WorldWideScience

Sample records for vapour saturation pressure

  1. The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2007-08-15

    Vapour pressures of water over saturated solutions of sodium acetate, potassium acetate, sodium perchlorate, and potassium perchlorate were determined over the (278 to 318) K temperature range and compared with available in the literature data. The cases of saturated solutions of sodium chlorate and potassium chlorate are also considered. The determined vapour pressures were used to obtain the water activities, the osmotic coefficients, and the molar enthalpies of vaporization in considered systems.

  2. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2007-01-01

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems

  3. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2007-07-15

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems.

  4. The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2006-01-01

    Vapour pressures of water over saturated solutions of cesium chloride, cesium bromide, cesium nitrate, cesium sulfate, cesium formate, and cesium oxalate were determined as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vapourization. Molar enthalpies of solution of cesium chloride, Δ sol H m (T = 295.73 K; m = 0.0622 mol . kg -1 ) = (17.83 ± 0.50) kJ . mol -1 ; cesium bromide, Δ sol H m (T = 293.99 K; m = 0.0238 mol . kg -1 ) = (26.91 ± 0.59) kJ . mol -1 ; cesium nitrate, Δ sol H m (T = 294.68 K; m = 0.0258 mol . kg -1 ) = (37.1 ± 2.3) kJ . mol -1 ; cesium sulfate, Δ sol H m (T = 296.43 K; m = 0.0284 mol . kg -1 ) (16.94 ± 0.43) kJ . mol -1 ; cesium formate, Δ sol H m (T = 295.64 K; m = 0.0283 mol . kg -1 ) = (11.10 ± 0.26) kJ . mol -1 and Δ sol H m (T = 292.64 K; m = 0.0577 mol . kg -1 ) = (11.56 ± 0.56) kJ . mol -1 ; and cesium oxalate, Δ sol H m (T = 291.34 K; m = 0.0143 mol . kg -1 ) = (22.07 ± 0.16) kJ . mol -1 were determined calorimetrically. The purity of the chemicals was generally greater than 0.99 mass fraction, except for HCOOCs and (COOCs) 2 where purities were approximately 0.95 and 0.97 mass fraction, respectively. The uncertainties are one standard deviations

  5. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2008-01-01

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate

  6. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2008-05-15

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate.

  7. Vapour pressure of trideuterioammonia

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Lopes, J.N.C.; Rebelo, L.P.N. (Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural)

    1992-09-01

    The H-to-D vapour-pressure isotope effect in liquid ammonia has been measured at 62 temperatures between 228 K and 260 K. The vapour pressures, corrected to 100 per cent nuclidic purity, have been fitted to the equation: T ln r = A+B/T+CT, where r is the vapour-pressure ratio p(NH[sub 3])/p(ND[sub 3]). The fit yielded the parameters: A = -8.22508 K, B = 12338.2 K[sup 2], and C = -0.05544. Comparisons with the results of other authors were made in order to clarify some discrepancies found in the literature. Our values are in accord with the previous results of King et al. and an extrapolation of the fitted equation down to the triple-point temperature gave good agreement with the published results. The fitted equation was used in conjunction with the Clapeyron equation to calculate the difference in the molar enthalpies of vaporization between NH[sub 3] and ND[sub 3]. At T = 230 K that difference is -846 J.mol[sup -1] decreasing to -747 J.mol[sup -1] at 260 K. (author).

  8. Vapour Pressure of Diethyl Phthalate

    Czech Academy of Sciences Publication Activity Database

    Roháč, V.; Růžička, K.; Růžička, V.; Zaitsau, D. H.; Kabo, G. J.; Diky, V.; Aim, Karel

    2004-01-01

    Roč. 36, č. 11 (2004), s. 929-937 ISSN 0021-9614 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour pressure * diethyl phthalate * correlation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.144, year: 2004

  9. Estimation of vapour pressure and partial pressure of subliming ...

    Indian Academy of Sciences (India)

    Administrator

    conditions of (total) pressure by using thermogravimetry under those conditions. Further, from the partial pressure P, it is possible to determine the number of moles of material in the vapour phase using the ideal gas equation, PV = nRT, where P is the partial pressure, V the volume, n number of moles (of the vapour), R the ...

  10. Atmospheric pressure plasma vapour coatings

    NARCIS (Netherlands)

    Sanden, van de M.C.M.; Starostine, S.; Premkumar, P.A.; Creatore, M.; Vries, de H.W.; Kondruweit, S.; Szyszka, B.; Pütz, J.

    2010-01-01

    The dielectric barrier discharge (DBD) is recognized as a promising tool of thin films deposition on various substrates at atmospheric pressure. Emerging applications including encapsulation of flexible solar cells and flexible displays require large scale low costs production cif transparent

  11. Vapour pressure of caesium over nuclear graphite

    International Nuclear Information System (INIS)

    Faircloth, R.L.; Pummery, F.C.W.

    1976-01-01

    The vapour pressure of caesium over a fine-grained isotropic moulded gilsocarbon nuclear graphite intended for use in the manufacture of fuel tubes for the high temperature reactor has been determined as a function of temperature and concentration by means of the Knudsen effusion technique. The concentration range 0 to 10 μg caesium/g graphite was investigated and it was concluded that a Langmuir adsorption situation exists under these conditions. (author)

  12. Bibliography on vapour pressure isotope effects

    International Nuclear Information System (INIS)

    Illy, H.; Jancso, G.

    1976-03-01

    The bibliography of research on vapour pressure isotope effects from 1919 to December 1975 is presented in chronological order. Within each year the references are listed alphabetically according to the name of the first author of each work. The bibliography is followed by a Compound Index containing the names o compounds, but the type of isotopic substituation is not shown. The Author Index includes all authors of the papers. (Sz.N.Z.)

  13. The vapour pressure of americium(III) chloride

    International Nuclear Information System (INIS)

    Schuster, W.

    1983-01-01

    Based on the method described by Fischer, an ultramicro-size appratus was developed for static determination of the saturation vapour pressure of highly radioactive materials. The apparatus was tested with MgCl 2 , MnCl 2 , HoCl 3 and ScF 3 . The vapour pressure curves of MgCl 2 and MnCl 2 were in good agreement with other publications and thus proved the efficiency of the apparatus in spite of its difficulties of handling. The values measured for HoCl 3 and ScF 3 differed from those of earlier publications. However, these deviations have been observed before and may be the result of the different measuring principles of static and dynamic methods. For AmCl 3 , the following vapour pressure equation was established: log psub(Torr)=-(11826/T)+10.7. The thermodynamic parameters of the evaporation process were calculated on this basis, and the values for AmBr 3 and PnCl 3 were determined by extrapolation. (orig.) [de

  14. Vapour pressures and enthalpies of vapourization of a series of the linear aliphatic nitriles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Koutek, Bohumir; Doubsky, Jan

    2005-01-01

    Vapour pressures and the molar enthalpies of vapourization ΔlgHm-bar of the linear aliphatic nitriles C 7 -C 17 have been determined by the transpiration method. Kovat's indices of these compounds were measured by capillary gas-chromatography. A linear correlation of enthalpies of vapourization ΔlgHm-bar at T=298.15 K of the nitriles studied with the Kovats indices has been found

  15. Synthesis and investigation of saturated vapor pressure of lanthanum, praseodymium and neodymium tris-isopropylcyclopentadienyls

    International Nuclear Information System (INIS)

    Devyatykh, G.G.; Chernyaev, N.P.; Zverev, Yu.B.; Gavrishchuk, E.M.; Runovskaya, I.V.; Krupnova, Eh.F.; Chesnokova, S.G.

    1980-01-01

    Lanthanum, praseodymium and neodymium tris-isopropylcyclopentadienyls are synthesized with corresponding unhydrous chlorides in tetrahydrofuran solution. Saturated vapour pressure of substances obtained is studied in the 150-262 deg C range by the statistic method using a compensation zero-manometer. Vapour pressure of the compounds in question is shown to increase with the growth of the rare earth element number [ru

  16. Sound speed of isobaric heat capacity in the saturated and superheated vapour of cesium, rubidium and potassium

    International Nuclear Information System (INIS)

    Novikov, I.I.; Roschupkin, V.V.

    1985-01-01

    The paper reviews the work carried out on the thermodynamic properties of alkali metal vapours. The most systematic investigations concern the sound velocity measurements for saturated and superheated vapours of caesium, for saturated vapour of rubidium, and for superheated vapour of potassium. The Joule-Thompson coefficient has been studied in caesium vapour, and the isobaric heat capacity of potassium vapour has also been examined. The experimental methods for all these experiments are described, and the data obtained are presented in tabular form. (U.K.)

  17. Vapour pressure isotope effects in liquid hydrogen chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.N.C.; Calado, J.C.G. (Instituto Superior Tecnico, Lisbon (Portugal)); Jancso, Gabor (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics)

    1992-08-10

    The difference between the vapour pressures of HCl and DCl has been measured over the temperature range 170-203 K by a differential manometric technique in a precision cryostat. In this range the vapour pressure of HCl is higher than that of DCl by 3.2% at 170 K, decreasing to 0.9% at 200 K. The reduced partition function ratios f[sub l]/f[sub g] derived from the vapour pressure data can be described by the equation ln(f[sub l]/f[sub g]) = (3914.57[+-]10)/T[sup 2] - (17.730[+-]0.055)/T. The experimentally observed H-D vapour pressure isotope effect, together with the values on the [sup 35]Cl-[sup 37]Cl isotope effect available in the literature, is interpreted in the light of the statistical theory of isotope effects in condensed systems by using spectroscopic data of the vapour and liquid phases. The results indicate that the rotation in liquid hydrogen chloride is hindered. Temperature-dependent force constants for the hindered translational and rotational motions were invoked in order to obtain better agreement between the model calculation and experiment. (author).

  18. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    Science.gov (United States)

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  19. Dew-point measurements at high water vapour pressure

    Science.gov (United States)

    Lomperski, S.; Dreier, J.

    1996-05-01

    A dew-point meter capable of measuring humidity at high vapour pressure and high temperature has been constructed and tested. Humidity measurements in pure steam were made over the temperature range 100 - 1500957-0233/7/5/003/img1C and a vapour pressure range of 1 - 4 bar. The dew-point meter performance was assessed by comparing measurements with a pressure transmitter and agreement between the two was within 0957-0233/7/5/003/img2% relative humidity. Humidity measurements in steam - air mixtures were also made and the dew-point meter readings were compared to those of a zirconia oxygen sensor. For these tests the dew-point meter readings were generally within 0957-0233/7/5/003/img2% relative humidity of the oxygen sensor measurements.

  20. Pressure of saturated vapor of yttrium and zirconium acetylacetonates

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1984-08-01

    The static method and the flow method using /sup 91/Y and /sup 95/Zr radioactive indicators have been applied to determine pressure of saturated vapour of yttrium and zirconium acetylacetonates. Values of thermodynamic functions ..delta..Hsub(subl)=(98+-16)kJ/mol and ..delta..Ssub(subl.)=(155+-30)J/mol x K are calculated for sublimation of yttrium acetylacetonate. For sublimation of zirconium acetylacetonates ..delta..Hsub(subl) equals (116+-38) kJ/mol and ..delta..Ssub(subl) is equal to (198+-65) J/molxK.

  1. Study of vapour pressure of lithium nitrate solutions in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey [Abteilung Physikalische Chemie, Institut fuer Chemie, Universitaet Rostock, Hermannstrasse, 14, D-18055 Rostock (Germany); Safarov, Javid [Heat and Refrigeration Techniques, Azerbaijan Technical University, H. Javid Avn. 25, AZ1073 Baku (Azerbaijan)]. E-mail: javids@azdata.net; Bich, Eckard [Abteilung Physikalische Chemie, Institut fuer Chemie, Universitaet Rostock, Hermannstrasse, 14, D-18055 Rostock (Germany); Hassel, Egon [Lehrstuhl fuer Technische Thermodynamik, Fakultaet Maschinenbau und Schiffstechnik, Universitaet Rostock, Albert-Einstein-Str. 2, D-18059 Rostock (Germany); Heintz, Andreas [Abteilung Physikalische Chemie, Institut fuer Chemie, Universitaet Rostock, Hermannstrasse, 14, D-18055 Rostock (Germany)

    2006-05-15

    Vapour pressure p of (LiNO{sub 3} + C{sub 2}H{sub 5}OH) solutions at T = (298.15 to 323.15) K were measured, osmotic, activity coefficients ({phi}, {gamma}) and activity of solvent a {sub s} have been evaluated. The experiments were carried out in the molality range m = (0.19125 to 2.21552) mol . kg{sup -1}. The Antoine equation was used for the empirical description of the experimental vapour pressure results and the (Pitzer + Mayorga) model with inclusion of Archer's ionic strength dependence of the third virial coefficient for the calculated osmotic coefficients were used. The parameters of the Archer for the extended Pitzer model was used for the evaluation of activity coefficients.

  2. Calculation of vapour pressures over mixed carbide fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Mathews, C.K.

    1988-01-01

    Vapour pressure over the uranium-plutonium mixed carbide (Usub(l-p) Pusub(p C) was calculated in the temperature range of 1300-9000 for various compositions (p=0.1 to 0.7). Effects of variation of the sesquicarbide content were also studied. The principle of corresponding states was applied to UC and mixed carbides to obtain the equation of state. (author)

  3. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography.

    Science.gov (United States)

    Haftka, Joris J H; Parsons, John R; Govers, Harrie A J

    2006-11-24

    A gas chromatographic method using Kováts retention indices has been applied to determine the liquid vapour pressure (P(i)), enthalpy of vaporization (DeltaH(i)) and difference in heat capacity between gas and liquid phase (DeltaC(i)) for a group of polycyclic aromatic hydrocarbons (PAHs). This group consists of 19 unsubstituted, methylated and sulphur containing PAHs. Differences in log P(i) of -0.04 to +0.99 log units at 298.15K were observed between experimental values and data from effusion and gas saturation studies. These differences in log P(i) have been fitted with multilinear regression resulting in a compound and temperature dependent correction. Over a temperature range from 273.15 to 423.15K, differences in corrected log P(i) of a training set (-0.07 to +0.03 log units) and a validation set (-0.17 to 0.19 log units) were within calculated error ranges. The corrected vapour pressures also showed a good agreement with other GC determined vapour pressures (average -0.09 log units).

  4. Volatility of components of saturated vapours of UCl4-CsCl and UCl4-LiCl molten mixtures

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.; Salyulev, A.B.; Komarov, V.E.; Posokhin, Yu.V.; Afonichkin, V.K.

    1979-01-01

    The flow method has been used for measuring the volatility of the components from UCl 4 -CsCl and UCl 4 -LiCl melted mixtures containing 2.0, 5.0, 12.0, 25.0, 33.0, 50.0, 67.0, and 83.0 mol.% of UCl 4 within the temperature ranges of 903-1188 K and 740-1200 K, respectively. The chemical composition of saturated vapours above the melted salts has been determined. The melted mixtures in question exhibit negative deviation from ideal behaviour. Made was the conclusion about the presence in a vapour phase, along with monomeric UCl 4 , LiCl, CsCl and Li 2 Cl 2 , Cs 2 Cl 2 dimers of double compounds of the MeUCl 5 most probable composition. Their absolute contribution into a total pressure above the UCl 4 -CsCl melted mixtures is considerably smaller than above the UCl 4 -LiCl mixtures

  5. Low pressure chemical vapour deposition of temperature resistant colour filters

    International Nuclear Information System (INIS)

    Verheijen, J.; Bongaerts, P.; Verspui, G.

    1987-01-01

    The possibility to deposit multilayer colour filters, based on optical inference, by means of Low Pressure Chemical Vapour Deposition (LPCVD) was investigated. The filters were made in a standard LPCVD system by alternate deposition of Si/sub 3/N/sub 4/ and SiO/sub 2/ layers. This resulted in filters with excellent colour uniformity on glass and quartz substrates. No difference was measured between theoretically calculated transmission and the transmission of the filters deposited by LPCVD. Temperature treatment at 600 0 C in air air showed no deterioration of filter quality and optical properties

  6. Tearing mode saturation with finite pressure

    International Nuclear Information System (INIS)

    Lee, J.K.

    1988-01-01

    With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)

  7. A static analytical apparatus for vapour pressures and (vapour + liquid) phase equilibrium measurements with an internal stirrer and view windows

    International Nuclear Information System (INIS)

    Guo, Hao; Gong, Maoqiong; Dong, Xueqiang; Wu, Jianfeng

    2014-01-01

    Highlights: • A new static analytical apparatus for vapour pressures and VLE data was designed. • The {R600a + R245fa} system was selected as a verification system. • Correlation of VLE data was made using PRvdWs and PRHVNRTL model. • Good agreement can be found with the literature data. - Abstract: A new static analytical apparatus for reliable vapour pressures and (vapour + liquid) equilibrium data of small-scale cell (≈150 mL) with internal stirrer and view windows was designed. In this work, the compositions of the phases were analyzed by a gas chromatograph connected on-line with TCD detectors. The operating pressure ranges from (0 to 3000) kPa, and the operating temperature range from (293 to 400) K. Phase equilibrium data for previously reported systems were first measured to test the credibility of the newly developed apparatus. The test included vapour pressure of 1,1,1,3,3-pentafluoropropane (R245fa) and isobutane (R600a), VLE of the (R600a + R245fa) system from T = (293.150 to 343.880) K. The measured VLE data are regressed with thermodynamic models using Peng–Robinson EoS with two different models, viz. the van der Waals mixing rule, and the Huron–Vidal mixing rule utilising the non-random two-liquid activity coefficient model. Thermodynamic consistency testing is also performed for the newly measured experimental data

  8. Vapour pressure of D2O - Ice at temperatures below 237 K

    International Nuclear Information System (INIS)

    Heras, J.M.; Asensio, M.C.; Estiu, G.; Viscido, L.

    1984-01-01

    Accurate measurements of heavy water ice vapour pressures between 193 and 253 K have been carried out and an equation based on thermodynamic data has been derived in order to calculate the D 2 O-ice vapour pressures between 173 and 273 K. The agreement between our calculated vapour pressures and the available experimental data including those in this paper, is very good. The comparison between the theoretical calculations of H 2 O-ice and D 2 O-ice vapour pressures confirms the experimental evidence that H 2 O-ice is more volatile than D 2 O-ice at all temperatures in agreement with the vapour isotopic effect theory (VPIE).(author)

  9. Vapour pressures and enthalpies of vaporization of a series of the ferrocene derivatives

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Krol, Olesya V.; Varushchenko, Raisa M.; Chelovskaya, Nelly V.

    2007-01-01

    Vapour pressures of the ferrocene, ferrocene-methanol, benzyl-ferrocene, and benzoyl-ferrocene have been determined by the transpiration method. The molar enthalpies of sublimation Δ cr g H m and of vaporization Δ l g H m have been determined from the temperature dependence of the vapour pressure. The molar enthalpies of fusion of these compounds were measured by d.s.c. The measured data sets of vaporization, sublimation, and fusion enthalpies were checked for internal consistency

  10. Thermodynamic properties of the liquid Hg-Tl alloys determined from vapour pressure measurements

    Directory of Open Access Journals (Sweden)

    Gierlotka W.

    2002-01-01

    Full Text Available The partial vapour pressure of mercury over liquid Hg-Tl liquid solutions were determined in the temperature range from 450 to 700 K by direct vapour pressure measurements carried out with the quartz gauge. From the measured ln pHg vs. T relationships activities of mercury were determined. Using Redlich-Kister formulas logarithms of the activity coefficients were described with the following equations: From which all thermodynamic functions in the solutions can be derived.

  11. Solvation-based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation

    International Nuclear Information System (INIS)

    Senol, Aynur

    2013-01-01

    Highlights: • Vapour pressures of (solvent + salt) systems have been estimated through a solvation-based model. • Two structural forms of the generalized solvation model using the Antoine equation have been performed. • A simplified concentration-dependent vapour pressure model has been also processed. • The model reliability analysis has been performed in terms of a log-ratio objective function. • The reliability of the models has been interpreted in terms of the statistical design factors. -- Abstract: This study deals with modelling the vapour pressure of a (solvent + salt) system on the basis of the principles of LSER. The solvation model framework clarifies the simultaneous impact of several physical variables such as the vapour pressure of a pure solvent estimated by the Antoine equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been analyzed independently the performance of two structural forms of the generalized model, i.e., a relation depending on an integration of the properties of the solvent and the ionic salt and a relation on a reduced property-basis. A simplified concentration-dependent vapour pressure model has been also explored and implemented on the relevant systems. The vapour pressure data of sixteen (solvent + salt) systems have been processed to analyze statistically the reliability of existing models in terms of a log–ratio objective function. The proposed vapour pressure models match relatively well the observed performance, yielding the overall design factors of 1.066 and 1.073 for the solvation-based models with the integrated and reduced properties, and 1.008 for the concentration-based model, respectively

  12. Volatility of components of saturated vapours of UCl/sub 4/-CsCl and UCl/sub 4/-LiCl molten mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, M V; Kudyakov, V Ya; Salyulev, A B; Komarov, V E; Posokhin, Yu V; Afonichkin, V K

    1979-01-01

    The flow method has been used for measuring the volatility of the components from UCl/sub 4/-CsCl and UCl/sub 4/-LiCl melted mixtures containing 2.0, 5.0, 12.0, 25.0, 33.0, 50.0, 67.0, and 83.0 mol.% of UCl/sub 4/ within the temperature ranges of 903-1188 K and 740-1200 K, respectively. The chemical composition of saturated vapours above the melted salts has been determined. The melted mixtures in question exhibit negative deviation from ideal behaviour. Made was the conclusion about the presence in a vapour phase, along with monomeric UCl/sub 4/, LiCl, CsCl and Li/sub 2/Cl/sub 2/, Cs/sub 2/Cl/sub 2/ dimers of double compounds of the MeUCl/sub 5/ most probable composition. Their absolute contribution into a total pressure above the UCl/sub 4/-CsCl melted mixtures is considerably smaller than above the UCl/sub 4/ -LiCl mixtures.

  13. Measurement and modeling of high-pressure (vapour + liquid) equilibria of (CO2 + alcohol) binary systems

    International Nuclear Information System (INIS)

    Gutierrez, Jorge E.; Bejarano, Arturo; Fuente, Juan C. de la

    2010-01-01

    An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at 2 + 1-propanol), (CO 2 + 2-methyl-1-propanol), (CO 2 + 3-methyl-1-butanol), and (CO 2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO 2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.

  14. Vapour pressures and heat capacity measurements on the C7-C9 secondary aliphatic alcohols

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Schick, Christoph

    2007-01-01

    Molar enthalpies of vaporization of secondary C 7 -C 9 alkanols were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. The measured data sets were checked for internal consistency successfully. A large number of the primary experimental results on temperature dependences of vapour pressures of secondary alcohols have been collected from the literature and have been treated uniform in order to derive their vaporization enthalpies at the reference temperature 298.15 K. This collection, together with our experimental results, have helped to ascertain the database for branched aliphatic alcohols

  15. Advancements, Challenges and Prospects of Chemical Vapour Pressure at Atmospheric Pressure on Vanadium Dioxide Structures

    Directory of Open Access Journals (Sweden)

    Charalampos Drosos

    2018-03-01

    Full Text Available Vanadium (IV oxide (VO2 layers have received extensive interest for applications in smart windows to batteries and gas sensors due to the multi-phases of the oxide. Among the methods utilized for their growth, chemical vapour deposition is a technology that is proven to be industrially competitive because of its simplicity when performed at atmospheric pressure (APCVD. APCVD’s success has shown that it is possible to create tough and stable materials in which their stoichiometry may be precisely controlled. Initially, we give a brief overview of the basic processes taking place during this procedure. Then, we present recent progress on experimental procedures for isolating different polymorphs of VO2. We outline emerging techniques and processes that yield in optimum characteristics for potentially useful layers. Finally, we discuss the possibility to grow 2D VO2 by APCVD.

  16. Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl acetates

    Czech Academy of Sciences Publication Activity Database

    Krasnykh, E. L.; Verevkin, S. P.; Koutek, Bohumír; Doubský, Jan

    2006-01-01

    Roč. 38, č. 6 (2006), s. 717-723 ISSN 0021-9614 Institutional research plan: CEZ:AV0Z40550506 Keywords : aliphatic acetates * transpiration method * vapour pressure * enthalpy of vaporization Subject RIV: CC - Organic Chemistry Impact factor: 1.842, year: 2006

  17. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2006-01-01

    A gas chromatographic method using Kovats retention indices has been applied to determine the liquid vapour pressure (P-i), enthalpy of vaporization (Delta H-i) and difference in heat capacity between gas and liquid phase (Delta C-i) for a group of polycyclic aromatic hydrocarbons (PAHs). This group

  18. Determining the vapour pressures of plant volatiles from gas chromatographic retention data

    Czech Academy of Sciences Publication Activity Database

    Hoskovec, Michal; Grygarová, D.; Cvačka, Josef; Streinz, Ludvík; Zima, J.; Verevkin, S. P.; Koutek, Bohumír

    2005-01-01

    Roč. 1083, - (2005), s. 161-172 ISSN 0021-9673 Institutional research plan: CEZ:AV0Z4055905 Keywords : vapour pressure * thermodinamic parameters * plant volatiles Subject RIV: CC - Organic Chemistry Impact factor: 3.096, year: 2005

  19. Vapour Pressure and Adiabatic Cooling from Champagne: Slow-Motion Visualization of Gas Thermodynamics

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The recent introduction of inexpensive high-speed cameras offers a new experimental approach to many simple but fast-occurring events in physics. In this paper, the authors present two simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature vapour pressure effects…

  20. Hydrogen and carbon vapour pressure isotope effects in liquid fluoroform studied by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Takao; Mitome, Ryota; Yanase, Satoshi [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2017-06-01

    H/D and {sup 12}C/{sup 13}C vapour pressure isotope effects (VPIEs) in liquid fluoroform (CHF{sub 3}) were studied at the MPW1PW91/6-31 ++ G(d) level of theory. The CHF{sub 3} monomer and CHF{sub 3} molecules surrounded by other CHF{sub 3} molecules in every direction in CHF{sub 3} clusters were used as model molecules of vapour and liquid CHF{sub 3}. Although experimental results in which the vapour pressure of liquid {sup 12}CHF{sub 3} is higher than that of liquid {sup 12}CDF{sub 3} and the vapour pressure of liquid {sup 13}CHF{sub 3} is higher than that of liquid {sup 12}CHF{sub 3} between 125 and 212 K were qualitatively reproduced, the present calculations overestimated the H/D VPIE and underestimated the {sup 12}C/{sup 13}C VPIE. Temperature-dependent intermolecular interactions between hydrogen and fluorine atoms of neighbouring molecules were required to explain the temperature dependences of both H/D and {sup 12}C/{sup 13}C VPIEs.

  1. On the propagation of a coupled saturation and pressure front

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  2. Measurement and correlation of vapour pressures of pyridine and thiophene with [EMIM][SCN] ionic liquid

    International Nuclear Information System (INIS)

    Khelassi-Sefaoui, Asma; Mutelet, Fabrice; Mokbel, Ilham; Jose, Jacques; Negadi, Latifa

    2014-01-01

    Highlights: • VLE of (pyridine + [EMIM][SCN]), or (thiophene + [EMIM][SCN]) binary mixtures were measured. • The investigated temperatures are 273 K to 363 K. • The PC-SAFT equation of state has been used to correlate the vapour pressures of the binary systems. - Abstract: In this work (vapour + liquid) equilibrium (VLE) measurements were performed on binary systems of the ionic liquid 1-ethyl-3-methylimidazolium thiocynate [EMIM][SCN] with thiophene or pyridine at pressures close to the atmospheric pressure using a static device at temperatures between 273 K and 363 K. Experimental data were correlated by the PC-SAFT EoS. The binary interaction parameters k ij were optimised on experimental VLE data. The results obtained for the two binary mixtures studied in this paper indicate that the PC-SAFT EoS can be used to represent systems containing ionic liquids

  3. Vapour pressures for 1-(butoxymethoxy)butane (dibutoxymethane) and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (methyl nonafluorobutyl ether) over the pressure range of (15–80) kPa

    International Nuclear Information System (INIS)

    Gárate, María P.; Bejarano, Arturo; Fuente, Juan C. de la

    2016-01-01

    Highlights: • Vapour pressures of two pure potential dry-cleaning solvent were measured. • Measurements were made over the temperature range of (294.6–442.7) K. • Three commonly used vapour pressure equations were fitted to the experimental data. • The parameters of Antoine and Wagner type equations were estimated. • The relative deviations (rmsd) from the three vapour-pressure equations were <0.6%. - Abstract: Saturated pressures of 1-(butoxymethoxy)butane (dibutoxymethane) and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (methyl nonafluorobutyl ether), new potential solvents for dry-cleaning processes, were measured with a dynamic recirculation apparatus at a pressure range of (15–80) kPa, at temperatures of (390.4–442.7) K for dibutoxymethane and (294.6–322.4) K for methyl nonafluorobutyl ether. The vapour pressures were represented using the correlations of Antoine, extended Antoine and Wagner with relative root mean square deviations of, 1%, 6% and 0.6% for dibutoxymethane, and, 1%, 2% and 0.6% for methyl nonafluorobutyl ether, respectively. The experimental data of dibutoxymethane was compared with those available in literature, the result showed consistency between both data sets.

  4. Influence of capillary forces on water injection into hot rock, saturated with superheated vapour

    Energy Technology Data Exchange (ETDEWEB)

    Tsypkin, G.G. [Institute for Problems in Mechanics, RAS, Vernadskogo Ave. 101, 119420 Moscow (Russian Federation); Calore, C. [Istituto di Geoscienze e Georisorse - CNR, Sezione di Firenze, via La Pira 4, 50121 Florence (Italy)

    2007-07-15

    The results of a theoretical study and numerical analysis of the role of capillary pressure of cold water injection into depleted geothermal reservoirs are presented. A simplified 1-D mathematical model is developed, that describes the motion of a sharp vaporization front. Some asymptotic estimates for a wide range of parameters are given and a similarity solution is derived. Analytical results are then compared with those obtained from the numerical reservoir simulator TOUGH2, showing a good agreement between the two. (author)

  5. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  6. Vapour pressure and enthalpy of vaporization of aliphatic poly-amines

    International Nuclear Information System (INIS)

    Efimova, Anastasia A.; Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Chernyak, Yury

    2010-01-01

    Molar enthalpies of vaporization of aliphatic poly-amines: 1,4-dimethylpiperazine [106-58-1], 1-(2-aminoethyl)-piperazine, [140-31-8], 1-(2-aminoethyl)-4-methyl-piperazine [934-98-5], and triethylenetetramine [112-24-3] were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of the primary experimental results on temperature dependences of vapour pressures of the parent compounds have been collected from the literature and have been treated uniformly in order to derive vaporization enthalpies of poly-amines at the reference temperature 298.15 K. An internal consistency check was performed on enthalpy of vaporization values for poly-amines studied in this work.

  7. Vapour pressures of selected organic compounds down to 1 mPa, using mass-loss Knudsen effusion method

    International Nuclear Information System (INIS)

    Fonseca, José M.S.; Gushterov, Nikola; Dohrn, Ralf

    2014-01-01

    Graphical abstract: - Highlights: • A recently described mass-loss Knudsen apparatus was used for measurements of vapour pressures down to around 1 mPa. • Complementary calorimetric studies were performed in a Calvet-type calorimeter. • New vapour pressures are given for benzoic acid and benzanthrone, in ranges in which no consistent data existed. • Vapour pressures for solid n-octadecane are presented, correcting existing values from literature. - Abstract: A recently developed Knudsen effusion apparatus was improved and used for measurements of vapour pressures of selected organic compounds. Calorimetric studies were conducted using a Calvet-type calorimeter, complementing the information obtained for the vapour pressures and facilitating the modelling and analysis of the data. Vapour pressures of benzoic acid, a reference substance, were determined at temperatures between 269 K and 317 K, corresponding to a pressure range from 2 mPa to 1 Pa, extending the range of results available in the literature to lower pressures. Benzanthrone was studied between temperatures 360 K and 410 K (5 mPa–1 Pa) in order to test the apparatus at higher temperatures. Values presented in the literature for the vapour pressure of solid n-octadecane, one of the most promising compounds to be used as “phase change material” for textile applications, were found inconsistent with the triple point of the substance. Sublimation pressures were measured for this compound between T = 286 K and 298 K (2–20 mPa) allowing the correction of the existing values. Finally, vapour pressures of diphenyl carbonate, a compound of high industrial relevance for its use in the production of polycarbonates, were determined from T = 302 K to 332 K (0.02–1 Pa)

  8. Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Directory of Open Access Journals (Sweden)

    R. Valorso

    2011-07-01

    Full Text Available The sensitivity of the formation of secondary organic aerosol (SOA to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A. Vapour pressures (Pvap were estimated with three commonly used structure activity relationships. The values of Pvap were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation, differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NOx conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the Pvap estimation method.

  9. The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol

    Directory of Open Access Journals (Sweden)

    M. H. Barley

    2010-01-01

    Full Text Available A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.

  10. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can...... be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several...... operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water...

  11. Experimental determination of cesium saturated vapor pressure in the 483/642 deg K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gushchin, G I; Subbotin, V A; Khachaturov, Eh Kh [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Obninsk. Fiziko-Ehnergeticheskij Inst.

    1975-07-01

    Test results of saturated cesium vapour pressure in the temperature range of 483.13-642 deg K and pressure range of 15.77-1.389 N/m/sup 2/ by direct static method are presented. The testing system comprises a differential bellows-type pressure sensor, a thermostatic unit and a gas system with V-shaped oil manometer used for argon-assisted sensor calibration. The static sensor characteristic approaches linearity in the pressure range of 10-600 N/m/sup 2/. The greatest non-linearity is observed at low pressures (10-40 N/m/sup 2/) and does not exceed 3-4%. Sensor sensitivity is 0.39 mV/N/m/sup 2/ in this pressure range. The characteristic hysteresis is 0.5% and below. With pressures greater than 600 N/m/sup 2/, the sensor sensitivity gradually decreases by 12% while the characteristic hysteresis increases to 2-3%. A brief description of the experimental procedure is offered. The present results are compared with other authors' data.

  12. Evaporation of a volatile organic compound in a hygroscopic soil - influence of the airflow and its VOC vapour saturation

    OpenAIRE

    Naon , Bétaboalé; Benet , Jean-Claude; Cousin , Bruno; Cherblanc , Fabien; Chammari , Ali

    2013-01-01

    International audience; This article presents an experimental and theoretical study of VOC volatilization in soil during a decontamination process by vapour extraction or venting. A phase change law is proposed in the case of a sandy-silty soil when the convective gaseous phase is vapour-charged. A simple experimental method for analyzing the phase change is presented. Finally, an efficiency coefficient is introduced to quantify the contribution of airflow velocity on venting.

  13. Spontaneous condensation of CHF2Cl vapour at high reduced pressures

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Kissau, G.; Lippig, V.; Schorsch, R.

    1977-01-01

    Spontaneous condensation at high reduced pressures was investigated in stationary jets of difluoromonochlormethane vapour (refrigerant R 22) expanding within an annular Laval nozzle. The onset of condensation in the so-called Wilson point was determined by measuring the static pressure along the nozzle axis. For 33 expansions carried out with the same nozzle geometry at different stagnation conditions - with dew points ranging from 32 to 64 per cent of the critical pressure - the Wilson points can be represented by a common Wilson line, which can be extended to the critical point. Considering the real gas properties of the supersaturated vapour, one obtains nucleation rates for the states on the measured Wilson line, which are considerably lower than those resulting from the usual ideal-gas calculation, the difference amounting from 4 to 9 orders of magnitude in the investigated region. A comparison with the collision rate of single molecules shows that the nucleation rates calculated for the real gas according to the classical Volmer-Frenkel thoery are plausible. An adequate interpretation of the experimental results on CHF 2 Cl with the Lothe-Pound theory, however, seems not possible, since the nucleation rate due to that theory would nearly attain and - at higher densities - even exceed the molecular collision rate. (orig.) [de

  14. Vapour pressures and vapour-liquid equilibria of propyl acetate and isobutyl acetate with ethanol or 2-propanol at 0.15 MPa. Binary systems

    Directory of Open Access Journals (Sweden)

    Susial Pedro

    2012-01-01

    Full Text Available Vapour pressures of propyl acetate, isobutyl acetate and 2-propanol from 0.004 to 1.6 MPa absolute pressure and VLE data for the binary systems propyl acetate+ethanol, propyl acetate+2-propanol, isobutyl acetate+ethanol and isobutyl acetate+2-propanol at 0.15 MPa have been determined. The experimental VLE data were verified with the test of van Ness and the Fredenslund criterion. The propyl acetate+ethanol or +2-propanol binary systems have an azeotropic point at 0.15 MPa. The different versions of the UNIFAC and ASOG group contribution models were applied.

  15. SURGTANK, Steam Pressure, Saturation Temperature or Reactor Surge Tank

    International Nuclear Information System (INIS)

    Gorman, D.J.; Gupta, R.K.

    2001-01-01

    1 - Description of problem or function: SURGTANK generates the steam pressure, saturation temperature, and ambient temperature history for a nuclear reactor steam surge tank (pressurizer) in a state of thermodynamic equilibrium subjected to a liquid insurge described by a specified time history of liquid levels. It is capable also of providing the pressure and saturation temperature history, starting from thermodynamic equilibrium conditions, for the same tank subjected to an out-surge described by a time history of liquid levels. Both operations are available for light- or heavy- water nuclear reactor systems. The tank is assumed to have perfect thermal insulation on its outer wall surfaces. 2 - Method of solution: Surge tank geometry and initial liquid level and saturation pressure are provided as input for the out-surge problem, along with the prescribed time-sequence level history. SURGTANK assumes a reduced pressure for the end of the first change in liquid level and determines the associated change of entropy for the closed system. The assumed pressure is adjusted and the associated change in entropy recalculated until a pressure is attained for which no change occurs. This pressure is recorded and used as the beginning pressure for the next level increment. The system is then re-defined to exclude the small amount of liquid which has left the tank, and a solution for the pressure at the end of the second level increment is obtained. The procedure is terminated when the pressure at the end of the final increment has been determined. Surge tank geometry, thermal conductivity, specific heat, and density of tank walls, initial liquid level, and saturation pressure are provided as input for the insurge problem, along with the prescribed time-sequence level history. SURGTANK assumes a slightly in- creased pressure for the end of the first level, the inner tank sur- face is assumed to follow saturation temperature, linearly with time, throughout the interval, and

  16. EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions

    Directory of Open Access Journals (Sweden)

    S. Compernolle

    2011-09-01

    Full Text Available We present EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects, a method to predict (subcooled liquid pure compound vapour pressure p0 of organic molecules that requires only molecular structure as input. The method is applicable to zero-, mono- and polyfunctional molecules. A simple formula to describe log10p0(T is employed, that takes into account both a wide temperature dependence and the non-additivity of functional groups. In order to match the recent data on functionalised diacids an empirical modification to the method was introduced. Contributions due to carbon skeleton, functional groups, and intramolecular interaction between groups are included. Molecules typically originating from oxidation of biogenic molecules are within the scope of this method: aldehydes, ketones, alcohols, ethers, esters, nitrates, acids, peroxides, hydroperoxides, peroxy acyl nitrates and peracids. Therefore the method is especially suited to describe compounds forming secondary organic aerosol (SOA.

  17. Vapour pressures and osmotic coefficients of binary mixtures containing alcohol and pyrrolidinium-based ionic liquids

    International Nuclear Information System (INIS)

    Calvar, N.; Domínguez, Á.; Macedo, E.A.

    2013-01-01

    Highlights: • Osmotic coefficients of alcohols with pyrrolidinium ILs are determined. • Experimental data were correlated with extended Pitzer model of Archer and MNRTL. • Mean molal activity coefficients and excess Gibbs free energies were calculated. • The results have been interpreted in terms of interactions. -- Abstract: The osmotic and activity coefficients and vapour pressures of mixtures containing primary (1-propanol, 1-butanol and 1-pentanol) and secondary (2-propanol and 2-butanol) alcohols with pyrrolidinium-based ionic liquids (1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide, C 4 MpyrNTf 2 , and 1-butyl-1-methyl pyrrolidinium trifluoromethanesulfonate, C 4 MpyrTFO) have been experimentally determined at T = 323.15 K. For the experimental measurements, the vapour pressure osmometry technique has been used. The results on the influence of the structure of the alcohol and of the anion of the ionic liquid on the determined properties have been discussed and compared with literature data. For the correlation of the osmotic coefficients obtained, the Extended Pitzer model of Archer and the Modified Non-Random Two Liquids model were applied. The mean molal activity coefficients and the excess Gibbs energy for the studied mixtures were calculated from the parameters obtained in the correlation

  18. High mean water vapour pressure promotes the transmission of bacillary dysentery.

    Directory of Open Access Journals (Sweden)

    Guo-Zheng Li

    Full Text Available Bacillary dysentery is an infectious disease caused by Shigella dysenteriae, which has a seasonal distribution. External environmental factors, including climate, play a significant role in its transmission. This paper identifies climate-related risk factors and their role in bacillary dysentery transmission. Harbin, in northeast China, with a temperate climate, and Quzhou, in southern China, with a subtropical climate, are chosen as the study locations. The least absolute shrinkage and selectionator operator is applied to select relevant climate factors involved in the transmission of bacillary dysentery. Based on the selected relevant climate factors and incidence rates, an AutoRegressive Integrated Moving Average (ARIMA model is established successfully as a time series prediction model. The numerical results demonstrate that the mean water vapour pressure over the previous month results in a high relative risk for bacillary dysentery transmission in both cities, and the ARIMA model can successfully perform such a prediction. These results provide better explanations for the relationship between climate factors and bacillary dysentery transmission than those put forth in other studies that use only correlation coefficients or fitting models. The findings in this paper demonstrate that the mean water vapour pressure over the previous month is an important predictor for the transmission of bacillary dysentery.

  19. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Huang, Zhixian; Jiang, Haiming; Li, Ling; Wang, Hongxing; Qiu, Ting

    2015-01-01

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF 3 COOCH 2 CH 3 ) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R 2 ) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  20. Vapour pressures of uranium and uranium nitride over UN(s)

    International Nuclear Information System (INIS)

    Venugopal, V.; Kulkarni, S.G.; Subbanna, C.S.; Sood, D.D.

    1992-01-01

    The vaporization of uranium mononitride is investigated in the temperature range 1757 to 2400 K by Knudsen effusion cell mass spectrometry. The vaporization occurs incongruently by the preferential loss of nitrogen and the formation of U(1) in equilibrium with UN phase. In addition the vapour phase has U(g) and UN(g). The vapour pressure of U(g) and UN(g) are measured and their dependence with temperatures can be represented by: log(p U (Pa))=[(10.59±0.18)-(26857±357)/T(K)] (1757 UN (Pa))=[(12.19±0.57)-(37347±235)/T(K)] (2190 f G 0 (UN, g, T)(kJ/mol)=352.75-0.0494 T(K). The equilibrium constants for the dissociation of UN(s)(K 1 ) and UN(g)(K 2 ) into gaseous elements are given by: log(K 1 )=(13.03±0.18)-(42857±357)/T(K), log(K 2 )=(0.84±0.60)-(5510±427)/T(K). (orig.)

  1. Saturated vapor pressure of lutetium tris-acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1983-12-01

    By the statical method using /sup 177/Lu radioactive isotope the saturated vapor pressure of anhydrous lutetium acetylacetonate at 130 to 160 deg is determined. The calculations are carried out assuming the vapor to be monomolecular. The equation of lgP versus 1/T takes the form: lg Psub((mmHg))=(8.7+-1.6)-(4110+-690)/T. The thermodynamical characteristics of LuA/sub 3/ sublimation are calculated to be ..delta..Hsub(subl.)=79+-13 kJ/mol; ..delta..Ssub(subl.)=111+-20 J/kxmol.

  2. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming

    DEFF Research Database (Denmark)

    Marchin, Renée M.; Broadhead, Alice A.; Bostic, Laura E.

    2016-01-01

    chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata......Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.......5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing...

  3. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  4. Accelerated growth of oxide film on aluminium alloys under steam: Part I: Effects of alloy chemistry and steam vapour pressure on microstructure

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Gudla, Visweswara C.; Jellesen, Morten S.

    2015-01-01

    of the oxide layeras well as the compactness increased with steam vapour pressure. The increase in vapour pressure also resulted in a better coverage over the intermetallic particles. Oxide layer showed a layered structure with more compact layer at the Al interface and a nano-scale needle like structure...

  5. The vapour pressure of water as a function of solute concentration above aqueous solutions of fructose, sucrose, raffinose, erythritol, xylitol, and sorbitol

    DEFF Research Database (Denmark)

    Cooke, S.A.; Jonsdottir, Svava Osk; Westh, Peter

    2002-01-01

    The vapour pressure of water above an aqueous solution of sucrose at T = 298.06 K has been measured for 9 sucrose mole fractions up to 0.12. Vapour pressure measurements have also been made on aqueous solutions of meso-erythritol, xylitol, sorbitol, fructose, and raffinose at T = 317.99 K...

  6. Measurement and modeling of high-pressure (vapour + liquid) equilibria of (CO{sub 2} + alcohol) binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Jorge E.; Bejarano, Arturo [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.c [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2010-05-15

    An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at <5%. Complementary isothermal (vapour + liquid) equilibria results are reported for the (CO{sub 2} + 1-propanol), (CO{sub 2} + 2-methyl-1-propanol), (CO{sub 2} + 3-methyl-1-butanol), and (CO{sub 2} + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO{sub 2} + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.

  7. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles......The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low...... volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...

  8. Chemical vapour deposition of silicon under reduced pressure in a hot-wall reactor: Equilibrium and kinetics

    International Nuclear Information System (INIS)

    Langlais, F.; Hottier, F.; Cadoret, R.

    1982-01-01

    Silicon chemical vapour deposition (SiH 2 Cl 2 /H 2 system), under reduced pressure conditions, in a hot-wall reactor, is presented. The vapour phase composition is assessed by evaluating two distinct equilibria. The homogeneous equilibrium , which assumes that the vapour phase is not in equilibrium with solid silicon, is thought to give an adequate description of the vapour phase in the case of low pressure, high gas velocities, good temperature homogeneity conditions. A comparison with heterogeneous equilibrium enables us to calculate the supersaturation so evidencing a highly irreversible growth system. The experimental determination of the growth rates reveals two distinct temperature ranges: below 1000 0 C, polycrystalline films are usually obtained with a thermally activated growth rate (+40 kcal mole -1 ) and a reaction order, with respect to the predominant species SiCl 2 , close to one; above 1000 0 C, the films are always monocrystalline and their growth rate exhibits a much lower or even negative activation energy, the reaction order in SiCl 2 remaining about one. (orig.)

  9. Thermo-hydraulic behavior of saturated steam-water mixture in pressure vessel during injection of cold water

    International Nuclear Information System (INIS)

    Aya, Izuo; Kobayashi, Michiyuki; Inasaka, Fujio; Nariai, Hideki.

    1983-01-01

    The thermo-hydraulic behavior of saturated steam water mixture in a pressure vessel during injection of cold water was experimentally investigated with the Facility for Mixing Effect of Emergency Core Cooling Water. The dimensions of the pressure vessel used in the experiments were 284mm ID and 1,971mm height. 11 experiments were conducted without blowdown in order to comprehend the basic process excluding the effect of blowdown at injection of cold water. The initial pressure and water level, the injection flow rate and the size of injection nozzle were chosen as experimental parameters. Temperatures and void fractions at 6 elevations as well as pressure in the pressure vessel were measured, and new data especially on the pressure undershoot just after the initation of water injection and the vertical distribution of temperature and void fraction were gotten. The transients of pressure, average temperature and void fraction were caluculated using single-volume analysis code BLODAC-1V which is based on thermal equilibrium and so-called bubble gradient model. Some input parameters included in the analysis code were evaluated through the comparison of analysis with experimental data. Moreover, the observed pressure undershoot which is evaluated to be induced by a time lag of vapourization in water due to thermal nonequilibrium, was also discussed with the aid of another simple analysis model. (author)

  10. Thermodynamic and kinetic studies in the systems alkali chloride-zinconium (or hafnium) tetrachloride: Part I. Vapour pressure measurements over hexachloro compounds and use of vapour pressure data in fractional decomposition

    International Nuclear Information System (INIS)

    Ray, H.S.; Bhat, B.G.; Reddy, G.S.; Biswas, A.K.

    1978-01-01

    A molten tin isoteniscope has been used to measure the vapour pressures over ZrCl 4 , HfCl 4 and the hexachlore zirconates (M 2 ZrCl 6 ) and the hexachloro hafnates (M 2 HfCl 6 ) of four alkali metals (M = Na,K,Rb,Cs). The method of preparation of these compounds and the effect of small amounts of residual alkali chlorides on the their vapour pressure are discussed. The pressure-temperature plots are examined in the light of some theoretical postulates. A scheme for separation of hafnium from zirconoium by multistage fractional decomposition of the hexachlore compounds of any alkali metal is described. The scheme, which is analogous to rectification in liquid-vapour systems, employs a countercurrent flow of Zr(Hf)Cl 4 in a gas stream and a moving bed of alkali chlorides. The separation is based on the difference in the dissociation equilibrium for zirconium and hafnium compounds. Stage calculations for such a scheme and the main conclusions of a computational work are presented. (author)

  11. Vapour pressures, densities, and viscosities of the (water + lithium bromide + potassium acetate) system and (water + lithium bromide + sodium lactate) system

    International Nuclear Information System (INIS)

    Lucas, Antonio de; Donate, Marina; Rodriguez, Juan F.

    2006-01-01

    Measurements of thermophysical properties (vapour pressure, density, and viscosity) of the (water + lithium bromide + potassium acetate) system LiBr:CH 3 COOK = 2:1 by mass ratio and the (water + lithium bromide + sodium lactate) system LiBr:CH 3 CH(OH)COONa = 2:1 by mass ratio were measured. The system, a possible new working fluid for absorption heat pump, consists of absorbent (LiBr + CH 3 COOK) or (LiBr + CH 3 CH(OH)COONa) and refrigerant H 2 O. The vapour pressures were measured in the ranges of temperature and absorbent concentration from T = (293.15 to 333.15) K and from mass fraction 0.20 to 0.50, densities and viscosities were measured from T = (293.15 to 323.15) K and from mass fraction 0.20 to 0.40. The experimental data were correlated with an Antoine-type equation. Densities and viscosities were measured in the same range of temperature and absorbent concentration as that of the vapour pressure. Regression equations for densities and viscosities were obtained with a minimum mean square error criterion

  12. A rate equation model of stomatal responses to vapour pressure deficit and drought

    Directory of Open Access Journals (Sweden)

    Shanahan ST

    2002-08-01

    Full Text Available Abstract Background Stomata respond to vapour pressure deficit (D – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.

  13. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  14. Leaf injury characteristics of grassland species exposed to ozone in relation to soil moisture condition and vapour pressure deficit

    International Nuclear Information System (INIS)

    Bungener, P.; Balls, G.R.; Nussbaum, S.; Geissmann, M.; Grub, A.; Fuhrer, J.

    1999-01-01

    A range of plant species typical of semi-natural grasslands were tested for their sensitivity to short-term ozone injury under normal and reduced irrigation, and in relationship to air vapour pressure deficit. Potted specimens of 24 herbs, legumes and grasses were exposed during two seasons to four O 3 treatments in open-top chambers. The ozone treatments were: (a) charcoal-filtered air; (b) charcoal-filtered air plus ozone to match ambient levels; (c) charcoal-filtered air plus O 3 to ambient levels 1.5 and (d) charcoal-filtered air with ozone added to twice ambient levels during selected episodes of 7–13 d. During these ozone episodes, half of the plants in each ozone treatment received reduced irrigation (dry treatment) while the rest was kept under full irrigation (wet treatment). Type and date of first occurrence of leaf injury were noted during individual growth periods. Plants were harvested three times per year, and the percentage of injured leaves was recorded. Depending on species, injury symptoms were expressed as flecking (O 3 -specific injury), leaf yellowing or anthocyanin formation. Carum carvi and most species of the Fabaceae family (Onobrychis sativa, Trifolium repens, Trifolium pratense) were found to be most responsive to O 3 , injury occurring after only a few days of exposure in treatment (b). An episodic reduction in irrigation tended to reduce the expression of O 3 -specific symptoms, but only in species for which a reduction in soil moisture potential and an associated reduction in stomatal conductance during the dry episodes were observed. In other species, the protection from O 3 injury seemed to be of little importance. Using artificial neural networks the injury response of nine species was analysed in relation to Species, stomatal conductance, ozone as AOT40 (accumulated exposure above a threshold of 0.04 ppm for periods with global radiation ≥ 50 W m −2 (Fuhrer et al., 1997)), mean relative growth rate, air vapour pressure

  15. Annealing of polycrystalline thin film silicon solar cells in water vapour at sub-atmospheric pressures

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Píč, Vlastimil; Benda, V.; Fejfar, Antonín

    2014-01-01

    Roč. 54, č. 5 (2014), s. 341-347 ISSN 1210-2709 R&D Projects: GA MŠk 7E10061 EU Projects: European Commission(XE) 240826 - PolySiMode Grant - others:AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : passivation * water vapour * thin film solar cell * polycrystalline silicon (poly-Si) * multicrys- talline silicon (m-Si) * Suns-VOC Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use

  16. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    Science.gov (United States)

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  17. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed; Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu

    2012-01-01

    cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation

  18. Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steam vapour pressure on corrosion and adhesion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Bordo, Kirill; Jellesen, Morten Stendahl

    2015-01-01

    The steam treatment of aluminium alloys with varying vapour pressure of steamresulted in the growth of aluminium oxyhydroxide films of thickness range between 450 - 825nm. The surface composition, corrosion resistance, and adhesion of the produced films was characterised by XPS, potentiodynamic p...... of the vapour pressure of the steam. The accelerated corrosion and adhesion tests on steam generated oxide films with commercial powder coating verified that the performance of the oxide coating is highly dependent on the vapour pressure of the steam....... polarization, acetic acid salt spray, filiform corrosion test, and tape test. The oxide films formed by steam treatment showed good corrosion resistance in NaCl solution by significantly reducing anodic and cathodic activities. The pitting potential of the surface treated with steam was a function...

  19. A simple experimental arrangement for measuring the vapour pressures and sublimation enthalpies by the Knudsen effusion method: Application to DNA and RNA bases

    International Nuclear Information System (INIS)

    Barros, A.L.F. de; Medina, A.; Zappa, F.; Pereira, J.M.; Bessa, E.; Martins, M.H.P.; Coelho, L.F.S.; Wolff, W.; Castro Faria, N.V. de

    2006-01-01

    We measured the vapour pressure of several DNA and RNA bases-uracil, adenine, guanine, thymine and cytosine-in the 300-450 K range. In each case the sample mass loss rate was measured as function of temperature with a simple setup consisting of a commercial film deposition system and a homemade oven. Afterwards vapour pressure values were extracted from these data using the Knudsen effusion method. Sublimation enthalpy values, obtained from vapour pressure data by applying the Clausius-Clapeyron equation, are in very good agreement with literature values. The results suggest that crystal-based film thickness monitors may be useful in on-line cross-section measurements, monitoring the gas target thickness. They also show the viability of using this oven for producing a biomolecular gas target

  20. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.

    1979-01-01

    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  1. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    Science.gov (United States)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  2. Numerical analysis of the interaction between high-pressure resin spray and wood chips in a vapour stream

    Directory of Open Access Journals (Sweden)

    Massimo Milani

    2016-04-01

    Full Text Available This article investigates the interaction between the resin spray and the wood chips in a vapour stream using a multi-phase multi-component computational fluid dynamics approach. The interaction between the spray and the chips is one of the main issues in the industrial process for manufacturing medium density fibre boards. Thus, the optimization of this process can lead to important benefits, such as the reduction in the emission of formaldehyde-based toxic chemicals, the reduction in energy consumption in the blending process and energy saving in the fibreboard drying process. First step of the study is the numerical analysis of the resin injector in order to extend the experimental measurements carried out with water to the resin spray. The effects of the injector’s geometrical features on the spray formation are highlighted under different injection pressure values and needle displacements. Afterwards, the results obtained in the analysis of the single injector are used for the complete simulation of multi-injector rail where the mixing of the resin spray and wood chips takes place. The influence of the main operating conditions, such as the vapour and the wood chip flow rates, on the resin distribution is addressed in order to optimize the resination process.

  3. Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromium

    International Nuclear Information System (INIS)

    Elwin, G.S.

    1999-01-01

    A study has been made into the atmospheric pressure chemical vapour deposition of nitrides and oxynitrides of vanadium, titanium and chromium. Vanadium tetrachloride, vanadium oxychloride, chromyl chloride and titanium tetrachloride have been used as precursors with ammonia, at different flow conditions and temperatures. Vanadium nitride, vanadium oxynitride, chromium oxynitride, titanium/vanadium nitride and titanium/chromium oxynitride have been deposited as thin films on glass. The APCVD reaction of VCl 4 and ammonia leads to films with general composition VN x O y . By raising the ammonia concentration so that it is in excess (0.42 dm 3 min -1 VCl 4 with 1.0 dm 3 min -1 NH 3 at 500 deg. C) a film has been deposited with the composition VN 0.8 O 0.2 . Further investigation discovered similar elemental compositions could be reached by deposition at 350 deg. C (0.42 dm 3 min -1 VCl 4 with 0.5 dm 3 min -1 NH 3 ), followed by annealing at 650 deg. C, and cooled under a flow of ammonia. Only films formed below 400 deg. C were found to contain carbon or chlorine ( 3 and ammonia also lead to films of composition VN x O y the oxygen to nitrogen ratios depending on the deposition conditions. The reaction Of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.2 dm 3 min -1 ) at 500 deg. C lead to a film of composition VN 0. 47O 1.06 . The reaction of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.5 dm 3 min -1 ) at 650 deg. C lead to a film of composition VN 0.63 O 0.41 . The reaction of chromyl chloride with excess ammonia led to the formation of chromium oxide (Cr 2 O 3 ) films. Mixed metal films were prepared from the reactions of vanadium tetrachloride, titanium tetrachloride and ammonia to prepare V x Ti y N z and chromyl chloride, titanium tetrachloride and ammonia to form TiCr x O y N z . Both reactions produced the intended mixed coating but it was found that the vanadium / titanium nitride contained around 10 % vanadium whatever the conditions used. Oxygen contamination

  4. Photosynthetic traits of five neotropical rainforest tree species: interactions between light response curves and leaf-to-air vapour pressure deficit

    Directory of Open Access Journals (Sweden)

    Marcelo Schramm Mielke

    2005-09-01

    Full Text Available Measurements of leaf gas exchange at different photosynthetic photon flux density (PPFD levels were conducted in order to compare the photosynthetic traits of five neotropical rainforest tree species, with a special emphasis on empirical mathematical models to estimate the light response curve parameters incorporating the effects of leaf-to-air vapour pressure deficit (D on the saturated photosynthetic rate (Amax. All empirical mathematical models seemed to provide a good estimation of the light response parameters. Comparisons of the leaf photosynthetic traits between different species needed to select an appropriate model and indicated the microenvironmental conditions when the data were collected. When the vapour pressure deficit inside the chamber was not controlled, the incorporation of linear or exponencial functions that explained the effects of D on leaf gas exchange, was a very good method to enhance the performance of the models.Medições das trocas gasosas foliares em diferentes níveis do densidade de fluxo de fótons fotossintéticamente ativos (PPFD foram realizadas com o objetivo de comparar as características fotossintéticas de cinco espécies arbóreas de florestas úmidas neotropicais, com especial ênfase em modelos matemáticos empíricos para estimativa de parâmetros derivados das curvas de resposta à radiação luminosa e dos efeitos da diferença de pressão de vapor entre a folha e o ar (D na taxa fotossintética em saturação luminosa (Amax. Os modelos analisados proporcionaram boas estimativas para os parâmetros derivados das curvas de resposta à radiação luminosa. Comparações entre as características fotossintéticas de diferentes espécies devem sempre considerar os modelos utilizados, seguidas de indicações pormenorizadas das condições microambientais no momento em que os dados foram coletados. Quando a diferença de pressão de vapor não for controlada artificialmente durante as medições, a

  5. New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif; Schoenbach, Karl H

    2012-01-01

    Energetic and scalable non-equilibrium plasma was formed in pure water vapour at atmospheric pressure between wire-to-strip electrodes on a dielectric surface with one of the electrodes extended forming a conductive plane on the back side of the dielectric surface. The energy deposition increased by an order of magnitude compared with the conventional pulsed corona discharges under the same conditions. The scalability was demonstrated by operating two electrode assemblies with a common conductive plane between two dielectric layers. The energy yields for hydrogen and hydrogen peroxide generation were measured as ∼1.2 g H 2 /kWh and ∼4 g H 2 O 2 /kWh. (fast track communication)

  6. An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model

    Directory of Open Access Journals (Sweden)

    Davies Mark W

    2006-02-01

    Full Text Available Abstract Background The loss of perfluorocarbon (PFC vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates. Methods The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77 and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. Results From 14.2 mL (47% to 27.3 mL (91% of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p -1 (ANOVA with Bonferroni's multiple comparison test, p -1, respectively. Conclusion Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation.

  7. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.

  8. Investigation of Raman bands vapour of contours of trichloroethylene at high pressure

    International Nuclear Information System (INIS)

    Zaleskaya, G.A.; Ikramov, M.; Shukurov, T.

    1989-01-01

    Investigation of high-pressure extraneous gas on contour comb. band, spreading trichloroethylene steams are in given article. Increasing of extraneous gas pressure brings to decreasing free molecule circling time is shown

  9. A total pressure-saturation formulation of two-phase flow incorporating dynamic effects in the capillary-pressure-saturation relationship

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, H K; Celia, M A; Hassanizadeh, S M; Karlsen, K H

    2002-07-01

    New theories suggest that the relationship between capillary pressure and saturation should be enhanced by a dynamic term that is proportional to the time rate of change of saturation. This so-called dynamic capillary pressure formulation is supported by laboratory experiments, and can be included in various forms of the governing equations for two-phase flow in porous media. An extended model of two-phase flow in porous media may be developed based on fractional flow curves and a total pressure - saturation description that includes the dynamic capillary pressure terms. A dimensionless form of the resulting equation set provides an ideal tool to study the relative importance of the dynamic capillary pressure effect. This equation provides a rich set of mathematical research questions, and numerical solutions to the equation provide insights into the behavior of two-phase immiscible flow. For typical two-phase flow systems, dynamic capillary pressure acts to retard infiltration fronts, with responses dependent on system parameters including boundary conditions. Recent theoretical work suggests that the traditional algebraic relationship between capillary pressure and saturation may be inadequate. Instead, a so-called dynamic capillary pressure formulation is needed, where capillary pressure is defined as a thermodynamic variable, and the difference between phase pressures is only equal to the capillary pressure at equilibrium. Under dynamic conditions, the disequilibrium between phase-pressure differences and the capillary pressure is taken to be proportional to the time rate of change of saturation. A recent study by Hassanizadeh et al. presents experimental evidence, culled from the literature, to support this claim. Numerical simulations using dynamic pore-scale network models and upscaling also support the claim. Hassanizadeh et al. also presented numerical solutions for an enhanced version of Richards' equation that included the dynamic terms. A preliminary

  10. Sodium addition and/or oxygen saturation of iohexol during normal and reduced perfusion pressure

    International Nuclear Information System (INIS)

    Baath, L.

    1990-01-01

    The influence on contractile force (CF) and the propensity for ventricular fibrillation (VF) from infusing the non-ionic contrast medium iohexol during normal (75 cm H 2 O) and reduced perfusion pressure (35 cm H 2 O) were investigated in the isolated rabbit heart. Both during normal and reduced perfusion pressure iohexol (150 mg I/ml) with oxygen saturation caused a smaller reduction of CF than iohexol without oxygen. During reduced pressure iohexol with sodium addition (28 mM NaCl) caused less depression of CF than iohexol without sodium. The combination of sodium addition and oxygen saturation had the least influence on CF. Iohexol (350 mg I/ml) without sodium had a similar fibrillatory propensity during both normal and reduced pressure. Enriching iohexol with 28 mM NaCl decreased the risk of VF. The decrease was similar during both normal and reduced pressure. The risk of VF from oxygen saturation of iohexol (350 mg I/ml, without sodium) was similar during both normal and reduced pressure. It is concluded that a small addition of sodium and/or oxygen saturation of a non-ionic monomeric contrast medium have beneficial effects on the heart both during normal perfusion pressure and during ischemia. (orig.)

  11. Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in hte presence of small amounts of water

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Rem, J.B.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films were deposited on stainless steel, type AISI 304. The deposition process was carried out in nitrogen with low partial pressures of water (0–2.6 × 10−2 kPa (0−0.20 mmHg)) by metal-organic chemical vapour deposition (MOCVD) with aluminium-tri-sec-butoxide (ATSB) as the precursor.

  12. Pressure drop in two-phase He I natural circulation loop at low vapour quality

    International Nuclear Information System (INIS)

    Baudouy, B.

    2003-01-01

    Steady state pressure drop in a two-phase He I natural circulation loop has been measured at atmospheric pressure. Results are obtained up to 0.2 exit vapor quality for a 14-mm diameter copper tube heated over a length of 1.2 m. Pressure drop assessment, done with the momentum balance equation including subcooling, reveals that the homogeneous model and Friedel's friction multiplier associated with Huq and Loth's void fraction correlations predict data within 15%. (author)

  13. Pressure drop in two-phase He I natural circulation loop at low vapour quality

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B

    2003-01-01

    Steady state pressure drop in a two-phase He I natural circulation loop has been measured at atmospheric pressure. Results are obtained up to 0.2 exit vapor quality for a 14-mm diameter copper tube heated over a length of 1.2 m. Pressure drop assessment, done with the momentum balance equation including subcooling, reveals that the homogeneous model and Friedel's friction multiplier associated with Huq and Loth's void fraction correlations predict data within 15%. (author)

  14. Cloudiness and Its Relationship to Saturation Pressure Differences during a Developing East Coast Winter Storm.

    Science.gov (United States)

    Alliss, Randall J.; Raman, Sethu

    1995-11-01

    Cloudiness derived from surface observations and the Geostationary Operational Environmental Satellite VISSR (Visible Infrared Spin Scan Radiometer) Atmospheric Sounder (VAS) are compared with thermodynamic properties derived from upper-air soundings over the Gulf Stream locale during a developing winter storm. The Gulf Stream locale covers the United States mid-Atlantic coastal states, the Gulf Stream, and portions of the Sargasso Sea. Cloudiness is found quite frequently in this region. Cloud-top pressures are derived from VAS using the CO2 slicing technique and a simple threshold procedure. Cloud-base heights and cloud fractions are obtained from National Weather Service hourly reporting stations. The saturation pressure differences, defined as the difference between air parcel pressure and saturation-level pressure (lifted condensation level), are derived from upper-air soundings. Collocated comparisons with VAS and surface observations are also made. Results indicate that cloudiness is observed nearly all of the time during the 6-day period, well above the 8-yr mean. High, middle, and low opaque cloudiness are found approximately equally. Furthermore, of the high- and midlevel cloudiness observed, a considerable amount is determined to be semitransparent to terrestrial radiation. Comparisons of satellite-inferred cloudiness with surface observations indicate that the satellite can complement surface observations of cloud cover, particularly above 700 mb.Surface-observed cloudiness is segregated according to a composite cloud fraction and compared to the mean saturation pressure difference for a 1000 600-mb layer. The analysis suggests that this conserved variable may be a good indicator for estimating cloud fraction. Large negative values of saturation pressure difference correlate highly with clear skies, while those approaching zero correlate with overcast conditions. Scattered and broken cloud fractions are associated with increasing values of the

  15. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    International Nuclear Information System (INIS)

    Kyriacou, P A; Shafqat, K; Pal, S K

    2007-01-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO 2 ) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO 2 ) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO 2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  16. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacou, P A [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Shafqat, K [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Pal, S K [St Andrew' s Centre for Plastic Surgery and Burns, Broomfield Hospital, Chelmsford, CM1 7ET (United Kingdom)

    2007-10-15

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO{sub 2}) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO{sub 2}) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO{sub 2} sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures

  17. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    Science.gov (United States)

    Kyriacou, P. A.; Shafqat, K.; Pal, S. K.

    2007-10-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  18. Cr2O3 thin films grown at room temperature by low pressure laser chemical vapour deposition

    International Nuclear Information System (INIS)

    Sousa, P.M.; Silvestre, A.J.; Conde, O.

    2011-01-01

    Chromia (Cr 2 O 3 ) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr 2 O 3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr 2 O 3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO) 6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm -2 and a partial pressure ratio of O 2 to Cr(CO) 6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s -1 and mean particle sizes of 1.85 μm were measured for these films.

  19. Saturated steams pressure of HfCl/sub 4/-KCl molten mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Smirnov, M V; Kudyakov, V Ya [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1980-02-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl/sub 4/-KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl/sub 4/). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride.

  20. Saturated steams pressure of HfCl4-KCl molten mixtures

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smirnov, M.V.; Kudyakov, V.Ya.

    1980-01-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl 4 -KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl 4 ). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride

  1. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils

    Science.gov (United States)

    Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.

    2017-06-01

    The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

  2. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils

    Science.gov (United States)

    Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.

    2018-05-01

    The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

  3. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    International Nuclear Information System (INIS)

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-01-01

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO 2 gas/oil ratio in a reservoir undergoing CO 2 flood. Crosswell seismic and electromagnetic data sets taken before and during CO 2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO 2 injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO 2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO 2 /oil ratio. Resulting images of the CO 2 /oil ratio show CO 2 -rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO 2 . The images produced by this process are better correlated to the location and amount of injected CO 2 than are any of the individual

  4. Capillary pressure as a unique function of electric permittivity and water saturation

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.; Van Turnhout, J.; Bruining, J.

    2007-01-01

    The relation between capillary pressure (Pc) and interfacial area has been investigated by measuring Pc and the electric permittivity at 100 kHz simultaneously as function of the water saturation, (Sw). Drainage and imbibition experiments have been conducted for sand-distilled water-gas (CO2/N2)

  5. Predicting Vapour Pressures of Organic Compounds from Their Chemical Structure for Classification According to the VOCDirective and Risk Assessment in General

    Directory of Open Access Journals (Sweden)

    Frands Nielsen

    2001-03-01

    Full Text Available The use of organic compounds in the European Union will in the future be regulated in accordance with the Council Directive 1999/13/EC of 11 March 1999 [1]. In this directive, any organic compound is considered to be a volatile organic compound (VOC if it has a vapour pressure of 10 Pa or more at 20oC, or has a corresponding volatility under the particular condition of use. Introduction of such a limit will sometimes create problems, because vapour pressures cannot be determined with an infinite accuracy. Published data on vapour pressures for a true VOC will sometimes be found to be below 10 Pa and vice versa. When the same limit was introduced in the USA, a considerable amount of time and money were spent in vain on comparing incommensurable data [2]. In this paper, a model is presented for prediction of the vapour pressures of VOCs at 20oC from their chemical (UNIFAC structure. The model is implemented in a computer program, named P_PREDICT, which has larger prediction power close to 10 Pa at 20oC than the other models tested. The main advantage of the model, however, is that no experimental data, which will introduce uncertainty in the predictions, is needed. Classification using P_PREDICT, which only predicts one value for a given UNIFAC structure, is proposed. Organic compounds, which can be described by the UNIFAC groups in the present version of P_PREDICT, therefore, can be classified unambiguously as either VOCs or non-VOCs. Most people, including the present authors, feel uneasy about prioritising precision above accuracy. Modelling vapour pressures, however, could save a lot of money and the errors introduced are not large enough to have any substantial adverse effects for neither human beings nor the environment. A method for calculating vapour pressures at other temperatures than 20oC is tested with a dubious result. This method is used for EU risk assessment of new and existing chemicals.

  6. Computational estimation of logarithm of octanol/air partition coefficients and subcooled vapour pressures for each of 75 chloronaphtalene congeners

    Energy Technology Data Exchange (ETDEWEB)

    Puzyn, T.; Falandysz, J.; Rostkowski, P.; Piliszek, S.; Wilczyniska, A. [Univ. of Gdansk (Poland)

    2004-09-15

    Polychlorinated naphthalenes (PCNs, CNs) are known persistent organic pollutants, contaminating natural ecosystems in effect of technical human activity. Toxic effects induced by individual congers of PCNs are reported elsewhere. Great risk of these chemical compounds is additionally connected with theirs excellent ability to be transported via atmosphere from a source to the remote regions on the Glob. Chloronaphthalene congeners had been found in Arctic regions at significant level in spite of the fact, that they had never been synthesized there, and also thermal processes like municipal waste incineration or domestic heating (other possible sources of PCNs in the environment) were not so intensive there. In 1996 F. Wania and D. Mackay have formulated some empirical rules, which have been very useful in estimation and modeling of environmental transport processes of persistent organic pollutants like PCNs. Two very important physico-chemical parameters in the theory of global distillation and cold condensation are: logarithm of n-octanol/air partition coefficient (log K{sub OA}) and logarithm of subcooled vapour pressure (log P{sub L}). Values of log K{sub OA} and log P{sub L} in standard procedures are determined by means of chromatographic methods. In order to reduce costs and number of experiments, we have proposed simple computational method of estimation log K{sub OA} and log P{sub L}.

  7. Studies on (2UF4 + H2 = 2UF3 + 2HF) and vapour pressure of UF3

    International Nuclear Information System (INIS)

    Roy, K.N.; Prasad, R.; Venugopal, V.; Singh, Z.; Sood, D.D.

    1982-01-01

    Equilibrium constants for 2UF 4 (s) + H 2 (g) = 2UF 3 (s) + 2HF(g) have been measured in the temperature range 967 to 1120 K. An expression is given for the results. The results have been treated by second- and third-law methods to obtain ΔH 0 (298.15 K) and the values are given. The value of ΔS 0 (298.15 K) has been calculated by the second-law method. An expression is given for the vapour pressure of UF 3 (s), measured by the transpiration technique in the range 1229 to 1367 K. The standard enthalpy of vaporization ΔH 0 sub(v) (298.15 K) and the standard entropy of vaporization ΔS 0 sub(v) (298.15 K) have been calculated. The vaporization results have also been used for the calculation of ΔH 0 sub(f)(UF 3 , g, 298.15 K) and ΔS 0 sub(f)(UF 3 ,g, 298.15 K). (author)

  8. Relationships of solar radiation and vapour pressure deficit with photosynthesis and water relations in dry-land pigeon pea

    International Nuclear Information System (INIS)

    Subramanian, V.B.; Venkateswarlu, S.; Maheswari, M.; Sankar, G.R.M.

    1994-01-01

    A study was undertaken to compare the relationships of photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) with carbon assimilation and water relations of dry-land pigeon pea at the vegetative and reproductive phases. Photosynthetic rate (Pn), transpiration rate (T), leaf water potential (wL), and stomatal conductance (gs) were measured at 7- to 10-day intervals from 1 month after seedling until a fortnight before harvest during two seasons. Generally, Pn, T, and gs were higher and wL was lower during the reproductive than during the vegetative phase. At high PAR and VPD, Pn, T, wL, and gs decreased. The decrease in the T at high PAR was smaller during the reproductive phase. Growth of dry-land pigeon pea was affected not only during periods of water stress which was associated with high PAR and high VPD but also under conditions of favourable plant water status which were associated with less than optimal levels of PAR. It also showed transpiration efficiency (TE) was lower during the pod-filling than during the vegetative phase, when PAR was optimum

  9. Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain); Centro de Investigación de Física Teórica y Matemática, Universidad de Huelva, 21071 Huelva (Spain); Mendiboure, B. [Laboratoire des Fluides Complexes et leurs Réservoirs, UMR5150, Université de Pau et des Pays de l’Adour, B. P. 1155, Pau Cedex 64014 (France); Moreno-Ventas Bravo, A. I. [Centro de Investigación de Física Teórica y Matemática, Universidad de Huelva, 21071 Huelva (Spain); Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain)

    2014-11-14

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r{sub c} = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r{sub c} = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial

  10. Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited

    International Nuclear Information System (INIS)

    Martínez-Ruiz, F. J.; Blas, F. J.; Mendiboure, B.; Moreno-Ventas Bravo, A. I.

    2014-01-01

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r c = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r c = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness

  11. Reduced Pressure-Chemical Vapour Deposition of Si/SiGe heterostructures for nanoelectronics

    International Nuclear Information System (INIS)

    Hartmann, J.M.; Andrieu, F.; Lafond, D.; Ernst, T.; Bogumilowicz, Y.; Delaye, V.; Weber, O.; Rouchon, D.; Papon, A.M.; Cherkashin, N.

    2008-01-01

    We have first of all quantified the impact of pressure on Si and SiGe growth kinetics. Definite growth rate and Ge concentration increases with the pressure have been evidenced at low temperatures (650-750 deg. C). By contrast, the high temperature (950-1050 deg. C) Si growth rate either increases or decreases with pressure (gaseous precursor depending). We have then described the selective epitaxial growth process we use to form Si or Si 0.7 Ge 0.3 :B raised sources and drains on ultra-thin patterned Silicon-On-Insulator (SOI) substrates. We have afterwards presented the specifics of SiGe virtual substrates and of the tensile-strained Si layers grown on top (used as templates for the elaboration of tensily strained-SOI wafers). The tensile strain, which can be tailored from 1.3 up to 3 GPa, leads to an electron mobility gain by a factor of 2 in n-Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) built on top. High Ge content SiGe virtual substrates can also be used for the elaboration of compressively strained Ge channels, with impressive hole mobility gains (x9) compared to bulk Si. After that, we have described the main structural features of thick Ge layers grown directly on Si (that can be used as donor wafers for the elaboration of GeOI wafers or as the active medium of near infrared photo-detectors). Finally, we have shown how Si/SiGe multilayers can be used for the formation of high performance 3D devices such as multi-bridge channel or nano-beam gate-all-around FETs, the SiGe sacrificial layers being removed thanks to plasma dry etching, wet etching or in situ gaseous HCl etching

  12. Generalized method for calculation and prediction of vapour-liquid equilibria at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Drahos, J; Wichterle, I; Hala, E

    1978-02-01

    Following the approaches of K.C. Chao and J.D. Seader (see Gas Abstr. 18,24 (1962) Jan.) and B.I. Lee, J.H. Erbar, and W.C. Edmister (see Gas Abst. 29, 73-0331), the Czechoslovak Academy of Sciences developed a generalized method for prediction of vapor-liquid equilibria in hydrocarbon mixtures containing some nonhydrocarbon gases at high pressures. The method proposed is based on three equations: (1) a generalized equation of state for vapor-phase calculations; (2) a generalized expression for the pure-liquid fugacity coefficient; and (3) an activity coefficient expression based on a surface modification of the regular solution model. The equations used contain only one partially generalized binary parameter, which was evaluated from experimental K-value data. Researchers tested the proposed method by computing K-values and pressures in binary and multicomponent systems consisting of 13 hydrocarbons and 3 nonhydrocarbon gases. The results show that the method is applicable over a wide range of conditions with a degree of accuracy comparable with that of more complicated methods.

  13. Vapour pressures, osmotic and activity coefficients for binary mixtures containing (1-ethylpyridinium ethylsulfate + several alcohols) at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gomez, Elena; Dominguez, Angeles; Macedo, Eugenia A.

    2010-01-01

    Osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1-ethylpyridinium ethylsulfate were determined at T = 323.15 K using the vapour pressure osmometry technique. From the experimental results, vapour pressure and activity coefficients can be determined. For the correlation of osmotic coefficients, the extended Pitzer model modified by Archer, and the modified NRTL (MNRTL) model were used, obtaining deviations lower than 0.017 and 0.047, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the binary mixtures studied were determined from the parameters obtained with the extended Pitzer model modified by Archer.

  14. Vapour pressure measurements over liquid UO{sub 2} and (U,Pu)O{sub 2} by laser surface heating up to 5000 K

    Energy Technology Data Exchange (ETDEWEB)

    Babelot, J F; Brumme, G D [Institut fuer Angewandte Physik, TH Darmstadt (Germany); Kinsman, P R; Ohse, R W [Commission of the European Communities, European Institute for Transuranium Elements, EURATOM (Germany)

    1977-07-01

    Nuclear reactor technology requires the vapour pressure of fast breeder reactor fuels up to 6000 K in order to estimate the energy release In hypothetical fast reactor core meltdown accident. Both theoretical and experimental efforts are needed to provide the required data. In principle PVT data can be estimated by appropriate theoretical models, extrapolating measured data, or by purely thermodynamic calculations based on the extrapolation of reliable low temperature thermodynamic data. Direct measurements require the development of new experimental techniques for the extreme temperature range of interest in nuclear technology. The various theoretical approaches are characterized by the application of models which were conceived for simple molecular liquids and by the extrapolation of low temperature vapour pressure data over several thousand degrees, leading to a range In predicted critical point temperatures from 6000 K to almost 10000 K.

  15. An innovative technique for estimating water saturation from capillary pressure in clastic reservoirs

    Science.gov (United States)

    Adeoti, Lukumon; Ayolabi, Elijah Adebowale; James, Logan

    2017-11-01

    A major drawback of old resistivity tools is the poor vertical resolution and estimation of hydrocarbon when applying water saturation (Sw) from historical resistivity method. In this study, we have provided an alternative method called saturation height function to estimate hydrocarbon in some clastic reservoirs in the Niger Delta. The saturation height function was derived from pseudo capillary pressure curves generated using modern wells with complete log data. Our method was based on the determination of rock type from log derived porosity-permeability relationship, supported by volume of shale for its classification into different zones. Leverette-J functions were derived for each rock type. Our results show good correlation between Sw from resistivity based method and Sw from pseudo capillary pressure curves in wells with modern log data. The resistivity based model overestimates Sw in some wells while Sw from the pseudo capillary pressure curves validates and predicts more accurate Sw. In addition, the result of Sw from pseudo capillary pressure curves replaces that of resistivity based model in a well where the resistivity equipment failed. The plot of hydrocarbon pore volume (HCPV) from J-function against HCPV from Archie shows that wells with high HCPV have high sand qualities and vice versa. This was further used to predict the geometry of stratigraphic units. The model presented here freshly addresses the gap in the estimation of Sw and is applicable to reservoirs of similar rock type in other frontier basins worldwide.

  16. New determination of the vapour pressures of the isotopes of neon

    International Nuclear Information System (INIS)

    Roth, R.

    1960-03-01

    We have undertaken an experimental reinvestigation of the vapor pressures of the neon isotopes over the temperature range 16.30-30.1 deg. K. Measurements were made by differential manometry in a Giauque-Johnston type cryostat modified for temperature stability. The New sample contained 99.9 % Ne 20 and the Ne 22 sample contained 72,2 % Ne 22 . Extrapolation to pure Ne 20 and Ne 22 can be made with sufficient accuracy by the use of Raoult's law. Our results are in substantial agreement with those of Keesom and Haantjes. At 20 deg. K, where the scatter in our data is an order of magnitude smaller than in the data of Keesom and Haantjes, we find In P Ne 20 /P Ne 22 is 6 % larger than the smoothed line given by them. For solid neon, our data can be represented to a high accuracy by a Debye harmonic lattice with θ D (Ne 20 ) = 74.6 deg. K. The result may be compared with the value obtained by Henshaw from the Debye-Waller temperature factor, θ D = 73 deg. K, and with the recent calculation of the zero point energy of Ne by Bernardes, from which he obtains θ D 8E θ /9R = 73 deg.. K. (author) [fr

  17. Vapour pressures of 1-methyl derivatives of benzimidazole, pyrazole and indole. The energy of the intermolecular hydrogen bond N-H⋯N

    International Nuclear Information System (INIS)

    Almeida, Ana R.R.P.; Monte, Manuel J.S.

    2014-01-01

    Highlights: • Vapour pressures of 1-methyl derivatives of benzimidazole, pyrazole and indole. • Enthalpies, entropies and Gibbs free energies of sublimation/vaporisation were derived. • Temperatures and enthalpies of fusion were determined. • Energy of the intermolecular hydrogen bond N-H⋯N was estimated. - Abstract: The vapour pressures of the liquid phase of 1-methylpyrazole, 1-methylbenzimidazole and 1-methylindole were measured over the temperature ranges (253.9 to 293.3) K, (303.2 to 372.5) K, and (268.6 to 341.9) K, respectively, using a static method. The vapour pressures of the crystalline phase of the two latter compounds were also measured at temperatures between (301.2 to 328.9) K and (267.6 to 275.5) K, respectively. The results obtained enabled the determination of the standard molar enthalpies and entropies of sublimation and of vaporisation at the mean temperatures of the measurements and at T = 298.15 K. The temperatures and molar enthalpies of fusion were determined using differential scanning calorimetry. The enthalpies of the intermolecular hydrogen bonds N-H⋯N in the crystalline phase of benzimidazole and pyrazole were determined and compared with the result previously determined for the energy of the intermolecular hydrogen bond in crystalline imidazole

  18. Flashing of high-pressure saturated water into the pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Aya, Izuo.

    1997-01-01

    This paper presents an experimental study on a saturated high-pressure water discharging into a water pool. The purpose of the experiment is to clarify the phenomena that occur by a blow-down of the water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in a passive safety reactor. The results show that a flashing oscillation (FO) occurs when the water discharges into the pool, under specified experimental conditions. The range of the flashing location oscillates between a point very close to and some distance away from the vent hole. The pressures in the vent tube and water pool constantly fluctuate due to the flashing oscillation. The pressure oscillation and alternating flashing location might be caused by the balancing action between the supply of saturated water, flashing at the control volume and steam condensation on the steam-water interface. The frequencies of FO, or frequencies of pressure oscillation and alternating flashing location, increased as water subcooling increased, and as discharging pressure and vent hole diameter decreased. A linear analysis was conducted using a spherical flashing bubble model in which the motion of bubble is controlled by steam condensation. The effects of these parameters on the period of FO in the experiments can be predicted well by the analysis. (author)

  19. Experimental study of the vapour-liquid equilibria of HI-I-2-H2O ternary mixtures, Part 2: Experimental results at high temperature and pressure

    International Nuclear Information System (INIS)

    Larousse, B.; Lovera, P.; Borgard, J.M.; Roehrich, G.; Mokrani, N.; Maillault, C.; Doizi, D.; Dauvois, V.; Roujou, J.L.; Lorin, V.; Fauvet, P.; Carles, P.; Hartmann, J.M.

    2009-01-01

    In order to assess the choice of the sulphur-iodine thermochemical cycle for massive hydrogen production, a precise knowledge of the concentrations of the gaseous species (HI, I 2 , and H 2 O) in thermodynamic equilibrium with the liquid phase of the HI-I 2 -H 2 O ternary mixture is required, in a wide range of concentrations and for temperatures and pressures up to 300 degrees C and 50 bar. In the companion paper (Part 1) the experimental device was described, which enables the measurement of the total pressure and concentrations of the vapour phase (and thus the knowledge of the partial pressures of the different gaseous species) for the HI-I 2 -H 2 O mixture in the 20-140 degrees C range and up to 2 bar. This (Part 2) article describes the experimental device which enables similar measurements but now in the process domain. The results concerning concentrations in the vapour phase for the HI-I 2 -H 2 O initial mixture (with a global composition) in the 120-270 degrees C temperature range and up to 30 bar are presented. As previously, optical online diagnostics are used, based on recordings of infrared transmission spectra for HI and H 2 O and on UV/visible spectrometry for I 2 . The concentrations measured in the vapour phase are the first to describe the vapour composition under thermophysical conditions close to those of the distillation column. The experimental results are compared with a thermodynamic model and will help us to scale up and optimize the reactive distillation column we promote for the HI section of the sulphur-iodine cycle. (authors)

  20. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora.

    Science.gov (United States)

    Shirke, Pramod A; Pathre, Uday V

    2004-09-01

    The effect of leaf-to-air vapour pressure deficit (VPD) was studied in well-watered, potted, 1-2-year-old plants of the leguminous tree P. juliflora grown outside in northern India. The long-term responses to VPD were analysed from diurnal and seasonal variations in gas exchange parameters measured in two cohorts of leaves produced in February and July, respectively. In general, inhibitory effects of high VPD were visible only when the VPD level exceeded a threshold of >3 kPa. There was a substantial decline in net photosynthesis rate and stomatal conductance at high VPD >4 kPa and transpiration showed a decrease in steady-state rate or feedforward response to VPD. The feedforward responses were visible in all seasons, although the plants were exposed to a wide range of VPD during the year and leaf relative water content was constant. The maximum quantum efficiency of PSII measured predawn was constant (around 0.8) in all seasons except summer. Short-term experiments showed that, although gas exchange was severely affected by high VPD in the leaves of both cohorts, the plant maintained a constant, water use efficiency in different seasons. High VPD also caused reductions in Rubisco activity, affecting carboxylation efficiency, and reductions in sucrose and starch content due to a decrease in the activity of sucrose-phosphate synthase. However, the relative quantum yield of PSII and electron transport rates measured at 1500 micromol m(-2) s(-1) were unaffected by increasing VPD, indicating the presence of a large alternative sink possibly, photorespiration. The overall results showed that P. juliflora can withstand high VPD by reducing metabolic activity and by effective adjustments in the partitioning of electron flow between assimilation and non-assimilation processes, which, in turn, imposed a strong limitation on the potential carbon gain.

  1. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    Science.gov (United States)

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  3. High-pressure (vapour + liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal + carbon dioxide + water}: Partition coefficient measurement

    International Nuclear Information System (INIS)

    Bejarano, Arturo; López, Pablo I.; Valle, José M. del; Fuente, Juan C. de la

    2015-01-01

    Highlights: • A new apparatus based on a static–analytic method was assembled in this work. • This work reports high-pressure VLE data of (E)-2-hexenal or hexanal + CO 2 + water. • Data includes (CO 2 + water) partition coefficients of (E)-2-hexenal and hexanal. • High separation factors from water (∼10 4 ) were found especially for (E)-2-hexenal. • The data were obtained at T = (313, 323, and 333) K and pressures from (8 to 19) MPa. - Abstract: A new apparatus based on a static–analytic method assembled in this work was utilised to perform high-pressure (vapour + liquid) equilibria measurements of aqueous ternary systems. This work includes values of isothermal partition coefficients between CO 2 and water of two apple aroma constituents, (E)-2-hexenal and hexanal. Additionally, this work reports new experimental (vapour + liquid) equilibria measurements for the ternary systems (CO 2 + (E)-2-hexenal + water) and (CO 2 + hexanal + water), at fixed liquid phase composition (600 mg · kg −1 ), at temperatures of (313, 323 and 333) K and at pressures from (8 to 19) MPa. Vapour liquid interphase was checked and monitored visually for all the systems studied in this work. No liquid immiscibility was observed at the composition, temperatures and pressures studied. In order to suggest reasonable operation conditions for fractionation of aromas with dense carbon dioxide, partition coefficients of the aroma compounds between CO 2 and water along with their separation factors from water were calculated. Partition coefficients of (E)-2-hexenal between CO 2 and water were in the range of (6 to 91) and where found to be near six times higher than those of hexanal (9 to 17). Very high separation factors from water were observed (∼10 4 ) especially for (E)-2-hexenal. The highest separation factor, for both compounds, was found at a temperature of 313 K and pressures from (12 to 14) MPa

  4. Elasticity of water-saturated rocks as a function of temperature and pressure.

    Science.gov (United States)

    Takeuchi, S.; Simmons, G.

    1973-01-01

    Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.

  5. Characterization and modelling of low-pressure rf discharges at 2-500 MHz for miniature alkali vapour dielectric barrier discharge lamps

    International Nuclear Information System (INIS)

    Venkatraman, Vinu; Shea, Herbert; Pétremand, Yves; Rooij, Nico de

    2012-01-01

    Low-pressure dielectric barrier discharge (DBD) alkali vapour lamps are of particular interest for portable atomic clocks because they (1) could enable low-power operation, (2) generate the precise required wavelength, (3) are planar simplifying chip-level integration and (4) use external electrodes, which increases the lifetime. Given the stringent requirements on lamps for atomic clocks, it is important to identify the parameters that can be optimized to meet these performance requirements (size, power consumption, stability, reliability). We report on the electrical and optical characteristics of dielectric barrier plasma discharges observed in two configurations: (1) in a vacuum chamber over a wide low-pressure range (2-100 mbar) for three different buffer gases (He, Ar, N 2 ) driven at different frequencies between 2 and 500 MHz and (2) on microfabricated hermetically sealed Rb vapour cells filled with 30 and 70 mbar of Ar. We discuss the optimum conditions for a low-power and stable operation of a Rb vapour DBD lamp, aimed at chip-scale atomic clocks. We also present the electrical modelling of the discharge parameters to understand the power distribution mechanisms and the input power to discharge power coupling efficiency.

  6. Apparent embrittlement saturation and radiation mechanisms of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Pachur, D.

    1981-01-01

    The irradiation and annealing results of three different reactor pressure vessel steels are reported. Steel A, a basic material according to ASTM A-533 B having 0.15 percent vanadium; and Steel C contained 3.2 percent nickel. The steels were irradiated at 150, 300, and 400 degree C with neutron fluxes of 6 multiplied by 10 11 and 3 multiplied by 10 13 neutrons (n)/cm 2 /s. An apparent saturation-in-irradiation effect was found within certain neutron fluence ranges. During the annealing, various recovery processes occur in different temperature ranges. These are characterized by various activation energies. The individual processes were determined by the different time dependencies at various temperatures. Two causes for the apparent saturation were discovered from the behavior of the annealing curves

  7. Pore Pressure Response to Groundwater Fluctuations in Saturated Double-Layered Soil

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2015-01-01

    Full Text Available Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are analyzed. A dimensionless parameter θ has been introduced because it significantly affects the phase and the amplitude of excess pore pressures. The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameter θ and the permeability and compressibility of the double-layered soil system.

  8. Study of Vapour Cloud Explosion Impact from Pressure Changes in the Liquefied Petroleum Gas Sphere Tank Storage Leakage

    Science.gov (United States)

    Rashid, Z. A.; Suhaimi Yeong, A. F. Mohd; Alias, A. B.; Ahmad, M. A.; AbdulBari Ali, S.

    2018-05-01

    This research was carried out to determine the risk impact of Liquefied Petroleum Gas (LPG) storage facilities, especially in the event of LPG tank explosion. In order to prevent the LPG tank explosion from occurring, it is important to decide the most suitable operating condition for the LPG tank itself, as the explosion of LPG tank could affect and cause extensive damage to the surrounding. The explosion of LPG tank usually occurs due to the rise of pressure in the tank. Thus, in this research, a method called Planas-Cuchi was applied to determine the Peak Side-On Overpressure (Po) of the LPG tank during the occurrence of explosion. Thermodynamic properties of saturated propane, (C3H8) have been chosen as a reference and basis of calculation to determine the parameters such as Explosion Energy (E), Equivalent Mass of TNT (WTNT), and Scaled Overpressure (PS ). A cylindrical LPG tank in Feyzin Refinery, France was selected as a case study in this research and at the end of this research, the most suitable operating pressure of the LPG tank was determined.

  9. Heating of a fully saturated darcian half-space: Pressure generation, fluid expulsion, and phase change

    Science.gov (United States)

    Delaney, P.

    1984-01-01

    Analytical solutions are developed for the pressurization, expansion, and flow of one- and two-phase liquids during heating of fully saturated and hydraulically open Darcian half-spaces subjected to a step rise in temperature at its surface. For silicate materials, advective transfer is commonly unimportant in the liquid region; this is not always the case in the vapor region. Volume change is commonly more important than heat of vaporization in determining the position of the liquid-vapor interface, assuring that the temperatures cannot be determined independently of pressures. Pressure increases reach a maximum near the leading edge of the thermal front and penetrate well into the isothermal region of the body. Mass flux is insensitive to the hydraulic properties of the half-space. ?? 1984.

  10. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve

    Directory of Open Access Journals (Sweden)

    Julie-Ann Collins

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content, saturation (SO2 and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin–oxygen dissociation curve, a graphical representation of the relationship between oxygen satur­ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the SO2 in blood from patients with normal pH and SO2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (SpO2 is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (SaO2 as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable SpO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  11. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit

    International Nuclear Information System (INIS)

    Ferrio, J.P.; Voltas, J.

    2005-01-01

    Carbon and oxygen isotope compositions (δ 13 C, δ 18 O) in tree rings have been shown to bear relevant climatic signals. However, little is known about the interrelationship between both isotopes in wood constituents for species from other than relatively wet climates. We hypothesized that in a species adapted to temporary droughts (e.g. Pinus halepensis Mill.) the signal derived from δ 18 O in precipitation would be hidden by the strong variability in leaf transpirative enrichment. To test this assumption, we compared the effect of precipitation, temperature and vapour pressure deficit (VPD) on δ 18 O and δ 13 C along 23 sites covering the ecological range for this species. We extracted the cores from the south side of four to six adult dominant trees per aspect (north/south) within each site. For each aspect and site, fragments of the period 1975-1999 were pooled and milled to a fine powder. To further test the postulated need for cellulose purification in the assessment of climatic information, we studied these relationships in whole and extracted wood, holocellulose and lignin. In all wood fractions, δ 13 C was related to annual precipitation [r=0.58 (P 18 O only holocellulose showed consistent relationships with climatic data, being strongly significant for VPD [r=0.66 (P 18 O in precipitation, confirming that transpirative enrichment (driven by VPD) dampened the source signal in P. halepensis. The relationships between δ 13 C and δ 18 O were generally poor, regardless of the wood constituent, suggesting that although both variables were somewhat related to transpirative demand, they were relatively independent. This was further confirmed by building stepwise models using both isotopes to predict annual and seasonal precipitation [r 2 = 0.34 (P 2 = 0.15 (P 2 = 0.31 (P< 0.01) to 0.55 (P< 0.001)]. We concluded that, even when partially describing the same climate variables, the information underlying the two isotopes can be regarded as complementary

  12. Establishing a quantitative functional relationship between capillary pressure, saturation and interfacial area. 1997 annual progress report

    International Nuclear Information System (INIS)

    Montemagno, C.D.

    1997-01-01

    'There is a fundamental knowledge gap associated with the in situ remediation of non-aqueous phase pollutants. Currently it is not possible to accurately determine the interfacial surface area of non-aqueous contaminants. As a result it is impossible to (1) accurately establish the health and environmental risk associated with the pollution: (2) precisely quantify and evaluate the potential efficacy of various in situ treatment technologies; and (3) conduct reliable performance assessments of the applied remediation technology during and after the clean-up. The global goal of this investigation is to try to remedy these shortcomings through the development of a formalized functional relationship between interfacial area (a), phase saturation (S) and capillary pressure (P). The development of this relationship will allow the direct determination of the fluid-fluid interfacial area from field measurements. Quantitative knowledge of the surface area of the non-aqueous phase pollutant facilitates accurate predictions of both the rate of dissolution and the contact area available for treatment. In addition. if saturation and capillary pressure measurements are made during the remediation process. both the spatial and temporal effectiveness of the remediation technology can be quantified. This information can then be used to optimize the restoration program. The project objective will be achieved through an integrated and focused research program that is comprised of theoretical computational and experimental efforts. These efforts are organized into a framework of four tasks: (1) improve on newly developed laboratory techniques to quantify and directly measure the functional relationship between phase interfacial area (a), saturation (S) and capillary pressure (P). (2) Develop new computational algorithms in conjunction with laboratory measurements to predict P, S and a. (3) Test existing theory and develop new theory to describe the relationship between P, S and a at

  13. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  14. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smolenskij, V.V.; Moskalenko, N.I.

    2004-01-01

    Volatilities of GaCl 3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl 3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl 3 ; their variation permits altering parameters of GaCl 3 distillation from the salt melt in a wide range [ru

  15. Experimental study and theoretical interpretation of saturation effect on ultrasonic velocity in tight sandstones under different pressure conditions

    Science.gov (United States)

    Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Huang, Shiqi; Shuai, Da

    2018-03-01

    Understanding the influence of lithology, porosity, permeability, pore structure, fluid content and fluid distribution on the elastic wave properties of porous rocks is of great significance for seismic exploration. However, unlike conventional sandstones, the petrophysical characteristics of tight sandstones are more complex and less understood. To address this problem, we measured ultrasonic velocity in partially saturated tight sandstones under different effective pressures. A new model is proposed, combining the Mavko-Jizba-Gurevich relations and the White model. The proposed model can satisfactorily simulate and explain the saturation dependence and pressure dependence of velocity in tight sandstones. Under low effective pressure, the relationship of P-wave velocity to saturation is pre-dominantly attributed to local (pore scale) fluid flow and inhomogeneous pore-fluid distribution (large scale). At higher effective pressure, local fluid flow gradually decreases, and P-wave velocity gradually shifts from uniform saturation towards patchy saturation. We also find that shear modulus is more sensitive to saturation at low effective pressures. The new model includes wetting ratio, an adjustable parameter that is closely related to the relationship between shear modulus and saturation.

  16. Low vapour pressure deficit reduces the beneficial effect of elevated CO{sub 2} on growth of N{sub 2}-fixing alfalfa plants

    Energy Technology Data Exchange (ETDEWEB)

    Luis, I. De; Irigoyen, J.J.; Sanchez-Diaz, M. [Univ. de Navarra, Dept. de Fisioligia Vegetal, Pamplona (Spain)

    2002-11-01

    Plant responses to elevated CO{sub 2} can be modified by many environmental factors, but very little attention has been paid to the interaction between CO{sub 2} and changes in vapour pressure deficit (VPD). Thirty-day-old alfalfa plants (Medicago sativa L. cv. Aragon), which were inoculated with Sinorhizobium meliloti 102F78 strain, were grown for 1 month in controlled environment chambers at 25/15 deg C, 14 h photoperiod, and 600 mol m{sup -2} s{sup -1} photosynthetic photon flux (PPF), using a factorial combination of CO{sub 2} concentration (400 mol mol{sup -1} or 700 mol mol{sup -1}) and vapour pressure deficit (0.48 kPa or 1.74 kPa, which corresponded to relative humidities of 85% and 45% at 25 deg C, respectively). Elevated CO{sub 2} strongly stimulated plant growth under high VPD conditions, but this beneficial effect was not observed under low VPD. Under low VPD, elevated CO{sub 2} also did not enhance plant photosynthesis, and plant water stress was greatest for plants grown at elevated CO{sub 2} and low VPD. Moreover, plants grown under elevated CO{sub 2} and low VPD had a lower leaf soluble protein and photosynthetic activity (photosynthetic rate and carboxylation efficiency) than plants grown under elevated CO{sub 2} and high VPD. Elevated CO{sub 2} significantly increased leaf adaxial and abaxial temperatures. Because the effects of elevated CO{sub 2} were dependent on vapour pressure deficit, VPD needs to be controlled in experiments studying the effect of elevated CO{sub 2} as well as considered in the extrapolations of results to a warmer, high-CO{sub 2} world. (au)

  17. Vapour pressures and osmotic coefficients of binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate with alcohols at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gonzalez, Begona; Dominguez, Angeles; Macedo, Eugenia A.

    2009-01-01

    Osmotic coefficients of binary mixtures containing alcohols (ethanol, 1-propanol, and 2-propanol) and the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate were determined at T = 323.15 K. Vapour pressure and activity coefficients of the studied systems were calculated from experimental data. The extended Pitzer model modified by Archer, and the modified NRTL model (MNRTL) were used to correlate the experimental data, obtaining standard deviations lower than 0.012 and 0.031, respectively. The mean molal activity coefficients and the excess Gibbs free energy of the studied binary mixtures were calculated from the parameters obtained with the extended Pitzer model of Archer.

  18. Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Schäfer, J.; Fricke, K.; Mika, Filip; Pokorná, Zuzana; Zajíčková, L.; Foest, R.

    2017-01-01

    Roč. 630, MAY 30 (2017), s. 71-78 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : plasma jet * liquid assisted plasma enhanced chemical * vapour deposition * silicon oxide Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Coating and films Impact factor: 1.879, year: 2016

  19. A Numerical Investigation on the Effect of Gas Pressure on the Water Saturation of Compacted Bentonite-Sand Samples

    Directory of Open Access Journals (Sweden)

    Jiang-Feng Liu

    2017-01-01

    Full Text Available In deep geological disposal for high-level radioactive waste, the generated gas can potentially affect the sealing ability of bentonite buffers. There is a competition between water and gas: the former provides sealing by swelling bentonite, and the latter attempts to desaturate the bentonite buffer. Thus, this study focused on numerically modelling the coupling effects of water and gas on the water saturation and sealing efficiency of compacted bentonite-sand samples. Different gas pressures were applied to the top surface of an upper sample, whereas the water pressure on the bottom side of the lower sample was maintained at 4 MPa. The results indicated that gas pressure did not significantly affect the saturation of the bentonite-sand sample until 2 MPa. At 2 MPa, the degree of water saturation of the upper sample was close to 1.0. As the gas pressure increased, this influence was more apparent. When the gas pressure was 6 MPa or higher, it was difficult for the upper sample to become fully saturated. Additionally, the lower sample was desaturated due to the high gas pressure. This indicated that gas pressure played an important role in the water saturation process and can affect the sealing efficiency of bentonite-based buffer materials.

  20. Atmospheric pressure chemical vapour deposition of vanadium arsenide thin films via the reaction of VCl4 or VOCl3 with tBuAsH2

    International Nuclear Information System (INIS)

    Thomas, Tegan; Blackman, Christopher S.; Parkin, Ivan P.; Carmalt, Claire J.

    2013-01-01

    Thin films of vanadium arsenide were deposited via the dual-source atmospheric pressure chemical vapour deposition reactions of VCl 4 or VOCl 3 with t BuAsH 2 . Using the vanadium precursor VCl 4 , films were deposited at substrate temperatures of 550–600 °C, which were black-gold in appearance and were found to be metal-rich with high levels of chlorine incorporation. The use of VOCl 3 as the vanadium source resulted in films being deposited between 450 and 600 °C and, unlike when using VCl 4 , were silver in appearance. The films deposited using VOCl 3 demonstrated vanadium to arsenic ratios close to 1:1, and negligible chlorine incorporation. Films deposited using either vanadium precursor were identified as VAs using powder X-ray diffraction and possessed borderline metallic/semiconductor resistivities. - Highlights: • Formation of VAs films via atmospheric pressure chemical vapour deposition. • Films formed using VCl 4 or VOCl 3 and t BuAsH 2 . • Powder X-ray diffraction showed that crystalline VAs films were deposited. • Films from VOCl 3 had a V:As ratio close to 1 with negligible Cl incorporation. • Films were silver and possessed borderline metallic/semiconductor resistivities

  1. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity

    NARCIS (Netherlands)

    Sousa, C.A.; Winter, de L.; Janssen, M.G.J.; Vermue, M.H.; Wijffels, R.H.

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (PO2=0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06

  2. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    Science.gov (United States)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  3. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    Science.gov (United States)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  4. COMPARISON OF THE EFFECTIVENESS OF TWO LEVELS OF SUCTION PRESSURE ON OXYGEN SATURATION IN PATIENTS WITH ENDOTRACHEAL TUBE

    Directory of Open Access Journals (Sweden)

    Muhaji

    2017-12-01

    Full Text Available Background: Endotracheal suctioning is one of the common supportive measures in intensive care units (ICU, which may be related to complications such as hypoxia. However, a questionable efficacy is still identified to choose suctioning pressure between 130 mmHg and 140 mmHg that is effective for patients with endotracheal tube. Objective: To compare the effectiveness of 130 mmHg and 140 mmHg suctioning pressure on oxygen saturation in patients with endotracheal tube. Methods: This research used a quasy experimental design with pretest and posttest group. The study was conducted from 31 January to 1 March 2017 in the Hospital of Panti Wilasa Citarum and Hospital of Roemani Muhammadiyah Semarang. There were 30 samples recruited using consecutive sampling, with 15 assigned in the 130 mmHg and 140 mmHg suctioning pressure group. Pulse oximetry was used to measure oxygen saturation. Paired t-test and Independent t-test were used for data analysis. Results: Findings showed that there was a statistically significant effect of 130 and 140 mmHg suctioning pressure on oxygen saturation in patients with ETT with p-value <0.05. There was a significant mean difference of oxygen saturation between 130 mmHg and 140 mmHg suctioning pressure group with p-value 0.004 (<0.05. The mean difference of oxygen saturation between both groups was 13.157. Conclusion: The 140 mmHg suctioning pressure is more effective compared with 130 mmHg suctioning pressure in increasing oxygen saturation in patients with ETT.

  5. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air. A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures

    Energy Technology Data Exchange (ETDEWEB)

    McGillivray, G.W. (Atomic Weapons Establishment, Aldermaston, Reading (United Kingdom)); Geeson, D.A. (Atomic Weapons Establishment, Aldermaston, Reading (United Kingdom)); Greenwood, R.C. (Atomic Weapons Establishment, Aldermaston, Reading (United Kingdom))

    1994-01-01

    The rate of oxidation of uranium metal by moist air has been measured at temperatures from 115 to 350 C and water vapour pressures from 0 to 47 kPa (350 Torr). From this and from previously reported data, a model has been developed which allows the rate of uranium oxidation to be calculated at any particular combination of temperature and water vapour pressure of interest, in the range 0-350 C and 0-101.3 kPa (760 Torr). The model is based on the assumption that the surface concentration of water determines the rate of reaction and that the adsorption of water onto the oxide follows a Langmuir type isotherm. Theoretical plots of rate as a function of water vapour pressure and Arrhenius plots derived from the model have been shown to be in good agreement with experimental data. The model assumes separate contributions to the overall observed rate from oxygen and water vapour. Surface studies have been carried out using SIMS (secondary ion mass spectrometry). Depth profiling of the oxide produced by isotopically labelled reagents ([sup 18]O[sub 2] and H[sup 18][sub 2]O), has shown that oxygen from both reactants is incorporated into the oxide layer in the ratio predicted by the kinetic model. This supports a mechanism in which oxygen and water vapour produce separate diffusing species (possibly O[sup 2-] and OH[sup -]). (orig.)

  6. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures

    Science.gov (United States)

    McGillivray, G. W.; Geeson, D. A.; Greenwood, R. C.

    1994-01-01

    The rate of oxidation of uranium metal by moist air has been measured at temperatures from 115 to 350°C and water vapour pressures from 0 to 47 kPa (350 Torr). From this and from previously reported data, a model has been developed which allows the rate of uranium oxidation to be calculated at any particular combination of temperature and water vapour pressure of interest, in the range 0-350°C and 0-101.3 kPa (760 Torr). The model is based on the assumption that the surface concentration of water determines the rate of reaction and that the adsorption of water onto the oxide follows a Langmuir type isotherm. Theoretical plots of rate as a function of water vapour pressure and Arrhenius plots derived from the model have been shown to be in good agreement with experimental data. The model assumes separate contributions to the overall observed rate from oxygen and water vapour. Surface studies have been carried out using SIMS (secondary ion mass spectrometry). Depth profiling of the oxide produced by isotopically labelled reagents ( 18O 2 and H 218O), has shown that oxygen from both reactants is incorporated into the oxide layer in the ratio predicted by the kinetic model. This supports a mechanism in which oxygen and water vapour produce separate diffusing species (possibly O 2- and OH -).

  7. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.

    Science.gov (United States)

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-05-01

    Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions

  8. Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats.

    Science.gov (United States)

    Alcaide, María; Stogios, Peter J; Lafraya, Álvaro; Tchigvintsev, Anatoli; Flick, Robert; Bargiela, Rafael; Chernikova, Tatyana N; Reva, Oleg N; Hai, Tran; Leggewie, Christian C; Katzke, Nadine; La Cono, Violetta; Matesanz, Ruth; Jebbar, Mohamed; Jaeger, Karl-Erich; Yakimov, Michail M; Yakunin, Alexander F; Golyshin, Peter N; Golyshina, Olga V; Savchenko, Alexei; Ferrer, Manuel

    2015-02-01

    The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.5°C) biotopes, characterized by a wide range of salinities (39-348 practical salinity units), were investigated for this purpose. An enzyme from a 'superficial' marine hydrothermal habitat (65°C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in salt-saturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deep-sea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16°C, was shown to contain halopiezophilic-like enzymes that are most active at 70°C and with denaturing temperatures of 71.4°C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Estimation of critical gas saturation during pressure depletion in virgin and waterflooded reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, S.R.; Sorbie, K.S. [Heriot-Watt Univ., Dept. of Petroleum Engineering, Edinburgh (United Kingdom)

    1999-08-01

    An important issue in petroleum engineering is the prediction of gas production during reservoir depletion - either following conventional waterflooding operations or in the early stages of hydrocarbon production. The estimation of critical gas saturation for use in corresponding simulation studies is clearly a primary concern. To this end, a 3D, three-phase numerical pore-scale simulator has been developed that can be used to estimate critical gas saturations over a range of different lengthscales and for a wide range of fluid and rock properties. The model incorporates a great deal of the known physics observed in associated laboratory micromodel experiments, including embryonic nucleation, supersaturation effects, multiphase diffusion, bubble growth/migration/fragmentation, oil shrinkage, and three-phase spreading coefficients. These precise pore-scale mechanisms governing gas evolution have been found to be far more subtle than earlier models would suggest because of the large variation of gas/oil interfacial tension (IFT) with pressure. This has a profound effect upon the migration of gas structures during depletion. In models pertaining to reservoir rock, the process of gas migration is consequently much slower than predictions from more simplistic models would imply. This is the first time that bubble fragmentation and IFT variations have been included in a model of gas evolution at the pore-scale and the implications for production forecasting are expected to be significant. In addition, novel scaling groups have been derived for a number of different facies under both virgin and waterflooded conditions. One future application of these groups would be to scale S{sub gc} values obtained from high rate depressurization experiments to the low rate conditions more characteristic of field operations. (Author)

  10. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.

    Science.gov (United States)

    Hall, Wendy L

    2009-06-01

    The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.

  11. Vapour pressure and excess Gibbs free energy of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane at temperature of 182.33K

    International Nuclear Information System (INIS)

    Lobo, L.Q.; Ferreira, A.G.M.; Fonseca, I.M.A.; Senra, A.M.P.

    2006-01-01

    The vapour pressure of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane was measured at T=182.33K covering most of the composition range. The excess Gibbs free energy of these mixtures has been derived from the measurements made. For the equimolar mixtures G m E (x 1 =0.5)=(835.5+/-5.8)J.mol -1 for (H 2 S+C 2 H 6 ) (820.1+/-2.4)J.mol -1 for (H 2 S+C 3 H 8 ), and (818.6+/-0.9)J.mol -1 for (H 2 S+n-C 4 H 10 ). The binary mixtures of H 2 S with ethane and with propane exhibit azeotropes, but that with n-butane does not

  12. Chemical vapour deposition at atmospheric pressure of graphene on molybdenum foil: Effect of annealing time on characteristics and corrosion stability of graphene coatings

    International Nuclear Information System (INIS)

    Naghdi, Samira; Jevremović, Ivana; Mišković-Stanković, Vesna; Rhee, Kyong Yop

    2016-01-01

    Highlights: • Atmospheric pressure chemical vapor deposition of graphene on molybdenum foils. • Quality and domain size of graphene layers increased with longer annealing times. • The number of graphene layers decreased with longer annealing times. • Graphene coatings on molybdenum foils exhibited corrosion inhibitive properties. - Abstract: In this work, the effect of pre-annealing of Mo substrate on the quality of graphene layers grown by chemical vapour deposition was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. Moreover, different electrochemical techniques were employed to investigate the corrosion stability of the graphene coated Mo in 0.1 M NaCl. Longer annealing time resulted in less defective graphene coatings with fewer layers. Graphene coating on the annealed Mo provided better protection against corrosion during the initial exposure times, while after prolonged exposure times, both graphene coatings on annealed and non-annealed Mo exhibited nearly the same corrosion inhibitive properties.

  13. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    Science.gov (United States)

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  14. Estimation of changes in saturation and pressure from 4D seismic AVO and time-shift analysis

    NARCIS (Netherlands)

    Trani, M.; Arts, R.; Leeuwenburgh, O.; Brouwer, J.

    2011-01-01

    A reliable estimate of reservoir pressure and fluid saturation changes from time-lapse seismic data is difficult to obtain. Existing methods generally suffer from leakage between the estimated parameters. We propose a new method using different combinations of time-lapse seismic attributes based on

  15. Influence of the product gases on the kinetics of water vapour gasification as a function of pressure and temperature

    International Nuclear Information System (INIS)

    Muehlen, H.J.

    1983-01-01

    The reaction kinetics of coal gasification by using the process heat is investigated. Pressure, temperature and composition of the gasifying agent are varied. Starting from other models, a kinetic model is derived and tested for its applicability. (PW) [de

  16. Cr{sub 2}O{sub 3} thin films grown at room temperature by low pressure laser chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, P.M. [Universidade de Lisboa, Faculdade de Ciencias, Departamento de Fisica and ICEMS, Campo Grande, Ed. C8, 1749-016 Lisboa (Portugal); Silvestre, A.J., E-mail: asilvestre@deq.isel.ipl.p [Instituto Superior de Engenharia de Lisboa and ICEMS, R. Conselheiro Emidio Navarro 1, 1959-007 Lisboa (Portugal); Conde, O. [Universidade de Lisboa, Faculdade de Ciencias, Departamento de Fisica and ICEMS, Campo Grande, Ed. C8, 1749-016 Lisboa (Portugal)

    2011-03-31

    Chromia (Cr{sub 2}O{sub 3}) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr{sub 2}O{sub 3} films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr{sub 2}O{sub 3} onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO){sub 6} as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm{sup -2} and a partial pressure ratio of O{sub 2} to Cr(CO){sub 6} of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s{sup -1} and mean particle sizes of 1.85 {mu}m were measured for these films.

  17. Experimental study on saturated boiling of two phase natural circulation under low pressure in narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zi-chao; Qi, Shi; Zhou, Tao; Li, Bing; Shahzad, Muhammad Ali [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Huang, Yan-ping [Nuclear Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-12-15

    Saturated boiling of two-phase natural circulation has been experimentally investigated based on a natural circulation device with narrow rectangular channels. When heating power reaches a certain range, it is possible to observe the phenomenon of saturated boiling and flow pattern transition in the system. The results show the heat transfer coefficient of saturated boiling decreases with the increasing of pressure, heating power and size of narrow rectangle channels. The buoyancy force causing mixed convection decreases the heat transfer coefficient. Finally, a dimensionless number is introduced, which reflects length to width ratio of rectangular narrow section and Rayleigh number, in order to revise the presented correlation. All errors fall within the range of ±15%.

  18. Numerical and Experimental Investigations of the Effect of PVD and Vacuum Pressure on the Degree of Saturation

    Directory of Open Access Journals (Sweden)

    Ala Nasir Aljorany

    2018-12-01

    Full Text Available Soft clays are generally characterized by low shear strength, low permeability and high compressibility. An effective method to accelerate consolidation of such soils is to use vertical drains along with vacuum preloading to encourage radial flow of water. In this research numerical modeling of prefabricated vertical drains with vacuum pressure was done to investigate the effect of using vertical drains together with vacuum pressure on the degree of saturation of fully and saturated-unsaturated soft soils. Laboratory experiments were conducted by using a specially-designed large consolidometer cell where a central drain was installed and vacuum pressure was applied. All tests were conducted with a vacuum pressure of 40 kPa applied for a period of 30 days where a degree of soil consolidation of 90% was attained. At the end of the test period fifteen samples were taken from different locations distributed along the depth and radially to measure the water content. Consolidation settlements were recorded with time for all tests. The results showed that using vacuum pressure with vertical drains is a very effective method to accelerate consolidation of soils. As the thickness of unsaturated top layer increases, the settlement of soil surface decreases. The water content decreased after 30 days of application of the vacuum pressure.

  19. The use of hemoglobin saturation ratio as a means of measuring tissue perfusion in the development of heel pressure sores.

    Science.gov (United States)

    Aliano, Kristen A; Stavrides, Steve; Davenport, Thomas

    2013-09-01

    The heel is a common site of pressure ulcers. The amount of pressure and time needed to develop these wounds is dependent on various factors including pressure surface, the patient's anatomy, and co-morbidities. We studied the use of the hemoglobin saturation ratio as a means of assessing heel perfusion in various pressure settings. The mixed perfusion ratio in the heels of 5 volunteers was assessed on 3 pressure surfaces and at the time of off-load. The surfaces studied included: stretcher pad, plastic backboard without padding, and pressure reduction gel. Each surface was measured for 5 minutes with a real-time reading. On the stretcher, the average StO2% decrease for each pressure surface was 26.2 ± 10 (range 18-43). The average StO2% decrease on the backboard was 22.8 ± 12.3 (range 8-37), and 24.0 ± 4.8 (range 19-30) on the gel pad. The StO2% drop plateaued with the stretcher and gel pad, but with the backboard there was a continued slow drop at 5 minutes. This study demonstrates that hemoglobin oxygenation ratio may be effective in assessing a tissue's direct perfusion in the setting of tissue pressure and may also be beneficial to better assess the effects of pressure-reduction surfaces. Further studies will be needed to determine time to skin breakdown as it pertains to pressure and tissue oxygenation.

  20. A novel method of measuring the concentration of anaesthetic vapours using a dew-point hygrometer.

    Science.gov (United States)

    Wilkes, A R; Mapleson, W W; Mecklenburgh, J S

    1994-02-01

    The Antoine equation relates the saturated vapour pressure of a volatile substance, such as an anaesthetic agent, to the temperature. The measurement of the 'dew-point' of a dry gas mixture containing a volatile anaesthetic agent by a dew-point hygrometer permits the determination of the partial pressure of the anaesthetic agent. The accuracy of this technique is limited only by the accuracy of the Antoine coefficients and of the temperature measurement. Comparing measurements by the dew-point method with measurements by refractometry showed systematic discrepancies up to 0.2% and random discrepancies with SDS up to 0.07% concentration in the 1% to 5% range for three volatile anaesthetics. The systematic discrepancies may be due to errors in available data for the vapour pressures and/or the refractive indices of the anaesthetics.

  1. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    Science.gov (United States)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  2. Fuel reactivity and release of pollutants and alkali vapours in pressurized combustion for combined cycle power generation

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J.; Paakkinen, K.; Rantanen, J. [VTT Energy, Jyvaeskylae (Finland); Hernberg, R.; Haeyrinen, V.; Joutsenoja, T. [Tampere Univ. of Technology (Finland). Lab. of Plasma Technology

    1996-12-01

    This project forms a part of the overall Pressurized Power Coal Combustion Project Area (PPFC) which aims at an assessment of the viability and technical merits of pressurized pulverized coal combustion, in an atmosphere of recycled flue gas and oxygen in a coordinated and harmonized programme. The objective of the research at Technical Research Centre of Finland (VTT) and Tampere University of Technology (TUT) is aimed at determining the consequences of solid fuel burning in a mixture of oxygen and recycled flue gases. Combustion conditions of a pressurized entrained flow of pulverized coal and char particles in PEFR are determined with high precision. The effects of experimental parameters on the formation of nitrogen oxides (N{sub 2}O, NO and NO{sub 2}) and gaseous alkali compounds (indicated as NaX(g) and KX(g)) are studied. An effective on-line analysis method for vaporised Na and K compounds was developed. The dependency between particle temperatures and the vaporisation of Na and K was measured with three coals. The results show that alkali removal before gas turbines is always necessary with these coals if combusted in combined cycles. Pressure decreases the formation of NO and has usually no clear effect on the formation of N{sub 2}O. The order of NO/N{sub 2}O ratios correspond to fuel-O/fuel-N ratios. Increase of PO{sub 2} (oxygen concentration) of combustion gas increases the formation of NO{sub 2}. Remarkable concentrations of NO{sub 2} were often measured at high PO{sub 2} at 800-850 deg C. Therefore, NO{sub 2} should be measured from pressurized fluidized bed reactors. Some trends of the formation of NO{sub 2} with coal differ clearly from those with its parent char: N{sub 2}O formation is not strongly temperature dependent with char, and the concentrations of N{sub 2}O formed from char are much lower than those of coal. PO{sub 2} does not effect on the formation of NO from char in the studied range

  3. Drivers of radial growth and carbon isotope discrimination of bur oak (Quercus macrocarpa Michx.) across continental gradients in precipitation, vapour pressure deficit and irradiance.

    Science.gov (United States)

    Voelker, Steven L; Meinzer, Frederick C; Lachenbruch, Barbara; Brooks, J Renée; Guyette, Richard P

    2014-03-01

    Tree-ring characteristics are commonly used to reconstruct climate variables, but divergence from the assumption of a single biophysical control may reduce the accuracy of these reconstructions. Here, we present data from bur oaks (Quercus macrocarpa Michx.) sampled within and beyond the current species bioclimatic envelope to identify the primary environmental controls on ring-width indices (RWIs) and carbon stable isotope discrimination (Δ(13) C) in tree-ring cellulose. Variation in Δ(13) C and RWI was more strongly related to leaf-to-air vapour pressure deficit (VPD) at the centre and western edge of the range compared with the northern and wettest regions. Among regions, Δ(13) C of tree-ring cellulose was closely predicted by VPD and light responses of canopy-level Δ(13) C estimated using a model driven by eddy flux and meteorological measurements (R(2)  = 0.96, P = 0.003). RWI and Δ(13) C were positively correlated in the drier regions, while they were negatively correlated in the wettest region. The strength and direction of the correlations scaled with regional VPD or the ratio of precipitation to evapotranspiration. Therefore, the correlation strength between RWI and Δ(13) C may be used to infer past wetness or aridity from paleo wood by determining the degree to which carbon gain and growth have been more limited by moisture or light. © 2013 John Wiley & Sons Ltd.

  4. Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: a role for abscisic acid?

    Science.gov (United States)

    Qiu, Changpeng; Ethier, Gilbert; Pepin, Steeve; Dubé, Pascal; Desjardins, Yves; Gosselin, André

    2017-09-01

    The temperature dependence of mesophyll conductance (g m ) was measured in well-watered red raspberry (Rubus idaeus L.) plants acclimated to leaf-to-air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (T leaf ) rise from 20 to 35 °C. Contrary to the great majority of g m temperature responses published to date, we found a pronounced reduction of g m with increasing T leaf irrespective of leaf chamber O 2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (g s ), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of g m . However, the concerted diurnal reductions of g m and g s were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of g m under favourable leaf water status. Our results challenge the view that the temperature dependence of g m can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes.​. © 2017 John Wiley & Sons Ltd.

  5. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

    Science.gov (United States)

    Shamshiri, Redmond Ramin; Jones, James W.; Thorp, Kelly R.; Ahmad, Desa; Man, Hasfalina Che; Taheri, Sima

    2018-04-01

    Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under various light conditions, can contribute to the design of adaptive control strategies for a more cost-effective and competitive production. In this context, different scientific publications have recommended different values of microclimate parameters at different tomato growth stages. This paper provides a detailed summary of optimal, marginal and failure air and root-zone temperatures, relative humidity and vapour pressure deficit for successful greenhouse cultivation of tomato. Graphical representations of the membership function model to define the optimality degrees of these three parameters are included with a view to determining how close the greenhouse microclimate is to the optimal condition. Several production constraints have also been discussed to highlight the short and long-term effects of adverse microclimate conditions on the quality and yield of tomato, which are associated with interactions between suboptimal parameters, greenhouse environment and growth responses.

  6. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.

    Science.gov (United States)

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Brendel, Oliver; Le Thiec, Didier

    2015-04-01

    Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth. © 2014 John Wiley & Sons Ltd.

  7. Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours

    Energy Technology Data Exchange (ETDEWEB)

    Buckle, E.R. [Division of Metallurgy, School of Materials, The University, Mappin Street, Sheffield S1 3JD (United Kingdom); Bowsher, B.R. [Chemistry Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1988-10-15

    A theoretical approach to modelling aerosol nucleation from the vapour phase has been developed by Buckle. In this theory, the condensing vapour species are assumed to be transported from an evaporating source across a one-dimensional stagnant boundary layer into an unreactive vapour-free atmosphere. A slip-flow model for interfacial energy and mass flow is combined with this stagnant boundary layer model to yield a set of parameters that uniquely characterise the evaporative flow process (i.e. pressure, source and sink temperatures, sink concentration, and the flux density of heat or mass from the source). To obtain the initial conditions for nucleation the vapour saturation ratio p/p deg is plotted against temperature and compared with the minimum saturation ratio defined by homogeneous nucleation theory. The co-education be represented by a nucleation threshold (or F) diagram. The mass and energy equations of the flow are solved by introducing the Becker-Doering formula for the nucleation rate, and the Stefan diffusion model for particle growth. This gives the rise and fall of supersaturation and the evolution of the particle size distribution along the flow coordinate. In the present studies, the applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. The model has been used to predict the onset of nucleation and the particle size distribution for single vapour species. Preliminary studies have demonstrated that conditions exist whereby both heterogeneous and homogeneous nucleation can occur simultaneously. This process could account for experimental observations of chemically-different aerosols being formed under severe reactor accident conditions. (author)

  8. NABUB a non-saturated model of coolant boiling in a fast reactor sub-assembly

    International Nuclear Information System (INIS)

    Brook, A.J.; Mills, D.S.

    1975-08-01

    A theoretical model is described of sodium boiling in a fast reactor sub-assembly in which the usual assumptions of a saturated vapour are not made. Instead, vapour pressure is calculated in a perfect gas basis, which enables some allowance to be made for the possible presence of non-condensables, which may inhibit the condensation f the vapour. Indications are given of the circumstances under which such inhibition might be expected to show the most marked effects, and some sample results ontained by the code are presented. These show that the coolant voiding pattern is most sensitive to restrictions on the condensing flux in the 100 to 200w/cm 2 range. If unrestricted condensation is assumed, the results of the code are in excellent agreement with more conventional saturation models. (author)

  9. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    Science.gov (United States)

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The Effects of NaCl Concentration and Confining Pressure on Mechanical and Acoustic Behaviors of Brine-Saturated Sandstone

    Directory of Open Access Journals (Sweden)

    Yan-Hua Huang

    2018-02-01

    Full Text Available To better understand the mechanical behavior of rock with brine saturation, conventional triaxial experiments were carried out on sandstone for a range of confining pressures (0–60 MPa and NaCl concentrations (0–30%. As the confining pressure and NaCl concentration increased, the triaxial compressive strength, crack damage threshold, Young’s modulus, cohesion, and internal friction angle all increased. Real-time ultrasonic wave and acoustic emission (AE techniques were used to obtain the relationship between acoustic behavior and stress level during the whole triaxial compression process. During the whole deformation process, the evolution of P-wave velocity and accumulated AE count could be divided into four phases. The microstructural characteristics of brine-saturated sandstone, before and after loading, indicated that the strength enhancement mechanism may be attributed to an increase in inter-particle friction resulting from salt crystallisation around the points of contact. The angle of friction increased by more than 86% at maximum NaCl concentration compared to that for distilled water. The NaCl deposition in the pore space resulted in nonlinear strength increases for the brine-saturated sandstone specimens with increasing salinity. The present study is expected to improve the knowledge of the strength and failure mechanisms of sedimentary rock in deep saline aquifers.

  11. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N., E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Oliphant, C. J.; Jordaan, W. A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Fabiane, M. [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Department of Physics, National University of Lesotho, P.O. Roma 180 (Lesotho)

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  12. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit.

    Science.gov (United States)

    Kholová, Jana; Hash, C T; Kumar, P Lava; Yadav, Rattan S; Kocová, Marie; Vadez, Vincent

    2010-03-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm(-2) d(-1)) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40-1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines.

  13. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    Science.gov (United States)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness

  14. Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement

    Directory of Open Access Journals (Sweden)

    Masoud Amirpour

    2015-12-01

    Full Text Available Introducing the novel technique for enhancing oil recovery from available petroleum reservoirs is one of the important issues in future energy demands. Among of all operative factors, wettability may be the foremost parameter affecting residual oil saturation in all stage of oil recovery. Although wettability alteration is one of the methods which enhance oil recovery from the petroleum reservoir. Recently, the studies which focused on this subject were more than the past and many contributions have been made on this area. The main objective of the current study is experimentally investigation of the two nonionic surfactants effects on altering wettability of reservoir rocks. Purpose of this work is to change the wettability to preferentially the water-wet condition. Also reducing the residual oil saturation (Sor is the other purpose of this work. The wettability alteration of reservoir rock is measured by two main quantitative methods namely contact angle and the USBM methods. Results of this study showed that surfactant flooding is more effective in oil-wet rocks to change their wettability and consequently reducing Sor to a low value. Cedar (Zizyphus Spina Christi is low priced, absolutely natural, and abundantly accessible in the Middle East and Central Asia. Based on the results, this material can be used as a chemical surfactant in field for enhancing oil recovery.

  15. Optic nerve sheath diameter on fat-saturated T2-weighted orbital MR imaging reflects intracranial pressure

    International Nuclear Information System (INIS)

    Watanabe, Arata; Kinouchi, Hiroyuki; Horikoshi, Toru; Uchida, Mikito; Sakatsume, Satoshi

    2009-01-01

    Although dilated optic nerve sheath (ONS) is observed in the setting of increased intracranial pressure (ICP) such as idiopathic intracranial hypertension or hydrocephalus, the relationship between ONS diameter and ICP is unclear. We analyzed the relationship between subdural pressure measured during surgery in patients with chronic subdural fluid collections and ONS diameter measured on MR images. Orbital thin slice fat-saturated MR images were obtained within 24 hours before surgery and ONS diameters were measured just behind the optic globe. Subdural pressure was measured using a manometer before opening the dura mater during surgery. Significant correlation was found between the ONS diameter and subdural pressure (y=0.0618x+4.8219. y: ONS diameter (mm), x: subdural pressure (cmH 2 O), correlation coefficient: 0.505). The ONS diameter before surgery (6.1±0.7 mm) was significantly reduced after surgery (4.8±0.9 mm, p=0.003). Increased ONS diameter on MR images is a strong indicator of increased ICP we propose 6 mm as the normal limit of diameter just behind the eyeball because this value corresponds to the upper normal limit of ICP of around 20 cmH 2 O with above mentioned approximate curve. (author)

  16. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    Science.gov (United States)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure

  17. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  18. Elastic Dispersion and Attenuation in Fully Saturated Sandstones: Role of Mineral Content, Porosity, and Pressures

    Science.gov (United States)

    Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves

    2017-12-01

    Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.

  19. Critical review of use of high pressure saturated steam turbine economizers in nuclear power plants

    International Nuclear Information System (INIS)

    Urbanek, J.

    1981-01-01

    In the high-pressure part of the turbine drops of moisture condensate, which causes erosion and has negative impact on the service-life of the turbine and on its thermodynamic efficiency. Various designs have been put forward to eliminate moisture. A good combination is moisture separation combined with the offtake of steam for the regeneration of feed water or for the steam re-heater. As concerns the high-pressure component of the turbine it is best to offtake steam for the feed water heater and for heating the steam between the high- and low-pressure components of the turbine. The connections of the heater and re-heater in diagrams of various manufacturers are evaluated and compared. It appears to be uneconomical to use the heater in cases where feed water would be heated to temperature considerably below its optimal value. (M.D.)

  20. Organic Dye Effects on DNAPL Entry Pressure in Water Saturated Porous Media

    International Nuclear Information System (INIS)

    Iversen, G.M.

    2001-01-01

    One of three diazo dyes with the same fundamental structure have been used in most studies of DNAPL behavior in porous media to stain the NAPL: Sudan III, Sudan IV, or Oil-Red-O. The dyes are generally implicitly assumed to not influence DNAPL behavior. That assumption was tested using simple entry pressure experiments

  1. Discrete vapour cavity model with improved timing of opening and collapse of cavities

    NARCIS (Netherlands)

    Bergant, A.; Tijsseling, A.S.; Vítkovský, J.P.; Simpson, A.R.; Lambert, M.F.

    2007-01-01

    Transient vaporous cavitation occurs in hydraulic piping systems when the liquid pressure falls to the vapour pressure. Cavitation may occur as a localized vapour cavity (large void fraction) or as distributed vaporous cavitation (small void fraction). The discrete vapour cavity model (DVCM) with

  2. The impact of rock and fluid uncertainties in the estimation of saturation and pressure from a 4D petro elastic inversion

    International Nuclear Information System (INIS)

    Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J

    2015-01-01

    The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data. (paper)

  3. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    Science.gov (United States)

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  4. New concept to describe three-phase capillary pressure-degree of saturation relationship in porous media.

    Science.gov (United States)

    Nakamura, Keita; Kikumoto, Mamoru

    2018-03-15

    The Leverett concept is used conventionally to model the relationship between the capillary pressures and the degrees of saturation in the water-nonaqueous phase liquid (NAPL)-air three-phase system in porous media. In this paper, the limitation of the Leverett concept that the concept is not applicable in the case of nonspreading NAPLs is discussed through microscopic consideration. A new concept that can be applied in the case of nonspreading NAPLs as well as spreading NAPLs is then proposed. The validity of the proposed concept is confirmed by comparing with past experimental data and simulation results obtained using the conventional model based on the Leverett concept. It is confirmed that the proposed concept can correctly predict the observed distributions of NAPLs, including those of nonspreading ones. Copyright © 2018. Published by Elsevier B.V.

  5. Phase diagrams of (vapour + liquid) equilibrium for binary mixtures of α,α,α-trifluorotoluene with ethanol, or benzene, or chloroform at pressure 101.4 kPa

    International Nuclear Information System (INIS)

    Atik, Zadjia

    2008-01-01

    (Vapour + liquid) equilibrium (VLE) of binary mixtures of (ethanol + α,α,α-trifluorotoluene), (benzene + α,α,α-trifluorotoluene), and (chloroform + α,α,α-trifluorotoluene) have been investigated at the pressure 101.4 kPa using the dynamic-ebulliometry method over the whole composition range. The correlated VLE phase diagrams were adequately described by means of NRTL and UNIQUAC thermodynamic models. Fair attractive energies in the first two systems are capable to yield azeotropes, while moderate repulsive energies in the later system make it zeotrope

  6. Contribution to the liquid-vapour equilibrium of potassium and sodium mixtures

    International Nuclear Information System (INIS)

    Schreinlechner, I.; Schwarz, N.

    1975-10-01

    In this paper the phase diagram of the binary system potassium-sodium in the liquid-vapour range was calculated for different pressures and temperatures, assuming the two metals acting as ideal solution. The assumption was verified by experimental results. It is thus possible to calculate the separation factor for the rectification of potassium and to estimate the content of sodium in the vapour phase during experiments with vapourized potassium from the data of the vapour pressures of the pure metals. (author)

  7. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    Science.gov (United States)

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  8. Determination and modelling of osmotic coefficients and vapour pressures of binary systems 1- and 2-propanol with CnMimNTf2 ionic liquids (n = 2, 3, and 4) at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gomez, Elena; Dominguez, Angeles; Macedo, Eugenia A.

    2011-01-01

    Highlights: → Osmotic coefficients of 1- and 2-propanol with C n MimNTf 2 (n = 2, 3, and 4) are determined. → Experimental data were correlated with extended Pitzer model of Archer and MNRTL. → Mean molal activity coefficients and excess Gibbs free energies were calculated. → Effect of the anion is studied comparing these results with literature. - Abstract: The osmotic and activity coefficients and vapour pressures of binary mixtures containing 1-propanol, or 2-propanol and imidazolium-based ionic liquids with bis(trifluoromethylsulfonyl)imide as anion (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C 2 MimNTf 2 , 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, C 3 MimNTf 2 , and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C 4 MimNTf 2 ) were determined at T = 323.15 K using the vapour pressure osmometry technique. The experimental osmotic coefficients were correlated using the extended Pitzer model modified by Archer and the MNRTL model, obtaining standard deviations lower than 0.033 and 0.064, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the mixtures studied were calculated from the parameters of the extended Pitzer model modified by Archer. Besides the effect of the alkyl-chain of the cation, the effect of the anion can be assessed comparing the experimental results with those previously obtained for imidazolium ionic liquids with sulphate anions.

  9. Vapour loss (``boiling'') as a mechanism for fluid evolution in metamorphic rocks

    Science.gov (United States)

    Trommsdorff, Volkmar; Skippen, George

    1986-11-01

    The calculation of fluid evolution paths during reaction progress is considered for multicomponent systems and the results applied to the ternary system, CO2-H2O-NaCl. Fluid evolution paths are considered for systems in which a CO2-rich phase of lesser density (vapour) is preferentially removed from the system leaving behind a saline aqueous phase (liquid). Such “boiling” leads to enrichment of the residual aqueous phase in dissolved components and, for certain reaction stoichiometries, to eventual saturation of the fluids in salt components. Distinctive textures, particularly radiating growths of prismatic minerals such as tremolite or diopside, are associated with saline fluid inclusions and solid syngenetic salt inclusions at a number of field localities. The most thoroughly studied of these localities is Campolungo, Switzerland, where metasomatic rocks have developed in association with fractures and veins at 500° C and 2,000 bars of pressure. The petrography of these rocks suggests that fluid phase separation into liquid and vapour has been an important process during metasomatism. Fracture systems with fluids at pressure less than lithostatic may facilitate the loss of the less dense vapour phase to conditions of the amphibolite facies.

  10. Nitrous oxide: Saturation properties and the phase diagram

    International Nuclear Information System (INIS)

    Ferreira, A.G.M.; Lobo, L.Q.

    2009-01-01

    The experimental values of the coordinates of the triple point and of the critical point of nitrous oxide registered in the literature were assessed and those judged as most reliable have been selected. Empirical equations have been found for the vapour pressure, sublimation and fusion curves. The virial coefficients and saturation properties as functions of temperature along the equilibrium curves are described by reduced equations. They were used in arriving at the molar enthalpies at the triple point and the normal boiling temperature. Equations for the sublimation and fusion curves resulting from the exactly integrated Clapeyron equation compare favourably with the results from the empirical treatment and the experimental data.

  11. A comparison of ground and satellite observations of cloud cover to saturation pressure differences during a cold air outbreak

    Energy Technology Data Exchange (ETDEWEB)

    Alliss, R.J.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The role of clouds in the atmospheric general circulation and the global climate is twofold. First, clouds owe their origin to large-scale dynamical forcing, radiative cooling in the atmosphere, and turbulent transfer at the surface. In addition, they provide one of the most important mechanisms for the vertical redistribution of momentum and sensible and latent heat for the large scale, and they influence the coupling between the atmosphere and the surface as well as the radiative and dynamical-hydrological balance. In existing diagnostic cloudiness parameterization schemes, relative humidity is the most frequently used variable for estimating total cloud amount or stratiform cloud amount. However, the prediction of relative humidity in general circulation models (GCMs) is usually poor. Even for the most comprehensive GCMs, the predicted relative humidity may deviate greatly from that observed, as far as the frequency distribution of relative humidity is concerned. Recently, there has been an increased effort to improve the representation of clouds and cloud-radiation feedback in GCMs, but the verification of cloudiness parameterization schemes remains a severe problem because of the lack of observational data sets. In this study, saturation pressure differences (as opposed to relative humidity) and satellite-derived cloud heights and amounts are compared with ground determinations of cloud cover over the Gulf Stream Locale (GSL) during a cold air outbreak.

  12. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Sopchyshyn, F.C.; Selkirk, E.B.; Green, L.W.

    1993-08-01

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  13. Capillary pressure and saturation relations for supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions

    Science.gov (United States)

    Tokunaga, Tetsu K.; Wan, Jiamin; Jung, Jong-Won; Kim, Tae Wook; Kim, Yongman; Dong, Wenming

    2013-08-01

    In geologic carbon sequestration, reliable predictions of CO2 storage require understanding the capillary behavior of supercritical (sc) CO2. Given the limited availability of measurements of the capillary pressure (Pc) dependence on water saturation (Sw) with scCO2 as the displacing fluid, simulations of CO2 sequestration commonly rely on modifying more familiar air/H2O and oil/H2O Pc(Sw) relations, adjusted to account for differences in interfacial tensions. In order to test such capillary scaling-based predictions, we developed a high-pressure Pc(Sw) controller/meter, allowing accurate Pc and Sw measurements. Drainage and imbibition processes were measured on quartz sand with scCO2-brine at pressures of 8.5 and 12.0 MPa (45°C), and air-brine at 21°C and 0.1 MPa. Drainage and rewetting at intermediate Sw levels shifted to Pc values that were from 30% to 90% lower than predicted based on interfacial tension changes. Augmenting interfacial tension-based predictions with differences in independently measured contact angles from different sources led to more similar scaled Pc(Sw) relations but still did not converge onto universal drainage and imbibition curves. Equilibrium capillary trapping of the nonwetting phases was determined for Pc = 0 during rewetting. The capillary-trapped volumes for scCO2 were significantly greater than for air. Given that the experiments were all conducted on a system with well-defined pore geometry (homogeneous sand), and that scCO2-brine interfacial tensions are fairly well constrained, we conclude that the observed deviations from scaling predictions resulted from scCO2-induced decreased wettability. Wettability alteration by scCO2 makes predicting hydraulic behavior more challenging than for less reactive fluids.

  14. DETERMINATION OF SATURATION VAPOR PRESSURE OF LOW VOLATILE SUBSTANCES THROUGH THE STUDY OF EVAPORATION RATE BY THERMOGRAVIMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. V. Ralys

    2015-11-01

    Full Text Available Subject of Study.Research of vapor pressure of low volatile substances is a complicated problem due to both direct experimental implementation complexity and, most significantly, the issues faced correctness of the analysis and processing of experimental data. That is why it is usually required engaging the reference substances (with vapor pressures well studied. The latter drastically reduces the effectiveness of the experimental methods used and narrows their applicability. The paper deals with an approach to the evaporation process description (sublimation of low volatile substances based on molecular kinetic description in view of diffusive and convection processes. The proposed approach relies on experimental thermogravimetricfindingsina wide range of temperatures, flow rates ofthe purge gas and time. Method. A new approach is based on the calculation of the vapor pressure and uses the data about the speed of evaporation by thermogravimetric analysis depending on the temperature, the flow rate of the purge gas, and the evaporation time. The basis for calculation is the diffusion-kinetic description of the process of evaporation (mass loss of the substance from the exposed surface. The method is applicable to determine the thermodynamic characteristics for both the evaporation (the equilibrium liquid - vapor and sublimation (the equilibrium solid - vapor. We proposed the appropriate method of the experiment and analysis of its data in order to find the saturated vapor pressure of individual substances of low volatility. Main Results. The method has been tested on substances with insufficiently reliable and complete study of the thermodynamic characteristics but, despite this, are often used (because of the other data limitations as reference ones. The vaporization process (liquid-vapor has been studied for di-n-butyl phthalate C16H22O4 at 323,15–443,15 К, and sublimation for benzoic acid C7H6O2at 303,15–183,15 К. Both processes have

  15. One hour effects of salbutamol and formoterol on blood pressure, heart rate and oxygen saturation in asthmatics

    Directory of Open Access Journals (Sweden)

    Geraldo Andrade Capuchinho-Júnior

    2008-05-01

    Full Text Available Aim: To analyse systolic (SBP and diastolic blood pressure (DBP, partial oxygen saturation (SpO2 and heart rate (HR disorders for an hour after short and long acting ß2-agonists. Material and methods: Twenty-four severe persistent asthma Pulmonology outpatients at Hospital Universitario Gaffree e Guinle were selected. SBP, DBP, SpO2 and HR values were determined before and after 400 μg of salbutamol and 12 μg of formoterol, on different days, with a minimum interval of 24 hours. Results: All patients showed ventilatory obstruction, as seen by a reduced FEV1/FVC ratio. There was no statistical SBP/DBP/HR difference after bronchodilator agents, but SpO2 increased with salbutamol. Conclusion: A standard dose of salbutamol and formoterol does not cause haemodynamic disorder. Resumo: Objectivo: Analisar os possíveis efeitos do uso de β-2-agonistas, de curta e longa duração, nas pressões arteriais sistólica (PAS e diastólica (PAD, na saturação parcial de oxigénio (SpO2 e na frequência cardíaca (FC, durante o período de uma hora. Material e métodos: Vinte e quatro doentes com asma persistente grave, em tratamento no ambulatório de Pneumologia do Hospital Universitário Gaffrée e Guinle, foram seleccionados para um ensaio clínico sequencial e cruzado. Os valores da PAS, PAD, SpO2 e FC foram registados antes e após o uso de broncodilatadores, salbutamol 400 μg e formoterol 12 μg, em dias diferentes, com intervalo mínimo de 24 horas. Resultados: Todos os doentes apresentaram distúrbio ventilatório obstrutivo, identificado pela redução da relação entre o volume expiratório forçado no primeiro segundo (VEMS e a capacidade vital forçada (CVF. Após o uso de substância broncodilatadora, não houve variação significativa nas PAS e PAD, nem na FC; porém, a SpO2 aumentou com o uso de salbutamol. Conclusão: Não foram observadas

  16. Speciation of High-Pressure Carbon-Saturated COH Fluids at Buffered fO2 Conditions: An Experimental Approach

    Science.gov (United States)

    Tumiati, S.; Tiraboschi, C.; Recchia, S.; Poli, S.

    2014-12-01

    The quantitative assessment of species in COH fluids is crucial in modelling mantle processes. For instance, H2O/CO2 ratio in the fluid phase influences the location of the solidus and of carbonation/decarbonation reactions in peridotitic systems . In the scientific literature, the speciation of COH fluids has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O-non-polar gas systems (e.g., H2O-CO2-CH4). Only few authors dealt with the experimental determination of high-pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder+capsule-piercing+gas-chromatography/mass-spectrometry; cold-seal+silica glass capsules+Raman). We performed experiments on COH fluids using a capsule-piercing device coupled with a quadrupole mass spectrometry. This type of analyzer ensures superior performances in terms of selectivity of molecules to be detected, high acquisition rates and extended linear response range. Experiments were carried out in a rocking piston cylinder apparatus at pressure of 1 GPa and temperatures from 800 to 900°C. Carbon-saturated fluids were generated through the addition of oxalic acid dihydrate and graphite. Single/double capsules and different packing materials (BN and MgO) were used to evaluate the divergence from the thermodynamic speciation model. Moreover, to assess the effect of solutes on COH fluid speciation we also performed a set of experiments adding synthetic forsterite to the charge. To determine the speciation we assembled a capsule-piercing device that allows to puncture the capsule in a gas-tight vessel at 80°C. The extraction Teflon vessel is composed of a base part, where the capsule is allocated on a steel support, and a top part where a steel drill is mounted. To release the quenched fluids from the capsule, the base part of vessel is hand-tighten to the top part, allowing the steel pointer to pierce the capsule. The

  17. Vapour pressure studies of uranium dioxide UO{sub 2} by the effusion method; Mesure de la tension de vapeur du bioxyde d'uranium UO{sub 2} par la methode d'effusion

    Energy Technology Data Exchange (ETDEWEB)

    Ohse, R W [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    A high temperature apparatus for vapour pressure measurements by Knudsen effusion method is described. Sample is heated in a tungsten cell in an electronic bombardment furnace. Several critical factors affecting the accuracy of measurements such as: - temperature distribution and measurement in the effusion cell, - CLAUSING factor and molecular flow, - compatibility between cell material and sample heated, are discussed with careful attention. Vapour pressure of UO{sub 2} has been studied between 2200 and 2800 K. Experimental points fit a curve expressed by: logP{sub mm} = 12.4264 - (3.3184/T * 10{sup 4}/T) which is in good agreement with previous results of literature. (author) [French] On decrit un appareil destine a la mesure des tensions de vapeur par la methode d'effusion de KNUDSEN. L'echantillon contenu dans une cellule en tungstene est chauffe par bombardement electronique. Apres examen critique des divers facteurs affectant l'exactitude des mesures, a savoir: - homogeneite et mesure de la temperature dans la cellule d'effusion, - facteur de 'CLAUSING' et loi de distribution en cosinus des molecules effusees, - compatibilite a chaud entre le materiau de la cellule et le materiau etudie. On a procede a la mesure de la tension de vapeur de UO{sub 2} qui est relativement bien connue. Entre 2200 et 2800 K les points experimentaux se placent sur une courbe: logP{sub mm} = 12.4264 - (3.3184/T * 10{sup 4}/T) en bon accord avec les valeurs citees dans la litterature. (auteur)

  18. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China

    Science.gov (United States)

    Zhao, Yan; Yu, Qingchun

    2018-01-01

    The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas

  19. Detection of polar vapours

    International Nuclear Information System (INIS)

    Blyth, D.A.

    1980-01-01

    Apparatus for monitoring for polar vapours in a gas consists of (i) a body member defining a passage through which a continuous stream of the gas passes; (ii) an ionising source associated with a region of the passage such that ionization of the gas stream takes place substantially only within the region and also any polar vapour molecules present therein will react with the gas formed to generate ion clusters; and (iii) an electrode for collecting ions carried by the gas stream, the electrode being positioned in the passage downstream of the region and separated from the region by a sufficient distance to ensure that no substantial number of the gas ions formed in said region remains in the gas stream at the collector electrode whilst ensuring that a substantial proportion of the ion clusters formed in the region does remain in the gas stream at the collector electrode. (author)

  20. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    Science.gov (United States)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  1. (p,V{sub m},T,x) measurements for aqueous LiNO{sub 3} solutions[Density; Concentration; Electrolyte solutions; Equation of state; Lithium nitrate; Saturated density; Saturated pressure; Temperature; Water

    Energy Technology Data Exchange (ETDEWEB)

    Abdulagatov, I.M. E-mail: ilmutdin@boulder.nist.govmangur@datacom.ru; Azizov, N.D. E-mail: Nazim_Azizov@yahoo.com

    2004-01-01

    (p,V{sub m},T,x) properties of four aqueous LiNO{sub 3} solutions (0.181, 0.526, 0.963, and 1.728) mol {center_dot} kg{sup -1} H{sub 2}O were measured in the liquid phase with a constant-volume piezometer immersed in a precision liquid thermostat. Measurements were made for 10 isotherms between (298 and 573) K. The range of pressure was from (2 to 40) MPa. The total uncertainty of density, pressure, temperature, and concentration measurements were estimated to be less than 0.06 %, 0.05 %, 10 mK, and 0.014 %, respectively. The values of saturated density were determined by extrapolating experimental (p,{rho}) data to the vapor-pressure at fixed temperature and composition using an interpolating equation. A polynomial type of equation of state for specific volume was obtained as a function of temperature, pressure, and composition by a least-squares method from the experimental data. The average absolute deviation (AAD) between measured and calculated values from this polynomial equation for density was 0.02 %. Measured values of solution density were compared with values calculated from Pitzer's ion-interaction equation. The agreement is within (0.2 to 0.4) % depending of concentration range.

  2. Microsphere formation in droplets using antisolvent vapour precipitation technique

    OpenAIRE

    Chew, Sean Jun Liang

    2017-01-01

    In previous studies, the antisolvent vapour precipitation method has been proven to produce uniformly sized lactose microspheres (1.0 µm) from a single droplet (1.2 mm diameter) at atmospheric pressure. These types of particles have potential applications in the pharmaceutical industry, especially due to their high dissolution rate. This project looked into the possibility of using antisolvent vapour precipitation to produce microspheres from finely atomised droplets. Microspheres in the sub-...

  3. Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450-7600cm-1 spectral range

    DEFF Research Database (Denmark)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2015-01-01

    The objective of the work is validation of HITEMP-2010 at atmospheric pressures and temperatures reaching 1770K. To this end, spectral transmissivities at 1cm-1 resolution and excellent signal-to-noise-ratio have been measured for 22 CO2/H2O/N2 mixtures. In this paper we consider the 450cm-1-7600...

  4. Low-pressure chemical vapour deposition of LiCoO2 thin films: a systematic investigation of the deposition parameters

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    The feasibility of volatile precursor low-pressure chemical vapor deposition (LPCVD) for the production of LiCoO2 cathodes for all solid-state microbatteries was examined. To test this feasibility, and gain insight into the deposition behavior, the influence of the deposition parameters on the

  5. The Effects of Massage with Coconut and Sunflower Oils on Oxygen Saturation of Premature Infants with Respiratory Distress Syndrome Treated With Nasal Continuous Positive Airway Pressure

    Directory of Open Access Journals (Sweden)

    Sousan Valizadeh

    2012-11-01

    Full Text Available Introduction: Nowadays particular emphasis is placed on the developmental aspects of premature infants care. Massage therapy is one of the best-known methods of caring. Due to the minimal touch policy in neonatal intensive care units (NICUs, massaging is not usually performed on premature infants. However, there is not sufficient evidence to support the claim that newborn infants with complex medical conditions should not be massaged. This study aimed to determine the effects of massage with coconut and sunflower oils on oxygen saturation of infants with respiratory distress syndrome (RDS treated with nasal continuous positive airway pressure (NCPAP. Methods: This was a randomized controlled trial on 90 newborns who were admitted to Alzahra Hospital (Tabriz, Iran. The infants were divided into control and massage therapy groups (massage with coconut and sunflower oils. Data was collected using a hospital documentation form. A 15-minute daily massage was performed for 3 days. Respiratory rate (RR, fraction of inspired oxygen (FiO2 and oxygen saturation were measured 5 minutes before the massage, 3 times during the massage, and 5 minutes after the massage. The collected data was analyzed using a mixed model. Results: In comparison to coconut oil and control groups, mean oxygen saturation of sunflower oil group was improved. In addition, the coconut massage group showed lower oxygen saturation than the control group but was all values were within the normal range. Although massage decreased oxygen saturation, there was no need to increase FiO2. Conclusion: Massage therapy can provide developmental care for infants treated with NCPAP.

  6. The Effect of Non-nutritive Sucking on Transcutaneous Oxygen Saturation in Neonates under the Nasal Continuous Positive Airway Pressure (CPAP

    Directory of Open Access Journals (Sweden)

    Mousa Ahmadpour-kacho

    2017-03-01

    Full Text Available BackgroundSeveral beneficial effects of non-nutritive sucking in infants, including the physiological stability, relaxation, better transition from tube feeding to oral feeding have been reported. But its effect on oxygen saturation in neonates under the Nasal Continuous Positive Airway Pressure (NCPAPو (is not so clear. This study aimed to investigate the effects of non-nutritive sucking on transcutaneous oxygen saturation levels of neonates treated with NCPAP.Materials and MethodsThis quasi-experimental study was done on 25 preterm neonates, hospitalized with a diagnosis of respiratory distress, required NCPAP, in the neonatal intensive care unit (NICU at the Ayatollah Rouhani Hospital and Babol Clinic, North of Iran. Non-nutritive sucking was elicited by a standard pacifier appropriate to their age one hour a day, and the mean oxygen saturation was measured before and after intervention by cardiopulmonary monitoring (Saadat Co., Iran. Data analyzed using SPSS-18.0 software.ResultsIn the 25 cases studied, the mean oxygen saturation values ​​before performing non-nutritive sucking was 96.31±2.88%, which was changed to 98.35±1.6% after intervention, and this increase was statistically significant (P = 0.004.Results showed that the gender, birth weight and gestational age of neonates had no effect on mean Blood oxygen saturation (SpO2level.ConclusionAccording to the results, using the non-nutritive sucking in premature neonates under the NCPAP, can improve oxygenation.

  7. Correlation of dew- and bubble-point curves for binary refrigerant mixtures. [Correlation between dew-point pressure(saturated vapor state) and bubble-point pressure(saturated liquid state)]. Niseibunkei kongo reibai no roten oyobi futten kyokusen no sokan

    Energy Technology Data Exchange (ETDEWEB)

    Yada, N. (Kanagawa Institute of Technology, Kanagawa (Japan)); Watanabe, K. (Keio University, Tokyo (Japan). Faculty of Science and Technology)

    1991-12-25

    The paper makes a correlation expressing dew- and bubble-point curves using measured values for seven binary refrigerant freon-mixtures. In most binary systems at the same temperature, the pressure shows a different value between in a saturated vapor state (dew-point pressure) and in a saturated liquid state (bubble-point pressure). The target is such correlation as has as simple a function form as possible and is able to estimate even near the critical point where it used to be difficult to estimate. The pressure difference between measured values of the dew- and bubble-point pressure and values calculated from Raoult's law showing an ideal mixture of fluid is expressed by a simple function form of reduced temperature Tr and molar fraction. Tr is thermodynamic temperature/critical temperature. Reproducibility of this correlation is less than {plus minus}3% of the pressure deviation. Concerning also the arbitary composition range and near the critical point, the dew- and bubble-point pressure can be calculated accurately. 24 refs., 4 figs., 5 tabs.

  8. Vapour phase motion in cryogenic systems containing superheated and subcooled liquids

    Science.gov (United States)

    Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.

    The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.

  9. (Vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone)

    International Nuclear Information System (INIS)

    Jiang Hui; Li Haoran; Wang Congmin; Tan Taijun; Han Shijun

    2003-01-01

    The isothermal and isobaric (vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone) measured with an inclined ebulliometer are presented. The experimental results are analysed using the UNIQUAC equation with the temperature-dependent binary parameters with satisfactory results. Isobaric (vapour + liquid) equilibria data for these systems at p=99.99 kPa are compared with the literature data. Experimental vapour pressure of 2,2-dimethoxypropane are also included

  10. Modelling of vapour explosion in stratified geometrie

    International Nuclear Information System (INIS)

    Picchi, St.

    1999-01-01

    When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)

  11. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    Science.gov (United States)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  12. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    Science.gov (United States)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  13. Isopiestic determination of the osmotic coefficient and vapour pressure of N-R-4-(N,N-dimethylamino)pyridinium tetrafluoroborate (R = C4H9, C5H11, C6H13) in the ethanol solution at T = 298.15 K

    International Nuclear Information System (INIS)

    Sardroodi, Jaber Jahanbin; Atabay, Maryam; Azamat, Jafar

    2012-01-01

    Highlights: ► The osmotic coefficients of the solutions of ionic liquid in ethanol have been measured. ► Measured osmotic coefficients were correlated using Pitzer, e-NRTL and NRF models and polynomial equation. ► Vapour pressures were evaluated from the correlated osmotic coefficients. - Abstract: Osmotic coefficients of the solutions of room temperature ionic liquid N-R-4-(N,N-dimethylamino)pyridinium tetrafluoroborate (R = C 4 H 9 , C 5 H 11 , C 6 H 13 ) in ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficients have been correlated using the ion interaction model of Pitzer, electrolyte non-random two liquid (e-NRTL) model of Chen, non-random factor (NRF) and a fourth-order polynomial in terms of molality. The vapour pressures of the solutions studied have been evaluated from the osmotic coefficients.

  14. Vapour pressure of components made by the presence of HgS(s,alpha) in an oil/gas reservoir and consequences for the produced gas

    Energy Technology Data Exchange (ETDEWEB)

    Oestvold, T.; Gustavsen, Oe.; Grande, K.; Aas, N.; Olsvik, Mimmi Kjetsaa

    2006-03-15

    A thermodynamic analysis is presented on how components made from HgS (s,alpha), existing in a oil/gas reservoir, will distribute themselves between gas, water, liquid and solid components as a function of temperature and pressure. The consequence of the formation of mercury containing components on gas injection and on gas quality is discussed. Since equilibrium is established in the model calculation, other gas components in the gas phase and components in condensed phases present will also influence the composition of the gas. Six cases are considered in the calculation: 1) HgS(s,alpha) - Ar(g), 2) HgS(s,alpha) - Ar (g) - water with 10-4 molal NaCl at pH = 7, 3) HgS(s,alpha) - CH{sub 4}(g), 4) HgS(s,alpha) - CH{sub 4} (g) - water with 10-4 molal NaCl at pH = 7 and 5) HgS(s,alpha) - natural gas - water with 10-4 molal NaCl at pH = 7, 6) HgS(s,alpha) - natural gas - water with 10-4 molal NaCl and 5*10-5 molal NO-3- at pH = 7. When HgS(s,alpha) is present in an oil reservoir at 170 deg C and 200 bar, these calculations show that the major components formed are: H{sub 2}(g), H{sub 2}S(g), Hg(l) and Hg(g) together with carbon. Mercury in the gas phase in the cases 1) is 4*10-7 bar and is determined by the evaporation and decomposition HgS(g) in the reservoir. In case 2) P{sub Hg} = 5.7*10-4 bar mainly determined by the formation of sulphate in the water phase. In the cases 3), 4) and 5) these calculations show that the major components formed are: H{sub 2}(g), H{sub 2}S(g), Hg(l) and Hg(g) together with carbon, and the gas phase is dominated by Hg(g) at approx. *10-3 bar. The water phase may contain Hg(CH{sub 3}NH{sub 2}){sub 2}2+ if NO{sub 3}- for some reasons is introduced into the formation water, and the very carcinogenic dimethyl mercury compound, C{sub 2}HgH{sub 6}, can be formed in the gas phase. Both compounds, however, in insignificant low concentration/partial pressure. (Author)

  15. Effect of Al_2O_3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol

    Science.gov (United States)

    Zhelezny, Vitaly; Geller, Vladimir; Semenyuk, Yury; Nikulin, Artem; Lukianov, Nikolai; Lozovsky, Taras; Shymchuk, Mykola

    2018-03-01

    This paper presents results of an experimental study of the density, saturated vapor pressure, surface tension and viscosity of Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. Studies of the thermophysical properties of nanofluids were performed at various temperatures and concentrations of Al_2O_3 nanoparticles. The paper gives considerable attention to a turbidimetric analysis of the stability of nanofluid samples. Samples of nanofluids remained stable over the range of parameters of the experiments, ensuring the reliability of the thermophysical property data for the Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. The studies show that the addition of Al_2O_3 nanoparticles leads to an increase of the density, saturated vapor pressure and viscosity, as well as a decrease for the surface tension of isopropyl alcohol. The information reported in this paper on the various thermophysical properties for the isopropyl alcohol/Al_2O_3 nanoparticle model system is useful for the development of thermodynamically consistent models for predicting properties of nanofluids and correct modeling of the heat exchange processes.

  16. Optimization of the fluid catalytic cracking unit performance by application of a high motor Octane catalyst and reduction of gasoline vapour pressure

    International Nuclear Information System (INIS)

    Chavdarov, I.; Stratiev, D.; Shishkova, I.; Dinkov, R.; Petkov, P.

    2013-01-01

    Full text: The fluid catalytic cracking (FCC) gasoline is the main contributor to the refinery gasoline pool in the LUKOIL Neftohim Burgas (LNB) refinery. Next in quantity contributor in the refinery gasoline pool is the reformate. The FCC gasoline sensitivity (MON-RON) is about 12 points. The reformer gasoline sensitivity is 11 points. The high sensitivity of the main contributors to the LNB refinery gasoline pool leads to a shortage in the motor octane number. For that reason a selection of an FCC catalyst that is capable of increasing the motor octane number of the FCC gasoline was performed. The application of this catalyst in the LNB FCC unit has led to an increase of the motor octane number of the FCC gasoline by 0.5 points, which enabled the refinery to increase the production of automotive gasolines by 1.3 % and to increase the share of premium automotive gasoline by 5 %. This had an effect of improvement of the refinery economics by a six figure number of US $ per year. The optimization of the FCC gasoline Reid Vapor Pressure (RVP) during the winter season, consisting in a reduction of the RVP from 60 to 50 kPa and an increase of the FCC C 4 olefins yield, has led to an augmentation of high motor octane number alkylate production. As a result the refinery economics was improved by a five figure number of US $ per year. key words: FCC gasoline motor octane number, gasoline RVP, FCC operation profitability

  17. Saturated phase densities of (CO_2 + H_2O) at temperatures from (293 to 450) K and pressures up to 64 MPa

    International Nuclear Information System (INIS)

    Efika, Emmanuel C.; Hoballah, Rayane; Li, Xuesong; May, Eric F.; Nania, Manuela; Sanchez-Vicente, Yolanda; Martin Trusler, J.P.

    2016-01-01

    Highlights: • Saturated phase densities of CO_2 + H_2O were measured with a 1.5 kg · m"−"3 uncertainty. • Aqueous phase densities can be predicted within 3 kg · m"−"3 using empirical models. • The CO_2-rich phase density was within 8 kg · m"−"3 of pure CO_2 at the same (p, T). • The cubic EOS of Spycher and Pruess deviates from the data by up to about 8 kg · m"−"3. - Abstract: An apparatus consisting of an equilibrium cell connected to two vibrating tube densimeters and two syringe pumps was used to measure the saturated phase densities of (CO_2 + H_2O) at temperatures from (293 to 450) K and pressures up to 64 MPa, with estimated average standard uncertainties of 1.5 kg · m"−"3 for the CO_2-rich phase and 1.0 kg · m"−"3 for the aqueous phase. The densimeters were housed in the same thermostat as the equilibrium cell and were calibrated in situ using pure water, CO_2 and helium. Following mixing, samples of each saturated phase were displaced sequentially at constant pressure from the equilibrium cell into the vibrating tube densimeters connected to the top (CO_2-rich phase) and bottom (aqueous phase) of the cell. The aqueous phase densities are predicted to within 3 kg · m"−"3 using empirical models for the phase compositions and partial molar volumes of each component. However, a recently developed multi-parameter equation of state (EOS) for this binary mixture, Gernert and Span [32], was found to under predict the measured aqueous phase density by up to 13 kg · m"−"3. The density of the CO_2-rich phase was always within about 8 kg · m"−"3 of the density for pure CO_2 at the same pressure and temperature; the differences were most positive near the critical density, and became negative at temperatures above about 373 K and pressures below about 10 MPa. For this phase, the multi-parameter EOS of Gernert and Span describes the measured densities to within 5 kg · m"−"3, whereas the computationally-efficient cubic EOS model of

  18. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L; Cha, Min

    2016-01-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble

  19. New determination of the vapour pressures of the isotopes of neon; Nouvelles determinations des tensions de vapeur des isotopes du neon

    Energy Technology Data Exchange (ETDEWEB)

    Roth, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-03-15

    We have undertaken an experimental reinvestigation of the vapor pressures of the neon isotopes over the temperature range 16.30-30.1 deg. K. Measurements were made by differential manometry in a Giauque-Johnston type cryostat modified for temperature stability. The New sample contained 99.9 % Ne{sup 20} and the Ne{sup 22} sample contained 72,2 % Ne{sup 22}. Extrapolation to pure Ne{sup 20} and Ne{sup 22} can be made with sufficient accuracy by the use of Raoult's law. Our results are in substantial agreement with those of Keesom and Haantjes. At 20 deg. K, where the scatter in our data is an order of magnitude smaller than in the data of Keesom and Haantjes, we find In P{sub Ne{sup 2}{sup 0}}/P{sub Ne{sup 2}{sup 2}} is 6 % larger than the smoothed line given by them. For solid neon, our data can be represented to a high accuracy by a Debye harmonic lattice with {theta}{sub D} (Ne{sup 20}) = 74.6 deg. K. The result may be compared with the value obtained by Henshaw from the Debye-Waller temperature factor, {theta}{sub D} = 73 deg. K, and with the recent calculation of the zero point energy of Ne by Bernardes, from which he obtains {theta}{sub D} 8E{sub {theta}}/9R = 73 deg.. K. (author) [French] On a construit un appareillage dont le principe est derive de celui des instruments decrits par GIAUQUE et EGAN ou par H.L. JOHNSTON qui a permis d'etendre le domaine des mesures de tension de vapeur des isotopes du Neon entre 16,30 et 32 deg. K environ. Le rapport des pressions extremes atteintes est ainsi multiplie par plus de 40 pour le neon ordinaire qui servait de reference et de thermometre. L'appareil, adapte en particulier au travail sous pressions elevees, permet, de plus, de travailler sur de relativement petites quantites totales de gaz - environ 500 cm{sup 3} suffisent dans l'intervalle de pression evoque. La stabilite de temperature obtenue peut etre tres bonne surtout lorsque l'on travaille dans la phase liquide; dans ce cas, les variations totales de

  20. New determination of the vapour pressures of the isotopes of neon; Nouvelles determinations des tensions de vapeur des isotopes du neon

    Energy Technology Data Exchange (ETDEWEB)

    Roth, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-03-15

    We have undertaken an experimental reinvestigation of the vapor pressures of the neon isotopes over the temperature range 16.30-30.1 deg. K. Measurements were made by differential manometry in a Giauque-Johnston type cryostat modified for temperature stability. The New sample contained 99.9 % Ne{sup 20} and the Ne{sup 22} sample contained 72,2 % Ne{sup 22}. Extrapolation to pure Ne{sup 20} and Ne{sup 22} can be made with sufficient accuracy by the use of Raoult's law. Our results are in substantial agreement with those of Keesom and Haantjes. At 20 deg. K, where the scatter in our data is an order of magnitude smaller than in the data of Keesom and Haantjes, we find In P{sub Ne{sup 2}{sup 0}}/P{sub Ne{sup 2}{sup 2}} is 6 % larger than the smoothed line given by them. For solid neon, our data can be represented to a high accuracy by a Debye harmonic lattice with {theta}{sub D} (Ne{sup 20}) = 74.6 deg. K. The result may be compared with the value obtained by Henshaw from the Debye-Waller temperature factor, {theta}{sub D} = 73 deg. K, and with the recent calculation of the zero point energy of Ne by Bernardes, from which he obtains {theta}{sub D} 8E{sub {theta}}/9R = 73 deg.. K. (author) [French] On a construit un appareillage dont le principe est derive de celui des instruments decrits par GIAUQUE et EGAN ou par H.L. JOHNSTON qui a permis d'etendre le domaine des mesures de tension de vapeur des isotopes du Neon entre 16,30 et 32 deg. K environ. Le rapport des pressions extremes atteintes est ainsi multiplie par plus de 40 pour le neon ordinaire qui servait de reference et de thermometre. L'appareil, adapte en particulier au travail sous pressions elevees, permet, de plus, de travailler sur de relativement petites quantites totales de gaz - environ 500 cm{sup 3} suffisent dans l'intervalle de pression evoque. La stabilite de temperature obtenue peut etre tres bonne surtout lorsque l'on travaille dans la phase liquide; dans ce cas, les

  1. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    Science.gov (United States)

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  2. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites

    Directory of Open Access Journals (Sweden)

    Agnieszka Kierys

    2017-11-01

    Full Text Available The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS. The polymers selected for this study were poly(TRIM and poly(HEMA-co-TRIM produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM-IBS and/or poly(HEMA-co-TRIM-IBS with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  3. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Itsuo, Iida; Junko, Kato; Kenzi, Tamuru

    1977-01-01

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.) [de

  4. In-situ, high pressure and temperature experimental determination of hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid

    Science.gov (United States)

    Mysen, B. O.

    2012-12-01

    Hydrogen isotope fractionation between water-saturated silicate melt and silicate-saturated aqueous fluid has been determined experimentally, in-situ with the samples in the 450-800C and 101-1567 MPa temperature and pressure range, respectively. The temperatures are, therefore higher than those where hydrogen bonding in fluids and melts is important [1]. The experiments were conducted with a hydrothermal diamond anvil cell (HDAC) as the high-temperature/-pressure tool and vibrational spectroscopy to determine D/H fractionation. Compositions were along the haploandesite join, Na2Si4O9 - Na2(NaAl)4O9 [Al/(Al+Si)=0-0.1], and a 50:50 (by volume) H2O:D2O fluid mixture as starting material. Platinum metal was used to enhance equilibration rate. Isotopic equilibrium was ascertained by using variable experimental duration at given temperature and pressure. In the Al-free Na-silicate system, the enthalpy change of the (D/H) equilibrium of fluid is 3.1±0.7 kJ/mol, whereas for coexisting melt, ΔH=0 kJ/mol within error. With Al/(Al+Si)=0.1, ΔH=5.2±0.9 kJ/mol for fluid and near 0 within error for coexisting melt melt. For the exchange equilibrium between melt and fluid, H2O(melt)+D2O(fluid)=H2O(fluid)+D2O(melt), the ΔH=4.6±0.7 and 6.5±0.7 kJ/mol for the two Al-free and Al-bearing compositions, respectively, respectively. The D/H equilibration within fluids and melts and, therefore, D/H partitioning between coexisting fluid and melt reflect the influence of dissolved H2O(D2O) in melts and dissolved silicate components in H2O(D2O) fluid on their structure. The positive temperature- and pressure-dependence of silicate solubility and on silicate structure in silicate-saturated aqueous fluid governs the D/H fractionation in the fluid because increasing silicate solute concentration in fluid results in silicate polymerization [2]. These structural effects may be analogous to observed solute-dependent oxygen isotope fractionation between brine and CO2 [3]. In the temperature

  5. Isothermal (vapour + liquid) equilibrium for binary mixtures of polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, or 2-propanol

    International Nuclear Information System (INIS)

    Khoiroh, Ianatul; Lee, Ming-Jer

    2011-01-01

    Highlights: → An autoclave apparatus was used for binary (vapour + liquid) equilibrium data measurement. → The studied systems are polyethylene glycol mono-4-nonylphenyl ether with alcohols. → The saturated pressure data were fitted accurately to the Antoine equation. → The NRTL model correlated well the phase equilibrium data. → The solvent activities have been calculated. - Abstract: Saturated pressures of three binary systems of oligomeric polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, and 2-propanol have been measured by using an autoclave (vapour + liquid) equilibrium (VLE) apparatus at temperatures ranging from (340 to 455) K and the oligomer content ranging from 0.100 to 0.400 in mole fraction. With a given feed composition, equilibrium pressures were measured at various temperatures to obtain VLE data. The experimental data were fitted to the Antoine equation and also correlated with activity coefficient models, the NRTL and the UNIQUAC. The correlation results showed good agreement between the calculated values and the experimental data. In general, the NRTL model yielded better results. Additionally, the solvent activities were evaluated from the experimental results and were compared with those from the NRTL and the UNIQUAC models.

  6. Saturated liquid densities of propane at T = (280 to 365) K

    International Nuclear Information System (INIS)

    Miyamoto, H.; Uematsu, M.

    2007-01-01

    Saturated liquid densities for propane were obtained by means of a metal-bellows variable volumometer at T = (280, 300, 320, 340, 360, and 365) K. The mol-fraction purity of the propane used in the measurements was 0.99997. The expanded uncertainties (k = 2) in temperature, pressure, and density measurements were estimated to be less than ±3 mK, 1.4 kPa (p ≤ 7 MPa), and ±0.09%, respectively. For the determination of the saturation boundary at each temperature for propane, we measured the density data at intervals of about 20 kPa very close to the saturation boundary. After such measurements had been completed, the saturated liquid density data at each temperature were determined as the intersection between the isotherm and our previously determined vapour pressure value. The discrepancies between the three series in the present measurements, in which different sample fillings were used, were also confirmed to be sufficiently lower than the experimental uncertainty. The saturated liquid density correlation was also provided for the systematic comparisons between the present measurements and the literature data

  7. Diffusion and flow of water vapours in chromatographic Alumina gel

    International Nuclear Information System (INIS)

    Khan, M.; Shah, H. U.

    2005-01-01

    The kinetics of sorption of water vapours in chromatographic alumina gel was studied. Water vapours are adsorbed on the gel at temperature (15 degree C) at different constant relative pressure from 0.1-0.93 p/p. Rate constant, Effective diffusivities, Knudsen diffusivities and bulk diffusivities were determined through Fick type equation. Total pore volume is 0.498 cc g-1 and specific surface area comes to be 465 m2 g-1 as obtained by Gurvitsch rule and Kieselve's quantities respectively. An average pore radius (hydraulic) is 1.1x10/sub -7/ cm. The study of these quantities provide a strong basis for evaluating surface properties. (author)

  8. Calculation of vapour bubble growth on the lower generatrix of horizontal tubes

    International Nuclear Information System (INIS)

    Chajka, V.D.

    1987-01-01

    The known models of vapour bubble growth are compared with experimental data. Cinematographic study of vapour formation during water boiling was carried out with elements of horizontal tubes of copper 10, 16, 24, 34 and 70 mm in diameter under the pressure of 100 kPa and specific thermal loadings of 20 and 40 kW/m 2 . According to the experimental data the main volume of vapour phase is occupied by vapour bubbles from the lower part of the horizontal tube. Five stages of vapour bubble growth on the lower generatrix of the horizontal tube: nucleation, growth to the point of breaking off from nucleate centre, the breaking off from the nucleate centre, the tube surface flowing around during floating up, the breaking off from the tube surface, were singled out. The shape of vapour volume varied during the whole period of the bubble growth and it was mainly determined by the horizontal tube diameter. The change of vapour bubble radius in time is the function of the horizontal tube diameter. Comparison of the experimental data with the known models of vapour bubble growth has shown, that every stage of vapour bubble growth on the lower generatrix of the tube is determined by the complex of thermal and hydrodynamic conditions, the effect of which depends on the horizontal tube diameter

  9. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.

    Science.gov (United States)

    Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin

    2009-07-01

    Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P oxygen was decreased by elevated PaCO2. Unchanged levels of rvHb signify that there was no blood loss during measurements. Data suggest that the device allows detection of local changes in blood flow and oxygen saturation in response to different PaCO2 levels in predominant venous cerebral microvessels.

  10. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    Science.gov (United States)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  11. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  12. Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite

    Science.gov (United States)

    Tiraboschi, Carla; Tumiati, Simone; Sverjensky, Dimitri; Pettke, Thomas; Ulmer, Peter; Poli, Stefano

    2018-01-01

    We experimentally investigated the dissolution of forsterite, enstatite and magnesite in graphite-saturated COH fluids, synthesized using a rocking piston cylinder apparatus at pressures from 1.0 to 2.1 GPa and temperatures from 700 to 1200 °C. Synthetic forsterite, enstatite, and nearly pure natural magnesite were used as starting materials. Redox conditions were buffered by Ni-NiO-H2O (ΔFMQ = - 0.21 to - 1.01), employing a double-capsule setting. Fluids, binary H2O-CO2 mixtures at the P, T, and fO2 conditions investigated, were generated from graphite, oxalic acid anhydrous (H2C2O4) and water. Their dissolved solute loads were analyzed through an improved version of the cryogenic technique, which takes into account the complexities associated with the presence of CO2-bearing fluids. The experimental data show that forsterite + enstatite solubility in H2O-CO2 fluids is higher compared to pure water, both in terms of dissolved silica ( mSiO2 = 1.24 mol/kgH2O versus mSiO2 = 0.22 mol/kgH2O at P = 1 GPa, T = 800 °C) and magnesia ( mMgO = 1.08 mol/kgH2O versus mMgO = 0.28 mol/kgH2O) probably due to the formation of organic C-Mg-Si complexes. Our experimental results show that at low temperature conditions, a graphite-saturated H2O-CO2 fluid interacting with a simplified model mantle composition, characterized by low MgO/SiO2 ratios, would lead to the formation of significant amounts of enstatite if solute concentrations are equal, while at higher temperatures these fluid, characterized by MgO/SiO2 ratios comparable with that of olivine, would be less effective in metasomatizing the surrounding rocks. However, the molality of COH fluids increases with pressure and temperature, and quintuplicates with respect to the carbon-free aqueous fluids. Therefore, the amount of fluid required to metasomatize the mantle decreases in the presence of carbon at high P- T conditions. COH fluids are thus effective carriers of C, Mg and Si in the mantle wedge up to the shallowest

  13. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  14. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  15. The role of central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference as a goal and prognosis of sepsis treatment.

    Science.gov (United States)

    Wittayachamnankul, Borwon; Chentanakij, Boriboon; Sruamsiri, Kamphee; Chattipakorn, Nipon

    2016-12-01

    The current practice in treatment of severe sepsis and septic shock is to ensure adequate oxygenation and perfusion in patients, along with prompt administration of antibiotics, within 6 hours from diagnosis, which is considered the "golden hour" for the patients. One of the goals of treatment is to restore normal tissue perfusion. With this goal in mind, some parameters have been used to determine the success of treatment and mortality rate; however, none has been proven to be the best predictor of mortality rate in sepsis patients. Despite growing evidence regarding the prognostic indicators for mortality in sepsis patients, inconsistent reports exist. This review comprehensively summarizes the reports regarding the frequently used parameters in sepsis including central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference, as prognostic indicators for clinical outcomes in sepsis patients. Moreover, consistent findings and inconsistent reports for their pathophysiology and the potential mechanisms for their use as well as their limitations in sepsis patients are presented and discussed. Finally, a schematic strategy for potential management and benefits in sepsis patients is proposed based upon these current available data. There is currently no ideal biomarker that can indicate prognosis, predict progression of the disease, and guide treatment in sepsis. Further studies are needed to be carried out to identify the ideal biomarker that has all the desired properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock.

    Science.gov (United States)

    Du, Wei; Liu, Da-Wei; Wang, Xiao-Ting; Long, Yun; Chai, Wen-Zhao; Zhou, Xiang; Rui, Xi

    2013-12-01

    Central venous oxygen saturation (Scvo2) is a useful therapeutic target when treating septic shock. We hypothesized that combining Scvo2 and central venous-to-arterial partial pressure of carbon dioxide difference (△Pco2) may provide additional information about survival. We performed a retrospective analysis of 172 patients treated for septic shock. All patients were treated using goal-directed therapy to achieve Scvo2 ≥ 70%. After 6 hours of treatment, we divided patients into 4 groups based on Scvo2 (<70% or ≥ 70%) and △Pco2 (<6 mm Hg or ≥ 6 mm Hg). Overall, 28-day mortality was 35.5%. For patients in whom the Scvo2 target was not achieved at 6 hours, mortality was 50.0%, compared with 29.5% in those in whom Scvo2 exceeded 70% (P = .009). In patients with Scvo2 ≥ 70%, mortality was lower if △Pco2 was <6 mm Hg than if △Pco2 was ≥ 6 mm Hg (56.1% vs 16.1%, respectively; P < .001) and 6-hour lactate clearance was superior (0.01 ± 0.61 vs 0.21 ± 0.31, respectively; P = .016). The combination of Scvo2 and △Pco2 appears to predict outcome in critically ill patients resuscitated from septic shock better than Scvo2 alone. Patients who meet both targets appear to clear lactate more efficiently. © 2013.

  17. Optimization of pressurized liquid extraction (PLE) for rapid determination of mineral oil saturated (MOSH) and aromatic hydrocarbons (MOAH) in cardboard and paper intended for food contact.

    Science.gov (United States)

    Moret, Sabrina; Sander, Maren; Purcaro, Giorgia; Scolaro, Marianna; Barp, Laura; Conte, Lanfranco S

    2013-10-15

    Packaging can represent a primary source of food contamination with mineral oil saturated hydrocarbons (MOSH) and aromatic hydrocarbons (MOAH), especially when recycled cardboard or mineral oil based printing inks are used. A pressurized liquid extraction (PLE) method, followed by on-line LC-GC analysis, has been optimized for rapid mineral oil determination in cardboard and paper samples. The proposed method involves extraction with hexane (2 cycles) at 60°C for 5 min, and allows for the processing of up to 6 samples in parallel with minimal sample manipulation and solvent consumption. It gave good repeatability (coefficient of variation lower than 5%) and practically quantitative extraction yield (less than 2% of the total contamination found in a third separate cycle). The method was applied to different cardboards and paper materials intended for food contact. Results obtained were similar to those obtained by applying classical solvent extraction with hexane/ethanol 1:1 (v/v) as described by Lorenzini et al. [20]. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Society of cardiovascular anesthesiologists: the effect of blood pressure regulation during aortic coarctation repair on brain, kidney, and muscle oxygen saturation measured by near-infrared spectroscopy: a randomized, clinical trial

    NARCIS (Netherlands)

    Moerman, Annelies; Bové, Thierry; François, Katrien; Jacobs, Stefan; Deblaere, Isabel; Wouters, Patrick; de Hert, Stefan

    2013-01-01

    In this study, we compared the effects of 3 frequently used arterial blood pressure-regulating agents on brain (rScO2), renal (SrO2), and muscle (SmO2) oxygen saturation, during aortic coarctation repair in children. Based on the reported adverse effect of sodium nitroprusside (SNP) on left-sided

  19. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    Science.gov (United States)

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  20. Saturation curve of SiO2 component in rutile-type GeO2: A recoverable high-temperature pressure standard from 3 GPa to 10 GPa

    International Nuclear Information System (INIS)

    Leinenweber, Kurt; Gullikson, Amber L.; Stoyanov, Emil; Malik, Abds-Sami

    2015-01-01

    The accuracy and precision of pressure measurements and the pursuit of reliable and readily available pressure scales at simultaneous high temperatures and pressures are still topics in development in high pressure research despite many years of work. In situ pressure scales based on x-ray diffraction are widely used but require x-ray access, which is lacking outside of x-ray beam lines. Other methods such as fixed points require several experiments to bracket a pressure calibration point. In this study, a recoverable high-temperature pressure gauge for pressures ranging from 3 GPa to 10 GPa is presented. The gauge is based on the pressure-dependent solubility of an SiO 2 component in the rutile-structured phase of GeO 2 (argutite), and is valid when the argutite solid solution coexists with coesite. The solid solution varies strongly in composition, mainly in pressure but also somewhat in temperature, and the compositional variations are easily detected by x-ray diffraction of the recovered products because of significant changes in the lattice parameters. The solid solution is measured here on two isotherms, one at 1200 °C and the other at 1500 °C, and is developed as a pressure gauge by calibrating it against three fixed points for each temperature and against the lattice parameter of MgO measured in situ at a total of three additional points. A somewhat detailed thermodynamic analysis is then presented that allows the pressure gauge to be used at other temperatures. This provides a way to accurately and reproducibly evaluate the pressure in high pressure experiments and applications in this pressure-temperature range, and could potentially be used as a benchmark to compare various other pressure scales under high temperature conditions. - Graphical abstract: The saturation curve of SiO 2 in TiO 2 shows a strong pressure dependence and a strong dependence of unit cell volume on composition. This provides an opportunity to use this saturation curve as a

  1. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  2. CHEMICAL VAPOUR DEPOSITION FROM A RADIATION-SENSITIVE PRECURSOR

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates in one aspect to a method of depositing a thin film on a substrate by chemical vapour deposition (CVD) from a radiation-sensitive precursor substance. The method comprises the steps of: (i) placing the substrate in a reaction chamber of a CVD system; (ii) heating...... heating pulse followed by an idle period; (iii) during at least one of the idle periods, providing a pressure pulse of precursor substance inside the reaction chamber by feeding at least one precursor substance to the reaction chamber so as to establish a reaction partial pressure for thin film deposition...... is formed. According to a further aspect, the invention relates to a chemical vapour deposition (CVD) system for depositing a thin film onto a substrate using precursor substances containing at least one radiation sensitive species....

  3. Cavitation in gas-saturated liquids

    NARCIS (Netherlands)

    Rooze, J.

    2012-01-01

    Oscillating gas bubbles can be created in a liquid by exposing it to ultrasound. These gas bubbles implode if the sound pressure is high enough. This process is called cavitation. Interesting phenomena take place during the collapse. The gas and vapour inside the bubble are compressed and reach

  4. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by

  5. On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers

    International Nuclear Information System (INIS)

    Garcia-Hernando, N.; Almendros-Ibanez, J.A.; Ruiz, G.; Vega, M. de

    2011-01-01

    The influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr-H 2 O and NH 3 -H 2 O solutions is studied. For the NH 3 -H 2 O solution, the pressure drop-temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr-H 2 O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed.

  6. On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Hernando, N.; de Vega, M. [Energy System Engineering (ISE), Departamento de Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganes, Madrid (Spain); Almendros-Ibanez, J.A. [Escuela de Ingenieros Industriales de Albacete, Departamento de Mecanica Aplicada e Ingenieria de Proyectos, Universidad de Castilla La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Renewable Energy Research Institute, c/de la Investigacion s/n, 02071 Albacete (Spain); Ruiz, G. [Energy Efficiency and Renewables Department, Tecnicas Reunidas S.A., C/Arapiles No. 13, 10a, 28015 Madrid (Spain)

    2011-02-15

    The influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr-H{sub 2}O and NH{sub 3}-H{sub 2}O solutions is studied. For the NH{sub 3}-H{sub 2}O solution, the pressure drop-temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr-H{sub 2}O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed. (author)

  7. Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane or tetrachloroethene) at nine temperatures

    International Nuclear Information System (INIS)

    Garriga, R.; Perez, P.; Gracia, M.

    2006-01-01

    Vapour pressures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane, or tetrachloroethene) at nine temperatures between T = 283.15 K and T = 323.15 K were measured by a static method. The reduction of the vapour pressures data to obtain activity coefficients and excess molar Gibbs energies was carried out by fitting the vapour pressure data to the Redlich-Kister polynomial according to Barker's method. Excess molar volumes were also measured at T 298.15 K. A comparative analysis about the thermodynamic behaviour of both systems is performed, in terms of hydrogen bonding and electron-donor-acceptor interactions, as well as the resonance effect in tetrachloroethene

  8. Heat and water mass transfer in unsaturated swelling clay based buffer: discussion on the effect of the thermal gradient and on the diffusion of water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Robinet, J.O. [Euro-Geomat-Consulting (France)]|[Institut National des Sciences Appliquees (INSA), 35 - Rennes (France); Plas, F. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

    2005-07-01

    The modelling of heat, mass transfer and the behaviour coupled thermo-hydro-mechanical in swelling clay require the development of appropriate constitutive laws as well as experimental data. This former approach, allows the quantitative validation of the theoretical models. In general modelling approaches consider dominant mechanisms, (i) Fourier law for diffusion of heat, (ii) generalized Darcy law for convection of liquid water, (iii) Flick law for diffusion of water vapour, and elastic-plastic models wit h hydric hardening and thermal damage/expansion for strain-stress behaviour. Transfer of dry air and water under thermal gradient and capillary (e.g. suction) gradient in unsaturated compacted swelling clays consider evaporation, migration and condensation. These transfers take into account the capillary effect. This effect is an evaporation of liquid water in the hot part for temperature higher than 100 C associated with a, diffusion of water vapor towards cold part then condensation, and convection of liquid water with gradient of suction in the opposite direction of the water vapour diffusion. High values of the diffusion coefficient of the vapour water are considered about 10{sup -7}m{sup 2}/s. Some thermal experiments related (i) low values of the water vapour diffusion coefficient in compacted swelling clays, 2004) and (ii) a significant drying associated with a water transfer even for temperature lower than 100 C. Other enhancement phenomena are used to explain these data and observations: the vaporization is a continuous process. At short term the mechanism of drying at short term is the thermal effect on the capillary pressure (e.g. surface tension depending of temperature); the thermal gradient is a driving force. When a temperature gradient is applied, diffusion occurs in order to reach equilibrium, e.g. to make the chemical potential (m) of each component uniform throughout. This mechanism is called thermal diffusion. This paper proposes a discussion

  9. Investigating Multiphase Flow Phenomena in Fine-Grained Reservoir Rocks: Insights from Using Ethane Permeability Measurements over a Range of Pore Pressures

    Directory of Open Access Journals (Sweden)

    Eric Aidan Letham

    2018-01-01

    Full Text Available The ability to quantify effective permeability at the various fluid saturations and stress states experienced during production from shale oil and shale gas reservoirs is required for efficient exploitation of the resources, but to date experimental challenges prevent measurement of the effective permeability of these materials over a range of fluid saturations. To work towards overcoming these challenges, we measured effective permeability of a suite of gas shales to gaseous ethane over a range of pore pressures up to the saturated vapour pressure. Liquid/semiliquid ethane saturation increases due to adsorption and capillary condensation with increasing pore pressure resulting in decreasing effective permeability to ethane gas. By how much effective permeability to ethane gas decreases with adsorption and capillary condensation depends on the pore size distribution of each sample and the stress state that effective permeability is measured at. Effective permeability decreases more at higher stress states because the pores are smaller at higher stress states. The largest effective permeability drops occur in samples with dominant pore sizes in the mesopore range. These pores are completely blocked due to capillary condensation at pore pressures near the saturated vapour pressure of ethane. Blockage of these pores cuts off the main fluid flow pathways in the rock, thereby drastically decreasing effective permeability to ethane gas.

  10. Introducing zinc cations into zeolite Y via the reduction of HY with zinc metal vapour

    Science.gov (United States)

    Seidel, A.; Boddenberg, B.

    1996-01-01

    Zeolites HY and NaY which were contacted with zinc metal vapour at 420°C were investigated by carbon monoxide and xenon adsorption as well as 129Xe NMR spectroscopy. The reaction of zeolite HY results in the incorporation of Zn 2+ cations which are shown to populate the supercage positions S II and S III to an unusually high extent. The supercage zinc cation concentration strongly decreases when the material is saturated with water and subsequently dehydrated at 400°C. The zeolite NaY turns out to be inert towards the reaction with zinc metal vapour.

  11. The Use of VMD Data/Model to Test Different Thermodynamic Models for Vapour-Liquid Equilibrium

    DEFF Research Database (Denmark)

    Abildskov, Jens; Azquierdo-Gil, M.A.; Jonsson, Gunnar Eigil

    2004-01-01

    Vacuum membrane distillation (VMD) has been studied as a separation process to remove volatile organic compounds from aqueous streams. A vapour pressure difference across a microporous hydrophobic membrane is the driving force for the mass transport through the membrane pores (this transport take...... place in vapour phase). The vapour pressure difference is obtained in VMD processes by applying a vacuum on one side of the membrane. The membrane acts as a mere support for the liquid-vapour equilibrium. The evaporation of the liquid stream takes place on the feed side of the membrane...... values; membrane type: PTFE/PP/PVDF; feed flow rate; feed temperature. A comparison is made between different thermodynamic models for calculating the vapour-liquid equilibrium at the membrane/pore interface. (C) 2004 Elsevier B.V. All rights reserved....

  12. The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: a retrospective cohort analysis.

    Science.gov (United States)

    Houwink, Aletta P I; Rijkenberg, Saskia; Bosman, Rob J; van der Voort, Peter H J

    2016-03-12

    During resuscitation in severe sepsis and septic shock, several goals are set. However, usually not all goals are equally met. The aim of this study is to determine the relative importance of the different goals, such as mean arterial pressure (MAP), lactate, central venous oxygen saturation (ScvO2) and central to forefoot temperature (delta-T), and how they relate to intensive care unit (ICU) and hospital mortality. In a retrospective cohort study in a 20-bed mixed medical and surgical ICU of a teaching hospital we studied consecutive critically ill patients who were admitted for confirmed infection and severe sepsis or septic shock between 2008 and 2014. All validated MAP, lactate levels, ScvO2 and delta-T for the first 24 hours of ICU treatment were extracted from a clinical database. Logistic regression analyses were performed on validated measurements in the first hour after admission and on mean values over 24 hours. Patients were categorized by MAP (24-hour mean below or above 65 mmHg) and lactate (24-hour mean below or above 2 mmol/l) for Cox regression analysis. From 837 patients, 821 were eligible for analysis. All had MAP and lactate measurements. The delta-T was available in 812 (99%) and ScvO2 was available for 193 out of these patients (23.5%). Admission lactate (p < 0.001) and admission MAP (p < 0.001) were independent predictors of ICU and hospital mortality. The 24-hour mean values for lactate, MAP and delta-T were all independent predictors of ICU mortality. Hospital mortality was independently predicted by the 24-hour mean lactate (odds ratio (OR) 1.34, 95% confidence interval (CI) 1.30-1.40, p = 0.001) mean MAP (OR 0.96, 95% CI 0.95-0.97, p = 0.001) and mean delta-T (OR 1.09, 95% CI 1.06-1.12, p = 0.001). Patients with a 24-hour mean lactate below 2 mmol/l and a 24-hour mean MAP above 65 mmHg had the best survival, followed by patients with a low lactate and a low MAP. Admission MAP and lactate independently predicted ICU and hospital mortality

  13. Vapour galvanizing (Sherardizing) of copper with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Wortelen, Dietbert; Bracht, Hartmut [Westfaelische Wilhelms-Universitaet Muenster (Germany); Natrup, Frank; Graf, Wolfram [Bodycote Waermebehandlung GmbH, Sprockhoevel (Germany)

    2010-07-01

    Using a vapour galvanizing technique called Sherardizing we investigated the growth kinetics and coefficients of zinc copper phases. For this purpose polished (OFHC)-copper plates and zinc powder have been sealed in quartz ampoules under inert gas atmospheres and annealed at a temperature range between 300 and 410 C. In order to study the coating thickness and the phase composition, cross sections were prepared, which have been analyzed by means of optical microscopy and scanning electron microscopy. We were able to demonstrate that the coating thickness is a function of the parabolic time law and that the formed coatings are composed of two layers referring to the ordered {beta}-CuZn and {gamma}-Cu{sub 5}Zn{sub 8}-phases. To enhance the coating quality, small amounts of ZnCl{sub 2} were added to the zinc powder. It was observed that the coating thickness decreased with increasing ZnCl{sub 2}. Experiments with variable Ar-pressure demonstrated a reduced coating growth with increasing pressures. Further measurements with ZnCl{sub 2} were performed to check whether an electrochemical mechanism is involved in the coating process.

  14. The Droplets Condensate Centering in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Shakshin, S. L.; Alekseev, A. P.

    2017-11-01

    The results of experimental studies of the process of condensate microdroplets centering contained in the moving moist vapour in the vapour channel of short heat pipes (HPs) for large thermal loads are presented. A vapour channel formed by capillary-porous insert in the form of the inner Laval-liked nozzle along the entire length of the HP. In the upper cover forming a condensation surface in the HP, on the diametrical line are installed capacitive sensors, forming three capacitors located at different distances from the longitudinal axis of the vapour channel. With increasing heat load and the boil beginning in the evaporator a large amount of moist vapour in the vapour channel of HP occur the pressure pulsation with frequency of 400-500 Hz and amplitude up to 1·104Pa. These pulsations affect the moving of the inertial droplets subsystem of the vapour and due to the heterogeneity of the velocity profile around the particle flow in the vapour channel at the diameter of microdroplets occurs transverse force, called the Saffman force and shear microdroplets to the center of vapour channel. Using installed in the top cover capacitors we can record the radial displacement of the condensable microdroplets.

  15. Modelling of vapour explosion in a stratified geometry

    International Nuclear Information System (INIS)

    Brayer, Claude

    1994-01-01

    A vapour explosion is the explosive vaporisation of a volatile liquid in contact with another hotter liquid. Such a violent vaporisation requires an intimate mixing and a fine fragmentation of both liquids. Based on a synthesis of published experimental results, the author of this research thesis reports the development of a new physical model which describes the explosion. In this model, the explosion propagation is due to the propagation of the pressure wave associated with this this explosion, all along the vapour film which initially separates both liquids. The author takes the presence of water in the liquid initially located over the film into account. This presence of vapour explains experimental propagation rates. Another consequence, when the pressure wave passes, is an acceleration of liquids at different rates below and above the film. The author considers that a mixture layer then forms from the point of disappearance of the film, between both liquids, and that fragmentation is due to the turbulence in this mixture layer. This fragmentation model is then introduced into an Euler thermodynamic, three-dimensional and multi-constituents code of calculation, MC3D, to study the influence of fragmentation on thermal exchanges between the various constituents on the volatile liquid vaporisation [fr

  16. Effect of pore water pressure on P-wave velocity in water-filled sands with partial air saturation; Fukanzen howa jotai no suna shiryo wo denpasuru P ha sokudo ni oyobosu kangeki suiatsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kanema, T [Chishitsu-Keisoku Co. Ltd., Tokyo (Japan)

    1997-10-22

    With an objective to elucidate change in velocity of elastic waves in association with water pressure increase in a sand bed below the groundwater level in a shallow portion of the ground, a measurement experiment was carried out on P-wave velocity in sand samples with partial air saturation. The experiment has used fine sand having an equivalent coefficient of 2.40, a soil particle density of 2.68 g/cm {sup 3} or 60%, and a grain size of 0.36 mm. Inside the water-filled sand sample, two accelerometers were embedded 20 cm apart from each other as vibration receivers. An electromagnetic hammer for P-wave was used as the vibration source. In the experiment, measurement was carried out on the P-wave velocity in association with increase in pore water pressure by applying water pressure afresh to the water-filled sample. As a result of the experiment, the following matters were disclosed: the P-wave velocity increases as the pore water pressure was increased, and a phenomenon was recognized that the dominant frequency changes into high frequency; the degree of increase in the P-wave velocity varies depending on initial saturation of the sample; and bubbles in the pore fluid have their volume decreased due to compression resulted from increased pore water pressure and dissolution of air into the pore water. 6 refs., 11 figs.

  17. The response of liquid-filled pipes to vapour collapse

    International Nuclear Information System (INIS)

    Tijsseling, A.S.; Fan, D.

    1991-01-01

    The collapse of vapour cavities in liquid is usually accompanied with almost instantaneous pressure rises. These pressure rises impose severe loads on liquid-conveying pipes whenever the cavities become sufficiently large. Due to the impact nature of loadings, movement of the pipe walls can be expected. Tests are performed in a water-filled closed pipe suspended by thin steel wires. Vaporous cavities are induced in the liquid by hitting the pipe axially by a steel rod. The volume of the cavities can be varied by changing the initial pressure of the water. The developing and collapsing of cavities in the liquid is inferred from pressure measurements. Strain gauges and a laser Doppler vibrometer are used to record the response of the pipe to these pressures. The test results are compared with predictions from a numerical model. The model describes 1) axial stress wave propagations in the pipe and 2) water hammer and cavitation phenomena in the liquid. Pipe and liquid interact via 1) the radial expansion and contraction of the pipe wall and 2) the closed ends of the pipe, where large vapour cavities may develop. (author)

  18. Uniqueness of specific interfacial area-capillary pressure-saturation relationship under non-equilibrium conditions in two-phase porous media flow

    NARCIS (Netherlands)

    Joekar-Niasar, V.; Hassanizadeh, S.M.

    2012-01-01

    The capillary pressure–saturation (P c–S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model

  19. Landsliding in partially saturated materials

    Science.gov (United States)

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  20. Determination of saturation functions and wettability for chalk based on measured fluid saturations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.; Bech, N.; Moeller Nielsen, C.

    1998-08-01

    The end effect of displacement experiments on low permeable porous media is used for determination of relative permeability functions and capillary pressure functions. Saturation functions for a drainage process are determined from a primary drainage experiment. A reversal of the flooding direction creates an intrinsic imbibition process in the sample, which enables determination if imbibition saturation functions. The saturation functions are determined by a parameter estimation technique. Scanning effects are modelled by the method of Killough. Saturation profiles are determined by NMR. (au)

  1. Vapour trap development and operational experience

    International Nuclear Information System (INIS)

    Jansing, W.; Kirchner, G.; Menck, J.

    1977-01-01

    Sodium aerosols have the unpleasant characteristic that they deposit at places with low temperature level. This effect can be utilized when sodium aerosols are to be trapped at places which are determined beforehand. Thus vapour traps were developed which can filter sodium vapour from the cover gas. By this means the necessity was eliminated to heat all gas lines and gas systems with trace heaters just as all sodium lines are heated. It was of special interest for the INTERATOM to develop vapour traps which must not be changed or cleaned after a certain limited operating period. The vapour traps were supposed to enable maintenance free operation, i.e. they were to operate 'self cleaning'

  2. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  3. The effect of coherent stirring on the advection?condensation of water vapour

    OpenAIRE

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. Key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. In order to investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls the moisture...

  4. Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign

    Science.gov (United States)

    Montoux, N.; Hauchecorne, A.; Pommereau, J.-P.; Lefèvre, F.; Durry, G.; Jones, R. L.; Rozanov, A.; Dhomse, S.; Burrows, J. P.; Morel, B.; Bencherif, H.

    2009-07-01

    Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20° S in Brazil in February-March 2004 using a tunable diode laser (μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20-25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20-25 km. Compared to HALOE of ±10% accuracy between 0.1-100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16-20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16-18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4-5 ppmv observed by the μSDLA. Differences

  5. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  6. Saturated vapor pressure over molten mixtures of GaCl{sub 3} and alkali metal chlorides; Davlenie nasyshchennykh parov rasplavlennykh smesej CaCl{sub 3} s khloridami shchelochnykh metallov

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Smolenskij, V V; Moskalenko, N I [UrO RAN, Inst. Vysokotemperaturnoj Ehlektrokhimii, Elaterinburg (Russian Federation)

    2004-07-01

    Volatilities of GaCl{sub 3} and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl{sub 3} in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl{sub 3}; their variation permits altering parameters of GaCl{sub 3} distillation from the salt melt in a wide range.

  7. Consistent vapour-liquid equilibrium data containing lipids

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    Consistent physical and thermodynamic properties of pure components and their mixtures are important for process design, simulation, and optimization as well as design of chemical based products. In the case of lipids, it was observed a lack of experimental data for pure compounds and also...... for their mixtures in open literature, what makes necessary the development of reliable predictive models based on limited data. To contribute to the missing data, measurements of isobaric vapour-liquid equilibrium (VLE) data of three binary mixtures at two different pressures were performed at State University...

  8. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...... to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  9. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  10. A demonstration experiment for studying the properties of saturated vapor

    Science.gov (United States)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  11. Performance analysis of a potassium-steam two stage vapour cycle

    International Nuclear Information System (INIS)

    Mitachi, Kohshi; Saito, Takeshi

    1983-01-01

    It is an important subject to raise the thermal efficiency in thermal power plants. In present thermal power plants which use steam cycle, the plant thermal efficiency has already reached 41 to 42 %, steam temperature being 839 K, and steam pressure being 24.2 MPa. That is, the thermal efficiency in a steam cycle is facing a limit. In this study, analysis was made on the performance of metal vapour/steam two-stage Rankine cycle obtained by combining a metal vapour cycle with a present steam cycle. Three different combinations using high temperature potassium regenerative cycle and low temperature steam regenerative cycle, potassium regenerative cycle and steam reheat and regenerative cycle, and potassium bleed cycle and steam reheat and regenerative cycle were systematically analyzed for the overall thermal efficiency, the output ratio and the flow rate ratio, when the inlet temperature of a potassium turbine, the temperature of a potassium condenser, and others were varied. Though the overall thermal efficiency was improved by lowering the condensing temperature of potassium vapour, it is limited by the construction because the specific volume of potassium in low pressure section increases greatly. In the combinatipn of potassium vapour regenerative cycle with steam regenerative cycle, the overall thermal efficiency can be 58.5 %, and also 60.2 % if steam reheat and regenerative cycle is employed. If a cycle to heat steam with the bled vapor out of a potassium vapour cycle is adopted, the overall thermal efficiency of 63.3 % is expected. (Wakatsuki, Y.)

  12. Stripping of 1.04 MeV per nucleon krypton ions in high molecular weight vapours

    International Nuclear Information System (INIS)

    Eastham, D.A.; Joy, T.; Clark, R.B.; King, R.

    1976-01-01

    Equilibrium charge state distributions have been measured for 1.04 MeV per nucleon krypton ions in heavy vapours with molecular weights from 462 to 6500. Non-equilibrium data are presented for the heaviest vapour. A maximum increase of 0.8 in the mean charge is found relative to a conventional diatomic gas but the pressures required are two orders of magnitude less. (Auth.)

  13. Thermal diffusion of water vapour in porous materials: fact or fiction?

    DEFF Research Database (Denmark)

    Janssen, Hans

    2011-01-01

    diffusion. Thermal diffusion opponents, on the other hand, assert that these thermal transports are negligibly small. This paper resolves that contradiction. A critical analysis of the investigations supporting the occurrence of thermal diffusion reveals that all are flawed. A correct reinterpretation...... its negligible magnitude. It can in conclusion be stated that thermal diffusion is of no importance for building science applications, leaving vapour pressure as the sole significant transport potential for the diffusion of water vapour in porous materials. (C) 2010 Elsevier Ltd. All rights reserved....

  14. Initiation of a boiling liquid expanding vapour explosion

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.; Chan, C.K.; Steward, F.R.; Tennankore, K.N.; Venart, J.E.S.

    1991-06-01

    Boiling liquid expanding vapour explosions (BLEVEs) occur when a pressure liquefied gas tank is burst and the fluid is ejected to the atmosphere. As the liquid is exposed to a lower pressure it boils violently, causing an explosion which destroys the container. One litre tanks were filled with propane or R12, heated, and caused to rupture at specific test conditions to determine the parameters required for a BLEVE. Results showed that the energy stored in the liquid under pressure relative to the liquid at atmospheric conditions was a quantity which can be used to predict a BLEVE for the particular apparatus and conditions used. The possible importance of the development of a shock wave within the container during a BLEVE was noted. A shock tube was used to study the shock waves generated during a BLEVE. Temperature, liquid volume, rupture location, rupture area, and the fluid involved were varied. The pressure was measured vs time for periods immediately after the rupture. Photographs of the formation of pressure waves were obtained using spark Schlieren photography and showed that the BLEVE phenomenon is definitely a shock-related event. Pressure information was also gathered during BLEVEs of one litre cylinders, and this information is compared to that from the shock tube. Shock tube data showed that transverse waves formed from the initial pressure wave could be amplified. 37 refs., 54 figs., 11 tabs.

  15. Initiation of a boiling liquid expanding vapour explosion

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.

    1990-01-01

    Boiling liquid expanding vapour explosions (BLEVEs) occur when a pressure liquefied gas tank is burst and the fluid is ejected to the atmosphere. As the liquid is exposed to a lower pressure it boils violently, causing an explosion which destroys the container. One litre tanks were filled with propane or R12, heated, and caused to rupture at specific test conditions to determine the parameters required for a BLEVE. Results showed that the energy stored in the liquid under pressure relative to the liquid at atmospheric conditions was a quantity which can be used to predict a BLEVE for the particular apparatus and conditions used. The possible importance of the development of a shock wave within the container during a BLEVE was noted. A shock tube was used to study the shock waves generated during a BLEVE. Temperature, liquid volume, rupture location, rupture area, and the fluid involved were varied. The pressure was measured vs time for periods immediately after the rupture. Photographs of the formation of pressure waves were obtained using spark Schlieren photography. Similarities to waves measured during detonations in ducts were noted. Pressure information was also gathered during BLEVEs of one litre cylinders, and this data is compared to that from the shock tube. Shock tube data showed that transverse waves formed from the initial pressure wave could be amplified. 37 refs., 54 figs., 11 tabs.

  16. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  17. Vapour and air bubble collapse analysis in viscous compressible water

    Directory of Open Access Journals (Sweden)

    Gil Bazanini

    2001-01-01

    Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.

  18. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  19. A mathematical model of vapour film destabilisation

    International Nuclear Information System (INIS)

    Knowles, J.B.

    1985-04-01

    In a hypothetical reactor accident, destabilisation of an intervening vapour film between the molten fuel and liquid coolant by a weak shock wave (trigger), is considered likely to initiate the molten fuel-coolant interaction. The one-dimensional model presented here is part of a larger programme of fundamental research aimed at improved reactor safety. (U.K.)

  20. Effect of ionic liquids, 1-butyl-3-methyl imidazolium bromide and 1-hexyl-3-methyl imidazolium bromide on the vapour – Liquid equilibria of the aqueous D-fructose solutions at 298.15 K and atmospheric pressure using isopiestic method

    International Nuclear Information System (INIS)

    Zafarani-Moattar, Mohammed Taghi; Shekaari, Hemayat; Mazaher Haji Agha, Elnaz

    2017-01-01

    Highlights: • VLE data for aqueous fructose + [BMIm]Br or [HMIm]Br systems were measured. • Performances of different local composition models were tested in fitting VLE data. • Molal activity coefficients were calculated. • The results were discussed on basis of water, IL and sugar interactions. - Abstract: In this study, water activity measurements have been carried out by the isopiestic method for the systems (D-fructose + 1-butyl-3-methyl imidazolium bromide + H 2 O) and (D-fructose + 1-hexyl-3-methyl imidazolium bromide + H 2 O) at 298.15 K and atmospheric pressure. Vapour pressures and osmotic coefficients of the solutions have been determined from the experimental measured water activity results. The experimental water activity values were satisfactorily correlated with segment-based local composition models of the Wilson, NRTL, modified NRTL, NRF-NRTL and UNIQUAC. Then, using the parameters obtained from these models, the unsymmetrical molal activity coefficients of the D-fructose and ionic liquids in the binary and D-fructose in ternary aqueous solutions have been calculated. Furthermore, the activity coefficients of D-fructose in binary and ternary solutions were used to calculate the Gibbs energy of transfer for D-fructose from water to aqueous ionic liquid solutions. An application of McMillan-Mayer theory of solutions through virial expansion of transfer Gibbs energy was made to get pair and triplet interaction parameters and salting constant values. From the sign and magnitude of these parameters and salting constants and also from the magnitude of activity coefficients some information about solute-solute and solute-solvent interactions are obtained.

  1. 饱和蒸汽压式波纹管疏水阀热动元件实验研究%Experimental study on the saturated vapor pressure type thermostatic bellows for steam traps

    Institute of Scientific and Technical Information of China (English)

    李树勋; 徐登伟; 把桥环

    2011-01-01

    针对液体膨胀式波纹管蒸汽疏水阀排量不稳定、漏汽率高等问题,分析波纹管热动元件的热工特性.基于Riedel蒸汽压方程和气液平衡方程,建立饱和蒸汽压式波纹管热动元件的热力学模型,设计相应实验系统,进行不同参数下的实验研究.结果表明,饱和蒸汽压式波纹管热动元件伸长量是相变温度的单值函数,近似呈指数关系;采用不同混合比、刚度及填充方式,可调节疏水阀的排水过冷度.%In view of the instabilities of displacement and high steam leakage rate for the liquid-expansion type ther-mostatic bellows steam traps, thermodynamic characteristical of thermostatic bellows was analyzed. Based on the Riedel equation and the vapor-liquid equilibrium equation, thermodynamic model of the saturated vapor pressure type thermostatic bellows was set up, corresponding experimental system was designed, and experimental studies with different parameters was carried out. The experimental results agree well with the theoretical analysis. The results show that the elongation A/I of the saturated vapor pressure type thermostatic bellows is monodrome function of phase transition temperature T, and relationship between the elongation A/I and the phase change temperature t is an exponential function. The subcooled temperature of steam trap can be adjusted by using different mixture ratio, different bellows' stiffness and different sufficient attire method. This paper establishes theoretical and experimental foundation for improving the performance of thermostatic bellows steam traps.

  2. Experimental Study on Hydrate Induction Time of Gas-Saturated Water-in-Oil Emulsion using a High-Pressure Flow Loop

    Directory of Open Access Journals (Sweden)

    Lv X.F.

    2015-11-01

    Full Text Available Hydrate is one of the critical precipitates which have to be controlled for subsea flow assurance. The induction time of hydrate is therefore a significant parameter. However, there have been few studies on the induction time of the natural gas hydrate formation in a flow loop system. Consequently, a series of experiments were firstly performed, including water, natural gas and Diesel oil, on the hydrate induction time under various conditions such as the supercooling and supersaturation degree, water cut, anti-agglomerant dosage, etc. The experiments were conducted in a high-pressure hydrate flow loop newly constructed in the China University of Petroleum (Beijing, and dedicated to flow assurance studies. Then, based on previous research, this study puts forward a method for induction time, which is characterized by clear definition, convenient measurement and good generality. Furthermore, we investigated the influences of the experimental parameters and analyzed the experimental phenomena for the hydrate induction time in a flowing system.

  3. First Townsend coefficient of organic vapour in avalanche counters

    International Nuclear Information System (INIS)

    Sernicki, J.

    1990-01-01

    A new concept is presented in the paper for implementing the proven method of determining the first Townsend coefficient (α) of gases using an avalanche counter. The A and B gas constants, interrelated by the expression α/p=A exp[-B/(K/p)], are analyzed. Parallel-plate avalanche counters (PPAC) with an electrode spacing d from 0.1 to 0.4 cm have been employed for the investigation, arranged to register low-energy alpha particles at n-heptane vapour pressures of p≥5 Torr. An in-depth discussion is given, covering the veracity and the behaviour vs K/p, of the n-heptane A and B constants determined at reduced electric-field intensity values ranging from 173.5 to 940 V/cm Torr; the constants have been found to depend upon d. The results of the investigation are compared to available data of the α coefficient of organic vapours used in avalanche counters. The PPAC method of determining α reveals some imperfections at very low values of the pd product. (orig.)

  4. Dynamic behaviour of bubbles of water vapour at a temperature lower than the boiling temperature

    International Nuclear Information System (INIS)

    Jansen, Franz

    1966-01-01

    This research thesis reports the study of the theoretical movement of the wall of vapour water bubbles in a sub-saturated boiling regime, i.e. with an average water temperature lower than the boiling temperature. While assuming that bubbles have an initial translational speed at the beginning of their condensation, the author shows that their shrinkage should result in an accelerated displacement in a direction normal to the wall and inward the liquid. Layers of hot water initially close to the wall would therefore be quickly transported towards cold water areas. Experiments allowed, in some cases, the acceleration of bubbles during their condensation to be noticed: for low sub-saturations in still water and for high sub-saturations in water in forced convection, even though, in this last case, the determination of accelerations is more delicate [fr

  5. Validation of the CORB75 (confusion, oxygen saturation, respiratory rate, blood pressure, and age ≥ 75 years) as a simpler pneumonia severity rule.

    Science.gov (United States)

    Ochoa-Gondar, O; Vila-Corcoles, A; Rodriguez-Blanco, T; Hospital, I; Salsench, E; Ansa, X; Saun, N

    2014-04-01

    This study compares the ability of two simpler severity rules (classical CRB65 vs. proposed CORB75) in predicting short-term mortality in elderly patients with community-acquired pneumonia (CAP). A population-based study was undertaken involving 610 patients ≥ 65 years old with radiographically confirmed CAP diagnosed between 2008 and 2011 in Tarragona, Spain (350 cases in the derivation cohort, 260 cases in the validation cohort). Severity rules were calculated at the time of diagnosis, and 30-day mortality was considered as the dependent variable. The area under the receiver operating characteristic curves (AUC) was used to compare the discriminative power of the severity rules. Eighty deaths (46 in the derivation and 34 in the validation cohorts) were observed, which gives a mortality rate of 13.1 % (15.6 % for hospitalized and 3.3 % for outpatient cases). After multivariable analyses, besides CRB (confusion, respiration rate ≥ 30/min, systolic blood pressure AUC statistics for predicting mortality in the derivation and validation cohorts were 0.79 and 0.82, respectively. In the derivation cohort, a CORB75 score ≥ 2 showed 78.3 % sensitivity and 65.5 % specificity for mortality (in the validation cohort, these were 82.4 and 71.7 %, respectively). The proposed CORB75 scoring system has good discriminative power in predicting short-term mortality among elderly people with CAP, which supports its use for severity assessment of these patients in primary care.

  6. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  7. Saturated poroelastic actuators generated by topology optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    2011-01-01

    the coupling of internal fluid pressure and elastic shear stresses a slab of the optimized porous material deflects/deforms when a pressure is imposed and an actuator is created. Several phenomenologically based constraints are imposed in order to get a stable force transmitting actuator.......In this paper the fluid-structure interaction problem of a saturated porous media is considered. The pressure coupling properties of porous saturated materials change with the microstructure and this is utilized in the design of an actuator using a topology optimized porous material. By maximizing...

  8. The ratio DT/μ for electrons in water vapour at 294 K

    International Nuclear Information System (INIS)

    Elford, M.T.

    1995-01-01

    The ratio D T /μ for electrons in water vapour (294 K) has been measured by the Townsend-Huxley method as a function of E/N (where E is the electric field strength and N the gas number density) at vapour pressures ranging from 0.103 to 0.413 kPa. For E/N ≤ 30 Td, where attachment and ionisation may be neglected, the values are found to be independent of vapour pressure and of the current ratio relation used to derive D T /μ values from the measured current ratios. The uncertainty of these D T /μ values is estimated to be T /μ measured at E/N > 30 Td were found to be strongly pressure dependent, the strength and sign of the dependence depending on E/N and the current ratio relation used. Since extrapolation to infinite pressure at each E/N value did not give the same value of D T /μ, it has not been possible to derive reliable D T /μ values for this higher E/N range. Possible causes of the observed pressure dependences are discussed. The present data are in good agreement with the values predicted by Ness and Robson for values of E/N ≤ 24 Td. 17 refs., 1 tab., 5 figs

  9. Recipe for residual oil saturation determination

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, A.J.; Kidwell, C.M.

    1979-01-01

    In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.

  10. Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2014-02-01

    Full Text Available Soil-water characteristics of Gaomiaozi (GMZ Ca-bentonite at high suctions (3–287 MPa are measured by vapour equilibrium technique. The soil-water retention curve (SWRC of samples with the same initial compaction states is obtained in drying and wetting process. At high suctions, the hysteresis behaviour is not obvious in relationship between water content and suction, while the opposite holds between degree of saturation and suction. The suction variation can change its water retention behaviour and void ratio. Moreover, changes of void ratio can bring about changes in degree of saturation. Therefore, the total change in degree of saturation includes changes caused by suction and that by void ratio. In the space of degree of saturation and suction, the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio. However, the relationship between water content and suction is less affected by changes of void ratio. The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction. Moreover, the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale. From this linear relationship, the variation of degree of saturation caused by the change in void ratio can be obtained. Correspondingly, SWRC at a constant void ratio can be determined from SWRC at different void ratios.

  11. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C G; Newland, M S [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  12. Interactions of fission product vapours with aerosols

    International Nuclear Information System (INIS)

    Benson, C.G.; Newland, M.S.

    1996-01-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350 o C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs

  13. The impact of water vapour on climate

    International Nuclear Information System (INIS)

    Zittel, W.; Altmann, M.

    1994-01-01

    Do water vapour emissions from a solar hydrogen system affect the climate? This question was investigated by the authors. They state: The comparison with natural emissions by evaporation shows that emissions caused by energy generation, regardless of whether they stem from fossil, nuclear or regenerative energy systems, are negligible with a proportion of 0.005%. On the other hand, carbon dioxide emissions with a proportion of 4%, constitute a factor which already impedes the natural cycle. (orig.) [de

  14. Agreement between arterial partial pressure of carbon dioxide and saturation of hemoglobin with oxygen values obtained by direct arterial blood measurements versus noninvasive methods in conscious healthy and ill foals.

    Science.gov (United States)

    Wong, David M; Alcott, Cody J; Wang, Chong; Bornkamp, Jennifer L; Young, Jessica L; Sponseller, Brett A

    2011-11-15

    To determine agreement between indirect measurements of end-tidal partial pressure of carbon dioxide (PetCO(2)) and saturation of hemoglobin with oxygen as measured by pulse oximetry (SpO(2)) with direct measurements of PaCO(2) and calculated saturation of hemoglobin with oxygen in arterial blood (SaO(2)) in conscious healthy and ill foals. Validation study. 10 healthy and 21 ill neonatal foals. Arterial blood gas analysis was performed on healthy and ill foals examined at a veterinary teaching hospital to determine direct measurements of PaCO(2) and PaO(2) along with SaO(2). Concurrently, PetCO(2) was measured with a capnograph inserted into a naris, and SpO(2) was measured with a reflectance probe placed at the base of the tail. Paired values were compared by use of Pearson correlation coefficients, and level of agreement was assessed with the Bland-Altman method. Mean ± SD difference between PaCO(2) and PetCO(2) was 0.1 ± 5.0 mm Hg. There was significant strong correlation (r = 0.779) and good agreement between PaCO(2) and PetCO(2). Mean ± SD difference between SaO(2) and SpO(2) was 2.5 ± 3.5%. There was significant moderate correlation (r = 0.499) and acceptable agreement between SaO(2) and SpO(2). Both PetCO(2) obtained by use of nasal capnography and SpO(2) obtained with a reflectance probe are clinically applicable and accurate indirect methods of estimating and monitoring PaCO(2) and SaO(2) in neonatal foals. Indirect methods should not replace periodic direct measurement of corresponding parameters.

  15. Some safety aspects of CO2 vapour compression systems

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, J. [Department of Refrigeration and Air Conditioning, Norwegian University of Science and Technology NTNU, Trondheim (Norway); Hafner, A.; Braanaas, M. [SINTEF Energy Research, Refrigeration and Air Conditioning, Trondheim (Norway)

    2000-11-01

    Since CO2 is a non-toxic and non-flammable refrigerant, the major safety issues for CO2 systems are related to the high operating pressure. In case of a component rupture, the explosion energy (stored energy) may characterise the extent of potential damage.The explosion energy can be estimated based on component (refrigerant-side) volumes, pressures and refrigerant property data. The explosion (stored) energies of baseline systems and CO2 systems are calculated and compared. Results show that the explosion energies are not as different as the large difference in pressure would indicate. It has been suggested that a Boiling Liquid Expanding Vapour Explosion (BLEVE) may occur when a vessel containing pressurised liquid or supercritical fluid is rapidly depressurised, e.g. due to a crack or a rupture. The overpressure from a BLEVE may be high enough to rupture the whole vessel, with a resulting blast wave and risk of flying fragments. Some tests on CO2 have been conducted at varying initial conditions and liquid fill levels, and with varying vent areas. No significant overpressure peaks above the initial pressure has been observed in the current test programme. 19 refs.

  16. Heat transfer in vapour-liquid flow of carbon dioxide

    International Nuclear Information System (INIS)

    Yagov, V.V.

    2009-01-01

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO 2 practical using corresponds to high reduced pressures, and a majority of available experimental data on CO 2 flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO 2 flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  17. Gluon saturation in a saturated environment

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-01-01

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q sA 2 , in AA compared with pA collisions.

  18. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    Science.gov (United States)

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  19. [Qualitative Determination of Organic Vapour Using Violet and Visible Spectrum].

    Science.gov (United States)

    Jiang, Bo; Hu, Wen-zhong; Liu, Chang-jian; Zheng, Wei; Qi, Xiao-hui; Jiang, Ai-li; Wang, Yan-ying

    2015-12-01

    Vapours of organic matters were determined qualitatively employed with ultraviolet-visible absorption spectroscopy. Vapours of organic matters were detected using ultraviolet-visible spectrophotometer employing polyethylene film as medium, the ultraviolet and visible absorption spectra of vegetable oil vapours of soybean oil, sunflower seed oil, peanut oil, rapeseed oil, sesame oil, cotton seed oil, tung tree seed oil, and organic compound vapours of acetone, ethyl acetate, 95% ethanol, glacial acetic acid were obtained. Experimental results showed that spectra of the vegetable oil vapour and the organic compound vapour could be obtained commendably, since ultra violet and visible spectrum of polyethylene film could be deducted by spectrograph zero setting. Different kinds of vegetable oils could been distinguished commendably in the spectra since the λ(max), λ(min), number of absorption peak, position, inflection point in the ultra violet and visible spectra obtained from the vapours of the vegetable oils were all inconsistent, and the vapours of organic compounds were also determined perfectly. The method had a good reproducibility, the ultraviolet and visible absorption spectra of the vapours of sunflower seed oil in 10 times determination were absolutely the same. The experimental result indicated that polyethylene film as a kind of medium could be used for qualitative analysis of ultraviolet and visible absorption spectroscopy. The method for determination of the vapours of the vegetable oils and organic compounds had the peculiarities of fast speed analysis, well reproducibility, accuracy and reliability and low cost, and so on. Ultraviolet and visible absorption spectrum of organic vapour could provide feature information of material vapour and structural information of organic compound, and provide a novel test method for identifying vapour of compound and organic matter.

  20. Automatic NAA. Saturation activities

    International Nuclear Information System (INIS)

    Westphal, G.P.; Grass, F.; Kuhnert, M.

    2008-01-01

    A system for Automatic NAA is based on a list of specific saturation activities determined for one irradiation position at a given neutron flux and a single detector geometry. Originally compiled from measurements of standard reference materials, the list may be extended also by the calculation of saturation activities from k 0 and Q 0 factors, and f and α values of the irradiation position. A systematic improvement of the SRM approach is currently being performed by pseudo-cyclic activation analysis, to reduce counting errors. From these measurements, the list of saturation activities is recalculated in an automatic procedure. (author)

  1. Numerical Analysis of Flow and Heat Transfer Characteristics of CO2 at Vapour and Supercritical Phases in Micro-Channels

    Directory of Open Access Journals (Sweden)

    Rao N.T.

    2016-01-01

    Full Text Available Supercritical carbon dioxide (CO2 has special thermal properties with better heat transfer and flow characteristics. Due to this reason, supercritical CO2 is being used recently in air-condition and refrigeration systems to replace non environmental friendly refrigerants. Even though many researches have been done, there are not many literatures for heat transfer and flow characteristics of supercritical CO2. Therefore, the main purpose of this study is to develop flow and heat transfer CFD models on two different phases; vapour and supercritical of CO2 to investigate the heat transfer characteristics and pressure drop in micro-channels. CO2 is considered to be in different phases with different flow pressures but at same temperature. For the simulation, the CO2 flow was assumed to be turbulent, nonisothermal and Newtonian. The numerical results for both phases are compared. From the numerical analysis, for both vapour and supercritical phases, the heat energy from CO2 gas transferred to water to attain thermal equilibrium. The temperature of CO2 at vapour phase decreased 1.78% compared to supercritical phase, which decreased for 0.56% from the inlet temperature. There was a drastic increase of 72% for average Nu when the phase changed from vapour to supercritical. The average Nu decreased rapidly about 41% after total pressure of 9.0 MPa. Pressure drop (ΔP increased together with Reynolds number (Re for vapour and supercritical phases. When the phase changed from vapour to supercritical, ΔP was increased about 26%. The results obtained from this study can provide information for further investigations on supercritical CO2.

  2. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    International Nuclear Information System (INIS)

    Dabirian, Ali; Kuzminykh, Yury; Wagner, Estelle; Benvenuti, Giacomo; Rushworth, Simon; Hoffmann, Patrik

    2014-01-01

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb 2 (OEt) 10 does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt) 5 acts as an octahedral field completing entity and leads to Nb(OEt) 4 (dmae). We show that Nb(OEt) 4 (dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h −1 to values larger than 400 nm·h −1 can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt) 4 (dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt) 4 (dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an atomic layer deposition (ALD) process

  3. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    Science.gov (United States)

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Carbon structures formation in low current high voltage electrical discharge in hydrocarbon vapours

    International Nuclear Information System (INIS)

    Sobczyk, A T; Jaworek, A

    2011-01-01

    The properties of carbon fibers and other carbon structures produced from hydrocarbon vapours decomposed in electrically generated plasma at atmospheric pressure are studied in this paper. The electrical discharge was generated between a stainless steel needle and a plate made of nickel alloy. The carbon fiber has grown at the tip of the needle electrode, while other microflower-like deposits were built at the plate. The physical properties of carbon fibers were investigated by SEM, Raman spectroscopy, XRD, and EDS methods.

  5. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J.; Ovarlez, H. [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1997-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  6. Copper vapour laser development for Silva

    International Nuclear Information System (INIS)

    Bettinger, A.; Neu, M.; Chatelet, J.

    1993-01-01

    The recent developments of the components for high power Copper Vapour Laser (CVL) have been oriented towards four main goals: high quality laser beam, mainly for the CVL oscillators, increase of the extracted energy out of the amplifying stage, fully integrated and monolithic design for oscillator and amplifier, extended lifetime and high reliability. A first step of this work, which is done under contract with CILAS (Compagnie Industrielle des Lasers) led to an injection seeded oscillator and a 100 Watts amplifier; the present step concerns development of a 400 Watts class amplifier

  7. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J; Ovarlez, H [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1998-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  8. Thermogravimetric studies of vapour-aerosol interactions

    International Nuclear Information System (INIS)

    Henshaw, J.; Newland, M.S.; Wood, S.J.

    1991-01-01

    Thermogravimetric analysis has been used to study the interaction of iodine vapour with cadmium, silver and manganese monoxide substrates. These studies have demonstrated the importance of time-dependence data on reaction rates. Iodine did not react with manganese monoxide (as expected from thermodynamic considerations); however, extensive reaction did occur with silver and cadmium. Two rate limiting mechanisms were observed: mass transfer of iodine molecules from the gas phase (leading to linear reaction rates) and parabolic kinetics (ie inversely proportional to the extent of reaction) when the rate was limited by a diffusion process through the reaction product. (author)

  9. Experiments on a vapour absorption heat transformer

    Energy Technology Data Exchange (ETDEWEB)

    George, J M; Murthy, S S [Indian Inst. of Tech., Madras (India). Dept. of Mechanical Engineering

    1993-03-01

    Tests were conducted on a 3 kW heating capacity R21-DMF vapour absorption heat transformer to study the influence of operating temperature on its performance. Heat source temperature and condensing temperature were varied in the ranges 50-75[sup o]C and 20-40[sup o]C, respectively. Heat delivery temperatures up to 85[sup o]C and temperature lifts up to 20[sup o]C were achieved. Actual coefficients of performance (COPs) ranged from 0.2 to 0.35, whereas exergetic efficiencies of 0.3-0.4 could be obtained. (Author)

  10. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented.

  11. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    International Nuclear Information System (INIS)

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented

  12. The volatile pivalates of Y, Ba and Cu as prospective precursors for metal-organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iljina, E. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Korjeva, A. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Kuzmina, N. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Troyanov, S. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Dunaeva, K. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Martynenko, L. (Dept. of Chemistry, Moscow State Univ. (Russian Federation))

    1993-04-15

    The volatile pivalates of Y, Ba and Cu were synthesized and characterized by chemical and thermogravimetric analysis, IR spectroscopy, X-ray diffraction and mass spectrometry. The volatilities of metal pivalates was studied; the vapour pressures, thermodynamic characteristics and rates of sublimation were investigated. The volatile pivalates of Y, Ba and Cu are new prospective accessible compounds. (orig.)

  13. Isothermal VapourůLiquid Equilibria and Excess Molar Volumes in the Binary Ethanol + Methyl Propanoate or Methyl Butanoate Systems

    Czech Academy of Sciences Publication Activity Database

    Constantinescu, D.; Wichterle, Ivan

    2002-01-01

    Roč. 203, 1-2 (2002), s. 71-82 ISSN 0378-3812 R&D Projects: GA AV ČR IAA4072102 Keywords : vapour pressure * azeotropy * experiment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.011, year: 2002

  14. Heat transfer and pressure drop during hydrocarbon refrigerant condensation inside a brazed plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Giovanni A. [University of Padova, Department of Management and Engineering, Str.lla S.Nicola 3, I-36100 Vicenza (Italy)

    2010-08-15

    This paper presents the heat transfer coefficients and pressure drop measured during HC-600a, HC-290 and HC-1270 saturated vapour condensation inside a brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature (pressure) and fluid properties are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature (pressure) and great sensitivity to refrigerant mass flux and fluid properties. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 15-18 kg m{sup -2} s{sup -1}. In the forced convection condensation region the heat transfer coefficients show a 35-40% enhancement for a 60% increase of the refrigerant mass flux. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. HC-1270 shows heat transfer coefficients 5% higher than HC-600a and 10-15% higher than HC-290, together with frictional pressure drop 20-25% lower than HC-290 and 50-66% lower than HC-600a. (author)

  15. Collective dynamics in dense Hg vapour

    International Nuclear Information System (INIS)

    Ishikawa, D; Inui, M; Matsuda, K; Tamura, K; Baron, A Q R; Tsutsui, S; Tanaka, Y; Ishikawa, T

    2004-01-01

    The dynamic structure factor, S(Q,ο), of dense Hg vapour has been measured by high resolution inelastic x-ray scattering for densities of 3.0, 2.1 and 1.0 g cm -3 corresponding to 0.52, 0.36 and 0.17 times the critical density, respectively, and for momentum transfers between 2.0 and 48 nm -1 . Analysis of the longitudinal current-current correlation function in the framework of generalized hydrodynamics reveals that the frequencies of the collective excitations increase faster with Q than estimated from the macroscopic speed of sound. The ratios of the frequencies were found to be 1.27 at 3.0 g cm -3 , 1.12 at 2.1 g cm -3 and 1.10 at 1.0 g cm -3 . The sound velocity obtained from the present experiments is well reproduced by a wavenumber dependent adiabatic sound velocity, which means that the collective modes remain in the spectra of dense Hg vapour. (letter to the editor)

  16. Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA

    Science.gov (United States)

    Vesper, Dorothy J.; White, William B.

    Continuous records of discharge, specific conductance, and temperature were collected through a series of storm pulses on two limestone springs at Fort Campbell, western Kentucky/Tennessee, USA. Water samples, collected at short time intervals across the same storm pulses, were analyzed for calcium, magnesium, bicarbonate, total organic carbon, and pH. Chemographs of calcium, calcite saturation index, and carbon dioxide partial pressure were superimposed on the storm hydrographs. Calcium concentration and specific conductance track together and dip to a minimum either coincident with the peak of the hydrograph or lag slightly behind it. The CO2 pressure continues to rise on the recession limb of the hydrograph and, as a result, the saturation index decreases on the recession limb of the hydrograph. These results are interpreted as being due to dispersed infiltration through CO2-rich soils lagging the arrival of quickflow from sinkhole recharge in the transport of storm flow to the springs. Karst spring hydrographs reflect not only the changing mix of base flow and storm flow but also a shift in source of recharge water over the course of the storm. L'enregistrement en continu du débit, de la conductivité et de la température de l'eau a été réalisé au cours d'une série de crues à deux sources émergeant de calcaires, à Fort Campbell (Kentucky occidental, Tennessee, États-Unis). Des échantillons d'eau, prélevés à de courts pas de temps lors de ces crues, ont été analysés pour le calcium, le magnésium, les bicarbonates, le carbone organique total et le pH. Les chimiogrammes de calcium, d'indice de saturation de la calcite et de la pression partielle en CO2 ont été superposés aux hydrogrammes de crue. La concentration en calcium et la conductivité de l'eau se suivent bien et passent par un minimum correspondant au pic de l'hydrogramme ou légèrement retardé. La pression partielle en CO2 continue de croître au cours de la récession de l

  17. New high pressure experiments on sulfide saturation of high-FeO∗ basalts with variable TiO2 contents - Implications for the sulfur inventory of the lunar interior

    Science.gov (United States)

    Ding, Shuo; Hough, Taylor; Dasgupta, Rajdeep

    2018-02-01

    In order to constrain sulfur concentration in intermediate to high-Ti mare basalts at sulfide saturation (SCSS), we experimentally equilibrated FeS melt and basaltic melt using a piston cylinder at 1.0-2.5 GPa and 1400-1600 °C, with two silicate compositions similar to high-Ti (Apollo 11: A11, ∼11.1 wt.% TiO2, 19.1 wt.% FeO∗, and 39.6 wt.% SiO2) and intermediate-Ti (Luna 16, ∼5 wt.% TiO2, 18.7 wt.% FeO∗, and 43.8 wt.% SiO2) mare basalts. Our experimental results show that SCSS increases with increasing temperature, and decreases with increasing pressure, which are similar to the results from previous experimental studies. SCSS in the A11 melt is systematically higher than that in the Luna 16 melt, which is likely due to higher FeO∗, and lower SiO2 and Al2O3 concentration in the former. Compared to the previously constructed SCSS models, including those designed for high-FeO∗ basalts, the SCSS values determined in this study are generally lower than the predicted values, with overprediction increasing with increasing melt TiO2 content. We attribute this to the lower SiO2 and Al2O3 concentration of the lunar magmas, which is beyond the calibration range of previous SCSS models, and also more abundant FeTiO3 complexes in our experimental melts that have higher TiO2 contents than previous models' calibration range. The formation of FeTiO3 complexes lowers the activity of FeO∗, aFeO∗silicate melt , and therefore causes SCSS to decrease. To accommodate the unique lunar compositions, we have fitted a new SCSS model for basaltic melts of >5 wt.% FeO∗ and variable TiO2 contents. Using previous chalcophile element partitioning experiments that contained more complex Fe-Ni-S sulfide melts, we also derived an empirical correction that allows SCSS calculation for basalts where the equilibrium sulfides contain variable Ni contents of 10-50 wt.%. At the pressures and temperatures of multiple saturation points, SCSS of lunar magmas with compositions from

  18. Gluon Saturation and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Sichtermann, Ernst

    2016-12-15

    The fundamental structure of nucleons and nuclear matter is described by the properties and dynamics of quarks and gluons in quantum chromodynamics. Electron-nucleon collisions are a powerful method to study this structure. As one increases the energy of the collisions, the interaction process probes regions of progressively higher gluon density. This density must eventually saturate. An high-energy polarized Electron-Ion Collider (EIC) has been proposed to observe and study the saturated gluon density regime. Selected measurements will be discussed, following a brief introduction.

  19. Seven-day mortality can be predicted in medical patients by blood pressure, age, respiratory rate, loss of independence, and peripheral oxygen saturation (the PARIS score: a prospective cohort study with external validation.

    Directory of Open Access Journals (Sweden)

    Mikkel Brabrand

    Full Text Available Most existing risk stratification systems predicting mortality in emergency departments or admission units are complex in clinical use or have not been validated to a level where use is considered appropriate. We aimed to develop and validate a simple system that predicts seven-day mortality of acutely admitted medical patients using routinely collected variables obtained within the first minutes after arrival.This observational prospective cohort study used three independent cohorts at the medical admission units at a regional teaching hospital and a tertiary university hospital and included all adult (≥ 15 years patients. Multivariable logistic regression analysis was used to identify the clinical variables that best predicted the endpoint. From this, we developed a simplified model that can be calculated without specialized tools or loss of predictive ability. The outcome was defined as seven-day all-cause mortality. 76 patients (2.5% met the endpoint in the development cohort, 57 (2.0% in the first validation cohort, and 111 (4.3% in the second. Systolic blood Pressure, Age, Respiratory rate, loss of Independence, and peripheral oxygen Saturation were associated with the endpoint (full model. Based on this, we developed a simple score (range 0-5, ie, the PARIS score, by dichotomizing the variables. The ability to identify patients at increased risk (discriminatory power and calibration was excellent for all three cohorts using both models. For patients with a PARIS score ≥ 3, sensitivity was 62.5-74.0%, specificity 85.9-91.1%, positive predictive value 11.2-17.5%, and negative predictive value 98.3-99.3%. Patients with a score ≤ 1 had a low mortality (≤ 1%; with 2, intermediate mortality (2-5%; and ≥ 3, high mortality (≥ 10%.Seven-day mortality can be predicted upon admission with high sensitivity and specificity and excellent negative predictive values.

  20. Explosives vapour identification in ion mobility spectrometry using a tunable laser ionization source: a comparison with conventional 63Ni ionization

    International Nuclear Information System (INIS)

    Clark, A.; Deas, R.M.; Kosmidis, C.; Ledingham, K.W.D.; Marshall, A.; Singhal, R.P.

    1995-01-01

    Laser multiphoton ionization (MPI) is used to produce ions from explosive vapours at atmospheric pressure in air for analysis by ion mobility spectrometry (IMS). In the positive ion mode of detection, NO + ions, generated directly by multiphoton dissociation/ionization of the explosive compounds, show strong variation with laser wavelength. This provides a means of identifying the presence of nitro-containing compounds. Moreover, electrons formed in the MPI of gaseous components in the air carrier stream, primarily O 2 , are transferred via neutral molecular oxygen (O 2 ) to trace explosive vapour, forming negative ions which give rise to characteristic and identifiable ion mobility spectra. Further, negative ion mobility spectra of several explosive vapours are presented using conventional 63 Ni ionization and are compared qualitatively with the laser ionization approach. (author)

  1. Aerosol formation from heat and mass transfer in vapour-gas mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1985-01-01

    Heat and mass transfer equations and their coupling to the equation for the aerosol size distribution are examined for mixtures in which pressure changes are slow. Specific results in terms of Cn (the condensation number) and Le (the Lewis number - the ratio of the relative rates of evaporation and condensation) are obtained for the proportion of vapour condensing as a aerosol during the cooling and heating of a mixture in a well-mixed cavity. The assumption of allowing no supersaturations, the validity of which is examined, is shown to lead to maximum aerosol formation. For water vapour-air mixtures predictions are made as to temperature regions in which aerosols will evaporate or not form in cooling processes. The results are also qualitatively applied to some atmospheric effects as well as to water aerosols formed in the containment of a pressurized water reactor following a possible accident. In this context, the present conclusion that the whereabouts of vapour condensation is controlled by heat and mass transfer, contrasts with previous assumptions that the controlling factor is relative surface areas. (U.K.)

  2. Beam-profile monitor using a sodium-vapour

    CERN Multimedia

    1972-01-01

    Beam-profile monitor using a sodium-vapour curtain at 45 degrees to the ISR beam in Ring I (sodium generator is in white cylinder just left of centre). Electrons produced by ionization of the sodium vapour give an image of the beam on a fluorescent screen that is observed by a TV camera (at upper right).

  3. Hot-wire chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Cummings, FR

    2006-07-01

    Full Text Available ablation of graphite, carbon-arc discharge and chemical vapour deposition (CVD). However, some of these techniques have been shown to be expensive due to high deposition temperatures and are not easily controllable. Recently hot-wire chemical vapour...

  4. Capacitive-discharge-pumped copper bromide vapour laser

    International Nuclear Information System (INIS)

    Sukhanov, V B; Fedorov, V F; Troitskii, V O; Gubarev, F A; Evtushenko, Gennadii S

    2007-01-01

    A copper bromide vapour laser pumped by a high-frequency capacitive discharge is developed. It is shown that, by using of a capacitive discharge, it is possible to built a sealed off metal halide vapour laser of a simple design allowing the addition of active impurities into the working medium. (letters)

  5. Rewetting of semi-dried ink patterns by vapour annealing for developing a reflow process in reverse offset printing

    International Nuclear Information System (INIS)

    Kusaka, Yasuyuki; Ushijima, Hirobumi; Sugihara, Kazuyoshi; Koutake, Masayoshi

    2017-01-01

    A process for reflowing patterned materials for reverse offset printing was developed, with the aim of mitigating the step-coverage problem in multilayered devices. The proposed reflow process involves a single step of vapour annealing at moderate temperatures ranging from 60 to 70 °C. This step successfully changes the height profile of semi-dried ink patterns formed on a silicone blanket, from an initially rectangular shape to a rounded shape. A systematic investigation on the effects of various vapour species and vapour temperatures on the reflow process revealed that the miscibility between the vapour and the ink, and a low boiling point of the respective solvent (high vapour pressure) are the prerequisites for successful reflows of semi-dried ink layers patterned on a silicone blanket. The results suggested that the rewetting of previously semi-dried patterns is the main mechanism in the reflow process, which led to a change in the height profile. Furthermore, the reflowed patterns demonstrated almost identical peak-height thicknesses, irrespective of the width of the patterns. This is a unique property that is unattainable by other printing methods, including gravure offset printing and microcontact printing, wherein printed patterns have rounded shapes without a reflow process, but their thickness inevitably depends on the pattern sizes. (technical note)

  6. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    Science.gov (United States)

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev; Patankar, Neelesh A.; Marston, Jeremy; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-01-01

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  9. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  10. Absorption by water vapour in the 1 to 2 μm region

    International Nuclear Information System (INIS)

    Smith, K.M.; Ptashnik, I.; Newnham, D.A.; Shine, K.P.

    2004-01-01

    The near-IR (in the range 5000-10 000 cm -1 , 1-2 μm) bands of water vapour have been measured in absorption in the laboratory at sub-Doppler spectral resolution (up to 0.0054 cm -1 after numerical apodisation) by Fourier transform spectroscopy. Measurements have been made at 296 K on pure water vapour (at pressures between 2 and 20 hPa) and mixtures of water and air (at total pressures of 100 and 1000 hPa), at optical path lengths in the range 0.26-9.75 m. Measured absorption intensities have been compared with values calculated using the HITRAN 2000 molecular database. These comparisons indicate that the intensities of the 2ν(1.4 μm) and 2ν+δ(1.14 μm) bands are underestimated in HITRAN 2000 by approximately 15% and 20%, respectively, for pure water vapour measurements, and 12% for both bands in the case of water-air mixtures. The ν+δ (1.86 μm) band is in good agreement (0.4% for pure water vapour and less than 6% for mixtures with air) with HITRAN 2000. For typical atmospheric conditions, these absorption bands are sufficiently strong that radiation is fully absorbed at wavelengths in the region of the band centres. Hence the extra absorption that has been identified has only a modest impact (0.16 W m -2 or about 0.2%) on the global-mean clear-sky absorption of solar radiation. The impact in the upper troposphere is several times larger

  11. Saturated tearing modes in tokamaks with divertors

    International Nuclear Information System (INIS)

    Bateman, G.

    1982-12-01

    We have developed a self-consistent theory of saturated tearing modes capable of predicting multiple magnetic island widths in tokamaks with no assumptions on the cross-sectional shape, aspect ratio, or plasma pressure. We are in the process of implementing this algorithm in the form of a computer code. We propose: (1) to complete, refine, document and publish this computer code; (2) to carry out a survey in which we vary the current profile, aspect ratio, cross-sectional shape, and pressure profile in order to determine their effect on saturated tearing mode magnetic island widths; and (3) to determine the effect of some externally applied magnetic perturbation harmonics on these magnetic island widths. Particular attention will be paid to the coupling between different helical harmonics, the effect of multiple magnetic islands on the profiles of temperature, pressure and current, and the potential of magnetic island overlap leading to a disruptive instability

  12. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  13. Numerical evaluation of the water saturation in a high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Benet, L.V.; Bouillet, Ch.; Tulita, C.; Wendling, J.

    2010-01-01

    Document available in extended abstract form only. This work is a contribution of the ANDRA's program of numerical simulations of the evolution in time of hydrogeological flows in a radioactive waste repository in deep clay formations. This study aims at evaluating the water contact areas with steel for corrosion modeling in a High-Level radioactive waste disposal, from the building to the total saturation, more than 100 000 years later [HSPA6b]. Energy release by radioactive spent fuel and thermal expansion of the interstitial water is taken into account in the models. Thermal transfers in the porous media and free convection in the gaps (Navier-Stokes equations) are computed with a linear Finite Element scheme. The mass transfers in the porous media are solved with a P0-P1 Mixed Finite Element method (Richard's equations during exploitation and two phases flow equations after the closure). All numerical simulations are performed with the Cast3M code (http://wwwcast3m. cea.fr/). During the exploitation, the H-L radioactive waste storage cell is not supposed to be hermetically closed. The pressure in the storage cell remains atmospheric and mass transfers towards the main gallery are possible. So a seepage boundary condition is used on excavation surface in order to provide evolution in time of saturation limit along the storage cell. For each cell of the boundary mesh: - No water flux is imposed in contact with unsaturated media. - Atmospheric pressure is imposed in contact with saturated media. A relative humidity of 50% is imposed for the atmosphere in the gallery. Vapour diffusive flux is implemented in Richard's equations with a suction pressure formula according to Kelvin law. Temperature impact on vapour flux is neglected. Vapour diffusive flux is significant in the concrete wall of gallery due to the ventilation. The free convection steady state in the gap is solved at different times of the thermal transient to evaluate location of

  14. On the spin saturation and thermal properties of nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-12-01

    The binding energy and the incompressibility of nuclear matter with degree of spin saturation D is calculated using the Skyrme interaction and two forms of a velocity dependent effective potential. The effect of the degree of spin saturation D on the thermal properties of nuclear matter is also discussed. It is found that generally the pressure decreases with increasing D. (author)

  15. Medical cannabis use in Canada: vapourization and modes of delivery.

    Science.gov (United States)

    Shiplo, Samantha; Asbridge, Mark; Leatherdale, Scott T; Hammond, David

    2016-10-29

    The mode of medical cannabis delivery-whether cannabis is smoked, vapourized, or consumed orally-may have important implications for its therapeutic efficacy and health risks. However, there is very little evidence on current patterns of use among Canadian medical cannabis users, particularly with respect to modes of delivery. The current study examined modes of medical cannabis delivery following regulatory changes in 2014 governing how Canadians access medical cannabis. A total of 364 approved adult Canadian medical cannabis users completed an online cross-sectional survey between April and June 2015. The survey examined patterns of medical cannabis use, modes of delivery used, and reasons for use. Participants were recruited through a convenience sample from nine Health Canada licensed producers. Using a vapourizer was the most popular mode of delivery for medical cannabis (53 %), followed by smoking a joint (47 %). The main reason for using a vapourizer was to reduce negative health consequences associated with smoking. A majority of current vapourizer users reported using a portable vapourizer (67.2 %), followed by a stationary vapourizer (41.7 %), and an e-cigarette or vape pen (19.3 %). Current use of a vapourizer was associated with fewer respiratory symptoms (AOR = 1.28, 95 % CI 1.05-1.56, p = 0.01). The findings suggest an increase in the popularity of vapourizers as the primary mode of delivery among approved medical users. Using vapourizers has the potential to prevent some of the adverse respiratory health consequences associated with smoking and may serve as an effective harm reduction method. Monitoring implications of such current and future changes to medical cannabis regulations may be beneficial to policymakers.

  16. Medical cannabis use in Canada: vapourization and modes of delivery

    Directory of Open Access Journals (Sweden)

    Samantha Shiplo

    2016-10-01

    Full Text Available Abstract Background The mode of medical cannabis delivery—whether cannabis is smoked, vapourized, or consumed orally—may have important implications for its therapeutic efficacy and health risks. However, there is very little evidence on current patterns of use among Canadian medical cannabis users, particularly with respect to modes of delivery. The current study examined modes of medical cannabis delivery following regulatory changes in 2014 governing how Canadians access medical cannabis. Methods A total of 364 approved adult Canadian medical cannabis users completed an online cross-sectional survey between April and June 2015. The survey examined patterns of medical cannabis use, modes of delivery used, and reasons for use. Participants were recruited through a convenience sample from nine Health Canada licensed producers. Results Using a vapourizer was the most popular mode of delivery for medical cannabis (53 %, followed by smoking a joint (47 %. The main reason for using a vapourizer was to reduce negative health consequences associated with smoking. A majority of current vapourizer users reported using a portable vapourizer (67.2 %, followed by a stationary vapourizer (41.7 %, and an e-cigarette or vape pen (19.3 %. Current use of a vapourizer was associated with fewer respiratory symptoms (AOR = 1.28, 95 % CI 1.05–1.56, p = 0.01. Conclusions The findings suggest an increase in the popularity of vapourizers as the primary mode of delivery among approved medical users. Using vapourizers has the potential to prevent some of the adverse respiratory health consequences associated with smoking and may serve as an effective harm reduction method. Monitoring implications of such current and future changes to medical cannabis regulations may be beneficial to policymakers.

  17. Vapour transport growth of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; Bakin, A.S.; Elshaer, A.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Technical University Braunschweig, Institute of Applied Physics, Braunschweig (Germany); Bertram, F.; Christen, J. [University of Magdeburg, Department of Solid State Physics, Magdeburg (Germany)

    2007-07-15

    The fabrication of low-dimensional ZnO structures has attracted enormous attention as such nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Many reported fabrication methods, especially for ZnO nanorods are mostly based on catalyst-assisted growth techniques that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on catalyst-free vapour-phase epitaxy growth of ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3} using purely elemental sources at relatively low temperatures and growth pressure. ZnO nanorods with widths of 80-900 nm and lengths of up to 12 {mu}m were obtained. Nanorod density on the order of 10{sup 9} cm{sup -2} with homogenous luminescence and high purity was also noted. (orig.)

  18. Chemical vapour deposition of vanadium oxide thermochromic thin films

    Science.gov (United States)

    Piccirillo, Clara

    Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thin films. This thesis presents the work on the development of thermochromic vanadium (IV) oxide (VO2) thin films - both undoped and doped with tungsten, niobium and gold nanoparticles - which could be employed as solar control coatings. The films were deposited using Chemical Vapour Deposition (CVD), using improved Atmospheric Pressure (APCVD), novel Aerosol Assisted (AACVD) and novel hybrid AP/AACVD techniques. The effects of dopants on the metalto- semiconductor transition temperature and transmittance/reflectance characteristics were also investigated. This work significantly increased the understanding of the mechanisms behind thermochromic behaviour, and resulted in thermochromic materials based on VO2 with greatly improved properties.

  19. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour

    International Nuclear Information System (INIS)

    Scott, T.B.; Petherbridge, J.R.; Harker, N.J.; Ball, R.J.; Heard, P.J.; Glascott, J.; Allen, G.C.

    2011-01-01

    Highlights: → High resolution imagery (FIB, SEM and SIMS) of carbide inclusions in uranium metal. → Real time images following the reaction of the carbide inclusions with water vapour. → Shown preferential consumption of carbide over that of the bulk metal. → Quantity of impurities in the metal therefore seriously influence reaction rate. → Metal purity must be considered when storing uranium in air or moist conditions. - Abstract: The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO 3 .xH 2 O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets.

  20. Saturation of bentonite dependent upon temperature

    International Nuclear Information System (INIS)

    Hausmannova, Lucie; Vasicek, Radek

    2010-01-01

    Document available in extended abstract form only. The fundamental idea behind the long-term safe operation of a deep repository is the use of the Multi-barrier system principle. Barriers may well differ according to the type of host rock in which the repository is located. It is assumed that the buffer in the granitic host rock environment will consist of swelling clays which boast the ideal properties for such a function i.e. low permeability, high swelling pressure, self-healing ability etc. all of which are affected primarily by mineralogy and dry density. Water content plays a crucial role in the activation of swelling pressure as well as, subsequently, in the potential self healing of the various contact areas of the numerous buffer components made from bentonite. In the case of a deep repository, a change in water content is not only connected with the possible intake of water from the host rock, but also with its redistribution owing to changes in temperature after the insertion of the heat source (disposal waste package containing spent fuel) into the repository 'nest'. The principal reason for the experimental testing of this high dry density material is the uncertainty with regard to its saturation ability (final water content or the degree of saturation) at higher temperatures. The results of the Mock-Up-CZ experiment showed that when the barrier is constantly supplied with a saturation medium over a long time period the water content in the barrier as well as the degree of saturation settle independently of temperature. The Mock-Up-CZ experiment was performed at temperatures of 30 deg. - 90 deg. C in the barrier; therefore it was decided to experimentally verify this behaviour by means of targeted laboratory tests. A temperature of 110 deg. C was added to the set of experimental temperatures resulting in samples being tested at 25 deg. C, 95 deg. C and 110 deg. C. The degree of saturation is defined as the ratio of pore water volume to pore

  1. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  2. Thermodynamic study of multi-effect thermal vapour-compression desalination systems

    International Nuclear Information System (INIS)

    Samaké, Oumar; Galanis, Nicolas; Sorin, Mikhail

    2014-01-01

    The parametric analysis of a multi-effect-evaporation (MEE) desalination system combined with a thermal-vapour-compression (TVC) process activated by a gaseous stream of specified flowrate and temperature was performed based on the principles of classical (1st and 2nd laws) and finite-size thermodynamics. The MEE subsystem was treated as a black box and therefore the results are valid for any combination of physical characteristics and internal operational conditions of this subsystem. They show the effects of four design variables (the motive fluid pressure and the compression ratio of the ejector, the condenser temperature pinch and the ratio of rejected to supplied seawater) on significant operating quantities and performance indicators such as: energy supplied by the heat source; motive fluid flowrate; flowrates of the supplied seawater and produced potable water; specific heat consumption; thermal conductance of the vapour generator and the condenser; exergy destruction by the MEE, the ejector and the vapour generator. Based on the obtained results recommendations are formulated for the optimal choice of values for the four design variables. - Highlights: • Model of a MEE-TVC desalination system independent of MEE characteristics. • Parametric study based on classical (1st and 2nd law) and finite-size thermodynamics. • Effect of 4 design parameters on operating conditions and performance indicators. • Recommended values for the design parameters

  3. Changes in the composition and properties of Ashalchinskoye bitumen-saturated sandstones when exposed to water vapor

    Science.gov (United States)

    Korolev, E.; Eskin, A.; Kolchugin, A.; Morozov, V.; Khramchenkov, M.; Gabdelvalieva, R.

    2018-05-01

    Ashalchinskoye bitumen deposit is an experimental platform for testing technology of high-viscosity oil extraction from reservoir rocks. Last time for enhanced of oil recovery in reservoir used pressurization a water vapor with a temperature of ∼ 180 ° C (SAGD technology). However, what happens in sandstone reservoir is little known. We did a study of the effects of water vapor on the structural components of bitumen saturated sandstone. In paper were studied the rock samples at base condition and after one week exposure by water vapour. The thermal analysis showed that steaming helps to removes light and middle oil fractions with a boiling point up to 360 ° C from oil saturated sandstones. Content of heavy oil fractions virtually unchanged. Studying the composition of water extractions of samples showed that the process of aquathermolysis of oil is accompanied by a lowering of the pH of the pore solution from 7.4 to 6.5 and rise content in several times of mobile cations Ca2+, Mg2+ and HCO3 -, SO4 2- anions. Follows from this that the thermal steam effect by bitumen saturated sandstones leads to partial oxidation of hydrocarbons with to form a carbon dioxide. The source of sulfate ions were oxidized pyrite aggregates. Due to the increasing acidity of condensed water, which fills the pore space of samples, pore fluid becomes aggressive to calcite and dolomite cement of bitumen saturated sandstones. As a result of the dissolution of carbonate cement the pore fluid enriched by calcium and magnesium cations. Clearly, that the process is accompanied by reduction of contact strength between fragments of minerals and rocks. Resulting part of compounds is separated from the outer side of samples and falls to bottom of water vapor container. Decreasing the amount of calcite and dolomite anions in samples in a steam-treated influence is confirmed by X-Ray analysis. X-Ray analysis data of study adscititious component of rocks showed that when influenced of water vapor to

  4. Evaporation of tungsten in vacuum at low hydrogen and water vapor pressures

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Galkin, E.A.; Khromonozhkin, V.V.

    1981-01-01

    The results of experimental investigations of tungsten evaporation rates in the temperature range 1650-2500 K, partial hydrogen and water vapours pressures 1x10 -5 -10 Pa are presented. Experi-- mental plant, equipment employed and radiometric technique of tungsten evaporation study are described. The dependences of evaporation rate and probabilities of tungsten oxidation by residual vacuum water vapours and dependences of tungsten evaporation rate on partial hydrogen and water vapours pressures are determined [ru

  5. Carbon dioxide and water vapour characteristics on the west coast ...

    Indian Academy of Sciences (India)

    Carbon dioxide, water vapour, air temperature and wind measurements at 10 Hz sampling rate were carried out over the ... seasonal and annual variations in the CO2 bal- ance. Hence, it is .... motion below produced by shear stress near the.

  6. Probabilistic risk assessment for six vapour intrusion algorithms

    NARCIS (Netherlands)

    Provoost, J.; Reijnders, L.; Bronders, J.; Van Keer, I.; Govaerts, S.

    2014-01-01

    A probabilistic assessment with sensitivity analysis using Monte Carlo simulation for six vapour intrusion algorithms, used in various regulatory frameworks for contaminated land management, is presented here. In addition a deterministic approach with default parameter sets is evaluated against

  7. Vapour phase synthesis of salol over solid acids via transesterification

    Indian Academy of Sciences (India)

    Administrator

    rate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol ... Possible reaction mechanisms for the formation of salol and diphenyl ether over ... Hence, vapour-phase conditions of the experiment.

  8. Ethylene vinylacetate copolymer and nanographite composite as chemical vapour sensor

    International Nuclear Information System (INIS)

    Stepina, Santa; Sakale, Gita; Knite, Maris

    2013-01-01

    Polymer-nanostructured carbon composite as chemical vapour sensor is described, made by the dissolution method of a non-conductive polymer, ethylene vinylacetate copolymer, mixed with conductive nanographite particles (carbon black). Sensor exhibits relative electrical resistance change in chemical vapours, like ethanol and toluene. Since the sensor is relatively cheap, easy to fabricate, it can be used in air quality monitoring and at industries to control hazardous substance concentration in the air, for example, to protect workers from exposure to chemical spills

  9. Effective stress principle for partially saturated media

    International Nuclear Information System (INIS)

    McTigue, D.F.; Wilson, R.K.; Nunziato, J.W.

    1984-04-01

    In support of the Nevada Nuclear Waste Storage Investigation (NNWSI) Project, we have undertaken a fundamental study of water migration in partially saturated media. One aspect of that study, on which we report here, has been to use the continuum theory of mixtures to extend the classical notion of effective stress to partially saturated media. Our analysis recovers previously proposed phenomenological representations for the effective stress in terms of the capillary pressure. The theory is illustrated by specializing to the case of linear poroelasticity, for which we calculate the deformation due to the fluid pressure in a static capillary fringe. We then examine the transient consolidation associated with liquid flow induced by an applied surface load. Settlement accompanies this flow as the liquid is redistributed by a nonlinear diffusion process. For material properties characteristic of tuff from the Nevada Test Site, these effects are found to be vanishingly small. 14 references, 7 figures, 1 table

  10. The effect of coherent stirring on the advection–condensation of water vapour

    Science.gov (United States)

    Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow. PMID:28690417

  11. The effect of coherent stirring on the advection-condensation of water vapour

    Science.gov (United States)

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  12. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles

    Science.gov (United States)

    Mungall, J. E.; Brenan, J. M.; Godel, B.; Barnes, S. J.; Gaillard, F.

    2015-03-01

    Emissions of sulphur and metals from magmas in Earth’s shallow crust can have global impacts on human society. Sulphur-bearing gases emitted into the atmosphere during volcanic eruptions affect climate, and metals and sulphur can accumulate in the crust above a magma reservoir to form giant copper and gold ore deposits, as well as massive sulphur anomalies. The volumes of sulphur and metals that accumulate in the crust over time exceed the amounts that could have been derived from an isolated magma reservoir. They are instead thought to come from injections of multiple new batches of vapour- and sulphide-saturated magmas into the existing reservoirs. However, the mechanism for the selective upward transfer of sulphur and metals is poorly understood because their main carrier phase, sulphide melt, is dense and is assumed to settle to the bottoms of magma reservoirs. Here we use laboratory experiments as well as gas-speciation and mass-balance models to show that droplets of sulphide melt can attach to vapour bubbles to form compound drops that float. We demonstrate the feasibility of this mechanism for the upward mobility of sulphide liquids to the shallow crust. Our work provides a mechanism for the atmospheric release of large amounts of sulphur, and contradicts the widely held assumption that dense sulphide liquids rich in sulphur, copper and gold will remain sequestered in the deep crust.

  13. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    Science.gov (United States)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  14. Considering the use of polyethylene vapour barriers in temperate climates

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, M.D. [Morrison Hershfield Ltd., Vancouver, BC (Canada); Brown, W.C. [Morrison Hershfield Ltd., Ottawa, ON (Canada)

    2003-07-01

    Most building envelope assemblies in Canada must include a vapour barrier in order to comply with Canadian building codes. The installation of sheet polyethylene between the studs and the interior sheathing has been the most common method because it provides more diffusion resistance than necessary to control condensation within a building envelope assembly. It has been suggested that the presence of a polyethylene vapour barrier on the warm-in-winter side of the insulation may actually cause moisture problems because a very low permeance material increases average moisture levels. This paper examined the theory that a vapour barrier at this location restricts drying of moisture that enters the building from outside. Pacific coastal regions of Canada and the United States were presented as examples. Other ways that a polyethylene vapour barrier affects wall performance were also presented. The advanced hygrothermal model HygIRC, developed by Canada's National Research Council, was used to simulate the performance of a wall assembly. Results indicate that eliminating the low permeance polyethylene vapour barrier does not necessarily reduce the risk of moisture problems. Removal of the vapour barrier may have some negative effects, such as increased risk of periodic moisture accumulation and mold growth on paper-faced gypsum board. 7 refs., 2 tabs., 7 figs.

  15. Structure and properties of molecular and ionic clusters in vapour over caesium fluoride

    Science.gov (United States)

    Mwanga, Stanley F.; Pogrebnaya, Tatiana P.; Pogrebnoi, Alexander M.

    2015-06-01

    The properties of neutral molecules Cs2F2, Cs3F3, and Cs4F4, and positive and negative cluster ions Cs2F+, CsF2-, Cs3F2+, Cs2F3-, Cs4F3+, and Cs5F4+ were studied by several of quantum chemical methods implementing density function theory and Möller-Plesset perturbation theory of second and fourth orders. For all species, the equilibrium geometrical structure and vibrational spectra were determined. Different isomers have been revealed for the trimer neutral molecule Cs3F3; pentaatomic, both positive and negative, Cs3F2+, Cs2F3-; and heptaatomic Cs4F3+ ions. The most abundant isomers in the saturated vapour were determined. Enthalpies of dissociation reactions and enthalpies of formation of the species were obtained.

  16. Waves reflected by solid wall and wave interaction in vapour bubbly liquids

    International Nuclear Information System (INIS)

    Duong, N.H.; Nguyen, V.T.

    2004-01-01

    The vapour bubbly liquids are met in many natural and industrial processes, including in energy equipment. In the nuclear power plants this kind of medium appears in reactor cores (PWR, BWR and etc.), in turbine generators and in heat transfer loops. Due to some circumstances (for example, a hit caused by detonations or strong collisions) the pressure waves can appear in the bubbly liquid medium contained in those facilities. These waves propagate in the mixtures and interact with themselves and with structures. It is important that what will occur during mentioned above processes. The knowledge of this kind processes will be useful for analysing the different sorts of the processes occurred in the energy facilities where the vapor bubbly liquids are used as working or heat transfer medium, like nuclear power plants, and also useful in finding the measures for prevention of unfavourable phenomena (for example, during wave interactions maybe appear too high pressures, which could lead into damages of facilities and etc.) and safety operating the equipment. From the physical point of view, the waves in this kind of medium are interesting that owing to non-linear, dispersion and dissipation effects the wave patterns in them may be diverse and easy altered. In the paper the investigation results of the waves reflected by solid wall or structure of the moderate intensity shock waves, and the behaviour of pressure in the process of wave interaction in some mixtures of liquid with vapour bubbles (of radium ∼1 mm) are presented. (author)

  17. Distribution and excretion of inhaled mercury vapour

    Energy Technology Data Exchange (ETDEWEB)

    Gage, J C

    1961-01-01

    Rats have been exposed for varying periods to an atmosphere containing 1 mg/cu.m. mercury vapor. The toxic effects produced showed resemblances to signs of mercurialism in man. An attempt has been made to study the kinetics of absorption and excretion of mercury from measurements of the amounts excreted and stored in the tissues. The efficiency of absorption of mercury by the rat lung is about 50%. A small proportion is excreted into the gut. After about 10 days of continuous exposure a steady state is reached in which excretion balances absorption. During short exposures the turnover of mercury in all tissues except brain is fairly rapid and most of the mercury is cleared from the body within a week after exposure. The urinary excretion of mercury, during the initial stage of storage in the tissues and the final stage of clearance, shows divergencies from the simple exponential pattern; there appears to be a delay mechanism in the kidney which, in intermittent exposures, may result in the occurrence of peak excretion during periods of non-exposure. After more prolonged exposures the mercury in the kidney appears to be converted to a form which is only very slowly excreted. The significance of the urinary excretion of mercury by man after industrial exposure to mercury vapour is discussed. The rat experiments suggest that single measurements will give only limited information concerning industrial conditions, but that an approximate assessment of the total absorbed during a working week would be obtained if it were possible to make a seven-day collection of urine. Repeated measurements after exposure would yield information on the duration of exposure and would have some diagnostic value.

  18. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  19. Pressure (Or No Royal Road)

    Science.gov (United States)

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  20. A research of vapour-film characteristics of inverted-annular flow film boiling by visual method

    International Nuclear Information System (INIS)

    Xu Jijun; Guo Zhichao; Yan An; Bi Haoran

    1988-01-01

    The vapour-film characteristics are an interesting topic in inverted-annular flow film boiling. A practical set of experimental rig has been designed and constructed for visual observation. Photographic method is adopted for obtaining number of photographs in the conditions of steady state. For references at hands, photographs under steady conditions of water flow film boiling have not been published yet. This paper discusses the typical vapour film characteristics and regards Elias' two-region model summarized from transient visual experiment as reasonable. In addition, under heated conditions, at least, three types of vapour-water interfaces have been observed. They are asymmetric sine waves, symmetic varicose waves, and roll waves offered by Jarlais from an adiabatic simulation. In diabatic conditions a transition of flow pattern to slug flow is usually caused by hydrodynamic instability and/or by thermodynamic instability. The effects of mass velocity, inlet subcooling, heat flux input, initial quality and pressure to vapour-film characteristics are described. An empirical correlation is fitted to 23 sets of tests of discussion

  1. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.

    1996-01-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  2. Validation for a new apparatus measuring water vapour enhancement factors up to 6 MPa

    International Nuclear Information System (INIS)

    Sairanen, H; Heinonen, M

    2014-01-01

    High accuracy dew-point measurements require a water vapour enhancement factor to correct the effects of pressure drop in a sampling line. The enhancement factor is also needed when a humidity quantity value is converted to another. In this paper a new apparatus for traceable measurements of the enhancement factor is presented along with the results of validation measurements with air and methane. The apparatus is designed for dew-point temperatures from −50 to +15 °C and the pressure range from atmospheric pressure up to 6 MPa. The performance of the apparatus was investigated by comparing measurement results to the literature data for air and the data calculated from published thermodynamic measurement results for methane. It is shown that the experimental results agree with the reference data within the estimated uncertainties. (paper)

  3. Inhibition treatment of the corrosion of lead artefacts in atmospheric conditions and by acetic acid vapour: use of sodium decanoate

    International Nuclear Information System (INIS)

    Rocca, E.; Rapin, C.; Mirambet, F.

    2004-01-01

    The efficiency of linear sodium decanoate, CH 3 (CH 2 ) 8 COONa (noted NaC 10 ), as corrosion inhibitor of lead was determined by electrochemical techniques in two corrosive mediums: ASTM D1384 standard water and acetic acid-enriched solutions. Best results were obtained with 0.05 mol l -1 of NaC 10 solution. In these conditions, the inhibition efficiency can be estimated of 99.9%. The corrosion inhibition effect was confirmed by cyclic atmospheric tests in a climatic chamber in two different conditions: water saturated vapour, and acid acetic enriched vapour simulating the atmosphere in the wooden displays in museums. Surface analyses by SEM and X-ray diffraction indicate that the metal protection is due to the formation of a protective layer mainly composed of lead decanoate Pb(C 10 ) 2 (metallic soap). This inhibition treatment was applied on objects of metallic cultural heritage: gallo-roman sarcophagus in lead. Electrochemical methods confirm the efficiency of treatment on archaeological materials. In conclusion, this inhibitor treatment seems to be very promising against the atmospheric corrosion and the corrosion by organic acid vapour in museums

  4. Retrieving mesospheric water vapour from observations of volume scattering radiances

    Directory of Open Access Journals (Sweden)

    P. Vergados

    2009-02-01

    Full Text Available This study examines the possibility for a theoretical approach in the estimation of water vapour mixing ratios in the vicinity of polar mesospheric clouds (PMC using satellite observations of Volume Scattering Radiances (VSR obtained at the wavelength of 553 nm. The PMC scattering properties perturb the underlying molecular Rayleigh scattered solar radiance of the background atmosphere. As a result, the presence of PMC leads to an enhancement in the observed VSR at the altitude of the layer; the PMC VSRs are superimposed on the exponentially decreasing with height Rayleigh VSR, of the PMC-free atmosphere. The ratio between the observed and the Rayleigh VSR of the background atmosphere is used to simulate the environment in which the cloud layer is formed. In addition, a microphysical model of ice particle formation is employed to predict the PMC VSRs. The initial water vapour profile is perturbed until the modelled VSRs match the observed, at which point the corresponding temperature and water vapour profiles can be considered as a first approximation of those describing the atmosphere at the time of the observations. The role of temperature and water vapour in the cloud formation is examined by a number of sensitivity tests suggesting that the water vapour plays a dominant role in the cloud formation in agreement with experimental results. The estimated water vapour profiles are compared with independent observations to examine the model capability in the context of this study. The results obtained are in a good agreement at the peak of the PMC layer although the radiance rapidly decreases with height below the peak. This simplified scenario indicates that the technique employed can give a first approximation estimate of the water vapour mixing ratio, giving rise to the VSR observed in the presence of PMC.

  5. Venera 15: Water vapour in the middle atmosphere of Venus

    Science.gov (United States)

    Ignatiev, N. I.; Moroz, V. I.; Zasova, L. V.; Khatuntsev, I. V.

    1999-01-01

    In 1983, spectra of Venus in the region of 6-40 μm were measured by means of the Fourier Spectrometer aboard the Venera 15 orbiter. It covered local solar times from 4 a.m. to 10 a.m. and from 4 p.m. to 10 p.m. in the latitude range from -65° up to 87°. The results of an extended processing and analysis of these data are presented. Time and spatial variations of the water vapour were found. Most of the measurements fall in the range of 5-15 ppm, which is close to the early results. The effective altitude of sounding is approximately equal to the altitude where the optical depth τ = 1. Two latitude regions can be distinguished: (A) 20° 60°, which are characterised by different altitudes of the level of τ = 1: 62 and 55 km respectively. Mean mixing ratios near this level in the two regions are almost the same, but the partial pressures and mass densities in region (B) are 2-4 times greater than those in region (A). In region (A) a weak dayside maximum and a nightside minimum were observed. Region (B) is of inhomogeneous structure, and the retrieved mixing ratio has greater uncertainty and may probably change from the detection limit of 1 ppm up to 30 ppm. Although the retrieval of H2O mixing ratio altitude profile from the Venera 15 data appeared to be impossible, indirect indications were found that at least in region (A) the mixing ratio decreases with altitude.

  6. Effect of mono-, di- and tri-ethanolammonium tetrafluoroborate protonic ionic liquids on vapour liquid equilibria of ethanol aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shen Chong [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Ma Xiaoyan [College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Lu Yingzhou [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Li Chunxi, E-mail: Licx@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-03-15

    Vapour pressures were measured using a quasi-static ebulliometer for the binary mixture of (water + ethanol) containing one of three protonic ionic liquids (PIL), namely, mono-, di- or tri-ethanolammonium tetrafluoroborate, over the temperature range of (318.24 to 356.58) K at fixed PIL content of 0.30 in mass fraction. The vapour pressure data of the PIL-containing ternary systems were correlated using the NRTL equation with an overall root mean square deviation (RMSD) of 0.0092. The regressed NRTL parameters were used to predict the isobaric vapour liquid equilibria (VLE) for ternary systems (water + ethanol + PIL) at varying mass fraction of PIL and atmospheric pressure (101.3 kPa). It is shown that the effect of PILs on the VLE of the (water + ethanol) mixture follows the order: [HTEA][BF{sub 4}] > [HDEA][BF{sub 4}] > [HMEA][BF{sub 4}]. In addition, the relative volatilities of ethanol to water for pseudo-binary systems (water + ethanol + PIL) were calculated. The results indicate that the PILs studied can enhance the relative volatility of ethanol to water and even break the azeotropic behaviour of ethanol aqueous solution when PIL content is increased to a specified content.

  7. GPS Tomography: Water Vapour Monitoring for Germany

    Science.gov (United States)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent

  8. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  9. Ethanol vapour induced dilated cardiomyopathy in chick embryos

    International Nuclear Information System (INIS)

    Kamran, K.; Khan, M.Y.; Minhas, L.A.

    2013-01-01

    Objective: To study the effects of ethanol vapour inhalation on the heart chambers of chick embryo. Methods: The case-control study was conducted at the College of Physicians and Surgeons Pakistan regional centre in Islamabad from January to October 2007. Both experimental and control groups were divided into three sub-groups each, based on the day of the sacrifice. Each group was dissected on day 7, day 10 and day 22 or hatching whichever was earlier. The experimental sub-groups sacrificed on day 7, day 10 and on hatching, were exposed to ethanol vapours till day 6, 9 and 9 of incubation respectively. The diameter of all 4 chambers was measured in experimental hearts and compared with age-matched controls. SPSS 10 was used for statistical analysis. Results: Ethanol vapour exposure caused widening of all heart chambers in the experimental chick embryos sacrificed on day 7 and day 10 compared to the controls. The chambers of newly hatched chick hearts showed dilatation in all the chambers except the left ventricle. Conclusion: Ethanol vapour exposure during development affects the heart, resulting in the widening of all heart chambers. The exposure is as dangerous as drinking alcohol. Alcohol vapour exposure during development leads to progressive dilatation in different heart chambers, producing dilated cardiomyopathy. (author)

  10. Atomic origins of water-vapour-promoted alloy oxidation.

    Science.gov (United States)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-05-07

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  11. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  12. Modification of Peng Robinson EOS for modelling (vapour + liquid) equilibria with electrolyte solutions

    International Nuclear Information System (INIS)

    Baseri, Hadi; Lotfollahi, Mohammad Nader

    2011-01-01

    Highlights: → Extended PR-EOS was presented for VLE of H 2 O/Salt/CO 2 systems at high pressure. → The proposed EPR-EOS is based upon contributions to the Helmholtz energy. → Born, Margules, and Debye-Huckel or mean spherical approximation terms were used. → Two different mixing rules Panagiotopoulos and Reid and Kwak and Mansoori (KM) were used. → A combination of KM mixing rule with DH term results more accurate VLE results. - Abstract: A modification of the extended Peng-Robinson equation of state (PR-EOS) is presented to describe the (vapour + liquid) equilibria of systems containing water and salts. The modification employs three additional terms including a Born term, a Margules term and two terms separately used for estimation of the long-range electrostatic interactions (the Debye-Huckel (DH) or the mean spherical approximation (MSA) terms). Effects of two mixing rules, first, the Panagiotopoulos and Reid mixing rule (PR) and, second, the Kwak and Mansoori mixing rule (KM), on the final values of VLE calculations are also investigated. The results show that the KM mixing rule is more appropriate than the PR mixing rule. The proposed equation of state is used to calculate the (vapour + liquid) equilibrium (VLE) of the systems containing (water + sodium sulphate + carbon dioxide) and (water + sodium chloride + carbon dioxide) at high pressure. The comparison of calculated results with the experimental data shows that a combination of KM mixing rule with the DH term results a more accurate VLE values.

  13. Analysis of laser-induced evaporation of Al target under conditions of vapour plasma formation

    International Nuclear Information System (INIS)

    Mazhukin, V.I.; Nossov, V.V.; Smurov, I.

    2004-01-01

    The plasma-controlled evaporation of the Al target induced by the laser pulse with intensity of 10 9 W/cm 2 and wavelength of 1.06 μm is analysed with account for the two-dimensional effects. The self consistent model is applied, including the heat transfer equation in condensed medium, the equations of radiation gas dynamics in evaporated substance and the Knudsen layer model at the two media boundary. It is found that the phase transition at the target surface is controlled by the two factors: the surface temperature that depends on the transmitted radiation intensity, and the plasma pressure, governed by the expansion regime. The process comes through three characteristic stages, the sonic evaporation at the beginning, the condensation during the period of plasma formation and initial expansion, and finally, the re-start of evaporation in subsonic regime after the partial brightening of the plasma. During the subsonic evaporation stage the vapour flow and the mass removal rate are much higher near the beam boundaries than in the centre due to smaller plasma counter-pressure. The vapour plasma pattern is characterised by the dense hot zone near the surface where the absorption of laser energy occurs, and rapid decrease of density outside the zone due to three-dimensional expansion

  14. [Values of mixed venous oxygen saturation and difference of mixed venous-arterial partial pressure of carbon dioxide in monitoring of oxygen metabolism and treatment after open-heart operation].

    Science.gov (United States)

    Pan, Chuanliang; Zhang, Haiying; Liu, Jianping

    2014-10-01

    To explore the clinic values of early goal directed treatment (EGDT) with the target of mixed venous oxygen saturation (SvO₂) and difference of mixed venous-arterial partial pressure of carbon dioxide (Pv-aCO₂) in monitoring of oxygen metabolism and treatment for patients post open-heart operation. A prospective study was conducted. The adult patients admitted to Third People's Hospital of Chengdu from December 2011 to March 2014 with SvO₂2 mmol/L when admitted in intensive care unit (ICU) were selected on whom elective open-heart operation and pulmonary artery catheter examination were done. All patients received EGDT with the target of SvO₂≥0.65 and Pv-aCO₂<6 mmHg (1 mmHg=0.133 kPa) and were divided into three groups by the values of SvO₂and Pv-aCO₂at 6-hour after ICU admission: A group with SvO₂≥0.65 and Pv-aCO₂<6 mmHg, B group with SvO₂≥0.65 and Pv-aCO₂≥6 mmHg, and C group with SvO₂<0.65. Then the changes and prognosis of the patients in different groups were observed. 103 cases were included, 44 in A group, 31 in B group and 28 in C group. The acute physiology and chronic health evaluation II (APACHEII) score in group A were significantly lower than that in group B or C at 6, 24, 48 and 72 hours (T6, T24, T48, T72) of ICU admission (T6: 11.4 ± 5.8 vs. 13.9 ± 5.4, 13.7 ± 6.4; T24: 8.8 ± 3.7 vs. 10.8 ± 4.8, 11.8 ± 5.4; T48: 8.7 ± 4.1 vs. 9.6 ± 4.2, 10.2 ± 5.1; T72: 7.5 ± 3.4 vs. 8.6 ± 2.9, 9.2 ± 4.2, all P<0.05), and the sequential organ failure assessment (SOFA) showed the same tendency (T6: 6.5 ± 4.3 vs. 8.0 ± 3.8, 9.1 ± 4.5; T24: 6.6 ±3.6 vs. 8.6 ± 3.9, 8.5 ± 3.3; T48: 5.2 ± 3.4 vs. 7.0 ± 3.6, 7.6 ± 5.1; T72: 4.6 ± 2.4 vs. 5.8 ± 2.5, 6.8 ± 3.5, all P<0.05). The values of blood lactic acid (mmol/L) in group A and B were significant lower than that in group C at T6, T24, T48 and T72 (T6: 1.60 ± 0.95, 2.20 ± 1.02 vs. 2.55 ± 1.39; T24: 2.26 ± 1.26, 2.70 ± 1.36 vs. 3.34 ± 2.36; T48: 2.01 ± 1.15, 2.17

  15. Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol

    International Nuclear Information System (INIS)

    Li Xuemei; Shen Chong; Li Chunxi

    2012-01-01

    Highlights ► Vapour pressures for six ternary systems containing an IL were measured. ► Components studied were water, ethanol, methanol, and alkanolammonium formates. ► The isobaric VLE were predicted using the fitted binary NRTL parameters. ► The ILs studied can generate a promising salt effect on VLE of azeotrope. ► [HMEA][HCOO] might be used as a potential entrainer in extractive distillation. - Abstract: Vapour pressures were measured using a quasi-static ebulliometer for the pseudo-binary mixtures of (water + ethanol), (water + methanol), and (methanol + ethanol) containing an alkanolammonium-based ionic liquid (IL), namely, mono-ethanolammonium formate ([HMEA][HCOO]) and di-ethanolammonium formate ([HDEA][HCOO]), respectively, with fixed IL mass fraction of 0.30 and over the temperature ranges of (292.12 to 371.13) K. The vapour pressures of the IL-containing ternary systems were favourably correlated using the NRTL model with an overall average absolute relative deviation (AARD) of 0.0082. Further, the salt effects of [HMEA][HCOO] and [HDEA][HCOO] on isobaric vapour liquid equilibria (VLE) of azeotrope and close boiling mixture, especially for the mixtures of (water + ethanol) and (methanol + ethanol), were investigated and compared with other ILs in terms of the x′–y phase diagrams predicted with the binary NRTL parameters. It is demonstrated that the relative volatilities of ethanol to water and ethanol to methanol are enhanced, and [HMEA][HCOO] might be used as a promising entrainer for the efficient separation of ethanol aqueous solution by special rectification.

  16. Development of a low frost-point generator operating at sub-atmospheric pressure

    Science.gov (United States)

    Cuccaro, R.; Rosso, L.; Smorgon, D.; Beltramino, G.; Tabandeh, S.; Fernicola, V.

    2018-05-01

    A low frost-point generator (INRIM 03) operating at sub-atmospheric pressure has been designed and constructed at the Istituto Nazionale di Ricerca Metrologica (INRIM) as part of a calibration facility for upper-air sounding instruments. This new humidity generator covers the frost-point temperature range between  ‑99 °C and  ‑20 °C and works at any controlled pressure between 200 hPa and 1100 hPa, achieving a complete saturation of the carrier gas (nitrogen) in a single passage through a stainless steel isothermal saturator. The generated humid gas contains a water vapour amount fraction between 14  ×  10‑9 mol mol‑1 and 5  ×  10‑3 mol mol‑1. In this work the design of the generator is reported together with characterisation and performance evaluation tests. A preliminary validation of the INRIM 03 against one of the INRIM humidity standards in the common region is also included. Based on experimental test results, an initial uncertainty evaluation of the generated frost-point temperature, T fp, and water vapour amount fraction, x w, in the limited range down to  ‑75 °C at atmospheric pressure is reported. For the frost-point temperature, the uncertainty budget yields a total expanded uncertainty (k  =  2) of less than 0.028 °C, while for the mole fraction the budget yields a total expanded uncertainty of less than 10‑6 mol mol‑1.

  17. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide

    Science.gov (United States)

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty

    1997-01-01

    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  18. Electron collision cross section sets of TMS and TEOS vapours

    Science.gov (United States)

    Kawaguchi, S.; Takahashi, K.; Satoh, K.; Itoh, H.

    2017-05-01

    Reliable and detailed sets of electron collision cross sections for tetramethylsilane [TMS, Si(CH3)4] and tetraethoxysilane [TEOS, Si(OC2H5)4] vapours are proposed. The cross section sets of TMS and TEOS vapours include 16 and 20 kinds of partial ionization cross sections, respectively. Electron transport coefficients, such as electron drift velocity, ionization coefficient, and longitudinal diffusion coefficient, in those vapours are calculated by Monte Carlo simulations using the proposed cross section sets, and the validity of the sets is confirmed by comparing the calculated values of those transport coefficients with measured data. Furthermore, the calculated values of the ionization coefficient in TEOS/O2 mixtures are compared with measured data to confirm the validity of the proposed cross section set.

  19. Intercomparison of TCCON and MUSICA Water Vapour Products

    Science.gov (United States)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  20. Spontaneuos and Parametric Processes in Warm Rubidium Vapours

    Directory of Open Access Journals (Sweden)

    Dąbrowski M.

    2014-12-01

    Full Text Available Warm rubidium vapours are known to be a versatile medium for a variety of experiments in atomic physics and quantum optics. Here we present experimental results on producing the frequency converted light for quantum applications based on spontaneous and stimulated processes in rubidium vapours. In particular, we study the efficiency of spontaneously initiated stimulated Raman scattering in the Λ-level configuration and conditions of generating the coherent blue light assisted by multi-photon transitions in the diamond-level configuration. Our results will be helpful in search for new types of interfaces between light and atomic quantum memories.

  1. The mechanical vapour compression process applied to seawater desalination

    International Nuclear Information System (INIS)

    Murat, F.; Tabourier, B.

    1984-01-01

    The authors present the mechanical vapour compression process applied to sea water desalination. As an example, the paper presents the largest unit so far constructed by SIDEM using this process : a 1,500 m3/day unit installed in the Nuclear Power Plant of Flamanville in France which supplies a high quality process water to that plant. The authors outline the advantages of this process and present also the serie of mechanical vapour compression unit that SIDEM has developed in a size range in between 25 m3/day and 2,500 m3/day

  2. Desalination using spray tower and vapour compression refrigeration system

    International Nuclear Information System (INIS)

    Sathish Kumar, S.; Mani, A.

    2006-01-01

    A desalination system using a spray tower and Vapour Compression Refrigeration (VCR) system is proposed for obtaining fresh water from brackish water. In the spray tower, simultaneous heat and mass transfer take place between the brackish water and air, which results in the evaporation of the brackish water and humidification of the air. Fresh water is obtained from the humidified air by condensing the water vapour using a VCR system. Parametric studies were carried out to study the effect of various operational parameters on the fresh water production rate. (author)

  3. Aspects of the use of saturated fluorocarbon fluids in high energy physics

    International Nuclear Information System (INIS)

    Hallewell, G.

    2011-01-01

    The excellent dielectric properties of saturated fluorocarbons have allowed their use in direct immersion liquid cooling of electronics, including supercomputers and as heat transfer media in vapour phase soldering and burn-in testing of electronics. Their high density, UV transparency, non-flammability, non-toxicity and radiation tolerance have led to their use as liquid and gas radiator media for RICH detectors in numerous particle physics experiments. Systems to circulate and purify saturated fluorocarbon Cherenkov radiator vapours often rely on thermodynamic evaporation-condensation cycles similar to those used in refrigeration. Their use as evaporative refrigerants was pioneered for the ATLAS silicon tracker, and they are now also used as evaporative coolants in ALICE and TOTEM and as liquid coolants in ATLAS and CMS. Ultrasonic techniques for vapour phase analysis of fluorocarbon mixtures-developed for the SLAC SLD barrel CRID radiator during the 1980s as an alternative to UV refractometry are again under development for the ATLAS tracker evaporative cooling system. Examples of fluorocarbon circulation systems, together with purification and analysis techniques for these versatile fluids are mentioned.

  4. Aspects of the use of saturated fluorocarbon fluids in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Hallewell, G., E-mail: Gregory.Hallewell@cern.c [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, Case 907, 13288 Marseille Cedex 09 (France)

    2011-05-21

    The excellent dielectric properties of saturated fluorocarbons have allowed their use in direct immersion liquid cooling of electronics, including supercomputers and as heat transfer media in vapour phase soldering and burn-in testing of electronics. Their high density, UV transparency, non-flammability, non-toxicity and radiation tolerance have led to their use as liquid and gas radiator media for RICH detectors in numerous particle physics experiments. Systems to circulate and purify saturated fluorocarbon Cherenkov radiator vapours often rely on thermodynamic evaporation-condensation cycles similar to those used in refrigeration. Their use as evaporative refrigerants was pioneered for the ATLAS silicon tracker, and they are now also used as evaporative coolants in ALICE and TOTEM and as liquid coolants in ATLAS and CMS. Ultrasonic techniques for vapour phase analysis of fluorocarbon mixtures-developed for the SLAC SLD barrel CRID radiator during the 1980s as an alternative to UV refractometry are again under development for the ATLAS tracker evaporative cooling system. Examples of fluorocarbon circulation systems, together with purification and analysis techniques for these versatile fluids are mentioned.

  5. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  6. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  7. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Isobaric (vapour + liquid) equilibria for the (1-pentanol + propionic acid) binary mixture at (53.3 and 91.3) kPa

    International Nuclear Information System (INIS)

    Mohsen-Nia, M.; Memarzadeh, M.R.

    2010-01-01

    Isobaric (vapour + liquid) equilibrium measurements have been reported for the binary mixture of (1-pentanol + propionic acid) at (53.3 and 91.3) kPa. Liquid phase activity coefficients were calculated from the equilibrium data. The thermodynamic consistency of the experimental results was checked using the area test and direct test methods. According to these criteria, the measured (vapour + liquid) equilibrium results were found to be consistent thermodynamically. The obtained results showed a maximum boiling temperature azeotrope at both pressures studied. The measured equilibrium results were satisfactorily correlated by the models of Wilson, UNIQUAC, and NRTL activity coefficients. The results obtained indicate that the performance of the NRTL model is superior to the Wilson and UNIQUAC models for correlating the measured isobaric (vapour + liquid) equilibrium data.

  9. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.

    Science.gov (United States)

    Scott, T B; Petherbridge, J R; Harker, N J; Ball, R J; Heard, P J; Glascott, J; Allen, G C

    2011-11-15

    The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO(3) · xH(2)O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  10. Vapour-liquid equilibria of the hard core Yukawa fluid

    NARCIS (Netherlands)

    Smit, B.; Frenkel, D.

    1991-01-01

    Techniques which extend the range of applicability of the Gibbs ensemble technique for particles which interact with a hard core potential are described. The power of the new technique is demonstrated in a numerical study of the vapour-liquid coexistence curve of the hard core Yukawa fluid.

  11. No sodium in the vapour plumes of Enceladus.

    Science.gov (United States)

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  12. Measurement of copper vapour laser-induced deformation of ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... Laser & Plasma Technology Division, Beam Technology Development Group,. Bhabha Atomic ... of dielectric-coated mirror, caused by an incident repetitive pulsed laser beam with high average power. Minimum ... the optical surface deformation, caused by irradiation by a copper vapour laser (CVL) beam.

  13. Making ET AAS Determination Less Dependent on Vapourization ...

    African Journals Online (AJOL)

    NICO

    The quantification of the analytes in ET AAS is normally attained by the measurement and integration of transient absorbance. High degree of atomization and constant vapour transportation rate for the analyte atoms in the absorption volume are considered to be crucial to grant correctness of the measurements. However ...

  14. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  15. Characterisation and optical vapour sensing properties of PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Capan, I. [Balikesir University, Science and Arts Faculty, Physics Department, 10100 Balikesir (Turkey)], E-mail: inci.capan@gmail.com; Tarimci, C. [Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100, Tandogan, Ankara (Turkey); Hassan, A.K. [Sheffield Hallam University, Materials and Engineering Research Institute, City Campus, Pond Street, Sheffield S1 1WB (United Kingdom); Tanrisever, T. [Balikesir University, Science and Arts Faculty, Chemistry Department, 10100 Balikesir (Turkey)

    2009-01-01

    The present article reports on the characterisation of spin coated thin films of poly (methyl methacrylate) (PMMA) for their use in organic vapour sensing application. Thin film properties of PMMA are studied by UV-visible spectroscopy, atomic force microscopy and surface plasmon resonance (SPR) technique. Results obtained show that homogeneous thin films with thickness in the range between 6 and 15 nm have been successfully prepared when films were spun at speeds between 1000-5000 rpm. Using SPR technique, the sensing properties of the spun films were studied on exposures to several halohydrocarbons including chloroform, dichloromethane and trichloroethylene. Data from measured kinetic response have been used to evaluate the sensitivity of the studied films to the various analyte molecules in terms of normalised response (%) per unit concentration (ppm). The highest PMMA film sensitivity of 0.067 normalised response per ppm was observed for chloroform vapour, for films spun at 1000 rpm. The high film's sensitivity to chloroform vapour was ascribed mainly to its solubility parameter and molar volume values. Effect of film thickness on the vapour sensing properties is also discussed.

  16. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  17. Human volunteer study with PGME: Eye irritation during vapour exposure

    NARCIS (Netherlands)

    Emmen, H.H.; Muijser, H.; Arts, J.H.E.; Prinsen, M.K.

    2003-01-01

    The objective of this study was to establish the possible occurrence of eye irritation and subjective symptoms in human volunteers exposed to propylene glycol monomethyl ether (PGME) vapour at concentrations of 0, 100 and 150 ppm. Testing was conducted in 12 healthy male volunteers using a repeated

  18. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  19. Vapour intrusion from the vadose zone—seven algorithms compared

    NARCIS (Netherlands)

    Provoost, J.; Bosman, A.; Reijnders, L.; Bronders, J.; Touchant, K.; Swartjes, F.

    2010-01-01

    Background, aim and scope: Vapours of volatile organic compounds (VOCs) emanating from contaminated soils may move through the unsaturated zone to the subsurface. VOC in the subsurface can be transported to the indoor air by convective air movement through openings in the foundation and basement.

  20. Erratum to: Measurement of copper vapour laser-induced ...

    Indian Academy of Sciences (India)

    Erratum to: Measurement of copper vapour laser-induced deformation of dielectric-coated mirror surface by. Michelson interferometer. A WAHID. ∗. , S KUNDU, J S B SINGH, A K SINGH, A KHATTAR,. S K MAURYA, J S DHUMAL and K DASGUPTA. Laser & Plasma Technology Division, Beam Technology Development ...

  1. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  2. Effect of paint on vapour resistivity in plaster

    Directory of Open Access Journals (Sweden)

    de Villanueva, L.

    2008-12-01

    Full Text Available The vapour resistivity of plaster coatings such as paint and their effectiveness as water repellents were studied in several types of plaster. To this end, painted, unpainted and pigmented specimens were tested. Experimental values were collected on diffusion and vapour permeability, or its inverse, water vapour resistivity.The data obtained were very useful for evaluating moisture exchange between plaster and the surrounding air, both during initial drying and throughout the life of the material. They likewise served as a basis for ensuring the proper evacuation of water vapour in walls, and use of the capacity of the porous network in plaster products to regulate moisture content or serve as a water vapour barrier to avoid condensation.Briefly, the research showed that pigments, water-based paints and silicon-based water repellents scantly raised vapour resistance. Plastic paints, enamels and lacquers, however, respectively induced five-, ten- and twenty-fold increases in vapour resistivity, on average.Se estudia el fenómeno de la resistividad al vapor de los de yeso y el efecto impermeabilizante que producen los recubrimientos de pintura sobre diversos tipos de yeso y escayola. Para ello, se ensayan probetas desnudas y recubiertas con distintos tipos de pintura, así como coloreados en masa. Se obtienen valores experimentales de la difusividad o permeabilidad al vapor o su inverso la resistividad al vapor de agua.Los datos obtenidos son muy útiles para valorar el fenómeno del intercambio de humedad entre el yeso y el ambiente, tanto durante el proceso de su secado inicial, como en el transcurso de su vida. Así como para disponer soluciones adecuadas para la evacuación del vapor de agua a través de los cerramientos, para utilizar la capacidad de regulación de la humedad, que proporciona el entramado poroso de los productos de yeso, o para impedir el paso del vapor de agua y evitar condensaciones.Como resumen de la investigación, se

  3. The composition of the saturated vapor and enthalpies of dimerization of rubidium and cesium pivalates

    International Nuclear Information System (INIS)

    Khoretonenko, N.M.; Rykov, A.N.; Korenev, Yu.M.

    1998-01-01

    The rubidium and cesium pivalates sublimation processes are studied through the Knudsen effusion method with the mass-spectral analysis of the gaseous phase composition. It is established that MPiv and M 2 Piv 2 and in small amounts M 3 Piv 3 and M 4 Piv 4 constitute the basic components in the saturated vapour of the rubidium and cesium pivalates. Sublimation enthalpies (kJ/mole) of monomers Δ S H T 0 =163.5±7.2 and dimers Δ S H T 0 (Cs 2 Piv 2 )-192.1±9.6 are determined. Dissociation enthalpies (kJ/mole) of the M 2 Piv 2 dimers by the second(2) and the third (3) laws of thermodynamics: Δ D H T 0 (Cs 2 Piv 2 )=137.1±5.4(2), Δ D H T 0 (Rb 2 Piv 2 )=138.2±10.2 (3); Δ D H T 0 (Cs 2 Piv 2 )-134.9±9.3 (2), Δ D H T 0 (Cs 2 Piv 2 )=136.8±10.8 (3) are calculated. Temperature dependence equations (210-300 deg C of partial pressures (Pa) of the MPiv, M 2 Piv 2 molecules: InP(RbPiv)=-(20099±674)/T+34.6±1.2; InP(Rb 2 Piv 2 )=-(23707±734)/T+40.4±1.4; InP(CsPiv)=-(19666±866)/T+34.1±1.6; InP(Cs 2 Piv 2 )=-(23106±1155)/T+39.5±2.1 are obtained

  4. Antifungal Activity of Clove Essential Oil and its Volatile Vapour Against Dermatophytic Fungi

    OpenAIRE

    Chee, Hee Youn; Lee, Min Hee

    2007-01-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essen...

  5. Ethanol vapour sensing properties of screen printed WO 3 thick films

    Indian Academy of Sciences (India)

    The ethanol vapour sensing properties of these thick films were investigated at different operating temperatures and ethanol vapour concentrations. The WO3 thick films exhibit excellent ethanol vapour sensing properties with a maximum sensitivity of ∼1424.6% at 400°C in air atmosphere with fast response and recovery ...

  6. Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones

    International Nuclear Information System (INIS)

    Radhamma, M.; Venkatesu, P.; Rao, M.V. Prabhakara; Prasad, D.H.L.

    2007-01-01

    Excess enthalpies (H E ), at ambient pressure and T = 298.15 K, have been measured by using a solution calorimeter for the binary liquid mixtures of dimethyl sulphoxide (DMSO) with ketones, as a function of composition. The ketones chosen in the present investigation were methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The H E values are positive over the entire composition range for the three binary mixtures. Furthermore, the (vapour + liquid) equilibrium (VLE) was measured at 715 Torr for these mixtures, of different compositions, with the help of Swietoslawski-ebulliometer. The experimental temperature-mole fraction (t-x) data were used to compute Wilson parameters and then used to calculate the equilibrium vapour-phase compositions as well as the theoretical points for these binary mixtures. These Wilson parameters are used to calculate activity coefficients (γ) and these in turn to calculate excess Gibbs free energy (G E ). The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties

  7. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  8. Saturation and nucleation in hot nuclear systems

    International Nuclear Information System (INIS)

    Deangelis, A.R.

    1990-07-01

    We investigate nuclear fragmentation in a supersaturated system using classical nucleation theory. This allows us to go outside the normally applied constraint of chemical equilibrium. The system is governed by a virial equation of state, which we use to find an expression for the density as a function of pressure and temperature. The evolution of the system is discussed in terms of the phase diagram. Corrections are included to account for the droplet surface and all charges contained in the system. Using this model we investigate and discuss the effects of temperature and saturation, and compare the results to those of other models of fragmentation. We also discuss the limiting temperatures of the system for the cases with and without chemical equilibrium. We find that large nuclei will be formed in saturated systems, even above the limiting temperature as previously defined. We also find that saturation and temperature dominate surface and Coulomb effects. The effects are quite large, thus even a qualitative inspection of the yields may give an indication of the conditions during fragmentation

  9. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...... structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can...

  10. Research on boiling liquid expanding vapour explosions

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.; Steward, F.R.; Venart, J.E.S.

    A boiling liquid expanding vapor explosion (BLEVE) is due to rapid boiling and expansion, with no ignition or chemical reaction involved. Research is being conducted to examine such questions as under what conditions tanks and their contents undergo BLEVE, what are the characteristics of tanks affected by BLEVE, and what alterations in tank design can be made to minimize the likelihood of BLEVEs. Experiments have been done with both propane and freon, using commercially available one-liter propane cylinders. Outdoor tests were conducted and designed to have the tank fail at a particular set of internal conditions. High speed photography was used to record the explosion, and computerized monitoring equipment to record temperature and pressure data. Tests were run to attempt to determine the relationship between temperature and BLEVEs, and to test the possibility that the occurrence of a BLEVE depends on the amount of vapor that could be produced when the tank was ruptured. Discussion is made of the role of pressure waves and rarefaction waves in the explosion. It is concluded that the superheat temperature limit, theorized as the minimum temperature below which no BLEVE can occur, cannot be used to predict BLEVEs. It has been shown that BLEVEs can occur below this temperature. There appears to be a relationship between liquid temperature, liquid volume, and the energy required to drive the BLEVE. Fireballs may occur after a BLEVE of flammable material, but are not part of the tank destruction. Rupture location (vapor vs liquid space) appears to have no effect on whether a container will undergo a BLEVE. 7 refs., 7 figs., 1 tab.

  11. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  12. The viscosity of the refrigerant 1,1-difluoroethane along the saturation line

    Science.gov (United States)

    van der Gulik, P. S.

    1993-07-01

    The viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) has been measured along the saturation line both in the saturated liquid and in the saturated vapor. The data have been obtained every 10 K from 243 up to 393 K by means of a vibrating-wire viscometer using the free damped oscillation method. The density along the saturation line was calculated from the equation of state given by Tamatsu et al. with application of the saturated vapor-pressure correlation given by Higashi et al. An interesting result is that in the neighborhood of the critical point, the kinematic viscosity of the saturated liquid seems to coincide with that of the saturated vapor. The results for the saturated liquid are in satisfying agreement with those of Kumagai and Takahashi and of Phillips and Murphy. A comparison of the saturatedvaport data with the unsaturated-vapor data of Takahashi et al. shows some discrepancies.

  13. Comparison of Hexane Vapour Permeation in Two Different Polymeric Membranes via an Innovative In-line FID Detection Method

    Directory of Open Access Journals (Sweden)

    Z. Petrusová

    2017-07-01

    Full Text Available This manuscript presents a novel method for the analysis of vapour permeation through polymeric membranes based on in-line analysis of the permeate with an FID detector. The hexane vapour permeation was studied for two commercially available membranes, namely low-density polyethylene (LDPE and thin-film-composite polyamide (PA membrane. The hexane permeation was studied at temperatures of 25–45 °C, hexane vapour activity in the range of 0.2–0.8 and trans-membrane pressures of 5–50 kPa. Two fundamentally different membranes were chosen to demonstrate the potential and sensitivity of the permeation apparatus. Upon increasing the temperature from 25 to 45 °C, the flux in LDPE was found to increase almost fourfold over the whole activity range. The nonlinear increase of the flux with activity indicates plasticization of the polymer by hexane. Contrarily, the flux in the PA membrane increases almost linearly with activity, with only a minor upward curvature. Since the PA is far away from any phase transition, it is less temperature-dependent than LDPE. The activation energy for permeation demonstrates that the temperature dependence in the LDPE membrane is dominated by changes in diffusion, whereas it is dominated by changes in solubility in the PA membrane.

  14. Retinal oxygen saturation before and after glaucoma surgery.

    Science.gov (United States)

    Nitta, Eri; Hirooka, Kazuyuki; Shimazaki, Takeru; Sato, Shino; Ukegawa, Kaori; Nakano, Yuki; Tsujikawa, Akitaka

    2017-08-01

    This study compared retinal vessel oxygen saturation before and after glaucoma surgery. Retinal oxygen saturation in glaucoma patients was measured using a non-invasive spectrophotometric retinal oximeter. Adequate image quality was found in 49 of the 108 consecutive glaucoma patients recruited, with 30 undergoing trabeculectomy, 11 EX-PRESS and eight trabeculotomy. Retinal oxygen saturation measurements in the retinal arterioles and venules were performed at 1 day prior to and at approximately 10 days after surgery. Statistical analysis was performed using a Student's t-test. After glaucoma surgery, intraocular pressure (IOP) decreased from 19.8 ± 7.7 mmHg to 9.0 ± 5.7 mmHg (p glaucoma surgery had an effect on the retinal venous oxygen saturation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Law of nonlinear flow in saturated clays and radial consolidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.

  16. Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data

    Directory of Open Access Journals (Sweden)

    J. Bosy

    2012-09-01

    Full Text Available The near real-time (NRT high resolution water vapour distribution models can be constructed based on GNSS observations delivered from Ground Base Augmentation Systems (GBAS and ground meteorological data. Since 2008 in the territory of Poland, a GBAS system called ASG-EUPOS (Active Geodetic Network has been operating. This paper addresses the problems concerning construction of the NRT model of water vapour distribution in the troposphere near Poland. The first section presents all available GNSS and ground meteorological stations in the area of Poland and neighbouring countries. In this section, data feeding scheme is discussed, together with timeline and time resolution. The high consistency between measured and interpolated temperature value is shown, whereas some discrepancy in the pressure is observed. In the second section, the NRT GNSS data processing strategy of ASG-EUPOS network is discussed. Preliminary results show fine alignment of the obtained Zenith Troposphere Delays (ZTDs with reference data from European Permanent Network (EPN processing center. The validation of NRT troposphere products against daily solution shows 15 mm standard deviation of obtained ZTD differences. The last section presents the first results of 2-D water vapour distribution above the GNSS network and application of the tomographic model to 3-D distribution of water vapour in the atmosphere. The GNSS tomography model, working on the simulated data from numerical forecast model, shows high consistency with the reference data (by means of standard deviation 4 mm km−1 or 4 ppm, however, noise analysis shows high solution sensitivity to errors in observations. The discrepancy for real data preliminary solution (measured as a mean standard deviation between reference NWP data and tomography data was on the level of 9 mm km−1 (or 9 ppm in terms of wet refractivity.

  17. The speed of sound in a gas–vapour bubbly liquid

    Science.gov (United States)

    Prosperetti, Andrea

    2015-01-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  18. The speed of sound in a gas-vapour bubbly liquid.

    Science.gov (United States)

    Prosperetti, Andrea

    2015-10-06

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model.

  19. Regularities of growth, condensation, solution of vapour and gaseous bubbles in turbulent flows

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1988-01-01

    Corrections for interphase transfer exchange intensity and for bubbles dynamics in the forced turbulent flow as well are obtained on the basis of the surface periodical restoration model. Analysis of the effects, caused by turbulence additional generation due to bubbles floating-up within gravity field, is carried out. Formulae for calculating interphase heat and mass transfer at bubbling are suggested. Application limits for the developed model are determined. Comparison of calculation results according to the derived universal dependence with experimental data on growth rates and condensation of vapour bubble, and on solution rates of gaseous bubbles in water (Re=8x10 3 -2x10 6 ; Pr0.83-568, pressure up to 10 MPa) has revealed their good agreeme nt

  20. Electric strength of metal-ceramic brazed units of thermionic energy converters in cesium vapours

    International Nuclear Information System (INIS)

    Belousenko, A.P.; Vasilchenko, A.V.; Nikolaev, Y.V.

    1989-01-01

    The investigation of electric strength characteristics of the hollow metal-ceramic brazed units of thermionic energy converters with the insulator 1 = 10-50 mm from polycrystal aluminum oxide at the temperature T = 450-750 degrees and the cesium vapour pressure P Cs = 10 - 1 -10 3 Pa has been carried out. The experimental dependencies of the break-down voltage of the brazed units on the temperature, parameter P Cs · 1 and the value of surface electric resistance of the insulators are given as well as the empiric equations obtained with the help of experimental data for calculating the break-down voltage. A mechanism of ceramic insulator influence on electric strength characteristics of the cesium gap is investigated. A breakdown model explaining this influence is proposed

  1. PFS/Mars Express first results: water vapour and carbon monoxide global distribution

    Science.gov (United States)

    Ignatiev, N. I.; Titov, D. V.; Formisano, V.; Moroz, V. I.; Lellouch, E.; Encrenaz, Th.; Fouchet, T.; Grassi, D.; Giuranna, M.; Atreya, S.; Pfs Team

    Planetary Fourier Spectrometer onboard Mars Express, with its wide spectral range (1.2--45 um) and high spectral resolution (1.4 cm-1), makes it possible to study in a self-consistent manner the Martian atmosphere by means of simultaneous analysis of spectral features in several spectral regions. As concerned small species, we observe 30--50, 6.3, 2.56, 1.87 and 1.38 μ m H2O bands, and 4.7 and 2.35 μ m CO bands. The most favourable, with respect to the instrument performance, 2.56 μ m H2O and 4.7 μ m CO bands, are used to study the variations of column abundance of water vapour and carbon monoxide on a global scale from pole to pole. All necessary atmospheric parameters, namely temperature profiles, surface pressure, and dust density are obtained from the same spectra, whenever possible.

  2. Central venous oxygen saturation during hypovolaemic shock in humans

    DEFF Research Database (Denmark)

    Madsen, P; Iversen, H; Secher, N H

    1993-01-01

    We compared central venous oxygen saturation and central venous pressure (CVP) as indices of the effective blood volume during 50 degrees head-up tilt (anti-Trendelenburg's position) induced hypovolaemic shock in eight healthy subjects. Head-up tilt increased thoracic electrical impedance from 31...... (28-36) (median and range) to 34 (30-40) Ohm, mean arterial pressure (MAP) from 79 (70-88) to 86 (80-99) mmHg, heart rate (HR) from 67 (56-71) to 99 (78-119) beats min-1 (p ....05) but thereafter remained stable. In contrast, central venous oxygen saturation showed a linear decrease with time from 0.75 (0.69-0.78) at rest to 0.60 (0.49-0.67) (p measurement of central venous oxygen saturation...

  3. Speed of sound in saturated aliphatic alcohols (propan-2-ol, butan-2-ol, and 2-methylpropan-1-ol) and alkanediols (ethane-1,2-diol, propane-1,2- and -1,3-diol) at temperature between 253.15 K and 353.15 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Dávila, María J.; Gedanitz, Holger; Span, Roland

    2016-01-01

    Highlights: • Speed of sound measurements were made in aliphatic alcohols and alkanediols. • Speeds of sound were measured in a wide temperature and pressure range. • A pulse-echo method with a double path type sensor operating at 8 MHz was employed. • A double polynomial equation was used to fit the experimental speed of sound data. • The accurate results were compared with available literature sources. - Abstract: Speeds of sound have been measured in three saturated aliphatic alcohols (propan-2-ol, butan-2-ol, and 2-methylpropan-1-ol) and three alkanediols (ethane-1,2-diol, propane-1,2- and -1,3-diol) in the temperature range from (253.15 to 353.15) K and pressures up to 30 MPa by use of a pulse-echo method with a double path type sensor operating at 8 MHz. The expanded overall uncertainties (k = 2) in the speed of sound measurements are estimated to be 0.013% for propan-2-ol, 0.019% for butan-2-ol, 0.01% for 2-methylpropan-1-ol, 0.009% for ethane-1,2-diol, 0.02% for propane-1,2-diol, and 0.07% for propane-1,3-diol. Experimental speeds of sound data were correlated with the temperature and pressure with an empirical double polynomial equation. Our results were also compared with the available literature data and a satisfactory agreement was found.

  4. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  5. Steam/water separation device for drying a wet vapour

    International Nuclear Information System (INIS)

    Sundheimer, P.

    1986-01-01

    The aim of the present invention is to dry a wet vapour which flows up to the device. The device has at least a group of steam dryer elements in a zone in which there is a vertical apertured panel; this vertical apertured panel is a metal grille with baffles the inlet steam flow to make it horizontal or slightly inclined to the bottom. The invention applies more particularly, to PWR steam generators [fr

  6. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  7. Surface polish of PLA parts in FDM using dichloromethane vapour

    Directory of Open Access Journals (Sweden)

    Jin Yifan

    2017-01-01

    Full Text Available Fused deposition modelling has become one of the most diffused rapid prototyping techniques, which is widely used to fabricate prototypes. However, further application of this technology is severely limited by poor surface roughness. Thus it is necessary to adopt some operations to improve surface quality. Chemical finishing is typically employed to finish parts in fused deposition modelling (FDM. The purpose of this paper is to decrease the surface roughness for polylactic acid (PLA parts in FDM. The chemical reaction mechanism during the treating process is analysed. Then NaOH solution and dichloromethane vapour are used to treat FDM specimens respectively. A 3D laser microscope has been applied to assess the effects in terms of surface topography and roughness. The experimental results show that treatment using dichloromethane vapour performs much better than NaOH solution. Compared with the untreated group, surface roughness obtained through vapour treatment decreases by 88 per cent. This research has been conducted to provide a better method to treat PLA parts using chemical reagents.

  8. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    Science.gov (United States)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    of PTB and a validated, two-pressure generator acting as a highly stable and reproducible source of water vapour. The aim of AV2-B was to perform an absolute, metrological comparison of the field instruments/calibration infrastructures to the metrological humidity scale, and to collect essential information about methods and procedures used by the atmospheric community for instrument calibration and validation, in order to investigate e.g. the necessity and possible comparability advantage by a standardized calibration procedure. The work will give an overview over the concept of the AV2-B inter-comparison, the various general measurement and calibration principles, and discuss the outcome and consequences of the comparison effort. The AQUAVIT effort is linked to the EMRP project METEOMET (ENV07) and partially supported by the EMRP and ENV07. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. [1] H. Saathoff, C. Schiller, V. Ebert, D. W. Fahey, R.-S. Gao, O. Möhler, and the aquavit team, The AQUAVIT formal intercomparison of atmospheric water measurement methods, 5th General Assembly of the European Geosciences Union, 13-18 April 2008, Vienna, Austria Keywords: humidity, water vapour, inter-comparison, airborne instruments.

  9. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    Science.gov (United States)

    Richardson, M. I.

    2002-12-01

    southern caps. Similar climate-models of the water cycle also do not need much exchangeable adsorbed water in order to explain the observed vapour distributions. The possibility of liquid water is tantalizing, but difficult to definitively judge. On scales greater than a meter or so, Mars is most definitely well away from the water triple point--although the surface pressure can exceed 6.1 mbars, the partial pressure of water vapor (to which the triple point refers) is at best orders of magnitude lower. Several careful studies have shown, however, that locally transient (meta-stable) liquid is possible, if the net heating of ice deposits is high enough. This process is aided if the total surface pressure exceeds 6.1mbar (this prevents boiling, or the explosive loss of vapour into the atmosphere) or if the liquid is covered by a thin ice shell, and is only possible if surface temperatures exceed 273K (for pure water, or the appropriate eutectic for brines) and if ice is present. The former challenge is much easier to meet than the latter. The melt scenario requires that ice deposited in winter must be protected from sublimation as surface temperatures increase in spring, but then exposed to the peak of solar heating in summer. Available spacecraft observations of seasonal water will be discussed with the aid of GCM model simulations, and examined in the context of water distributions and phases.

  10. Survival of bacteria of laboratory animal origin on cage bedding and inactivation by hydrogen peroxide vapour.

    Science.gov (United States)

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Schulze-Röbbecke, Roland; Sager, Martin

    2017-08-01

    This study aims to determine the ability of laboratory animal bacteria to resist desiccation and inactivation by hydrogen peroxide vapour (HPV) on paper bedding pieces. Bedding pieces were saturated with bacterial suspensions in water or 2% (w/v) bovine serum albumin (BSA) in water, and held in a mouse facility. Viable counts showed variable survival rates over time for the bacterial species used ([ Pasteurella] pneumotropica, Muribacter muris, Pseudomonas aeruginosa, Acinetobacter redioresistens, Escherichia coli, Klebsiella oxytoca, Bordetella bronchiseptica, Bordetella hinzii, Enterococcus faecalis, β-haemolytic Streptococcus spp., Staphylococcus aureus and Staphylococcus xylosus). Overall, BSA increased bacterial survival in the bedding pieces. The survival rates of Bacillus safensis were not influenced by BSA but depended on sporulation. When bedding pieces and Petri dishes inoculated with E. coli, P. aeruginosa and S. aureus were subjected to HPV disinfection, all bacterial species on the bedding pieces inoculated with bacterial suspensions in water were readily inactivated. By contrast, S. aureus and P. aeruginosa, but not E. coli cells survived HPV treatment in high numbers when inoculated on bedding pieces as a BSA suspension. Notably, all three bacterial species were readily inactivated by HPV even in the presence of BSA when smeared on smooth surfaces. In conclusion, the suspension medium and the carrier can influence the environmental survival and susceptibility of bacterial species to HPV. Our results may help to develop standard protocols that can be used to ensure the microbiological quality of experimental rodent housing.

  11. Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chiali-Baba Ahmed, Nouria [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, Post Office Box 119, Tlemcen 13000 (Algeria); Negadi, Latifa, E-mail: latifanegadi@yahoo.fr [LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, University AbouBekr Belkaid of Tlemcen, Post Office Box 119, Tlemcen 13000 (Algeria); Mokbel, Ilham [LSA, Laboratoire des Sciences Analytiques, CNRS-UMR 5280, Universite Claude Bernard - Lyon I, 43, Bd du 11 Novembre 1918, Villeurbanne Cedex 69622 (France); Kaci, Ahmed Ait [Laboratoire de Thermodynamique et Modelisation Moleculaire, Universite des Sciences et de la Technologie Houari Boumediene, Post Office Box 32, El Alia 16111, Bab Ezzouar (Algeria); Jose, Jacques [LSA, Laboratoire des Sciences Analytiques, CNRS-UMR 5280, Universite Claude Bernard - Lyon I, 43, Bd du 11 Novembre 1918, Villeurbanne Cedex 69622 (France)

    2012-01-15

    Highlights: > Vapour pressures of sec-butylamine or cyclohexylamine and their aqueous solutions. > The investigated temperatures are 273 K and 363 K. > The (cyclohexylamine + water) mixture shows positive azeotropic behaviour. > The (sec-butylamine + water) or (cyclohexylamine + water) exhibit positive G{sup E}. - Abstract: The vapour pressures of (sec-butylamine + water), (cyclohexylamine + water) binary mixtures, and of pure sec-butylamine and cyclohexylamine components were measured by means of two static devices at temperatures between 293 (or 273) K and 363 K. The data were correlated with the Antoine equation. From these data, excess Gibbs functions (G{sup E}) were calculated for several constant temperatures and fitted to a fourth-order Redlich-Kister equation using the Barker's method. The (cyclohexylamine + water) system shows positive azeotropic behaviour for all investigated temperatures. The two binary mixtures exhibit positive deviations in G{sup E} for all investigated temperatures over the whole composition range.

  12. Hydrogeologic controls on saturation profiles in heat-pipe-like hydrothermal systems: numerical study

    Science.gov (United States)

    Pervin, Mollika; Ghergut, Iulia; Graf, Thomas; Peche, Aaron

    2016-04-01

    Most geothermal reservoirs are of the liquid-dominated type, and their unexploited-state pressure profile approximately follows the hydrostatic gradient. In very hot liquid-dominated systems, temperature typically follows a boiling-point-for-depth (BPD) relationship. By contrast, vapor-dominated systems exhibit (in their unexploited state) surprisingly small vertical gradients of temperature and pressure, such that a constantly high temperature is encountered over a large vertical thickness, while their pressure approximately follows vapour pressure, pvap(T°). This implies that (Pruess 1985, Truesdell and White 1973): (i) for a vapor-dominated reservoir to exist, it must be sealed laterally - otherwise it would be flooded by neighboring groundwaters with hydrostatic p profile, and (ii) liquid water should somehow be present in the whole system - otherwise p values would not be constrained by the pvap(T°) relationship for water. Historically, one of the most puzzling aspects of vapor-dominated systems was the large amount of heat flowing upwards, while vertical T° gradients remained negligible. This mechanism was deemed as 'heat pipe'(HP) (Eastman 1968): In the central zone of a vapor-dominated system, both vapor and liquid are mobile; vapor flows upwards, condenses at shallower depth, and the liquid condensate flows downwards. Due to the large amount of latent enthalpy released in vapor condensation, the vapor-liquid counter-flow can generate large rates of heat flow with negligible net mass transport (Pruess 1985). In order to be able to exploit two-phase (including vapor-dominated) reservoirs in a sustainable manner, one first needs to understand the conditions under which a two-phase (or a vapor-dominated) system has evolved naturally, and which have led to its present (quasi-) steady undisturbed state. Past studies have found that HP can exist in two distinct states, corresponding to liquid-dominated and vapor-dominated p profiles, respectively. Within this

  13. Thermal effects on tearing mode saturation

    International Nuclear Information System (INIS)

    Kim, J.S.; Chu, M.S.; Greene, J.M.

    1988-01-01

    The effect of geometry on tearing modes, saturated states of tearing modes, and the thermal effect on tearing modes are presented. The configuration of current and magnetic fields are quite different in slabs and in Tokamaks. However, for any magnetic island regardless of geometry and heating conditions, at island saturation the product of resistivity and current is the same at magnetic O and X lines. The temperature perturbation effect on the nonlinear development of tearing modes is investigated. Thermal conduction along the field lines is much faster than that in the perpendicular direction, and thus the temperature profile follows the island structure. Utilizing Spitzer's conductivity relation, the temperature perturbation is modelled as helical components of resistivity. For a usual tearing mode unstable Tokamak, where shear is positive, the islands continue to grow to a larger size when the islands are cooled. When they are heated, the island sizes are reduced. The temperature perturbation can induce islands even for equilibria stable with respect to tearing modes. Again, the islands appear when cooling takes place. The equilibria with the cooled islands show enhanced field line stochasticity, thus enhanced heat transport. Therefore, thermal instability can be directly related to pressure disruptions. (author)

  14. Procedure for the reversible confinement of gases or vapours in a natural or synthetic zeolite

    International Nuclear Information System (INIS)

    1980-01-01

    The zeolite is treated with silane at a temperature of 100-140 0 C to silanise it in the H-form. This narrows the pores in the zeolite and the grains bind together creating cavities. The silanised zeolite and the material to be confined are brought into contact at high pressure, for example at an excess pressure of 0.5 atm. Contact is continued until the required quantity of gas or vapour has been adsorbed by the zeolite. Under the same high pressure water is added to the system which causes further narrowing of the pores. Preferably the process of silanising and treating with water is then repeated one or more times to close the pores and ensure confinement. The process is reversed by heating the product above 300 0 C. The bonds formed by silanising are then broken and the confined material is liberated. This process has applications in the confinement of valuable gases such as enriched isotopes, and of dangerous gases such as radioactive waste gases. (Th.W.P.)

  15. Water vapour solubility and conductivity study of the proton conductor BaCe(0.9 − x)ZrxY0.1O(3 − δ)

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Caboche, G:

    2009-01-01

    The perovskite BaCe(0.9 − x)ZrxY0.1O(3 − δ) has been prepared by solid state reaction at 1400 °C and conventional sintering at 1700 °C. Water uptake experiments performed between 400 and 600 °C, at a water vapour pressure of 0.02 atm, provide data on the concentration of protons incorporated in t...

  16. Factors affecting release of ethanol vapour in active modified atmosphere packaging systems for horticultural products

    Directory of Open Access Journals (Sweden)

    Weerawate Utto

    2014-04-01

    Full Text Available The active modified atmosphere packaging (active MAP system , which provides interactive postharvest control , using ethanol vapour controlled release, is one of the current interests in the development of active packaging for horticultural products. A number of published research work have discussed the relationship between the effectiveness of ethanol vapour and its concentration in the package headspace, including its effect on postharvest decay and physiological controls. This is of importance because a controlled release system should release and maintain ethanol vapour at effective concentrations during the desired storage period. A balance among the mass transfer processes of ethanol vapour in the package results in ethanol vapour accumulation in the package headspace. Key factors affecting these processes include ethanol loading, packaging material, packaged product and storage environment (temperature and relative h umidity. This article reviews their influences and discusses future work required to better understand their influences on ethanol vapour release and accumulations in active MAP.

  17. Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours

    Science.gov (United States)

    Ridhi, R.; Singh, Sukhdeep; Saini, G. S. S.; Tripathi, S. K.

    2018-04-01

    The present study deals with comparing interaction mechanisms of copper phthalocyanine and nickel phthalocyanine with versatile chemical vapours: reducing, stable aromatic and oxidizing vapours namely; diethylamine, benzene and bromine. The variation in electrical current of phthalocyanines with exposure of chemical vapours is used as the detection parameter for studying interaction behaviour. Nickel phthalocyanine is found to exhibit anomalous behaviour after exposure of reducing vapour diethylamine due to alteration in its spectroscopic transitions and magnetic states. The observed sensitivities of copper phthalocyanine and nickel phthalcyanine films are different in spite of their similar bond numbers, indicating significant role of central metal atom in interaction mechanism. The variations in electronic transition levels after vapours exposure, studied using UV-Visible spectroscopy confirmed our electrical sensing results. Bromine exposure leads to significant changes in vibrational bands of metal phthalocyanines as compared to other vapours.

  18. Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi.

    Science.gov (United States)

    Chee, Hee Youn; Lee, Min Hee

    2007-12-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.

  19. Simulation of consolidation in partially saturated soil materials

    International Nuclear Information System (INIS)

    Narasimhan, T.N.

    1982-03-01

    Partially saturated soil materials undergo consolidation, heave, collapse and failure due to changes in pore fluid pressure. The precise nature of the mechanics of such deformations is only poorly understood at present. Experimental evidence has shown that the volume change behavior of unsaturated soils cannot be adequately explained through changes in effective stress, even when a saturation dependent parameter is incorporated into the definition of effective stress. Two independent stress-state variables, involving combinations of total stress, pore air pressure and pore water pressure, are required to characterize volume changes and saturation changes in the partially saturated state. In general, two coupled conservation equations, one for the water-phase and the other for the air-phase need to be solved in order to predict the deformation behavior of unsaturated soils. If directional displacements and changes in the stress-field are required, then the conservation equations are to be integrated with an additional set of multi-dimensional force balance equations. For lack of a sufficient understanding of elastic constants such as Poisson's Ratio and Lame's constants as applied to unsaturated soils, little has been achieved so far in integrating the conservation equations and the force balance equations. For the long-term modeling of consolidation with respect to uranium mill tailings, it may be acceptable and economical to solve a single conservation equation for water, assuming that the air-phase is continuous and is at atmospheric pressure everywhere in the soil. The greatest challenge to modeling consolidation in the unsaturated zone at the presnt time is to develop enough experimental data defining the variation of void ratio and saturation with reference to the two chosen stress-state variables

  20. Performance of iodide vapour absorption in the venturi scrubber working in self-priming mode

    International Nuclear Information System (INIS)

    Zhou, Yanmin; Sun, Zhongning; Gu, Haifeng; Miao, Zhuang

    2016-01-01

    Highlights: • The absorption performance for iodide vapour was studied under different conditions. • A mathematical model was developed to describe the iodide absorption process. • The venturi scrubber can ensure absorption efficiiency and reduce pressure loss. - Abstract: The self-priming venturi scrubber is the key component of filtered containment venting systems for the removal of radioactive products during severe accidents in nuclear power plants. This paper is focused on the absorption performance of iodide vapour in the venturi scrubber, based on experiment and mathematical calculation. The results indicate that the absorption efficiency is closely related to solution flow rate, gas flow rate and temperature, but is not sensitive to iodide inlet concentration. When solution flow rate is low, the absorption efficiency increases rapidly with increasing the solution flow rate, and when the solution is excessive, the absorption efficiency remains around 99% stably; the influence of gas flow rate on absorption efficiency is mainly reflected in the variation of gas and liquid contacting time; when the solution flow rate is low, the increase of gas flow rate will led to an obvious decrease in absorption efficiency; temperature is not important when gas flow rate in constant but becomes effective for improving the absorption efficiency when gas velocity is constant. The proposed mathematical model can predict the iodide absorption process well in the range of experimental conditions. Especially, in the condition of lower gas flow rate and higher solution flow rate, the prediction accuracy is more satisfactory; however the accuracy of prediction will decrease at higher gas flow rates and lower solution flow rates because of neglecting the transverse exchange between gas and liquid phase.

  1. Influence of water vapour and permanent gases on the atmospheric optical depths and transmittance

    Science.gov (United States)

    Badescu, V.

    1991-05-01

    The influence of the atmospheric state on the extinction of direct solar radiation has been studied by using a four layer atmospheric model. Simple analytical formulae are established for the spectral optical depths of permanent gases and water vapour. These formulae use the ground level values of air pressure, temperature and relative huniidity. An additional parameter, related to the vertical distribution of the hunmidity content, is used for a better estimation of the water vapour optical depth. Good agreement between theory and measurements is found. The paper shows the dependence of the atmospheric spectral transmittance on the above mentioned parameters. L'influence de l'état atmosphérique sur l'extinction de la radiation solaire directe a été étudiée à l'aide d'un modèle atmosphérique développé antérieurement par l'auteur. Des formules simples ont été établies pour l'épaisseur optique spectrale des gaz et de la vapeur d'eau. Ces formules utilisent les valeurs de la pression atmosphérique, de la température et de l'humidité relative, mesurées au niveau du sol. Un paramètre supplémentaire, lié à la distribution verticale du contenu d'humidité, est utilisé pour calculer l'épaisseur optique due à la vapeur d'eau. La théorie est en bon accord avec les résultats des mesures. Le travail montre la dépendance de la transmittance atmosphérique spectrale en fonction des paramètres spécifiés ci-dessus.

  2. Silicon nanowire arrays as learning chemical vapour classifiers

    International Nuclear Information System (INIS)

    Niskanen, A O; Colli, A; White, R; Li, H W; Spigone, E; Kivioja, J M

    2011-01-01

    Nanowire field-effect transistors are a promising class of devices for various sensing applications. Apart from detecting individual chemical or biological analytes, it is especially interesting to use multiple selective sensors to look at their collective response in order to perform classification into predetermined categories. We show that non-functionalised silicon nanowire arrays can be used to robustly classify different chemical vapours using simple statistical machine learning methods. We were able to distinguish between acetone, ethanol and water with 100% accuracy while methanol, ethanol and 2-propanol were classified with 96% accuracy in ambient conditions.

  3. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  4. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  5. Criteria for saturated magnetization loop

    International Nuclear Information System (INIS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.

    2016-01-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  6. Criteria for saturated magnetization loop

    Energy Technology Data Exchange (ETDEWEB)

    Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2016-03-15

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  7. Research Article Special Issue

    African Journals Online (AJOL)

    2017-08-08

    Aug 8, 2017 ... relative humidity [15]. Relative humidity is the ratio of the vapour pressure of air to its saturation vapour pressure [16]. Water activity and relative humidity are interrelated when vapour and temperature equilibrium are obtained around the sample. Honey stored at higher humidity causes the water vapour ...

  8. Solvation pressure as real pressure: I. Ethanol and starch under negative pressure

    CERN Document Server

    Uden, N W A V; Faux, D A; Tanczos, A C; Howlin, B; Dunstan, D J

    2003-01-01

    The reality of the solvation pressure generated by the cohesive energy density of liquids is demonstrated by three methods. Firstly, the Raman spectrum of ethanol as a function of cohesive energy density (solvation pressure) in ethanol-water and ethanol-chloroform mixtures is compared with the Raman spectrum of pure ethanol under external hydrostatic pressure and the solvation pressure and hydrostatic pressure are found to be equivalent for some transitions. Secondly, the bond lengths of ethanol are calculated by molecular dynamics modelling for liquid ethanol under pressure and for ethanol vapour. The difference in bond lengths between vapour and liquid are found to be equivalent to the solvation pressure for the C-H sub 3 , C-H sub 2 and O-H bond lengths, with discrepancies for the C-C and C-O bond lengths. Thirdly, the pressure-induced gelation of potato starch is measured in pure water and in mixtures of water and ethanol. The phase transition pressure varies in accordance with the change in solvation pre...

  9. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    Science.gov (United States)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  10. Bibliography on vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Jancso, G.

    1980-04-01

    The first Bibliography on Vapour Pressure Isotope and covered the literature of the period from 1919 through December 1975. The present Supplement reviews the literature from January 1976 through December 1979. The bibliography is arranged in chronological order; within each year the references are listed alphabetically according to the name of the first author of each work. (author)

  11. psychrometry: from partial pressures to mole fractions

    African Journals Online (AJOL)

    ES Obe

    1980-03-01

    Mar 1, 1980 ... as an ideal gas mixture. Partial pressures then become identical: to mole fractions and sets of psychometric parameters result from rather elementary thermodynamic relations. Search for more accurate data has long led to the realization that neither dry air nor pure water vapour behaves like an ideal gas,.

  12. A miniature discriminating monitor for tritiated water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R.A.H.; Ravazzani, A.; Pacenti, P. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy); Campi, F. [Nuclear Engineering Dept., Polytechnic of Milan (Italy)

    1998-07-01

    In detecting tritium in air (or other gas) for worker safety, it is important to discriminate between tritiated water vapour and elemental tritium, because the first is much more easily absorbed in the lungs. We haveinvented (patent pending) an innovative discriminating monitor which works better than existing designs, and is much smaller. The air (or other sample gas) passes over a large surface area of solid scintillator, which is surface-treated to make it hygroscopic. Tritiated water vapour in the air exchanges continuously, rapidly and reversibly with the water in the thin hygroscopic layer; which is of the order of 1 micron thick. The beta-emissions from tritium in the hygroscopic layer hit the solid scintillator, causing flashes of light that are detected by a photomultiplier. The new discriminating monitor for tritiated species in air offers superior performance to existing discriminating monitors, and is much smaller. It is planned to develop a portable version which could serve as a personal tritium monitor. (authors)

  13. Pulmonary CT findings in acute mercury vapour exposure

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Manabu; Sato, Kimihiko; Heianna, Jyouiti; Hirano, Yoshinori; Omachi, Kohiti; Izumi, Jyunichi; Watarai, Jiro

    2001-01-01

    AIM: We describe the pulmonary computed tomography (CT) findings in acute mercury poisoning. MATERIALS AND METHODS: Initial (n= 8) and follow-up (n= 6) chest CT examinations in eight patients exposed to mercury vapour while cutting pipes in a sulphuric acid plant were reviewed. Of the eight patients, two were asymptomatic and had normal CT results, two were asymptomatic but had abnormalities on CT, and four had both acute symptoms and positive CT results. The patients were all men whose ages ranged from 37 to 54 years (mean, 49 years). RESULTS: Poorly defined nodules were present in five of six patients with positive CT findings, present alone in two patients or as part of a mixed pattern in three. They were random in distribution. Alveolar consolidation (n= 3) and areas of ground-glass opacity (n= 4) were observed and were more prominent in the most severely affected patients with the highest blood and urine level of mercury, predominantly in the upper and/or middle zone. These abnormal findings on CT resolved with (n= 1) or without (n= 5) steroid therapy. Pathological findings (n= 1) demonstrated acute interstitial changes predominantly with oedema. CONCLUSION: We report CT findings in eight patients acutely exposed to mercury vapour. The pulmonary injury was reversible on CT in these cases. Hashimoto, M. (2001)

  14. Thermally decarboxylated sodium bicarbonate: Interactions with water vapour, calorimetric study

    Directory of Open Access Journals (Sweden)

    Natalia Volkova

    2013-06-01

    Full Text Available Isothermal titration calorimetry (ITC was used to study interactions between water vapour and the surface of thermally converted sodium bicarbonate (NaHCO3. The decarboxylation degree of the samples was varied from 3% to 35% and the humidity range was 54–100%. The obtained enthalpy values were all exothermic and showed a positive linear correlation with decarboxylation degrees for each humidity studied. The critical humidity, 75% (RHo, was determined as the inflection point on a plot of the mean−ΔHkJ/mole Na2CO3 against RH. Humidities above the critical humidity lead to complete surface dissolution. The water uptake (m was determined after each calorimetric experiment, complementing the enthalpy data. A mechanism of water vapour interaction with decarboxylated samples, including the formation of trona and Wegscheider’s salt on the bicarbonate surface is proposed for humidities below RHo. Keywords: Isothermal titration calorimetry, Sodium bicarbonate, Sodium carbonate, Trona salt, Wegscheider’s salt, Enthalpy, Relative humidity, Pyrolytic decarboxylation

  15. Improvement of a thermoelectric and vapour compression hybrid refrigerator

    International Nuclear Information System (INIS)

    Astrain, D.; Martínez, A.; Rodríguez, A.

    2012-01-01

    This paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decreases by 95% and 20% respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and −4 °C, the oscillation of this temperature is always lower than 0.4 °C, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations. - Highlights: ► Optimization of a vapour compression and thermoelectric hybrid refrigerator. ► Two prototypes built and tested. Computational model for the whole refrigerator. ► Electric power consumption of the modules and the refrigerator 95% and 20% lower. ► New compartment refrigerated with thermoelectric technology. ► Inner temperature adjustable from 0 to −4 °C. Oscillations lower than ±0.2 °C.

  16. Improved grand canonical sampling of vapour-liquid transitions.

    Science.gov (United States)

    Wilding, Nigel B

    2016-10-19

    Simulation within the grand canonical ensemble is the method of choice for accurate studies of first order vapour-liquid phase transitions in model fluids. Such simulations typically employ sampling that is biased with respect to the overall number density in order to overcome the free energy barrier associated with mixed phase states. However, at low temperature and for large system size, this approach suffers a drastic slowing down in sampling efficiency. The culprits are geometrically induced transitions (stemming from the periodic boundary conditions) which involve changes in droplet shape from sphere to cylinder and cylinder to slab. Since the overall number density does not discriminate sufficiently between these shapes, it fails as an order parameter for biasing through the transitions. Here we report two approaches to ameliorating these difficulties. The first introduces a droplet shape based order parameter that generates a transition path from vapour to slab states for which spherical and cylindrical droplets are suppressed. The second simply biases with respect to the number density in a tetragonal subvolume of the system. Compared to the standard approach, both methods offer improved sampling, allowing estimates of coexistence parameters and vapor-liquid surface tension for larger system sizes and lower temperatures.

  17. Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry

    2006-07-01

    Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)

  18. Asphaltene precipitation and its effects on the vapour extraction (VAPEX) heavy oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.; Wang, X.; Gu, Y. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada). Petroleum Technology Research Centre; Zhang, H. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Core Laboratories Canada Ltd., Calgary, AB (Canada); Moghadam, L. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-10-15

    One of the most important physical phenomena during the solvent vapour extraction (VAPEX) of heavy oil recovery is asphaltene precipitation. After the asphaltene precipitation occurs, the produced heavy oil is deasphalted in-situ, resulting in a lower viscosity and better quality. However, precipitated asphaltenes may plug some small pores of the reservoir formation, thus reducing its permeability. This paper examined the effects of three operating factors on the asphaltene precipitation during the VAPEX process, notably solvent type; operating pressure; and sand-pack permeability. Eight VAPEX tests were conducted to recover two different Lloydminster heavy oil samples from a rectangular sand-packed physical model with a butane mixture and propane as the respective solvents. The accumulative heavy oil and solvent production from the physical model were measured in the entire VAPEX process. The paper described the materials, experimental set-up, and experimental preparation. The VAPEX test was also explained. Results were presented for sand consolidation; solvent effect; pressure effect; and permeability effect. It was concluded that when the extracting solvent is in a liquid-gas state, asphaltene precipitation occurs and leads to in-situ deasphalting. 15 refs., 3 tabs., 6 figs.

  19. Gaseous saturable absorbers for the Helios CO2 laser system

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Nowak, A.V.; Czuchlewski, S.J.

    1981-01-01

    Saturable absorbers are widely used to suppress parasitic oscillations in large-aperture, high-power CO 2 fusion-laser systems. We report experimental results on SF 6 -based gaseous saturable absorbers used for parasitic suppression in the eight-beam, 10 kJ Helios fusion-laser system. The gas mix effectively quenches self-lasing in the 9 and 10 μm branches of the CO 2 laser spectrum while simultaneously allowing high transmission of subnanosecond multiwavelength pulses for target-irradiation experiments. The gas isolator now in use consists of SF 6 and the additional fluorocarbons: 1, 1-difluoroethane (FC-152a); dichlorodifluoromethane (FC-12); chloropentafluoroethane (FC-115); 1,1-dichloro 2,2-difluoroethylene (FC-1112a); chlorotrifluoroethylene (FC-1113); and perfluorocyclobutane (FC-C318). The saturation of the mix was studied as a function of incident fluence, pressure, cell length, and incident wavelength. Experimental results are presented on the saturation properties of pure SF 6 and FC-152a and compared with the saturation behavior of CO 2 at 400 0 C

  20. Bulk elastic wave propagation in partially saturated porous solids

    International Nuclear Information System (INIS)

    Berryman, J.G.; Thigpen, L.; Chin, R.C.Y.

    1988-01-01

    The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot's equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases

  1. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  2. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  3. Claims in vapour device (e-cigarette) regulation: A Narrative Policy Framework analysis.

    Science.gov (United States)

    O'Leary, Renée; Borland, Ron; Stockwell, Tim; MacDonald, Marjorie

    2017-06-01

    The electronic cigarette or e-cigarette (vapour device) is a consumer product undergoing rapid growth, and governments have been adopting regulations on the sale of the devices and their nicotine liquids. Competing claims about vapour devices have ignited a contentious debate in the public health community. What claims have been taken up in the state arena, and how have they possibly influenced regulatory outcomes? This study utilized Narrative Policy Framework to analyze the claims made about vapour devices in legislation recommendation reports from Queensland Australia, Canada, and the European Union, and the 2016 deeming rule legislation from the United States, and examined the claims and the regulatory outcomes in these jurisdictions. The vast majority of claims in the policy documents represented vapour devices as a threat: an unsafe product harming the health of vapour device users, a gateway product promoting youth tobacco uptake, and a quasi-tobacco product impeding tobacco control. The opportunity for vapour devices to promote cessation or reduce exposure to toxins was very rarely presented, and these positive claims were not discussed at all in two of the four documents studied. The dominant claims of vapour devices as a public health threat have supported regulations that have limited their potential as a harm reduction strategy. Future policy debates should evaluate the opportunities for vapour devices to decrease the health and social burdens of the tobacco epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Utility of DMSP-SSM/I for integrated water vapour over the Indian seas

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. Integrated water vapour obtained from these algorithms is compared with that derived from radiosonde observations at Minicoy and Port. Blair islands. Algorithm-3 of ...

  5. Operating experience of RAPSODIE and PHENIX relating to sodium aerosols and vapours

    Energy Technology Data Exchange (ETDEWEB)

    Delisle, J P; Reboul, M; Elie, X [DRNR/STRS - Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1977-01-01

    The main difficulties resulting from sodium aerosols and vapours in the cover gas which have been encountered for 10 years in RAPSODIE and for 3 years in PHENIX are reviewed: condensation of sodium in annular spaces; plugging in primary gas pipes; plugging of filters and vapour traps. All those problems were easily overcome. (author)

  6. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  7. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  8. Receptor saturation in roentgen films

    Energy Technology Data Exchange (ETDEWEB)

    Strid, K G; Reichmann, S [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1980-01-01

    Roentgen-film recording of small object details of low attenuation differences (e.g. pulmonary vessels) is regularly seen to be impaired when the film is exposed to yield high values of optical density (D). This high-density failure is due to receptor saturation, which implies that at high exposure values most silver halide grains of the film are made developable, leaving few grains available to receive additional informative photons. The receptor saturation is analysed by means of a mathematical model of a non-screen film yielding Dsub(max) = 2.0. Optimum recording, defined by maximum signal-to-noise ratio in the image, is found at D approximately 0.64, corresponding to, on an average, 1.6 photons absorbed per grain. On the other hand, maximum contrast occurs at D approximately 1.4, where, on the average, 3.6 photons are absorbed per grain. The detective quantum efficiency of the film, i.e. the fraction of the photons actually contributing to the information content of the image, drops from 41 per cent at maximum signal-to-noise ratio to a mere 10 per cent at maximum contrast.

  9. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.

    Science.gov (United States)

    Ayad, Mohamad M; El-Hefnawey, Gad; Torad, Nagy L

    2009-08-30

    Thin films of polyaniline base, emeraldine base (EB), coating on the quartz crystal microbalance (QCM) electrode were used as a sensitive layer for the detection of a number of primary aliphatic alcohols such as ethanol, methanol, 2-propanol and 1-propanol vapours. The frequency shifts (Deltaf) of the QCM were increased due to the vapour adsorption into the EB film. Deltaf were found to be linearly correlated with the concentrations of alcohols vapour in part per million (ppm). The sensitivity of the sensor was found to be governed by the chemical structure of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusions of different alcohols vapour were studied and the diffusion coefficients (D) were calculated. It is concluded that the diffusion of the vapours into the EB film follows Fickian kinetics.

  10. Relationships between fluid pressure and capillary pressure in ...

    African Journals Online (AJOL)

    In this work, the Bower's and Gardner's technique of velocity-to fluid pressure gradient methods were applied on seismic reflection data in order to predict fluid pressure of an X- oil field in Niger Delta Basin. Results show significant deflection common with fluid pressure zones . With average connate water saturation Swc ...

  11. Experimental study of heat transfer and pressure drops for ammonia flowing inside a long tube

    International Nuclear Information System (INIS)

    Malek, A.; Colin, R.

    1985-01-01

    This report presents the results of the experimental study of heat transfer coefficients and pressure drops for boiling ammonia in a long tube. The scope of the tests discussed here corresponds to temperatures ranging from 30 to 70 0 C. This touches on various forthcoming applications, including binary cycles of nuclear power plants, as well as miscellaneous energy recovery cycles (heat pumps, geothermal energy, etc.). The results reported here of ammonia evaporators in the temperature range mentionned for two heat exchanger configurations: vertical and horizontal tubes. The correlations expressing the heat transfer coefficients cover the experimental results with a scatter of about +- 0.15% for the three parameters investigated: mass flow rate, heat load, and saturation pressure. As for pressure drops in two-phase flow, an equation expressing the weight of a column of liquid/vapour mixture is satisfactorily compared with the experimental results obtained here. The calculation of this weight is highly important for heat exchanger design, because it helps to predict the recirculation rate in the case of natural circulation. For some cases of evaporators, the calculation of this weight serves to predict the boiling lag in the lower part of the evaporator, which could give rise to low heat transfer coefficient [fr

  12. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  13. Mechanics of non-saturated soils

    International Nuclear Information System (INIS)

    Coussy, O.; Fleureau, J.M.

    2002-01-01

    This book presents the different ways to approach the mechanics of non saturated soils, from the physico-chemical aspect to the mechanical aspect, from the experiment to the theoretical modeling, from the laboratory to the workmanship, and from the microscopic scale to the macroscopic one. Content: water and its representation; experimental bases of the behaviour of non-saturated soils; transfer laws in non-saturated environment; energy approach of the behaviour of non-saturated soils; homogenization for the non-saturated soils; plasticity and hysteresis; dams and backfilling; elaborated barriers. (J.S.)

  14. Thermoluminescence characterisation of chemical vapour deposited diamond films

    CERN Document Server

    Mazzocchi, S; Bucciolini, M; Cuttone, G; Pini, S; Sabini, M G; Sciortino, S

    2002-01-01

    The thermoluminescence (TL) characteristics of a set of six chemical vapour deposited diamond films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterisation has been performed by means of Raman spectroscopy. Their TL responses have been tested with radiotherapy beams ( sup 6 sup 0 Co photons, photons and electrons from a linear accelerator (Linac), 26 MeV protons from a TANDEM accelerator) in the dose range 0.1-7 Gy. The dosimetric characterisation has yielded a very good reproducibility, a very low dependence of the TL response on the type of particle and independence of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the diamond samples compares favourably with that of standard TLD100 dosimeters.

  15. Chemical vapour deposition synthetic diamond: materials, technology and applications

    International Nuclear Information System (INIS)

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  16. Resonances of coherent population trapping in samarium vapours

    International Nuclear Information System (INIS)

    Kolachevsky, Nikolai N; Akimov, A V; Kiselev, N A; Papchenko, A A; Sorokin, Vadim N; Kanorskii, S I

    2001-01-01

    Resonances of coherent population trapping were detected in atomic vapours of the rare-earth element samarium. The coherent population trapping was produced by two external-cavity diode lasers (672 and 686 nm) in a Λ-system formed by the three levels of 154 Sm: the 4f 6 6s 2 ( 7 F 0 ) ground state, the first fine-structure 4f 6 6s 2 ( 7 F 1 ) sublevel of the ground state and the 4f 6 ( 7 F)6s6p( 3 P o ) 9 F o 1 upper level. The dependence of the spectral shapes and resonance contrasts on the polarisation of the laser beams and the direction of the applied magnetic field was studied. The obtained results were analysed. (nonlinear optical phenomena)

  17. Investigation of the summation of copper-vapour laser frequencies

    International Nuclear Information System (INIS)

    Karpukhin, Vyacheslav T; Konev, Yu B; Malikov, Mikhail M

    1998-01-01

    An investigation was made of the conversion of the copper-vapour laser radiation ( λ 1 = 0.51 μm and λ 2 = 0.578 μm) into UV radiation at the sum frequency (λ 3 = 0.271 μm) in a DKDP crystal. The operation of this frequency converter was compared for two magnifications of the laser cavity: M = 5 and 200. The best results were obtained for M = 200 (average UV radiation power 0.75 W, conversion efficiency 12%). A study was made of the characteristics of the formation of radiation pulses representing the two lines in the laser beam as a whole and in its weakly diverging core. In a low-divergence beam the yellow- and green-line pulses were emitted practically simultaneously with approximately the same peak power, which facilitated the sum-frequency generation. (nonlinear optical phenomena)

  18. Chemical vapour deposition of freestanding sub-60 nm graphene gyroids

    Science.gov (United States)

    Cebo, Tomasz; Aria, Adrianus I.; Dolan, James A.; Weatherup, Robert S.; Nakanishi, Kenichi; Kidambi, Piran R.; Divitini, Giorgio; Ducati, Caterina; Steiner, Ullrich; Hofmann, Stephan

    2017-12-01

    The direct chemical vapour deposition of freestanding graphene gyroids with controlled sub-60 nm unit cell sizes is demonstrated. Three-dimensional (3D) nickel templates were fabricated through electrodeposition into a selectively voided triblock terpolymer. The high temperature instability of sub-micron unit cell structures was effectively addressed through the early introduction of the carbon precursor, which stabilizes the metallized gyroidal templates. The as-grown graphene gyroids are self-supporting and can be transferred onto a variety of substrates. Furthermore, they represent the smallest free standing periodic graphene 3D structures yet produced with a pore size of tens of nm, as analysed by electron microscopy and optical spectroscopy. We discuss generality of our methodology for the synthesis of other types of nanoscale, 3D graphene assemblies, and the transferability of this approach to other 2D materials.

  19. Polarized Raman spectroscopy of chemically vapour deposited diamond films

    International Nuclear Information System (INIS)

    Prawer, S.; Nugent, K.W.; Weiser, P.S.

    1994-01-01

    Polarized micro-Raman spectra of chemically vapour deposited diamond films are presented. It is shown that important parameters often extracted from the Raman spectra such as the ratio of the diamond to non-diamond component of the films and the estimation of the level of residual stress depend on the orientation of the diamond crystallites with respect to the polarization of the incident laser beam. The dependence originates from the fact that the Raman scattering from the non-diamond components in the films is almost completely depolarized whilst the scattering from the diamond components is strongly polarized. The results demonstrate the importance of taking polarization into account when attempting to use Raman spectroscopy in even a semi-quantitative fashion for the assessment of the purity, perfection and stress in CVD diamond films. 8 refs., 1 tab. 2 figs

  20. Convective behaviour in vapour-gas-aerosol mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1986-01-01

    Unusual convective behaviour can occur in mixtures of gases and heavy vapour, including stabilization of mixtures hot at the base and 'upside-down' convection in mixtures hot at the top. Previous work produced a criterion for this behaviour which ignored the necessary presence of an aerosol. Modification arising from aerosol condensation is derived and is shown to involve the Lewis and condensation numbers of the mixture, as well as a quantity involving the temperature drop across a boundary layer. It becomes negligible at high temperatures, but can crucially affect the temperature for the onset of unusual behaviour. Aerosol formation produces an asymmetry between the convective forces in boundary layers in which the mixture is being heated and cooled, respectively, for example at the base and roof of a cavity. The convective behaviour discussed could occur in situations relevant to nuclear safety. (author)

  1. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  2. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    Science.gov (United States)

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Modelling (vapour + liquid) and (vapour + liquid + liquid) equilibria of {water (H2O) + methanol (MeOH) + dimethyl ether (DME) + carbon dioxide (CO2)} quaternary system using the Peng-Robinson EoS with Wong-Sandler mixing rule

    International Nuclear Information System (INIS)

    Ye Kongmeng; Freund, Hannsjoerg; Sundmacher, Kai

    2011-01-01

    Highlights: → Phase behaviour modelling of H 2 O-MeOH-DME under pressurized CO 2 (anti-solvent) using PRWS. → PRWS-UNIFAC-PSRK has better performance than PRWS-UNIFAC-Lby in general. → Reliable to extend the VLE and VLLE phase behaviour from binary to multicomponent systems. → Successful prediction of the VLE and VLLE of binary, ternary, and quaternary systems. → Potential to apply the model for designing new DME separation process. - Abstract: The (vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) binary data from literature were correlated using the Peng-Robinson (PR) equation of state (EoS) with the Wong-Sandler mixing rule (WS). Two group contribution activity models were used in the PRWS: UNIFAC-PSRK and UNIFAC-Lby. The systems were successfully extrapolated from the binary systems to ternary and quaternary systems. Results indicate that the PRWS-UNIFAC-PSRK generally displays a better performance than the PRWS-UNIFAC-Lby.

  4. Water vapour retrieval using the Precision Solar Spectroradiometer

    Science.gov (United States)

    Raptis, Panagiotis-Ioannis; Kazadzis, Stelios; Gröbner, Julian; Kouremeti, Natalia; Doppler, Lionel; Becker, Ralf; Helmis, Constantinos

    2018-02-01

    The Precision Solar Spectroradiometer (PSR) is a new spectroradiometer developed at Physikalisch-Meteorologisches Observatorium Davos - World Radiation Center (PMOD-WRC), Davos, measuring direct solar irradiance at the surface, in the 300-1020 nm spectral range and at high temporal resolution. The purpose of this work is to investigate the instrument's potential to retrieve integrated water vapour (IWV) using its spectral measurements. Two different approaches were developed in order to retrieve IWV: the first one uses single-channel and wavelength measurements, following a theoretical water vapour high absorption wavelength, and the second one uses direct sun irradiance integrated at a certain spectral region. IWV results have been validated using a 2-year data set, consisting of an AERONET sun-photometer Cimel CE318, a Global Positioning System (GPS), a microwave radiometer profiler (MWP) and radiosonde retrievals recorded at Meteorological Observatorium Lindenberg, Germany. For the monochromatic approach, better agreement with retrievals from other methods and instruments was achieved using the 946 nm channel, while for the spectral approach the 934-948 nm window was used. Compared to other instruments' retrievals, the monochromatic approach leads to mean relative differences up to 3.3 % with the coefficient of determination (R2) being in the region of 0.87-0.95, while for the spectral approach mean relative differences up to 0.7 % were recorded with R2 in the region of 0.96-0.98. Uncertainties related to IWV retrieval methods were investigated and found to be less than 0.28 cm for both methods. Absolute IWV deviations of differences between PSR and other instruments were determined the range of 0.08-0.30 cm and only in extreme cases would reach up to 15 %.

  5. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  6. Mixed garnet laser crystals for water vapour DIAL transmitter

    Science.gov (United States)

    Treichel, Rainer; Czeranowsky, Christoph; Ileri, Bilge; Petermann, Klaus; Huber, Günter

    2017-11-01

    There are more or less well established technologies such as the optical-parametric-oscillator (OPO), the Raman-laser, and the Ti-Sapphire laser, which are able to emit laser light in the region of the water vapour absorption lines. For WALES the regions of about 935 nm, 942 nm, and 944 nm have been identified as the most suitable wavelength ranges. However, each of these laser designs is highly sophisticated. Current baseline for WALES is the Ti-Sapphire laser. A fourth possibility to achieve these wavelength ranges is to shift the groundstate laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing Aluminium and Yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. Such lasers have the great potential to fulfil the requirements and to become the preferred transmitter concept for WALES as well as for follow up missions. Within a ESA study several crystal compositions have been grown, spectrally characterised and analysed. Absorbed space radiation energy in the crystal lattice causes colour centres, which can reabsorb the pump and laser wavelength and consequently reduce the laser gain considerably. Co-dopants such as Chromium and Cerium are able to suppress the colour centres and are candidates for effective radiation hardening. The results of the crystal tuning, the co-doping with different radiation hardeners and the radiation tests will be presented. There applicability for a space based water vapour DIAL transmitter will be discussed.

  7. Void fraction prediction in saturated flow boiling

    International Nuclear Information System (INIS)

    Francisco J Collado

    2005-01-01

    saturated flow boiling at several pressures of industrial interest. The first result is that the measured specific linear heat is not at all equal to the mixture enthalpy gradient based on the true quality, the difference being a factor quite close to the classic value of the slip ratio, suggesting that this parameter should be included in the thermodynamic heat balance. Furthermore it has been possible to predict this slip factor from the process parameters namely, inlet pressure and velocity, and heat flux. Hence allowing the accurate prediction of the true mass quality from the modified heat balance and so, from classic thermodynamic relationships, to derive accurate values of the void fraction that compares quite well with the measured ones in the Cambridge project. (author)

  8. Saturation in dual radiation action

    International Nuclear Information System (INIS)

    Rossi, H.H.; Zaider, M.

    1988-01-01

    The theory of dual radiation action (TDRA) was developed with the aim of applying microdosimetry to radiobiology. It therefore can deal only with the first phases in a long chain of events that results in patent effects. It is, however, clear that the initial spatial and temporal pattern of energy deposition has a profound influence on the ultimate outcome. As often happens, the early formulation of the theory contained a number of simplifying assumptions. Although most of these were explicitly stated when the first version of the TDRA was published experimental data obtained when the limitations are important were cited as contrary evidence causing considerable confusion. A more advanced version eliminated some of the restrictions but there remain others, one of which relates to certain aspects of saturation which are addressed here

  9. The role of water-vapour photodissociation on the formation of a deep minimum in mesopause ozone

    Directory of Open Access Journals (Sweden)

    I. M. Vardavas

    1998-02-01

    Full Text Available A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.Key words. Atmospheric composition and structure · Middle atmosphere · Thermosphere · Transmission and scattering of radiation

  10. Energy and exergy analysis of multi-effects distillation with thermo vapour compressor (MED-TVC) desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Saffari, A.; Sayyaadi, H. [Khaje Nasir Toosi Univ. of Technology, Tehran (Iran, Islamic Republic of). Faculty of Mechanical Engineering, Energy Division; Alishiri, M. [Fan Niroo Co., Tehran (Iran, Islamic Republic of). Desalination and Water Solutions

    2008-07-01

    Countries around the world have a significant need for high-quality water. The desalination industry is especially important in ensuring the supply of high-quality water, especially the countries around the Persian Gulf such as Iran. A multiple-effect distiller (MED) with thermal vapor compression (TVC) system is more attractive than other thermal systems due to its effectiveness, easier operation and maintenance, and good economics. This paper presented a heat and mass balance relation and comprehensive exergy analysis of a typical MED with a thermal vapour compression desalination system. The purpose of the study was to provide a cost-effective tool that could be applied in the design, development and optimization of thermal desalination plants. The paper discussed the energy simulation, with particular reference to the temperatures for each effect; the condenser, gain output ratio, distillate production rate, brine outlet and feed water rates for each effect; steam consumption; coolant sea water and total sea water inlet rate; pressure distribution in the evaporators; and the entertained vapour rate at TVC. Exergy analysis revealed that the steam ejector and evaporators are the main sources of exergy destruction. It was also shown that lowering the temperature difference can minimize exergy losses. 21 refs., 4 tabs., 16 figs.

  11. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    Science.gov (United States)

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  12. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  13. Electrical and optical properties of Cu–Cr–O thin films fabricated by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lunca Popa, P., E-mail: petru.luncapopa@list.lu; Crêpellière, J.; Leturcq, R.; Lenoble, D.

    2016-08-01

    We present electrical and optical properties of CuCrO{sub 2} thin films deposited by chemical vapour deposition, as well as the influence of depositions' parameters on these properties. Oxygen partial pressure and precursor's concentrations have the greatest influence on optical and electrical properties of the films. Values of conductivities ranging from 10{sup −4} to 10 S/cm were obtained using different deposition conditions. The conductivity is thermally activated with an activation energy ranging from 57 to 283 meV. Thermoelectric measurements confirm the p-type conduction, and demonstrate high carrier concentration typical for a degenerate semiconductor. The as-deposited films show a medium degree of crystallinity, a maximum optical transmission up to 80% in the visible range with a corresponding band gap around 3.2 eV. - Highlights: • CuCrO{sub 2} thin films deposited via a new innovative method - DLICVD. • Band gap and electrical conductivity can be tuned by controlling deposition parameters • Key process parameter is the metallic/oxygen atomic ratio involved in the process • Electrical conductivities values spanning 5 orders of magnitudes were obtained using different deposition parameters.

  14. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  15. The precise measurement of the (vapour + liquid) equilibrium properties for (CO2 + isobutane) binary mixtures

    International Nuclear Information System (INIS)

    Nagata, Y.; Mizutani, K.; Miyamoto, H.

    2011-01-01

    Recently, it has been suggested that natural working fluids, such as CO 2 , hydrocarbons, and their mixtures, could provide a long-term alternative to fluorocarbon refrigerants. (Vapour + liquid) equilibrium (VLE) data for these fluids are essential for the development of equations of state, and for industrial process such as separation and refinement. However, there are large inconsistencies among the available literature data for (CO 2 + isobutane) binary mixtures, and therefore provision of reliable and new measurements with expanded uncertainties is required. In this study, we determined precise VLE data using a new re-circulating type apparatus, which was mainly designed by Akico Co., Japan. An equilibrium cell with an inner volume of about 380 cm 3 and two optical windows was used to observe the phase behaviour. The cell had re-circulating loops and expansion loops that were immersed in a thermostatted liquid bath and air bath, respectively. After establishment of a steady state in these loops, the compositions of the samples were measured by a gas chromatograph (GL Science, GC-3200). The VLE data were measured for CO 2 /propane and CO 2 /isobutane binary mixtures within the temperature range from 300 K to 330 K and at pressures up to 7 MPa. These data were compared with the available literature data and with values predicted by thermodynamic property models.

  16. A fresh look at the thermodynamic consistency of vapour-liquid equilibria data

    International Nuclear Information System (INIS)

    Wisniak, Jaime; Ortega, Juan; Fernández, Luis

    2017-01-01

    Highlights: • The thermodynamic consistency tests commonly used to evaluate VLE data are presented and discussed. • Advantages/disadvantages for each one of test are listed using actual examples. • All manuscripts should include information about VLE variables and test results. • In any case, the Herington test should not be used for VLE data evaluation. • Simultaneous application of several tests is recommended. - Abstract: Design of a separation unit requires real information about the phase equilibrium of the system being handled. Accurate equilibrium data allows the best design from a thermodynamic viewpoint and contributes to a better knowledge about the behaviour of fluids and their mixtures. The principles behind the concept of thermodynamic consistency are presented and discussed. The present state of the art shows that no definite test is available for insuring the quality of the measured values. The main available procedures for testing the consistency of vapour-liquid equilibrium (VLE) data at constant temperature or pressure are reviewed and analysed and recommendations provided for their proper use, for the presentation of VLE results, and also some possible means for determining their quality. Suitable examples are provided about the adequate use of the available tests and about their misuse.

  17. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  18. TECHNIQUES OF EVALUATION OF HEMOGLOBIN OXYGEN SATURATION IN CLINICAL OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    S. Yu. Petrov

    2016-01-01

    Full Text Available Oxygen content in body fluids and tissues is an important indicator of life support functions. A number of ocular pathologies, e.g. glaucoma, are of presumable vascular origin which means altered blood supply and oxygen circulation. Most oxygen is transported in the blood in the association with hemoglobin. When passing through the capillaries, hemoglobin releases oxygen, converting from oxygenated form to deoxygenated form. This process is accompanied by the changes in spectral characteristics of hemoglobin which result in different colors of arterial and venous blood. Photometric technique for the measurement of oxygen saturation in blood is based on the differences in light absorption by different forms of hemoglobin. The measurement of saturation is called oximetry. Pulse oximetry with assessment of tissue oxygenation is the most commonly used method in medicine. The degree of hemoglobin oxygen saturation in the eye blood vessels is the most accessible for noninvasive studies during ophthalmoscopy and informative. Numerous studies showed the importance of this parameter for the diagnosis of retinopathy of various genesis, metabolic status analysis in hyperglycemia, diagnosis and control of treatment of glaucoma and other diseases involving alterations in eye blood supply. The specific method for evaluation of oxygen concentration is the measurement of pressure of oxygen dissolved in the blood, i.e. partial pressure of oxygen. In ophthalmological practice, this parameter is measured in anterior chamber fluid evaluating oxygen level for several ophthalmopathies including different forms of glaucoma, for instillations of hypotensive eye drops as well as in vitreous body near to the optic disc under various levels of intraocular pressure. Currently, monitoring of oxygen saturation in retinal blood vessels, i.e. retinal oximetry, is well developed. This technique is based on the assessment of light absorption by blood depending on

  19. Saturation behaviour of the LHC NEG coated beam pipes

    CERN Document Server

    Porcelli, T; Lanza, G; Baglin, V; Jimenez, J M

    2012-01-01

    In the CERN Large Hadron Collider (LHC), about 6 km of the UHV beam pipe are at room temperature and serve as experimental or utility insertions. TiZrV non-evaporable getter (NEG) coating is used to maintain the design pressure during beam operation. Molecular desorption due to dynamic effects is stimulated during protons operation at high intensity. This phenomenon produces an important gas load from the vacuum chamber walls, which could lead to a partial or total saturation of the NEG coating. To keep the design vacuum performances and to schedule technical interventions for NEG reactivation, it is necessary to take into account all these aspects and to regularly evaluate the saturation level of the NEG coating. Experimental studies of a typical LHC vacuum sector were conducted in the laboratory in order to identify the best method to assess the saturation level of the beam pipe. Partial saturation of the NEG was performed and the effective pumping speed, transmission and capture probability are analysed.

  20. Nuclear determination of saturation profiles in core plugs

    International Nuclear Information System (INIS)

    Sletsgaard, J.; Oelgaard, P.L.

    1997-01-01

    A method to determine liquid saturations in core plugs during flooding is of importance when the relative permeability and capillary pressure function are to be determined. This part of the EFP-95 project uses transmission of γ-radiation to determine these saturations. In γ-transmission measurements, the electron density of the given substance is measured. This is an advantage as compared to methods that use electric conductivity, since neither oil nor gas conducts electricity. At the moment a single 137 Cs-source is used, but a theoretical investigation of whether it is possible to determine three saturations, using two radioactive sources with different γ-energies, has been performed. Measurements were made on three core plugs. To make sure that the measurements could be reproduced, all the plugs had a point of reference, i.e. a mark so that it was possible to place the plug same way every time. Two computer programs for calculation of saturation and porosity and the experimental setup are listed. (EG)