models. (orig.)

  17. New Logic Circuit with DC Parametric Excitation

    Science.gov (United States)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  18. Neurodegeneration-associated instability of ribosomal DNA.

    Science.gov (United States)

    Hallgren, Justin; Pietrzak, Maciej; Rempala, Grzegorz; Nelson, Peter T; Hetman, Michal

    2014-06-01

    Homologous recombination (HR)-mediated instability of the repetitively organized ribosomal DNA (rDNA) has been proposed as a mediator of cell senescence in yeast triggering the DNA damage response. High individual variability in the content of human rDNA suggests that this genomic region remained relatively unstable throughout evolution. Therefore, quantitative real-time polymerase chain reaction was used to determine the genomic content of rDNA in post mortem samples of parietal cortex from 14 young and 9 elderly individuals with no diagnosis of a chronic neurodegenerative/neurological disease. In addition, rDNA content in that brain region was compared between 10 age-matched control individuals and 10 patients with dementia with Lewy bodies (DLB) which involves neurodegeneration of the cerebral cortex. Probing rRNA-coding regions of rDNA revealed no effects of aging on the rDNA content. Elevated rDNA content was observed in DLB. Conversely, in the DLB pathology-free cerebellum, lower genomic content of rDNA was present in the DLB group. In the parietal cortex, such a DLB-associated instability of rDNA was not accompanied by any major changes of cytosine-phosphate-guanine methylation of the rDNA promoter. As increased cerebro-cortical rDNA content was previously reported in Alzheimer's disease, neurodegeneration appears to be associated with instability of rDNA. The hypothetical origins and consequences of this phenomenon are discussed including possibilities that the DNA damage-induced recombination destabilizes rDNA and that differential content of rDNA affects heterochromatin formation, gene expression and/or DNA damage response. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Nonparametric predictive inference for combining diagnostic tests with parametric copula

    Science.gov (United States)

    Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.

    2017-09-01

    Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.

  20. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  1. PARAMETRICAL WORDS IN THE SENTIMENT LEXICON

    Directory of Open Access Journals (Sweden)

    Elena Brunova

    2013-12-01

    Full Text Available In this paper, the main features of parametrical words within a sentiment lexicon are determined. The data for the research are client reviews in the Russian language taken from the bank client rating; the domain under study is bank service quality. The lexicon structure and the fragments from the lexicon database are presented. The sentiment lexicon includes two major classes (positive and negative words and three minor classes (increments, polarity modifiers, and polarity anti-modifiers. This lexicon is used as the main tool for the sentiment analysis carried out by two methods: the Naïve Bayes and the REGEX algorithms.Parametrical words are referred to as the words denoting the value of some domain-specific parameter, e.g. a battery life, or time of waiting. To distinguish the main features of parametrical words, the parameters relevant for the bank service quality domain are determined. The results of the research demonstrate that parametrical words can be ranged neither in the positive class, nor in the negative one. The words denoting the increase of a parameter should be ranged in the increment class, as they intensify positive or negative emotions. The words denoting the decrease of a parameter should be ranged in a new class which may be called the decrement class, as they reduce positive or negative emotions. The revised lexicon structure including the decrement class is proposed. The evident progress on the way to the lexicon universalization can be achieved by distinguishing two special classes for lexical increments and decrements. Another helpful idea is to extract bigrams or trigrams which could include parametrical words and the domain attributes they refer to.

  2. Political instability and illegal immigration.

    Science.gov (United States)

    Campos, J E; Lien, D

    1995-01-01

    "Economic theory suggests that transnational migration results from the push-pull effect of wage differentials between host and source countries. In this paper, we argue that political instability exacerbates the migration flow, with greater instability leading to relatively larger flows. We conclude then that an optimal solution to the illegal immigration problem requires proper coordination of immigration and foreign policies by the host country. A narrow preoccupation with tougher immigration laws is wasteful and may be marginally effective." Emphasis is on the United States as a host country. excerpt

  3. Stringy bounces and gradient instabilities

    CERN Document Server

    Giovannini, Massimo

    2017-01-01

    Bouncing solutions are obtained from a generally covariant action characterized by a potential which is a nonlocal functional of the dilaton field at two separated space-time points. Gradient instabilities are shown to arise in this context but they are argued to be nongeneric. After performing a gauge-invariant and frame-invariant derivation of the evolution equations of the fluctuations, a heuristic criterium for the avoidance of pathological instabilities is proposed and corroborated by a number of explicit examples that turn out to be compatible with a quasi-flat spectrum of curvature inhomogeneities for typical wavelengths larger than the Hubble radius.

  4. Helical instability in film blowing process: Analogy to buckling instability

    Science.gov (United States)

    Lee, Joo Sung; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The film blowing process is one of the most important polymer processing operations, widely used for producing bi-axially oriented film products in a single-step process. Among the instabilities observed in this film blowing process, i.e., draw resonance and helical motion occurring on the inflated film bubble, the helical instability is a unique phenomenon portraying the snake-like undulation motion of the bubble, having the period on the order of few seconds. This helical instability in the film blowing process is commonly found at the process conditions of a high blow-up ratio with too low a freezeline position and/or too high extrusion temperature. In this study, employing an analogy to the buckling instability for falling viscous threads, the compressive force caused by the pressure difference between inside and outside of the film bubble is introduced into the simulation model along with the scaling law derived from the force balance between viscous force and centripetal force of the film bubble. The simulation using this model reveals a close agreement with the experimental results of the film blowing process of polyethylene polymers such as low density polyethylene and linear low density polyethylene.

  5. Minimization of Basis Risk in Parametric Earthquake Cat Bonds

    Science.gov (United States)

    Franco, G.

    2009-12-01

    A catastrophe -cat- bond is an instrument used by insurance and reinsurance companies, by governments or by groups of nations to cede catastrophic risk to the financial markets, which are capable of supplying cover for highly destructive events, surpassing the typical capacity of traditional reinsurance contracts. Parametric cat bonds, a specific type of cat bonds, use trigger mechanisms or indices that depend on physical event parameters published by respected third parties in order to determine whether a part or the entire bond principal is to be paid for a certain event. First generation cat bonds, or cat-in-a-box bonds, display a trigger mechanism that consists of a set of geographic zones in which certain conditions need to be met by an earthquake’s magnitude and depth in order to trigger payment of the bond principal. Second generation cat bonds use an index formulation that typically consists of a sum of products of a set of weights by a polynomial function of the ground motion variables reported by a geographically distributed seismic network. These instruments are especially appealing to developing countries with incipient insurance industries wishing to cede catastrophic losses to the financial markets because the payment trigger mechanism is transparent and does not involve the parties ceding or accepting the risk, significantly reducing moral hazard. In order to be successful in the market, however, parametric cat bonds have typically been required to specify relatively simple trigger conditions. The consequence of such simplifications is the increase of basis risk. This risk represents the possibility that the trigger mechanism fails to accurately capture the actual losses of a catastrophic event, namely that it does not trigger for a highly destructive event or vice versa, that a payment of the bond principal is caused by an event that produced insignificant losses. The first case disfavors the sponsor who was seeking cover for its losses while the

  6. Non-Parametric Identification and Estimation of Truncated Regression Models

    OpenAIRE

    Songnian Chen

    2010-01-01

    In this paper, we consider non-parametric identification and estimation of truncated regression models in both cross-sectional and panel data settings. For the cross-sectional case, Lewbel and Linton (2002) considered non-parametric identification and estimation through continuous variation under a log-concavity condition on the error distribution. We obtain non-parametric identification under weaker conditions. In particular, we obtain non-parametric identification through discrete variation...

  7. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  8. Meta-analysis of candidate gene effects using bayesian parametric and non-parametric approaches.

    Science.gov (United States)

    Wu, Xiao-Lin; Gianola, Daniel; Rosa, Guilherme J M; Weigel, Kent A

    2014-01-01

    Candidate gene (CG) approaches provide a strategy for identification and characterization of major genes underlying complex phenotypes such as production traits and susceptibility to diseases, but the conclusions tend to be inconsistent across individual studies. Meta-analysis approaches can deal with these situations, e.g., by pooling effect-size estimates or combining P values from multiple studies. In this paper, we evaluated the performance of two types of statistical models, parametric and non-parametric, for meta-analysis of CG effects using simulated data. Both models estimated a "central" effect size while taking into account heterogeneity over individual studies. The empirical distribution of study-specific CG effects was multi-modal. The parametric model assumed a normal distribution for the study-specific CG effects whereas the non-parametric model relaxed this assumption by posing a more general distribution with a Dirichlet process prior (DPP). Results indicated that the meta-analysis approaches could reduce false positive or false negative rates by pooling strengths from multiple studies, as compared to individual studies. In addition, the non-parametric, DPP model captured the variation of the "data" better than its parametric counterpart.

  9. Predictors for Surgery in Shoulder Instability: A Retrospective Cohort Study Using the FEDS System.

    Science.gov (United States)

    Lebus, George F; Raynor, Martin B; Nwosu, Samuel K; Wagstrom, Emily; Jani, Sunil S; Carey, James L; Hettrich, Carolyn M; Cox, Charles L; Kuhn, John E

    2015-10-01

    Shoulder instability is a common cause of pain and dysfunction in young, active patients. While studies have analyzed risk factors for recurrent instability and failure after instability surgery, few have examined which variables are associated with initial surgery in this patient population. To identify variables that may be associated with surgical intervention in patients with shoulder instability in the context of the FEDS (frequency, etiology, direction, severity) classification, a system that may be useful in the surgical treatment of shoulder instability patients. Cohort study (prognosis); Level of evidence, 2. A database of patients treated for shoulder instability from 3 separate institutions from 2005 to 2010 was generated using International Classification of Diseases-9th Revision data. Data were collected via retrospective review. Injury data were categorized according to the FEDS system. Data were analyzed for significance, with the primary outcome of surgical intervention. Summary statistics were used to assess which variables were associated with eventual surgery. To test the unadjusted bivariate associations between shoulder surgery and each data point, Pearson chi-square tests were used for categorical variables and Wilcoxon tests were used for continuous variables. Over the study time period, 377 patients were treated for shoulder instability. Patients who had surgery were more likely younger, had recurrent instability, and had their initial injury while playing a sport. Most patients had anterior instability; however, there was a greater proportion of posterior instability patients in the operative group. Severity of dislocation, measured by whether the patient required help to relocate the shoulder, was not significantly associated with eventual surgery. While imaging was not available for all patients, surgical patients were more likely to have magnetic resonance imaging findings of anterior labral injury and less likely to have a supraspinatus

  10. Open standard CMO for parametric modelling based on semantic web

    NARCIS (Netherlands)

    Bonsma, P.; Bonsma, I.; Zayakova, T.; Van Delft, A.; Sebastian, R.; Böhms, M.

    2015-01-01

    The Open Standard Concept Modelling Ontology (CMO) with Extensions makes it possible to store parametric modelling semantics and parametric geometry in a Semantic Web environment. The parametric and geometrical part of CMO with Extensions is developed within the EU project Proficient. The nature of

  11. Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications

    NARCIS (Netherlands)

    Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.

    2011-01-01

    This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to

  12. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  13. The stochastic mode of the Faraday instability of shallow fluid layers

    Science.gov (United States)

    Stastna, Marek; Poulin, Francis J.

    2014-05-01

    The instability of a vertically oscillated layer of fluid is a classical problem whose history dates back to Faraday in the 19th century. We consider the stability of a shallow layer for which the oscillation, as expressed through the effective gravitational acceleration, is a random function of time. Using both theoretical linear stability analysis and high-resolution numerical simulations, including both individual realizations and ensemble calculations, of the nonlinear system of equations, we find that two different stochastic modes of instability exist. Both modes find their expression in finite amplitude oscillations of the free surface that exhibit sharp crests and broad troughs, or in other words, that resemble the classical Stokes wave. We demonstrate that a necessary condition for the first type of instability is snapshot, or instantaneous, instability. The subdominant instability resembles classical parametric resonance that can exist in a harmonically oscillated layer of fluid, and occurs even when the flow is always snapshot stable (or the gravitational acceleration is non-negative).

  14. Laboratory Studies of Nonlinear Interactions Relevant to Alfvén Wave Decay Instabilities

    Science.gov (United States)

    Dorfman, Seth

    2014-10-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in both laboratory and space plasmas. Many theoretical predictions show that these waves may be unstable to various decay instabilities (e.g.). Despite the possible importance of these processes in problems such as the heating of the solar corona and the transfer of energy to small spacial scales in the solar wind, observational evidence is limited. The present work at UCLA's Large Plasma Device (LAPD) represents the first fundamental laboratory study of the non-linear Alfvén wave interactions responsible for this class of instabilities; in particular, we present 1) laboratory observation of the Alfvén-acoustic mode coupling at the heart of the Parametric Decay Instability and 2) laboratory observations consistent with a decay instability in which a Kinetic Alfvén Wave (KAW) decays into two co-propagating KAWs. The first study is conducted by launching counterpropagating Alfvén waves from antennas placed at either end of the LAPD. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Results are consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. In the second experiment, a single high-frequency ω /ωci ~ 0 . 7 Alfvén wave is launched, resulting in two daughter modes with frequencies and wave numbers that suggest co-propagating KAWs produced by decay of the pump wave. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump amplitude. Efforts are underway to fully characterize the second set of experiments and compare with decay instabilities predicted by theory and simulations. Supported by DOE, NSF, and DOE FES and NASA Eddy Postdoctoral Fellowships.

  15. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... Abstract. We numerically observe the effect of homogeneous magnetic field on the modulation- ally stable case of polar phase in F = 2 spinor Bose–Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that ...

  16. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in = 2 spinor Bose–Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic ...

  17. The Chemistry of Beer Instability

    Science.gov (United States)

    Stewart, Graham G.

    2004-01-01

    Brewing of beer, one of the oldest biotechnology industries was one of the earliest processes to be undertaken on commercial basis. Biological instability involves contamination of bacteria, yeast, or mycelia fungi and there is always a risk in brewing that beer can become contaminated by micro-organisms.

  18. Edge instabilities of topological superconductors

    Science.gov (United States)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  19. Lending sociodynamics and economic instability

    Science.gov (United States)

    Hawkins, Raymond J.

    2011-11-01

    We show how the dynamics of economic instability and financial crises articulated by Keynes in the General Theory and developed by Minsky as the Financial Instability Hypothesis can be formalized using Weidlich’s sociodynamics of opinion formation. The model addresses both the lending sentiment of a lender in isolation as well as the impact on that lending sentiment of the behavior of other lenders. The risk associated with lending is incorporated through a stochastic treatment of loan dynamics that treats prepayment and default as competing risks. With this model we are able to generate endogenously the rapid changes in lending opinion that attend slow changes in lending profitability and find these dynamics to be consistent with the rise and collapse of the non-Agency mortgage-backed securities market in 2007/2008. As the parameters of this model correspond to well-known phenomena in cognitive and social psychology, we can both explain why economic instability has proved robust to advances in risk measurement and suggest how policy for reducing economic instability might be formulated in an experimentally sound manner.

  20. Arthroscopic Management of Scapholunate Instability

    Science.gov (United States)

    Geissler, William B.

    2013-01-01

    Wrist arthroscopy plays a valuable role in the management of scapholunate instability. A spectrum of injuries can occur to the scapholunate interosseous ligament, which may be difficult to detect with imaging studies. Wrist arthroscopy enables detection and management of injury to the scapholunate ligament under bright light and magnified conditions, in both acute and chronic situations. PMID:24436805

  1. Modeling of second order space charge driven coherent sum and difference instabilities

    Directory of Open Access Journals (Sweden)

    Yao-Shuo Yuan

    2017-10-01

    Full Text Available Second order coherent oscillation modes in intense particle beams play an important role for beam stability in linear or circular accelerators. In addition to the well-known second order even envelope modes and their instability, coupled even envelope modes and odd (skew modes have recently been shown in [Phys. Plasmas 23, 090705 (2016PHPAEN1070-664X10.1063/1.4963851] to lead to parametric instabilities in periodic focusing lattices with sufficiently different tunes. While this work was partly using the usual envelope equations, partly also particle-in-cell (PIC simulation, we revisit these modes here and show that the complete set of second order even and odd mode phenomena can be obtained in a unifying approach by using a single set of linearized rms moment equations based on “Chernin’s equations.” This has the advantage that accurate information on growth rates can be obtained and gathered in a “tune diagram.” In periodic focusing we retrieve the parametric sum instabilities of coupled even and of odd modes. The stop bands obtained from these equations are compared with results from PIC simulations for waterbag beams and found to show very good agreement. The “tilting instability” obtained in constant focusing confirms the equivalence of this method with the linearized Vlasov-Poisson system evaluated in second order.

  2. Laboratory Studies of Nonlinear Alfvén Interactions and Decay Instabilities

    Science.gov (United States)

    Dorfman, S.; Carter, T.; Vincena, S.; Pribyl, P.; Rossi, G.; Sydora, R.; Lin, Y.

    2015-11-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. The non-linear behavior of these modes is thought to play a key role in important problems such as the heating of the solar corona, solar wind turbulence, and Alfvén eigenmodes in tokamaks. In particular, theoretical predictions show that these Alfvén waves may be unstable to various decay instabilities, even at low amplitudes (δB / B acoustic mode coupling at the heart of the Parametric Decay Instability. More recently, efforts have focused on the non-linear decay of a KAW into daughter modes with frequencies and wave numbers that suggest co-propagating KAWs. The observed process is parametric, with the frequency of the daughter modes varying as a function of pump amplitude. Efforts are underway to fully characterize this set of experiments and compare with decay instabilities predicted by theory and simulations. Supported by DOE, NSF, and DOE FES and NASA Eddy Postdoctoral Fellowships.

  3. Surfactants and the Rayleigh-Taylor instability of Couette type flows

    Science.gov (United States)

    Frenkel, A. L.; Halpern, D.; Schweiger, A. S.

    2011-11-01

    We study the Rayleigh-Taylor instability of slow Couette- type flows in the presence of insoluble surfactants. It is known that with zero gravity, the surfactant makes the flow unstable to longwave disturbances in certain regions of the parameter space; while in other parametric regions, it reinforces the flow stability (Frenkel and Halpern 2002). Here, we show that in the latter parametric sectors, and when the (gravity) Bond number Bo is below a certain threshold value, the Rayleigh-Taylor instability is completely stabilized for a finite interval of Ma, the (surfactant) Marangoni number: MaL Ma1 Ma2, and also for MaL Ma1, the instability is ``midwave'': the interval of unstable wavenumbers is bounded away from both the zero and infinity. By numerical and asymptotic means, we determine typical dispersion curves and also characteristic dependencies such as the critical Marangoni numbers MaL, Ma1, and Ma2 as functions of the Bond number. We note that (for an interval of the Bond number) there are two distinct criticalities with nonzero (and distinct) critical wavenumbers.

  4. KELVIN-HELMHOLTZ INSTABILITY IN PARTIALLY IONIZED COMPRESSIBLE PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Soler, R.; Goossens, M. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Diaz, A. J. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Ballester, J. L., E-mail: roberto.soler@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2012-04-20

    The Kelvin-Helmholtz instability (KHI) has been observed in the solar atmosphere. Ion-neutral collisions may play a relevant role for the growth rate and evolution of the KHI in solar partially ionized plasmas such as in, e.g., solar prominences. Here, we investigate the linear phase of the KHI at an interface between two partially ionized magnetized plasmas in the presence of a shear flow. The effects of ion-neutral collisions and compressibility are included in the analysis. We obtain the dispersion relation of the linear modes and perform parametric studies of the unstable solutions. We find that, in the incompressible case, the KHI is present for any velocity shear regardless of the value of the collision frequency. In the compressible case, the domain of instability depends strongly on the plasma parameters, especially the collision frequency and the density contrast. For high collision frequencies and low density contrasts the KHI is present for super-Alfvenic velocity shear only. For high density contrasts the threshold velocity shear can be reduced to sub-Alfvenic values. For the particular case of turbulent plumes in prominences, we conclude that sub-Alfvenic flow velocities can trigger the KHI thanks to the ion-neutral coupling.

  5. Singlet and triplet instability theorems

    Science.gov (United States)

    Yamada, Tomonori; Hirata, So

    2015-09-01

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree-Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree-Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree-Fock-theory-based explanations of Hund's rule, a singlet instability in Jahn-Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions.

  6. Singlet and triplet instability theorems

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Tomonori; Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2015-09-21

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree–Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree–Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree–Fock-theory-based explanations of Hund’s rule, a singlet instability in Jahn–Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions.

  7. Comparison of Polytomous Parametric and Nonparametric Item Response Theory Models

    Directory of Open Access Journals (Sweden)

    Özge BIKMAZ BİLGEN

    2017-12-01

    Full Text Available This research aimed to identify the effects of independent variables as sample size, sample distribution, the number of items in the test, and the number of response categories of items in the test on the estimations of Graded Response Model (GRM under Parametric Item Response Theory (PIRT and by Monotone Homogeneity Model (MHM under Non-Parametric Item Response Theory (NIRT for polytomously scored items. To achieve this aim, the research was performed as a fundamental study in which 192 simulation conditions were designed by the combination of sample size, sample distribution, the number of items, and the number of categories of items. Estimates by GRM and MHM were examined under different levels of sample size (N= 100, 250, 500, 1000, sample distribution (normal, skewed, the number of items (10, 20, 40, 80, and the number of categories of items (3, 5, 7 conditions, by respectively calculating model-data fit, reliability values, standart errors of parameters. As a result of the research, it was found that since the values used to evaluate model-data fit were influenced by the increase of variable while calculating model-data fit and since they can not be interpreted alone, it is difficult to compare and generalize the results. The practical calculation of model data fit, which can be interpreted without the need for another value, in MHM provides superiority over GRM. Another research result is that the reliability values give similar results for both models. The standard errors of the MHM parameter estimates is lower than the GRM estimates under small sample and few items conditions and the standard errors of the MHM parameter estimates are close to each other in all conditions.

  8. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    In line of this present situation our investigation revealed that the recombination is more important than dust-neutral collisions in laboratory plasma and fusion plasma, while the dust-neutral collision frequency is dominant in the interstellar plasmas. The effects of ion and dust densities and ion streaming on the recombination ...

  9. Parametrizing modified gravity for cosmological surveys

    Science.gov (United States)

    Gleyzes, Jérôme

    2017-09-01

    One of the challenges in testing gravity with cosmology is the vast freedom opened when extending General Relativity. For linear perturbations, one solution consists in using the effective field theory of dark energy. Even then, the theory space is described in terms of a handful of free functions of time. This needs to be reduced to a finite number of parameters to be practical for cosmological surveys. We explore in this article how well simple parametrizations, with a small number of parameters, can fit observables computed from complex theories. Imposing the stability of linear perturbations appreciably reduces the theory space we explore. We find that observables are not extremely sensitive to short time-scale variations and that simple, smooth parametrizations are usually sufficient to describe this theory space. Using the Bayesian information criterion, we find that using two parameters for each function (an amplitude and a power-law index) is preferred over complex models for 86% of our theory space.

  10. Parametric amplification by coupled flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Rehák, M.; Neilinger, P.; Grajcar, M. [Department of Experimental Physics, Comenius University, SK-84248 Bratislava (Slovakia); Institute of Physics, Slovak Academy of Science, 845 11 Bratislava (Slovakia); Oelsner, G.; Hübner, U.; Meyer, H.-G. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Il' ichev, E. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Novosibirsk State Technical University, 20 K. Marx Ave., 630092 Novosibirsk (Russian Federation)

    2014-04-21

    We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10{sup −3}) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

  11. Universal Stabilization of a Parametrically Coupled Qubit

    Science.gov (United States)

    Lu, Yao; Chakram, S.; Leung, N.; Earnest, N.; Naik, R. K.; Huang, Ziwen; Groszkowski, Peter; Kapit, Eliot; Koch, Jens; Schuster, David I.

    2017-10-01

    We autonomously stabilize arbitrary states of a qubit through parametric modulation of the coupling between a fixed frequency qubit and resonator. The coupling modulation is achieved with a tunable coupling design, in which the qubit and the resonator are connected in parallel to a superconducting quantum interference device. This allows for quasistatic tuning of the qubit-cavity coupling strength from 12 MHz to more than 300 MHz. Additionally, the coupling can be dynamically modulated, allowing for single-photon exchange in 6 ns. Qubit coherence times exceeding 20 μ s are maintained over the majority of the range of tuning, limited primarily by the Purcell effect. The parametric stabilization technique realized using the tunable coupler involves engineering the qubit bath through a combination of photon nonconserving sideband interactions realized by flux modulation, and direct qubit Rabi driving. We demonstrate that the qubit can be stabilized to arbitrary states on the Bloch sphere with a worst-case fidelity exceeding 80%.

  12. QUALITY PARAMETRES OF EMMER WHEAT LANDRACES

    Directory of Open Access Journals (Sweden)

    Petr KONVALINA

    2009-03-01

    Full Text Available Emmer wheat, Triticum dicoccum SCHUEBL, is an old variety of cereals which has been traditionally grown in aride areas. Nowdays, it is mainly grown in Italy, Spain, Turkey, Austria and in the Czech republic. This article deals with a study of quality parametres and selected economic parametres of 6 varieties coming from the genetic resources of emmer wheat. High crude protein content in grain was proved during the trials. Nevertheless, such a characteristic is not suitable for the classical bakery processing (production of leavened products. Low figure of the harvest index is supposed to be the most problematic economic character. However, emmer wheat is a suitable variety for organic farming system. Growing of emmer wheat contributes to an extension of the agrobiodiversity in the countryside and to the suistainable development of a region.

  13. Using Parametrics to Facilitate Collaborative Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Benbih, Karima; Obeling, Esben

    2013-01-01

    Collaborative urban design faces three inherent dilemmas of limitations to time and resources, of barriers to language and communication between professionals and stakeholders, and of the reciprocal nature of the relation between influence and understanding. Parametric design tools may address all...... in the context of the urban South which is characterized by high urban growth rates, weak planning systems and modest means. The current state of planning and urban development in Morocco is introduced as a context for discussing collaborative urban design and parametric urban design, and some tentative...... of these dilemmas, as they provide a fast way to test different design scenarios and make it possible keep designs open while at the same time allowing for a level of detailing which is high enough to facilitate an understanding of the generic qualities of proposed designs. This is particularly relevant...

  14. Parametric structural modeling of insect wings.

    Science.gov (United States)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-09-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  15. Treatment of glenohumeral instability in rugby players

    OpenAIRE

    Funk, Lennard

    2016-01-01

    Rugby is a high-impact collision sport, with impact forces. Shoulder injuries are common and result in the longest time off sport for any joint injury in rugby. The most common injuries are to the glenohumeral joint with varying degrees of instability. The degree of instability can guide management. The three main types of instability presentations are: (1) frank dislocation, (2) subluxations and (3) subclinical instability with pain and clicking. Understanding the exact mechanism of injury c...

  16. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    Science.gov (United States)

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-01-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205

  17. Instability and segregation in bounded particulate shear flows

    Science.gov (United States)

    Conway, Stephen L.

    Strategies for processing particulate materials, ranging from nanoparticles to pharmaceutical tablets, remain largely empirical and unreliable. Non-uniformity and segregation threaten product quality and consistency. We tackle these problems using fundamental, mesoscale approaches widespread in analysis of fluids. In paradigmatic gravity and Couette geometries, we examine the high-shear flow regime representative of many mixing and transport operations and characterize their unstable nature and consequent component segregation. Large-scale particle-dynamics simulations and experiments in two and three dimensions are quantified chiefly by Fourier methods, particle image velocimetry and image analysis, and provide tests of the continuum equations of granular kinetic theory. Uniform flows of identical particles spontaneously evolve into coherent clusters due to dissipative collisions and the presence of solid boundaries. Through parametric and transient analysis of numerical results, we find underlying instabilities cause order-of-magnitude variations in macroscopic properties and initiate vorticity. Similar instabilities are expressed experimentally. Measurements also indicate that subsurface circulation driven by velocity gradients near frictional walls is central to the generation of free-surface waves, suggesting a granular analog of fluid boundary layers. Instabilities also trigger segregation in particle mixtures. The magnitude and direction of species flux depends on local gradients describing cluster intensity, with implications for particle size distribution measurements. New segregation modes are quantified experimentally. Novel mixing-segregation transitions occur when we use gas fluidization to overcome particle jamming and show for the first time that granular materials develop vortices consistent with the primary Taylor instability---arguably the most instructive of all shear instabilities in fluids. However, unlike those in fluids, the granular vortices

  18. A parametric representation of ruled surfaces

    OpenAIRE

    Prosalidou, E.; Hanna, S.

    2007-01-01

    This paper proposes a simple parametric system to generate an almost complete set of ruled surfaces that may be used to describe building geometry. The major classes of regular, named ruled surfaces can be generated from a limited set of curves. Each of these is shown to be reducible to a transformation of a single standard curve, a helix, and therefore represented by a limited set of six parameters. Six extra parameters can position each surface on a global coordinate system. The representat...

  19. Parametric X-rays at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji [Fermilab

    2016-06-01

    We discuss the generation of parametric X-rays (PXR) in the photoinjector at the new FAST facility at Fermilab. Detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance with a diamond crystal are presented. We also report on expected results with PXR generated while the beam is channeling. The low emittance electron beam makes this facility a promising source for creating brilliant X-rays.

  20. Hydrogeologic Characteristic of Arakaevskaya Parametric Well

    Directory of Open Access Journals (Sweden)

    G. L. Belyaeva

    2015-06-01

    Full Text Available In the paper, the boundaries and depth of water-bearing units in the Arakaevskaya parametric well are established. The methods of aquifers hydrochemical composition study and its results are described. Due to occurrence of overthrust structures at the observed area, the allochthon and autochthon water-bearing units are defined. Analysis of hydrodynamic regime showed that the interaction between Urals aquifers and those at the area of study is not observed.

  1. PARAMETRICAL WORDS IN THE SENTIMENT LEXICON

    OpenAIRE

    Elena Brunova

    2013-01-01

    In this paper, the main features of parametrical words within a sentiment lexicon are determined. The data for the research are client reviews in the Russian language taken from the bank client rating; the domain under study is bank service quality. The lexicon structure and the fragments from the lexicon database are presented. The sentiment lexicon includes two major classes (positive and negative words) and three minor classes (increments, polarity modifiers, and polarity anti-modifiers). ...

  2. Multidimensional Scaling Visualization Using Parametric Similarity Indices

    OpenAIRE

    Tenreiro Machado, J. A.; António M Lopes; Galhano, Alexandra M.

    2015-01-01

    In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, an...

  3. Parametric motivation bases of floranimic nomination

    Directory of Open Access Journals (Sweden)

    Olga P. Ryabko

    2016-09-01

    Full Text Available The period of further development in the cognitive theory of nomination has been extensive in recent years. Our research has been concentrated on the formation of conceptual foundations in cognitive theory of flora nomination. The macrofield of flora namings embraces three microfields: parametric, pragmatic and locative-temporal ones. They determine motivation processes in cognitive theory of flora nomination, i.e., the presentation of systematic qualities in flora namings in the English language. The description and characterization of such qualities presupposes the existence of their taxonomic organization and methodology criteria, both general and practical ones. Flora namings on the phenomenological level are considered to be the products of naöve-cognitive consciousness of language speakers. They are determined, from the one hand, by the external perceptive adaptations (parametric nomination and, from the other hand, by practical needs (pure pragmatic nomination and local-temporal nomination. In this article we have concentrated on the complex parametric motivated basis of flora nomination. It is presented by a number of qualities, firstly, by dominative qualities («form», «appearance and manner of growth», «color», secondly, by peripheral qualities («odour», «taste», «size» and, finally, by minor qualities («sound», «weight», «genger». In the structure of complex parametric nomination the only one conerete qualitative element from the whole combination of qualities becomes the leading one. The cultural-archetypal dominant element determines. In each concrete situation, the choice of preferable prototypal motivated quality.

  4. Parametric Primitives for Hand Gesture Recognition

    OpenAIRE

    Sanmohan Krüger; Volker Krüger

    2009-01-01

    Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding an action when there is uncertainty. Ambiguities arising in similar actions can be resolved with objectn context. We classify actions according to the changes they make to the object space. Actions...

  5. Parametric amplification by coupled flux qubits

    OpenAIRE

    Rehak, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Huebner, U.; Il'ichev, E.; Meyer, H. -G.

    2014-01-01

    We report the parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a measured gain of about 20 dB. We argue, that this arrangement represents a unit cell which can be straightforwardly extended to a quasi on...

  6. PARAMETRIC PRINCIPLES OF TRANSPORT SERVICE QUALITY

    OpenAIRE

    Валько, А. М.; National Aviation University

    2014-01-01

    Conceptual approach to operation of transportation enterprises following the principles of quality management is analyzed. Components of service quality as a product of the enterprise activity are identified. The main approaches to the indicators of evaluating the transportation service quality are considered. The problems of formulating the indicators of service management in the transportation and technological sphere are defined. The main parametric principles of transport service quality...

  7. Collaborative design of parametric sustainable architecture

    OpenAIRE

    Hubers, H.

    2011-01-01

    Sustainable architecture is complex. Many aspects, differently important to many stakeholders, are to be optimized. BIM should be used for this. Building Information Modellingis a collaborative process where all stakeholders integrate and optimize their information in a digital 3D model. Sometimes it is called Green BIM. But what exactly is that? Is the International Standard Organization IFC standard useful for this? And is it compatible with new developments in parametric design? Advantages...

  8. Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models.

    Science.gov (United States)

    Shutts, Glenn; Pallarès, Alfons Callado

    2014-06-28

    The need to represent uncertainty resulting from model error in ensemble weather prediction systems has spawned a variety of ad hoc stochastic algorithms based on plausible assumptions about sub-grid-scale variability. Currently, few studies have been carried out to prove the veracity of such schemes and it seems likely that some implementations of stochastic parametrization are misrepresentations of the true source of model uncertainty. This paper describes an attempt to quantify the uncertainty in physical parametrization tendencies in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System with respect to horizontal resolution deficiency. High-resolution truth forecasts are compared with matching target forecasts at much lower resolution after coarse-graining to a common spatial and temporal resolution. In this way, model error is defined and its probability distribution function is examined as a function of tendency magnitude. It is found that the temperature tendency error associated with convection parametrization and explicit water phase changes behaves like a Poisson process for which the variance grows in proportion to the mean, which suggests that the assumptions underpinning the Craig and Cohen statistical model of convection might also apply to parametrized convection. By contrast, radiation temperature tendency errors have a very different relationship to their mean value. These findings suggest that the ECMWF stochastic perturbed parametrization tendency scheme could be improved since it assumes that the standard deviation of the tendency error is proportional to the mean. Using our finding that the variance error is proportional to the mean, a prototype stochastic parametrization scheme is devised for convective and large-scale condensation temperature tendencies and tested within the ECMWF Ensemble Prediction System. Significant impact on forecast skill is shown, implying its potential for further development.

  9. Exploring deep parametric embeddings for breast CADx

    Science.gov (United States)

    Jamieson, Andrew R.; Alam, Rabi; Giger, Maryellen L.

    2011-03-01

    Computer-aided diagnosis (CADx) involves training supervised classifiers using labeled ("truth-known") data. Often, training data consists of high-dimensional feature vectors extracted from medical images. Unfortunately, very large data sets may be required to train robust classifiers for high-dimensional inputs. To mitigate the risk of classifier over-fitting, CADx schemes may employ feature selection or dimension reduction (DR), for example, principal component analysis (PCA). Recently, a number of novel "structure-preserving" DR methods have been proposed1. Such methods are attractive for use in CADx schemes for two main reasons. First, by providing visualization of highdimensional data structure, and second, since DR can be unsupervised or semi-supervised, unlabeled ("truth-unknown") data may be incorporated2. However, the practical application of state-of-the-art DR techniques such as, t-SNE3, to breast CADx were inhibited by the inability to retain a parametric embedding function capable of mapping new input data to the reduced representation. Deep (more than one hidden layer) neural networks can be used to learn such parametric DR embeddings. We explored the feasibility of such methods for use in CADx by conducting a variety of experiments using simulated feature data, including models based on breast CADx features. Specifically, we investigated the unsupervised parametric t-SNE4 (pt-SNE), the supervised deep t-distributed MCML5 (dt-MCML), and hybrid semi-supervised modifications combining the two.

  10. Free response approach in a parametric system

    Science.gov (United States)

    Huang, Dishan; Zhang, Yueyue; Shao, Hexi

    2017-07-01

    In this study, a new approach to predict the free response in a parametric system is investigated. It is proposed in the special form of a trigonometric series with an exponentially decaying function of time, based on the concept of frequency splitting. By applying harmonic balance, the parametric vibration equation is transformed into an infinite set of homogeneous linear equations, from which the principal oscillation frequency can be computed, and all coefficients of harmonic components can be obtained. With initial conditions, arbitrary constants in a general solution can be determined. To analyze the computational accuracy and consistency, an approach error function is defined, which is used to assess the computational error in the proposed approach and in the standard numerical approach based on the Runge-Kutta algorithm. Furthermore, an example of a dynamic model of airplane wing flutter on a turbine engine is given to illustrate the applicability of the proposed approach. Numerical solutions show that the proposed approach exhibits high accuracy in mathematical expression, and it is valuable for theoretical research and engineering applications of parametric systems.

  11. parfm : Parametric Frailty Models in R

    Directory of Open Access Journals (Sweden)

    Marco Munda

    2012-11-01

    Full Text Available Frailty models are getting more and more popular to account for overdispersion and/or clustering in survival data. When the form of the baseline hazard is somehow known in advance, the parametric estimation approach can be used advantageously. Nonetheless, there is no unified widely available software that deals with the parametric frailty model. The new parfm package remedies that lack by providing a wide range of parametric frailty models in R. The gamma, inverse Gaussian, and positive stable frailty distributions can be specified, together with five different baseline hazards. Parameter estimation is done by maximising the marginal log-likelihood, with right-censored and possibly left-truncated data. In the multivariate setting, the inverse Gaussian may encounter numerical difficulties with a huge number of events in at least one cluster. The positive stable model shows analogous difficulties but an ad-hoc solution is implemented, whereas the gamma model is very resistant due to the simplicity of its Laplace transform.

  12. Parametric Architecture in the Urban Space

    Science.gov (United States)

    Januszkiewicz, Krystyna; Kowalski, Karol G.

    2017-10-01

    The paper deals with the parametric architecture which is trying to introduce a new spatial language in the context for urban tissue that correspond to the artistic consciousness and the attitude of information and digital technologies era. The first part of the paper defines the main features of parametric architecture (such as: folding, continuity and curvilinearity) which are are characteristic of the new style of named the “parametricism”. This architecture is a strong emphasis on geometry, materiality, feasibility and sustainability, what emerges is an explicit agenda promoting material ornamentation, spatial spectacle and formal theatricality. The second part presents result of case study, especially parametric public use buildings, within the tissue of city. The analyzed objects are: The Sage Gateshead (1998-2004) in Gateshead, Kunsthaus in Graz (2000-2003), the Weltstadthaus (2003-2005) in Cologne, The Golden Terraces in Warsaw (2000-2007), the Metropol Parasol in Seville (2005-2011) the King Cross Station (2005-2012) in London, the headquarters of the Pathé Foundation (2006-2014) in Paris. Each of the enumerated examples shows a diverse approach to designing in the urban space, which reflect the age of digital technologies and the information society. In conclusion emphasizes, that new concept of the spatialization of architecture is the equivalent of the democratization of the political system, the liberalization of the economy, among other examples.

  13. Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability

    Science.gov (United States)

    Wang, Lilin; You, Jiaxue; Wang, Zhijun; Wang, Jincheng; Lin, Xin

    2016-03-01

    Freezing colloidal suspensions widely exists in nature and industry. Interface instability has attracted much attention for the understandings of the pattern formation in freezing colloidal suspensions. However, the interface instability modes, the origin of the ice banding or ice lamellae, are still unclear. In-situ experimental observation of the onset of interface instability remains absent up to now. Here, by directly imaging the initial transient stage of planar interface instability in directional freezing colloidal suspensions, we proposed three interface instability modes, Mullins-Sekerka instability, global split instability and local split instability. The intrinsic mechanism of the instability modes comes from the competition of the solute boundary layer and the particle boundary layer, which only can be revealed from the initial transient stage of planar instability in directional freezing.

  14. Efficient parametric uncertainty analysis within the hybrid Finite Element/Statistical Energy Analysis method

    Science.gov (United States)

    Cicirello, Alice; Langley, Robin S.

    2014-03-01

    This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models.

  15. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  16. Quad-Bike Operational Instability

    Directory of Open Access Journals (Sweden)

    Ross H. Macmillan

    2017-05-01

    Full Text Available The stake-holders in the quad-bike (QB industry in Australia have failed to reach a satisfactory resolution of the present impasse that exists with respect to the causes and mitigation of the trauma suffered by riders due to QB instability. In an effort to provide purchasers with data enabling them to discriminate between safer and less safe machines, static longitudinal and lateral tests have been conducted by various interested parties; quasi-static lateral tests have also been conducted under some operational conditions. It is argued that while these static tests are valid, under many operating conditions QBs will not reach such unstable slopes due to poor traction. Further, these tests do not include the quasi-static and dynamic factors which also influence the processes associated with operational instability. For these reasons, the static tests do not provide an adequate basis for discrimination between safer and less safe machines.

  17. Instability of ties in compression

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since......-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis....

  18. Placing Marangoni instabilities under arrest

    CERN Document Server

    Bhamla, M Saad

    2016-01-01

    Soap bubbles occupy the rare position of delighting and fascinating both young children and scientific minds alike. Sir Isaac Newton, Joseph Plateau, Carlo Marangoni, and Pierre-Gilles de Gennes, not to mention countless others, have discovered remarkable results in optics, molecular forces and fluid dynamics from investigating this seemingly simple system. We present here a compilation of curiosity-driven experiments that systematically investigate the surface flows on a rising soap bubble. From childhood experience, we are familiar with the vibrant colors and mesmerizing display of chaotic flows on the surface of a soap bubble. These flows arise due to surface tension gradients, also known as Marangoni flows or instabilities. In Figure 1, we show the surprising effect of layering multiple instabilities on top of each other, highlighting that unexpected new phenomena are still waiting to be discovered, even in the simple soap bubble.

  19. Instability of colliding metastable strings

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research

    2013-04-15

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  20. Morphological instabilities of lamellar eutectics

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A.; Sarkissian, A. [Northeastern Univ., Boston, MA (United States). Physics Dept.

    1996-03-01

    The authors present the results of a numerical study based on the boundary integral technique of interfacial pattern formation in directional solidification of thin-film lamellar eutectics at low velocity. Microstructure selection maps that identify the stability domains of various steady-state and nonsteady-state growth morphologies in the spacing-composition ({lambda} {minus} C{sub 0}) plane are constructed for the transparent organic alloy CBr{sub 4}-C{sub 2}Cl{sub 6} and for a model eutectic alloy with two solid phases of identical physical properties. In CBr{sub 4}-C{sub 2}Cl{sub 6}, the basic set of instabilities that limit steady-state growth is richer than expected. It consists of three primary instabilities, two of which are oscillatory, which bound the domain of the commonly observed axisymmetric lamellar morphology, and two secondary oscillatory instabilities, which bound the domain of the nonaxisymmetric (tilted) lamellar morphology. Four stable oscillatory microstructures, at least three of which have been seen experimentally, are predicted to occur in unstable regimes. In the model alloy, the structure is qualitatively similar, except that a stable domain of tilted steady-state growth is not found, in agreement with previous random-walk simulations. Furthermore, the composition range of stability of the axisymmetric morphology decreases sharply with increasing spacing away from minimum undercooling but extends further off-eutectic than predicted by the competitive growth criterion. In addition, oscillations with a wavelength equal to two {lambda} lead to lamella termination at a small distance above the onset of instability. The implications of these two features for the eutectic to dendrite transition are examined with the conclusion that in the absence of heterogeneous nucleation, this transition should be histeritic at small velocity and temperature gradient.

  1. Atlantoaxial instability in Down's synarome

    OpenAIRE

    Kafadar, Ali; Hanci, Murat; Tuysuz, Beyhan; Sarioglu, Ali Cetin; Erginel, Ayten; Cenani, Asim

    2004-01-01

    9-31 % of children with Down syndrome have atlantoaxial instability. These children might have the risk of atlantoaxial dislocation and spinal cord compression if they play sport or take part actively in daily Iife. The purpose of our study was to assess the presumed risk. We examined and followed up one year Iong 35 children with Down syndrome through a series of Iateral cervical spine x-ray and neurological examination. Those children with an atlantoaxial distance => 5mm were considered uns...

  2. Atlantoaxial instability in Down's synarome

    OpenAIRE

    Kafadar, Ali; Hanci, Murat; Tuysuz, Beyhan; Sarioglu, Ali; Erginel, Ayten; Cenani, Asim

    2004-01-01

    9-31 % of children with Down syndrome have atlantoaxial instability. These children might have the risk of atlantoaxial dislocation and spinal cord compression if they play sport or take part actively in daily Iife. The purpose of our study was to assess the presumed risk. We examined and followed up one year Iong 35 children with Down syndrome through a series of Iateral cervical spine x-ray and neurological examination. Those children with an atlantoaxial distance => 5mm were considered ...

  3. Hydrodynamic instabilities in miscible fluids

    Science.gov (United States)

    Truzzolillo, Domenico; Cipelletti, Luca

    2018-01-01

    Hydrodynamic instabilities in miscible fluids are ubiquitous, from natural phenomena up to geological scales, to industrial and technological applications, where they represent the only way to control and promote mixing at low Reynolds numbers, well below the transition from laminar to turbulent flow. As for immiscible fluids, the onset of hydrodynamic instabilities in miscible fluids is directly related to the physics of their interfaces. The focus of this review is therefore on the general mechanisms driving the growth of disturbances at the boundary between miscible fluids, under a variety of forcing conditions. In the absence of a regularizing mechanism, these disturbances would grow indefinitely. For immiscible fluids, interfacial tension provides such a regularizing mechanism, because of the energy cost associated to the creation of new interface by a growing disturbance. For miscible fluids, however, the very existence of interfacial stresses that mimic an effective surface tension is debated. Other mechanisms, however, may also be relevant, such as viscous dissipation. We shall review the stabilizing mechanisms that control the most common hydrodynamic instabilities, highlighting those cases for which the lack of an effective interfacial tension poses deep conceptual problems in the mathematical formulation of a linear stability analysis. Finally, we provide a short overview on the ongoing research on the effective, out of equilibrium interfacial tension between miscible fluids.

  4. Experimental and theoretical analysis of auto-parametric stability of pendulum with viscous dampers

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Stanislav; Fischer, Cyril; Náprstek, Jiří

    2011-01-01

    Roč. 56, č. 4 (2011), s. 359-378 ISSN 0001-7043 R&D Projects: GA AV ČR(CZ) IAA200710805; GA ČR(CZ) IAA200710902; GA ČR(CZ) GA103/09/0094 Institutional research plan: CEZ:AV0Z20710524 Keywords : auto-parametric pendulum * variable damping * semi-trivial stability * limit cycles Subject RIV: JM - Building Engineering

  5. SURVIVAL ANALYSIS OF CANCER PATIENTS USING PARAMETRIC AND NON-PARAMETRIC APPROACHES

    Directory of Open Access Journals (Sweden)

    M. AKRAM, M. AMAN ULLAH AND R. TAJ

    2007-10-01

    Full Text Available Exploring the health related quality of life is usually the focus of the survival studies. Using the health data of cancer registry in Multan, Pakistan, an investigation about the survival pattern of cancer patients was explored, using the non-parametric and parametric modeling strategies. The Kaplan-Meier method and Weibull model based on Anderson-Darling test were applied to the real life time data. Findings suggested different sex-superiority of survival pattern among different groups of cancer patients. Interestingly, Kaplan-Meier and Weibul model provided a very close estimate of the survival function and other characteristics of interest.

  6. Work instability and financial loss in early inflammatory arthritis.

    Science.gov (United States)

    Looper, Karl J; Mustafa, Sally S; Zelkowitz, Phyllis; Purden, Margaret; Baron, Murray

    2012-12-01

    Inflammatory arthritis is associated with a high degree of work instability and financial burden. In this study, we examine the extent of work instability and financial loss as well as their association with disease characteristics during the first 18 months of inflammatory arthritis. One hundred and four patients in the early phase (more than 6 weeks, measured with the Medical Outcomes Study Short Form 36 (SF-36) physical functioning score. The Rheumatoid Arthritis Work Instability Scale (RA-WIS) was used to measure patient-perceived functioning in the workplace and the Financial Loss Questionnaire (FLQ) measured the impact on family finances. Participants' mean age was 56 years, 70.2% were female and 49.0% were working. Average yearly household income was measured by the RA-WIS and 35% reported a financial loss. On multivariate analysis, MPQ and SF-36 contributed to the dependent variable work instability, while age and SF-36 contributed to financial loss. This study identifies pain and physical dysfunction as potential modifiable risk factors for negative socioeconomic repercussions of illness in early inflammatory arthritis. © 2012 The Authors International Journal of Rheumatic Diseases © 2012 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  7. Uncertainty Instability Risk Analysis of High Concrete Arch Dam Abutments

    Directory of Open Access Journals (Sweden)

    Xin Cao

    2017-01-01

    Full Text Available The uncertainties associated with concrete arch dams rise with the increased height of dams. Given the uncertainties associated with influencing factors, the stability of high arch dam abutments as a fuzzy random event was studied. In addition, given the randomness and fuzziness of calculation parameters as well as the failure criterion, hazard point and hazard surface uncertainty instability risk ratio models were proposed for high arch dam abutments on the basis of credibility theory. The uncertainty instability failure criterion was derived through the analysis of the progressive instability failure process on the basis of Shannon’s entropy theory. The uncertainties associated with influencing factors were quantized by probability or possibility distribution assignments. Gaussian random theory was used to generate random realizations for influence factors with spatial variability. The uncertainty stability analysis method was proposed by combining the finite element analysis and the limit equilibrium method. The instability risk ratio was calculated using the Monte Carlo simulation method and fuzzy random postprocessing. Results corroborate that the modeling approach is sound and that the calculation method is feasible.

  8. PARAMETRIC EXCITATION IN A SELF-EXCITED THREE-DEGREES OF FREEDOM PROBLEM

    Directory of Open Access Journals (Sweden)

    SITI FATIMAH

    2012-05-01

    Full Text Available The efect of parametric excitation in self-excited has been investigated in two-degrees of freedom problems. The possibility of suppressing self-excited vibrationsby using parametric excitation and the dynamic behavior of those kind systems were discussed. In the this paper, we consider a system in three-degrees of freedom problem which by using a linear transformation the system becomes an Autoparametric. The system consists of a central mass and two external masses where those masses are conectedby springs with the same constant stiffness. The flow-generated self-excited force is actingon the external masses, it is represented by Rayleigh force. The variable stiffness isperiodically varying in time, represents a parametric excitation. It turns out that forcertain parameter ranges full vibration cancellation is possible. The analysis of linearcase of system shows that there are two conditions in order to obtain an interval ofthe parametric excitation. Using the averaging method the fully non-linear system is investigated producing as non-trivial solutions unstable periodic solutions. The behaviorof this unstable solution is studied in the full system.

  9. A new method for ship inner shell optimization based on parametric technique

    Directory of Open Access Journals (Sweden)

    Yan-Yun Yu

    2015-01-01

    Full Text Available A new method for ship Inner Shell optimization, which is called Parametric Inner Shell Optimization Method (PISOM, is presented in this paper in order to improve both hull performance and design efficiency of transport ship. The foundation of PISOM is the parametric Inner Shell Plate (ISP model, which is a fully-associative model driven by dimensions. A method to create parametric ISP model is proposed, including geometric primitives, geometric constraints, geometric constraint solving etc. The standard optimization procedure of ship ISP optimization based on parametric ISP model is put forward, and an efficient optimization approach for typical transport ship is developed based on this procedure. This approach takes the section area of ISP and the other dominant parameters as variables, while all the design requirements such as propeller immersion, fore bottom wave slap, bridge visibility, longitudinal strength etc, are made constraints. The optimization objective is maximum volume of cargo oil tanker/cargo hold, and the genetic algorithm is used to solve this optimization model. This method is applied to the optimization of a product oil tanker and a bulk carrier, and it is proved to be effective, highly efficient, and engineering practical.

  10. A parametric model of child body shape in seated postures.

    Science.gov (United States)

    Park, Byoung-Keon D; Ebert, Sheila; Reed, Matthew P

    2017-07-04

    The shape of the current physical and computational surrogates of children used for restraint system assessments is based largely on standard anthropometric dimensions. These scalar dimensions provide valuable information on the overall size of the individual but do not provide good guidance on shape or posture. This study introduced the development of a parametric model that statistically predicts individual child body shapes in seated postures with a few given parameters. Surface geometry data from a laser scanner of children ages 3 to 11 (n = 135) were standardized by a 2-level fitting method using intermediate templates. The standardized data were analyzed by principal component analysis (PCA) to efficiently describe the body shape variance. Parameters such as stature, body mass index, erect sitting height, and 2 posture variables related to torso recline and lumbar spine flexion were associated with the PCA model using regression. When the original scan data were compared with the predictions of the model using the given subject dimensions, the average root mean square error for the torso was 9.5 mm, and the 95th percentile error was 17.35 mm. For the first time, a statistical model of child body shapes in seated postures is available. This parametric model allows the generation of an infinite number of virtual children spanning a wide range of body sizes and postures. The results have broad applicability in product design and safety analysis. Future work is needed to improve the representation of hands and feet and to extend the age range of the model. The model presented in this article is publicly available online through HumanShape.org.

  11. Markovian Dynamics of Josephson Parametric Amplification

    Directory of Open Access Journals (Sweden)

    W. Kaiser

    2017-09-01

    Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  12. Markovian Dynamics of Josephson Parametric Amplification

    Science.gov (United States)

    Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian

    2017-09-01

    In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  13. Instability of supersonic cold streams feeding galaxies - I. Linear Kelvin-Helmholtz instability with body modes

    Science.gov (United States)

    Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad

    2016-12-01

    Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star formation rate and morphology. We present here the first step, where we analyse the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.

  14. Non-Parametric Estimation of Correlation Functions

    DEFF Research Database (Denmark)

    Brincker, Rune; Rytter, Anders; Krenk, Steen

    In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...... out, and methods to prevent bias are presented. The techniques are evaluated by comparing their speed and accuracy on the simple case of estimating auto-correlation functions for the response of a single degree-of-freedom system loaded with white noise....

  15. Lottery spending: a non-parametric analysis.

    Directory of Open Access Journals (Sweden)

    Skip Garibaldi

    Full Text Available We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales.

  16. Lottery spending: a non-parametric analysis.

    Science.gov (United States)

    Garibaldi, Skip; Frisoli, Kayla; Ke, Li; Lim, Melody

    2015-01-01

    We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales.

  17. Noiseless attenuation using an optical parametric amplifier

    Science.gov (United States)

    Brewster, R. A.; Nodurft, I. C.; Pittman, T. B.; Franson, J. D.

    2017-10-01

    The process of heralded noiseless amplification, and the inverse process of heralded noiseless attenuation, have potential applications in the context of quantum communications. Although several different physical implementations of heralded noiseless amplifiers have now been demonstrated, the research on heralded noiseless attenuators has been largely confined to a beam-splitter based approach. Here we show that an optical parametric amplifier (OPA), combined with appropriate heralding, can also serve as a heralded noiseless attenuator. The counterintuitive use of an optical amplifier as an attenuator is only possible due to the probabilistic nature of the device.

  18. The impact of political instability on economic growth (Case of Albania

    Directory of Open Access Journals (Sweden)

    Gerta Xhaferi (Gorjani

    2017-07-01

    Full Text Available The aim of this study is to define the impact of political instability on economic growth. Considering the multidimensionality of a factor like political instability, the study employs only four variables to measure it. The variables used to measure political instability are civil liberties, political rights, number of women in parliament and the government changes during years. Regarding the economic growth this study employs the variable of real GDP growth rate as the best factor indicating economic growth. The data are obtained from national and international sources like “INSTAT”, “Bank of Albania” and “The Global Economy”, and takes into consideration the period from 1990-2015. According to the literature it was expected to have a significant negative impact of political instability on economic growth. Through the results obtained from the econometric model the expectation holds. What is interesting is the insignificance of all explanatory variables beside the variable of civil liberty, which is found to be highly significant. The analysis reveals that an increase in civil liberties would have a positive impact on GDP growth rate. The study also concluded that the importance of civil liberties as a transmission channel of political instability can be justified with the weakness of the judicial system and the classification of Albania as a partly-free country.

  19. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  20. instability

    Directory of Open Access Journals (Sweden)

    Magdalena Czubaszek

    2014-06-01

    Full Text Available The basic method for analyzing the degree of DNA fragmentation caused by genotoxic factors is gel electrophoresis of single cells (single cell gel electrophoresis, also called the comet assay. The comet assay enables the analysis of the level of several different DNA modifications. The basic testing procedure has been only slightly modified. This method helps identify single-strand and double-strand DNA cracks, as well as any chemical and enzymatic modifications that can potentially turn into cracks in DNA or chromatids. The comet assay makes it possible to detect DNA damage at the level of single cells. It can be employed in analyses of any tissues which provide cellular suspensions. Analysed cells are submerged in agarose on a microscope slide. DNA is what is left after proteins have been broken down. The slide is then subjected to electrophoresis and stained with a fluorescent dye. A “comet-like” image is obtained. The “head” is the cell fixation site prior to lysis; the “tail” represents damaged DNA fragments. The extent of DNA damage is reflected in the length of the tail and the amount of DNA contained in it. The assay finds research applications in the following fields: genetic toxicology, monitoring of DNA repair following chemotherapy and radiotherapy, ecotoxicology, animal and human nourishment, biomonitoring of genotoxicity, epidemiology and assessment of material deposited in sperm and blood banks.

  1. Parametric amplification in MoS2drum resonator.

    Science.gov (United States)

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  2. Modes of storage ring coherent instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered. (LEW)

  3. Parametric and Non Parametric Methods for Efficiency Assessment of State Higher Vocational Schools in 2009-2011

    Directory of Open Access Journals (Sweden)

    Lesław Rządziński

    2016-03-01

    Full Text Available Objective: As a great number of higher schools in Poland are financed from public resources, there arises a question about the adequacy of those schools’ inputs to the obtained outputs. The aim of this paper is to examine the technical efficiency of 27 state higher vocational schools in Poland. Research Design & Methods: The research was conducted for the years 2009-2011. There was applied the Stochastic Frontier Approach (SFA as well as the Data Envelopment Analysis (DEA. The second one was calculated both for Constant Returns to Scale (CRS and for Variable Returns to Scale (VRS. Findings: A majority of studied schools, found as inefficient in the analysis conducted with the DEA method with CRS models, are found to be efficient in VRS models, demonstrate a relatively lower efficiency when calculated with the SFA method. Implications & Recommendations: For efficiency evaluation of higher education institutions there should be applied models of VRS. It enables identifying the units that despite operating in a different scale are fully efficient. The size and scale of operations may have a significant impact on the efficiency of conducted activity by higher education institutions. Contribution & Value Added: The work compares two methods (parametric and non parametric for evaluation of technical efficiency that are present in subject literature (SFA is less popular but are rarely evaluated and compared for its applicability to the higher education sector. Article type: research paper Keywords: SFA; DEA; efficiency; higher education JEL codes: I23, C14

  4. Inviscid instabilities of non-planar transversely sheared flows governed by the generalized Rayleigh pressure equation

    Science.gov (United States)

    Afsar, Mohammed; Sescu, Adrian

    2014-11-01

    Transition in boundary layer flow over flat/curved surfaces and at moderate to high freestream disturbances or under the influence of various surface roughness elements often involves inviscid secondary instability. This stage in transition can be pictured as being a parametric resonance-type phenomena where a unstable primary flow saturates to a more-or-less steady-state, susceptible to infinitesimal three-dimensional wave-like instability modes that grow much faster than the primary. In decades of research on boundary layers, experimenters have relied upon an inflection point in the wall normal y and/or spanwise directions z of the primary as a pre-cursor to transition. This assertion, based on Rayleigh's theorem, does not however apply in transversely sheared flows. In this talk, we show that an alternative local criterion for inviscid secondary instability - sharing similarities to the original one-dimensional Rayleigh criterion - exists for a class of non-planar transversely sheared flows at long streamwise wavelength. Our general stability criterion is, remarkably, given by necessity of the surface U y , z possessing at least one saddle point in the plane. We analyze this saddle-point criterion numerically show its relevance to secondary instabilities. M.Z.A. would like to anknowledge financial support from Laminar Flow Control (LFC-UK) Research Program at Imperial College London and would like to thank Professor Philip Hall for motivating his interest in this problem.

  5. Parametric Design of Outdoor Broadcasting Studio Based on Schema Theory

    OpenAIRE

    Zhu Li; Zhang Nan; Qing Xiaoying

    2016-01-01

    This paper mainly demonstrates that the schema is an important way for the architect to cognize architecture form logic. It connects schema to algorithm of parametric design in order to seek the “algorithm schema” generation in parametric design of architecture. Meanwhile, this paper discusses the generative process and methods of the “algorithm schema” in parametric design of architecture by describing a case of outdoor broadcasting studio of Hunan Economic Radio. It also reveals the importa...

  6. Supramodal parametric working memory processing in humans.

    Science.gov (United States)

    Spitzer, Bernhard; Blankenburg, Felix

    2012-03-07

    Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.

  7. Quantum tomography enhanced through parametric amplification

    Science.gov (United States)

    Knyazev, E.; Spasibko, K. Yu; Chekhova, M. V.; Khalili, F. Ya

    2018-01-01

    Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyze in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul [1] which allows one to reduce the degrading effect of detection losses. It is based on phase-sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscillator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in the experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the-art optical elements, the protocol enables high fidelity tomographic reconstruction of bright non-classical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses.

  8. Quantum metrology with unitary parametrization processes.

    Science.gov (United States)

    Liu, Jing; Jing, Xiao-Xing; Wang, Xiaoguang

    2015-02-24

    Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher information is only determined by H and the initial state. Furthermore, H can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of H. For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by H operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation.

  9. Microsatellite instability in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shan, A.L.; Wick, M.J.; Persons, D.L. [Mayo Clinic and Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Microsatellite instability (MIN) has been documented in hereditary nonpolyposis colorectal cancer (HNPCC) as well as in sporadic forms of human cancers. Two of the genes which appear to be responsible for this particular tumor phenotype, hMSH2 and hMLH1, have now been identified. To determine the potential role of these mutator genes in prostate cancer, we have examined 95 prostate adenocarcinomas (40 paraffin embedded and 55 fresh frozen) for the presence of genetic instability at four microsatellite markers. The markers are localized to chromosome arms 5q(APC-CA1), 8p(Mfd 210Z), 15q(635/636), and 17q(p53-CA). Patients from whom paraffin embedded material was obtained were divided into short term (<3 years, n=18), and long term (>3 years, n=22) survivors. Of the 95 tumors examined, only four tumors (4%) demonstrated MIN: two tumors demonstrated MIN at 3 loci (p53-CA, APC-CA1, 635/636), one tumor demonstrated MIN at 2 loci (APC-CA1 and 635/636), and one tumor demonstrated instability at 635/636 only. All tumors exhibiting MIN had Gleason scores of {ge} 4+4. A correlation between MIN and survival was not observed. Information on family history was limited. However, of the two patients demonstrating MIN at three loci, one patient was diagnosed with a second malignancy (TCC of the ureter), but otherwise had a negative family history, while the second patient had one first degree relative with esophageal cancer. The patient demonstrating MIN at two loci had a negative family history, while the remaining patient had two first degree relatives with cancer (prostate and stomach). These results suggest that hMSH2 and hMLH1 (as reflected by the small percentage of tumors displaying MIN) do not play a prominent role in the process of prostate tumorigenesis.

  10. Estimation of Parametric Fault in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The aim of this paper is to present a method for estimation of parametric faults in closed-loop systems. The key technology applied in this paper is coprime factorization of both the dynamic system as well as the feedback controller. Using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization......, it is shown that a certain matrix transfer function, the fault signature matrix, is an LFT (linear fractional transformation) of the parametric faults. Further, for limit parametric faults, the fault signature matrix transfer function can be approximated with a linear matrix function of the parametric faults....

  11. An Interactive Software for Conceptual Wing Flutter Analysis and Parametric Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    1996-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well-defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed for Macintosh or IBM compatible personal computers, on MathCad application software with integrated documentation, graphics, data base and symbolic mathematics. The analysis method was based on non-dimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The parametric plots were compiled in a Vought Corporation report from a vast data base of past experiments and wind-tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended-Wing-Body concept, proposed by McDonnell Douglas Corp. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  12. Transverse Instabilities in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab

    2011-07-01

    Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.

  13. Mode-locking via dissipative Faraday instability.

    Science.gov (United States)

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  14. Asymptotic Behavior of the Electron Cloud Instability

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, Samuel; /SLAC

    2007-06-06

    The fast beam-ion instability and the single bunch electron-cloud instability are substantially nonlinear phenomena and can be analyzed in a similar way. The initial exponential growth of the amplitudes known for both instabilities takes place only in the linear approximation. Later, in the nonlinear regime, amplitudes grow according to a power law or even decrease. We analyze the nonlinear regime describing the growth of amplitudes in time and along the train of bunches. Analytic analysis is compared with simulations.

  15. Evaluation and Management of Posterior Shoulder Instability

    Science.gov (United States)

    Tannenbaum, Eric; Sekiya, Jon K.

    2011-01-01

    Context: Posterior shoulder instability is a commonly misdiagnosed disorder in many competitive athletes. Type of Study: Clinical review. Evidence Acquisition: Relevant studies on posterior shoulder instability from 1950 to 2010 in PubMed and Cochrane databases were reviewed. Results: A total of 107 studies were reviewed. Conclusion: Patients who have undergone at least 6 months of physical therapy and still experience instability symptoms should be considered for surgical stabilization directed at their underlying pathology. PMID:23016015

  16. Drying paint: from micro-scale dynamics to mechanical instabilities

    CERN Document Server

    Goehring, Lucas; Kiatkirakajorn, Pree-Cha

    2016-01-01

    Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarise the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients around a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle x-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities -- shear-banding and fracture -- can be controlled.

  17. Instabilities of flows and transition to turbulence

    CERN Document Server

    Sengupta, Tapan K

    2012-01-01

    Introduction to Instability and TransitionIntroductionWhat Is Instability?Temporal and Spatial InstabilitySome Instability MechanismsComputing Transitional and Turbulent FlowsFluid Dynamical EquationsSome Equilibrium Solutions of the Basic EquationBoundary Layer TheoryControl Volume Analysis of Boundary LayersNumerical Solution of the Thin Shear Layer (TSL) EquationLaminar Mixing LayerPlane Laminar JetIssues of Computing Space-Time Dependent FlowsWave Interaction: Group Velocity and Energy FluxIssues of Space-Time Scale Resolution of FlowsTemporal Scales in Turbulent FlowsComputing Time-Averag

  18. Size-effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  19. Review of two-phase instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong

    1997-06-01

    KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs

  20. Two-Beam Instability in Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Burov, Alexey V.; /Fermilab

    2006-04-01

    The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

  1. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  2. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  3. Option price and market instability

    Science.gov (United States)

    Baaquie, Belal E.; Yu, Miao

    2017-04-01

    An option pricing formula, for which the price of an option depends on both the value of the underlying security as well as the velocity of the security, has been proposed in Baaquie and Yang (2014). The FX (foreign exchange) options price was empirically studied in Baaquie et al., (2014), and it was found that the model in general provides an excellent fit for all strike prices with a fixed model parameters-unlike the Black-Scholes option price Hull and White (1987) that requires the empirically determined implied volatility surface to fit the option data. The option price proposed in Baaquie and Cao Yang (2014) did not fit the data during the crisis of 2007-2008. We make a hypothesis that the failure of the option price to fit data is an indication of the market's large deviation from its near equilibrium behavior due to the market's instability. Furthermore, our indicator of market's instability is shown to be more accurate than the option's observed volatility. The market prices of the FX option for various currencies are studied in the light of our hypothesis.

  4. Manual testing for ankle instability.

    Science.gov (United States)

    Wilkin, Emily Jane; Hunt, Adrienne; Nightingale, Elizabeth Jean; Munn, Joanne; Kilbreath, Sharon Lynne; Refshauge, Kathryn Margaret

    2012-12-01

    To assess inter-rater reliability of ankle manual tests. We also correlated the manual tests with the Cumberland Ankle Instability Tool (CAIT). One ankle from each of 60 participants was assessed using four different manual tests (anterior drawer in supine and crook lying, talar tilt, inversion tilt). Three different raters, varying in experience, tested each participant. The CAIT questionnaire was also administered. The study received ethics approval from the University of Sydney Human Research Ethics Committee. Intraclass correlation coefficients (ICC), standard error of the mean (SEM) and percent close agreement (PCA) were used to determine reliability of the four tests. Pearson's correlation coefficients were used to determine relationships between the manual tests and CAIT scores. Inter-rater reliability for the four manual tests was poor regardless of therapist's experience (ICC([1,1]) -0.12 to 0.33; SEM 0.93-1.69). Correlations between the CAIT and manual tests were also low varying between r = -0.12 and -0.42. Inter-rater reliability was poor for manual tests of ankle stability. Reliability may be improved by using a grading scale with fewer intervals. The CAIT scores and manual tests correlated poorly, potentially reflecting the variety of conditions leading to ankle instability. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. Adhesional instabilities and gecko locomotion

    Science.gov (United States)

    Williams, John A.

    2015-01-01

    Geckos possess a remarkable ability to run rapidly on both walls and ceilings and in recent years the mechanisms that underlie this facility have come under close scrutiny. It is now generally agreed that one of the principal mechanisms of adhesion relies on the action of van der Waal forces acting between the final extremely fine structure of the gecko toe and the underlying substrate. High speed video analysis shows that adhesive contact is both made and broken in intervals of less than 20 ms and this suggests that the mechanism of detachment is one of adhesive instability rather than steady-state peeling. By considering the gecko seta/spatula as a Euler-Bernoulli cantilever it is possible to model this instability in non-dimensional terms and thus to test the analysis at a much larger scale with more conventional engineering materials. When applied to the scale and material combination appropriate to a gecko spatula, the predicted critical load, of around 10 nN, is close to values that have been observed using and AFM cantilever and a single detached spatula.

  6. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    Science.gov (United States)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  7. Design of RF MEMS switches without pull-in instability

    Science.gov (United States)

    Proctor, W. Cyrus; Richards, Gregory P.; Shen, Chongyi; Skorczewski, Tyler; Wang, Min; Zhang, Jingyan; Zhong, Peng; Massad, Jordan E.; Smith, Ralph

    2010-04-01

    Micro-electro-mechanical systems (MEMS) switches for radio-frequency (RF) signals have certain advantages over solid-state switches, such as lower insertion loss, higher isolation, and lower static power dissipation. Mechanical dynamics can be a determining factor for the reliability of RF MEMS. The RF MEMS ohmic switch discussed in this paper consists of a plate suspended over an actuation pad by four double-cantilever springs. Closing the switch with a simple step actuation voltage typically causes the plate to rebound from its electrical contacts. The rebound interrupts the signal continuity and degrades the performance, reliability and durability of the switch. The switching dynamics are complicated by a nonlinear, electrostatic pull-in instability that causes high accelerations. Slow actuation and tailored voltage control signals can mitigate switch bouncing and effects of the pull-in instability; however, slow switching speed and overly-complex input signals can significantly penalize overall system-level performance. Examination of a balanced and optimized alternative switching solution is sought. A step toward one solution is to consider a pull-in-free switch design. In this paper, determine how simple RC-circuit drive signals and particular structural properties influence the mechanical dynamics of an RF MEMS switch designed without a pull-in instability. The approach is to develop a validated modeling capability and subsequently study switch behavior for variable drive signals and switch design parameters. In support of project development, specifiable design parameters and constraints will be provided. Moreover, transient data of RF MEMS switches from laser Doppler velocimetry will be provided for model validation tasks. Analysis showed that a RF MEMS switch could feasibly be designed with a single pulse waveform and no pull-in instability and achieve comparable results to previous waveform designs. The switch design could reliably close in a timely

  8. Risk factors for knee instability after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Ahn, Ji Hyun; Lee, Sung Hyun

    2016-09-01

    The objective of this study was to estimate risk factors that influence postoperative instability after anterior cruciate ligament (ACL) reconstruction using multivariate logistic regression analysis. A total of 152 consecutive patients with symptomatic ACL insufficiency underwent arthroscopic ACL reconstruction between 2005 and 2011. Loss to follow-up and previous ligament reconstruction were exclusion criteria, resulting in 131 patients remaining for this retrospective study. The median follow-up was 55 months (range 25-100 months). Patients were sorted into two groups by anterior translation on stress radiograph and pivot shift test grade and were analysed for the statistical significance of various risk factors including age at surgery, gender, body mass index, preoperative instability, time from injury to surgery, single-bundle reconstruction with preserved abundant remnant versus double-bundle reconstruction with scanty remnant, and concomitant ligament, meniscus, and articular cartilage injury with use of multivariate logistic regression analysis. Time from injury to surgery over 12 weeks was found to be a significant risk factor for postoperative instability [p ligament (MCL) was also a risk factor (p = 0.02, adjusted OR 13.60; 95 % CI 1.24-148.25). The other variables were not found to be a significant risk factor. Among the risk factor variables, concomitant grade 2 MCL injury and surgical delay of more than 12 weeks from injury were significant risk factors for postoperative knee instability after ACL reconstruction. The overall results suggest that surgery <12 weeks from injury and meticulous attention to concomitant MCL injury should be considered. Retrospective case-control study, Level III.

  9. Interface instability modes in freezing colloidal suspensions - revealed from onset of planar instability

    OpenAIRE

    Lilin Wang; Jiaxue You; Zhijun Wang; Jincheng Wang; Xin Lin

    2015-01-01

    Freezing colloidal suspensions widely exists in nature and industry. Interface instability has attracted much attention for the understandings of the pattern formation in freezing colloidal suspensions. However, the interface instability modes, the origin of the ice banding or ice lamellae, are still unclear. In-situ experimental observation of the onset of interface instability remains absent up to now. Here, by directly imaging the initial transient stage of planar interface instability in ...

  10. Identifying Some Risk Factors for the Time to Death of the Elderly Using the Semi-Parametric Blended Model of Survival Analysis With Competing Risks

    Directory of Open Access Journals (Sweden)

    Samane Hajiabbasi

    2018-01-01

    Conclusion In single-variable fitting, age, history of myocardial infarction, history of stroke, and kidney problems were identified to have significant effects on the time to death of the elderly. Based on one-variable semi-parametric competing risk mixture fitted models, more significant risk factors for the time to death of elderly was identified when compared with a fitted multivariate mode to the data. This implies that the role of some independent variables can be explained by other independent variables.

  11. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    Science.gov (United States)

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  12. The numerical model for parametric studies of forest haul roads pavements

    Directory of Open Access Journals (Sweden)

    Lenka Ševelová

    2010-01-01

    Full Text Available Forest roads pavement structures are considered to be low volume roads. These roads serve as a mean of transport of wood and people. Besides they are currently often used for recreational purpose. The construction of the pavements should be suitable for forest transportation irrespective of their low bearing capacity. These pavement structures are very specific for special unbound materials that are used in their construction. To meet the requirements of the pavement designs and simulation analysis the FEM model in the software ANSYS was created.This paper compares two material models used for the description of the behaviour of unbound materials. The first is linear elastic according to Hook theory (H model and the second one is nonlinear plastic model Drucker-Prager (D–P model. ANSYS software has been used to create flexible model based on the parametrers of variable principle. The flexible model is parametric to realize repeated calculations useful for optimization analysis.

  13. Multiple sclerosis and employment: Associations of psychological factors and work instability.

    Science.gov (United States)

    Wicks, Charlotte Rose; Ward, Karl; Stroud, Amanda; Tennant, Alan; Ford, Helen L

    2016-10-12

    People with multiple sclerosis often stop working earlier than expected. Psychological factors may have an impact on job retention. Investigation may inform interventions to help people stay in work. To investigate the associations between psychological factors and work instability in people with multiple sclerosis. A multi-method, 2-phased study. Focus groups were held to identify key themes. Questionnaire packs using validated scales of the key themes were completed at baseline and at 8-month follow-up. Four key psychological themes emerged. Out of 208 study subjects 57.2% reported medium/high risk of job loss, with marginal changes at 8 months. Some psychological variables fluctuated significantly, e.g. depression fell from 24.6% to 14.5%. Work instability and anxiety and depression were strongly correlated (χ2 p < 0.001). Those with probable depression at baseline had 7.1 times increased odds of medium/high work instability, and baseline depression levels also predicted later work instability (Hosmer-Lemeshow test 0.899; Nagelkerke R Square 0.579). Psychological factors fluctuated over the 8-month follow-up period. Some psychological variables, including anxiety and depression, were significantly associated with, and predictive of, work instability. Longitudinal analysis should further identify how these psychological attributes impact on work instability and potential job loss in the longer term.

  14. Associations between mood instability and emotional processing in a large cohort of bipolar patients.

    Science.gov (United States)

    Bilderbeck, A C; Reed, Z E; McMahon, H C; Atkinson, L Z; Price, J; Geddes, J R; Goodwin, G M; Harmer, C J

    2016-11-01

    Aberrant emotional biases have been reported in bipolar disorder (BD), but results are inconsistent. Despite the clinical relevance of chronic mood variability in BD, there is no previous research investigating how the extent of symptom fluctuations in bipolar disorder might relate to emotional biases. This exploratory study investigated, in a large cohort of bipolar patients, whether instability in weekly mood episode symptoms and other clinical and demographic factors were related to emotional bias as measured in a simple laboratory task. Participants (N = 271, BDI = 206, BDII = 121) completed an 'emotional categorization and memory' task. Weekly self-reported symptoms of depression and mania were collected prospectively. In linear regression analyses, associations between cognitive bias and mood variability were explored together with the influence of demographic and clinical factors, including current medication. Greater accuracy in the classification of negative words relative to positive words was associated with greater instability in depressive symptoms. Furthermore, greater negative bias in free recall was associated with higher instability in manic symptoms. Participants diagnosed with BDII, compared with BDI, showed overall better word recognition and recall. Current antipsychotic use was associated with reduced instability in manic symptoms but this did not impact on emotional processing performance. Emotional processing biases in bipolar disorder are related to instability in mood. These findings prompt further investigation into the underpinnings as well as clinical significance of mood instability.

  15. Longer reaction time of the fibularis longus muscle and reduced postural control in basketball players with functional ankle instability: A pilot study.

    Science.gov (United States)

    Méndez-Rebolledo, Guillermo; Guzmán-Muñoz, Eduardo; Gatica-Rojas, Valeska; Zbinden-Foncea, Hermann

    2015-08-01

    Motor control evaluation in subjects with functional ankle instability is questionable when both ankles of the same subject are compared (affected vs non-affected). To compare the postural control and reaction time of ankle muscles among: basketball players with FAI (instability group), basketball players without FAI (non-instability group) and healthy non-basketball-playing participants (control group). Case-control study. Laboratory. Instability (n = 10), non-instability (n = 10), and control groups (n = 11). Centre of pressure variables (area, velocity and sway) were measured with a force platform. Reaction time of ankle muscles was measured via electromyography. A one-way ANOVA demonstrated that there were significant differences between the instability and non-instability groups in the fibularis longus (p Basketball players with FAI have reduced postural control and longer reaction time of the fibularis and tibialis anterior muscles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Examples in parametric inference with R

    CERN Document Server

    Dixit, Ulhas Jayram

    2016-01-01

    This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory cou...

  17. Normal dispersion femtosecond fiber optical parametric oscillator.

    Science.gov (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  18. Parametric resonance and cosmological gravitational waves

    Science.gov (United States)

    Sá, Paulo M.; Henriques, Alfredo B.

    2008-03-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  19. mu analysis with real parametric uncertainty

    Science.gov (United States)

    Young, Peter M.; Newlin, Matthew P.; Doyle, John C.

    1991-01-01

    The authors give a broad overview, from a LFT (linear fractional transformation)/mu perspective, of some of the theoretical and practical issues associated with robustness in the presence of real parametric uncertainty, with a focus on computation. Recent results on the properties of mu in the mixed case are reviewed, including issues of NP completeness, continuity, computation of bounds, the equivalence of mu and its bounds, and some direct comparisons with Kharitonov-type analysis methods. In addition, some advances in the computational aspects of the problem, including a novel branch and bound algorithm, are briefly presented together with numerical results. The results suggest that while the mixed mu problem may have inherently combinatoric worst-case behavior, practical algorithms with modest computational requirements can be developed for problems of medium size (less than 100 parameters) that are of engineering interest.

  20. Parametric study on propulsion performance of microtubes

    Science.gov (United States)

    Tantos, Ch.; Valougeorgis, D.

    2017-06-01

    The pressure-driven rarefied gas §ow of polyatomic gases through short tubes in a wide range of the Knudsen number is numerically investigated. The downstream over the upstream pressure ratio is taken very close to zero. Such flows are characterized by low Reynolds numbers and high viscous losses and, therefore, short circular microtubes may be used instead of typical micronozzles. The main computed quantities include the flow rate, the discharge coefficient, the thrust, and the impulse factor which are provided in terms of the gas rarefaction and the tube dimensionless length. Based on the above, a parametric study on the propulsion characteristics of microtubes is provided. Furthermore, a comparison between corresponding polyatomic and monoatomic results is performed and the effect of the internal degrees of freedom on the results is investigated.

  1. Spherical Parametrization of the Higgs Boson Candidate

    CERN Document Server

    Gainer, James S; Matchev, Konstantin T; Mrenna, Stephen; Park, Myeonghun

    2013-01-01

    The latest results from the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) unequivocally confirm the existence of a resonance, $X$, with mass near 125 GeV which could be the Higgs boson of the Standard Model. Measuring the properties (quantum numbers and couplings) of this resonance is of paramount importance. Initial analyses by the LHC collaborations disfavor specific alternative benchmark hypotheses, e.g. pure pseudoscalars or gravitons. However, this is just the first step in a long-term program of detailed measurements. We consider the most general set of operators in the decay channels $X \\to ZZ$, $WW$, $Z\\gamma$, $\\gamma\\gamma$ and derive the constraint implied by the measured rate. This allows us to provide a useful parametrization of the orthogonal independent Higgs coupling degrees of freedom as coordinates on a suitably defined sphere.

  2. Hybrid-free Josephson Parametric Converter

    Science.gov (United States)

    Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.

    A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.

  3. Simplifying the circuit of Josephson parametric converters

    Science.gov (United States)

    Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George

    Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results

  4. Parametric Optimization for High Speed FLIM Implementation

    Directory of Open Access Journals (Sweden)

    Kim Jayul

    2015-01-01

    Full Text Available FLIM (Fluorescence Lifetime Imaging Microscopy has been considered an effective technique to investigate chemical properties of the specimens, especially of biological samples. Despite of this advantageous trait, researchers in this field have had difficulties applying FLIM to their systems because acquiring an image using FLIM consumes too much time. To increase the FLIM speed, many methodologies have been developed and applied to the system. One of the recent methodologies is an analogue mean delay based FLIM using a PMT and digitizer for image reconstruction. In this system, however, imaging time is largely dependent upon several parameters such as data transfer rate, sampling rate of an A/D converter, and signal width etc. In this paper, such parametric optimization method is introduced for faster acquisition of the image.

  5. Fibre-laser-pumped femtosecond PPLN optical parametric oscillator

    OpenAIRE

    O'Connor, M.V.; Watson, M A.; Hanna, D.C.; Shepherd, D. P.; Lefort, L.; Price, J.H.V.; Malinowski, A.; Nilsson, J.; Broderick, N.G.R.; Richardson, D.J.

    2001-01-01

    The performance of a fibre-laser-pumped femtosecond PPLN optical parametric oscillator is described. The parametric oscillator exhibits a low threshold of 21mW, a high signal slope efficiency of 35% and generates broadly tunable 330fs pulses.

  6. Light squeezing in optical parametric amplification beyond the ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 78; Issue 4 ... Quantum nonlinear optics; squeezed light; optical parametric amplification. Abstract. Optical parametric amplification (OPA) described usually by the coupled-wave equations with the first-order derivatives of the signal and idler waves, is solved under the ...

  7. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  8. Parametric excitation of plasma oscillations in Josephson Junctions

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm; Særmark, Knud

    1973-01-01

    A theory is presented for parametric excitation of plasma oscillations in a Josephson junction biased in the zero voltage mode. A threshold curve for the onset of the parametric excitation is deduced via the stability properties of a Mathieu differential equation obtained by a self-consistent lin...... junctions, but perhaps less likely in point contacts. ©1973 American Institute of Physics...

  9. Schwinger-type parametrization of open string worldsheets

    Directory of Open Access Journals (Sweden)

    Sam Playle

    2017-03-01

    Full Text Available A parametrization of (super moduli space near the corners corresponding to bosonic or Neveu–Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the α′→0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.

  10. Observation of non-degenerate photorefractive parametric amplification

    DEFF Research Database (Denmark)

    Pedersen, H.C.; Johansen, P.M.

    1996-01-01

    We report on the first experimental observation of so-called nondegenerate photorefractive parametric amplification. We show that due to this effect it is possible for a weakly modulated photoinduced grating to be parametrically amplified via nonlinear interaction with a strongly modulated...

  11. Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation

    DEFF Research Database (Denmark)

    Katebi, S.D.; Blanke, M.; Katebi, M.R.

    This report describes a comparative study between two approaches to fault detection and isolation in dynamic systems. The first approach uses a parametric model of the system. The main components of such techniques are residual and signature generation for processing and analyzing. The second...... algorithms employed are adopted from the template matching in pattern recognition. Extensive simulation studies are performed to demonstrate satisfactory performance of the proposed techniques. The advantages and disadvantages of each approach are discussed and analyzed....... approach is non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain information extracted directly from the input-output signals. Based on these approaches, two different fault monitoring schemes are developed where the feature extraction and fault decision...

  12. Non-parametric approach to the study of phenotypic stability.

    Science.gov (United States)

    Ferreira, D F; Fernandes, S B; Bruzi, A T; Ramalho, M A P

    2016-02-19

    The aim of this study was to undertake the theoretical derivations of non-parametric methods, which use linear regressions based on rank order, for stability analyses. These methods were extension different parametric methods used for stability analyses and the result was compared with a standard non-parametric method. Intensive computational methods (e.g., bootstrap and permutation) were applied, and data from the plant-breeding program of the Biology Department of UFLA (Minas Gerais, Brazil) were used to illustrate and compare the tests. The non-parametric stability methods were effective for the evaluation of phenotypic stability. In the presence of variance heterogeneity, the non-parametric methods exhibited greater power of discrimination when determining the phenotypic stability of genotypes.

  13. Instabilities in electrically driven rotating MHD layers

    Science.gov (United States)

    Mistrangelo, C.; Bühler, L.

    2017-07-01

    Flows of electrically conducting fluids exposed to intense magnetic fields exhibit a common feature i.e. the formation of uniform cores in which electromagnetic forces are dominant. Cores are separated from each other by thin layers that extend along magnetic field lines. Across these parallel layers strong gradients of flow variables are present, which can lead to the onset of instabilities and non-linear flow transitions. In this work we investigate dynamics and stability issues of rotating parallel layers driven by electromagnetic forces caused by the interaction of injected electric currents with an applied magnetic field. The geometry considered consists of two coaxial circular electrodes used for current injection. They are placed in parallel electrically insulating planes perpendicular to a uniform magnetic field. The basic axisymmetric steady state flow, characterized by a rotating velocity jet confined in a parallel layer that connects the rims of the electrodes, is rather well understood. By increasing the driving current above a critical value the basic flow becomes unstable and undergoes a sequence of supercritical bifurcations.

  14. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  15. Instability Threshold “Hysteresis”

    Directory of Open Access Journals (Sweden)

    Agnes Muszynska

    1999-01-01

    Full Text Available The transient process which starts at the instability threshold of a rotor rotating in a fluid environment, and ends up in the limit cycle of self-excited vibrations known as fluid whirl or fluid whip, is discussed in this paper. A one-lateral-mode, isotropic, nonlinear model of the rotor with fluid interaction allows for exact particular solutions and an estimation of the transient process. The fluid interacting with the rotor is contained in a small radial clearance area, such as in bearings, seals, or rotor-to-stator clearances, and its effects are represented by fluid film radial stiffness, damping, and fluid inertia rotating at a different angular velocities.

  16. Instabilities in coaxial rotating jets

    Science.gov (United States)

    Ivanic, Tanja; Foucault, Eric; Pecheux, Jean; Gilard, Virginie

    2000-12-01

    The aim of this study is the characterization of the cylindrical mixing layer resulting from the interaction of two coaxial swirling jets. The experimental part of this study was performed in a cylindrical water tunnel, permitting an independent rotation of two coaxial jets. The rotations are generated by means of 2×36 blades localized in two swirling chambers. As expected, the evolution of the main instability modes presents certain differences compared to the plane-mixing-layer case. Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex pairs in the near field region. This method also permitted the observation of the evolution and interaction of different modes. PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distorts the typical top-hat axial velocity profile. The transition of the axial velocity profile from jet-like into wake-like is also observed.

  17. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  18. Cultural diversity, economic development and societal instability.

    Science.gov (United States)

    Nettle, Daniel; Grace, James B; Choisy, Marc; Cornell, Howard V; Guégan, Jean-François; Hochberg, Michael E

    2007-09-26

    Social scientists have suggested that cultural diversity in a nation leads to societal instability. However, societal instability may be affected not only by within-nation or alpha diversity, but also diversity between a nation and its neighbours or beta diversity. It is also necessary to distinguish different domains of diversity, namely linguistic, ethnic and religious, and to distinguish between the direct effects of diversity on societal instability, and effects that are mediated by economic conditions. We assembled a large cross-national dataset with information on alpha and beta cultural diversity, economic conditions, and indices of societal instability. Structural equation modeling was used to evaluate the direct and indirect effects of cultural diversity on economics and societal stability. Results show that different types and domains of diversity have interacting effects. As previously documented, linguistic alpha diversity has a negative effect on economic performance, and we show that it is largely through this economic mechanism that it affects societal instability. For beta diversity, the higher the linguistic diversity among nations in a region, the less stable the nation. But, religious beta diversity has the opposite effect, reducing instability, particularly in the presence of high linguistic diversity. Within-nation linguistic diversity is associated with reduced economic performance, which, in turn, increases societal instability. Nations which differ linguistically from their neighbors are also less stable. However, religious diversity between neighboring nations has the opposite effect, decreasing societal instability.

  19. Recurrent Shoulder Instability After Primary Bankart Repair.

    Science.gov (United States)

    Donohue, Michael A; Mauntel, Timothy C; Dickens, Jonathan F

    2017-09-01

    The glenohumeral joint is one of the most frequently dislocated joints and occurs with increasing frequency in collision and contact athletes, especially those in sports that repeatedly place the glenohumeral joint in a position of vulnerability. Nonoperative management of shoulder instability especially in young contact athletes results in unacceptably high recurrence rates; thus, early surgical stabilization has become commonplace. Surgical stabilization typically yields acceptable outcomes. However, recurrent anterior instability may occur following a previous stabilization procedure at rates of 7% to 12%. Recurrent glenohumeral instability represents a treatment challenge for orthopedic surgeons as it not only has the potential to result in subsequent surgery, therapy, and missed activity time, but also has been associated with long-term degenerative joint changes. Thus, recurrent instability requires close examination to determine underlying pathology leading to failure. Evaluation of underlying pathology requires consideration of patient activity-related factors, hyperlaxity and multidirectional instability, glenoid bone loss, glenoid track lesions, and other pathologic lesions. Revision surgical stabilization approaches include arthroscopic and open stabilization, as well as glenoid osseous augmentation procedures. Postoperative rehabilitation and release to sports and activity must be tailored to protect the shoulder from continued instability. Understanding that risk of recurrent glenohumeral instability and the risk factors associated with it are essential so that these factors may be mitigated and recurrent instability prevented.

  20. Energetic particle instabilities in fusion plasmas

    NARCIS (Netherlands)

    Sharapov, S. E.; Alper, B.; Berk, H. L.; Borba, D. N.; Breizman, B. N.; Challis, C. D.; Classen, I.G.J.; Edlund, E. M.; Eriksson, J.; Fasoli, A.; Fredrickson, E. D.; Fu, G. Y.; M. García-Muñoz,; Gassner, T.; Ghantous, K.; Goloborodko, V.; Gorelenkov, N. N.; Gryaznevich, M. P.; Hacquin, S.; Heidbrink, W. W.; Hellesen, C.; Kiptily, V. G.; Kramer, G. J.; Lauber, P.; Lilley, M. K.; Lisak, M.; Nabais, F.; Nazikian, R.; Nyqvist, R.; Osakabe, M.; C. Perez von Thun,; Pinches, S. D.; Podesta, M.; Porkolab, M.; Shinohara, K.; Schoepf, K.; Todo, Y.; Toi, K.; VanZeeland, M. A.; Voitsekhovich, I.; White, R. B.; Yavorskij, V.; ITPA EP TG Contributors,; JET-EFDA Contributors,

    2013-01-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and

  1. The short circuit instability in protoplanetary disks

    DEFF Research Database (Denmark)

    Hubbard, A.; McNally, C.P.; Mac Low, M.M.

    2013-01-01

    We introduce a magneto-hydrodynamic instability which occurs, among other locations, in the inner, hot regions of protoplanetary disks, and which alters the way in which resistive dissipation of magnetic energy into heat proceeds. This instability can be likened to both an electrical short circui...

  2. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    Abstract. Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ulti- mately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a 'by-pass' route is more ...

  3. Gravitational Instability of Cylindrical Viscoelastic Medium ...

    Indian Academy of Sciences (India)

    field on the gravitational instability of strongly coupled plasma and observed that instability criterion gets modified due to the presence of non uniform magnetic field in transverse mode of wave propagation under both the kinetic and hydrodynamic limits, when the viscoelastic medium is infinitely electrically conducting.

  4. Genetically determined chromosome instability syndromes.

    Science.gov (United States)

    Schroeder, T M

    1982-01-01

    Spontaneously increased chromosomal instability is well documented in the three autosomal recessive diseases, Fanconi's anemia (FA), Bloom's syndrome (BS), and ataxia telangiectasia (AT). Other conditions have been reported to be associated with chromosomal breakage. Some are still single observations: in Werner's syndrome only fibroblasts are affected, and systemic sclerosis may not be an inherited disease. Various aspects of FA, BS, and AT are discussed which have emerged since recent reviews have been published. The differential diagnosis in FA has become more important than it was in the past. Proven heterogeneity in FA demands definition of what to name FA and FA variants. The analysis of cancer frequencies and types in FA and AT lacks important clues. This should stimulate all of us to mutual exchange of data and creation of registries not only of patients and follow-ups, but also of characterized cell strains. A synopsis of results from cell and cytogenetic studies demonstrates similarities and differences in detail of the general phenomenon of chromosomal instability which FA, BS, and AT share. Results from biochemical studies at the DNA level together with cytogenetic findings indicate different but still undefined failures in DNA metabolism or DNA repair mechanisms due to the different genes. A new approach to analyzing the impairment of DNA repair in FA is briefly described. DNA related enzymes are produced in the cytoplasm and have to be transported to the nucleus. The subcellular distribution of topoisomerase activity was found to be unusual in three placentas of FA patients. Other DNA enzymes were distributed normally. Thus, a specific mechanism for movement of the enzyme through the nuclear membrane seems to be defective.

  5. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tension...... of principal overall strain. For other orientations surface instabilities are seen when non-associated plastic flow is taken into account. Compared to tension, smaller compressive deformations are needed in order to initiate a surface instability....... investigated, it is found that isotropic plasticity can only predict surface instabilities if non-associated plastic flow is accounted for. However, for anisotropic plasticity a surface instability is observed for associated plastic flow if the principal axes of anisotropy coincide with the directions...

  6. Role of microsatellite instability in colon cancer

    Directory of Open Access Journals (Sweden)

    M. Yu. Fedyanin

    2012-01-01

    Full Text Available Coloncancer is among leading causes of cancer morbidity and mortality both inRussiaand worldwide. Development of molecular biology lead to decoding of carcinogenesis and tumor progression mechanisms. These processes require accumulation of genetic and epigenetic alterations in a tumor cell.Coloncancer carcinogenesis is characterized by mutations cumulation in genes controlling growth and differentiation of epithelial cells, which leads to their genetic instability. Microsatellite instability is a type of genetic instability characterized by deterioration of mismatch DNA repair. This leads to faster accumulation of mutations in DNA. Loss of mismatch repair mechanism can easily be diagnosed by length of DNA microsatellites. These alterations are termed microsatellite instability. They can be found both in hereditary and sporadic colon cancers. This review covers the questions of microsatellite instability, its prognostic and predictive value in colon cancer.

  7. Tensile Instability in a Thick Elastic Body

    Science.gov (United States)

    Overvelde, Johannes; Dykstra, David; de Rooij, Rijk; Bertoldi, Katia

    A range of instabilities can occur in soft bodies that undergo large deformation. While most of them arise under compressive forces, it has previously been shown analytically that a tensile instability can occur in an elastic block subjected to equitriaxial tension. Guided by this result, we conducted centimeter-scale experiments on thick elastomeric samples under generalized plane strain conditions and observed for the first time this elastic tensile instability. We found that equibiaxial stretching leads to the formation of a wavy pattern, as regions of the sample alternatively flatten and extend in the out-of-plane direction. Our work uncovers a new type of instability that can be triggered in elastic bodies, enlarging the design space for smart structures that harness instabilities to enhance their functionality.

  8. Plasma electron hole oscillatory velocity instability

    Science.gov (United States)

    Zhou, Chuteng; Hutchinson, Ian H.

    2017-10-01

    In this paper, we report a new type of instability of electron holes (EHs) interacting with passing ions. The nonlinear interaction of EHs and ions is investigated using a new theory of hole kinematics. It is shown that the oscillation in the velocity of the EH parallel to the magnetic field direction becomes unstable when the hole velocity in the ion frame is slower than a few times the cold ion sound speed. This instability leads to the emission of ion-acoustic waves from the solitary hole and decay in its magnitude. The instability mechanism can drive significant perturbations in the ion density. The instability threshold, oscillation frequency and instability growth rate derived from the theory yield quantitative agreement with the observations from a novel high-fidelity hole-tracking particle-in-cell code.

  9. Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design

    Science.gov (United States)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2012-01-01

    We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.

  10. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  11. Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes

    Science.gov (United States)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.

  12. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    Science.gov (United States)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  13. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    Science.gov (United States)

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  14. Drying paint: from micro-scale dynamics to mechanical instabilities

    Science.gov (United States)

    Goehring, Lucas; Li, Joaquim; Kiatkirakajorn, Pree-Cha

    2017-04-01

    Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  15. Model studies of Rayleigh instabilities via microdesigned interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, Andreas M.

    2000-10-17

    The energetic and kinetic properties of surfaces play a critical role in defining the microstructural changes that occur during sintering and high-temperature use of ceramics. Characterization of surface diffusion in ceramics is particularly difficult, and significant variations in reported values of surface diffusivities arise even in well-studied systems. Effects of impurities, surface energy anisotropy, and the onset of surface attachment limited kinetics (SALK) are believed to contribute to this variability. An overview of the use of Rayleigh instabilities as a means of characterizing surface diffusivities is presented. The development of models of morphological evolution that account for effects of surface energy anisotropy is reviewed, and the potential interplay between impurities and surface energy anisotropy is addressed. The status of experimental studies of Rayleigh instabilities in sapphire utilizing lithographically introduced pore channels of controlled geometry and crystallography is summarized. Results of model studies indicate that impurities can significantly influence both the spatial and temporal characteristics of Rayleigh instabilities; this is attributed at least in part to impurity effects on the surface energy anisotropy. Related model experiments indicate that the onset of SALK may also contribute significantly to apparent variations in surface diffusion coefficients.

  16. Record of recent river channel instability, Cheakamus Valley, British Columbia

    Science.gov (United States)

    Clague, John J.; Turner, Robert J. W.; Reyes, Alberto V.

    2003-07-01

    Rivers flowing from glacier-clad Quaternary volcanoes in southwestern British Columbia have high sediment loads and anabranching and braided planforms. Their floodplains aggrade in response to recurrent large landslides on the volcanoes and to advance of glaciers during periods of climate cooling. In this paper, we document channel instability and aggradation during the last 200 years in lower Cheakamus River valley. Cheakamus River derives much of its flow and nearly all of its sediment from the Mount Garibaldi massif, which includes a number of volcanic centres dominated by Mount Garibaldi volcano. Stratigraphic analysis and radiocarbon and dendrochronological dating of recent floodplain sediments at North Vancouver Outdoor School in Cheakamus Valley show that Cheakamus River aggraded its floodplain about 1-2 m and buried a valley-floor forest in the early or mid 1800s. The aggradation was probably caused by a large (ca. 15-25×10 6 m 3) landslide from the flank of Mount Garibaldi, 15 km north of our study site, in 1855 or 1856. Examination of historical aerial photographs dating back to 1947 indicates that channel instability triggered by this event persisted until the river was dyked in the late 1950s. Our observations are consistent with data from many other mountain areas that suggest rivers with large, but highly variable sediment loads may rapidly aggrade their floodplains following a large spike in sediment supply. Channel instability may persist for decades to centuries after the triggering event.

  17. Passive control of the vertical instability in INTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bobbio, S.; Coccorese, E.; Fabricatore, G.; Martone, R.; Rubinacci, G.

    1985-05-01

    In the international tokamak reactor (INTOR), the problem of the passive control of the vertical instability is to be solved by means of suitably shaped saddle coils to be embedded in the blanket structure. The efficiency of such a system depends on the characteristics of the passive conductors and on the plasma equilibrium as well as on the type of plasma displacement assumed. To cover the physical uncertainties caused by the model assumptions for the plasma with respect to the motion on a slow time scale (of the order of several tens of milliseconds) corresponding to efficient passive stabilization, four different plasma displacement models are considered and compared with each other. A stability analysis is performed using the energy principle, expressed in circuital form. The results of the INTOR analysis are presented and discussed showing in particular that under very general conditions the optimum stabilization efficiency is obtained for passive conductors situated at about 60 deg above and below the horizontal midplane at the outboard side. The effect of the geometric parameters of the saddle coils (e.g., area and shape of the cross section, toroidal segmentation, etc.) on the stabilization efficiency is investigated; a parametric study of these dependences is presented. General conclusions applicable to INTOR are drawn.

  18. Complex Morphogenesis from Elastic Instability of Thin Sheets

    Science.gov (United States)

    Damman, Pascal

    2011-03-01

    Thin sheets are mechanically unstable to boundary or substrate-induced compressive loads. Moderate compression results in regular wrinkling while further confinement can lead to crumpling. In this communication, we will first show the emergence of a new morphological instability triggered by a period-doubling bifurcation observed for large compression ratio. A periodic self-organized focalization of the deformation energy is observed provided a symmetry breaking, induced by the elastic foundation, occurs. This effect will be explained by considering geometrical nonlinearities leading to a Euler-Lagrange equation similar to the equation of a parametric resonance in nonlinear oscillator. In the second part, we will show that thin sheets, from suspended graphene to ordinary hanging curtains, under boundary confinement spontaneously generate a universal self-similar cascade of wrinkled patterns. We develop a formalism based on wrinklons, a localized transition zone in the merging of two wrinkles, as building-blocks to describe the cascade morphology. These physical models based on elasticity and geometry constitutes a new theoretical toolkit to understand the morphology of various confined systems, such as coated materials or living tissues. Moreover, it also opens the way to new kind of microfabrication design of multiperiodic or chaotic (aperiodic) surface topography via self-organization.

  19. Computational material design for Q&P steels with plastic instability theory

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, G.; Choi, K. S.; Hu, X. H.; Sun, X.

    2017-10-01

    In this paper, the deformation limits of Quenching and Partitioning (Q&P) steels are examined with the plastic instability theory. For this purpose, the constituent phase properties of various Q&P steels were first experimentally obtained, and used to estimate the overall tensile stress-strain curves based on the simple rule of mixture (ROM) with the iso-strain and iso-stress assumptions. Plastic instability theory was then applied to the obtained overall stress-strain curves in order to estimate the deformation limits of the Q&P steels. A parametric study was also performed to examine the effects of various material parameters on the deformation limits of Q&P steels. Computational material design was subsequently carried out based on the information obtained from the parametric study. The results show that the plastic instability theory with iso-stress-based stress-strain curve may be used to provide the lower bound estimate of the uniform elongation (UE) for the various Q&P steels considered. The results also indicate that higher austenite stability/volume fractions, less strength difference between the primary phases, higher hardening exponents of the constituent phases are generally beneficial for the performance improvement of Q&P steels, and that various material parameters may be concurrently adjusted in a cohesive way in order to improve the performance of Q&P steel. The information from this study may be used to devise new heat treatment parameters and alloying elements to produce Q&P steels with the improved performance.

  20. Effect of wave localization on plasma instabilities. Ph.D. Thesis

    Science.gov (United States)

    Levedahl, William Kirk

    1987-01-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.