WorldWideScience

Sample records for vaporizers ambient emanators

  1. Unexpected O and O3 production in the effluent of He/O2 microplasma jets emanating into ambient air

    International Nuclear Information System (INIS)

    Ellerweg, D; Von Keudell, A; Benedikt, J

    2012-01-01

    Microplasma jets are commonly used to treat samples in ambient air. The effect of admixing air into the effluent may severely affect the composition of the emerging species. Here, the effluent of a He/O 2 microplasma jet has been analyzed in a helium and in an air atmosphere by molecular beam mass spectrometry. First, the composition of the effluent in air was recorded as a function of the distance to determine how fast air admixes into the effluent. Then, the spatial distribution of atomic oxygen and ozone in the effluent was recorded in ambient air and compared with measurements in a helium atmosphere. Additionally, a fluid model of the gas flow with reaction kinetics of reactive oxygen species in the effluent was constructed. In ambient air, the O density declines only slightly faster with distance compared with a helium atmosphere. In contrast, the O 3 density in ambient air increases significantly faster with distance compared with a helium atmosphere. This unexpected behavior cannot be explained by simple recombination reactions of O atoms with O 2 molecules. A reaction scheme involving the reaction of plasma-produced excited O 2 * species of unknown identity with ground state O 2 molecules is proposed as a possible explanation for these observations. (paper)

  2. Radon emanation characteristics of uranium mill tailings

    International Nuclear Information System (INIS)

    Nielson, K.K.; Freeman, H.D.; Hartley, J.N.; Mauch, M.L.; Rogers, V.C.

    1982-01-01

    Radon emanation from uranium mill tailings was examined with respect to the mechanisms of emanation and the physical properties of the tailings which affect emanation. Radon emanation coefficients were measured at ambient moisture on 135 samples from the 1981 field test site at the Grand Junction tailings pile. These coefficients showed a similar trend with moisture to those observed previously with uranium ores, and averaged 0.10 + or - 0.02 at dryness and 0.38 + or - 0.04 for all samples having greater than five weight-percent moisture. Small differences were noted between the maximum values of the coefficients for the sand and slime fractions of the tailings. Separate measurements on tailings from the Vitro tailings pile exhibited much lower emanation coefficients for moist samples, and similar coefficients for dry samples. Alternative emanation measurement techniques were examined and procedures are recommended for use in future work

  3. Radon emanation from soils

    International Nuclear Information System (INIS)

    Markkanen, M.; Arvela, H.

    1992-01-01

    The results of gamma spectrometric sample measurements of radon ( 222 Rn) emanation coefficients and radium concentrations ( 226 Ra) from about 800 Finnish soil samples are presented. The radon emanation rate was measured in about 400 soil samples, using radon-tight cans and Lucas cells. The effects of water content and temperature on radon emanation were investigated, using various samples of different soil types. Radon emanation and the effect of water content on radon emanation were investigated separately for different grain sizes (samples of till). The results provide some information on radon emanation in different soil types and relate emanation in laboratory conditions to conditions in ground soil. In routine measurements of radon emanation from soil samples, use of a 5% water content was considered advisable. The correction coefficients of radon emanation varied between 0.3 and 1.5, depending on the water content and soil type. At 5% water content, hardly any difference was found between radon emanation at temperatures of 20 and 1 o C. Radon emanation was found to be an inverse function of grain sizes larger than 0.5 mm in diameter. (author)

  4. SnO2 thin film synthesis for organic vapors sensing at ambient temperature

    Directory of Open Access Journals (Sweden)

    N.H. Touidjen

    2016-12-01

    Full Text Available The present work is a study of tin dioxide (SnO2 based thin sensitive layer dedicated to organic vapors detection at ambient temperature. SnO2 thin film was deposited by chemical spray pyrolysis technique. The glass substrate temperature was kept to 400 °C, using a starting solution of 0.1 M tin (II dichloride dihydrate (SnCl2, 2H2O. Films structural and morphological properties were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscope (AFM respectively. Films optical characteristics were studied using UV-VIS spectrophotometer. XRD revealed the presence of pure SnO2 polycrystalline thin film with a tetragonal rutile structure. The SEM and AFM observations confirmed the granular morphology with presence of pores in the film surface. The prepared film was tested in various organic vapors (ethanol, methanol and acetone at ambient operating temperature (25 °C ± 2 °C. The obtained results suggested that SnO2 is more sensitive to ethanol vapor with a maximum sensitivity of 35% higher than to methanol and acetone vapors (1% and 3%. The realized SnO2 based sensor demonstrated fast response and recovery times as revealed by the values of 2 s to 3 s towards 47 ppm of ethanol vapor. Keywords: SnO2 thin film, Sensitivity, XRD, SEM, AFM, UV–visible

  5. Numerical and Experimental Study of an Ambient Air Vaporizer Coupled with a Compact Heat Exchanger

    Science.gov (United States)

    Kimura, Randon

    The University of Washington was tasked with designing a "21st century engine" that will make use of the thermal energy available in cryogenic gasses due to their coldness. There are currently large quantities of cryogenic gases stored throughout the U.S. at industrial facilities whereupon the regasification process, the potential for the fluid to do work is wasted. The engine proposed by the University of Washington will try to capture some of that wasted energy. One technical challenge that must be overcome during the regasification process is providing frost free operation. This thesis presents the numerical analysis and experimental testing of a passive heat exchange system that uses ambient vaporizers coupled with compact heat exchangers to provide frost free operation while minimizing pressure drop.

  6. Color change of Blue butterfly wing scales in an air - Vapor ambient

    Science.gov (United States)

    Kertész, Krisztián; Piszter, Gábor; Jakab, Emma; Bálint, Zsolt; Vértesy, Zofia; Biró, László Péter

    2013-09-01

    Photonic crystals are periodic dielectric nanocomposites, which have photonic band gaps that forbid the propagation of light within certain frequency ranges. The optical response of such nanoarchitectures on chemical changes in the environment is determined by the spectral change of the reflected light, and depends on the composition of the ambient atmosphere and on the nanostructure characteristics. We carried out reflectance measurements on closely related Blue lycaenid butterfly males possessing so-called "pepper-pot" type photonic nanoarchitecture in their scales covering their dorsal wing surfaces. Experiments were carried out changing the concentration and nature of test vapors while monitoring the spectral variations in time. All the tests were done with the sample temperature set at, and below the room temperature. The spectral changes were found to be linear with the increasing of concentration and the signal amplitude is higher at lower temperatures. The mechanism of reflectance spectra modification is based on capillary condensation of the vapors penetrating in the nanostructure. These structures of natural origin may serve as cheap, environmentally free and biodegradable sensor elements. The study of these nanoarchitectures of biologic origin could be the source of various new bioinspired systems.

  7. Color change of Blue butterfly wing scales in an air – Vapor ambient

    International Nuclear Information System (INIS)

    Kertész, Krisztián; Piszter, Gábor; Jakab, Emma; Bálint, Zsolt; Vértesy, Zofia; Biró, László Péter

    2013-01-01

    Photonic crystals are periodic dielectric nanocomposites, which have photonic band gaps that forbid the propagation of light within certain frequency ranges. The optical response of such nanoarchitectures on chemical changes in the environment is determined by the spectral change of the reflected light, and depends on the composition of the ambient atmosphere and on the nanostructure characteristics. We carried out reflectance measurements on closely related Blue lycaenid butterfly males possessing so-called “pepper-pot” type photonic nanoarchitecture in their scales covering their dorsal wing surfaces. Experiments were carried out changing the concentration and nature of test vapors while monitoring the spectral variations in time. All the tests were done with the sample temperature set at, and below the room temperature. The spectral changes were found to be linear with the increasing of concentration and the signal amplitude is higher at lower temperatures. The mechanism of reflectance spectra modification is based on capillary condensation of the vapors penetrating in the nanostructure. These structures of natural origin may serve as cheap, environmentally free and biodegradable sensor elements. The study of these nanoarchitectures of biologic origin could be the source of various new bioinspired systems.

  8. Color change of Blue butterfly wing scales in an air – Vapor ambient

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, Krisztián, E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Centre for Natural Sciences, H-1525 Budapest, PO Box 49, Hungary(http://www.nanotechnology.hu) (Hungary); Piszter, Gábor [Institute of Technical Physics and Materials Science, Centre for Natural Sciences, H-1525 Budapest, PO Box 49, Hungary(http://www.nanotechnology.hu) (Hungary); Jakab, Emma [Institute of Materials and Environmental Chemistry, Centre for Natural Sciences, H-1525 Budapest, PO Box 17 (Hungary); Bálint, Zsolt [Hungarian Natural History Museum, Baross utca 13, H-1088 Budapest (Hungary); Vértesy, Zofia; Biró, László Péter [Institute of Technical Physics and Materials Science, Centre for Natural Sciences, H-1525 Budapest, PO Box 49, Hungary(http://www.nanotechnology.hu) (Hungary)

    2013-09-15

    Photonic crystals are periodic dielectric nanocomposites, which have photonic band gaps that forbid the propagation of light within certain frequency ranges. The optical response of such nanoarchitectures on chemical changes in the environment is determined by the spectral change of the reflected light, and depends on the composition of the ambient atmosphere and on the nanostructure characteristics. We carried out reflectance measurements on closely related Blue lycaenid butterfly males possessing so-called “pepper-pot” type photonic nanoarchitecture in their scales covering their dorsal wing surfaces. Experiments were carried out changing the concentration and nature of test vapors while monitoring the spectral variations in time. All the tests were done with the sample temperature set at, and below the room temperature. The spectral changes were found to be linear with the increasing of concentration and the signal amplitude is higher at lower temperatures. The mechanism of reflectance spectra modification is based on capillary condensation of the vapors penetrating in the nanostructure. These structures of natural origin may serve as cheap, environmentally free and biodegradable sensor elements. The study of these nanoarchitectures of biologic origin could be the source of various new bioinspired systems.

  9. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    International Nuclear Information System (INIS)

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V b ) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel's color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber

  10. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    International Nuclear Information System (INIS)

    Zhao, W.; Steidl, M.; Paszuk, A.; Brückner, S.; Dobrich, A.; Supplie, O.; Kleinschmidt, P.; Hannappel, T.

    2017-01-01

    Highlights: • We investigate the Si(111) surface prepared in CVD ambient at 1000 °C in 950 mbar H_2. • UHV-based XPS, LEED, STM and FTIR as well as ambient AFM are applied. • After processing the Si(111) surface is free of contamination and atomically flat. • The surface exhibits a (1 × 1) reconstruction and monohydride termination. • Wet-chemical pretreatment and homoepitaxy are required for a regular step structure. - Abstract: For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H_2-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H_2 ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  11. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W.; Steidl, M.; Paszuk, A. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Brückner, S. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany); Dobrich, A. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Supplie, O. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany); Kleinschmidt, P. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Hannappel, T., E-mail: thomas.hannappel@tu-ilmenau.de [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany)

    2017-01-15

    Highlights: • We investigate the Si(111) surface prepared in CVD ambient at 1000 °C in 950 mbar H{sub 2}. • UHV-based XPS, LEED, STM and FTIR as well as ambient AFM are applied. • After processing the Si(111) surface is free of contamination and atomically flat. • The surface exhibits a (1 × 1) reconstruction and monohydride termination. • Wet-chemical pretreatment and homoepitaxy are required for a regular step structure. - Abstract: For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H{sub 2}-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H{sub 2} ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  12. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    Science.gov (United States)

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  13. Radon emanation on San Andreas Fault

    International Nuclear Information System (INIS)

    King, C.-Y.

    1978-01-01

    It is stated that subsurface radon emanation monitored in shallow dry holes along an active segment of the San Andreas fault in central California shows spatially coherent large temporal variations that seem to be correlated with local seismicity. (author)

  14. Radon emanation in tectonically active areas

    International Nuclear Information System (INIS)

    King, C.Y.

    1980-01-01

    Subsurface radon emanation has been continuously monitored for up to three years by the Track Etch method in shallow dry holes at more than 60 sites along several tectonic faults in central California and at 9 sites near the Kilauea volcano in Hawaii. The measured emanation in these tectonically active areas shows large long-term variations that may be related mainly to crustal strain changes

  15. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  16. Radon emanation coefficients in sandy soils

    International Nuclear Information System (INIS)

    Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.

    1998-01-01

    In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)

  17. Removal of mercury vapor from ambient air of dental clinics using an air cleaning system based on silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Chiman Saeidi

    2015-06-01

    Full Text Available Background & objective: Mercury is a toxic and bio-accumulative pollutant that has adverse effects on environmental and human health. There have been a number of attempts to regulate mercury emissions tothe atmosphere. Silver nanoparticles are a number of materials that have highly potential to absorb mercury and formation of mercury amalgam.The aim of this study is removal of mercury vapors in the dental clinic using a n a ir cleaning system based on silver nanoparticles. Methods: In this study, silver nanoparticles coated on the bed of foam and chemical and structural properties were determined using a number of methods such as UV-VIS-NIR spectroscopy and Scanning Electron Microscope (SEM connected the X-ray Emission Spectroscopy Energy (EDS. The a ir cleaning system efficiency to remove of the mercury vapor in simulated conditions in the laboratory and real conditions in the dental clinicwere measured by Cold Vapor Atomic Absorption Spectroscopy (CVAAS. Results: The images of SEM, showed that average sizeof silver nanoparticles in colloidal solution was ∼ 30nm and distribution of silver nanoparticles coated on foam was good. EDS spectrum confirmed associated the presence of silver nanoparticles coated on foam. The significantly difference observed between the concentration of mercury vapor in the off state (9.43 ± 0.342 μg.m-3 and on state (0.51 ± 0.031μg.m-3 of the a ir cleaning system. The mercury vapor removal efficiencyof the a ir cleaning system was calculated 95%. Conclusion : The air cleaning system based on foam coated by silver nanoparticles, undertaken to provide the advantages such as use facilitating, highly efficient operational capacity and cost effective, have highly sufficiency to remove mercury vapor from dental clinics.

  18. Fractal theory of radon emanation from solids

    International Nuclear Information System (INIS)

    Semkow, T.M.

    1991-01-01

    The author developed a fractal theory of Rn emanation from solids, based on α recoil from the α decay of Ra. Range straggling of the recoiling Rn atoms in the solid state is included and the fractal geometry is used to describe the roughness of the emanating surface. A fractal dimension D of the surface and the median projected range become important parameters in calculating the radon emanating power E R from solids. A relation between E R and the specific surface area measured by the gas adsorption is derived for the first time, assuming a uniform distribution of the precursor Ra throughout the samples. It is suggested that the E R measurements can be used to determine D of the surfaces on the scale from tens to hundreds of nm. One obtains, for instance, D = 2.17 ± 0.06 for Lipari volcanic glass and D = 2.83 ± 0.03 for pitchblende. In addition, the author suggests a new process of penetrating recoil and modify the role of indirect recoil. The penetrating recoil may be important for rough surfaces, in which case Rn loses its kinetic energy by penetrating a large number of small surface irregularities. The indirect recoil may be important at the very last stage of energy-loss process, for kinetic energies below ∼ 5 keV

  19. U.S. laboratory and field trials of metofluthrin (SumiOne) emanators for reducing mosquito biting outdoors.

    Science.gov (United States)

    Lucas, J R; Shono, Y; Iwasaki, T; Ishiwatari, T; Spero, N; Benzon, G

    2007-03-01

    Metofluthrin (SumiOne is a novel, vapor-active pyrethroid that is highly effective against mosquitoes. Laboratory and field trials were conducted in the United States to evaluate the mosquito repellent activity of metofluthrin-treated paper substrates ("emanators"). Initial studies were conducted to evaluate the field performance of 900-cm(2) paper fan emanators impregnated with 160 mg metofluthrin, where Aedes canadensis was the predominant species. Emanators reduced landing rates on human volunteers by between 85% and 100% compared to untreated controls. Subsequent tests with 4,000-cm(2) paper strip emanators impregnated with 200 mg metofluthrin were conducted in a wind tunnel as a precursor to conducting field trials using human bait and laboratory-reared Aedes aegypti. Paper strips, which were pre-aged in a fume hood to determine duration of protection, gave 89-91% reductions in landing rates compared with controls. Similar reductions in biting activity were also noted. Following these tests, field trials to assess effect on landing rates were conducted with emanators positioned 1.22 m on either side of volunteers protected from biting by Tyvek suits, with pre- and posttreatment counts being made. In Florida (predominantly Ochlerotatus spp.) 91-95% reductions were noted 10-30 min after emanators were deployed, while in Washington State (mostly Aedes vexans) 95-97% reductions were observed. These results demonstrate that metofluthrin-treated emanators are highly effective at repelling mosquitoes.

  20. Radon emanation fractions from concretes containing fly ash and metakaolin

    International Nuclear Information System (INIS)

    Taylor-Lange, Sarah C.; Juenger, Maria C.G.; Siegel, Jeffrey A.

    2014-01-01

    Radon ( 222 Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration

  1. Detailed radon emanation mapping in Northern Latium

    International Nuclear Information System (INIS)

    Aumento, F.

    1993-01-01

    Detailed radon surveys over 5,000 km 2 of Northern Latium, covering the northern part of the volcanic province of Central Italy, commenced in the mid eighties as part of a geothermal exploration programme; the surveys have subsequently been continued and amplified with environmental protection in mind. The area is now covered by ground emission maps, radon levels in water supplies, emissions from the different lithologies and concentrations in houses. The high uraniferous content of the volcanics, the porous nature of the ubiquitous pyroclastics, and active geothermal systems in the area combine to convey to ground level high concentrations of radon. The emissions show strong lateral variations which are geologically and tectonically controlled, such that only detailed surveys reveal the extent and locations of anomalous radon emanations. Unfortunately, long ago towns often developed in strategic locations. For Northern Latium this means on volcanic highs formed by faulted tuff blocks, two geological features associated with particularly high radon emissions. As a result, in contrast to the low average indoor radon concentrations for the greater part of Italy, in some of these town the average values exceed 450 Bq/m 3 . (author). 1 fig

  2. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    Science.gov (United States)

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman

  3. Exposure emanation methods of prospecting for mineral deposits

    International Nuclear Information System (INIS)

    Titov, V.L.; Venkov, V.A.; Avdeeva, T.Ya.; Kuvshinnikova, E.I.

    1985-01-01

    Fundamentals of the theory and practice of new methods for prospecting of mineral deposits-exposure emanation surveys are stated. Different modifications of these methods are considered: emanation track method, electron alphametry, technique based on the recording of alpha radiation of radon daughter products and thermoluminescent dosemeters. Advanatges of these methods as compared with the conventional emanation survey using emanometers and methods based on the recording of gamma radiation intensity are shown. Problems of the theory and practical aspects of the concrete modifications application as well as systems for data acquisition and processing fields of the methods application, technique of works performance and survey data interpretation are considered in detail; methods sensitivity, probable mechanisms of radon transport in bowels, role of a depth component of the radiactive emanation concentration field are evaluated. Examples of the method application in practice are given, emanation anomalies and their evaluation methods are classified

  4. Radon emanation from backfilled mill tailings in underground uranium mine.

    Science.gov (United States)

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. © 2013.

  6. Emanations and 'induced' radioactivity: from mystery to (mis)use

    International Nuclear Information System (INIS)

    Kolar, Z.I.

    1999-01-01

    The natural Rn isotopes were discovered within the period 1899-1902 and at that time referred to as emanations because they came out (emanated) of sources/materials containing actinium, thorium and radium, respectively. The (somewhat mysterious) emanations appeared to disintegrate into radioactive decay products which by depositing at solid surfaces gave rise to 'induced' radioactivity i.e. radioactive substances with various half-lives. Following the discovery of the emanations the volume of the research involving them and their disintegration products grew steeply. The identity of a number of these radioactive products was soon established. Radium emanation was soon used as a source of RaD ( 210 Pb) to be applied as an 'indicator' (radiotracer) for lead in a study on the solubility of lead sulphide and lead chromate. Moreover, radium and its emanation were introduced into the medical practice. Inhaling radon and drinking radon-containing water became an accepted medicinal use (or misuse?) of that gas. Shortly after the turn of the century, the healing (?) action of natural springs (spas) was attributed to their radium emanation, i.e. radon. Bathing in radioactive spring water and drinking it became very popular. Even today, bathing in radon-containing water is still a common medical treatment in Jachymov, Czech Republic. (author)

  7. Discharge of water containing waste emanating from land to the ...

    African Journals Online (AJOL)

    containing waste (wastewater), which emanates from land-based sources and which directly impact on the marine environment. These sources include sea outfalls, storm water drains, canals, rivers and diffuse sources of pollution. To date ...

  8. Intercomparison of radon emanation in Moroccan and Tunisian phosphate rocks

    International Nuclear Information System (INIS)

    Khalil, A.; Membrey, F.; Klein, D.; Chambaudet, A.; Iraqui, R.

    1992-01-01

    We suggest a method for measuring the emanation of radon gas of phosphates mineral from different origins using solid state track nuclear detectors (CR39 and LR115) with the aim to determinate radioactivity effects on the human. (author)

  9. Uranium-bearing wastes and their radon emanation

    International Nuclear Information System (INIS)

    Sasaki, Tomozo; Imamura, Mitsutaka; Gunji, Yasuyoshi

    2007-01-01

    There are no data available with regard to radon emanation coefficients for uranium-bearing wastes; such data are needed for the assessment of radiation exposure from radon that will be generated in the distant future as one uranium progeny at shallow land disposal sites for uranium-bearing wastes. There are many kinds of uranium-bearing wastes. However, it is not necessary to measure the radon emanation coefficients for all of them for two reasons. First, the radon emanation coefficients for uranium-bearing wastes contaminated by dissolved uranium are determined by the uranium chemical form, the manner of uranium deposition on the waste matrix, and the size of the particles which constitute the waste matrix. Therefore, only a few representative measurements are sufficient for such uranium-bearing wastes. Second, it is possible to make theoretical calculations of radon emanation coefficients for uranium-bearing wastes contaminated by UO 2 particles before sintering. In the present study, simulated uranium-bearing wastes contaminated by dissolved uranium were prepared, their radon emanation coefficients were measured and radon emanation coefficients were calculated theoretically for uranium-bearing wastes contaminated by UO 2 particles before sintering. The obtained radon emanation coefficients are distributed at higher values than those for ubiquitous soils and rocks in the natural environment. Therefore, it is not correct to just compare uranium concentrations among uranium-bearing wastes, ubiquitous soils and rocks in terms of radiation exposure. The radon emanation coefficients obtained in the present study have to be employed together with the uranium concentration in uranium-bearing wastes in order to achieve proper assessment of radiation exposure. (author)

  10. Emanation of radon-222 in uraniferous phosphorite from Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Santos, M.L.O.; França, E.J.; Amaral, D.S.; Silva, K.E.M.; Hazin, C.A.; Farias, E.E.G.

    2017-01-01

    The concentration of radon-222 activity available for transport to the surface through the pore space can be defined as radon emanation. From the decay of radium-226, whose half-life is 1850 years, it is associated with the development of neoplasia, such as lung cancer. In the Metropolitan Region of Recife, sedimentary rocks known as phosphorites have been known since 1959, so, from the radiometric characterization of the Paulista and Igarassu Municipality, in Pernambuco, emanation tests were carried out, aiming to determine the emanation power of radon in samples of uraniferous phosphorite from the Recife Metropolitan Region. Initially, 6 independent samples of phosphorites with activity concentration of 226 Ra> 400 Bq kg -1 were comminuted. Portions of 5g were conditioned in a radon chamber with 500 mL volume for measurements. The linear fit of the model converged after 200 interactions with selection of the best fit by the Chi-Square test, through the Origin® 8.0 program. After analysis of the samples, radon emanation power was estimated in the range of 7% to 15%, with a mean value of 10.8%. The methodology used to determine the emanation parameters in samples of uraniferous phosphorite was adequate, observing an inversely proportional relation between the concentration of the radium-226 and the emanation power

  11. 用于空气中水蒸气吸-脱附的微孔泡沫炭制备研究%Preparation of microporous carbon foams for adsorption/desorption of water vapor in ambient air

    Institute of Scientific and Technical Information of China (English)

    Naoto Ohta; Yoko Nishi; Takahiro Morishita; Yumiko Ieko; Akifumi Ito; Michio Inagaki

    2008-01-01

    以蜜胺泡沫体为模板,采用氟化聚酰业胺制备了微孔泡沫炭.测定了其对环境中水气的吸附/脱附行为,发现:泡沫炭在空气中400℃活化1 h,可以提高其对水气的吸附能力.与活化前相比,对水气的吸附量几乎高达3倍,尽管其微孔容积仅增大了1.5倍.对环境水气中的可逆吸附率与微孔容积成线性关系,微孔容积为0.75mL/g的泡沫炭,其水气吸附率约为质最分数40%.%Microporous carbon foams were prepared from a fluorinated polyimide using melamine foam as a template. The adsorption/desorption behavior of water vapor in ambient air was examined. The activation of carbon foams at 400℃ for 1 h in air was found to be effective in increasing the adsorptivity of water vapor. The amount of water vapor adsorbed after air activation was almost 3 times as large as that before activation, although the micropore volume increase was only 1.5 times. The reversible adsorptivity for water vapor in ambient air showed a linear dependence on micropore volume with an adsorptivity of about 40% mass fraction for a micropore volume of 0.75 mL/g.

  12. Study of radon emanation from uranium mill tailings. Relations between radon emanating power and physicochemical properties of the material

    International Nuclear Information System (INIS)

    Pellegrini, D.

    1999-01-01

    The uranium extraction from ores leads to large amounts of mill tailings still containing radionuclides, such as thorium-230 and radium-226, which generate radon-222. Without protective action, radon exposition may be high enough to cause concern for health of populations living in the vicinity of an uranium mill tailings disposal. This exposition pathway has therefore to be taken into account in the radiological impact studies. The emanating power, i.e. the part of radon atoms which escape from the solid particles, is directly involved in the radon source term evaluation. It may be determined for a given material by laboratory measurements. Emanating powers from 0.08 to 0.33 have been obtained for mill tailings from Jouac (Limousin, France), at various moisture contents. In order to reduce the relations of dependence between some of the emanation parameters, more simple phases, kaolinite and polymeric resins, have been studied. Those experiments have led us to the selection of the mechanisms and the parameters to consider for the development of an emanation modelling. The whole of the results obtained point out the radon sorption, in various proportions depending on the materials. The moisture content influence on the emanation from materials containing fine particles have been confirmed: the emanation increases with this parameter until a continuous water film surrounding the particles have been formed, and then become constant. This 'water effect' occurs in a moisture content range, which depends on the material porosity. Elsewhere, the presence of amorphous phases may led to a high radon emanation. (author)

  13. Anomalous radon emanation linked to preseismic electromagnetic phenomena

    Directory of Open Access Journals (Sweden)

    Y. Omori

    2007-10-01

    Full Text Available Anomalous emanation of radon (222Rn was observed preceding large earthquakes and is considered to be linked to preseismic electromagnetic phenomena (e.g. great changes of atmospheric electric field and ionospheric disturbances. Here we analyze atmospheric radon concentration and estimate changes of electrical conditions in atmosphere due to preseismic radon anomaly. The increase of radon emanation obeys crustal damage evolution, following a power-law of time-to-earthquake. Moreover, the radon emanation decreases the atmospheric electric field by 40%, besides influencing the maximum strength of atmospheric electric field by 104–105 V/m enough to trigger ionospheric disturbances. These changes are within the ranges observed or explaining electromagnetic phenomena associated with large earthquakes.

  14. Emanation thermal analysis of SiC based materials

    Czech Academy of Sciences Publication Activity Database

    Bálek, V.; Zeleňák, V.; Mitsuhashi, T.; Bakardjieva, Snejana; Šubrt, Jan; Haneda, H.

    2002-01-01

    Roč. 67, č. 1 (2002), s. 83-89 ISSN 1418-2874 R&D Projects: GA MŠk ME 180 Grant - others:EFDA(XE) TTMA-001 Institutional research plan: CEZ:AV0Z4032918 Keywords : emanation thermal analysis * SEM * SiC nanocomposites Subject RIV: CA - Inorganic Chemistry Impact factor: 0.598, year: 2002

  15. Calculation of radon emanation from a radiferous pile

    International Nuclear Information System (INIS)

    Zettwoog, Pierre.

    1980-07-01

    The theory of unidimensional diffusion of radon in a porous medium, either radiferous or not, is presented taking into account the effects of humidity and the adsorption of radon on the medium. Experimental procedures for determining the two main characteristics of diffusion in a medium, the relaxation length of the diffusion of radon and the emanating power, are described [fr

  16. Transport properties and microstructure changes of talc characterized by emanation

    Czech Academy of Sciences Publication Activity Database

    Pérez-Maqueda, L. A.; Balek, Vladimír; Poyato, J.; Šubrt, Jan; Beneš, M.; Ramírez-Valle, V.; Buntseva, I.M.; Beckman, I. N.; Pérez-Rodríguez, J. L.

    2008-01-01

    Roč. 92, č. 1 (2008), s. 253-258 ISSN 1388-6150 R&D Projects: GA MŠk LC523 Grant - others:MST(ES) MAT 2005-04838 Institutional research plan: CEZ:AV0Z40320502 Keywords : DTA emanation thermal analysis * microstructure changes * radon diffusion Subject RIV: CA - Inorganic Chemistry Impact factor: 1.630, year: 2008

  17. Estimation of radon emanation coefficient for soil and flyash

    International Nuclear Information System (INIS)

    Sahu, S.K.; Swarnkar, M.; Ajmal, P.Y.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Since terrestrial materials include radium ( 226 Ra) originating from the decay of uranium ( 238 U), all such materials release radon ( 222 Rn) to varying degrees. When a radium atom decays to radon, the energy generated is strong enough to send the radon atom a distance of about 40 nanometers-this is known as alpha recoil. For a radon atom to escape the radium atom must be within the recoil distance from the grain surface of flyash or soil and the direction of recoil must send the radon atom toward the outside of the grain. Therefore, all of the radon atoms generated by the radium contained in flyash or soil grain are actually not released into pore spaces and mobilized. The fraction of radon atoms generated from radium decay that are released from into flyash or soil pore space is defined as the radon emanation coefficient or emanating power, of the material. Grain size and shape are two of the important factors that control the radon emanation coefficient because they determine in part how much uranium and radium is near enough to the surface of the grain to allow the newly-formed radon to escape into a pore space. In a porous medium, where the radon is in radioactive equilibrium with its parent radium, the emanation coefficient is given by the expression: where C 0 is the undiluted radon activity concentration in the pores of the medium, and C Ra is the radium activity concentration of the sample. The 226 Ra activity concentration of the flyash and soil sample were determined by using the g-spectrometry. C 0 was determined by the can experiment using LR-115 for flyash and soil samples. The C 0 values for flyash and soil samples were found to be 245.7 Bq/m 3 and 714.3 Bq/m 3 respectively. The radon emanation coefficient for flyash was found to be 0.0024 while that for soil was 0.0092. Therefore the soil sample was found to be four times higher radon emanation coefficient than flyash which is in line with the results reported in the literatures. This may suggest

  18. A micromegas detector for {sup 222}Rn emanations measurements

    Energy Technology Data Exchange (ETDEWEB)

    García, J. A.; Garza, J. G.; Irastorza, I. G.; Mirallas, H. [Laboratorio de Física Nuclear y Altas Energías, Universidad de Zaragoza, Zaragoza (Spain)

    2013-08-08

    The {sup 222}Rn emanation has significant contribution in the overall background for rare event searches experiments. In order to measure this emanations a high sensitivity detector has been designed. The detection method is based on the electrostatic collection of the {sup 222}Rn daughters on a Micromegas detector. Using a chamber with a volume of 21.2 l for the collection of {sup 218}Po and {sup 214}Po progeny of {sup 222}Rn and a 12 × 12cm{sup 2} pixelized Micromegas for the α detection. The advantages of the Micromegas detectors are the low intrinsic radioactivity and the track reconstruction of the α’s, having excellent capabilities for event discrimination.

  19. Recalibration of the 226Ra emanation analysis system

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.; Markun, F.

    1982-01-01

    The 226 Ra emanation system was found to require recalibration. The gain of the various counting systems was established to about +-0.5%. The variance introduced into the analysis by multiple counting systems was low and corresponded to a fractional standard deviation of +-0.5%. The variance introduced into the analysis by both multiple counting systems and multiple counting chambers needs to be redetermined but is less than a fractional standard deviation of +-2%. The newly established calibration factor of 5.66 cpm/pg 226 Ra is about 6% greater than that used previously. The leakage of radon into the greased fittings of the emanation flask which was indicated in an earlier study was not confirmed

  20. Newton's Metaphysics of Space as God's Emanative Effect

    Science.gov (United States)

    Jacquette, Dale

    2014-09-01

    In several of his writings, Isaac Newton proposed that physical space is God's "emanative effect" or "sensorium," revealing something interesting about the metaphysics underlying his mathematical physics. Newton's conjectures depart from Plato and Aristotle's metaphysics of space and from classical and Cambridge Neoplatonism. Present-day philosophical concepts of supervenience clarify Newton's ideas about space and offer a portrait of Newton not only as a mathematical physicist but an independent-minded rationalist philosopher.

  1. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  2. Radon sources emanation in granitic soil and saprolite

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.; Flexser, S. [Lawrence Berkeley Lab., CA (United States); Brimhall, G.; Lewis, C. [California Univ., Berkeley, CA (United States). Dept. of Geology and Geophysics

    1993-08-01

    Petrological and geochemical examinations of soil, saprolite, and quartz diorite protolith have been made at the Small Structures field site, Ben Lomond Mountain, California. Variations in Ra in soil and saprolite are mainly controlled by heterogeneities inherited from the parent quartz diorite. Fission-track radiography shows that U is concentrated in the primary accessory minerals, zircon and sphene. However, most importantly for Rn emanation, U is also concentrated in secondary sites: weathered sphene, biotite and plagioclase, grain coatings, and Fe-rich fracture linings which also contain a rare-earth phosphate mineral. This occurrence of U along permeable fracture zones suggests that soil-gas Rn from depth (> 2 m) is a significant contributor to Rn availability near the surface. Zones highest in emanation occur where fine pedogenic phases: gibbsite, amorphous silica, and iron oxyhydroxide are most abundant. Mass balance analyses of this soil-saprolite profile are in progress and preliminary indicate that a high-emanation zone corresponds to the upper portion of a zone of accumulation of U and Ba.

  3. Memory effects on adsorption tubes for mercury vapor measurement in ambient air: elucidation, quantification, and strategies for mitigation of analytical bias.

    Science.gov (United States)

    Brown, Richard J C; Kumar, Yarshini; Brown, Andrew S; Kim, Ki-Hyun

    2011-09-15

    The short- and long-term memory effects associated with measurements of mercury vapor in air using gold-coated silica adsorption tubes have been described. Data are presented to quantify these effects and to determine their dependence on certain relevant measurement parameters, such as number of heating cycles used for each analysis, age of adsorption tube, mass of mercury on adsorption tube, and the length of time between analyses. The results suggest that the long-term memory effect is due to absorption of mercury within the bulk gold in the adsorption tube, which may only be fully liberated by allowing enough time for this mercury to diffuse to the gold surface. The implications of these effects for air quality networks making these measurements routinely has been discussed, and recommendations have been made to ensure any measurement bias is minimized.

  4. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  5. Field fluxes and speciation of arsines emanating from soils.

    Science.gov (United States)

    Mestrot, Adrien; Feldmann, Joerg; Krupp, Eva M; Hossain, Mahmud S; Roman-Ross, Gabriela; Meharg, Andrew A

    2011-03-01

    The biogeochemical cycle of arsenic (As) has been extensively studied over the past decades because As is an environmentally ubiquitous, nonthreshold carcinogen, which is often elevated in drinking water and food. It has been known for over a century that micro-organisms can volatilize inorganic As salts to arsines (arsine AsH(3), mono-, di-, and trimethylarsines, MeAsH(2), Me(2)AsH, and TMAs, respectively), but this part of the As cycle, with the exception of geothermal environs, has been almost entirely neglected because of a lack of suited field measurement approaches. Here, a validated, robust, and low-level field-deployable method employing arsine chemotrapping was used to quantify and qualify arsines emanating from soil surfaces in the field. Up to 240 mg/ha/y arsines was released from low-level polluted paddy soils (11.3 ± 0.9 mg/kg As), primarily as TMAs, whereas arsine flux below method detection limit was measured from a highly contaminated mine spoil (1359 ± 212 mg/kg As), indicating that soil chemistry is vital in understanding this phenomenon. In microcosm studies, we could show that under reducing conditions, induced by organic matter (OM) amendment, a range of soils varied in their properties, from natural upland peats to highly impacted mine-spoils, could all volatilize arsines. Volatilization rates from 0.5 to 70 μg/kg/y were measured, and AsH(3), MeAsH(2), Me(2)AsH, and TMAs were all identified. Addition of methylated oxidated pentavalent As, namely monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to soil resulted in elevated yearly rates of volatilization with up to 3.5% of the total As volatilized, suggesting that the initial conversion of inorganic As to MMAA limits the rate of arsine and methylarsines production by soils. The nature of OM amendment altered volatilization quantitatively and qualitatively, and total arsines release from soil showed correlation between the quantity of As and the concentration of dissolved organic

  6. Radon and Thoron emanation testwork on Nolans Rare Earths ores

    International Nuclear Information System (INIS)

    Sonter, Mark; Grose, Jeremy

    2016-01-01

    This paper reports on a series of experiments performed on two bulk ore samples for Arafura Resources' Nolans Rare Earths project, intended to derive information on radon (Rn222) and thoron (Rn220) emanation rates (fluxes) under various circumstances. This data is needed to enable development of predictions of Rn and Tn releases from exposed mine bench ore, ore stockpiles, and tailings, and thus assist in estimation of airborne concentrations within the areas of the future Mine and Processing plant. In turn these estimates will provide guidance on the quantitative risk and the necessity or otherwise of invoking specific control measures, either in design or in operating procedures. This testwork was carried out during the period 2nd to 15th July, at Arafura's Winnellie facility in Darwin. Conclusions are that for uncrushed ore, Rn flux numbers are around 1.0Bq/m"2/s, Tn numbers appear to cluster around 200-300 Bq/m"2/s. Crushing gave no change in Rn flux, Tn flux was doubled for calc-silicate material. Wetting gave significant reductions for both Rn and Tn for ores sampled, and clay capping reduced Rn flux marginally but Tn was reduced by a factor of 100.

  7. Ambient Volatility of Triethyl Phosphate

    Science.gov (United States)

    2017-08-01

    of materials is predictable using Raoult’s law. This report details the measurement of the effect of water vapor partial pressure on the volatility...empirical correlation taking into account nonideal behavior was developed to enable estimation of TEPO volatility at any combination of ambient...of the second component is expected to be one-half as much as in the absence of water vapor. Similarly, the measured volatility of the second

  8. A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash

    International Nuclear Information System (INIS)

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori

    2011-01-01

    To our knowledge, this paper is the most comprehensive review to cover most studies, published in the past three decades at least, of radon emanation measurements. The radon emanation fraction, a possibility of radon atoms generated in a material escaping from its grains, has been widely measured for a variety of materials. The aim of this review is to organize a huge number of such data accumulated. The representative values of the emanation fraction for minerals, rocks, soils, mill tailings and fly ashes were derived to be 0.03, 0.13, 0.20, 0.17 and 0.03, respectively. Current knowledge of the emanation processes was also summarized to discuss their affected factors. - Highlights: → Recent radon emanation measurements were thoroughly reviewed. → Averages of radon emanation fractions: 0.03 (mineral), 0.13 (rock), 0.20 (soil), 0.17 (mill tailing) and 0.03 (fly ash). → Grain-size effect was not significantly found for size larger than 1 μm. → Pore water generally enhances the emanation fraction by a factor of 5 or less. → Definition of 'radon emanation' should be shared among researchers.

  9. A study of radon emanation from waste rock at Northern Territory uranium mines

    International Nuclear Information System (INIS)

    Mason, G.C.; Gan, T.H.; Elliott, G.

    1983-01-01

    Field measurements were made of radon emanation rates from waste rock sources at Ranger, Nabarlek and Rum Jungle, three Northern Territory uranium mine sites. The preliminary mean emanation rate was approximately 50 Bq m - 2 s - 2 per percent ore grade

  10. Effects of various tailings covers on radon gas emanation from pyritic uranium tailings

    International Nuclear Information System (INIS)

    Dave, N.K.; Lim, T.P.

    1987-01-01

    Radon emanation studies were carried out at an inactive pyritic uranium tailings site in Elliot Lake, Ontario, Canada, to evaluate the effects of various existing dry and wet covers on radon flux rates. Measurements were taken using activated charcoal cartridges for various surface covers consisting of bare, vegetated, acidophilic moss with high degree of water saturation, compacted crushed rock and gravel, and winter snow. The results showed that at a given site, there was no significant difference in radon emanation rates between various tailings covers and bare tailings. In particular, no increase In radon emanation rates from vegetated areas compared to bare tailings was observed. Radon emanation rates varied spatially depending on tailings grain size, porosity, moisture content and on pressure and water table variations. The emanation rates were higher for tailings with low water contents compared to those for wet and moss covered tailings

  11. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a.... In addition, chemicals that are likely to be gases at ambient temperatures and which have low water... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more...

  12. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    Science.gov (United States)

    Girault, Frédéric; Gajurel, Ananta Prasad; Perrier, Frédéric; Upreti, Bishal Nath; Richon, Patrick

    2011-01-01

    Effective radium-226 concentration ( EC Ra) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples ( n = 177) are placed in air-tight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1, with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1. The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  13. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Girault, F.; Perrier, F.; Ananta Prasad Gajurel; Bishal Nath Upreti; Richon, P.

    2011-01-01

    Effective radium-226 concentration (EC Ra ) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples (n = 177) are placed in airtight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1 , with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1 . The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  14. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  15. Evaluation of Information Leakage via Electromagnetic Emanation and Effectiveness of Tempest

    Science.gov (United States)

    Tanaka, Hidema

    It is well known that there is relationship between electromagnetic emanation and processing information in IT devices such as personal computers and smart cards. By analyzing such electromagnetic emanation, eavesdropper will be able to get some information, so it becomes a real threat of information security. In this paper, we show how to estimate amount of information that is leaked as electromagnetic emanation. We assume the space between the IT device and the receiver is a communication channel, and we define the amount of information leakage via electromagnetic emanations by its channel capacity. By some experimental results of Tempest, we show example estimations of amount of information leakage. Using the value of channel capacity, we can calculate the amount of information per pixel in the reconstructed image. And we evaluate the effectiveness of Tempest fonts generated by Gaussian method and its threshold of security.

  16. Radon Emanation from NORM-Contaminated Pipe Scale, Soil, and Sediment at Petroleum Industry Sites

    International Nuclear Information System (INIS)

    Rood, A.S.; White, G.J.

    1999-01-01

    This report describes a study of radon (Rn) emanation from pipe scale and soil samples contaminated with naturally occurring radioactive material (NORM). Samples were collected at petroleum production sites in Oklahoma, Michigan, Kentucky, and Illinois. For comparison, data are also presented from preliminary studies conducted at sites in Texas and Wyoming. All samples collected were analyzed for their Rn emanation fraction, defined as the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. This measure represents one of the important parameters that determine the overall Rn activity flux from any solid medium. The goal of this project was to determine whether Rn emanation from pipe scale and soil is similar to emanation from uranium mill tailings

  17. Emanation of 232U and its radioactive daughter products from respirable size particles

    International Nuclear Information System (INIS)

    Cuddihy, R.G.; Griffith, W.C.; Hoover, M.D.; Kanapilly, G.M.; Stalnaker, N.D.

    1978-01-01

    This study is to develop a model for the emanation of 232 U and its radioactive daughter products from particles of Th-U fuel material. The radiation doses to internal organs following inhalation of these particles can only be calculated by knowing the rate of emanation of the daughters from particles in the lung and the subsequent excretion or translocation of the daughters to other organs. The emanation mechanisms are recoil of the daughter nuclei from the particle during alpha decay of the parent, diffusion of inert gas daughters from the particle and dissolution of the particle itself in biological fluids. Experiments to evaluate these mechanisms will involve ThO 2 and UO 2 particles in the size range 0.1 to 1.0 μm MMAD uniformly labeled with 232 U. The influence of the material temperature history on emanation will be investigated by heat treating particles at 600 and 1400 0 C

  18. Below-Ambient and Cryogenic Thermal Testing

    Science.gov (United States)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  19. Variation of Radon Emanation in Workplaces as a Function of Room Parameters

    International Nuclear Information System (INIS)

    Norafatin Khalid; Amran Abdul Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Izzaty Azani Mustafa

    2013-01-01

    Modern life style requires people to spend most of their time indoors either in a house or in the workplace. Most modern buildings are made from soil based material which may consist of low concentration of naturally occurring radioactive materials (NORM). It is known that one of the daughters of natural uranium is 226 Ra which eventually produce radon ( 222 Rn) gas. Recently, more evidence has linked lung cancer to exposure to high levels of radon and also to cigarette-smoking. Consequently, this research was conducted to study the radon emanation rates in different workplaces. The radon emanations in 27 rooms with three different dimension (54 m 3 , 210 m 3 and 351 m 3 ) and different building materials were determined for 96 hours using Sun Nuclear Radon Monitor. The radon emanations in the rooms studied were found to be in the range of 20.6 Bq m -3 hour -1 to 134.3 Bq m -3 hour -1 .The increase in humidity was found to significantly increase the radon emanation rates in the building, whereas the increase in temperature will result the decrease of radon emanation rates. In addition, the findings shows that the radon emanation rates in building were higher during the night until early in the morning which is in agreement with the findings on humidity and temperature factors. (author)

  20. The detection of sodium vapor bubble collapse in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carey, W.M.; Gavin, A.P.; Bobis, J.P.; Sheen, S.H.; Anderson, T.T.; Doolittle, R.D.; Albrecht, R.W.

    1977-01-01

    Sodium boiling detection utilizing the sound pressure emanated during the collapse of a sodium vapour bubble in a subcooled media is discussed in terms of the sound characteristic, the reactor ambient noise background, transmission loss considerations and performance criteria. Data obtained in several loss of flow experiments on Fast Test Reactor Fuel Elements indicate that the collapse of the sodium vapour bubble depends on the presence of a subcooled structure or sodium. The collapse pressure pulse was observed in all cases to be on the order of a kPa, indicating a soft type of cavitational collapse. Spectral examination of the pulses indicates the response function of the test structure and geometry is important. The sodium boiling observed in these experiments was observed to occur at a low ( 0 C) liquid superheat with the rate of occurrence of sodium vapor bubble collapse in the 3 to 30 Hz range. Reactor ambient noise data were found to be due to machinery induced vibrations flow induced vibrations, and flow noise. These data were further found to be weakly stationary enhancing the possibility of acoustic surveillance of an operating Liquid Metal Fast Breeder Reactor. Based on these noise characteristics and extrapolating the noise measurements from the Fast Flux Test Facility Pump (FFTP), one would expect a signal to noise ratio of up to 20 dB in the absence of transmission loss. The requirement of a low false alarm probability is shown to necessitate post detection analysis of the collapse event sequence and the cross correlation with the second derivative of the neutronic boiling detection signal. Sodium boiling detection using the sounds emitted during sodium vapor bubble collapse are shown to be feasible but a need for in-reactor demonstration is necessary. (author)

  1. Det ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Om begrebet "det ambiente", der beskriver, hvad der sker, når vi fornemmer baggrundsmusikkens diskrete beats, betragter udsigten gennem panoramavinduet eller tager 3D-brillerne på og læner os tilbage i biografsædet. Bogen analyserer, hvorfan ambiente oplevelser skabes, og hvilke konsekvenser det...

  2. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  3. Study of radon emanation from uranium mill tailings. Relations between radon emanating power and physicochemical properties of the material; Etude de l'emanation du radon a partir de residus de traitement de minerais d'uranium. Mise en evidence de relations entre le facteur d'emanation et les caracteristiques du materiau

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, D

    1999-07-01

    The uranium extraction from ores leads to large amounts of mill tailings still containing radionuclides, such as thorium-230 and radium-226, which generate radon-222. Without protective action, radon exposition may be high enough to cause concern for health of populations living in the vicinity of an uranium mill tailings disposal. This exposition pathway has therefore to be taken into account in the radiological impact studies. The emanating power, i.e. the part of radon atoms which escape from the solid particles, is directly involved in the radon source term evaluation. It may be determined for a given material by laboratory measurements. Emanating powers from 0.08 to 0.33 have been obtained for mill tailings from Jouac (Limousin, France), at various moisture contents. In order to reduce the relations of dependence between some of the emanation parameters, more simple phases, kaolinite and polymeric resins, have been studied. Those experiments have led us to the selection of the mechanisms and the parameters to consider for the development of an emanation modelling. The whole of the results obtained point out the radon sorption, in various proportions depending on the materials. The moisture content influence on the emanation from materials containing fine particles have been confirmed: the emanation increases with this parameter until a continuous water film surrounding the particles have been formed, and then become constant. This 'water effect' occurs in a moisture content range, which depends on the material porosity. Elsewhere, the presence of amorphous phases may led to a high radon emanation. (author)

  4. Det Ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Det ambiente er iscenesættelsen af en karakteristisk sanseoplevelse, der er kendetegnet ved fornemmelsen af at være omgivet. I dag bliver begrebet om det ambiente mest anvendt i forbindelse med musikgenren ’ambient musik’. Det ambiente er dog ikke essentielt knyttet til det musikalske, men må...... forstås som et betydeligt bredere fænomen i den moderne æstetiske kultur, der spiller en væsentlig rolle i oplevelsen af moderne transportformer, arkitektur, film, lydkunst, installationskunst og digitale multimedieiscenesættelser. En forståelse af det ambiente er derfor centralt for forståelsen af en...... moderne æstetiseret oplevelseskultur i almindelighed. Da det ambiente ikke hidtil har været gjort til genstand for en mere indgående teoretisk behandling, er der dog stor usikkerhed omkring, hvad fænomenet overhovedet indebærer. Hovedformålet med Det ambiente – Sansning, medialisering, omgivelse er derfor...

  5. Detailed effects of particle size and surface area on 222Rn emanation of a phosphate rock.

    Science.gov (United States)

    Haquin, Gustavo; Yungrais, Zohar; Ilzycer, Danielle; Zafrir, Hovav; Weisbrod, Noam

    2017-12-01

    The dependency of radon emanation on soil texture was investigated using the closed chamber method. Ground phosphate rock with a large specific surface area was analyzed, and the presence of inner pores, as well as a high degree of roughness and heterogeneity in the phosphate particles, was found. The average radon emanation of the dry phosphate was 0.145 ± 0.016. The emanation coefficient was highest (0.169 ± 0.019) for the smallest particles (210 μm). The reduction rate followed an inverse power law. As expected, a linear dependence between the emanation coefficient and the specific surface area was found, being lower than predicted for the large specific surface area. This was most likely due to an increase in the embedding effect of radon atoms in adjacent grains separated by micropores. Results indicate that knowledge of grain radium distribution is crucial to making accurate emanation predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Radioactive emanations in fumarole gases of a series of volcanoes in Kamchatka

    International Nuclear Information System (INIS)

    Adamchuk, Yu.V.; Firstov, P.P.

    1986-01-01

    The results of measurements of volume activity of emanations in fumarole gases of a series of acting volcanoes in Kamchatka during 1980-1983 are presented. The value of radon concentration in Avachinski volcano fumaroles equal ∼ 2 emanes did not change substantially as compared with the data for 1966. The highest activity (11.5±0.4 emanes) is registered in the Bezymyannyj volcano fumaroles. The emanation site survey of fumarole fields of the second cone of the Great fractured Tolbachinski eruption (GFTE) revealed the narrowly localized zone of radioactive emanation emissions. The radon emission in the above zone in 1981 constitutes (2.3 ± 0.4)x10 -6 Ci/s. Using this estimation, time (34-42 days) and average rate (2.5-3.0 m/h) of depth gases hoisting from magmatic focus are calculated as well as filtration rock characteristics in the narrowly localized near-mouth zone of the second cone of GCTE North outburst in the post eruptive period: permeability coefficient (0.1-4.3 darci), porosity (3-15 %) and mean value of cracks and pores opening (0.6-2.0)x10 -3 cm). The found characteristic values proved to be compared with parameters of crushing zone near epicenters of underground nuclear explosions

  7. Theoretical aspects of the Semkow fractal model in the radon emanation in solids

    International Nuclear Information System (INIS)

    Cruz G, H.S.

    1997-01-01

    The basic elements of the Fractals theory are developed. The physical basis of radon emission in solids are described briefly. It is obtained that the emanation power E R of mineral grains is scaled as r 0 D-3 (r 0 : grain radius). From a logarithmic graph E R versus grain size is deduced the fractal dimension of the emanation surface. The experimental data of different materials give an interval in the fractal dimension D between 2.1 and 2.8 (Author)

  8. Study of radon emanation variations in Morocco soil, correlations with seismic activities and atmospheric parameters

    International Nuclear Information System (INIS)

    Boukhal, H.; Cherkaoui, T.E.; Lferde, M.

    1994-01-01

    In order to verify the possibility of radon signal use in earthquake prediction, a study of radon emanation variation in soil was undertaken. Regular measurements have been carried out in five cities of Morocco ( Rabat, Tetouan, Ifrane, Khouribga, Berchid). The measuring method is based on the solid state nuclear track detectors technique. The good correlation between the different seismic activities and the variations of radon emanation rate in the five stations, have shown the interest of radon use in the earthquake prediction. 1 tab., 2 figs., 2 refs. (author)

  9. Stress-intensity factors for cracks emanating from the loaded fastener hole

    Science.gov (United States)

    Shivakumar, V.; Hsu, Y. C.

    1977-01-01

    Using a series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity, stress-intensity factors K are derived for problems in which cracks emanate radially from the boundary of an arbitrarily loaded internal circular hole in an infinite plate. Numerical values are obtained for K(I) and K(II) for radial cracks from a hole containing a loose-fitted pin or rivet that is pulled perpendicular to the crack direction in the plane of the plate. The method is a general one for determining K for a set of symmetrically emanating radial cracks for a variety of concentrated or distributed tractions on the circular hole.

  10. Impulsive radon emanation on a creeping segment of the San Andreas fault, California

    International Nuclear Information System (INIS)

    King, C.-Y.

    1984-01-01

    Radon emanation was continuously monitored for several months at two locations along a creeping segment of the San Andreas fault in central California. The recorded emanations showed several impulsive increases that lasted as much as five hours with amplitudes considerably larger than meteorologically induced diurnal variations. Some of the radon increases were accompanied or followed by earthquakes or fault-creep events. They were possibly the result of some sudden outbursts of relatively radon-rich ground gas, sometimes triggered by crustal deformation or vibration. (Auth.)

  11. The radium distribution in some Swedish soils and its effects on radon emanation

    International Nuclear Information System (INIS)

    Edsfeldt, Cecilia

    2001-08-01

    The aim of this study has been to clarify how the radium distribution in soils affects the radon emanation. The distribution of radium, uranium and thorium has been determined using sequential extractions. In the study, soils from two different locations were investigated. In the first part the applicability of the sequential extraction method for determining Ra distribution in different soil types was investigated, using a simple sequential extraction method. Sampled soils were clay, sand and till from the vicinity of the Stockholm Esker. The main part of Rn emanating Ra was associated with Fe oxides in the soil. The methods applied provided information about the radon risk of the soil, but, in order to gain more information on the processes governing Ra distribution and radon emanation in soils, a more detailed sequential extraction procedure would be desirable. The second part consisted of a detailed study of the radionuclide distribution and the geochemistry in a podzolised glacial till from Kloten in northern Vaestmanland. A more detailed sequential extraction procedure was used, and the specific surface area of samples was measured. Samples were taken from E, B, and C horizons; radium and thorium were enriched in the B horizon, whereas uranium had its maximum concentration in the C horizon. Extractable radium primarily occurred in the exchangeable pool, possibly organically complexed, whereas extractable uranium and thorium were mainly Fe oxide bound. Oxide-bound Ra was important only in the B horizon. The radon emanation was not correlated with the amount of exchangeable Ra, but instead with the oxide bound Ra. However, the amount of oxide-bound Ra was too small to account for all the emanated Rn, thus, exchangeable Ra was interpreted as the main source of emanated Rn. This exchangeable Ra was more emanative in the B horizon than in the C horizon. The explanation is the larger surface area of the B horizon samples; the specific surface area appears to be the

  12. Periodismo ambiental

    Directory of Open Access Journals (Sweden)

    Lucía Lemos

    2015-01-01

    Full Text Available Los periodistas toman el tema del medio ambiente cada vez más en serio. El uso de temas relacionados con el medio ambiente, debe estar ligado al análisis socio-económico y a las posibilidades de comunicación y educación de diferentes regiones del mundo. A continuación se presenta un resumen de la situación ambiental, las acciones de prensa y comunicación que se llevan a cabo en América Central (Panamá, El Salvador, Costa Rica y en Sudamérica Brasil,Colombia, Chile, México, y Perú. Se concluye en la necesidad de formar hábitos ecológicos. Los comunicadores deben presentar soluciones a los problemas, fomentar campañas comunes, compartir información y velar por el ambiente ambiente para que las generaciones futuras no tengan que perecer.

  13. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  14. Emanation thermal analysis study of the preparation of ruthenia-titania-based finely dispersed powders

    Czech Academy of Sciences Publication Activity Database

    Balek, V.; Mitsuhashi, T.; Zeleňák, V.; Večerníková, Eva; Šubrt, Jan; Haneda, H.; Bezdička, Petr

    2002-01-01

    Roč. 248, č. 1 (2002), s. 47-53 ISSN 0021-9797 Institutional research plan: CEZ:AV0Z4032918 Keywords : emanation thermal analysis * TiO2 * RuO2 Subject RIV: CA - Inorganic Chemistry Impact factor: 1.466, year: 2002

  15. Theoretical concepts of fractal geometry semkow by radon emanation in solids

    International Nuclear Information System (INIS)

    Cruz G, H.

    1996-01-01

    The objective of this work is to introduce the fractal geometry concept to the study of gaseous emanations in solids, specially with reference to radon emission in mineral grains. The basic elements of fractals theory are developed. A fractal is defined as an auto similar subassembly, which fractal dimension is greater than the topological dimension. Starting from this, and making a brief description of the physicals basis of radon emission in solids, a model between emanation power (E R ) and the ratio s/v (surface to volume), is founded. A Gaussian model is assumed for extent of recoil from alpha decay of Ra-226. Using the results of Pfeifer it is obtained that distribution of pore size is scaled like Br -D-1 , where D: fractal[dimension, B: constant and r: pore radius. After an adequate mathematics expansion, it is found that the expression for emanation power is scaled like r 0 D-3 (r 0 grain radius). We may concluded that if we have a logarithmic graph of E R vs size of grain we can deduce the fractal dimension of the emanation surface. The experimental data of different materials provides an interval into fractal dimension D , between 2.1 to 2.86. (author). 5 refs., 1 tab

  16. Emanation thermal analysis - Ready to fulfill the future needs of materials characterization

    Czech Academy of Sciences Publication Activity Database

    Balek, Vladimír; Šubrt, Jan; Mitsuhashi, T.; Beckman, I. N.; Gyoryova, K.

    2002-01-01

    Roč. 67, č. 1 (2002), s. 15-35 ISSN 1418-2874 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : emanation thermal analysis * microstructure * sintering Subject RIV: CA - Inorganic Chemistry Impact factor: 0.598, year: 2002

  17. Dependence of radon emanation of red mud bauxite processing wastes on heat treatment

    International Nuclear Information System (INIS)

    Jobbagy, V.; Somlai, J.; Kovacs, J.; Szeiler, G.; Kovacs, T.

    2009-01-01

    Natural radioactivity content, radon emanation and some other physical characteristics of red mud were investigated, so that to identify the possibilities of the safe utilization of such material as a building material additive. Based on the radionuclide concentration, red mud is not permitted to be used directly as a building material, however, mixing of a maximum 20% red mud and 80% clay meets the requirements. The main aim of this work was to determine the dependence of the emanation factor of red mud firing temperature and some other parameters. The relevant experimental procedure was carried out in two different ways: without any additional material, and by adding a known amount of sawdust (5-35 wt%) then firing the sample at a given temperature (100-1000 deg. C). The average emanation factor of the untreated dry red mud was estimated to 20%, which decreased to about 5% at a certain heat treatment. Even lower values were found using semi-reductive atmosphere. It has been concluded that all emanation measurements results correlate well to the firing temperature, the specific surface and the pore volume.

  18. Helium and radon-emanation bibliography. Selected references of geologic interest to uranium exploration

    International Nuclear Information System (INIS)

    Adkisson, C.W.; Reimer, G.M.

    1976-01-01

    Selected references on helium and radon gas emanations and geologically related topics are given. There are 172 references primarily related to helium geology, 129 to radon geology, and 171 to helium and radon. These references are of geologic interest to uranium exploration

  19. Use of emanation thermal analysis in the microstructure diagnostics of aluminia coatings

    Czech Academy of Sciences Publication Activity Database

    Balek, V.; Beneš, M.; Šubrt, Jan

    2008-01-01

    Roč. 52, č. 2 (2008), s. 85-89 ISSN 0862-5468 Institutional research plan: CEZ:AV0Z40320502 Keywords : aluminia coatings * emanation thermal analysis * SEM Subject RIV: CA - Inorganic Chemistry Impact factor: 0.644, year: 2008

  20. Use of emanation thermal analysis to characterize thermal reactivity of brannerite mineral

    Czech Academy of Sciences Publication Activity Database

    Balek, V.; Vance, E.R.; Zeleňák, V.; Málek, Z.; Šubrt, Jan

    2007-01-01

    Roč. 88, č. 1 (2007), s. 93-98 ISSN 1388-6150 Grant - others:GA MŠk(CZ) LA 292; GA MŠk(CZ) ME 879 Institutional research plan: CEZ:AV0Z40320502 Keywords : brannerite * emanation thermal analysis Subject RIV: CA - Inorganic Chemistry Impact factor: 1.483, year: 2007

  1. Radium-226 content and emanating power of some timepieces manufactured in the years 1926--1951

    International Nuclear Information System (INIS)

    Keane, A.T.; Huff, D.R.

    Thirty-two radium-dial timepieces manufactured in the years 1926 to 1951 by a company in Connecticut were individually sealed in small steel cans for determination of radium-C ( 214 Bi) activity by γ-ray spectroscopy. Each can was counted within a few hours after sealing and again 5 or 6 days later; from the two observations, radium-C activities at time of sealing (nonemanating radium content) and at equilibrium (total radium content) were calculated. The mean radium-226 content of 22 pocket watches was 348 nCi (range, 159 to 606), and the mean emanating power (1-nonemanating Ra/total Ra) was 0.175 (range, 0.09 to 0.33). The mean radium-226 content of 9 wrist watches was 150 nCi (range, 54 to 449), and the mean emanating power was 0.242 (range, 0.12 to 0.34). The radium-226 content of the one small clock was 633 nCi, and its emanating power was 0.15. The concentration of radon-222 in the air of a sealed room of dimensions 3 x 3 x 3 m would be increased by about 3 pCi/l if a watch containing 400 nCi of radium-226 with an emanating power of 0.2 were left in the room for a few weeks. (U.S.)

  2. Ambient Utopia

    NARCIS (Netherlands)

    Heylen, Dirk K.J.; Bosse, Tibor

    2012-01-01

    his chapter presents an analysis of the ambitions that lie behind the concept of Ambient Intelligence as it is presented by the advocates and researchers working in the field. In particular it looks at the ideas regarding the forms of natural and intuitive forms of interaction that are envisaged –

  3. Quantitative aspects of highly emanating geologic materials and their role in creating high indoor radon. Final report, April 1, 1994--March 31, 1996

    International Nuclear Information System (INIS)

    Gundersen, L.C.S.; Schumann, R.R.; Gates, A.E.; Price, P.

    1996-01-01

    Indoor radon hot spots, areas where indoor radon commonly exceeds 20 pCi/L, are often caused by unusually highly emanating soils or rock and their interaction with ambient climatic conditions and a building's architecture. Highly emanating soils and rocks include glacial deposits; dry fractured clays; black shales; limestone-derived soils; karst and cave areas, fractured or sheared granitic crystalline rocks; mine tailings; uraniferous backfill; and most uranium deposits. The above list probably accounts for 90% of the Nation's indoor radon over 20 pCi/L. In several of these high indoor radon areas, there appears to be a link between the nature of the radon source in the ground, the architecture of the home, and the relative magnitude and ease of mitigation of the indoor air problem. Quantification of geologic materials in terms of their radon potential with respect to climatic and architectural considerations has never been accomplished. Recent studies have attempted semi-quantitative rankings but rigorous analysis has not been done. In this investigation the authors have attempted to develop the quantitative aspects of geologic materials for prediction of very high indoor radon at several scales of observation from national to census tract

  4. Assessment of (222)Rn emanation from ore body and backfill tailings in low-grade underground uranium mine.

    Science.gov (United States)

    Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2014-02-01

    This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.

  5. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  6. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  7. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  8. The use of emanation thermal analysis for the evaluation of Fe2O3 reactivity

    International Nuclear Information System (INIS)

    Balek, V.

    1977-01-01

    The ETA method using 220 Rn was applied in studying the ZnO - Fe 2 O 3 reaction. The higher is the temperature at which the maximum is reached on the emanation vs. temperature curve of the mixture, the lower the indicated reactivity of Fe 2 O 3 used (temperature range 790 to 980 degC). The degree of order in the lattice of the ZnFe 2 O 4 formed may be judged from the emanation power at 850 to 1000 degC. Fe 2 O 3 pre-annealed to 1100 degC shows the lowest reactivity with ZnO. Associated with it is a lower capacity of forming the perfect ZnFe 2 O 4 structure. The ETA results are compared with those obtained by DTA and by dilatometry. (M.K.)

  9. Noninvasive analysis of volatile biomarkers in human emanations for health and early disease diagnosis.

    Science.gov (United States)

    Kataoka, Hiroyuki; Saito, Keita; Kato, Hisato; Masuda, Kazufumi

    2013-06-01

    Early disease diagnosis is crucial for human healthcare and successful therapy. Since any changes in homeostatic balance can alter human emanations, the components of breath exhalations and skin emissions may be diagnostic biomarkers for various diseases and metabolic disorders. Since hundreds of endogenous and exogenous volatile organic compounds (VOCs) are released from the human body, analysis of these VOCs may be a noninvasive, painless, and easy diagnostic tool. Sampling and preconcentration by sorbent tubes/traps and solid-phase microextraction, in combination with GC or GC-MS, are usually used to analyze VOCs. In addition, GC-MS-olfactometry is useful for simultaneous analysis of odorants and odor quality. Direct MS techniques are also useful for the online real-time detection of VOCs. This review focuses on recent developments in sampling and analysis of volatile biomarkers in human odors and/or emanations, and discusses future use of VOC analysis.

  10. Modelization of the radon emanation from natural sources in the soil

    International Nuclear Information System (INIS)

    Sabir, A.; Marah, H.; Hlou, L.; Klein, D.; Chambaudet, A.

    1996-01-01

    To evaluate the radon emanation and hence the risk to populations, we have adapted an original mathematical model based on the method of distribute parcels (L. Hlou, These d'etat, Faculte des Sciences, Kenitra, MAROC, 1994). This allows us to follow the migration, in time and space, of a quantity of radon produced in a unit volume as a function of the geological, morphological and structural characteristics of the site studied. Knowing the petrographic and pedologic parameters enables us to calculate the radon concentration in all points inside the soil of the site as well as the radon emanation in the atmosphere. It is therefore possible to calculate the radiological risk for populations brought to live on the site studied. Different applications of this model have been realised in Morocco and in France to demonstrate its efficiency. (author)

  11. A charcoal canister survey of radon emanation at the rehabilitated uranium mine site at Nabarlek

    International Nuclear Information System (INIS)

    Storm, J.R.; Patterson, J.R.

    1999-01-01

    This paper describes a recent survey of radon emanation measurements from the rehabilitated Nabarlek mine site. It was mined out in 1979, decommissioned in 1995 and provided a good test bed for assessment of rehabilitation in terms of radon flux attenuation. Measurements have been made with charcoal canisters. Studies to measure the radon-220 flux by observing Tl-208 progeny of thoron the effectiveness of trial covers and meteorological considerations will be reported

  12. A charcoal canister survey of radon emanation at the rehabilitated uranium mine site at Nabarlek

    Energy Technology Data Exchange (ETDEWEB)

    Storm, J R; Patterson, J R [University of Adelaide, Adelaide, SA (Australia). Department of Physics and Mathematical Physics

    1999-07-01

    This paper describes a recent survey of radon emanation measurements from the rehabilitated Nabarlek mine site. It was mined out in 1979, decommissioned in 1995 and provided a good test bed for assessment of rehabilitation in terms of radon flux attenuation. Measurements have been made with charcoal canisters. Studies to measure the radon-220 flux by observing Tl-208 progeny of thoron the effectiveness of trial covers and meteorological considerations will be reported.

  13. Radon emanation chamber: High sensitivity measurements for the SuperNEMO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soulé, B. [Université Bordeaux 1, Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Chemin du Solarium, Le Haut-Vigneau, BP120, F-33175 Gradignan (France); Collaboration: SuperNEMO Collaboration; and others

    2013-08-08

    Radon is a well-known source of background in ββ0ν experiments due to the high Q{sub β} value of one of its daughter nucleus, {sup 214}Bi. The SuperNEMO collaboration requires a maximum radon contamination of 0.1 mBq/m{sup 3} inside its next-generation double beta decay detector. To reach such a low activity, a drastic screening process has been set for the selection of the detector's materials. In addition to a good radiopurity, a low emanation rate is required. To test this parameter, a Radon Emanation Setup is running at CENBG. It consists in a large emanation chamber connected to an electrostatic detector. By measuring large samples and having a low background level, this setup reaches a sensitivity of a few μ Bq. m{sup −2}. d{sup −1} and is able to qualify materials used in the construction of the SuperNEMO detector.

  14. Measurement of radon emanation of drainage layer media by liquid scintillation counting

    International Nuclear Information System (INIS)

    Turtiainen, T.

    2009-01-01

    Slab-on-ground is a typical base floor construction type in Finland. The drainage layer between the slab and soil is a layer of sand, gravel or crushed stone. This layer has a minimum thickness of 200 mm and is sometimes even 600 mm thick, and thus may be a significant contributor to indoor air radon. In order to investigate radon emanation from the drainage layer material, a simple laboratory test was developed. Many organic solvents have high Ostwald coefficients for radon, i.e., the ratio of the volume of gas absorbed to the volume of the absorbing liquid, which enables direct absorption of radon into a liquid scintillation cocktail. Here, we first present equations relating to the processes of gas transfer in emanation measurement by direct absorption into liquid scintillation cocktails. In order to optimize the method for emanation measurement, four liquid scintillation cocktails were assessed for their ability to absorb radon from air. A simple apparatus consisting of a closed glass container holding an open liquid scintillation vial was designed and the diffusion/absorption rate and Ostwald coefficient were determined for a selected cocktail. Finally, a simple test was developed based on this work. (author)

  15. Study of 222Rn emanation levels present in naturally occurring radioactive materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria F.E. Sa; Crispim, Verginia Reis; Lima, Clara Teresa S.

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas installations, is usual in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. The segregation of contaminated residues although necessary, is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the installation with controlled access. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scales are mixtures of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporate 226 Ra and 228 Ra in their structures. The objective of this work was to measure the emanations of the radon present in NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of α particle tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Since the number of those tracks resulted proportional to the emanation rate of 222 Rn this methodology allowed the comparison of contamination levels in analyzed samples. (author)

  16. Study of radon-222 emanation from sedimentary phosphates and corresponding phosphogypsum. Temperature effect

    International Nuclear Information System (INIS)

    Boujrhal, F.M.

    1993-01-01

    The aim of this study is to examine the effect of temperature on radon emanation from the phosphates of various regions of Morocco, from corresponding phosphogypsum and from teeth fossilized of Youssoufia phosphate. The interpretation of obtained results was carried out by the physicochemical studies with various approaches; the X-ray diffraction analysis, the measurement of the specific surface area and porousness, the determination of the oxygen content by activation analysis with 14 MeV neutron. The thermal treatment between 100 and 900 degrees C conducted to the following points: - An increase of the radon degassing rate, which is first slow when the temperature increase from 20 to 600 degrees C, then becomes brutal beyond this temperature. We attributed this variation to the training effect ( transport effect ) of radon by the others gas susceptible to be released with thermal effect, particularly the CO sub 2. - The reduction of the radon emanation power versus temperature. We could demonstrate a linear correlation between the power emanation and the specific surface area. 122 refs., 102 figs., 20 tabs. (Author)

  17. Study of radon exhalation and emanation rates from fly ash samples

    International Nuclear Information System (INIS)

    Raj Kumari; Jain, Ravinder; Kant, Krishan; Gupta, Nitin; Garg, Maneesha; Yadav, Mani Kant

    2013-01-01

    Fly ash, a by-product of burnt coal is technologically important material being used for manufacturing of bricks, sheets, cement, land filling etc. The increased interest in measuring radon exhalation and emanation rates in fly ash samples is due to its health hazards and environmental pollution and the same have been measured to assess the radiological impact of radon emanated from fly ash disposal sites. Samples of fly ash from different thermal power stations in northern India and National Council for Cement and Building Materials (NCB) were collected and analysed for the measurements. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Gamma spectrometry and can technique was used for the measurements. The experimental data show that fly ash samples emanate radon in significant amount and this consequently, may result in increased radon levels in dwellings built by using fly ash bricks and excessive radiation exposure to workers residing in the surroundings of fly ash dumping sites. (author)

  18. Connection between radon emanation and some structural properties of coal-slag as building material

    International Nuclear Information System (INIS)

    Somlai, J.; Jobbagy, V.; Somlai, K.; Kovacs, J.; Nemeth, Cs.; Kovacs, T.

    2008-01-01

    Radionuclides of natural origin may accumulate in different industrial waste materials and by-products. The use of coal bottom ash or coal-slag as building material in Hungary is widespread. Because of the elevated radium content of coal-slag, high radon concentration has been detected in buildings containing coal-slag as building material. In two towns, where buildings contain coal-slag with almost the same radium concentration, the indoor radon concentrations have been found to differ significantly. In order to investigate the cause of the difference in the emanation coefficients, slag samples from the two locations were examined for grain-size distribution, density, pore volume, and specific surface. The applied methods were: gamma spectrometry for the radium concentration of the samples; Lucas cell method for the radon emanation; nitrogen absorption-desorption isotherms analyzed using the BET theory and mercury poremeter for the specific surface and pore volume. It was found that the great difference in the emanation coefficients (1.35±0.13% and 14.3±0.92%) of the coal-slag samples is primarily influenced by the pore volume and the specific surface

  19. Study of the emanation levels of 222Rn present in Naturally Occurring Radioactive Materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria de Fatima da Encarnacao Sa

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas facilities, is a common fact in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. Thus, contaminated residues need to be segregated but, this is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the facility whose access is controlled. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scale is a mixture of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporates 226 Ra and 228 Ra in its structures. The objective of this work was to measure the emanations of the radon present in these NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of particle alpha tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Being that the emanation rate of 222 Rn was proportional to the number of these tracks the methodology permitted the comparison of contamination levels of the analyzed samples. (author)

  20. Ambient diagnostics

    CERN Document Server

    Cai, Yang

    2014-01-01

    Part I. FundamentalsIntroductionWhat is Ambient Diagnostics?Diagnostic ModelsMultimedia IntelligenceCrowd SourcingSoft SensorsScience of SimplicityPersonal DiagnosesBasic AlgorithmsBasic ToolsSummaryProblemsTransformationEarly Discoveries of Heartbeat PatternsTransforms, Features, and AttributesSequential FeaturesSpatiotemporal FeaturesShape FeaturesImagery FeaturesFrequency Domain FeaturesMulti-Resolution FeaturesSummaryProblemsPattern RecognitionSimilarities and DistancesClustering MethodsClassification MethodsClassifier Accuracy MeasuresSummaryProblemsPart II. Multimedia IntelligenceSound RecognitionMicrophone AppsModern Acoustic Transducers (Microphones)Frequency Response CharacteristicsDigital Audio File FormatsHeart Sound SensingLung Sound SensingSnore MeterSpectrogram (STFT)Ambient Sound AnalysisSound RecognitionRecognizing Asthma SoundPeak ShiftFeature CompressionRegroupingNoise IssuesFuture ApplicationsSummaryProblemsColor SensorsColor SensingHuman Color VisionColor SensorsColor Matching ExperimentsC...

  1. Radon emanation rate in construction materials and various design of house

    International Nuclear Information System (INIS)

    Ahmad Asyraf Osman

    2012-01-01

    Indoor air quality are important factors that need to be addressed because it can affect the health and comfort of occupants in it. Among the major sources of indoor air pollution are radon gas. Radiological risk due to radon gas due to its intake into the human body is the major cause of lung cancer. This study was conducted to determine the radon emanation rate that occurs naturally in the building materials and its contains in several kinds of house. Construction materials studied are sand, gravel, cement and bricks. Terrace houses, double storey terrace houses, flats and wooden houses were studied in radon emanation in various types of houses. Radon emanation rates in building materials in a variety of home and the home measured using Sun Nuclear radon monitor (model 1029) and radon gas concentrations are measured in units of Bq m -3 . From the results, granites have recorded the highest radon emissions that is 2.67 μBq kg -1 s -1 , followed by sand with 2.53 μBq kg -1 s -1 . The bricks emission rate were recorded was 2.47 μBq kg -1 s -1 , while Cement recorded the lowest with only 1.46 μBq kg -1 s -1 . In study of radon in a variety of home, the results showed that the single storey terrace houses recorded the highest reading of 25.67 ± 4.96 Bq m -3 . First level Double storey terrace houses recorded 23.24 ± 3.72 Bq m -3 compared with a second level of two-storey terrace house which recorded emission rate of 16.43 ± 2.53 Bq m -3 . Flats were recorded the second lowest with only 13.07 ± 2.38 Bq m -3 . House that recorded the lowest reading was wooden houses that recorded 9.53 ± 1.96 Bq m -3 . (author)

  2. Radon and thoron emanation measurements and the effect of ground water

    International Nuclear Information System (INIS)

    Carriveau, G.W.; Harbottle, G.

    1980-01-01

    In the past, corrections for annual dose rate calculations have used a qualitative approach to the effect of ground water saturation and radon and thoron loss. An example is presented of how this correction can now be precisely determined using natural gamma-ray activities to determine the amount of emanation from ceramic sherds and soil, both in a dry state and saturated with ground water. The experimental data also provide information concerning disequilibria in 234 Th and 226 Ra regions of the decay series. Additionally, approximate values of uranium and thorium concentrations (sufficiently accurate for authenticity work) are provided

  3. Emanation thermal analysis. Application in solid state chemistry, analytical chemistry and engineering

    International Nuclear Information System (INIS)

    Balek, V.; Tel'deshi, Yu.

    1986-01-01

    Voluminous material on application of emenation thermal analysis for investigation of solids is systematized. General concepts and historical review of development of the method are given. Methods of introduction of inert gases into solids are considered. Theoretical aspects of inert gas evolution from solids labelled by radioactive gas or its maternal isotope are stated. The methods for measuring inert gases are considered. The possibilities, limitations and perspectives of development of radiometric emanation methods for the solution of various problems of analytical chemistry and thechnology are discussed

  4. Vapor pressure and enthalpy of vaporization of oil of catnip by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Gobble, Chase; Chickos, James

    2016-01-01

    Highlights: • Vaporization enthalpies of the nepetalactones from oil of catnip have been evaluated. • Vapor pressures from T = (298.15 to 350) K have been evaluated. • Oil of catnip has a vapor pressure similar to DEET at T = 298.15 K. - Abstract: The vaporization enthalpy and vapor pressure of the two nepetalactones found in Nepeta cataria have been evaluated by correlation gas chromatography. Vaporization enthalpies at T = 298.15 K of {(68.0 ± 1.9) and (69.4 ± 1.9)} kJ ⋅ mol"−"1 have been derived for the minor diastereomer, (4aS,7S,7aS)-nepetalactone, and major one, (4aS,7S,7aR)-nepetalactone, respectively. Vapor pressures also at T = 298.15 K of p = (1.2 ± 0.04) Pa and (0.91 ± 0.03) Pa have been evaluated for the minor and the major stereoisomer. In addition to being of interest because of the remarkable effect it has on various felids, oil of catnip is also quite effective in repelling mosquitoes, comparable to diethyl-m-toluamide (DEET). The vapor pressures evaluated in this work suggest that the two stereoisomers have similar volatility to DEET at ambient temperatures.

  5. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Schultz, Shannon M.; Harris, Harold H.; Chickos, James S.

    2015-01-01

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to T b ) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol −1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of T B = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of T B = (549.1 ± 0.1) K is also estimated by extrapolation

  6. Divine Emanation As Cosmic Origin: Ibn Sînâ and His Critics

    Directory of Open Access Journals (Sweden)

    Syamsuddin Arif

    2012-11-01

    Full Text Available The question of cosmic beginning has always attracted considerable attention from serious thinkers past and present. Among many contesting theories that have emerged, that of emanation was appropriated by Muslim philosophers like Ibn Sînâ in order to reconcile the Aristotelian doctrine of the eternity of matter with the teaching of al-Qur’ân on the One Creator-God. According to this theory, the universe, which comprises a multitude of  entities, is generated from a transcendent Being, the One, that is unitary, through the medium of  a hierarchy of  immaterial substances. While the ultimate source is undiminished, the beings which are emanated are progressively less perfect as they are further removed from the first principle. The process is conceived as being atemporal and often compared to the efflux of light from a luminous body, or to water flowing from a spring. This metaphysical theory has enabled Ibn Sînâ to solve the vexed problem: given an eternally existing world and one eternally existing God, how can the two necessarily co-exist without having the perfect, simple unity of God destroyed by contact with the multiplicity of material things? The following essay delineates and evaluates both Ibn Sînâ’s arguments as well as the counter-arguments of  his critics.

  7. The use of geochemical barriers for reducing contaminants emanating from uranium mill tailings

    International Nuclear Information System (INIS)

    Groffman, A.R.; Longmire, P.; Mukhopadhyay, B.; Downs, W.

    1991-01-01

    A problem facing the Department of Energy's Uranium Mill Tailings Remediation Action (UMTRA) Project is the contamination of local ground water by leachate emanating form the tailings piles. These fluids have a low pH and contain heavy metals and trace elements such as arsenic, molybdenum, nitrate, selenium, and uranium. In order to meet ground water standards low hydraulic conductivity covers are installed over the tailings embankment. in some cases it may be necessary to install a geochemical barrier down gradient from the tailings embankment in order to remove the hazardous constituents. By using geochemical barriers to reduce undesirable species form a contaminant plume, fluids emanating form beneath a repository can in effect be scrubbed before entering the water table. Materials containing adsorbing clays, iron oxyhydroxides and zeolites, and reducing materials such as coal and peat, are being used effectively to attenuate contaminants form uranium mill tailings. Experiments to directly determine attenuation capacities of selected buffer/adsorption materials were conducted in the laboratory. Batch leach tests were conducted in lieu of column tests when the hydraulic conductivity of materials was too low to use in columns and shales

  8. Calibration of a degassing-emanation line for 222Rn determination in seawater samples

    International Nuclear Information System (INIS)

    Farias, Luciana Aparecida

    2002-01-01

    The purpose of this study is to calibrate a degassing-emanation line and to determine 222 Rn and 226 Ra activity concentrations in seawater samples. This methodology, also called Lucas method, consists in the extraction of radon (originally dissolved in seawater), collection of the gas in a liquid nitrogen cold trap and transfer from the trap to an alpha scintillation cell. Total extraction efficiencies of the 4 degassing-emanation systems were determined by measuring 226 Ra reference solutions. The efficiencies obtained for these 4 systems varied from 21 % to 62%. This work also presents preliminary results of a study carried out in a series of small embayements of Ubatuba, Sao Paulo State-Brazil: Flamengo Bay, Fortaleza Bay, Mar Virado Bay and Ubatuba Bay. Concentration of Rn in excess varied from 0,011 to 0,317 Bq/L for Flamengo Bay, from 0,009 to 0,130 Bq/L for Fortaleza Bay, from 0,018 to 0,050 Bq/L for Mar Virado Bay and from 0,004 to 0,120 Bq/L for Ubatuba Bay. The results obtained for the concentration of 222 Rn in excess in a transect at Flamengo Bay varied from 0,002 to 0,036 Bq/L. Higher concentrations of 222 Rn in excess were obtained in Flamengo Bay, Fortaleza Bay and Ubatuba bay. It was also observed that the concentration of 222 Rn in excess increases with depth, as expected. (author)

  9. Use of generator substitution to determine the real attenuation of informative signals in the compromising emanation

    Directory of Open Access Journals (Sweden)

    Alexander A. Golyakhov

    2018-05-01

    Full Text Available A determination of real attenuation of information signal's radiation on a way from the source to a possible location of intelligence devices is considered to be the most difficult operation while assessing information security against leakage of electromagnetic emanation. In this context the problem of automation of this kind of measurement is of great interest. It takes considerable effort and time to measure the attenuation by existing automated systems. That is why the measurements are generally taken within the limited range of frequencies only. Along with that, a spectre of a single information impulse has a leaf-structure and is solid on every frequency leaf. So electromagnetic field intensity attenuation measurement carried on the some preselected frequencies is not able to represent the complete attenuation characteristics. The measurements of attenuation in the whole informative signal spectre within the given frequency range requires a few thousand measurements, which makes the current method ineffective and time consuming. The relevant specialized automatized measurement systems of security verification has active protection system noise measurement mode, which can be used to measure the real attenuation. In this article a rather exact method of real attenuation of informative signal of video subsystem of electron-ray tube monitor measurement is described and confirmed in experiment. The measurements were made using specialized automatized system “Sigurd” and video subsystem informative signal noise generator. The described method allows a significant reduction of  the time needed for specialized investigations of security verification on electromagnetic emanation.

  10. Fluoride emanations from fatories: experimental study of the action of fluorine plants

    Energy Technology Data Exchange (ETDEWEB)

    Cristiani, H; Gautier, R

    1925-01-01

    Research work from 1883 onward and the author's own experiments on the damages done to plants by fluoric emanations from aluminum and/or chemical fertilizer factories are reviewed. Fluoric compounds may act through the soil and water that feed the plants, or directly on the plant organs exposed to fluorine-polluted air. Of the various toxic gases, hydrofluoric acid is the most noxious since it forms thick fogs with the humidity in the air. The effects are cumulative and may not become visible before repeated exposure of the plants to the gases. The toxic action of NaF derives from its ability to precipitate lime and to attach itself to other substances, such as proteins. Also, fluorine salts have antiseptic action on unicellular elements, and this has had practical applications. At the doses utilized, alkaline salts of fluorine do not precipitate albumin, and can hamper microbial growth. On the other hand, examination of plant lesions enables the detection of their fluoric, as opposed to other (sulfur, chlorine) origin. Stoklasa claims that the amount of emanation and smoke has increased 100-fold in the last century, reducing the crops in some regions by 30 to 90%. The work on fodder from industrial areas was confirmed by experiments with fluorine compounds in air and in water.

  11. Radon emanation and soil moisture effects on airborne gamma-ray measurements

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1997-01-01

    A theoretical model is developed to explain variations in airborne gamma-ray measurements over a calibration range near Ottawa, Ontario. The gamma-ray flux from potassium and the thorium decay series showed an expected decrease with increasing soil moisture. However, the gamma-ray flux from the uranium decay series was highest in the spring when the ground was water-saturated and even covered with snow. These results are explained through the build-up of radon and its associated gamma-ray-emitting decay products in the clay soil of the calibration range with increasing soil moisture. Similar results were found from airborne measurements over other clay soils. However, measurements over sandy soils showed that the count rates from all three radio elements increased with decreasing soil moisture. This difference between soil types was attributed to the lower radon emanation of the more coarse-grained sandy soils compared to finer-grained clay soils. The theoretical and experimental results demonstrate that any estimate of the natural gamma-ray field caused by radium in the ground must take into consideration the radon emanation coefficient of the soil. The radon diffusion coefficient of the soil must also be considered since it depends strongly on soil moisture. This has significant implications for the assessment of outdoor radiation doses using laboratory analyses of soil samples and the use of ground and airborne gamma-ray measurements for radon potential mapping

  12. An approach to discriminatively determine thoron and radon emanation rates for a granular material with a scintillation cell

    International Nuclear Information System (INIS)

    Sakoda, Akihiro; Meisenberg, Oliver; Tschiersch, Jochen

    2016-01-01

    A powder sandwich technique was applied to determine thoron ("2"2"0Rn) and radon ("2"2"2Rn) emanation rates for a granular material. The feature of this technique is the sample preparation, in which a granular material is put and fixed between two membrane filters. Airflow is directly given to this sandwich sample, will include thoron and radon emanated from the material, and then is transferred to the detector. This method makes sure that thoron and radon emanated are not retained in pore space within the sample volume, which is crucial for the appropriate emanation test. This technique was first introduced by Kanse et al. (2013) with the intention to measure the emanation of thoron - but not of radon - from materials having much higher "2"2"4Ra activity than "2"2"6Ra. In the present study, the methodology for the discriminative determination of thoron and radon emanation rates from a granular material has been examined using a flow-through scintillation cell and sandwich sample. The mathematical model was developed to differentiate total alpha counts into thoron- and radon-associated counts. With a sample of uranium ore, this model was experimentally validated by comparison between the scintillation cell and a reference detector that can discriminatively measure thoron and radon concentrations. Furthermore, the detection limits and uncertainties were evaluated to discuss the characteristics of this method. Key parameters for improving the determination of thoron and radon emanations were found to be the background radon concentration and the leakage of radon from the measurement system, respectively. It was concluded that the present method is advantageous to a sample that has much higher "2"2"6Ra activity than "2"2"4Ra. - Highlights: • The methodology of appropriate and discriminative measurement of thoron and radon emanation is presented. • Measurement of thoron and radon emanated from a sample was made using a scintillation cell. • Detection limits and

  13. Estimation of effective dose from Rn emanating from 'the minus ion' effect wallpaper

    International Nuclear Information System (INIS)

    Yoshizawa, Y.; Minowa, H.; Morita-Murase, Y.; Furuta, E.

    2006-01-01

    We have examined the wall papers which declared 'the minus ion' effect to estimate external and internal exposure dose from them. Results of gamma-ray spectrometry revealed that they contain 0.03 to 0.35 Bq·g -1 of Th-series nuclides, 208 Tl, 212 Pb, 212 Bi and 228 Ac, and U-series one, 214 Pb. Distributions of radioactive nuclides in the samples were measured using an imaging plate and a FLA-2000 (Fuji Photo Film). The radiation doses from the printed side of the wall papers were 5 to 15 times higher than that of the back side. The 222 Rn concentrations emanating from the wall papers in a sealed container of 50 liter were measured using the PICO-RAD radon detectors. One wall paper showed two to five times higher than the background value. (author)

  14. Emanation thermal analysis. Principle of the method, preparation of samples and apparatus

    International Nuclear Information System (INIS)

    Balek, V.; Pentinghaus, H.J.

    1993-12-01

    Principles of the title method are outlined and the sample preparation procedures and instrumental designs are described. The publication is divided into chapters as follows: (I) Introduction; (II) Sample labelling: (II.1) Introducing parent nuclides as a source of inert gas in solid; Distribution of inert gas in the sample; (II.2) Introducing inert gases without parent nuclides (using the recoil effect of nuclear reactions and using ion bombardment); (II.3) Choice of the suitable labelling technique; (III) Equipment for emanation thermal analysis: (III.1) Inert gas detection and measurement of inert gas release rate; (III.2) System of carrier gas flow and stabilization; (IV) Determination of the optimal conditions for radon release rate measurement; (V) Example of ETA measurement. (P.A.). 1 tab., 10 figs. 5 refs

  15. Radon and thoron emanation from various marble materials: impact on the workers

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Amghar, A.

    2005-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations were measured inside different pulverized marble material samples by using a method based on determining detection efficiencies of the CR-39 and LR-115 II solid state nuclear track detectors for the emitted alpha particles. Radon ( 222 Rn) and thoron ( 220 Rn) alpha-activities per unit volume were evaluated inside and outside the marble samples studied. Radon emanation coefficient was determined for the considered marble samples. Alpha- and beta-activities per unit volume of air due to radon, thoron and their progenies were measured in the atmosphere of a marble factory. Equilibrium factors between radon and its progeny and thoron and its decay products were evaluated in the air of the studied marble factory. The committed equivalent doses due to short-lived radon decay products were determined in different regions of the respiratory tract of workers in the considered marble factory

  16. Radiometric maps of Israel - Partial contribution to the understanding of potential radon emanations

    International Nuclear Information System (INIS)

    Vulkan, U.; Shirav, M.

    1997-01-01

    An airborne radiometric survey over parts of Israel was carried out in 1981. The system was comprised from 10 Nal 4 inch x 4 inch x 16 inch detectors, arranged in 4,4 and 2 sensors, with total volume of 1560 inch 3 , and one 4 inch x 4 inch x 16 inch uplooking Nal detector. Flight nominal height was 400 feet. It was found that the Mount Scopus Group (of Senonian origin) is the main source for high uranium - phosphorite rocks of this group contain up to 150 ppm U. Comparing the eU radiometric map with a map of potential radon emanation from rock units, reveals a fair correlation - high radon emanation usually follow the distribution of the Mount Scopus Group in Israel. The correlation between the two maps is excellent over arid terrain where soil cover is missing, whereas over semi-arid - humid areas (western and northern Israel), where soil and cultivation covers are developed, the eU levels over Mount Scopus Group's outcrops are much lower due to absorption of the radiation, and do not depict the full radon potential. Detailed mapping of radon hazards usually exhibit poor correlation between airborne eU data and direct pore radon measurements, even in arid terrain. This phenomenon is attributed to the fact that a radon ''source rock'' (e.g. phosphorite) could be covered with a few up to some tenths of meters of uranium-barren rock. About 0.5 meter cover is enough to absorb all radiation, causing very low airborne eU readings, while the radon free way in this rock is about 10 meters, yielding high pore radon levels when directly measured

  17. Hazardous waste disposal in relationship to radon gas emanation in atmosphere

    International Nuclear Information System (INIS)

    Fang, H.Y.

    1990-01-01

    Radioactive/toxic radon gas (Rn) produced naturally in the ground by the normal decay of uranium (U) and radium (Ra) is widely distributed in trace amounts in the earth's crust. It is a colorless, odorless and tasteless element and is one of the six generally known noble gases which are inert gases lacking the usual or anticipated chemical or biological action. Most radon gas is concentrated in the oxidation belt which is at a relatively shallow depth from the ground surface. Under normal conditions, the amount of radon gas seeping into the atmosphere or entering into residential buildings is very little and will not be harmful to human health. In recent years, due to population growth, a progressive living standard and industrial progress, many natural farm lands, forests and wetlands have been destroyed by conversion into residential and industrial compounds; consequently, such construction activities and industrial waste disposal changes the dynamic equilibrium of the ecosystem which can trigger and accelerate radon gas emanation and mobilization. This change is the major reason for the problem of indoor radon concentration which has significantly increased in recent years. Recent findings indicate that radon is not a totally inert element as previously thought. It can be influenced by local environments such as temperature, pH value, ion exchange, redox reaction, etc. to some degree. Also radon gas interacts with soil, water, air and others; unfortunately, the interface mechanisms between radon and the environment are not yet clearly understood and little information on these aspects is available. In this paper only the hazardous waste disposal causes for radon emanation are discussed. To deal with such complex phenomena, a new approach is presented that assumes radon gas interaction with the environment through dust in the air and suspensions in the water and soil-water system

  18. Present knowledge of the effect of cracks on radon emanation from tailings, with implications for mine rehabilitation at Olympic Dam

    International Nuclear Information System (INIS)

    Storm, J.R.; Patterson, J.R.

    1997-01-01

    The weather parameters of air pressure, temperature, rainfall and wind speed affect the rate of radon-222 emanation from the surface of mine tailings. A second set of conditions which form cracks or fissures in tailings and their covers, will also affect the radon flux density and they must be considered in the design of any cover for a rehabilitation program. The Olympic Dam mine expansion program, beginning in 1995, involves a substantial increase in the size of the copper/uranium tailings. As part of monitoring and progressive rehabilitation of the tailings, the rate of emanation of radon-222 from tailings' surfaces was measured, with and without the gross defects of cracking. Theoretical predictions and measurements made in the U.S., are compared with rates of emanation from a cracked surface, modelled as homogeneous with additional surface area due to cracks

  19. Improved Ambient Pressure Pyroelectric Ion Source

    Science.gov (United States)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  20. Water-vapor pressure control in a volume

    Science.gov (United States)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  1. Emanation-thermal characteristics of Ba-salts of some aromatic acids in the temperature range between 298 and 373 K

    Energy Technology Data Exchange (ETDEWEB)

    Balek, V; Prachar, M [Ustav Jaderneho Vyzkumu, Rez (Czechoslovakia); Kroupa, J [Vyzkumny Ustav Syntetickych Pryskyric a Laku, Pardubice (Czechoslovakia)

    1977-01-01

    The paper presents the emanation-thermal characteristics of Ba salts of some monocarboxylic acids (phtalic, isophtalic and terephtalic) and dicarboxylic acids (benzoic, salicylic, 1,4-aminobenzoic, 1,2-Cl-benzoic and 1,2-I-benzoic). It is shown that the emanation thermal characteristics measured in the temperature range between 298 and 373 K are suitable for estimating diffusion properties of studied organic solids. An apparatus for determining emanation-thermal characteristics is proposed.

  2. Comparative study of the vapor analytes of trinitrotoluene (TNT)

    Science.gov (United States)

    Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.

    1998-12-01

    Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.

  3. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  4. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.

    Science.gov (United States)

    Amann, Anton; Costello, Ben de Lacy; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Pleil, Joachim; Ratcliffe, Norman; Risby, Terence

    2014-09-01

    Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer

  5. Effects of barium chloride treatment of uranium mill tailings and ore on radon emanation and 226Ra levels. Progress report

    International Nuclear Information System (INIS)

    Ibrahim, S.A.; Flot, S.L.

    1983-01-01

    The purpose of this study was to investigate the effect of barium chloride treatments on: reduction of 222 Rn emanation from mill wastes; reduction of 226 Ra levels in wastewater; and decreased leachability of 226 Ra from mill wastes. Baseline 226 Ra concentrations were determined for ore and tailings as well as radon emanation fractions. Uranium ore was treated with soluble barium at concentrations of 10, 25, 50, and 100 mg per litre of slurry. The leach-liquor declined in 226 Ra concentration by as much as 50%. When soluble potassium as well as barium was used in the treatment process at equal concentrations of 10, 25, 50, and 100 mg per litre of slurry, a similar reduction was observed. No significant difference was noted between the two treatment regimes. An accelerated leaching experiment was performed on the ore treated with barium chloride. All treatment groups except that treated with 10 mg of soluble barium per litre of slurry showed significant decreases in leachability. Available 222 Rn (corresponds with radon emanation fraction) was measured in treated and untreated ore. Ore treated with concentrations of Ba ++ up to 1.00 mg per gram of ore did not show a statistically significant reduction in available 222 Rn, however when potassium sulfate was also added, a significant decline was noted. This study suggests that barium chloride treatments reduce radon emanation from mill wastes and reduce 226 Ra levels in wastewater. Leachability of 226 Ra from treated samples decreased markedly. 19 references, 8 figures, 7 tables

  6. Interim report to the Northern Ecosystem Initiative from the Northern Ecological Monitoring and Assessment Network (EMAN-North)

    International Nuclear Information System (INIS)

    Wakelyn, L.; Eamer, J.

    2001-01-01

    The Northern Ecological Monitoring and Assessment Network (EMAN-North) has received funding for a proposal submitted to the Northern Ecosystems Initiative (NEI) in January 2001. EMAN-North is a network that coordinates ecological monitoring in northern Canada. Its geographic scope comprises 40 per cent of the geographic area of Canada, including Yukon, Northwest Territories and Nunavut, and an area near Churchill, Manitoba. Funding was awarded because the proposed EMAN-North project addressed the NEI priority of Monitoring Ecosystem Status and Trends, and Ecosystem Impacts of Climate Change. The project was also aimed at improving the network's capacity for long-term ecological monitoring, assessment and reporting. Several activities deal specifically with ecological impacts of climate change. This paper described the need and the context for ecological monitoring in northern Canada and defined a strategic direction for EMAN-North. The project will include many individuals involved in ecological monitoring in the north to deliver information on ecosystem changes to decision-makers and the public. refs., tabs., figs

  7. A theoretical and experimental EPFM study of cracks emanating from a hole

    International Nuclear Information System (INIS)

    Broekhoven, M.J.G.

    1978-01-01

    Results are presented of a combined theoretical and experimental study on the onset of crack extension in the EPFM regime for through cracks emanating from a circular hole in a plate under tensile load, with emphasis on the applicability of the J-concept for predicting such extensions. This configuration was selected both because of its general importance and as a first approximation for a nozzle-to-vessel geometry. Theoretical investigations consisted of elastic-plastic finite element computations both for 3-point bend specimens and for plate geometry. J values were calculated using the contour-integral definition for J, and by the method of virtual crack extension. The applicability of simplified analytical approximations for J was also investigated. COD data were derived from finite element computed displacements. Experimental investigations included Jsub(Ic) tests on a series of bend specimens and crack extensions tests on a series of cracked perforated plate models. For practical reasons aluminium 2024-T 351 was selected as a suitable model material within the aims of the study. Onset of crack extension was determined by the heat-tinting procedure throughout the experiments, in some cases supplemented by fractographic investigations. The various theoretical solutions and experimental observations were compared and a number of conclusions were drawn. (author)

  8. Use of Emanation Thermal Analysis in the characterization of nuclear waste forms and their alteration products

    International Nuclear Information System (INIS)

    Balek, V; Malek, Z.; Banba, T.; Mitamura, H.; Vance, E.R.

    1999-01-01

    Emanation Thermal Analysis (ETA) was used for the characterization of thermal behavior of two nuclear waste glasses, basalt volcanic glass and perovskite ceramics before and after hydrolytic treatment. The release of radon, formed by the spontaneous α-decay of 228 Th and 224 Ra and incorporated into samples to a maximum depth of 100 nm from the surface due to the recoil, was measured during heating of the samples from 20 to 1200degC and subsequent cooling. Temperatures of the annealing of surface roughness, micro-cracks and other defects, produced by manufacture and/or by subsequent treatment of glass and ceramic samples, were determined using the ETA. Microstructure changes of glass corrosion accompanying their dehydration and thermal decomposition were characterized by the radon release rate changes. The effect of hydrolytic alteration on the thermal behavior of the nuclear waste glass was revealed by ETA in an early corrosion stage. In the alteration product of the perovskite ceramics the diffusion mobility of radon was assessed in the temperature range 1000-1200degC. The thermal stability of radiation-induced defects in perovskite ceramic powder bombarded by He + ions to doses of 10 14 and 10 16 ions/cm 2 was determined by means of ETA. (author)

  9. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius

    Energy Technology Data Exchange (ETDEWEB)

    Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu [Department of Chemical and Environmental Engineering, University of Mauritius, Réduit (Mauritius); Mohee, Romeela [Professor of Chemical and Environmental Engineering, National Research Chair in Solid Waste Management, Mauritius Research Council (Mauritius); Kowlesser, Prakash [Solid Waste/Beach Management Unit, Ministry of Local Government and Outer Islands (Mauritius)

    2014-10-15

    Highlights: • Scrap metal processing wastes. • Areas of applications for slag, electric arc furnace dust, mill scale and wastewater sludge. • Waste generation factor of 349.3 kg per ton of steel produced. • Waste management model. - Abstract: This paper presents an assessment on the wastes namely slag, dust, mill scale and sludge resulting from scrap metal processing. The aim of this study is to demonstrate that there are various ways via which scrap metal processing wastes can be reused or recycled in other applications instead of simply diverting them to the landfill. These wastes are briefly described and an overview on the different areas of applications is presented. Based on the results obtained, the waste generation factor developed was 349.3 kg per ton of steel produced and it was reported that slag represents 72% of the total wastes emanating from the iron and steel industry in Mauritius. Finally the suitability of the different treatment and valorisation options in the context of Mauritius is examined.

  10. Heat transfer and flow structure evaluation of a synthetic jet emanating from a planar heat sink

    International Nuclear Information System (INIS)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-01-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  11. Characterization of a Compact Water Vapor Radiometer

    Science.gov (United States)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  12. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  13. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  14. Uptake of mercury vapor by wheat. An assimilation model

    International Nuclear Information System (INIS)

    Browne, C.L.; Fang, S.C.

    1978-01-01

    Using a whole-plant chamber and 203 Hg-labeled mercury, a quantitative study was made of the effect of environmental parameters on the uptake, by wheat (Triticum aestivum), of metallic mercury vapor, an atmospheric pollutant. Factors were examined in relation to their influence on components of the gas-assimilation model, U(Hg) = (C/sub A' -- C/sub L')/(r/sub L.Hg/ + r/sub M.Hg/) where U(Hg) is the rate of mercury uptake per unit leaf surface, C/sub A'/ is the ambient mercury vapor concentration, C/sub L'/ is the mercury concentration at immobilization sites within the plant (assumed to be zero), r/sub L.Hg/ is the total leaf resistance to mercury vapor exchange, and r/sub M.Hg/ is a residual term to account for unexplained physical and biochemical resistances to mercury vapor uptake. Essentially all mercury vapor uptake was confined to the leaves. r/sub L.Hg/ was particularly influenced by illumination (0 to 12.8 klux), but unaffected by ambient temperature (17 to 33 0 C) and mercury vapor concentration (0 to 40 μg m -3 ). The principal limitation to mercury vapor uptake was r/sub M.Hg/, which was linearly related to leaf temperature, but unaffected by mercury vapor concentration and illumination, except for apparent high values in darkness. Knowing C/sub A'/ and estimating r/sub L.Hg/ and r/sub M.Hg/ from experimental data, mercury vapor uptake by wheat in light was accurately predicted for several durations of exposure using the above model

  15. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  16. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  17. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  18. Radon emanations: a tectonic indicator in the Dharamsala area of Himalayan Frontal Zone, Himachal Pradesh

    International Nuclear Information System (INIS)

    Dhar, Sunil

    2013-01-01

    While throughout the length of Himalayas good exposures of the tertiary and the pre-Tertiary occurs occur, but in the Dharamsala and its adjoining areas of Himalayan Frontal Zone, tertiary and the pre-Tertiary rocks are present within a short aerial distance. This diverse lithology within a short span of distance along with the structural heterogeneity has made this region of Himalayas tectonically significant. This unique tectano-stratigraphic configuration of this area is primarily attributed to the major faults and folds which are either along the Himalayan trend or transverse to it. Interestingly the area is seismically active and falls in the High Seismic Zone-V of seismic atlas of India. It has been observed that regional thrusts systems and lineaments, control seismo-tectonic activity in the region. Contemporary geomorphological re-adjustments in the form of erosion intensity (meandering/drainage pattern or river incision) as a result of active nature of lineaments have been observed. In addition, due to the rampant seismic activity in the region especially in year 2013, the area has witnessed a sequence of landslides. The study further reveals these the signatures of morphological adjustment coincide with zones which have deciphered higher proportions of radon activity. Because radon transport through rocks is largely dependent on the geology of the area, which includes lithology, compaction, porosity structural/tectonic features like thrusts, faults, joints and fractures. Occurrences of landslide the thrust zones, coupled with high emanations of radon (both in soil and water) alludes attention towards dominant role of neo-tectonic activity in the area. (author)

  19. Tracing Fast Electron Beams Emanating from the Magnetic Reconnection Site in a Solar Jet

    Science.gov (United States)

    Chen, B.; Yu, S.; Battaglia, M.; Krucker, S.

    2017-12-01

    Fast electron beams propagating in the solar corona can emit radio waves commonly known as type III radio bursts. At decimetric wavelengths, these bursts are emitted from the low corona where flare energy release is thought to take place. As such, decimetric type III radio bursts can serve as an excellent tool to directly trace fast electron beams in the vicinity of the flare energy release site. Here we report observations of decimetric type III bursts during a jet event using the Jansky Very Large Array (VLA) in 1-2 GHz. Taking advantage of VLA's highly sensitive spectral imaging capability with an ultra-high cadence of 50 ms, we derive detailed trajectories of fast electron beams (with a bulk speed of at least 0.3-0.5c, or several tens of keV) and place them in the context of extreme ultraviolet and X-ray images obtained by SDO/AIA and RHESSI. Our results show that the electron beams originated in a region just below the jet and above the lower-lying small-scale flare loops, presumably where the magnetic energy release took place. We show that the electron beams appear in groups, each with a duration of only a few seconds. Each group, consisting of beams propagating along magnetic field lines at different angles, is seen to emanate from a single site trailing the jet, interpreted as the magnetic reconnection null point. Our results suggest, at least for the present case, that the fast electron beams were energized directly at the magnetic reconnection site which was highly inhomogeneous and fragmentary possibly down to kilometer scales.

  20. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  1. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  2. Determination of radioactivity in and radon emanation coefficient of selected building materials and estimation of radiation exposure from their use

    International Nuclear Information System (INIS)

    Paredes, C.H.

    1984-01-01

    Building materials commonly used in the construction industry and those that were manufactured with waste products of the phosphate industry, and phosphate ores were examined for radioactivity content. Each material was analyzed for Ra-226, Ra-228, and K-40 by gamma-ray spectrometry. The measured radionuclide concentrations for the building materials examined ranged from 0.2-3.9 pCi g -1 for Ra-226, 0.3-1.8 pCi g -1 for Ra-228, and 2.3-37 pCi g -1 for K-40. Waste products of elemental phosphorus manufacture had activity concentrations that ranged from 4.2-54 pCi g -1 for Ra-226, 0.3-1.0 pCi g -1 for Ra-228, and 1.4-6.6 pCi g -1 for K-40. The activity concentrations for phosphate ores from Tennessee and Montana were 5.3 and 36 pCi g -1 for Ra-226, 0.5 and 0.6 pCi g -1 for Ra-228, and 4.8 and 9.0 pCi g -1 for K-40, respectively. The emanation coefficients for the building materials examined ranged from 6.86 x 10 -4 - 5.99 x 10 -2 . Those for the waste products of the phosphate industry ranged from 2.21 x 10 -4 - 3.06 x 10 -2 . The phosphate ores had emanation coefficients in the order of 10 -2 . The emanation coefficients for mineral wool and wall-board slightly increased when measured at a relative humidity of 100% instead of 0%. No dependence of emanation coefficient on humidity was observed for Tenn. phosphate slag

  3. The Applicability of Traditional Protection Methods to Lines Emanating from VSC-HVDC Interconnectors and a Novel Protection Principle

    Directory of Open Access Journals (Sweden)

    Shimin Xue

    2016-05-01

    Full Text Available Voltage source converter (VSC-based high voltage direct current (VSC-HVDC interconnectors can realize accurate and fast control of power transmission among AC networks, and provide emergency power support for AC networks. VSC-HVDC interconnectors bring exclusive fault characteristics to AC networks, thus influencing the performance of traditional protections. Since fault characteristics are related to the control schemes of interconnectors, a fault ride-through (FRT strategy which is applicable to the interconnector operating characteristic of working in four quadrants and capable of eliminating negative-sequence currents under unbalanced fault conditions is proposed first. Then, the additional terms of measured impedances of distance relays caused by fault resistances are derived using a symmetrical component method. Theoretical analysis shows the output currents of interconnectors are controllable after faults, which may cause malfunctions in distance protections installed on lines emanating from interconnectors under the effect of fault resistances. Pilot protection is also inapplicable to lines emanating from interconnectors. Furthermore, a novel pilot protection principle based on the ratio between phase currents and the ratio between negative-sequence currents flowing through both sides is proposed for lines emanating from the interconnectors whose control scheme aims at eliminating negative-sequence currents. The validity of theoretical analysis and the protection principle is verified by PSCAD/EMTDC simulations.

  4. The effect of time-dependent ventilation and radon (thoron) gas emanation rates in underground uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1987-01-01

    A theoretical radiation mine model, suitable for underground uranium mines, has been investigated. In this model, the rate of ventilation and/or the radon (thoron) gas emanation from mine walls are time-dependent. Several cases of practical interest have been investigated including sinusoidal, linear, exponential, stepwise, or a combination of two or more of the above. Analytical solutions were obtained for the time-dependent radon (thoron) gas emanation rate. However, because of the extreme analytical complexity of the solutions corresponding to the time-dependent ventilation rate case, numerical solutions were found using a special Runge-Kutta procedure and the Hamming's modified predictor-corrector method for the solution of linear initial-value problems. The mine model makes provisions for losses of radioactivity, other than by ventilation and radioactive decay, by, say, plate-out on mine walls, and by other mechanisms. Radioactivity data, i.e., radon, thoron, and their progeny, obtained with the above mine model for a number of ventilation and emanation conditions, are presented. Experimental data obtained in an inactive stope of an underground uranium mine for a time-dependent air flow case are shown. Air flow conditions (ventilation rate) were determined by tracer gas techniques using SF 6

  5. Measurement of 222Rn flux, 222Rn emanation and 226Ra concentration from injection well pipe scale

    International Nuclear Information System (INIS)

    Rood, A.S.; Kendrick, D.T.

    1996-01-01

    The presence of Naturally Occurring Radioactive Material (NORM) has been recognized since the early 1930s in petroleum reservoirs and in oil and gas production and processing facilities. NORM was typically observed in barite scale that accumulated on the interior of oil production tubing and in storage tank and heater-treater separation sludge. Recent concern has been expressed over the health impacts from the uncontrolled release of NORM to the public. There are several potential exposure pathways to humans from oil-field NORM. Among these is inhalation of radon gas and its daughter products. For this exposure pathway to be of any significance, radon must first be released from the NORM matrix and diffuse in free air. The radon emanation fraction refers to the fraction of radon atoms produced by the decay of radium, that migrate from the bulk material as free gaseous atoms. The purpose of this investigation was to characterize the radon release rates from NORM-scale contaminated production tubing being stored above ground, characterize the radon emanation fraction of the bulk scale material when removed from the tubing, and characterize the radium concentrations of the scale. Accurate characterization of 222 Rn emanation fractions from pipe scale may dictate the type of disposal options available for this waste. Characterization of radon release from stored pipes will assist in determining if controls are needed for workers or members of the public downwind from the source. Due to the sensitive nature of this data, the location of this facility is not disclosed

  6. Effects of barium chlorine treatment of uranium ore on 222Rn emanation and 226Ra leachability from mill tailings

    International Nuclear Information System (INIS)

    Ibrahim, S.A.; Church, S.L.; Whicker, F.W.

    1985-01-01

    The purpose of this laboratory study was to investigate the effectiveness of barium chloride treatment of uranium ore on 222 Rn emanation from mill tailings, 226 Ra level in waste-water, and the leachability of radium from tailings. It has been shown that barium sulfate is an excellent carrier for radium and that barium sulfate crystals have high retention capacity for radon gas produced by radium trapped within the lattice. Ground uranium ore from a mine in Wyoming was mixed with water to form a 1:1 ratio before barium and potassium chlorides were added at concentrations of 0, 10, 25, 50, and 100 mg per liter of slurry. The ore was then subjected to a simulated mill process using sulfuric acid leaching. The liquid representing tailings pond water was separated and analyzed for 226 Ra and the solid fraction, representing mill tailings, was tested for radon emanation and the leachability of radium by deionized water. This study suggests that barium treatment of uranium ore prior to sulfuric acid leaching could be effective in reducing radon emanation from tailings and also in reducing the 226 Ra concentration of waste-water. Leachability of radium from treated tailings was markedly reduced

  7. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  8. The future is 'ambient'

    Science.gov (United States)

    Lugmayr, Artur

    2006-02-01

    The research field of ambient media starts to spread rapidly and first applications for consumer homes are on the way. Ambient media is the logical continuation of research around media. Media has been evolving from old media (e.g. print media), to integrated presentation in one form (multimedia - or new media), to generating a synthetic world (virtual reality), to the natural environment is the user-interface (ambient media), and will be evolving towards real/synthetic undistinguishable media (bio-media or bio-multimedia). After the IT bubble was bursting, multimedia was lacking a vision of potential future scenarios and applications. Within this research paper the potentials, applications, and market available solutions of mobile ambient multimedia are studied. The different features of ambient mobile multimedia are manifold and include wearable computers, adaptive software, context awareness, ubiquitous computers, middleware, and wireless networks. The paper especially focuses on algorithms and methods that can be utilized to realize modern mobile ambient systems.

  9. Growth of GaN layers using Ga2O vapor obtained from Ga and H2O vapor

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    In this study, we performed growth of GaN layers using Ga 2 O vapor synthesized from Ga and H 2 O vapor. In this process, we employed H 2 O vapor instead of HCl gas in hydride vapor phase epitaxy (HVPE) to synthesize Ga source gas. In the synthesis reaction of Ga 2 O, a Ga 2 O 3 whisker formed and covered Ga, which impeded the synthesis reaction of Ga 2 O. The formation of the Ga 2 O 3 whisker was suppressed in H 2 ambient at high temperatures. Then, we adopted this process to supply a group III precursor and obtained an epitaxial layer. X-ray diffraction (XRD) measurement revealed that the epitaxial layer was single-crystalline GaN. Growth rate increased linearly with Ga 2 O partial pressure and reached 104 µm/h. (author)

  10. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation

    International Nuclear Information System (INIS)

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A.; Bouquerel, Hélène

    2016-01-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L"−"1 and 10% for 10 mBq L"−"1. While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L"−"1, a conservative experimental estimate is rather 5 mBq L"−"1, corresponding to 0.14 fg g"−"1. The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported. - Highlights: • Radium-226 concentration measured with optimized accumulation in a container. • Radon-222 in air measured precisely with scintillation flasks and long countings. • Method tested by repetition tests, dilution experiments, and successful blind tests. • Estimated conservative detection limit without pre-concentration is 5 mBq L"−"1. • Method is portable, cost

  11. Program plan for the resolution of tank vapor issues

    International Nuclear Information System (INIS)

    Osborne, J.W.; Huckaby, J.L.

    1994-05-01

    Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management

  12. Licenciamento ambiental e sustentabilidade

    Directory of Open Access Journals (Sweden)

    Marcelo Macedo Valinhas

    2011-12-01

    Full Text Available A sustentabilidade está apoiada principalmente nas dimensões econômica, ambiental e social. No entanto, sem a dimensão política ela não se constrói. Um dos principais instrumentos de comando e controle da política nacional de meio ambiente, o licenciamento ambiental é um processo contínuo de gestão ambiental pública e privada. Analisou-se o processo de licenciamento ambiental como acoplamento estrutural entre os sistemas social, econômico e ambiental. Apesar da constatação de críticas aos mecanismos de comando e controle dos últimos anos, foi verificado que o Estado do Rio de Janeiro tem buscado integrar a política ambiental do Estado à gestão ambiental privada e que esta integração busca atender às demandas dos sistemas sociais e econômicos para as questões ambientais. Em linhas gerais, este caminho segue as estratégias e ações propostas na Agenda 21 brasileira.

  13. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Weber, W.; Rabaey, J.M.; Aarts, E.

    2005-01-01

    We briefly review the concept of ambient intelligence and discuss its relation with the domain of intelligent algorithms. By means of four examples of ambient intelligent systems, we argue that new computing methods and quantification measures are needed to bridge the gap between the class of

  14. Persuasion in Ambient Intelligence

    NARCIS (Netherlands)

    Kaptein, M.C.; Markopoulos, P.; Ruyter, de B.E.R.; Aarts, E.H.L.

    2010-01-01

    Although the field of persuasive technologies has lately attracted a lot of attention, only recently the notion of ambient persuasive technologies was introduced. Ambient persuasive technologies can be integrated into every aspect of life, and as such have greater persuasive power than the

  15. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  16. Fiber optic humidity sensor using water vapor condensation.

    Science.gov (United States)

    Limodehi, Hamid E; Légaré, François

    2017-06-26

    The rate of vapor condensation on a solid surface depends on the ambient relative humidity (RH). Also, surface plasmon resonance (SPR) on a metal layer is sensitive to the refractive index change of its adjacent dielectric. The SPR effect appears as soon as a small amount of moisture forms on the sensor, resulting in a decrease in the amount of light transmitted due to plasmonic loss. Using this concept, we developed a fiber optic humidity sensor based on SPR. It can measure the ambient RH over a dynamic range from 10% to 85% with an accuracy of 3%.

  17. A field portable mass spectrometer for monitoring organic vapors.

    Science.gov (United States)

    Meier, R W

    1978-03-01

    A portable mass spectrometer has been designed and built under the sponsorship of the US Army for the purpose of monitoring low concentrations of specified organics in the ambient atmosphere. The goals of the development were discrimination, sensitivity, portability, simplicity of operation, economy and convenience. These objectives were met in a system consisting of a computer operated mass spectrometer with a Llewellyn membrane separator inlet system housed in two 26 x 18 x 9 inch aluminum cases with a total weight less than 150 pounds. This system has shown the capability for field detection of hundreds of specific organic vapors at the parts per billion level in the ambient and workplace environments.

  18. Correlation between radon gas emanation and porosity in ornamental stones; Correlacao entre emanacao de gas radonio e porosidade de rochas ornamentais do Estado do Ceara, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Leiliane Rufina Pereira de; Artur, Antonio Carlos; Bonotto, Daniel Marcos, E-mail: leili_ane@hotmail.com, E-mail: acartur@rc.unesp.br, E-mail: dbonotto@rc.unesp.br [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil); Nogueira Neto, Jose de Araujo, E-mail: nogueira@ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Geologia

    2014-01-15

    This article makes correlations between levels of gas {sup 222}Rn emanation and corresponding porosity for thirteen samples of granitic rocks ornamental state of Ceara. For both determinations of physical indexes (bulk density, apparent porosity and water absorption, the levels of U, monitoring emanation of radon gas are made for a period of 25 days in confinement conditions of the samples under vacuum and petrographic studies of the characteristics rocks, with emphasis on the microfissural state. The sampled rocks provided low values of radon gas emanation between U 0,2 ppm and 13.6 ppm. The correlations between the various results show that the microporous network of the rock is determinant in the rate of emanation of radon gas, overlapping, including the influence of own levels of U present in the rocks. The results also show that the amount of radon gas emanating from the rock is small enough compared to the decay caused by the amount of {sup 238}U. The proposition of gas emanating relative to the total generated by rocks ranging between 0.4% and a maximum of 4.2%. (author)

  19. Radiofrequency Ablation of an Atrial Tachycardia Emanating From the Non-coronary Aortic Cusp Guided by an Electroanatomic Navigation System

    Directory of Open Access Journals (Sweden)

    Agustin Bortone

    2010-02-01

    Full Text Available We report on an atrial tachycardia (AT, emanating from the non-coronary (NC aortic cusp, ablated with the aid of an electro-anatomical navigation system. In this setting, the electrocardiographic, electrophysiologic (EP, anatomical, and ablative considerations are discussed.Although NC aortic cusp focal ATs are an uncommon EP finding, their ablation is effective and safe, especially from an atrio-ventricular (AV conductive point of view. This origin of AT must be invoked and systematically disclosed when a peri-AV nodal AT origin is suspected, in order to avoid a potentially harmful energy application at the vicinity of the AV conductive tissue.

  20. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  1. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  2. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  3. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  4. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Verhaegh, W.F.J.; Aarts, E.H.L.; Korst, J.H.M.

    2004-01-01

    In this chapter, we discuss the new paradigm for user-centered computing known as ambient intelligence and its relation with methods and techniques from the field of computational intelligence, including problem solving, machine learning, and expert systems.

  5. Headspace vapor characterization of Hanford Waste Tank 241-S-112: Results from samples collected on July 11, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Clauss, T.W.; Pool, K.H.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage Tank 241-S-112 (Tank S-112) at the Hanford. Pacific Northwest National Laboratory (PNNL) is contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5044. Samples were collected by WHC on July 11, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  6. Headspace vapor characterization of Hanford Waste Tank SX-102: Results from samples collected on July 19, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Evans, J.C.; Clauss, T.W.; Pool, K.H.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-102 (Tank SX-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed under the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5046. Samples were collected by WHC on July 19, 1995, using the vapor sampling system (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  7. Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Thomas, B.L.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  8. Headspace vapor characterization of Hanford Waste Tank 241-TX-111: Results from samples collected on October 12, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-TX-111 (Tank TX-111) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5069. Samples were collected by WHC on October 12, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  9. Headspace vapor characterization of Hanford Waste Tank AX-103: Results from samples collected on June 21, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Clauss, T.W.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-103 (Tank AX-103) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5029. Samples were collected by WHC on June 21, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  10. Headspace vapor characterization of Hanford Waste Tank AX-101: Results from samples collected on June 15, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-101 (Tank AX-101) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) under the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5028. Samples were collected by WHC on June 15, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  11. Headspace vapor characterization of Hanford Waste Tank 241-SX-109: Results from samples collected on August 1, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-109 (Tank SX-109) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5048. Samples were collected by WHC on August 1, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  12. Headspace vapor characterization of Hanford Waste Tank 241-SX-104: Results from samples collected on July 25, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-104 (Tank SX-104) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5049. Samples were collected by WHC on July 25, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  13. Headspace vapor characterization of Hanford Waste Tank 241-SX-105: Results from samples collected on July 26, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-105 (Tank SX-105) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5047. Samples were collected by WHC on July 26, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  14. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    Science.gov (United States)

    Mcgowan, J. J.; Smith, C. W.

    1976-01-01

    The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.

  15. From Sakata model to Goldberg-Ne'eman quarks and Nambu QCD phenomenology and 'right' and 'wrong' experiments

    International Nuclear Information System (INIS)

    Lipkin, Harry J.

    2007-01-01

    The basic theoretical milestones were the Sakata SU(3) symmetry, the Goldberg-Ne'eman composite model with SU(3) triplets having baryon number (1/3) and the Nambu color gauge Lagrangian. The transition was led in right and wrong directions by experiments interpreted by phenomenology. A 'good' experiment on p-bar p annihilation at rest showed that the Sakata model predictions disagreed with experiment. A 'bad' experiment prevented the use of the Goldberg-Ne'eman triplet model to predict the existence and masses of the Ξ * and Ω - . More 'good' experiments revealed the existence and mass of the Ξ * and the Ω - and the absence of positive strangeness baryon resonances, thus confirming the 'tenfold way'. Further 'good experiments' revealed the existence of the vector meson nonet, SU(3) breaking with singlet-octet mixing and the suppression of the φ → ρπ decay. These led to the quark triplet model. The paradox of peculiar statistics then arose as the Δ ++ and Ω - contained three identical spin-1/2 fermions coupled symmetrically to spin (3/2). This led to color and the Nambu QCD. The book 'Lie Groups for Pedestrians' used the Sakata model with the name 'sakaton' for the pnΛ triplet to teach the algebra of SU(3) to particle physicists in the U.S. and Europe who knew no group theory. The Sakata model had a renaissance in hypernuclear physics in the 1970's. (author)

  16. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  17. Tritiated water vapor in the surface air at Tokyo

    International Nuclear Information System (INIS)

    Inoue, Hisayuki; Katsuragi, Yukio; Shigehara, Koji

    1984-01-01

    Tritium concentration in water vapor in the air near the surface and in the precipitation at Tokyo was measured during the period from 9 August to 20 November in 1974. From August to the middle of October, tritium mixing ratios in the surface air had relatively higher values except those in air masses which were associated with a typhoon. The mixing ratios of tritium in the air decreased abruptly at the middle of October, which indicates the decrease of tritium influx from aloft. These data exhibit the salient feature that variations in tritium concentration in TR are linear to the reciprocal of the content of water vapor during each period. Tritium concentrations in vapor and rain water collected simultaneously show nearly equal values. One of the reasons for the good correlation of tritium concentration between falling drops and ambient air is considered to be the result of the rapid isotopic exchange. (author)

  18. Computational Fluid Dynamics Model for Saltstone Vault 4 Vapor Space

    International Nuclear Information System (INIS)

    Lee, Si Young

    2005-01-01

    Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns for vapor space inside the Saltstone Vault No.4 under different operating scenarios. The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations. A CFD model took three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the boundary conditions as provided by the customer. The present model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference baseline case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information

  19. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  20. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  1. Data based ambient lighting control

    NARCIS (Netherlands)

    2012-01-01

    In controlling an ambient lighting element, a category of data being rendered by a host is identified, ambient lighting data associated with the identified category is retrieved, and the retrieved ambient lighting data is rendered in correspondence with the rendered data. The retrieved ambient

  2. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  3. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  4. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  5. Electronic and Mechanical Properties of GrapheneGermanium Interfaces Grown by Chemical Vapor Deposition

    Science.gov (United States)

    2015-10-27

    that graphene acts as a diffusion barrier to ambient contaminants, as similarly prepared bare Ge exposed to ambient conditions possesses a much...in-plane order underneath the graphene (Figure 1b,f). The stabilization of Ge terraces with half-step heights indicates that the graphene modifies the...Electronic and Mechanical Properties of Graphene −Germanium Interfaces Grown by Chemical Vapor Deposition Brian Kiraly,†,‡ Robert M. Jacobberger

  6. Tank 241-C-111 headspace gas and vapor sample results - August 1993 samples

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1994-01-01

    Tank 241-C-111 is on the ferrocyanide Watch List. Gas and vapor samples were collected to assure safe conditions before planned intrusive work was performed. Sample analyses showed that hydrogen is about ten times higher in the tank headspace than in ambient air. Nitrous oxide is about sixty times higher than ambient levels. The hydrogen cyanide concentration was below 0.04 ppbv, and the average NO x concentration was 8.6 ppmv

  7. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  8. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  9. Gas and vapor bubble growth and collapse

    International Nuclear Information System (INIS)

    Bonnin, J.; Reali, M.; Sardella, L.

    1976-01-01

    The rate of growth or collapse of a spherical bubble of gas or vapor under the effect of a nonequilibrium with the ambient liquid can be expressed in terms of generalized parameters taking into account either mass or heat diffusion. Diffusion equations have been solved either by numerical computation or under the form of a asymptotical solution, for a growing bubble only and with a constant nonequilibrium. Solutions are compared between them and with already published ones. Experimental results obtained match with a unique nonequilibrium parameter, analogous to a Jacob number. Discrepancies with asymptotical solutions can require in some cases complete numerical computation. But taking into account convection due to bubble lift will require a more sophisticated numerical computation [fr

  10. Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991

    International Nuclear Information System (INIS)

    Williams, C.H.; Eberhart, C.F.

    1992-01-01

    Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications

  11. Detailed kinetic and heat transport model for the hydrolysis of lignocellulose by anhydrous hydrogen fluoride vapor

    Energy Technology Data Exchange (ETDEWEB)

    Rorrer, G.L.; Mohring, W.R.; Lamport, D.T.A.; Hawley, M.C.

    1988-01-01

    Anhydrous Hydrogen Fluoride (HF) vapor at ambient conditions efficiently and rapidly hydrolyzed lignocellulose to glucose and lignin. The unsteady-state reaction of HF vapor with a single lignocellulose chip was mathematically modeled under conditions where external and internal mass-transfer resistances were minimized. The model incorporated physical adsorption of HF vapor onto the lignocellulosic matrix and solvolysis of cellulose to glucosyl fluoride by adsorbed HF into the differential material and energy balance expressions. Model predictions for the temperature distribution and global glucose yield in the HF-reacting lignocellulose chip as a function of reaction time and HF vapor stream temperature agreed reasonably with the complimentary experimental data. The model correctly predicted that even when mass-transfer resistances for the reaction of HF vapor with a single lignocellulose chip are minimized, external and internal heat-transfer resistances are still significant.

  12. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    Science.gov (United States)

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  13. Plantas indicadoras de clomazone na fase vapor

    Directory of Open Access Journals (Sweden)

    Fábio Schreiber

    2013-10-01

    Full Text Available A volatilização representa um processo importante no deslocamento de agrotóxicos para o ambiente. As características físico-químicas da molécula do clomazone indicam que este possui potencial de volatilização. Em vista do exposto, para a realização deste estudo, foram conduzidos dois experimentos com o objetivo de avaliar a suscetibilidade das espécies: pepino, melão, milho, sorgo e arroz a diferentes formulações do herbicida clomazone na fase vapor. Para isso, foram utilizadas caixas de vidro hermeticamente fechadas, com a presença de diferentes formulações de clomazone e as espécies vegetais. As formulações utilizadas foram Gamit 360 CS®, Gamit 500 EC® e Gamit Star®. Com os resultados obtidos, foi possível concluir que, dentre as espécies avaliadas, independente da formulação utilizada, a de menor tolerância ao herbicida clomazone na fase vapor foi o sorgo, seguido do milho e do arroz.

  14. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  15. Indicadores de salud ambiental

    Directory of Open Access Journals (Sweden)

    Manuel Posada de la Paz

    2004-12-01

    Full Text Available Esta ponencia presenta una visión general del proyecto de Indicadores de Salud Ambiental, coordinado por la OMS a nivel internacional y liderado por el Centro de Investigación sobre el Síndrome del Aceite Tóxico y Enfermedades Raras (CISATER en España. En ella se describen los objetivos del proyecto, las gestiones realizadas y los resultados obtenidos durante la fase de viabilidad de este proyecto. El proyecto consiste en el establecimiento de un sistema de información sobre salud ambiental que permita desarrollar una vigilancia de los factores ambientales determinantes de los estados de salud, realizar comparaciones internacionales, elaborar políticas de acción, así como facilitar la comunicación con la ciudadanía. La OMS desarrolló una metodología para el desarrollo de estos indicadores dentro del marco conceptual de información ambiental DPSEEA (Fuerzas impulsoras, Presión, Estado, Exposición, Efecto, Acción y seleccionó un total de 55 indicadores (que incluyen 168 variables sobre 10 áreas de la salud ambiental. Durante la fase de viabilidad se predijo que podrían obtenerse el 89% de los indicadores. Sin embargo la recolección de los datos supuso muchas dificultades debido a la incompatibilidad de algunas variables en los sistemas de información españoles con las variables definidas por la OMS. A nivel de gestión del proyecto, la mayor dificultad radica en la disparidad de responsabilidades en materia de medio ambiente y salud entre las instituciones españolas. Además de la aportación técnica a la salud ambiental en España, un valor añadido de este proyecto ha sido el establecimiento de líneas de colaboración estrechas con los responsables de los diferentes Ministerios implicados.

  16. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  17. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    NARCIS (Netherlands)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-01-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (gF) derives a canopy conductance (gW) from measured transpiration by inverting the coupled transpiration model to yield gW = m − n ln(D) where m and n are fitting parameters. In contrast, this paper

  18. Medio ambiente urbano

    OpenAIRE

    Rodríguez-Chaves Mimbrero, Blanca

    2007-01-01

    El estudio  y análisis  de las interacciones  entre  ambiente  y desarrollo y  su inserción  en los procesos  de  planificación del crecimiento  social y económico  de  los  países  de América Latina, reviste especial interés para proponer alternativas de acción que  conduzcan  al  logro  de  una mejor  calidad de  vida.  El impacto  que las conferencias sobre  el  Medio Ambiente Humano Estocolmo (1972),  Cocoyoc  (1974) o de documentos como "Nuestro Futuro Común" o "Nuestra Propia Agenda" ha...

  19. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  20. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  1. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  2. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  3. MEIO AMBIENTE E DESENVOLVIMENTO

    Directory of Open Access Journals (Sweden)

    Suely Salgueiro Chacon

    2009-12-01

    Full Text Available O objetivo deste artigo é resgatar elementos para subsidiar uma reflexão crítica sobre o modelo de desenvolvimento econômico prevalente na sociedade e as relações com o meio ambiente, sob a ameaça que ronda o destino da espécie humana, conforme afirmação de Lovelock (2006, p. 20 sobre o conceito de desenvolvimento sustentável: “uma ideia adorável se a tivéssemos aplicado 200 anos atrás, quando havia um bilhão de pessoas no mundo. Agora é tarde demais. Não há mais espaço para nenhum tipo de desenvolvimento. A humanidade tem que regredir”. Este artigo apresenta a evolução do conceito de desenvolvimento econômico sob a ótica da sustentabilidade, e interliga temas como: o ambientalismo, aglutinador de distintos pensamentos sobre as relações entre a sociedade e a natureza; o movimento ambiental, a fundamentar a disseminação do conceito de desenvolvimento sustentável, e a gestão ambiental, abordada como prática orientada pelo conceito de desenvolvimento sustentável.

  4. Radiation protection and ambient radioactivity monitoring in the area of the Asse mine. Annual report 2001

    International Nuclear Information System (INIS)

    Meyer, H.; Stippler, R.

    2002-01-01

    The measuring activities for radiological monitoring in the mine and the surrounding area have been continued as usual, in compliance with the relevant programmes. As in previous years, low amounts of the nuclides H 3, C 14, Pb 210 and Rn 222, including Rn 220, and the short-life radon daughter products have been detected. In some cases, the nuclide-specific concentrations in ambient air derived from the annual average were below the mean natural concentrations of those nuclides. The relevant exposure data at the most affected measuring points remained far below the maximum permissible doses given in the Radiation Protection Ordinance. As compared to the natural and anthropogenic ambient radiation levels, the radiation exposure of the population in the area and the personnel on site, emanating from radioactive waste storage and performance of research projects in the Asse mine, represent an unsignificant contribution. (orig./CB) [de

  5. Radiation protection and ambient radioactivity monitoring in the area of the Asse mine. Annual report 2000

    International Nuclear Information System (INIS)

    Meyer, H.; Stippler, R.

    2001-01-01

    The measuring activities for radiological monitoring in the mine and the surrounding area have been continued as usual, in compliance with the relevant programmes. As in previous years, low amounts of the nuclides H 3, C 14, Pb 210 and Rn 222, including Rn 220, and the short-life radon daughter products have been detected. In some cases, the nuclide-specific concentrations in ambient air derived from the annual average were below the mean natural concentrations of those nuclides. The relevant exposure data at the most affected measuring points remained far below the maximum permissible doses given in the Radiation Protection Ordinance. As compared to the natural and anthropogenic ambient radiation levels, the radiation exposure of the population in the area and the personnel on site, emanating from radioactive waste storage and performance of research projects in the Asse mine, represent an unsignificant contribution. (orig./CB) [de

  6. Radiation protection and ambient radioactivity monitoring in the area of the Asse mine. Annual report 1999

    International Nuclear Information System (INIS)

    Meyer, H.; Stippler, R.

    2000-01-01

    The measuring activities for radiological monitoring in the mine and the surrounding area have been continued as usual, in compliance with the relevant programmes. As in previous years, low amounts of the nuclides H 3, C 14, Pb 210 and Rn 222, including Rn 220, and the short-life radon daughter products have been detected. In some cases, the nuclide-specific concentrations in ambient air derived from the annual average were below the mean natural concentrations of those nuclides. The relevant exposure data at the most affected measuring points remained far below the maximum permissible doses given in the Radiation Protection Ordinance. As compared to the natural and anthropogenic ambient radiation levels, the radiation exposure of the population in the area and the personnel on site, emanating from radioactive waste storage and performance of research projects in the Asse mine, represent an insignificant contribution. (orig./CB) [de

  7. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  8. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  9. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  10. Structural, morphological and mechanical properties of niobium nitride thin films grown by ion and electron beams emanated from plasma

    Science.gov (United States)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair

    2016-05-01

    The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.

  11. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    Science.gov (United States)

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  12. Customer exposure to gasoline vapors during refueling at service stations.

    Science.gov (United States)

    Hakkola, M A; Saarinen, L H

    2000-09-01

    Gasoline is a volatile complex mixture of hydrocarbon compounds that is easily vaporized during handling under normal conditions. Modern reformulated gasoline also contains oxygenates to enhance octane number and reduce ambient pollution. This study measured the difference in the exposure of customers to gasoline and oxygenate vapors during refueling in service stations with and without vapor recovery systems. Field measurements were carried out at two self-service stations. One was equipped with Stage I and the other with Stage II vapor recovery systems. At Stage I stations there is vapor recovery only during delivery from road tanker, and at Stage II stations additional vapor recovery during refueling. The exposure of 20 customers was measured at both stations by collecting air samples from their breathing zone into charcoal tubes during refueling with 95-octane reformulated gasoline. Each sample represented two consecutive refuelings. The samples were analyzed in the laboratory by gas chromatography using mass-selective detection for vapor components. The Raid vapor pressure of gasoline was 70 kPa and an oxygen content 2 wt%. Oxygenated gasoline contained 7 percent methyl tert-butyl ether (MtBE) and 5 percent methyl tert-amyl ether (MtAE). The geometric mean concentrations of hydrocarbons (C3-C11) in the customers' breathing zone was 85 mg/m3 (range 2.5-531 mg/m3) at the Stage I service station and 18 mg/m3 (range service station. The geometric mean of the exposure of customers to MtBE during refueling at the Stage I service station was 15.3 mg/m3 (range 1.8-74 mg/m3), and at the Stage II service station 3.4 mg/m3 (range 0.2-16 mg/m3). The differences in exposure were statistically significant (p station. The measurements were done on consecutive days at the various service stations. The temperature ranged from 10 to 17 degrees C, and wind velocity was 2-4 m/s. The climatic conditions were very similar on the measurement days. Based on this study it was found

  13. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  14. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  15. Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers

    International Nuclear Information System (INIS)

    Hermes, Christian J.L.; Barbosa, Jader R.

    2012-01-01

    Highlights: ► A Peltier, a Stirling, and two vapor compression refrigerators were compared. ► Tests were carried out to obtain key performance parameters of the systems. ► The overall 2nd-law efficiency was splited to take into account the internal and external irreversibilities. ► The Stirling and vapor compression refrigeration systems presented higher efficiencies. ► The thermoelectric device was not at the same efficiency level as the other coolers. -- Abstract: The present study compares the thermodynamic performance of four small-capacity portable coolers that employ different cooling technologies: thermoelectric, Stirling, and vapor compression using two different compressors (reciprocating and linear). The refrigeration systems were experimentally evaluated in a climatized chamber with controlled temperature and humidity. Tests were carried out at two different ambient temperatures (21 and 32 °C) in order to obtain key performance parameters of the systems (e.g., power consumption, cooling capacity, internal air temperature, and the hot end and cold end temperatures). These performance parameters were compared using a thermodynamic approach that splits the overall 2nd law efficiency into two terms, namely, the internal and external efficiencies. In doing so, the internal irreversibilities (e.g., friction in the working fluid in the Stirling and vapor compression machines, Joule heating and heat conduction in the thermoelectric devices of the Peltier cooler) were separated from the heat exchanger losses (external irreversibilities), allowing the comparison between different refrigeration technologies with respect to the same thermodynamic baseline.

  16. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  17. Dioxinas y medio ambiente

    Directory of Open Access Journals (Sweden)

    María Teresa Frejo Moya

    2011-12-01

    Full Text Available Con el término genérico dioxinas se designa al grupo de las dibenzo-p-dioxinas policloradas (PCDD y de los dibenzofuranos policlorados (PCDF, representantes típicos de los compuestos orgánicos persistentes (COPs. Se obtienen como productos secundarios no deseados de diversos procesos industriales en los que se emplea cloro en alguna de sus etapas. Las dioxinas han centrado en la última década una parte importante de la investigación médica en salud ambiental debido a su notable toxicidad, ya que son las sustancias químicas peligrosas más potentes creadas por el hombre, afectando al sistema nervioso e inmunitario, estando implicadas en la aparición de distintos tipos de cáncer y provocando la aparición de alteraciones hormonales, clasificándose actualmente como disruptores endocrinos. Por otra parte, su persistencia en el medio ambiente, resistencia a la degradación, bioacumulación y capacidad de transporte atmosférico entre las diversas fases medioambientales hace que sean considerados actualmente como compuestos peligrosos para el ser humano.

  18. Passively operated vapor-fed direct methanol fuel cells for portable applications

    Energy Technology Data Exchange (ETDEWEB)

    Eccarius, Steffen; Krause, Falko; Agert, Carsten [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Systems, Heidenhofstrasse 2, 79110 Freiburg (Germany); Beard, Kevin [Department of Chemical Engineering, University of South Carolina, Columbia (United States)

    2008-08-01

    The impact of structural parameters and operating conditions has not been researched yet for vapor-fed operation of a DMFC at near-ambient conditions. Thus, a detailed parameter study that included reference cell measurements to assess anode and cathode losses separately was performed. Among other parameters like temperature or air stoichiometry, different opening ratios that controlled evaporation of methanol into the vapor chamber were examined. Water management was found to be a critical parameter for a vapor-fed DMFC. Depletion of water inside the anode catalyst layer, especially at higher current densities, decreased performance of the fuel cell substantially. Back diffusion of water from the cathode to the anode was examined. A micro-structured cathode electrode that increased water back diffusion due to a reduced mass transfer resistance was developed and investigated. Finally, efficiencies and heat losses of a vapor-fed DMFC were determined. (author)

  19. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  20. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  1. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  2. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China

    Science.gov (United States)

    Ge, Yongxiao; Abuduwaili, Jilili; Ma, Long; Wu, Na; Liu, Dongwei

    2016-09-01

    In this paper, the HYSPLIT model, driven with reanalysis meteorological data from 1978 to 2013, was used to understand the potential transport characteristics of dust and salt dust emanating from the playa of Ebinur Lake in arid northwest China. Daily air parcel trajectories were computed forward for 8 days from an origin centered over Ebinur Lake at 100 m above ground level. Air parcel trajectory density plots were mapped for seven levels: 0-100 m agl., 100-500 m agl., 500-1000 m agl., 1000-1500 m agl., 1500-2000 m agl., 2000-3000 m agl., and 3000-5000 m agl. These show that potential dust transport pathways have clear seasonal differentiation. The potential transport distance of dust and salt dust is greatest in spring and summer. In autumn and winter, the potential transport of the high-density air trajectory is below 1000 m traveling a shorter distance. Potential dust transport pathways showed notifying directivity in different seasons and heights. Southeast in spring and summer, and north to northeast in autumn and winter are the two main potential transport channels of dust and salt dust. Accordingly, dust and salt dust from the playa of Ebinur Lake may influence the atmospheric processes and biogeochemical cycles of a vast region. The main area of influence of dust and salt dust is close to the source area, and will significantly accelerate the melting of snow and ice in the Tianshan Mountains. This highlights the urgent need to combine remote sensing, isotope and other methods to further research the transport characteristics of dust and salt dust from the playa of the Ebinur Lake.

  3. Types for BioAmbients

    Directory of Open Access Journals (Sweden)

    Sara Capecchi

    2010-02-01

    Full Text Available The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues. Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour.

  4. Managing amalgam phase down: An evaluation of mercury vapor levels in a dental center in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Adolphous Odofin Loto

    2017-01-01

    Full Text Available Background: Occupational exposure to elemental mercury vapor in a dental setting is mainly through inhalation exposure during preparation, insertion, polishing, and removal of amalgam fillings including storage of amalgam waste before disposal. This study aims to determine the indoor air levels of elemental mercury vapor in the dental operatories and ancillary sites at the Lagos State University Teaching Hospital (LASUTH. Materials and Methods: Samples of the ambient air were taken at seven locations the Dental Center of LASUTH by a trained technician between 9:00 and 11:00 a.m. This was done at a predetermined height (41/2feet above the floor for mercury vapor concentration using Lumex 915 light data logger mercury vapor analyzer manufactured by Ohio Lumex Company Incorporation, USA®. Results: The highest level of 1434 ng/m3 of mercury vapor in the air was found in the restorative clinic while the lowest of 23 ng Hg/m3 was found in the ambient air at the entrance of the dental Center. The Oral Surgery clinic had mercury vapor level of 318 ng/m3 which was slightly higher than Environmental Protection Agency recommended value of 0.3 μg/m3. Conclusion: An unacceptably high level of mercury vapor was detected, especially in the restorative clinic. Every dental clinic should have its ambient air evaluated for mercury vapor level for the purpose of forming a baseline data for monitoring purposes during the period of phase down of amalgam use. Best practices should also be instituted to reduce the level of exposure of patients and dental care workers to mercury vapor.

  5. Vapor-fed bio-hybrid fuel cell.

    Science.gov (United States)

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  6. Radon exhalation of cementitious materials made with coal fly ash: Part 1 - scientific background and testing of the cement and fly ash emanation

    International Nuclear Information System (INIS)

    Kovler, K.; Perevalov, A.; Steiner, V.; Metzger, L.A.

    2005-01-01

    Increased interest in measuring radionuclides and radon concentrations in fly ash, cement and other components of building products is due to the concern of health hazards of naturally occurring radioactive materials (NORM). The current work focuses on studying the influence of fly ash (FA) on radon-exhalation rate (radon flux) from cementitious materials. The tests were carried out on cement paste specimens with different FA contents. The first part of the paper presents the scientific background and describes the experiments, which we designed for testing the radon emanation of the raw materials used in the preparation of the cement-FA pastes. It is found that despite the higher 226 Ra content in FA (more than 3 times, compared with Portland cement) the radon emanation is significantly lower in FA (7.65% for cement vs. 0.52% only for FA)

  7. Reforma constitucional y ambiente

    Directory of Open Access Journals (Sweden)

    Teodoro Bustamante

    2013-09-01

    Full Text Available América Latina está atravesada por una ola de reformas constitucionales. Sus causas, las expectativas que ellas despiertan, los riesgos que se han asociado al proceso de lucha política en su entorno, son temas de un análisis fundamentalmente político; pero hay algunos aspectos en los cuales ese debate tiene una directa repercusión sobre el tema ambiental. En el caso del Ecuador, esto se refleja en el hecho de que una de las innovaciones que se proponen, se refieren a una nueva forma de abordar los temas ambientales, básicamente se establecen Derechos de la Naturaleza.

  8. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  9. Emanation of /sup 232/U daughter products from submicrometer particles of uranium oxide and thorium dioxide by nuclear recoil and inert gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.A.; Cuddihy, R.G. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.)

    1983-01-01

    Emanation of /sup 232/U daughter products by nuclear recoil and inert gas diffusion from spherical, submicrometer particles of uranium oxide and thorium dioxide was studied. Monodisperse samples of particles containing 1% /sup 232/U and having physical diameters between 0.1 and 1 ..mu..m were used for the emanation measurements. Thorium-228 ions recoiling from the particles after alpha-decay of /sup 232/U were collected electrostatically on a recoil cathode. Radon-220 diffusing from the particles was swept by an airstream into a 4 l. chamber where the /sup 220/Rn daughters were collected on a second cathode. Mathematical models of radionuclide emanation from spherical particles were used to calculate the recoil range of /sup 228/Th and the diffusion coefficient of /sup 220/Rn in the particle matrix. A /sup 228/Th recoil range of 0.02 ..mu..m and a /sup 220/Rn diffusion coefficient of 3 x 10/sup -14/ cm/sup 2//sec were obtained in both uranium oxide and thorium dioxide particles.

  10. Study of variations of radon emanations from soil in Morocco using solid state nuclear track detectors. Correlations with atmospheric parameters and seismic activities

    International Nuclear Information System (INIS)

    Boukhal, H.

    1993-01-01

    This study investigates the quantity variations of radon emanating from soil in accordance with time. It aims to verify the possibility of the radon sign use in earthquake prediction. Regular measures of radon concentration in soil have been carried out over the two years 1991 and 1992 in five towns of Morocco: Rabat, Tetouan, Ifrane and Khouribga, and in geophysic observatory of Ibn Rochd (Berchid region). The measuring method is based on the solid state nuclear track detectors technique. The obtained results have shown an influence of the atmospheric effects on the radon emanation. The experiment proved that, on one hand, the variations of the aforesaid influence are correlated to variations of the pluviometry and the atmospheric temperature and, on the other hand, there is no notable effect of atmospheric pressure or atmospheric humidity. The good correlations between the different seismic activities and the variations of radon emanation rate in the five measurement stations, have shown the interest of radon use in the earthquake prediction field. 81 refs., 100 figs., 17 tabs.(F. M.)

  11. Acoustic detection of the collapse of a sodium vapor bubble in an infinite sea of sodium

    International Nuclear Information System (INIS)

    Carey, W.M.

    1975-12-01

    A discussion of the problem of sodium vapor bubble collapse is presented. The physics of vapor collapse is presented in light of the work by Peppler et al. Theoretical estimates of the sound source level based on the work by Rayleigh and Judd are compared to an approximate pressure-volume work approach and recent experimental observations. Reactor ambient noise and transmission loss considerations are presented in regard to their impact on this detection problem. A methodology is proposed which considers the importance of the sound source level, ambient noise, transmission loss and a detection threshold and provides a means by which the feasibility of sodium vapor bubble collapse detection in an operating LMFBR may be assessed. The interrelationships between the detection threshold and the probability of detection and false alarm are discussed and applied to a standard acoustic square law detection system. This analysis clearly illustrates that the feasibility of such a detection system is strongly dependent on the knowledge of sound source levels, ambient noise levels and the transmission loss between the source and receiver. Furthermore, requirements of a high degree of probability of detection and a low probability of false alarm were found to require a high signal to noise ratio for a single sensor system but that the probability of false alarm requirement could be relaxed for systems multiple independent sensors. Finally, the need for additional experimental and theoretical information is presented in terms of sound source levels, ambient noise and a means for determining transmission loss

  12. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2008-10-01

    Full Text Available Recent studies with closed-path eddy covariance (EC systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies of EC-related tube attenuation effects have either not considered this issue at all or have only examined it superficially. Nonetheless, the attenuation of water vapor fluctuations is clearly much greater than might be expected from a passive tracer in turbulent tube flow. This study reexamines the turbulent tube flow issue for both passive and sorbing tracers with the intent of developing a physically-based semi-empirical model that describes the attenuation associated with water vapor fluctuations. Toward this end, we develop a new model of tube flow dynamics (radial profiles of the turbulent diffusivity and tube airstream velocity. We compare our new passive-tracer formulation with previous formulations in a systematic and unified way in order to assess how sensitive the passive-tracer results depend on fundamental modeling assumptions. We extend the passive tracer model to the vapor sorption/desorption case by formulating the model's wall boundary condition in terms of a physically-based semi-empirical model of the sorption/desorption vapor fluxes. Finally we synthesize all modeling and observational results into a single analytical expression that captures the effects of the mean ambient humidity and tube flow (Reynolds number on tube attenuation.

  13. Validating Firewalls in Mobile Ambients

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Hansen, René Rydhof

    1999-01-01

    The ambient calculus is a calculus of computation that allows active processes (mobile ambients) to move between sites. A firewall is said to be protective whenever it denies entry to attackers not possessing the required passwords. We devise a polynomial time algorithm for rejecting proposed...

  14. Epoxy Resin Modified Quartz Crystal Microbalance Sensor for Chemical Warfare Agent Sulfur Mustard Vapor Detection

    Directory of Open Access Journals (Sweden)

    Rajendra BUNKAR

    2010-02-01

    Full Text Available An epoxy resin polymer coated quartz crystal microbalance (PC-QCM is used for detection of sulfur mustard vapor (SM. When SM vapor is exposed to PC-QCM sensor frequency shift is observed. The response of the sensor in ambient condition is 554 Hz with ±10 % variation upon exposure of 155 ppm of the SM concentration. The observed response loss is nearly 40 % over the period of 15 months. The response of the sensor is higher for SM than compare to structurally similar chloroethyl ether (CEE and other interferences.

  15. Recovery of combustible vapors, by liquid refrigerated centrifugation, on distribution bases of loading islands; Recuperacao de vapores de combustiveis, por centrifugacao liquida refrigerada, em ilhas de carregamento das bases de distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Capulli, Domenico; Saraceno, Alessandra S.P. [Capmetal Tecnologia Ambiental, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The distribution of petroleum derivates organic combustibles represents, in volume, the second liquid fluid of the planet, with distribution basis, the loading operations of trucks, railroad coaches and vessels provokes the unfastening of volatile organic compounds - VOC, in Brazil the combustible vaporized fraction is estimated 313.308 liters daily, provoking health damages in operators and environmental impacts at aerial basin, determining the obligatory disposal of organic vapors capitation and depuration systems, with use of technologies, such as thermal oxidation, activated carbon adsorption, fluids absorptions and cryogenic condensation for treatment of the emanated vapors at loading operations, so the high aggregated value of the investment, the intensive consume of energy and the high sizes, that residue treatment units have postponed the investments in function of the missing of regularization in Brazil, counter pointing the regularization of the Clean Air Act and the United States Cost Guard that introduced the evolution and the availability of the BDT - Best Demonstrated Technologies - the technological innovation of the Hydrodynamic Precipitator operating by multi venturi liquid centrifugation married with refrigeration cycles that permit the recovery of the vapors and technologies BADCT - Best Demonstrated Control Technology - to viability the large extension of the compact control units required of smaller investment and one stage operation. (author)

  16. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  17. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    Chan, L. S., E-mail: lschan1982@yahoo.com; Tan, D., E-mail: lschan1982@yahoo.com; Saboohi, S., E-mail: lschan1982@yahoo.com; Yap, S. L., E-mail: lschan1982@yahoo.com; Wong, C. S., E-mail: lschan1982@yahoo.com [Plasma Technology Research Centre, Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup −5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup −4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  18. Salud ambiental: conceptos y actividades

    Directory of Open Access Journals (Sweden)

    Gonzalo A. Ordóñez

    2000-03-01

    Full Text Available La finalidad del trabajo es aportar información y propuestas conceptuales que faciliten la tarea de quienes tienen a su cargo la sistematización institucional de la salud ambiental. Se hace un análisis de la noción de "ambiente" para la cual se sugiere una definición, y se examina el lugar de la salud ambiental en el contexto de los problemas ambientales y sus vertientes "verde" y "azul". Se examinan denominaciones equivalentes de salud ambiental y se introducen los servicios de salud ambiental. Se proporcionan varias definiciones y se da la oficial de salud ambiental adoptada por la OMS en Sofía, Bulgaria (1993. A continuación se transcriben las áreas básicas que a la salud ambiental le han asignado diversas organizaciones o reuniones, como la OPS, la OMS, el Programa 21 y otros. A partir de aquí se construye un repertorio bastante completo de áreas y subáreas y se encuentra que todos los listados son, en realidad, una reunión asistemática de tres tipos de constituyentes: determinantes (factores o hechos de la realidad física, procesos (conjuntos de intervenciones y funciones (conjuntos de acciones de gestión, los cuales pueden enfocarse matricialmente y llevan a individualizar actividades de los servicios de salud ambiental. Se proponen unas reglas de operación que permiten, en una especie de álgebra, construir expresiones para especificar con precisión las actividades y sus agregados. De este modo se logra disponer de un lenguaje simbólico común que puede ayudar a la intercomunicación, enseñanza e investigación en el ámbito de la salud ambiental.

  19. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  20. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  1. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  2. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  3. Emanation of radon-222 in uraniferous phosphorite from Pernambuco, Brazil; Emanação de radônio-222 em fosforito uranífero de Pernambuco

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.L.O.; França, E.J.; Amaral, D.S.; Silva, K.E.M.; Hazin, C.A.; Farias, E.E.G., E-mail: emersonemiliano@yahoo.com.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2017-07-01

    The concentration of radon-222 activity available for transport to the surface through the pore space can be defined as radon emanation. From the decay of radium-226, whose half-life is 1850 years, it is associated with the development of neoplasia, such as lung cancer. In the Metropolitan Region of Recife, sedimentary rocks known as phosphorites have been known since 1959, so, from the radiometric characterization of the Paulista and Igarassu Municipality, in Pernambuco, emanation tests were carried out, aiming to determine the emanation power of radon in samples of uraniferous phosphorite from the Recife Metropolitan Region. Initially, 6 independent samples of phosphorites with activity concentration of {sup 226}Ra> 400 Bq kg{sup -1} were comminuted. Portions of 5g were conditioned in a radon chamber with 500 mL volume for measurements. The linear fit of the model converged after 200 interactions with selection of the best fit by the Chi-Square test, through the Origin® 8.0 program. After analysis of the samples, radon emanation power was estimated in the range of 7% to 15%, with a mean value of 10.8%. The methodology used to determine the emanation parameters in samples of uraniferous phosphorite was adequate, observing an inversely proportional relation between the concentration of the radium-226 and the emanation power.

  4. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  5. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  6. Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.

  7. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    OpenAIRE

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; Guss, Gabe; Matthews, Manyalibo J.

    2017-01-01

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas...

  8. Final work plan : indoor air and ambient air sampling near the former CCC/USDA grain storage facility in Everest, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2010-05-24

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at the western edge of Everest, Kansas, from the early 1950s to the early 1970s. Sampling by the Kansas Department of Health and Environment (KDHE) in 1997 resulted in the detection of carbon tetrachloride in one domestic well (the Nigh well) northwest of the former facility. On behalf of the CCC/USDA, Argonne National Laboratory subsequently conducted a series of investigations to characterize the contamination (Argonne 2003, 2006a,b,c). Automatic, continuous monitoring of groundwater levels began in 2002 and is ongoing at six locations. The results have consistently indicated groundwater flow toward the north-northwest from the former CCC/USDA property to the Nigh property, then west-southwest from the Nigh property to the intermittent creek. Sitewide periodic groundwater and surface water sampling with analysis for volatile organic compounds (VOCs) began in 2008. Argonne's combined data indicate no significant downgradient extension of contamination since 2000. At present, the sampling is annual, as approved by the KDHE (2009) in response to a plan developed for the CCC/USDA (Argonne 2009). This document presents a plan for collecting indoor air samples in homes located along and adjacent to the defined extent of the carbon tetrachloride contamination. The plan was requested by the KDHE. Ambient air samples to represent the conditions along this pathway will also be taken. The purpose of the proposed work is to satisfy KDHE requirements and to collect additional data for assessing the risk to human health due to the potential upward migration of carbon tetrachloride and its primary degradation product (chloroform) into homes located in close proximity to the former grain storage facility, as well as along and within 100 ft laterally from the currently defined plume emanating from the former Everest facility. Investigation of the indoor air

  9. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  10. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses

    OpenAIRE

    Cappa, Christopher D.; Jathar, Shantanu H.; Kleeman, Michael J.; Docherty, Kenneth S.; Jimenez, Jose L.; Seinfeld, John H.; Wexler, Anthony S.

    2016-01-01

    The influence of losses of organic vapors to chamber walls during secondary organic aerosol (SOA) formation experiments has recently been established. Here, the influence of such losses on simulated ambient SOA concentrations and properties is assessed in the UCD/CIT regional air quality model using the statistical oxidation model (SOM) for SOA. The SOM was fit to laboratory chamber data both with and without accounting for vapor wall losses following the approa...

  11. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  12. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  13. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  14. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  15. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  16. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.

    1976-01-01

    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)

  17. Conhecimento, interdisciplinaridade e Psicologia Ambiental

    Directory of Open Access Journals (Sweden)

    Ombretta Romice

    2005-01-01

    Full Text Available Responde às questões - como os métodos da Psicologia Ambiental devem ser discutidos em um enquadramento interdisciplinar; a Psicologia Ambiental pede alguma abordagem metodológica especial; como a intervenção ambiental é determinada pela interdisciplinaridade; quais são estas disciplinas e como elas se relacionam entre si - baseando-se em experiências profissionais como orientador em um projeto com comunidade, com habitação popular e exclusão social em vários países da Europa, e como consultora. Conclui que as abordagens usadas pelas diferentes profissões são muito separadas, e que apenas metas comuns não são suficientes, sendo também necessários um treino conjunto e identidade de valores.

  18. Ambient cosmology and spacetime singularities

    International Nuclear Information System (INIS)

    Antoniadis, Ignatios; Cotsakis, Spiros

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)

  19. Ambient cosmology and spacetime singularities

    CERN Document Server

    Antoniadis, Ignatios

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.

  20. A sensitive, handheld vapor sensor based on microcantilevers

    Science.gov (United States)

    Pinnaduwage, L. A.; Hedden, D. L.; Gehl, A.; Boiadjiev, V. I.; Hawk, J. E.; Farahi, R. H.; Thundat, T.; Houser, E. J.; Stepnowski, S.; McGill, R. A.; Deel, L.; Lareau, R. T.

    2004-11-01

    We report the development of a handheld sensor based on piezoresistive microcantilevers that does not depend on optical detection, yet has high detection sensitivity. The sensor is able to detect vapors from the plastic explosives pentaerythritol tetranitrate and hexahydro-1,3,5-triazine at levels below 10 parts per trillion within few seconds of exposure under ambient conditions. A differential measurement technique has yielded a rugged sensor that is unaffected by vibration and is able to function as a "sniffer." The microelectromechanical system sensor design allows for the incorporation of hundreds of microcantilevers with suitable coatings in order to achieve sufficient selectivity in the future, and thus could provide an inexpensive, unique platform for the detection of chemical, biological, and explosive materials.

  1. Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2)

    Science.gov (United States)

    Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.

    1993-02-01

    New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.

  2. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  3. Evolution of acoustically vaporized microdroplets in gas embolotherapy

    KAUST Repository

    Qamar, Adnan; Wong, ZhengZheng; Fowlkes, Brian Brian; Bull, Joseph L.

    2012-01-01

    Acoustic vaporization dynamics of a superheated dodecafluoropentane (DDFP) microdroplet inside a microtube and the resulting bubble evolution is investigated in the present work. This work is motivated by a developmental gas embolotherapy technique that is intended to treat cancers by infarcting tumors using gas bubbles. A combined theoretical and computational approach is utilized and compared with the experiments to understand the evolution process and to estimate the resulting stress distribution associated with vaporization event. The transient bubble growth is first studied by ultra-high speed imaging and then theoretical and computational modeling is used to predict the entire bubble evolution process. The evolution process consists of three regimes: an initial linear rapid spherical growth followed by a linear compressed oval shaped growth and finally a slow asymptotic nonlinear spherical bubble growth. Although the droplets are small compared to the tube diameter, the bubble evolution is influenced by the tube wall. The final bubble radius is found to scale linearly with the initial droplet radius and is approximately five times the initial droplet radius. A short pressure pulse with amplitude almost twice as that of ambient conditions is observed. The width of this pressure pulse increases with increasing droplet size whereas the amplitude is weakly dependent. Although the rise in shear stress along the tube wall is found to be under peak physiological limits, the shear stress amplitude is found to be more prominently influenced by the initial droplet size. The role of viscous dissipation along the tube wall and ambient bulk fluid pressure is found to be significant in bubble evolution dynamics. © 2012 American Society of Mechanical Engineers.

  4. Tank 241-C-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories

  5. Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas

    Science.gov (United States)

    Lou, Janet W.; Cranch, Geoffrey A.

    2018-02-01

    The dephasing time of spin-polarized atoms in an atomic vapor cell plays an important role in determining the stability of vapor-cell clocks as well as the sensitivity of optically-pumped magnetometers. The presence of a buffer gas can extend the lifetime of these atoms. Many vapor cell systems operate at a fixed (often elevated) temperature. For ambient temperature operation with no temperature control, it is necessary to characterize the temperature dependence as well. We present a spin-polarization lifetime study of Cesium vapor cells with different buffer gas pressures, and find good agreement with expectations based on the combined effects of wall collisions, spin exchange, and spin destruction. For our (7.5 mm diameter) vapor cells, the lifetime can be increased by two orders of magnitude by introducing Ne buffer gas up to 100 Torr. Additionally, the dependence of the lifetime on temperature is measured (25 - 47 oC) and simulated for the first time to our knowledge with reasonable agreement.

  6. TERCEIRO SETOR E MEIO AMBIENTE

    OpenAIRE

    MELO, MARINA FÉLIX DE

    2012-01-01

    Objetivamos discutir, brevemente, como têm se dado as discussões sobre o Terceiro Setor brasileiro e, particularmente, sobre as ONGs que atuam em defesa do meio ambiente, levantando questionamentos acerca das limitações enfrentadas pelo Terceiro Setor neste contexto

  7. La crisis del medio ambiente

    Directory of Open Access Journals (Sweden)

    Juan Carlos Quintero Vélez

    2013-07-01

    Full Text Available Este artículo, introducción al tema del medio ambiente, pretende proporcionar conceptos básicos para analizar y dimensionar el impacto que genera el hombre sobre los sistemas que soportan la vida. Para entender estos problemas, es indispensable partir de un análisis básico de la relación entre el hombre actual, su medio ambiente, sus necesidades y sus actividades. El autor revisa los antecedentes, las causas y las consecuencias de la crisis ambiental internacional, e intenta dar explicación a la problemática nacionalen este campo, y establecer los puntos más críticos en Colombia. Finalmente, con base en los parámetros establecidos por el gobierno, se presenta el concepto de“desarrollo sostenible" como modelo que interrelaciona los procesos económicos, sociales y tecnológicos con el medio ambiente.

  8. The persuasiveness of ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Markopoulos, P.; Ruyter, de B.E.R.; Petkovic, M.; Jonker, W.

    2007-01-01

    Ambient intelligence (AmI) is a novel concept for embedded computing that builds on the large-scale integration of electronic devices into peoples’ surroundings and the ubiquitous availability of digital information to the users of such environments. The concept however is not only concerned with

  9. Ambient intelligence : visualising the future

    NARCIS (Netherlands)

    Aarts, E.H.L.

    2005-01-01

    Ambient Intelligence systems are aimed at making user-system interaction and content consumption a truly positive experience. The endless search for nifty information visualisation mechanism to squeeze yet one more piece of information onto a visual display is surpassed by the challenge to embed

  10. Manufactured Porous Ambient Surface Simulants

    Science.gov (United States)

    Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul

    2016-01-01

    The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).

  11. Nanomaterials vs Ambient Ultrafine Particles

    DEFF Research Database (Denmark)

    Stone, Vicki; Miller, Mark R.; Clift, Martin J. D.

    2017-01-01

    BACKGROUND: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology ...

  12. Abstract Interpretation of Mobile Ambients

    DEFF Research Database (Denmark)

    Hansen, René Rydhof; Jensen, J. G.; Nielson, Flemming

    1999-01-01

    We demonstrate that abstract interpretation is useful for analysing calculi of computation such as the ambient calculus (which is based on the p-calculus); more importantly, we show that the entire development can be expressed in a constraint-based formalism that is becoming exceedingly popular...

  13. Shape analysis for Mobile Ambients

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    2000-01-01

    The ambient calculus is a calculus of computation that allows active processes to move between sites. We present an analysis inspired by state-of-the-art pointer analyses that safety and accurately predicts which processes may turn up at what sites during the execution of a composite system. The ...... are flexible and scale up to general tree structures admitting powerful restructuring operations....

  14. Ambient intelligence, ethics and privacy

    NARCIS (Netherlands)

    Hoof, van J.; Kort, H.S.M.; Markopoulos, P.; Soede, M.

    2007-01-01

    Networked and ubiquitous information and communication technologies (ICTs) and ambient intelligence are increasingly used in the home environment to facilitate independent living for older adults. These systems collect and disperse a high volume of personal data, which is used for assistance and

  15. Construindo cidadania ambiental na escola

    Directory of Open Access Journals (Sweden)

    Cibele Schwanke

    2014-03-01

    Full Text Available http://dx.doi.org/10.5007/1807-0221.2013v10n16p14 O forte componente transversal da Educação Ambiental possibilita sua inserção em vários espaços e níveis de escolaridade. No ensino fundamental, constitui-se em uma importante ferramenta para criar espaços que permitam a abordagem de temáticas socioambientais atuais, de forma crítica e participativa. O presente trabalho tem como objetivo apresentar o Projeto Construindo Cidadania Ambiental, executado por bolsistas do Grupo PET - Conexões Gestão Ambiental em unidades escolares, explicitando sua filosofia de implantação e resultados obtidos até o momento. Verifica-se que sua natureza interdisciplinar e integrada permite uma efetiva interação com o corpo docente e discente da escola, bem como permite a prática de uma educação ambiental crítica e transformadora.

  16. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  17. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  18. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  19. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  20. Ambient Temperature Phase Change Launcher

    Science.gov (United States)

    2013-09-30

    microwave emitter is activated simultaneously with the release of the gas into the tube. Dkt . No. 100903 Application No. ?? REPLACEMENT SHEET? /31...100 26 24 22 20 18 16 1214 10 FIG. 1 A Dkt . No. 100903 Application No. ?? REPLACEMENT SHEET? /32 STORE ATMOSPHERIC GAS IN LIQUID STATE LAUNCH MISSILE...FROM SUBMARINE BY VAPORIZING THE GAS ADD HEAT TO LIQUID DURING LAUNCH TO MAINTAIN EVAPORATION 50 FIG. 2 52 54 Dkt . No. 100903 Application No

  1. Flash vaporization during earthquakes evidenced by gold deposits

    Science.gov (United States)

    Weatherley, Dion K.; Henley, Richard W.

    2013-04-01

    Much of the world's known gold has been derived from arrays of quartz veins. The veins formed during periods of mountain building that occurred as long as 3 billion years ago, and were deposited by very large volumes of water that flowed along deep, seismically active faults. The veins formed under fluctuating pressures during earthquakes, but the magnitude of the pressure fluctuations and their influence on mineral deposition is not known. Here we use a simple thermo-mechanical piston model to calculate the drop in fluid pressure experienced by a fluid-filled fault cavity during an earthquake. The geometry of the model is constrained using measurements of typical fault jogs, such as those preserved in the Revenge gold deposit in Western Australia, and other gold deposits around the world. We find that cavity expansion generates extreme reductions in pressure that cause the fluid that is trapped in the jog to expand to a very low-density vapour. Such flash vaporization of the fluid results in the rapid co-deposition of silica with a range of trace elements to form gold-enriched quartz veins. Flash vaporization continues as more fluid flows towards the newly expanded cavity, until the pressure in the cavity eventually recovers to ambient conditions. Multiple earthquakes progressively build economic-grade gold deposits.

  2. Rare-gas yields in 238U and 232Th fission by 14MeV neutrons, measured by an emanating method

    International Nuclear Information System (INIS)

    Feu Alvim, C.A.; Bocquet, J.P.; Brissot, R.; Crancon, J.; Moussa, A.

    1977-01-01

    A direct method, using emanation of rare gases by uranyle stearate and thorium stearate, has been applied to the measurement of cumulative fractional yields of certain isotopes of krypton and xenon, in the fissions of 238 U and 232 Th by 14MeV-neutrons. The independent yields of the same isotopes were measured previously by means of isotopic on-line separation. From these results, the widths of the mass and charge distributions, the relative chain yields, the fractional cumulative yields of certain bromine and iodine isotopes, the values of Zsub(p) the most probable charge, in the isobaric chains 87-93 and 137-142, and the elemental yields of krypton and xenon were calculated [fr

  3. Ion vapor deposition and its application

    International Nuclear Information System (INIS)

    Bollinger, H.; Schulze, D.; Wilberg, R.

    1981-01-01

    Proceeding from the fundamentals of ion vapor deposition the characteristic properties of ion-plated coatings are briefly discussed. Examples are presented of successful applications of ion-plated coatings such as coatings with special electrical and dielectric properties, coatings for corrosion prevention, and coatings for improving the surface properties. It is concluded that ion vapor deposition is an advantageous procedure in addition to vapor deposition. (author)

  4. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  5. Experiences of marijuana-vaporizer users.

    Science.gov (United States)

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  6. Vapor pressures and thermophysical properties of selected hexenols and recommended vapor pressure for hexan-1-ol

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Matějka, P.

    2015-01-01

    Roč. 402, Sep (2015), 18-29 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alcohols * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization enthalpy Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  7. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    Science.gov (United States)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  8. IC design challenges for ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Roovers, R.L.J.

    2003-01-01

    The vision of ambient intelligence opens a world of unprecedented experiences: the interaction of people with electronic devices is changed as contextual awareness, natural interfaces and ubiquitous availability of information are realized. We analyze the consequences of the ambient intelligence

  9. Historical Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in...

  10. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  11. Tipologia para a contabilidade ambiental

    Directory of Open Access Journals (Sweden)

    Nazlhe Faride Chein Schekaiban

    2007-06-01

    Full Text Available Este artigo revê a visão, as propostas e o desenvolvimento da contabilidade ambiental, refletindo sobre suas implicações, com a finalidade de descobrir e encontrar sua importância e situação. Para se chegar a esse resultado foi preciso realizar uma revisão epistemológica moldada e processo reflexivo de sustentabilidade e da aproximação ao usuário, da percepção da realidade contábil no México e da gerência interna das organizações. As conclusões mostram a contabilidade ambiental no México fora da re-alidade operativa do modelo contábil regional, aumentando a importância de se criar uma cultura capaz de examinar o controle da missão deste tipo de contabilidade.

  12. Responsabilidades municipales en materia ambiental

    Directory of Open Access Journals (Sweden)

    Ignacio Pichardo Pagaza

    2009-01-01

    Este trabajo reflexiona en torno a las responsabilidades que la Constitución política impone de manera exclusiva a los municipios y que por su naturaleza tienen efectos directos en el medio ambiente. Se alude aquí a los servicios de agua po ta ble, drenaje, saneamiento, tratamiento de aguas residuales, disposición de residuos sólidos, rastros, panteones y mercados. Ahora son los desafíos ambientales de la autoridad municipal, por lo que deben ser también sus prioridades. Si esos servicios no se atienden oportuna y técnicamente la población sufrirá, se deteriorará gravemente el medio ambiente y disminuirá la calidad de la vida de la comunidad.

  13. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  14. Ambiente psicologico en las organizaciones

    Directory of Open Access Journals (Sweden)

    Damarcy Cortés Baracaldo

    2002-01-01

    Full Text Available El talento humano en las organizaciones se ha convertido en las ultimas decadas en un recurso que se administra de acuerdo al estilo de liderazgo del jefe, lo que implica una marcada relación hacia la tarea, hacia las relaciones con el personal o una combinación de estas dos, que desencadenan en un ambiente psicológico exclusive en cada organización.

  15. Haciendas Locales y Medio Ambiente

    OpenAIRE

    Rozas Valdés, José Andrés

    1997-01-01

    Junto a los medios puramente administrativos orientados a la protección del medio ambiente, cada día adquieren mayor protagonismo los que pueden adoptarse desde el ámbito del derecho financiero, del ingreso y gasto públicos. El trabajo se ha estructurado en cuatro apartados: aguas, residuos sólidos, polución atmosférica y contaminación acústica.

  16. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  17. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  18. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  19. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine,

  20. Recommended Vapor Pressure of Solid Naphthalen

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Růžička, V.

    2005-01-01

    Roč. 50, - (2005), s. 1956-1970 ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : solid naphthalene * vapor pressure * enthalpy of vaporization * enthalpy of fusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.610, year: 2005

  1. Effect of granosan vapors on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Lishenko, N P; Lishenko, I D

    1974-01-01

    Experiments were performed to determine the effects of granosan on the germination of vetch seeds. Vetch seeds were stored from 4-6 days in ethyl mercuric chloride vapors. Results indicated that the vapors caused a sharp decrease in germination and caused chromosomal aberrations during the anaphase.

  2. Risk assessment of metal vapor arcing

    Science.gov (United States)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  3. Detection of land mines by amplified fluorescence quenching of polymer films: a man-portable chemical sniffer for detection of ultratrace concentrations of explosives emanating from land mines

    Science.gov (United States)

    la Grone, Marcus J.; Cumming, Colin J.; Fisher, Mark E.; Fox, Michael J.; Jacob, Sheena; Reust, Dennis; Rockley, Mark G.; Towers, Eric

    2000-08-01

    The explosive charge within a landmine is the source for a mixture of chemical vapors that form a distinctive 'chemical signature' indicative of a landmine. The concentration of these compounds in the air over landmines is extremely low, well below the minimum detection limits of most field- portable chemical sensors. Described in this paper is a man- portable landmine detection system that has for the first time demonstrated the ability to detect landmines by direct sensing of the vapors of signature compounds in the air over landmines. The system utilizes fluorescent polymers developed by collaborators at the MIT. The sensor can detect ultra-trace concentrations of TNT vapor and other nitroaromatic compounds found in many landmine explosives. Thin films of the polymers exhibit intense fluorescence, but when exposed to vapors of nitroaromatic explosives the intensity of the light emitted from the films decreases. A single molecule of TNT binding to a receptor site quenches the fluorescence from many polymer repeat units, increasing the sensitivity by orders of magnitude. A sensor prototype has been develop that response in near real-time to low femtogram quantities of nitroaromatic explosives. The prototype is portable, lightweight, has low power consumption, is simple to operate, and is relatively inexpensive. Simultaneous field testing of the sensor and experienced canine landmine detection teams was recently completed. Although the testing was limited in scope, the performance of the senor met or exceeded that of the canines against buried landmines.

  4. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  5. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity

    Science.gov (United States)

    Pang, Shengyong; Chen, Xin; Shao, Xinyu; Gong, Shuili; Xiao, Jianzhong

    2016-07-01

    In order to better understand the local evaporation phenomena of keyhole wall, vapor plume swing above the keyhole and ambient gas entrapment into the porosity defects, the 3D time-dependent dynamics of the metallic vapor plume in a transient keyhole during fiber laser welding is numerically investigated. The vapor dynamical parameters, including the velocity and pressure, are successfully predicted and obtain good agreements with the experimental and literature data. It is found that the vapor plume flow inside the keyhole has complex multiple directions, and this various directions characteristic of the vapor plume is resulted from the dynamic evaporation phenomena with variable locations and orientations on the keyhole wall. The results also demonstrate that because of this dynamic local evaporation, the ejected vapor plume from the keyhole opening is usually in high frequency swinging. The results further indicate that the oscillation frequency of the plume swing angle is around 2.0-8.0 kHz, which is of the same order of magnitude with that of the keyhole depth (2.0-5.0 kHz). This consistency clearly shows that the swing of the ejected vapor plume is closely associated with the keyhole instability during laser welding. Furthermore, it is learned that there is usually a negative pressure region (several hundred Pa lower than the atmospheric pressure) of the vapor flow around the keyhole opening. This pressure could lead to a strong vortex flow near the rear keyhole wall, especially when the velocity of the ejected metallic vapor from the keyhole opening is high. Under the effect of this flow, the ambient gas is involved into the keyhole, and could finally be entrapped into the bubbles within a very short time (keyhole.

  6. Upper limits for absorption by water vapor in the near-UV

    International Nuclear Information System (INIS)

    Wilson, Eoin M.; Wenger, John C.; Venables, Dean S.

    2016-01-01

    There are few experimental measurements of absorption by water vapor in the near-UV. Here we report the results of spectral measurements of water vapor absorption at ambient temperature and pressure from 325 nm to 420 nm, covering most tropospherically relevant short wavelengths. Spectra were recorded using a broadband optical cavity in the chemically controlled environment of an atmospheric simulation chamber. No absorption attributable to the water monomer (or the dimer) was observed at the 0.5 nm resolution of our system. Our results are consistent with calculated spectra and recent DOAS field observations, but contradict a report of significant water absorption in the near-UV. Based on the detection limit of our instrument, we report upper limits for the water absorption cross section of less than 5×10 −26 cm 2 molecule −1 at our instrument resolution. For a typical, indicative slant column density of 4×10 23 cm 2 , we calculate a maximum optical depth of 0.02 arising from absorption of water vapor in the atmosphere at wavelengths between 340 nm and 420 nm, with slightly higher maximum optical depths below 340 nm. The results of this work, together with recent atmospheric observations and computational results, suggest that water vapor absorption across most of the near-UV is small compared to visible and infrared wavelengths. - Highlights: • The absorption cross section of water vapor was studied from 325 to 420 nm. • The upper limit was 5×10 −26 cm 2 molecule −1 above 340 nm at 0.5 nm resolution. • Our result contradicts a recent report of appreciable absorption by water vapor.

  7. The carrying out of a radiometric analysis method applicable to Moroccan phosphates. Study of the uranium amounts, of the U/Ra equilibrium ratio and of 222-radon emanation rates

    International Nuclear Information System (INIS)

    Choukri, A.

    1987-01-01

    A radiometric analysis method for the determination of the uranium and the radium amounts in Moroccan phosphate has been carried out, using NaI(Tl) scintillator to detect gamma radiation of 238-U and 235-U radioactive daughters. The analysis results permit to calculate the U/Ra equilibrium ratio and the emanation rates of 222-Rn versus temperature. The U/Ra disequilibria permit to detect the secondary contribution of a recent uranium. The 222-Rn emanation rates are useful in the evaluation of the radiological hazards related to the phosphate radioactivity. This method was applied to study the phosphate Ganntour deposit and showed that the uranium content ranges from 25ppm to 350ppm, that the U/Ra ratio ranges from 0.6 to 2.2 with an exceptional value of 4.5. The emanation rate of natural radon is between 0% and 27%. The radon forced emanation by heating or by adding different acids has also been studied. The phosphate attack with H 2 SO 4 and HNO 3 , using the analysis method, showed that a maximum degassing appears at 0.9cc/g for H 2 SO 4 and 1.1cc/g for HNO 3 . By adding H 2 SO 4 , 30% of uranium (without radium) passed in the solution and by adding HNO 3 uranium and radium are divided among the solid and the liquid phases. 22 refs., 49 figs., 25 tabs. (author)

  8. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    Science.gov (United States)

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  9. Maquinas virtuais em ambientes seguros

    OpenAIRE

    Arthur Bispo de Castro

    2006-01-01

    Resumo: Desde o início da computação a idéia de máquinas virtuais vem sendo aplicada para estender o multiprocessamento, multi-programação e multi-acesso, tornando os sistemas multi-ambiente. O contínuo aumento no poder de processamento dos computadores fez com que máquinas muito rápidas estivessem ao alcance de qualquer usuário, surgindo PCs com processamento, espaço em disco e memória suficiente para comportar mais de um sistema compartilhando o mesmo hardware. Basicamente, o objetivo das m...

  10. educación ambiental

    Directory of Open Access Journals (Sweden)

    Fernando Ojeda Barceló

    2008-01-01

    Full Text Available Las Tecnologías de la Información y Comunicación (TICs pueden constituir una herramienta de primer orden para la Educación Ambiental para la Sostenibilidad (EApS, pero todavía existe cierta reticencia por parte de educadores ambientales a hacer un uso de ellas de forma habitual. El objetivo fundamental de este trabajo es ofrecer una revisión del estado de la cuestión tanto a nivel nacional como internacional e intentar hacer una propuesta didáctica de trabajo colaborativo a través de Internet para estudiantes de secundaria.

  11. Pediatria ambiental: um tema emergente

    Directory of Open Access Journals (Sweden)

    Patricia M. Valenzuela

    2011-04-01

    Full Text Available OBJETIVO: Revisar os artigos mais relevantes sobre a pediatria ambiental, seus efeitos potenciais para a saúde e, especialmente, seus avanços na prevenção. FONTES DOS DADOS: Foi realizada uma pesquisa utilizando as bases de dados MEDLINE/PubMed e SciELO. Foram revisados artigos de 1990 a 2010, além de capítulos de livros relacionados à pediatria ambiental. SÍNTESE DOS DADOS: Há uma variedade significativa de fatores que tornam as crianças altamente vulneráveis à exposição a riscos ambientais, associados principalmente ao consumo comparativamente maior de água, comida e ar por parte da criança, em relação ao seu peso corporal. De acordo com a Organização Mundial de Saúde, mais de 3 milhões de crianças menores de 5 anos morrem devido a doenças relacionadas ao meio ambiente. Aproximadamente 30-40% das doenças pediátricas estão relacionadas a fatores ambientais. As crianças estão constantemente expostas a vários riscos ambientais para a saúde, dentre os quais se destacam: água contaminada, falta de condições adequadas de saneamento, poluição do ar, vetores de doenças, perigos químicos, injúrias e acidentes. CONCLUSÕES: Atualmente, os pediatras são desafiados a tratar das necessidades de saúde ligadas à pediatria ambiental. A história pediátrica deve ser mais abrangente, acrescentando-se questões pontuais que ajudem a identificar potenciais riscos ambientais. A conscientização e o entendimento sobre os efeitos nocivos das várias condições ambientais e o conhecimento sobre as medidas de prevenção relacionadas resultarão em intervenções oportunas e adequadas que melhorarão a saúde e o desenvolvimento das nossas crianças.

  12. Vapor hydration and subsequent leaching of transuranic-containing SRL and WV glasses

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Gerding, T.J.

    1989-09-01

    Prior to contact by liquid water and subsequent leaching, high-level nuclear waste glass subject to disposal in the unsaturated environment at Yucca Mountain, Nevada, will be altered through contact with humid air. Conditions could range from temperatures as high as 200 degree C to ambient repository temperature after cooling and relative humidities up to 100% depending on the air flow and heat transport dynamics of the waste package and near field environments. However, under any potential set of temperature/humidity conditions, the glass will undergo alteration via well-established vapor phase hydration processes. In the present paper, the results of a set of parametric experiments are described, whereby vapor phase hydrated glasses were subjected to leaching under static conditions. The purpose of the experiments was to (1) compare the leaching of vapor phase altered glass to that of fresh glass, (2) to develop techniques for determining the radionuclide content of secondary phases that formed during the hydration reaction, and (3) to provide a basis for performing long-term saturated and unsaturated testing of vapor hydrated glass. 3 refs., 2 figs., 2 tabs

  13. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    International Nuclear Information System (INIS)

    Kertész, K.; Piszter, G.; Jakab, E.; Bálint, Zs.; Vértesy, Z.; Biró, L.P.

    2014-01-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales

  14. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, K., E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Piszter, G. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Jakab, E. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1525 Budapest, P O Box 17 (Hungary); Bálint, Zs. [Hungarian Natural History Museum, H-1088, Budapest, Baross utca 13 (Hungary); Vértesy, Z.; Biró, L.P. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary)

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales.

  15. Performance of vapor compression systems with compressor oil flooding and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Ian H.; Groll, Eckhard A.; Braun, James E. [Purdue University, Department of Mechanical Engineering, 140 S. Martin Jischke Drive, West Lafayette, IN 47906 (United States)

    2011-01-15

    Vapor compression refrigeration technology has seen great improvement over the last several decades in terms of cycle efficiency through a concerted effort of manufacturers, regulators, and research engineers. As the standard vapor compression systems approach practical limits, cycle modifications should be investigated to increase system efficiency and capacity. One possible means of increasing cycle efficiency is to flood the compressor with a large quantity of oil to achieve a quasi-isothermal compression process, in addition to using a regenerator to increase refrigerant subcooling. In theory, compressor flooding and regeneration can provide a significant increase in system efficiency over the standard vapor compression system. The effectiveness of compressor flooding and regeneration increases as the temperature lift of the system increases. Therefore, this technology is particularly well suited towards lower evaporating temperatures and high ambient temperatures as seen in supermarket refrigeration applications. While predicted increases in cycle efficiency are over 40% for supermarket refrigeration applications, this technology is still very beneficial for typical air-conditioning applications, for which improvements in cycle efficiency greater than 5% are predicted. It has to be noted though that the beneficial effects of compressor flooding can only be realized if a regenerator is used to exchange heat between the refrigerant vapor exiting the evaporator and the liquid exiting the condenser. (author)

  16. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry.

    Science.gov (United States)

    Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A

    2017-10-20

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.

  17. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  18. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  19. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    Science.gov (United States)

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  20. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  1. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  2. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S M; Abo-Elmagdb, M [Faculty of Science, Department of Physics, Ain Shams University, P. O. Box 11566, Cairo (Egypt); Salamaa, E [National Institute for Standard, Radiation Measurements Department, Cairo (Egypt)

    2007-06-15

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate {phi}=C{sub ra}{lambda}{sub rn} f{rho}{sub s}(1-{epsilon})L; C{sub ra} the effective radium content, {lambda}{sub rn} decay constant, f emanation fraction, {rho}{sub s} soil grain density, {epsilon} porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures.

  3. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    International Nuclear Information System (INIS)

    Metwally, S.M.; Abo-Elmagdb, M.; Salamaa, E.

    2007-01-01

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate Φ=C ra λ rn fρ s (1-ε)L; C ra the effective radium content, λ rn decay constant, f emanation fraction, ρ s soil grain density, ε porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures

  4. Reaction of LiD with water vapor: thermogravimetric and scanning electron microscopy studies

    International Nuclear Information System (INIS)

    Balooch, M; Dinh, L N; LeMay, J D

    2000-01-01

    The kinetics of hydroxide film growth on LiD have been studied by the thermogravimetric method in nitrogen saturated with water vapor and by scanning electron microscopy (SEM) of samples that have been exposed to air with 50% relative humidity. The reaction probability is estimated to be 4 x 10 -7 for LiD exposed to ambient air with 50% relative humidity, suggesting that the diffusion through the hydroxide film is not the limiting step on the overall process at high moisture levels. The rate of growth is drastically reduced when the temperature is increased to 60 C

  5. On the formation of nitrogen oxides during the combustion of partially pre-vaporized droplets

    Energy Technology Data Exchange (ETDEWEB)

    Moesl, Klaus Georg

    2012-12-12

    This study contributes to the topic of nitrogen oxide (NO{sub x}) formation at the level of single droplet and droplet array combustion. The influence of the degree of droplet vaporization and the influence of ambient conditions on NO{sub x} emissions are studied in detail by experiments as well as by numerical simulations. Consequently, this study illustrates correlations and dependencies of the most relevant parameters with respect to the formation of NO{sub x}. It merges the fields of droplet pre-vaporization, ignition, combustion, and exhaust gas formation, including a sophisticated approach to NO{sub x} determination. Even though the study was conducted in order to help understand the fundamental process of burning idealized droplets, the processes in spray combustion have also been taken into consideration within its scope. The portability of results obtained from those idealized droplet burning regimes is evaluated for real applications. Thus, this study may also help to derive design recommendations for liquid-fueled combustion devices. While the experimental part focuses on droplet array combustion, the numerical part highlights spherically symmetric single droplet combustion. By performing experiments in a microgravity environment, quasi-spherical conditions were facilitated for droplet burning, and comparability was provided for the experimental and numerical results. A novelty of the numerical part is the investigation of mechanisms of NO{sub x} formation under technically relevant conditions. This includes partial pre-vaporization of the droplets as well as droplet combustion in a hot exhaust gas environment, such as an aero-engine. The results show that the trade-off between ambient temperature and available oxygen determines the NO{sub x} formation of droplets burning in hot exhaust gas. If the ambient temperature is high and there is still sufficient oxygen for full oxidation of the fuel provided by the droplet, the maximum of NOx formation is

  6. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  7. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  8. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products from the GOES-8 satellite spanning the 1987-1988 El Nino...

  9. Vaporization of Samarium trichloride studied by thermogravimetry

    International Nuclear Information System (INIS)

    Esquivel, Marcelo R.; Pasquevich, Daniel M.

    2003-01-01

    In the present work, the vaporization reaction of SmCl 3 (l) obtained from the 'in situ' reaction of Sm 2 O 3 (s) and Cl 2 (g)-C(s) was studied by thermogravimetry under controlled atmosphere. The effects of both the temperature between 825 C degrees and 950 C degrees and the total flow gas on the vaporization rate of the following reaction: SmCl 3 (l) = SmCl 3 (g) were analyzed. The vaporization rate of the process was found to be independent of then total gas flow rate and highly dependent on the temperature. E ap calculation led to a value of 240 ± 10 kJ.mol -1 . A comparison between this value and that of the molar enthalpy of vaporization allow to the conclusion that the reaction occur in conditions near to equilibrium. The SmCl 3 identity was determined by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). (author)

  10. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  11. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  12. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products spanning the 1987/1988 El Nino Southern Oscillation (ENSO)...

  13. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2011-01-01

    , we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development

  14. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  15. 78 FR 42595 - Marine Vapor Control Systems

    Science.gov (United States)

    2013-07-16

    ... revise the substance As noted in the NPRM, the changes in this section were of this section. intended... the vapor-moving device, as recommended by CTAC in 1997 to maintain a minimum size of non-flammable...

  16. Det ambientes fænomenologi

    DEFF Research Database (Denmark)

    Walther-Hansen, Mads

    2014-01-01

    Det ambiente: sansning, medialisering, omgivelse er et aktuelt og ambitiøst værk. Bogen skildrer hvordan ambiente fænomener har fået en stigende betydning i den moderne verden, og redegør for måden hvorpå det ambiente virker ind på hele vores oplevelseskultur. Det er en levende, uprætentiøs og frem...

  17. A technique to depress desflurane vapor pressure.

    Science.gov (United States)

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  18. Metal Vapor Arcing Risk Assessment Tool

    Science.gov (United States)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  19. 5 years of ambient pressure photoelectron spectroscopy (APPES) at the Swiss Light Source (SLS)

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Giorgia [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland); Giorgi, Javier B. [Department of Chemistry and Biomolecular Sciences, and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Green, Richard G. [Measurement Science and Standards, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Brown, Matthew A., E-mail: matthew.brown@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland)

    2017-04-15

    Highlights: • A review of the ongoing research using the APPES endstation of the Swiss Light Source is presented. • Research interests include the liquid-vapor, liquid-nanoparticle and vapor-solid interfaces. • An outlook to the next five years of research at the Swiss Light Source is presented. - Abstract: In March of 2012 an endstation dedicated to ambient pressure photoelectron spectroscopy (APPES) was installed at the Swiss Light Source (SLS) synchrotron radiation facility on the campus of the Paul Scherrer Institute (PSI). The endstation is mobile and operated at the vacuum ultraviolet (VUV), Surfaces/Interfaces: Microscopy (SIM) and Phoenix beamlines, which together afford a nearly continuous photon energy range from 5−8000 eV. This broad energy range is by far the widest available to a single currently operational APPES endstation. During its first five years of operation this endstation has been used to address challenging fundamental problems in the areas of soft-matter colloidal nanoscience, environmental science and energy storage—research that encompasses the liquid-nanoparticle, liquid-vapor (or vacuum) and solid-vapor interfaces. Here we present select highlights of these results and offer an outlook to the next five years of APPES research at the SLS.

  20. Water Adsorption on a-Fe2O3(0001) at Near Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumu

    2011-08-19

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {le} 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7} % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx} 4 x 10{sup -2} % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at {approx}15% RH and increases to 1.5 ML at 34% RH.

  1. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  2. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  3. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  4. Effect of impact angle on vaporization

    Science.gov (United States)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  5. Ambient temperature signalling in plants.

    Science.gov (United States)

    Wigge, Philip A

    2013-10-01

    Plants are exposed to daily and seasonal fluctuations in temperature. Within the 'ambient' temperature range (about 12-27°C for Arabidopsis) temperature differences have large effects on plant growth and development, disease resistance pathways and the circadian clock without activating temperature stress pathways. It is this developmental sensing and response to non-stressful temperatures that will be covered in this review. Recent advances have revealed key players in mediating temperature signals. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) has been shown to be a hub for multiple responses to warmer temperature in Arabidopsis, including flowering and hypocotyl elongation. Changes in chromatin state are involved in transmitting temperature signals to the transcriptome. Determining the precise mechanisms of temperature perception represents an exciting goal for the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Vapor recovery system in the gasolines commercialization; Sistema de recuperacion de vapores en la comercializacion de las gasolinas

    Energy Technology Data Exchange (ETDEWEB)

    Casas Barba, R.; Molina Gallegos, J.R. [Instituto Mexicano del Petroleo (IMP), Mexico, D. F. (Mexico)

    1995-12-31

    In the last years the studies performed with respect to the environmental pollution show that the ozone is one of the most problematic contaminants in the Metropolitan Zone of Mexico City (MZMC) and that the hydrocarbons are the main forerunners of it. The main source of hydrocarbon vapor emissions originates from the handling and distribution operations. In this paper a description is made of the involved stages in the commercialization of gasolines in the MZMC and a description is also made of the systems employed to control the emissions in the three stages of the fuels storage and distribution cycle and explains the degree the hydrocarbon emissions to the atmosphere will be reduced, once the recovery systems are installed in all of the involved stages. [Espanol] En los ultimos anos los estudios realizados con respecto a contaminacion ambiental reflejan que el ozono es uno de los contaminantes mas problematicos de la zona metropolitana de la ciudad de Mexico (ZMCM), y los hidrocarburos son los principales precursores de este. La principal fuente de emision de vapores de hidrocarburos proviene de las operaciones de manejo y distribucion de combustibles. En este articulo se hace una descripcion de las etapas involucradas en la comercializacion de las gasolinas en la ZMCM, se describen tambien los sistemas utilizados para controlar las emisiones en las tres etapas del ciclo de almacenamiento y distribucion de combustibles y se explica en que grado se reduciran las emisiones de hidrocarburos a la atmosfera, una vez que se instalen los sistemas de recuperacion en todas las etapas involucradas.

  7. Vapor recovery system in the gasolines commercialization; Sistema de recuperacion de vapores en la comercializacion de las gasolinas

    Energy Technology Data Exchange (ETDEWEB)

    Casas Barba, R; Molina Gallegos, J R [Instituto Mexicano del Petroleo (IMP), Mexico, D. F. (Mexico)

    1996-12-31

    In the last years the studies performed with respect to the environmental pollution show that the ozone is one of the most problematic contaminants in the Metropolitan Zone of Mexico City (MZMC) and that the hydrocarbons are the main forerunners of it. The main source of hydrocarbon vapor emissions originates from the handling and distribution operations. In this paper a description is made of the involved stages in the commercialization of gasolines in the MZMC and a description is also made of the systems employed to control the emissions in the three stages of the fuels storage and distribution cycle and explains the degree the hydrocarbon emissions to the atmosphere will be reduced, once the recovery systems are installed in all of the involved stages. [Espanol] En los ultimos anos los estudios realizados con respecto a contaminacion ambiental reflejan que el ozono es uno de los contaminantes mas problematicos de la zona metropolitana de la ciudad de Mexico (ZMCM), y los hidrocarburos son los principales precursores de este. La principal fuente de emision de vapores de hidrocarburos proviene de las operaciones de manejo y distribucion de combustibles. En este articulo se hace una descripcion de las etapas involucradas en la comercializacion de las gasolinas en la ZMCM, se describen tambien los sistemas utilizados para controlar las emisiones en las tres etapas del ciclo de almacenamiento y distribucion de combustibles y se explica en que grado se reduciran las emisiones de hidrocarburos a la atmosfera, una vez que se instalen los sistemas de recuperacion en todas las etapas involucradas.

  8. Radiological assessment of the utilization of fly ash in concrete for building construction and the parameters affecting radon-222 emanation from fly ash concrete

    International Nuclear Information System (INIS)

    Hwang, J.G.

    1986-01-01

    In this study, the Rn-222 area exhalation rates and the maximum area exhalations for concrete containing fly ash or Ra-226 water were measured. Various concrete samples were fabricated with fly ash of known radium content as a cement substitute. Other samples were prepared with one of three concentrations of Ra-226 water solution added into the concrete mix. A newly designed Indoor/Outdoor Emanation Chamber. The Ra-225 concentrations for the fly ash used ranged from 3.42 pCi/g to 7.55 pCi/g depending upon the source of the ash and the particle size. Doses were calculated for occupants of a hypothetical house built with concrete of the type studied. Doses to the basal cells of the bronchial epithelium and the mean dose to the lung were 2.10 rad/yr and 0.37 rad/yr for standard concrete, up to 4.28 rad/yr and 0.76 rad/yr for fly ash concrete, and 3.26 rad/yr and 0.58 rad/yr for the concrete made with 25 pCI/L radium-226 water. The risk associated with utilization of standard concrete in an unventilated house was estimated to range from 560 to 1316 fatal cancers in million population. Utilization of fly ash as a cement substitute could increase the number of fatal lung cancers up to 2680. Introducing 25 pCi/L Ra-226 water into concrete will increase the fatal cancer rate up to 2042 in a million population

  9. Development of a management protocol for the reduction of fuel consumption and decreasing of the emanations of CO2 as contaminant of environment in air service companies

    International Nuclear Information System (INIS)

    Montoya Maroto, Manuel

    2012-01-01

    A management protocol is developed for air services companies to improve the eco-efficiency of its processes. The application of operational procedures have allowed the reduction of fuel consumption and decreased the emanations of CO 2 into the environment. The methodology of the research has consisted in quantitative and qualitative analysis of the variables and processes that have influenced significantly in the operation of airline fleet. An integral analysis is realized of the procedures of management and use of resources in the cockpits of the aircraft (Cockpit Resource Management) and navigation based in performance (NBP). The results of analysis are used to elaborate a protocol to minimize the fuel consumption and energy through the application of practices and operational procedures more efficient and safe. The environmental burdens associated with the services that are provided in the airline industry are minimized. The application of methods of improvement and procedures that are updated continuously have achieved the sustainability of the protocol. The operational procedures are applied to decrease the fuel consumption. Sensitization programs are developed for the utilization of more efficient operational practices and friendly with the environment. An incentive program is implemented to optimize the fuel consumption safely by pilots. A new procedure of flight scheduling is modified based on performance of the pilots and fleet degradation factors, assigning the pilots who have had higher consumption to airplanes with lower degradation, and the pilots who have had lower consumption, to airplanes with higher degradation. A self-liquidating incentive plan is developed based on the savings achieved in the operation in high-performance, could reinforce the change of attitude necessary for the group of pilots can support the implementation of the protocol [es

  10. On the growth of atmospheric nanoparticles by organic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Juuti, T.

    2013-09-01

    Atmospheric aerosol particles affect the visibility, damage human health and influence the Earth's climate by scattering and absorbing radiation and acting as cloud condensation nuclei (CCN). Considerable uncertainties are associated with the estimates of aerosol climatic effects and the extent of these effects depends on the particles size, composition, concentration and location in the atmosphere. Improved knowledge on the processes affecting these properties is of great importance in predicting future climate. Significant fraction of the atmospheric aerosol particles are formed in the atmosphere from trace gases through a phase change, i.e. nucleation. The freshly nucleated secondary aerosol particles are about a nanometer in diameter, and they need to grow tens of nanometers by condensation of vapors before they affect the climate. During the growth, the nanoparticles are subject to coagulational losses, and their survival to CCN sizes is greatly dependent on their growth rate. Therefore, capturing the nanoparticle growth correctly is crucial for representing aerosol effects in climate models. A large fraction of nanoparticle growth in many environments is expected to be due to organic compounds. However a full identification of the compounds and processes involved in the growth is lacking to date. In this thesis the variability in atmospheric nanoparticle growth rates with particle size and ambient conditions was studied based on observations at two locations, a boreal forest and a Central European rural site. The importance of various organic vapor uptake mechanisms and particle phase processes was evaluated, and two nanoparticle growth models were developed to study the effect of acid-base chemistry in the uptake of organic compounds by nanoparticles. Further, the effect of inorganic solutes on the partitioning of organic aerosol constituents between gas and particle phase was studied based on laboratory experiments. Observations of the atmospheric

  11. Effect of wall impingement on ambient gas entrainment, fuel evaporation and mixture formation of diesel spray

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Keiya [Department of Mechanical Physics Engineering, University of Hiroshima (Japan); Matsumoto, Yuhei; Zhang, Wu [Mazda Motor Corp. (Japan); Gao, Jian [University of Wisconsin (United States); Moon, Seoksu [Argonne National Laboratory (United States)

    2010-07-01

    In the energy sector, with the implementation of stringent regulations on combustion emissions and the depletion of conventional fuels, there is a pressing need to improve the performance of engines. The purpose of this paper is to determine the impact of wall impingement on several characteristics of diesel spray. Experiments were carried out with both a small and a large amount of diesel spray injected and ambient gas entrainment, fuel evaporation and mixture formation were evaluated using an LAS optical system. Results showed that wall impingement has the same effects for small or large amounts of diesel spray injected; these are: a larger volume spray after the impingement and a smaller volume after it, the suppression of ambient gas entrainment and fuel evaporation, and the shift of the PDF peak of the vapor equivalent ratio. This study provided useful information but further work is needed to address the remaining issues.

  12. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, John T., E-mail: jnewberg@udel.edu; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia [Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Åhlund, John [Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  13. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III, sampled March 28, 1999

    International Nuclear Information System (INIS)

    LOCKREM, L.L.

    1999-01-01

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999

  14. Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16

    International Nuclear Information System (INIS)

    Roux, Maria Victoria; Temprado, Manuel; Chickos, James S.

    2005-01-01

    The fusion enthalpies of the series butanedioic acid through to tetradecanedioic acid and hexadecanedioic acids have been measured by DSC. In addition to fusion, a number of solid-solid phase transitions have also been detected in these diacids. The vaporization enthalpies of these compounds have been measured by correlation gas chromatography using the vaporization enthalpies of butanedioic, hexanedioic and decanedioic acids as standards. The vaporization enthalpies of the diacids from C 4 to C 10 correlated linearly with the number of methylene groups present. Above C 10 , the vaporization enthalpies of C 11 -C 14 and C 16 begin to deviate from linearity. The vaporization enthalpies for these compounds are dependent on the temperature of the GC column used. Similar departure from linearity has also been observed previously in the sublimation enthalpies for these compounds. The results are discussed in terms of formation of a cyclic intramolecular hydrogen bonded network in the gas phase similar to the bimolecular association observed in smaller mono-carboxylic acids at ambient temperatures

  15. Evaluating Ambient Displays in the Wild

    DEFF Research Database (Denmark)

    Messeter, Jörn; Molenaar, Daryn

    A prominent issue for evaluating ambient displays has been the conflict between the relative intrusiveness of evaluation methods and the intention to keep the display at the periphery of the user’s attention. There is a general lack of research discussing the difficulties of evaluating ambient di...

  16. Hybrid Logical Analyses of the Ambient Calculus

    DEFF Research Database (Denmark)

    Bolander, Thomas; Hansen, Rene Rydhof

    2010-01-01

    In this paper, hybrid logic is used to formulate three control flow analyses for Mobile Ambients, a process calculus designed for modelling mobility. We show that hybrid logic is very well-suited to express the semantic structure of the ambient calculus and how features of hybrid logic can...

  17. Ambient air contamination: Characterization and detection techniques

    Science.gov (United States)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  18. Embedded systems design issues in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Roovers, R.L.J.; Basten, A.A.; Geilen, M.C.W.; Groot, de H.W.H.

    2003-01-01

    The vision of ambient intelligence opens a world of unprecedented ex.periences: the interaction of people with electronic devices is changed as context awareness, natural interfaces and ubiquitous availability of information are realized. We analyze the consequences of the ambient intelligence

  19. Freedom and privacy in ambient intelligence

    NARCIS (Netherlands)

    Brey, Philip A.E.

    2006-01-01

    This paper analyzes ethical aspects of the new paradigm of Ambient Intelligence, which is a combination of Ubiquitous Computing and Intelligent User Interfaces (IUI’s). After an introduction to the approach, two key ethical dimensions will be analyzed: freedom and privacy. It is argued that Ambient

  20. Control Flow Analysis for BioAmbients

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Priami, C.

    2007-01-01

    This paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We...

  1. Spatial Analysis of BioAmbients

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming; Pilegaard, Henrik

    2004-01-01

    Programming language technology can contribute to the development and understanding of Systems Biology by providing formal calculi for specifying and analysing the dynamic behaviour of biological systems. Our focus is on BioAmbients, a variation of the ambient calculi developed for modelling...

  2. Apparatus and method for maintaining an article at a temperature that is less than the temperature of the ambient air

    Science.gov (United States)

    Klett, James; Klett, Lynn

    2018-04-03

    An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambient air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.

  3. Contabilidade ambiental o passaporte para a competitividade

    Directory of Open Access Journals (Sweden)

    Maria Elisabeth Pereira Kraemer

    2002-03-01

    Full Text Available Como todos os problemas ambientais provocaram grandes danos irreversíveis, que incidiram e incidem agora em todos os países subdesenvolvidos e desenvolvidos, nasce, então, como necessidade imperiosa, introduzir nos nossos sistemas econômicos a Contabilidade Ambiental, pois as organizações, até alguns anos atrás, preocupavam-se apenas com a eficiência dos sistemas produtivos. Chegamos a "era da revolução ambiental", e o ambiente não somente aparece como um conjunto de problemas relativos ao controle da contaminação, mas representa um custo no crescimento econômico. Neste sentido, o contador precisa de uma formação que se estenda além dos limites das técnicas e dos procedimentos. É necessário acrescentar o registro contábil do meio ambiente, dada a velocidade de sua afetação e a influência do mundo atual na utilização e disposição dos recursos naturais. Deve ser considerado como um dos princípios contábeis, onde é um desafio para a contabilidade. Precisa ser considerada como uma ciência contábil integrada, pois com a ciência ecológica e outras ciências são responsáveis pela natureza onde devem ser aplicados critérios de proteção ambiental, demonstrando que os recursos naturais constituem nosso principal capital. Partindo dessa premissa é que este trabalho está enfocando os seguintes tópicos: Responsabilidade Social da Empresa; A Empresa e o Meio Ambiente; Gestão Ambiental; Sistema de Gestão Ambiental; Ações para Preservar o Meio Ambiente - O Protocolo Verde, A Contabilidade, Custos Ambientais, Ativo Ambiental, Passivo Ambiental, Patrimônio Ambiental, Contabilidade Ambiental e Contabilidade Ambiental - o Passaporte para a Competitividade.

  4. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  5. Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes

    Czech Academy of Sciences Publication Activity Database

    Verevkin, S. P.; Krasnykh, E. L.; Vasiltsova, T. V.; Koutek, Bohumír; Doubský, Jan; Heintz, A.

    2003-01-01

    Roč. 206, - (2003), s. 331-339 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z4055905 Keywords : aldehydes * vapor pressure * enthalpy of vaporization Subject RIV: CC - Organic Chemistry Impact factor: 1.165, year: 2003

  6. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    Science.gov (United States)

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampl...

  7. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    Science.gov (United States)

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  8. Water vapor profiling using microwave radiometry

    Science.gov (United States)

    Wang, J. R.; Wilheit, T. T.

    1988-01-01

    Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.

  9. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  10. Vapor pressure and thermodynamics of beryllium carbide

    International Nuclear Information System (INIS)

    Rinehart, G.H.; Behrens, R.G.

    1980-01-01

    The vapor pressure of beryllium carbide has been measured over the temperature range 1388 to 1763 K using Knudsen-effusion mass spectrometry. Vaporization occurs incongruently according to the reaction Be 2 C(s) = 2Be(g) + C(s). The equilibrium vapor pressure above the mixture of Be 2 C and C over the experimental temperature range is (R/J K -1 mol -1 )ln(p/Pa) = -(3.610 +- 0.009) x 10 5 (K/T) + (221.43 +- 1.06). The third-law enthalpy change for the above reaction obtained from the present vapor pressures is ΔH 0 (298.15 K) = (740.5 +- 0.1) kJ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (732.0 +- 1.8) kJ mol -1 . The enthalpy of formation for Be 2 C(s) calculated from the present third-law vaporization enthalpy and the enthalpy of formation of Be(g) is ΔH 0 sub(f)(298.15 K) = -(92.5 +- 15.7) kJ mol -1 . (author)

  11. Vapor pumps and gas-driven machines

    International Nuclear Information System (INIS)

    Guillet, R.

    1991-01-01

    The vapor pump, patented in 1979 by Gaz de France, is an additional mass and heat exchanger which uses the combustion air of fuel-burning machines as an additional cold source. This cold source is preheated and, above all, humidified before reaching the burner, by means of the residual sensible and latent heat in the combustion products of the fuel-burning process. This final exchanger thus makes it possible, in many cases, to recover all the gross calorific value of natural gas, even when the combustion products leave the process at a wet temperature greater than 60 0 C, the maximum dew point of the products of normal combustion. Another significant advantage of the vapor pump being worth highlighting is the selective recycling of water vapor by the vapor pump which reduces the adiabatic combustion temperature and the oxygen concentration in the combustion air, two factors which lead to considerable reductions in nitrogen oxides formation, hence limiting atmospheric pollution. Alongside a wide range of configurations which make advantageous use of the vapor pump in association with gas-driven machines and processes, including gas turbines, a number of boiler plant installations are also presented [fr

  12. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  13. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  14. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  15. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    Science.gov (United States)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  16. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    Science.gov (United States)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-03-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (g F ) derives a canopy conductance (g W ) from measured transpiration by inverting the coupled transpiration model to yield g W = m - n ln(D) where m and n are fitting parameters. In contrast, this paper demonstrates that the relation between coupled g W and D is g W = AP/D + B, where P is the barometric pressure, A is the radiative term, and B is the convective term coefficient of the Penman-Monteith equation. A and B are functions of g F and of meteorological parameters but are mathematically independent of D. Keeping A and B constant implies constancy of g F . With these premises, the derived g W is a hyperbolic function of D resembling the logarithmic expression, in contradiction with the pre-set constancy of g F . Calculations with random inputs that ensure independence between g F and D reproduce published experimental scatter plots that display a dependence between g W and D in contradiction with the premises. For this reason, the dependence of g W on D is a computational artifact unrelated to any real effect of ambient humidity on stomatal aperture and closure. Data collected in a maize field confirm the inadequacy of the logarithmic function to quantify the relation between canopy conductance and vapor pressure deficit.

  17. CONFLITOS INTERPESSOAIS NO AMBIENTE ORGANIZACIONAL

    Directory of Open Access Journals (Sweden)

    Gabriela Paganini de Souza

    2014-07-01

    Full Text Available O presente artigo analisa e confirma a existência de impactos ocasionados pelos conflitos em um ambiente organizacional, através de pesquisa de campo realizada a partir de um estudo de caso e a comparação com a literatura adotada. A empresa escolhida foi abordada a partir de questionários, que foram respondidos pelos colaboradores e também pelo gestor. Percebeu-se que esses impactos são complexos de mensurar, principalmente os financeiros, que normalmente ficam ocultos por muito tempo. Entretanto, não se pode negar sua existência, pois estes tendem à piorar quando não são considerados.  Foi observado com a pesquisa que a conduta adotada para intermediar os conflitos está diretamente ligada ao sucesso de impedir impactos negativos aos indivíduos e à organização como um todo. Essas condutas, quando bem aplicadas podem contribuir reverter o impacto de um conflito, fazendo com que ele seja um fator motivador de mudanças e um estímulo para que os indivíduos demonstrem seus potenciais.

  18. GENES, POBLACIONES, AMBIENTES Y NACIONES

    Directory of Open Access Journals (Sweden)

    Noem\\u00ED Acreche

    2010-01-01

    Full Text Available Se estudió la estructura genética de 32 poblaciones de Argentina, Bolivia y Paraguay en función de las frecuencias génicas de ocho sistemas de grupos eritocitarios. Los sistemas incluidos son: ABO, MN, Ss, DI, P, Cc, Dd y Ee. En el caso de Bolivia, Paraguay y el Chaco Argentino, los datos fueron obtenidos de la bibliografía. La relación entre las poblaciones y diferentes criterios de agrupación (Ambiente, País, Grupo Lingüístico y Altitud fueron evaluadas por medio de Análisis Discriminante. Se consideró el porcentaje de casos correctamente clasificados como medida de la relación entre el conjunto de variables analizadas y el criterio de agrupación. Se encontró que tanto las categorías geoestructurales como lingüísticas establecidas tienen mayor relación con la estructura genética de las poblaciones incluidas en el análisis que las fronteras nacionales, por lo que se concluye que el aislamiento reproductivo entre poblaciones, necesario para la diferenciación, se produce por diferencias culturales o del territorio de ocupación antes que por las fronteras políticas establecidas.

  19. Auxiliary Electrodes for Chromium Vapor Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    2018-05-15

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establish a sodium activity.

  20. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  1. Numerical modeling of a vaporizing multicomponent droplet

    Science.gov (United States)

    Megaridis, C. M.; Sirignano, W. A.

    The fundamental processes governing the energy, mass, and momentum exchange between the liquid and gas phases of vaporizing, multicomponent liquid droplets have been investigated. The axisymmetric configuration under consideration consists of an isolated multicomponent droplet vaporizing in a convective environment. The model considers different volatilities of the liquid components, variable liquid properties due to variation of the species concentrations, and non-Fickian multicomponent gaseous diffusion. The bicomponent droplet model was employed to examine the commonly used assumptions of unity Lewis number in the liquid phase and Fickian gaseous diffusion. It is found that the droplet drag coefficients, the vaporization rates, and the related transfer numbers are not influenced by the above assumptions in a significant way.

  2. Secondhand Exposure to Vapors From Electronic Cigarettes

    Science.gov (United States)

    Czogala, Jan; Fidelus, Bartlomiej; Zielinska-Danch, Wioleta; Travers, Mark J.; Sobczak, Andrzej

    2014-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are designed to generate inhalable nicotine aerosol (vapor). When an e-cigarette user takes a puff, the nicotine solution is heated and the vapor is taken into lungs. Although no sidestream vapor is generated between puffs, some of the mainstream vapor is exhaled by e-cigarette user. The aim of this study was to evaluate the secondhand exposure to nicotine and other tobacco-related toxicants from e-cigarettes. Materials and Methods: We measured selected airborne markers of secondhand exposure: nicotine, aerosol particles (PM2.5), carbon monoxide, and volatile organic compounds (VOCs) in an exposure chamber. We generated e-cigarette vapor from 3 various brands of e-cigarette using a smoking machine and controlled exposure conditions. We also compared secondhand exposure with e-cigarette vapor and tobacco smoke generated by 5 dual users. Results: The study showed that e-cigarettes are a source of secondhand exposure to nicotine but not to combustion toxicants. The air concentrations of nicotine emitted by various brands of e-cigarettes ranged from 0.82 to 6.23 µg/m3. The average concentration of nicotine resulting from smoking tobacco cigarettes was 10 times higher than from e-cigarettes (31.60±6.91 vs. 3.32±2.49 µg/m3, respectively; p = .0081). Conclusions: Using an e-cigarette in indoor environments may involuntarily expose nonusers to nicotine but not to toxic tobacco-specific combustion products. More research is needed to evaluate health consequences of secondhand exposure to nicotine, especially among vulnerable populations, including children, pregnant women, and people with cardiovascular conditions. PMID:24336346

  3. Vapor characterization of Tank 241-C-103

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Story, M.S.

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program

  4. Vapor characterization of Tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

  5. Calidad ambiental interior: bienestar, confort y salud

    Directory of Open Access Journals (Sweden)

    Francisco Vargas Marcos

    2005-01-01

    Full Text Available Distintas formas de interpretar las condiciones ambientales han llevado al desarrollo de conceptos tales como edificio enfermo, calidad del aire o calidad ambiental interior, todos ellos encaminados a entender la complejidad de los contaminantes en los ambientes cerrados y las implicaciones sobre la salud de la población. La propuesta de "Calidad ambiental interior" es un avance conceptual y operativo que supera ampliamente a los anteriores, puesto que orienta las acciones hacia ambientes saludables sin limitar al aire la idea de contaminación. El objetivo del trabajo es identificar las competencias y el marco legislativo que permiten actuar en la prevención de riesgos asociados a la exposición de contaminantes en ambientes interiores. Óptimas condiciones en los ambientes interiores deben redundar en salud, bienestar y confort, tanto en lo que respecta a la vida laboral como a los ámbitos donde se desarrollan las actividades cotidianas extralaborales, escolares, de descanso y de ocio. La sociedad actual exige lugares seguros, limpios y bien climatizados, para lo que es necesario integrar percepciones y exigencias de los habitantes y alcanzar un óptimo equilibrio entre estándares sociales, uso de la energía y desarrollo sostenible, buscando confort sin contaminar y sin aumentar el consumo de fuentes energéticas que degraden el medio ambiente. El desarrollo legislativo se orienta a la seguridad y la salud en los lugares de trabajo y la regulación de las sustancias químicas. La Sanidad Ambiental lleva a cabo tareas de prevención y control, participa en la ejecución de convenios internacionales de reducción de contaminantes y desechos y promueve acciones para el desarrollo de la Estrategia Europea de Salud y Medio Ambiente.

  6. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  7. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  8. Vapor deposition in basaltic stalactites, Kilauea, Hawaii

    Science.gov (United States)

    Baird, A. K.; Mohrig, D. C.; Welday, E. E.

    Basaltic stalacties suspended from the ceiling of a large lava tube at Kilauea, Hawaii, have totally enclosed vesicles whose walls are covered with euhedral FeTi oxide and silicate crystals. The walls of the vesicles and the exterior surfaces of stalactites are Fe and Ti enriched and Si depleted compared to common basalt. Minerals in vesicles have surface ornamentations on crystal faces which include alkali-enriched, aluminosilicate glass(?) hemispheres. No sulfide-, chloride-, fluoride-, phosphate- or carbonate-bearing minerals are present. Minerals in the stalactites must have formed by deposition from an iron oxide-rich vapor phase produced by the partial melting and vaporization of wall rocks in the tube.

  9. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  10. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  11. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  12. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  13. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  14. Experimental verification of a condenser with liquid–vapor separation in an air conditioning system

    International Nuclear Information System (INIS)

    Chen, Xueqing; Chen, Ying; Deng, Lisheng; Mo, Songping; Zhang, Haiyan

    2013-01-01

    Three liquid–vapor separation condensers (LSC) were tested to evaluate their ability to automatically separate the liquid and vapor during condensation. Each was used in a split-type air conditioner to investigate the performance. The performance of the LSC system having the greatest cooling capacity and energy efficiency ratio (EER) was then compared with that of the system having a baseline fin-and-tube condenser for various ambient temperatures from 29 °C to 43 °C. The results showed that both the cooling capacity and EER of the two systems were almost the same at the three standard conditions in the Chinese standard GB/T 7725-2004, with the LSC having just 67% of the heat transfer area of the baseline condenser. In addition, the LSC system was charged with only 80% of the refrigerant in the baseline system. -- Highlights: ► We tested three liquid–vapor separation condensers in an air conditioning system. ► The best system had the most uniform wall temperature and the smallest pressure drop. ► The LSC system performance with only 67% condenser area was as good as the baseline system. ► LSC system operations are compared for various outdoor temperatures

  15. Development of a hybrid refrigerator combining thermoelectric and vapor compression technologies

    International Nuclear Information System (INIS)

    Vian, J.G.; Astrain, D.

    2009-01-01

    A domestic refrigerator with three compartments has been developed: refrigerator compartment, at 4 deg. C (vapor compression cooling system); freezer compartment, at -22 deg. C (vapor compression cooling system); and a new super-conservation compartment, at 0 deg. C (thermoelectric cooling system). The thermoelectric system designed for the super-conservation compartment eliminates the oscillation of its temperature due to the start and stop compressor cycles, obtaining a constant temperature and thus, a better preservation of the food. For the design and optimization of this application, a computational model, based in the numerical method of finite differences, has been developed. This model allows to simulate the complete hybrid refrigerator (vapor compression-thermoelectricity). The accuracy of the model has been experimentally checked, with a maximum error of 1.2 deg. C for temperature values, and 8% for electric power consumption. By simulations with the computational model, the design of the refrigerator has been optimized, obtaining a final prototype highly competitive, by the features on food preservation and power consumption: 1.15 kW h per day (48.1 W) for an ambient temperature of 25 deg. C. According to European rules, this power consumption value means that this new refrigerator could be included on energy efficiency class B.

  16. Numerical evaluation of ABS parts fabricated by fused deposition modeling and vapor smoothing

    Directory of Open Access Journals (Sweden)

    Sung-Uk Zhang

    2017-12-01

    Full Text Available The automotive industry has focused to use polymer materials in order to increase energy efficiency. So, the industry pays attention to use 3D printing technologies using several polymers. Among several 3D printer technologies, fused deposition modeling (FDM is one of the popular 3D printing technologies due to an inexpensive extrusion machine and multi-material printing. FDM could use thermoplastics such as ABS, PLA, ULTEM so on. However, it has a problem related to the post-processing because FDM has relatively poor layer resolution. In this study, the mechanical properties of ABS parts fabricated by FDM were measured. The ABS parts were divided into one with vapor smoothing process and the other without the vapor smoothing process which is one of the post-processing methods. Using dynamic mechanical analysis (DMA and dilatometer, temperature-dependent storage modulus and CTE for ABS specimens were measured. Based on the measured thermo-mechanical properties of ABS parts, finite element analysis was performed for an automotive bumper made of ABS. Moreover, response surface methodology was applied to study relationships among design parameters of thickness of the bumper, ambient temperature, and application of the vapor smoothing process. In result, a design guideline for a ABS product could be provided without time-consuming experiments

  17. Context Dependent Analysis of BioAmbients

    DEFF Research Database (Denmark)

    Pilegaard, Henrik; Nielson, Flemming; Nielson, Hanne Riis

    2006-01-01

    BioAmbients is a derivative of mobile ambients that has shown promise of describing interesting features of the behaviour of biological systems. The technical contribution of this paper is to extend the Flow Logic approach to static analysis with a couple of new techniques in order to give precise...... information about the behaviour of systems written in BioAmbients. Applying the development to a simple model of a cell releasing nutrients from food compunds we illustrate how the proposed analysis does indeed improve on previous efforts....

  18. Status of ambient air quality at Barauni

    International Nuclear Information System (INIS)

    Kannan, G.K.

    1993-01-01

    Due to industrialization, Barauni has become a well developed industrial estate to be considered as industrial hub of Bihar. Contemporary to the industrial growth, the environmental quality also gradually deteriorated. Hence a need was felt to know the status of ambient air quality for proper planning of the future growth of industries. The ambient air quality was monitored at 16 stations in and around Barauni industrial estate during 3 major seasons for the period of one year. The results are discussed as to the status of the ambient air quality and suggestion have also been made for improvement. (author). 5 refs., 2 figs., 7 tabs

  19. El dispositivo Problemática ambiental

    OpenAIRE

    Federico Di Pasquo; Tomas Busan; Gabriela Klier

    2018-01-01

    Se presenta y problematiza un dispositivo dirigido al tema de la problemática ambiental, del cual destaca su alcance global, su carácter de urgente y su capacidad para afectar a la viabilidad de la especie humana. A la vez, indicamos que esta caracterización de la crisis ambiental se encuentra asociada a una red institucional de corte internacional dirigida a la gestión de este tema. También, se señalan algunos intentos por utilizar a la problemática ambiental como coartada para el establecim...

  20. Separation of aromatics by vapor permeation through solvent swollen membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ito, A.; Adachi, K.; Feng, Y. [Niigata University, Niigata (Japan)

    1995-12-20

    A vapor permeation process for aromatics separation from a hydrocarbon mixture was studied by means of the simultaneous permeation of dimethylsulfoxide vapor as an agent for membrane swelling and preferential permeation of aromatics. The separation performance of the process was demonstrated by a polyvinylalcohol membrane for mixed vapors of benzene/cyclohexane, xylene/octane and a model gasoline. The aromatic vapors preferentially permeated from these mixed vapor feeds. The separation factor was over 10. The separation mechanism of the process mainly depends on the relative salability of the vapors between aromatics and other hydrocarbons in dimethylsulfoxide. 14 refs., 9 figs., 1 tab.

  1. Ambient air pollution and thrombosis.

    Science.gov (United States)

    Robertson, Sarah; Miller, Mark R

    2018-01-03

    Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM 2.5 ) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially

  2. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study.

    Science.gov (United States)

    Zanobetti, Antonella; Luttmann-Gibson, Heike; Horton, Edward S; Cohen, Allison; Coull, Brent A; Hoffmann, Barbara; Schwartz, Joel D; Mittleman, Murray A; Li, Yongsheng; Stone, Peter H; de Souza, Celine; Lamparello, Brooke; Koutrakis, Petros; Gold, Diane R

    2014-03-01

    Extreme weather and air pollution are associated with increased cardiovascular risk in people with diabetes. In a population with diabetes, we conducted a novel assessment of vascular brachial artery responses both to ambient pollution and to weather (temperature and water vapor pressure, a measure of humidity). Sixty-four 49- to 85-year-old Boston residents with type 2 diabetes completed up to five study visits (279 repeated measures). Brachial artery diameter (BAD) was measured by ultrasound before and after brachial artery occlusion [i.e., flow-mediated dilation (FMD)] and before and after nitroglycerin-mediated dilation (NMD). Ambient concentrations of fine particulate mass (PM2.5), black carbon (BC), organic carbon (OC), elemental carbon, particle number, and sulfate were measured at our monitoring site; ambient concentrations of carbon monoxide, nitrogen dioxide, and ozone were obtained from state monitors. Particle exposure in the home and during each trip to the clinic (home/trip exposure) was measured continuously and as a 5-day integrated sample. We used linear models with fixed effects for participants, adjusting for date, season, temperature, and water vapor pressure on the day of each visit, to estimate associations between our outcomes and interquartile range increases in exposure. Baseline BAD was negatively associated with particle pollution, including home/trip-integrated BC (-0.02 mm; 95% CI: -0.04, -0.003, for a 0.28 μg/m3 increase in BC), OC (-0.08 mm; 95% CI: -0.14, -0.03, for a 1.61 μg/m3 increase) as well as PM2.5, 5-day average ambient PM2.5, and BC. BAD was positively associated with ambient temperature and water vapor pressure. However, exposures were not consistently associated with FMD or NMD. Brachial artery diameter, a predictor of cardiovascular risk, decreased in association with particle pollution and increased in association with ambient temperature in our study population of adults with type 2 diabetes. Zanobetti A, Luttmann

  3. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    Explosive boiling, defined as energy transfer leading to formation of vapor rapidly enough to produce large shock waves, has been widely studied in a number of contexts. Depending upon the nature and temperatures of the liquids and mode of contacting, large-scale mixing and explosive vaporization may occur, or alternatively, only relatively non-energetic, film-type boiling may exist. The key difference is whether a mechanism is operative for increasing the liquid-liquid interfacial area in a time scale consistent with the formation of a detonation wave. Small drops of a cold volatile liquid were dropped onto a free surface of a hot, non-volatile liquid. The critical Weber number for coalescence is obtained from the envelope of the film boiling region. Markedly different behavior for the two hot liquids is observed. A 'splash' theory for local propagation of vapor explosions in spontaneously nucleating liquid-liquid systems is now formulated. After a random contact is made, explosive growth and coalescence of the vapor bubbles occurs as soon as the surrounding pressure is relieved, resulting in a high-pressure vapor layer at the liquid-liquid contact area. This amounts to an impact pressure applied to the free surface, with a resulting velocity distribution obtained from potential flow theory. The peak pressure predictions are. consistent with data for Freon-oil mixing, but further evaluation will await additional experimental data. Nevertheless, the current inference is that a UO 2 -Na vapor explosion in a reactor environment cannot be visualized. In conclusion: The propagation model presented here differs in some details from that of Henry and Fauske, although both are consistent with some peak pressure data obtained by Henry, et al. Clearly, additional experimental information is needed for further evaluation of these theories. Nevertheless, it should be emphasized that even at this time a number of important observations concerning the requirements for a vapor

  4. Knudsen cell vaporization of rare earth nitrides: enthalpy of vaporization of HoN098

    International Nuclear Information System (INIS)

    Brown, R.C.; Clark, N.J.

    1975-01-01

    The enthalpy of vaporization of HoN 0 . 98 was measured by the weight-loss Knudsen cell technique using Motzfeldt-Whitman extrapolations to zero orifice area. A third-law enthalpy of vaporization of HoN 0 . 98 of 155.9 +- 5 kcal mole -1 was obtained compared to a second-law value of 162.0 +- 5 kcal mole -1 . Similar measurements on the nitrides of samarium, erbium, and ytterbium gave third-law enthalpies of vaporization of 126.8 +-- 5 kcal mole -1 ; 159.6 +- 5 kcal mole -1 , and 121.0 +- 5 kcal mole -1 , respectively. 7 tables

  5. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  6. Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II

    Science.gov (United States)

    Liu, Ying; Shao, Min; Lu, Sihua; Chang, Chih-Chung; Wang, Jia-Lin; Fu, Linlin

    The chemical mass balance receptor model was applied to the source apportionment of 58 hydrocarbons measured at seven sites in a field campaign that examined regional air quality in the Pearl River Delta (PRD) region in the fall of 2004. A total of 12 volatile organic compound (VOC) emission sources were considered, including gasoline- and diesel-powered vehicle exhausts, headspace vapors of gasoline and diesel fuel, vehicle evaporative emissions, liquid petroleum gas (LPG) leakage, paint vapors, asphalt emissions from paved roads, biomass combustion, coal combustion, the chemical industry, and petroleum refineries. Vehicle exhaust was the largest source of VOCs, contributing to >50% of ambient VOCs at the three urban sites (Guangzhou, Foshan, and Zhongshan). LPG leakage played an important role, representing 8-16% of emissions at most sites in the PRD. Solvent usage was the biggest emitter of VOCs at Dongguan, an industrial site, contributing 33% of ambient VOCs. Similarly, at Xinken, a non-urban site, the evaporation of solvents and coatings was the largest emission source, accounting for 31% of emissions, probably because it was downwind of Dongguan. Local biomass combustion was a noticeable source of VOCs at Xinken; although its contribution was estimated at 14.3%, biomass combustion was the third largest VOC source at this site.

  7. Economía y medio ambiente

    Directory of Open Access Journals (Sweden)

    Ciro Alfonso Serna Mendoza

    2010-12-01

    Full Text Available En ciertos escenarios académicos, políticos, sociales y ambientales se declara que el modelo económico dominante o los conceptos que lo integran son responsables de que el bienestar económico implique malestar ecológico.Al partir de este supuesto, una forma de comprender las causas y de contribuir a la solución de la problemática ambiental es develar en qué consisten, en qué términos plantean la relación ombre-medio ambiente, las propuestas que incluyen la dimensión ambiental en el campo de la economía. Y si, al igual que las teorías ambientales, acuden a la ética como factor adecuado para disminuir las externalidades negativas generadas en el ambiente por la actividad económica.

  8. Games and Entertainment in Ambient Intelligence Environments

    NARCIS (Netherlands)

    Nijholt, Antinus; Reidsma, Dennis; Poppe, Ronald Walter; Aghajan, H.; López-Cózar Delgado, R.; Augusto, J.C.

    2009-01-01

    In future ambient intelligence (AmI) environments we assume intelligence embedded in the environment and its objects (floors, furniture, mobile robots). These environments support their human inhabitants in their activities and interactions by perceiving them through sensors (proximity sensors,

  9. 2011 NATA - Risks and Annual Ambient Concentrations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes the modeled annual ambient concentrations and risks at the census tract level for the 2011 National Air Toxics Assessment. All concentrations...

  10. General well function for soil vapor extraction

    Science.gov (United States)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  11. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  12. Atomic lithium vapor laser isotope separation

    International Nuclear Information System (INIS)

    Olivares, I.E.; Rojas, C.

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the 6 LiD 2 and the 7 LiD 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  13. Resonant second harmonic generation in potassium vapor

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.; Lawrence Berkeley Lab., CA

    1995-06-01

    Picosecond pulses are used to study resonant second harmonic generation in potassium vapor. Although the process is both microscopically and macroscopically forbidden, it can readily be observed. The results can be quantitatively understood by a multiphoton-ionization-initiated, dc-field-induced, coherent transient model

  14. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  15. A FGGE water vapor wind data set

    Science.gov (United States)

    Stewart, Tod R.; Hayden, Christopher M.

    1985-01-01

    It has been recognized for some time that water vapor structure visible in infrared imagery offers a potential for obtaining motion vectors when several images are considered in sequence (Fischer et al., 1981). A study evaluating water vapor winds obtained from the VISSR atmospheric sounder (Stewart et al., 1985) has confirmed the viability of the approach. More recently, 20 data sets have been produced from METEOSAT water vapor imagery for the FGGE period of 10-25 November 1979. Where possible, two data sets were prepared for each day at 0000 and 1200 GMT and compared with rawinsondes over Europe, Africa, and aircraft observations over the oceans. Procedures for obtaining winds were, in general, similar to the earlier study. Motions were detected both by a single pixel tracking and a cross correlation method by using three images individually separated by one hour. A height assignment was determined by matching the measured brightness temperature to the temperature structure represented by the FGGE-IIIB analyses. Results show that the METEOSAT water vapor winds provide uniform horizontal coverage of mid-level flow over the globe with good accuracy.

  16. External fuel vaporization study, phase 2

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  17. Atomic-vapor-laser isotope separation

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures

  18. Fractional condensation of biomass pyrolysis vapors

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria; Brilman, Derk Willem Frederik; Garcia Perez, M.; Wang, Zhouhong; Oudenhoven, Stijn; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.

    2011-01-01

    In this paper, we have investigated the possibilities to steer the composition and, thus, the quality of pyrolysis liquids by the reactor temperature and the pyrolysis vapor condenser temperature. Pine wood was pyrolyzed in a 1 kg/h fluidized-bed pyrolysis reactor operated at 330 or 480 °C. The

  19. 75 FR 65151 - Marine Vapor Control Systems

    Science.gov (United States)

    2010-10-21

    ... Classification UFL Upper flammable limit USCG U.S. Coast Guard VCS Vapor control system VOC Volatile organic... transfer substance to new Subpart P, beginning with 33 CFR 154.2000, to facilitate the substantive changes... that guidance. Limit requirements for flame arresters or flame screens to the flammable, combustible...

  20. Covering sources of toxic vapors with foam

    International Nuclear Information System (INIS)

    Aue, W. P.; Guidetti, F.

    2009-01-01

    In a case of chemical terrorism, first responders might well be confronted with a liquid source of toxic vapor which keeps spreading out its hazardous contents. With foam as an efficient and simple means, such a source could be covered up in seconds and the spread of vapors mitigated drastically. Once covered, the source could then wait for a longer time to be removed carefully and professionally by a decontamination team. In order to find foams useful for covering up toxic vapor sources, a large set of measurements has been performed in order to answer the following questions: - Which foams could be used for this purpose? - How thick should the foam cover be? - For how long would such a foam cover be effective? - Could the practical application of foam cause a spread of the toxic chemical? The toxic vapors sources included GB, GD and HD. Among the foams were 10 fire fighter foams (e.g. AFFF, protein) and the aqueous decontamination foam CASCAD. Small scale experiments showed that CASCAD is best suited for covering a toxic source; a 10 cm layer of it covers and decontaminates GB. The large scale experiments confirmed that any fire fighter foam is a suitable cover for a longer or shorter period.(author)

  1. Similarities and differences in vapor explosion criteria

    International Nuclear Information System (INIS)

    Cronenberg, A.W.

    1978-01-01

    An overview of recent ideas pertaining to vapor explosion criteria indicates that in general sense, a consensus of opinion is emerging on the conditions applicable to explosive vaporization. Experimental and theoretical work has lead a number of investigators to the formulation of such conditions which are quite similar in many respects, although the quantitative details of the model formulation of such conditions are somewhat different. All model concepts are consistent in that an initial period of stable film boiling, separating molten fuel from coolant, is considered necessary (at least for large-scale interactions and efficient intermixing), with subsequent breakdown of film boiling due to pressure and/or thermal effects, followed by intimate fuel-coolant contact and a rapid vaporization process which is sufficient to cause shock pressurization. Although differences arise as to the conditions for and the energetics associated with film boiling destabilization and the mode and energetics of fragmentation and intermixing. However, the principal area of difference seems to be the question of what constitutes the requisite condition(s) for rapid vapor production to cause shock pressurization

  2. HYDROCARBON VAPOR DIFFUSION IN INTACT CORE SLEEVES

    Science.gov (United States)

    The diffusion of 2,2,4-trimethylpentane (TMP) and 2,2,5-trimethylhexane (TMH) vapors put of residually contaminated sandy soil from the U.S. Environmental Protection Agency (EPA) field research site at Traverse City, Michigan, was measured and modeled. The headspace of an intact ...

  3. Terahertz radiation in alkali vapor plasmas

    International Nuclear Information System (INIS)

    Sun, Xuan; Zhang, X.-C.

    2014-01-01

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization

  4. Vapor pressure of selected organic iodides

    Czech Academy of Sciences Publication Activity Database

    Fulem, M.; Růžička, K.; Morávek, P.; Pangrác, Jiří; Hulicius, Eduard; Kozyrkin, B.; Shatunov, V.

    2010-01-01

    Roč. 55, č. 11 (2010), 4780-4784 ISSN 0021-9568 R&D Projects: GA ČR GA203/08/0217 Institutional research plan: CEZ:AV0Z10100521 Keywords : vapor pressure * static method * organic iodides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.089, year : 2010

  5. A Smart Kitchen for Ambient Assisted Living

    OpenAIRE

    Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Cirujano, Diego; Picking, Richard

    2014-01-01

    The kitchen environment is one of the scenarios in the home where users can benefit from Ambient Assisted Living (AAL) applications. Moreover, it is the place where old people suffer from most domestic injuries. This paper presents a novel design, implementation and assessment of a Smart Kitchen which provides Ambient Assisted Living services; a smart environment that increases elderly and disabled people’s autonomy in their kitchen-related activities through context and user awareness, appr...

  6. Unidades de Pediatría Ambiental

    OpenAIRE

    PARÍS M, ENRIQUE; MOLINA M, HELIA; RÍOS B, JUAN CARLOS

    2007-01-01

    Se considera que una Unidad de Pediatría Ambiental es una estructura con roles claramente definidos, situada preferentemente en un centro de salud, especializada en afecciones pediátricas, relacionadas al ambiente. Estos centros pueden proporcionar asesoramiento, información y tratamiento, promover la investigación, entrenar a profesionales, educar al público e informar a las autoridades responsables. Su personal, especialmente entrenado en problemas ambientales, incluye: pediatras, toxicólog...

  7. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  8. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  9. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  10. The vapor pressure and enthalpy of vaporization of M-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, S J; Seiler, F A; Bechtold, W E; Eidson, A F

    1988-12-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 {+-} 0.1 (SE) kj/ g{center_dot}mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 ({+-} 0.1) (SE) kjg{center_dot}mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization ({delta}Cpdeg.) of 35 {+-} 3 (SE) J/g{center_dot}mol{center_dot}K over the temperature range studied. (author)

  11. The vapor pressure and enthalpy of vaporization of M-xylene

    International Nuclear Information System (INIS)

    Rothenberg, S.J.; Seiler, F.A.; Bechtold, W.E.; Eidson, A.F.

    1988-01-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 ± 0.1 (SE) kj/ g·mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 (± 0.1) (SE) kjg·mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization (ΔCpdeg.) of 35 ± 3 (SE) J/g·mol·K over the temperature range studied. (author)

  12. 46 CFR 182.480 - Flammable vapor detection systems.

    Science.gov (United States)

    2010-10-01

    ... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.480 Flammable vapor... permit calibration in a vapor free atmosphere. (g) Electrical connections, wiring, and components for a...

  13. Ammonia IR Absorbance Measurements with an Equilibrium Vapor Cell

    National Research Council Canada - National Science Library

    Field, Paul

    2004-01-01

    Infrared (IR) absorbance spectra were acquired for 18 ammonia vapor pressures. The vapor pressures were generated with 15 gravimetrically prepared aqueous solutions and three commercial aqueous solutions using a dynamic method I.E...

  14. Water vapor movement in freezing aggregate base materials.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  15. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  16. Biotecnologia Ambiental. Aplicacions biotecnològiques a la millora del medi ambient

    OpenAIRE

    Blanch i Gisbert, Anicet

    2010-01-01

    La biotecnología ambiental comprende el conjunto de actividades tecnológicas que facilitan la comprensión y la gestión de los sistemas biológicos en el medio ambiente, con el fin de proveer productos y servicios. Actualmente, la gestión del medio ambiente y de sus recursos naturales no se comprende si no se realiza de manera sostenible. Los avances científicos y tecnológicos le están permitiendo a la biotecnología ambiental, el desarrollo de nuevas herramientas y aplicaciones con los que resp...

  17. Towards New Ambient Light Systems: a Close Look at Existing Encodings of Ambient Light Systems

    Directory of Open Access Journals (Sweden)

    Andrii Matviienko

    2015-10-01

    Full Text Available Ambient systems provide information in the periphery of a user’s attention. Their aim is to present information as unobtrusively as possible to avoid interrupting primary tasks (e.g. writing or reading. In recent years, light has been used to create ambient systems to display information. Examples of ambient light systems range from simple notification systems such as displaying messages or calendar event reminders, to more complex systems such as focusing on conveying information regarding health activity tracking. However, for ambient light systems, there is a broad design space that lacks guidelines on when to make use of light displays and how to design them. In this paper we provide a systematic overview of existing ambient light systems over four identified information classes derived from 72 existing ambient light systems. The most prominent encoding parameters among the surveyed ambient light systems are color, brightness, and their combination. By analyzing existing ambient light systems, we provide a first step towards developing guidelines for designing future ambient light systems.

  18. Waste tank vapor project: Vapor space characterization of waste tank 241-BY-104: Results from samples collected on June 24, 1994

    International Nuclear Information System (INIS)

    Clauss, T.W.; Ligotke, M.W.; McVeety, B.D.; Pool, K.H.; Lucke, R.B.; Fruchter, J.S.; Goheen, S.C.

    1994-11-01

    This report describes results of the analyses of tank-headspace samples taken from Hanford waste Tank 241-BY-104 (referred to as Tank BY-104) on June 24, 1994. The Pacific Northwest Laboratory (PNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze inorganic and organic samples collected from the tank headspace. The sample job was designated S4019 and was performed by WHC on June 24, 1994 using the vapor sampling system (VSS). The results of the analyses are expected to be used in the determination of safety and toxicological issues related to the tank-headspace gas as described in the WHC report entitled Data Quality Objectives for Generic In-Tank Health and Safety Vapor Issue Resolution, WHC-SD-WM-DQO-002, Rev. 0. Sampling devices, including 16 sorbent trains (for inorganic analyses), and 5 SUMMA trademark canisters (for organic analyses), were supplied to the WHC sampling staff on June 20, 1994. Samples were taken (by WHC) on June 24. The samples were returned from the field on June 27. The inorganic samples delivered to PNL on chain-of-custody (COC) 006893 included 16 sorbent trains as described in Tables 2.2, 2.3, and 2.4. Additional inorganic blank spikes were obtained from related sample jobs. SUMMA trademark samples delivered to PNL on COC 006896 included one ambient air sample, one ambient-air sample through the sampling system, and three tank-headspace SUMMA trademark canister samples. The samples were inspected upon delivery to the 326/23B laboratory and logged into PNL laboratory record book 55408. Custody of the sorbent trains was transferred to PNL personnel performing the inorganic analysis and stored at refrigerated (≤10 degrees C) temperature until the time of analysis. Access to the 326/23B laboratory is limited to PNL personnel working on the waste-tank safety program

  19. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    2013-04-03

    agricultural crops. To meet the requirements for these and other demanding applications, new sensing approaches with improved sensor selectivity are required...of these vapors with key side- chain amino acids. DNT-binding peptide receptors were further conjugated to an oligo(ethylene glycol) hydrogel for vapor...coefficient for DNT over TNT vapor. Vapor-phase binding performance was attributed to the ability of the oligo(ethylene glycol) hydrogel to maintain the

  20. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  1. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    Science.gov (United States)

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  2. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    Science.gov (United States)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  3. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  4. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  5. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  6. Review of literature on the asymmetric collapse of vapor bubbles

    International Nuclear Information System (INIS)

    Fremd, R.; Froehlich, G.

    1977-06-01

    This report contains a review of literature on the asymmetric collape of vapor bubbles by cavitation with special consideration to vapor explosions. Two numerical models, which describe the collapse of cavities in the neighbourhood of a solid surface, are presented. Moreover experimental results for this case are provided. Propositions to apply the numerical models to vapor explosions are made. (orig.) [de

  7. The separation of hydrocarbons from waste vapor streams

    International Nuclear Information System (INIS)

    Behling, R.D.; Ohlrogge, K.; Peinemann, K.V.; Kyburz, E.

    1989-01-01

    Hydrocarbon vapors generated from industrial processes dispersed into air are contributing factors for the creation of photochemical smog. The separation of hydrocarbon vapor by means of membranes is in case of some applications a technically simple and economic process. A membrane vapor separation process with a following treatment of the retentate by catalytic incineration is introduced in this paper

  8. Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Růžička, M.

    2011-01-01

    Roč. 303, č. 2 (2011), s. 205-216 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : thiophene sulfolane * dimethyl sulfoxide * vapor pressure * heat capacity * vaporization enthalpy * recommended vapor pressure equation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  9. 33 CFR 154.826 - Vapor compressors and blowers.

    Science.gov (United States)

    2010-07-01

    ...) Excessive shaft bearing temperature. (d) If a centrifugal compressor, fan, or lobe blower handles vapor in... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which handles...

  10. Behavior and source characteristic of PCBS in urban ambient air of Yokohama, Japan

    International Nuclear Information System (INIS)

    Kim, Kyoung-Soo; Masunaga, Shigeki

    2005-01-01

    To understand the behavior and sources of polychlorinated biphenyls (PCBs) in ambient air, gaseous and particulate phase concentrations were measured at Yokohama City, Japan, during March 2002 and February 2003. The concentration of total PCB and TEQ ranged from 62 to 250 pg/m 3 and from 2 to 14 fgTEQ/m 3 , respectively. The gas-particle partition coefficient (K p ) was obtained as a function of temperature. The relationship between the partition coefficient and the sub-cooled liquid vapor pressure (P L ) was also established (coefficients of determination for log K p versus log P L plot were >0.76, except for three samples). As a result, the partition ratio of gaseous and particulate phase PCBs can be estimated for an arbitrary temperature. Principal component analysis (PCA) was applied to the source identification of PCBs in ambient air. The concentrations of 122 congeners between tetra-CBs and deca-CB were used as input variables, and three PCs with eigenvalue more than 10 were obtained. The principal component 1 (PC 1) accounted for 43.4% of the total variance, and was interpreted as volatilization from PCB products and/or sites polluted by PCBs. The concentrations of PCB congeners were strongly related with PC 1 which showed high correlation with temperature. PC 2 accounted for 22.3%, and was interpreted as PCBs from incineration sources, while PC 3 accounted for 10.8%, but could not be interpreted. - The relationship between the gas-particle partition coefficient (K p ) and sub-cooled liquid vapor pressure was estimated using gaseous and particle phase concentration in ambient air, and was estimated source apportionment of PCBs

  11. The vaporization enthalpy and vapor pressure of S (+)-methamphetamine at T = 298.15 K by correlation gas chromatography

    International Nuclear Information System (INIS)

    Thornton, Melissa; Gobble, Chase; Chickos, James

    2014-01-01

    Highlights: • The vaporization enthalpy of (d)-methamphetamine was measured. • The vapor pressure of (d)-methamphetamine as a function of temperature was evaluated. • The vapor pressure of 4-benzylpiperidine as a function of temperature was evaluated. - Abstract: The vaporization enthalpy and vapor pressure of S (+)-methamphetamine is evaluated by correlation-gas chromatography. A vaporization enthalpy of (58.7 ± 4.3) kJ · mol −1 and a vapor pressure, p = (38 ± 9) Pa has been obtained using a variety of secondary aliphatic amines as standards. In addition, equations describing the vapor pressure temperature dependence are provided for standards and S (+)-methamphetamine covering the temperature range from T = 298.15 K to the boiling temperature. Boiling temperatures are reproduced within an interval of 8 K or less

  12. Effect of carbon derivatives in sulfonated poly(etherimide)-liquid crystal polymer composite for methanol vapor sensing

    Science.gov (United States)

    Bag, Souvik; Rathi, Keerti; Pal, Kaushik

    2017-05-01

    A class of highly sensitive chemiresistive sensors is developed for methanol (MeOH) vapor detection in ambient atmosphere by introducing conductive nanofillers like carbon black, multi-wall carbon nanotubes, and reduced graphene oxide into sulfonated poly(etherimide) (PEI)/liquid crystal polymer (LCP) composite (sPEI-LCP). Polar composites are prepared by a sulfonation process for instantaneous enhancement in adsorption capability of the sensing films to the target analyte (MeOH). Sensing properties exhibit that polymer composite-based fabricated sensors are efficient for the detection of different concentration of methanol vapor from 300-1200 parts-per-million (ppm) at room temperature. The incorporation of nanofiller induces the dramatic change in sensing behavior of base composite film (sPEI-LCP). Thus, less mass fraction of nanofillers (i.e. 2 wt%) influences the nonlinear sensing behavior for the entire range of methanol vapor. The simple method and low fabrication cost of the prepared sensor are compelling reasons that methanol vapor sensor is suitable for environmental monitoring.

  13. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    Science.gov (United States)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  14. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    Science.gov (United States)

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  15. Oxidación en vapor de agua del acero inoxidable aisi 317 a 700 y 750ºc

    OpenAIRE

    MARULANDA AREVALO, JOSE LUDDEY; REMOLINA MILLAN, ADULJAY; BARON, JAIRO ALBERO

    2013-01-01

    Se realizó la oxidación del acero inoxidable austenítico AISI SAE 317, a temperaturas de 700 y 750ºC, en un ambiente con 100% vapor de agua, para evaluar su comportamiento a la corrosión. Se realizaron curvas de ganancia de masa y las películas de óxidos se analizaron por medio de Microscopia Electrónica de Barrido (SEM) y difracción de rayos X (DRX), para observar cómo se forman las capas de óxidos y discutir el posible mecanismo de oxidación en vapor de agua. Se encontró que el mecanismo de...

  16. OXIDACIÓN EN VAPOR DE AGUA DEL ACERO INOXIDABLE AISI 317 A 700 Y 750ºC

    OpenAIRE

    José Luddey Marulanda Arevalo; Aduljay Remolina Millan; Jairo Alberto Barón

    2013-01-01

    Se realizó la oxidación del acero inoxidable austenítico AISI SAE 317, a temperaturas de 700 y 750ºC, en un ambiente con 100% vapor de agua, para evaluar su comportamiento a la corrosión. Se realizaron curvas de ganancia de masa y las películas de óxidos se analizaron por medio de Microscopia Electrónica de Barrido (SEM) y difracción de rayos X (DRX), para observar cómo se forman las capas de óxidos y discutir el posible mecanismo de oxidación en vapor de agua. Se encontró que el mecanismo de...

  17. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  18. La protección internacional del medio ambiente

    OpenAIRE

    Bou Franch, Valentín

    2017-01-01

    PowerPoint del Tema 14 de la asignatura "Derecho Internacional Público". Curso 2017-18. Tema 14. La protección internacional del medio ambiente: 1.- El Derecho Internacional del Medio Ambiente: caracteres específicos. 2.- Principios fundamentales del Derecho Internacional del Medio Ambiente. 3.- Medio ambiente y Desarrollo: el Desarrollo Sostenible.

  19. A high-flow humidograph for testing the water uptake by ambient aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ten Brink, H.M.; Khlystov, A.; Kos, G.P.A. [ECN Fuels Conversion and Environment, Petten (Netherlands); Tuch, T. [Institut of Medical Data Management, Biometrics and Epidemiology, Ludwig-Maximilian University, Muenich (Germany); Roth, C.; Kreyling, W. [Institute for Inhalation Biology, GSF National Research Center for Environment and Health, Neuherberg/Muenich (Germany)

    1999-10-01

    A scanning humidograph, with an air flow rate of 0.5 m{sup 3} s{sup -1} was built to investigate the uptake of water and its effect on sizing, collection and light-scattering of ambient aerosol. The performance of the system was assessed with laboratory particles of ammonium nitrate, ammonium sulfate and sodium chloride which are the major hygroscopic components of ambient aerosol. The increase in size at the deliquescence points, which ideally is a stepwise function of relative humidity, occurs over a range of 3% RH units. This is shown to be an optimum value in a system of such large dimensions. Because of the strong temperature increase of the vapor pressure of ammonium nitrate, its evaporative loss was investigated as a function of heating/drying temperature. The loss of pure test aerosol, with a mass distribution similar to that in the ambient atmosphere, was found to be acceptable for drying temperatures of up to 40C. The sizing of deliquesced aerosol by LAS-X monitors was tested and found to be a complex function of RH. In Berner low pressure impactors growth of hygroscopic aerosol was not observed, not even at an RH approaching saturation. 21 refs.

  20. The Aesthetics of the Ambient Video Experience

    Directory of Open Access Journals (Sweden)

    Jim Bizzocchi

    2008-01-01

    Full Text Available Ambient Video is an emergent cultural phenomenon, with roots that go deeply into the history of experimental film and video art. Ambient Video, like Brian Eno's ambient music, is video that "must be as easy to ignore as notice" [9]. This minimalist description conceals the formidable aesthetic challenge that faces this new form. Ambient video art works will hang on the walls of our living rooms, corporate offices, and public spaces. They will play in the background of our lives, living video paintings framed by the new generation of elegant, high-resolution flat-panel display units. However, they cannot command attention like a film or television show. They will patiently play in the background of our lives, yet they must always be ready to justify our attention in any given moment. In this capacity, ambient video works need to be equally proficient at rewarding a fleeting glance, a more direct look, or a longer contemplative gaze. This paper connects a series of threads that collectively illuminate the aesthetics of this emergent form: its history as a popular culture phenomenon, its more substantive artistic roots in avant-garde cinema and video art, its relationship to new technologies, the analysis of the viewer's conditions of reception, and the work of current artists who practice within this form.

  1. Mass spectrometric study of Nd2S3 vaporization

    International Nuclear Information System (INIS)

    Fenochka, B.V.

    1987-01-01

    The authors conduct a mass-spectrometric study of neodymium(III) sulfide vaporization. The chemical composition of the samples was stoichiometric and the samples were vaporized from tantalum effusion cells. When the vapor over Nd 2 S 3 is ionized by electrons the mass spectra shows monovalent cations of Nd, S, NdS, and NdO. The enthalpy of vaporization if Nd atoms from Nd 2 S 3 at average experimental temperatures and the standard enthalpy of reaction is shown. Also presented is the enthalpy of vaporization of NdS molecules from Nd 2 S 3 at average experimental temperatures and the standard enthalpy of reaction

  2. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  3. Liquid-liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials

  4. Thermodynamics of the vaporization of uranium tetrabromide

    International Nuclear Information System (INIS)

    Singh, Z.; Prasad, R.; Venugopal, P.V.; Roy, K.N.; Sood, D.D.

    1981-01-01

    Vapour pressures of solid and liquid uranium tetrabromide have been measured in the temperature range of 696 to 805 K and 805 to 1003 K respectively by transpiration and evaporation-temperature techniques. The vapour pressures obtained by the two techniques are in good agreement and have been combined to give the reported vapour-pressure equations for solid and liquid uranium tetrabromide. The melting temperature, the normal boiling temperature, the standard enthalpy of vaporization ΔH 0 (vap, 298.15 K), and the standard entropy of vaporization ΔS 0 (vap, 298.15 K) are reported. The enthalpy of fusion ΔH 0 (fus, 802 K) is also reported. The thermodynamic quantities from the present study are compared with those in the literature and critically analysed. (author)

  5. Vaporization of structural materials in severe accidents

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1982-01-01

    Vaporized structural materials form the bulk of aerosol particles that can transport fission products in severe LWR accidents. As part of the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory, a model has been developed based on a mass transport coefficient to describe the transport of materials from the surface of a molten pool. In many accident scenarios, the coefficient can be calculated from existing correlations for mass transfer by natural convection. Data from SASCHA fuel melting tests (Karlsruhe, Germany) show that the partial pressures of many of the melt components (Fe, Cr, Co, Mn, Sn) required for the model can be calculated from the vapor pressures of the pure species and Raoult's law. These calculations indicate much lower aerosol concentrations than reported in previous studies

  6. Improved cell for water-vapor electrolysis

    Science.gov (United States)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  7. Ceramic composites by chemical vapor infiltration

    International Nuclear Information System (INIS)

    Stinton, D.P.

    1987-01-01

    Composites consisting of silicon carbide matrices reinforced with continuous ceramic fibers are being developed for high-temperature structural applications. Chemical vapor deposition (CVD) techniques are very effective in fabricating composites with high strengths and exceptional fracture toughness. Mechanical properties of infiltrated composites are controlled by the strength of the interfacial bond between the fibers and matrix. This paper describes two CVD techniques and reviews the models being developed to better understand and control the infiltration process

  8. DuPont Chemical Vapor Technical Report

    International Nuclear Information System (INIS)

    MOORE, T.L.

    2003-01-01

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH and Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations

  9. Discharge characteristics of copper vapor laser

    International Nuclear Information System (INIS)

    Nemoto, Koshichi; Fujii, Takashi

    1988-01-01

    This report describes about the copper vapor laser and experimental results of it's discharge characteristics. We measured time varing of plasma regist, and analyzed electron density. (1) The plasma regist is larger than 100Ω at the beginning of discharge, and is rapidly reduced to about 10Ω. (2) The electron density is estimated about 1∼2 x 10 12 /cc at the begining of discharge. (author)

  10. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  11. Quality and Control of Water Vapor Winds

    Science.gov (United States)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  12. Estimating evaporative vapor generation from automobiles based on parking activities

    International Nuclear Information System (INIS)

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S.

    2015-01-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade–Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5–8% less than calculation without considering parking activity. - Highlights: • We applied real parking distribution data to estimate evaporative vapor generation. • We applied real hourly temperature data to estimate hourly incremental vapor generation rate. • Evaporative emission for Florence is estimated based on parking distribution and hourly rate. - A new approach is proposed to quantify the weighted evaporative vapor generation based on parking distribution with an hourly incremental vapor generation rate

  13. Marketing practices of vapor store owners.

    Science.gov (United States)

    Cheney, Marshall; Gowin, Mary; Wann, Taylor Franklin

    2015-06-01

    We examined the marketing strategies for local vapor stores in a large metropolitan area in Oklahoma. Vapor store owners or managers (n = 33) participated in individual interviews regarding marketing practices in 2014. We asked owners about their marketing strategies and the groups they targeted. We transcribed the interviews and analyzed them for themes. Store owners used a variety of marketing strategies to bring new customers to their stores and keep current customers coming back. These marketing strategies showed many parallels to tobacco industry strategies. Most owners engaged in some form of traditional marketing practices (e.g., print media), but only a few used radio or television advertising because of budget constraints. Owners used social media and other forms of electronic communication, pricing discounts and specials, and loyalty programs. Owners also had booths at local events, sponsored community events, and hosted them in their stores. Owners attempted to target different groups of users, such as college students and long-term smokers. Local vapor store marketing practices closely resemble current and former tobacco industry marketing strategies. Surveillance of marketing practices should include local and Web-based strategies.

  14. Released air during vapor and air cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz [VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Hydromechanics and Hydraulic Equipment, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2016-06-30

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  15. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  16. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  17. Vapor-Driven Propulsion of Catalytic Micromotors

    Science.gov (United States)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  18. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  19. Marketing Practices of Vapor Store Owners

    Science.gov (United States)

    Gowin, Mary; Wann, Taylor Franklin

    2015-01-01

    Objectives. We examined the marketing strategies for local vapor stores in a large metropolitan area in Oklahoma. Methods. Vapor store owners or managers (n = 33) participated in individual interviews regarding marketing practices in 2014. We asked owners about their marketing strategies and the groups they targeted. We transcribed the interviews and analyzed them for themes. Results. Store owners used a variety of marketing strategies to bring new customers to their stores and keep current customers coming back. These marketing strategies showed many parallels to tobacco industry strategies. Most owners engaged in some form of traditional marketing practices (e.g., print media), but only a few used radio or television advertising because of budget constraints. Owners used social media and other forms of electronic communication, pricing discounts and specials, and loyalty programs. Owners also had booths at local events, sponsored community events, and hosted them in their stores. Owners attempted to target different groups of users, such as college students and long-term smokers. Conclusions. Local vapor store marketing practices closely resemble current and former tobacco industry marketing strategies. Surveillance of marketing practices should include local and Web-based strategies. PMID:25880960

  20. A multistratum approach to soil vapor extraction

    International Nuclear Information System (INIS)

    Fuhr, J.M.; Giesler, R.S.

    1993-01-01

    An innovative soil remediation design was implemented to address petroleum hydrocarbon contamination in a gradationally stratified subsurface environment containing alternating layers of clay, sand and clayey sand, and perched water tables in north Florida. The soil vapor extraction (SVE) design enables remediation to focus on distinct subsurface intervals depending on changing site conditions such as constituent concentration levels and periodic water-table fluctuations. Contaminated soils were assessed from the land surface to the top of a two foot thick perched water table located at 13 feet below land surface (bls), and also were encountered below the perched water table downward to another perched water table at 45 feet bls. Use of an organic vapor analyzer equipped with a flame ionization detector revealed hydrocarbon vapor concentrations in soil samples ranging to greater than 1,000 parts per million (ppm). Nonaqueous phase liquids were encountered on both perched water tables. Based on the site assessment, a multistratum soil and ground-water remediation system was designed and constructed. A pilot test was conducted to aid in the design of an effective SVE system

  1. Experimental study of vapor bubble dynamics

    International Nuclear Information System (INIS)

    Pasquini, Maria-Elena

    2015-01-01

    The object of this thesis is an experimental study of vapor bubble dynamics in sub-cooled nucleate boiling. The test section is locally heated by focusing a laser beam: heat fluxes from 1 e4 to 1.5 e6 W/m 2 and water temperature between 100 and 88 C have been considered. Three boiling regimes have been observed. Under saturated conditions and with low heat fluxes a developed nucleate boiling regime has been observed. Under higher sub-cooling and still with low heat fluxes an equilibrium regime has been observed in which the liquid flowrate evaporating at the bubble base is compensated by the vapor condensing flowrate at bubble top. A third regime have been observed at high heat fluxes for all water conditions: it is characterized by the formation of a large dry spot on the heated surface that keeps the nucleation site dry after bubble detachment. The condensation phase starts after bubble detachment. Bubble equivalent radius at detachment varies between 1 and 2.5 mm. Bubble properties have been measured and non-dimensional groups have been used to characterize bubble dynamics. Capillary waves have been observed on the bubble surface thanks to high-speed images acquisition. Two main phenomena have been proposed to explain capillary waves effects on bubble condensation: increasing of the phases interface area and decreasing of vapor bubble translation velocity, because of the increased drag force on the deformed bubble. (author) [fr

  2. Nuclear vapor thermal reactor propulsion technology

    International Nuclear Information System (INIS)

    Maya, I.; Diaz, N.J.; Dugan, E.T.; Watanabe, Y.; McClanahan, J.A.; Wen-Hsiung Tu; Carman, R.L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF 4 ) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF 4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (∼100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development

  3. Calculating the enthalpy of vaporization for ionic liquid clusters.

    Science.gov (United States)

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  4. Evaluación ambiental del PRMC

    Directory of Open Access Journals (Sweden)

    Waldo López Moya

    2001-12-01

    Full Text Available El presente artículo es una revisión constructiva de las actuales disposiciones sobre la evaluación ambiental de los planes reguladores, intentada con el propósito de contribuir a mejorar los procedimientos en práctica. En este sentido, aboga porque al plan regulador no se le exijan contribuciones ambientales que excedan a sus verdaderas competencias, para lo cual introduce el concepto de "efectos territoriales"; justifica que su evaluación ambiental deba ser realizda mediante una "declaración", y ahonda en la forma de elaborar y presentar esta declaración, acogiendo lo que a este respecto estipula el Art. 15° del Reglamento de la ley sobre Bases Generales del Medio Ambiente.

  5. Ambient Field Analysis at Groningen Gas Field

    Science.gov (United States)

    Spica, Z.; Nakata, N.; Beroza, G. C.

    2016-12-01

    We analyze continuous ambient-field data at Groningen gas field (Netherlands) through cross-correlation processing. The Groningen array is composed of 75 shallow boreholes with 6 km spacing, which contain a 3C surface accelerometer and four 5-Hz 3C borehole geophones spaced at 50 m depth intervals. We successfully retrieve coherent waves from ambient seismic field on the 9 components between stations. Results show high SNR signal in the frequency range of 0.125-1 Hz, and the ZZ, ZR, RZ, RR and TT components show much stronger wave energy than other components as expected. This poster discuss the different type of waves retrieved, the utility of the combination of borehole and surface observations, future development as well as the importance to compute the 9 components of the Green's tensor to better understand the wave field propriety with ambient noise.

  6. Ocean Ambient Noise Measurement and Theory

    CERN Document Server

    Carey, William M

    2011-01-01

    This book develops the theory of ocean ambient noise mechanisms and measurements, and also describes general noise characteristics and computational methods.  It concisely summarizes the vast ambient noise literature using theory combined with key representative results.  The air-sea boundary interaction zone is described in terms of non-dimensional variables requisite for future experiments.  Noise field coherency, rare directional measurements, and unique basin scale computations and methods are presented.  The use of satellite measurements in these basin scale models is demonstrated.  Finally, this book provides a series of appendices giving in-depth mathematical treatments.  With its complete and careful discussions of both theory and experimental results, this book will be of the greatest interest to graduate students and active researchers working in fields related to ambient noise in the ocean.

  7. Ambient air pollution and low birth weight

    DEFF Research Database (Denmark)

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy

    2017-01-01

    (TLBW, restriction (IUGR), and suggest that some subgroups of pregnant women who are smoking, of low or high body-mass index (BMI), low socioeconomic status (SES) or asthma are more vulnerable towards...... on the association between ambient air pollution and TLBW. The adjusted odds ratio (OR) for TLBW associated with exposure to ambient air pollution were in one study higher among women who smoked during pregnancy, as compared to the OR of non-smoking women, while in the other study the association was in the opposite...... direction. The association of ambient air pollution and TLBW were higher among women characterized by extreme BMI (two studies) and low SES compared to non-obese women or women of higher SES (four studies), respectively. Only one study reported the estimated effects among asthmatic and non-asthmatic women...

  8. Ambient Air Pollution and Morbidity in Chinese.

    Science.gov (United States)

    Hu, Li-Wen; Lawrence, Wayne R; Liu, Yimin; Yang, Bo-Yi; Zeng, Xiao-Wen; Chen, Wen; Dong, Guang-Hui

    2017-01-01

    The rapid economic growth in China is coupled with a severe ambient air pollution, which poses a huge threat to human health and the sustainable development of social economy. The rapid urbanization and industrialization over the last three decades have placed China as one of countries with the greatest disease burden in world. Notably, the prevalence rate of chronic noncommunicable diseases (CND), including respiratory diseases, CVD, and stroke, in 2010 reaches 16.9%. The continuous growth of the incidence of CND urgent needs for effective regulatory action for health protection. This study aims to evaluate the impact of rapid urbanization on status of ambient air pollution and associated adverse health effects on the incidence and the burden of CND and risk assessment. Our findings would be greatly significant in the prediction of the risk of ambient air pollution on CND and for evidence-based policy making and risk management in China.

  9. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000 0 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O 2 , O, Pu, PuO and PuO 2 . The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu 6 + from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO 2 for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed

  10. Hybrid Logical Analyses of the Ambient Calculus

    DEFF Research Database (Denmark)

    Bolander, Thomas; Hansen, René Rydhof

    2007-01-01

    In this paper, hybrid logic is used to formulate a rational reconstruction of a previously published control flow analysis for the mobile ambients calculus and we further show how a more precise flow-sensitive analysis, that takes the ordering of action sequences into account, can be formulated...... in a natural way. We show that hybrid logic is very well suited to express the semantic structure of the ambient calculus and how features of hybrid logic can be exploited to reduce the "administrative overhead" of the analysis specification and thus simplify it. Finally, we use HyLoTab, a fully automated...

  11. Comercio Internacional y Medio Ambiente en Colombia

    OpenAIRE

    Pérez Rincón, Mario Alejandro

    2006-01-01

    Consultable des del TDX A portada: Programa de Doctorado en Ciencias Ambientales, Opción Economía Ecológica y Gestión Ambiental A portada: Institut de Ciència i Tecnologia Ambientals (ICTA) Títol obtingut de la portada digitalitzada Desde la perspectiva de la Economía Ecológica, el Comercio Internacional no es un juego de suma positiva donde todos los participantes resultan ganadores por el intercambio comercial, sino que es un juego de suma cero, donde hay beneficiados y perjudic...

  12. Territorios vulnerables e injusticia ambiental en Argentina

    OpenAIRE

    Miguel Lacabana; Clara Bressano

    2016-01-01

    Justicia ambiental es un concepto fructífero en tanto modificó la perspectiva clásica de análisis sobre el problema de la degradación ambiental al establecer como principal interrogante no tanto las "causas" que producen tal degradación sino que interroga el proceso político, económico y social que consolida la desigual distribución social de las cargas nocivas de la contaminación. El conurbano sur de Buenos Aires y dentro de este el Municipio de Quilmes condensan distintas situaciones se vul...

  13. Human-Centric Interfaces for Ambient Intelligence

    CERN Document Server

    Aghajan, Hamid; Delgado, Ramon Lopez-Cozar

    2009-01-01

    To create truly effective human-centric ambient intelligence systems both engineering and computing methods are needed. This is the first book to bridge data processing and intelligent reasoning methods for the creation of human-centered ambient intelligence systems. Interdisciplinary in nature, the book covers topics such as multi-modal interfaces, human-computer interaction, smart environments and pervasive computing, addressing principles, paradigms, methods and applications. This book will be an ideal reference for university researchers, R&D engineers, computer engineers, and graduate s

  14. No queremos medio ambiente, lo queremos completo

    OpenAIRE

    Hederich G., Federico

    2018-01-01

    Sí bien es evidente la relación Hombre Medio Ambiente, no todos tenemos clara la manera como interactuamos interrumpiendo el desarrollo armónico de esta relación.El primer punto que vamos a tratar pretende esclarecer el significado de dos palabras básicas cuando se trata el tema del medio ambiente, en primera instancia, el término «basura» que se define como inmundicia, estiércol, y luego analizaremos «desperdicio» que significa derroche, residuo.Sí analizamos profundamente estas dos palabras...

  15. A RESPONSABILIDADE CIVIL E O MEIO AMBIENTE

    Directory of Open Access Journals (Sweden)

    DELCYLENE VILLALBA SOARES

    2012-06-01

    Full Text Available RESUMOEste artigo tem por finalidade realizar uma análise sobre a evolução da responsabilidade civil e suas teorias, subjetiva e objetiva aplicadas ao meio ambiente. Dentro desta área, deve-se ressaltar que a responsabilidade civil ao meio ambiente, é um assunto de importante relevância para o efetivo controle da depredação ambiental, permitindo que sejam alcançadas as metas propostas como condição de sobrevivência da espécie humana, ou seja, a conservação do meio ambiente e o desenvolvimento econômico social, visando desta maneira, permitir a qualidade e a continuação da vida. Existe o entendimento, que somente com educação ambiental e normas reguladoras fortes, como a penalidade de ter que indenizar quando praticar algum dano ao meio ambiente conseguirá atingir o objetivo maior de preservação. Necessitam-se além de uma mudança na legislação que responsabilize poluidores do meio ambiente, atribuindo-lhes sanções que inibam a prática de tal conduta ilícita e realizando assim, a aplicabilidade da justiça.Palavras-chave:Responsabilidade Civil; Responsabilidade; Meio Ambiente ABSTRACTThis article have objective to realize a analysis about civil responsibility evolution and your theories, subjective and objective apply environment. Inside this area have to stand out that civil responsibility environment, it is a theme very important relevance for environment depredation control effective, permitting have been obtain proposals target like been human survival condition, therefore, environment conservation and social economic development objective permit quality and continuation of life. There is understanding, that only with environment education and strong regulation principle, like penalty has to indemnify when practice some injury of environment, will obtain more preservation. Demand a change on legislation that responsible environment polluter attribute him inhibit sanctions for practice this illicit conduct and

  16. Copper-vapor-catalyzed chemical vapor deposition of graphene on dielectric substrates

    Science.gov (United States)

    Yang, Chao; Wu, Tianru; Wang, Haomin; Zhang, Xuefu; Shi, Zhiyuan; Xie, Xiaoming

    2017-07-01

    Direct synthesis of high-quality graphene on dielectric substrates is important for its application in electronics. In this work, we report the process of copper-vapor-catalyzed chemical vapor deposition of high-quality and large graphene domains on various dielectric substrates. The copper vapor plays a vital role on the growth of transfer-free graphene. Both single-crystal domains that are much larger than previous reports and high-coverage graphene films can be obtained by adjusting the growth duration. The quality of the obtained graphene was verified to be comparable with that of graphene grown on Cu foil. The progress reported in this work will aid the development of the application of transfer-free graphene in the future.

  17. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  18. CUIDADO AMBIENTAL E RESPONSABILIDADE: POSSÍVEL DIÁLOGO ENTRE PSICOLOGIA AMBIENTAL E LOGOTERAPIA

    Directory of Open Access Journals (Sweden)

    Diogo Arnaldo Corrêa

    2016-05-01

    Full Text Available O cuidado ambiental vem sendo marcado pela tônica da conservação e da promoção da sustentabilidade. A premente necessidade de um dado compromisso e educação ambiental e de condutas pró-ambientais vem sendo defendida em vários contextos: na mídia, nas políticas públicas, por meio de campanhas sazonais. Todavia, pouco se descreve acerca do sentido presente nos modos de cuidado configurados a partir da inter-relação pessoa-ambiente. Nesta perspectiva, este estudo objetivou promover um possível diálogo a partir das contribuições da Psicologia Ambiental e da Logoterapia visando aproximar a noção de cuidado ambiental, delineada pela Psicologia Ambiental, à ideia de responsabilidade, como defendida pela Logoterapia, por meio de uma revisão bibliográfica. As articulações propositadas corroboraram, portanto, para acenar que a relação pessoa-ambiente pode ser arraigada em qualidade se a responsabilidade é reconhecida em sua propriedade de potencial humano, o que pode favorecer na emergência do sentido das atitudes e condutas pró-ambientais e explicitar o caráter de tarefa única e irrepetível inerente à vida.

  19. Sorption and desorption of tritiated water vapor on piping materials of nuclear fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Ohmori, Rumi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Sorption and desorption of D{sub 2}O on Cr{sub 2}O{sub 3}, NiO, SS316 powders were studied at ambient temperature. When D{sub 2}O were contacted with samples after drying at 303K, broad peak was observed at 2100-2700cm{sup -1} on Cr{sub 2}O{sub 3} and NiO. Sorption and desorption rate depended on wave numbers. Isotope exchange rate with H{sub 2}O vapor was faster than dry desorption rate. By heating pretreatment, sorption amount and desorption rate for Cr{sub 2}O{sub 3} and NiO decreased. For SS316, broad peak was observed only after heating pretreatment at 673K. (author)

  20. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    International Nuclear Information System (INIS)

    Dangbegnon, J.K.; Talla, K.; Roro, K.T.; Botha, J.R.

    2009-01-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.