WorldWideScience

Sample records for vapor-particle sampler revision

  1. Engineering Task Plan for Preparing the Type 4 In Situ Vapor Samplers (ISVS) for Use

    International Nuclear Information System (INIS)

    BOGER, R.M.

    2000-01-01

    The DOE has identified a need to sample vapor space and exhaust ducts of several waste tanks The In-Situ Vapor Sampling (ISVS) Type IV vapor sampling cart has been identified as the appropriate monitoring tool. The ISVS carts have been out of service for a number of years. This ETP outlines the work to be performed to ready the type IV gas sampler for operation Characterization Engineering will evaluate the Type IV gas sampler carts to determine their state of readiness and will proceed to update procedures and equipment documentation to make the sampler operationally acceptable

  2. Development and evaluation of an impactor sampler for radioactive aerosol particles

    International Nuclear Information System (INIS)

    Sorimachi, Atsuyuki; Kranrod, Chutima; Chantrarayotha, Supitcha; Tokonami, Shinji

    2008-01-01

    This sampler consists of one impaction stage, which allows separation of airborne particles by 1 μm particle size cut-off point with a 50% probability of impaction, followed by a back-up filter at a flow rate of 1 L min -1 . The particles size more than and less than 1 μm-diameter are collected on the impactor plate at the nozzle side and on the filter, respectively. A Cr-39 detector is mounted on the filter sides of the impaction plate; α particles emitted from the particles less than 1 μm-diameter are counted with the Cr-39 detectors. In order to separate α particles emitted from radon, thoron and their progeny, the Cr-39 detectors are covered with aluminum-vaporized Mylar films. The total thickness of films is adjusted to let their α particles impinge on the Cr-39 detectors. Laboratory tests are going on in terms of the spectral characteristics of α particles before and after passing through the films, the count rate performance of Cr-39 detectors by α particles, the actual collection efficiency of aerosol particles on the impaction plate, and so on. This sampler may be able to supply us with an interesting technique for measuring radon and thoron progeny come from the sources of natural radiation such as the naturally occurred radioactive materials. (author)

  3. Particle capturing performance of South African non corrosive samplers

    CSIR Research Space (South Africa)

    Pretorius, C

    2010-05-01

    Full Text Available eq ue nc y D50 D90 © CSIR 2007 www.csir.co.za Particle size distribution of sampled filters taken in three platinum mines PSA results according to mine 0 2 4 6 8 10 12 14 16 X-Samplers Y-Samplers X-Samplers Y...

  4. Differences in particle size distributions collected by two wood dust samplers: preliminary findings

    International Nuclear Information System (INIS)

    Campopiano, A.; Olori, A.; Basili, F.; Ramires, D.; Zakrzewska, A.M.

    2008-01-01

    The International Agency for Research on Cancer (IARC) classification of wood dust as carcinogenic to humans, and the threshold limit value (TLV) of 5 mg/m 3 weighted over an 8-hour work day as defined by Italian legislation, have raised the issue of dust risk assessments in all woodworking environments. The aim is to characterize the particle size distribution for wood particles collected by two samplers used for collecting the inhalable fraction: the IOM sampler (Institute of Occupational Medicine, Edinburgh, Scotland) and the conical sampler also known in Italy as conetto. These two sampling heads were chosen mainly because the Italian conical sampler, used in the past for total dust sampling, is the most widely used by the Italian Prevention Services and analysis laboratories in general, whereas the IOM sampler was specifically designed to collect the inhalable fraction of airborne particles. The devices were placed side by side within the worker's breathing zone. In addition, another IOM sampler not connected to the personal sampling pump was placed on the same worker, thus functioning as a passive sampler capable of collecting projectile particles normally produced during processing. A Scanning Electron Microscope (SEM) coupled with energy dispersive X-ray spectrometry (EDAX) was used to count the number of particles collected on the sampling filters. The size of each particle identified by the SEM was determined by measuring its mean diameter. The SEM analysis revealed that the average size of the largest particles collected by the conetto sampler did not exceed 150 μm, whereas the size of particles collected by the IOM sampler was up to 350 μm. Indeed, the analysis of the filters of the passive IOM samplers showed that particles with mean diameters larger than 100 μm were collected, although the calculated percentage was very low (on average, approximately 1%). This does not mean that their gravimetric contribution is negligible; indeed, the weight of

  5. Passive Sampler for Measurements of Atmospheric Nitric Acid Vapor (HNO3 Concentrations

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2001-01-01

    Full Text Available Nitric acid (HNO3 vapor is an important nitrogenous air pollutant responsible for increasing saturation of forests with nitrogen and direct injury to plants. The USDA Forest Service and University of California researchers have developed a simple and inexpensive passive sampler for monitoring air concentrations of HNO3. Nitric acid is selectively absorbed on 47-mm Nylasorb nylon filters with no interference from particulate NO3-. Concentrations determined with the passive samplers closely corresponded with those measured with the co-located honeycomb annular denuder systems. The PVC protective caps of standardized dimensions protect nylon filters from rain and wind and allow for reliable measurements of ambient HNO3 concentrations. The described samplers have been successfully used in Sequoia National Park, the San Bernardino Mountains, and on Mammoth Mountain in California.

  6. Computational fluid dynamics (CFD) simulation of a newly designed passive particle sampler.

    Science.gov (United States)

    Sajjadi, H; Tavakoli, B; Ahmadi, G; Dhaniyala, S; Harner, T; Holsen, T M

    2016-07-01

    In this work a series of computational fluid dynamics (CFD) simulations were performed to predict the deposition of particles on a newly designed passive dry deposition (Pas-DD) sampler. The sampler uses a parallel plate design and a conventional polyurethane foam (PUF) disk as the deposition surface. The deposition of particles with sizes between 0.5 and 10 μm was investigated for two different geometries of the Pas-DD sampler for different wind speeds and various angles of attack. To evaluate the mean flow field, the k-ɛ turbulence model was used and turbulent fluctuating velocities were generated using the discrete random walk (DRW) model. The CFD software ANSYS-FLUENT was used for performing the numerical simulations. It was found that the deposition velocity increased with particle size or wind speed. The modeled deposition velocities were in general agreement with the experimental measurements and they increased when flow entered the sampler with a non-zero angle of attack. The particle-size dependent deposition velocity was also dependent on the geometry of the leading edge of the sampler; deposition velocities were more dependent on particle size and wind speeds for the sampler without the bend in the leading edge of the deposition plate, compared to a flat plate design. Foam roughness was also found to have a small impact on particle deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. COMPARISON OF THE PARTICLE SIZE DISTRIBUTION OF HEAVY-DUTY DIESEL EXHAUST USING A DILUTION TAIL-PIPE SAMPLER AND IN-PLUME SAMPLER DURING ON-ROAD OPERATION

    Science.gov (United States)

    The paper compares the particle size distribution of heavy-duty diesel exhaust using a dilution tail-pipe sampler and an in-plume sampler during on-road operation. EPA's On-road Diesel Emissions Characterization Facility, modified to incorporate particle measurement instrumentat...

  8. Performances of an atmospheric tritium sampler and its application

    International Nuclear Information System (INIS)

    Inoue, Yoshikazu; Kahn, B.; Carter, M.W.

    1983-01-01

    A sampling system for atmospheric tritium in the form of water vapor, hydrogen and hydrocarbons was designed and built. The air was passed first through molecular sieve which adsorbed water vapor, then over palladium catalyst which oxidized hydrogen and adsorbed resulting water in situ, and finally over hot Hopcalite catalyst, which oxidized hydrocarbons and the resulting water was adsorbed on a following molecular sieve column. Three water samples were extracted from adsorbers and their tritium contents were measured by liquid scintillation counting. Performances of this sampler were examined for retrieval of tritiated water from molecular sieve, oxidation of hydrogen on palladium catalyst and oxidation of methane on Hopcalite. The portable sampler was applied to analyze tritium in a duct air of a heavy water moderated research reactor. More than 99% of total tritium was in vapor form. Trace amounts of tritiated hydrogen and hydrocarbon were also detected. This tritium sampler is applicable to detect all of atmospheric tritium as high as ten times of ambient levels. (author)

  9. Particle-capturing performance of South African non-corrosive samplers

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2011-10-01

    Full Text Available analysis (PSA) could be carried out. The duration of the sampling was established at ? 30 seconds, so the mass of dust collected per sample ranged from 1 to 2 mg. The flow rates for each sampler were specified by the suppliers. For the X... chain to eliminate pulsation in the air flow. The pressure loss due to air flow resistance was measured with a digital micro manometer for each sampler with 2.2 L/min passing through the sampler (2.5 L/min for the aluminium samplers). PSA...

  10. Remote Sampler Demonstration Isolok Configuration Test

    International Nuclear Information System (INIS)

    Kelly, Steve E.

    2016-01-01

    The accuracy and precision of a new Isolok sampler configuration was evaluated using a recirculation flow loop. The evaluation was performed using two slurry simulants of Hanford high-level tank waste. Through testing, the capability of the Isolok sampler was evaluated. Sample concentrations were compared to reference samples that were simultaneously collected by a two-stage Vezin sampler. The capability of the Isolok sampler to collect samples that accurately reflect the contents in the test loop improved – biases between the Isolok and Vezin samples were greatly reduce for fast settling particles.

  11. Remote Sampler Demonstration Isolok Configuration Test

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Steve E. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2016-06-08

    The accuracy and precision of a new Isolok sampler configuration was evaluated using a recirculation flow loop. The evaluation was performed using two slurry simulants of Hanford high-level tank waste. Through testing, the capability of the Isolok sampler was evaluated. Sample concentrations were compared to reference samples that were simultaneously collected by a two-stage Vezin sampler. The capability of the Isolok sampler to collect samples that accurately reflect the contents in the test loop improved – biases between the Isolok and Vezin samples were greatly reduce for fast settling particles.

  12. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat

    2013-01-01

    The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An

  13. A radon progeny sampler for the determination of effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B. [Australian Radiation Laboratory, Victoria (Australia)

    1997-12-01

    The design and simulated performance is described of a two-stage sampler (HE-Sampler) for {sup 222}Rn progeny. This HE-Sampler has a collection efficiency optimised to match the particle size dependency of the radon progeny dose conversion factor (DCF), derived from the latest Respiratory Tract Model of the International Commission on Radiological Protection, as implemented in the computer code RADEP. The He-Sampler comprises a wire screen pre-separator, matched to the nasal deposition, and a wire screen collector, matched to the respiratory tract collection. This HE-Sampler allows for the estimation of the radiation dose from the inhalation of {sup 222}Rn progeny, derived from two concurrent alpha particle activity measurements, one on the HE-Sampler screen collector and one on a reference filter sample. As a first approximation, the DCF is proportional to the collected fraction. The HE-Sampler response was simulated for a range of radon progeny size distributions to determine the error in the estimated DCF values. The simulation results show that the HE-Sampler is relatively insensitive to variations in sampling rate and in the screen parameters, particularly for environmental exposure. (Author).

  14. A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles

    Directory of Open Access Journals (Sweden)

    J. Joutsensaari

    2001-01-01

    Full Text Available A novel method to characterize the organic composition of aerosol particles has been developed. The method is based on organic vapor interaction with aerosol particles and it has been named an Organic Tandem Differential Mobility Analyzer (OTDMA. The OTDMA method has been tested for inorganic (sodium chloride and ammonium sulfate and organic (citric acid and adipic acid particles. Growth curves of the particles have been measured in ethanol vapor and as a comparison in water vapor as a function of saturation ratio. Measurements in water vapor show that sodium chloride and ammonium sulfate as well as citric acid particles grow at water saturation ratios (S of 0.8 and above, whereas adipic acid particles do not grow at S S = 0.75 and S = 0.79, respectively. Citric acid particles grow monotonously with increasing saturation ratios already at low saturation ratios and no clear deliquescence point is found. For sodium chloride and ammonium sulfate particles, no growth can be seen in ethanol vapor at saturation ratios below 0.93. In contrast, for adipic acid particles, the deliquescence takes place at around S = 0.95 in the ethanol vapor. The recrystallization of adipic acid takes place at S The results show that the working principles of the OTDMA are operational for single-component aerosols. Furthermore, the results indicate that the OTDMA method may prove useful in determining whether aerosol particles contain organic substances, especially if the OTDMA is operated in parallel with a hygroscopicity TDMA, as the growth of many substances is different in ethanol and water vapors.

  15. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler

    Directory of Open Access Journals (Sweden)

    Darrah K. Sleeth

    2016-03-01

    Full Text Available Extrathoracic deposition of inhaled particles (i.e., in the head and throat is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling. However, the International Organization for Standardization (ISO has recently adopted particle deposition sampling conventions (ISO 13138, including conventions for extrathoracic (ET deposition into the anterior nasal passage (ET1 and the posterior nasal and oral passages (ET2. For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm were used as a test dust in a low speed (0.2 m/s wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  16. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler.

    Science.gov (United States)

    Sleeth, Darrah K; Balthaser, Susan A; Collingwood, Scott; Larson, Rodney R

    2016-03-07

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET₁) and the posterior nasal and oral passages (ET₂). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  17. How do organic vapors contribute to new-particle formation?

    CERN Document Server

    Donahue, Neil M; Chuang, Wayne; Riipinen, Ilona; Riccobono, Francesco; Schobesberger, Siegfried; Dommen, Josef; Baltensperger, Urs; Kulmala, Markku; Worsnop, Douglas R; Vehkamaki, Hanna

    2013-01-01

    Highly oxidised organic vapors can effectively stabilize sulphuric acid in heteronuclear clusters and drive new-particle formation. We present quantum chemical calculations of cluster stability, showing that multifunctional species can stabilize sulphuric acid and also present additional polar functional groups for subsequent cluster growth. We also model the multi-generation oxidation of vapors associated with secondary organic aerosol formation using a two-dimensional volatility basis set. The steady-state saturation ratios and absolute concentrations of extremely low volatility products are sufficient to drive new-particle formation with sulphuric acid at atmospherically relevant rates.

  18. A constant flow filter air sampler for workplace environments

    International Nuclear Information System (INIS)

    Parulian, A.; Rodgers, J.C.; McFarland, A.R.

    1996-01-01

    A filter air sampler has been developed for sampling radionuclide aerosol particles form the workplace environment. It provides easy filter changing, constant flow sampling, and a visual display to indicate proper operation. An experimental study was conducted to characterize the collection efficiency of the sampler as affected by variations in room air velocity, particle size, sampling flow rate, inlet geometry, and inlet orientation to the free stream. Tests were carried out in a wing tunnel at velocities between 0.3 m s -1 and 2.0 m s -1 , which is a range that covers anticipated velocities in the typical highly ventilated workplace environment of a nuclear facility. Nearly monodisperse aerosols with sizes between 5 and 20 μm aerodynamic diameter were sampled at flow rates between 28.3 and 84.9 L min -1 . Inlet orientations of 0 degree, 90 degree, and 180 degree from the horizontal were selected for evaluation. When the sampler was oriented at 0 degree over various ranges of free stream velocities, sampling flow rates and particle sizes, the transmission efficiency of aerosol was typically greater than 95%. The transmission efficiencies varied form 80% to 106% for 10-μm aerodynamic diameter particles over the previously noted range of free stream velocities and inlet orientations. Uniformity of deposits of 10 μm aerodynamic diameter particles on collection filters was examined for a sampling rate of 57 L min -1 , a sampler orientation of 90 degree into the wind and wind speeds of 0.3-2 m s -1 . The coefficients of variation for the areal density of the deposits ranged from 6.1% to 37.2%. A miniature critical flow venturi with a constant sampling flow rate of 57 L min -1 was developed for application to the new filter air sampler. It was demonstrated that the performance of the new filter air sampler is quite acceptable over a wide range of conditions. 31 refs., 8 figs., 1 tab

  19. Design and experimental evaluation of a new nanoparticle thermophoretic personal sampler

    Energy Technology Data Exchange (ETDEWEB)

    Azong-Wara, Nkwenti; Asbach, Christof, E-mail: asbach@iuta.de; Stahlmecke, Burkhard; Fissan, Heinz; Kaminski, Heinz [Institute of Energy and Environmental Technology (IUTA), Air Quality and Sustainable Nanotechnology Unit (Germany); Plitzko, Sabine [Federal Institute for Occupational Safety and Health (BAuA) (Germany); Bathen, Dieter; Kuhlbusch, Thomas A. J. [Institute of Energy and Environmental Technology (IUTA), Air Quality and Sustainable Nanotechnology Unit (Germany)

    2013-04-15

    A personal sampler that thermophoretically samples particles between a few nanometers and approximately 300 nm has been designed and first prototypes built. The thermal precipitator (TP) is designed to take samples in the breathing zone of a worker in order to determine the personal exposure to airborne nanomaterials. In the sampler, particles are deposited onto silicon substrates that can be used for consecutive electron microscopic (EM) analysis of the particle size distribution and chemical composition of the sampled particles. Due to very homogeneous size-independent particle deposition on a large portion of the substrate, representative samples can be taken for offline analysis. The experimental evaluation revealed a good general agreement with numerical simulations concerning homogeneity of the deposit and a very high correlation (R Superscript-Two = 0.98) of the deposition rate per unit area with number concentrations simultaneously measured with an SMPS for particle sizes between 14 and 305 nm. The samplers' small size of only 45 x 32 Multiplication-Sign 97 mm{sup 3} and low weight of only 140 g make it perfectly suitable as a personal sampler. The power consumption for temperature control and pump is around 1.5 W and can be easily provided by batteries.

  20. Sampling Efficiency and Performance of Selected Thoracic Aerosol Samplers.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Boivin, Alexis; Bau, Sébastien

    2017-08-01

    Measurement of worker exposure to a thoracic health-related aerosol fraction is necessary in a number of occupational situations. This is the case of workplaces with atmospheres polluted by fibrous particles, such as cotton dust or asbestos, and by particles inducing irritation or bronchoconstriction such as acid mists or flour dust. Three personal and two static thoracic aerosol samplers were tested under laboratory conditions. Sampling efficiency with respect to particle aerodynamic diameter was measured in a horizontal low wind tunnel and in a vertical calm air chamber. Sampling performance was evaluated against conventional thoracic penetration. Three of the tested samplers performed well, when sampling the thoracic aerosol at nominal flow rate and two others performed well at optimized flow rate. The limit of flow rate optimization was found when using cyclone samplers. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  1. A mini-sampler for welding aerosol mounted in close vicinity of the mouth/nose

    International Nuclear Information System (INIS)

    Liden, Goeran; Surakka, Jouni

    2009-01-01

    A small personal aerosol mini-sampler to be used inside modern welding visors has been developed. The main object of the mini-sampler has been to sample manganese. The sampler is based on commercially available 13 mm filter holders but modified to incorporate an inlet nozzle made of aluminium. The nominal flow rate of the mini-sampler is 0,75 l/min. The sampler is to be worn mounted on a headset, modified from professional microphone headsets. The headset mounting arrangement was accepted by the welders. The sampling bias of the mini sampler versus the IOM sampler depends on the coarseness of the sampled aerosol. At the lowest concentration ratio of the open-face 25 mm filter holder to the IOM sampler equal to 0,65, the bias of the mini sampler is approximately -26% versus the IOM. The RMS sampling bias of the mini sampler versus the IOM sampler for manganese is -4,6%. The inhalable fraction of welding aerosol mass consists only of 25-55% of welding fume. The rest of the mass is made up of spatter particles and grinding particles. For manganese generally more than 65% is found in the fume.

  2. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    Energy Technology Data Exchange (ETDEWEB)

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  3. Evaluation of IOM personal sampler at different flow rates.

    Science.gov (United States)

    Zhou, Yue; Cheng, Yung-Sung

    2010-02-01

    The Institute of Occupational Medicine (IOM) personal sampler is usually operated at a flow rate of 2.0 L/min, the rate at which it was designed and calibrated, for sampling the inhalable mass fraction of airborne particles in occupational environments. In an environment of low aerosol concentrations only small amounts of material are collected, and that may not be sufficient for analysis. Recently, a new sampling pump with a flow rate up to 15 L/min became available for personal samplers, with the potential of operating at higher flow rates. The flow rate of a Leland Legacy sampling pump, which operates at high flow rates, was evaluated and calibrated, and its maximum flow was found to be 10.6 L/min. IOM samplers were placed on a mannequin, and sampling was conducted in a large aerosol wind tunnel at wind speeds of 0.56 and 2.22 m/s. Monodisperse aerosols of oleic acid tagged with sodium fluorescein in the size range of 2 to 100 microm were used in the test. The IOM samplers were operated at flow rates of 2.0 and 10.6 L/min. Results showed that the IOM samplers mounted in the front of the mannequin had a higher sampling efficiency than those mounted at the side and back, regardless of the wind speed and flow rate. For the wind speed of 0.56 m/s, the direction-averaged (the average value of all orientations facing the wind direction) sampling efficiency of the samplers operated at 2.0 L/min was slightly higher than that of 10.6 L/min. For the wind speed of 2.22 m/s, the sampling efficiencies at both flow rates were similar for particles < 60 microm. The results also show that the IOM's sampling efficiency at these two different flow rates follows the inhalable mass curve for particles in the size range of 2 to 20 microm. The test results indicate that the IOM sampler can be used at higher flow rates.

  4. Kinetics of small particle activation in supersaturated vapors

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, R.; Wang, J.

    2010-08-29

    We examine the nucleated (with barrier) activation of perfectly wetting (zero contact angle) particles ranging from bulk size down to one nanometer. Thermodynamic properties of the particles, coated with liquid layers of varying thickness and surrounded by vapor, are analyzed. Nano-size particles are predicted to activate at relative humidity below the Kelvin curve on crossing a nucleation barrier, located at a critical liquid layer thickness such that the total particle size (core + liquid layer) equals the Kelvin radius (Fig. 1). This barrier vanishes precisely as the critical layer thickness approaches the thin layer limit and the Kelvin radius equals the radius of the particle itself. These considerations are similar to those included in Fletcher's theory (Fletcher, 1958) however the present analysis differs in several important respects. Firstly, where Fletcher used the classical prefactor-exponent form for the nucleation rate, requiring separate estimation of the kinetic prefactor, we solve a diffusion-drift equation that is equivalent to including the full Becker-Doering (BD) multi-state kinetics of condensation/evaporation along the growth coordinate. We also determine the mean first passage time (MFPT) for barrier crossing (Wedekind et al., 2007), which is shown to provide a generalization of BD nucleation kinetics especially useful for barrier heights that are considerably lower than those typically encountered in homogeneous vapor-liquid nucleation, and make explicit comparisons between the MFPT and BD kinetic models. Barrier heights for heterogeneous nucleation are computed by a thermo-dynamic area construction introduced recently to model deliquescence and efflorescence of small particles (McGraw and Lewis, 2009). In addition to providing a graphical representation of the activation process that offers new insights, the area construction provides a molecular approach that avoids explicit use of the interfacial tension. Typical barrier profiles for

  5. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods.

    Science.gov (United States)

    Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E

    2018-03-12

    In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a

  6. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    Science.gov (United States)

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  7. Observation and particle simulation of vaporized W, Mo, and Be in PISCES-B plasma for vapor-shielding studies

    Directory of Open Access Journals (Sweden)

    K. Ibano

    2017-08-01

    Full Text Available Interactions of Tungsten (W, Molybdenum (Mo, and Beryllium (Be vapors with a steady-state plasma were studied by the PISCES-B liner plasma experiments as well as Particle-In-Cell (PIC simulations for the understanding of vapor-shielding phenomena. Effective cooling of the plasma by laser-generated Be vapor was observed in PISCES-B. On the other hand, no apparent cooling was observed for W and Mo vapors. The PIC simulation explains these experimental observations of the difference between low-Z and high-Z vapors. Decrease of electron temperature due to the vapor ejection was observed in case of a simulation of the Be vapor. As for the W vapor, it was found that the plasma cooling is localized only near the wall at a higher electron density plasma (∼1019m−3. On the other hand, the appreciable plasma cooling can be observed in a lower density plasma (∼1018m−3 for the W vapor.

  8. Sampler bias -- Phase 1

    International Nuclear Information System (INIS)

    Blanchard, R.J.

    1995-01-01

    This documents Phase 1 determinations on sampler induced bias for four sampler types used in tank characterization. Each sampler, grab sampler or bottle-on-a-string, auger sampler, sludge sampler and universal sampler, is briefly discussed and their physical limits noted. Phase 2 of this document will define additional testing and analysis to further define Sampler Bias

  9. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi

    2000-01-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  10. Revision of the DELFIC Particle Activity Module

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, David A [ORNL; Jodoin, Vincent J [ORNL

    2010-09-01

    The Defense Land Fallout Interpretive Code (DELFIC) was originally released in 1968 as a tool for modeling fallout patterns and for predicting exposure rates. Despite the continual advancement of knowledge of fission yields, decay behavior of fission products, and biological dosimetry, the decay data and logic of DELFIC have remained mostly unchanged since inception. Additionally, previous code revisions caused a loss of conservation of radioactive nuclides. In this report, a new revision of the decay database and the Particle Activity Module is introduced and explained. The database upgrades discussed are replacement of the fission yields with ENDF/B-VII data as formatted in the Oak Ridge Isotope Generation (ORIGEN) code, revised decay constants, revised exposure rate multipliers, revised decay modes and branching ratios, and revised boiling point data. Included decay logic upgrades represent a correction of a flaw in the treatment of the fission yields, extension of the logic to include more complex decay modes, conservation of nuclides (including stable nuclides) at all times, and conversion of key variables to double precision for nuclide conservation. Finally, recommended future work is discussed with an emphasis on completion of the overall radiation physics upgrade, particularly for dosimetry, induced activity, decay of the actinides, and fractionation.

  11. Growth behavior of LiMn2O4 particles formed by solid-state reactions in air and water vapor

    International Nuclear Information System (INIS)

    Kozawa, Takahiro; Yanagisawa, Kazumichi; Murakami, Takeshi; Naito, Makio

    2016-01-01

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn 2 O 4 particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn 2 O 4 particles in air and water vapor atmospheres as model reactions; LiMn 2 O 4 is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO 3 precursor impregnated with LiOH, LiMn 2 O 4 spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn 2 O 4 particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn 2 O 4 particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  12. Assembly, operation and disassembly manual for the Battelle Large Volume Water Sampler (BLVWS)

    International Nuclear Information System (INIS)

    Thomas, V.W.; Campbell, R.M.

    1984-12-01

    Assembly, operation and disassembly of the Battelle Large Volume Water Sampler (BLVWS) are described in detail. Step by step instructions of assembly, general operation and disassembly are provided to allow an operator completely unfamiliar with the sampler to successfully apply the BLVWS to his research sampling needs. The sampler permits concentration of both particulate and dissolved radionuclides from large volumes of ocean and fresh water. The water sample passes through a filtration section for particle removal then through sorption or ion exchange beds where species of interest are removed. The sampler components which contact the water being sampled are constructed of polyvinylchloride (PVC). The sampler has been successfully applied to many sampling needs over the past fifteen years. 9 references, 8 figures

  13. Experimental typing of the entry efficiency in calm air of an annular slot sampler; Determination experimentale de l'efficacite de captage en air calme d'un echantillonneur a fente annulaire

    Energy Technology Data Exchange (ETDEWEB)

    Roger, F.; Fabries, J.F.; Gorner, P.; Wrobel, R. [Institut National de Recherche et de Securite, INRS, Lab. de Metrologie de la Pollution par les Aerosols, 54 - Vandoeuvre-Les-Nancy (France); Renoux, A. [Paris-12 Univ., Lab. de Physique des Aerosols et de Transfert des Contaminations, 94 - Creteil (France)

    2000-07-01

    Aerosol sampling is a complex physical process that depends on many parameters like particle size, wind speed, aspiration velocity and sampler geometry. Inertia has a predominant influence on particle motion in moving air for particle size above 1 {mu}m. In calm air where air movement is mainly induced by the aspiration orifice of the sampler, gravitational settling affects more deeply particle motion and hence sampler performance. The entry efficiency of a sampler with an annular aspiration slot was recently measured for several conditions of aspiration flow rate, wind speed (1 and 3 m s{sup -1}) and geometric parameters of the sampler as a function of particle aerodynamic diameter. Some complementary work was carried out to add new experimental data corresponding to the same sampler in calm air. The results were obtained for 9 configurations, combining several values of disc diameter, aspiration slot width, and aspiration velocity. A semi-empirical model was developed from the data that enables the calculation of particle entry efficiency of the annular sampler in calm air. In addition, a numerical study was carried out to calculate the particle trajectories approaching the annular aspiration slot of the sampler. The results show that particle rebounds on the sampler walls have a significant effect on the entry efficiency of the sampler in calm air. (authors)

  14. Growth behavior of LiMn{sub 2}O{sub 4} particles formed by solid-state reactions in air and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, 2–5-1 Akebono-cho, Kochi 780-8520 (Japan); Murakami, Takeshi; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2016-11-15

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  15. A directional passive air sampler for monitoring polycyclic aromatic hydrocarbons (PAHs) in air mass

    International Nuclear Information System (INIS)

    Tao, S.; Liu, Y.N.; Lang, C.; Wang, W.T.; Yuan, H.S.; Zhang, D.Y.; Qiu, W.X.; Liu, J.M.; Liu, Z.G.; Liu, S.Z.; Yi, R.; Ji, M.; Liu, X.X.

    2008-01-01

    A passive air sampler was developed for collecting polycyclic aromatic hydrocarbons (PAHs) in air mass from various directions. The airflow velocity within the sampler was assessed for its responses to ambient wind speed and direction. The sampler was examined for trapped particles, evaluated quantitatively for influence of airflow velocity and temperature on PAH uptake, examined for PAH uptake kinetics, calibrated against active sampling, and finally tested in the field. The airflow volume passing the sampler was linearly proportional to ambient wind speed and sensitive to wind direction. The uptake rate for an individual PAH was a function of airflow velocity, temperature and the octanol-air partitioning coefficient of the PAH. For all PAHs with more than two rings, the passive sampler operated in a linear uptake phase for three weeks. Different PAH concentrations were obtained in air masses from different directions in the field test. - A novel directional passive air sampler was developed and tested for monitoring PAHs in air masses from different directions

  16. Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.

    Science.gov (United States)

    Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José

    2012-02-01

    Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.

  17. Assessment of personal exposure to airborne nanomaterials: Evaluation of a novel sampler

    International Nuclear Information System (INIS)

    Faure, Bertrand; Dozol, Hélène; Brouard, Christophe; Guiot, Arnaud; Clavaguera, Simon

    2017-01-01

    A novel sampler, the NANOBADGE, has been developed to assess personal exposure to nano-objects, agglomerates and aggregates (NOAA) at the workplace. The NANOBADGE collects particles on filters subsequently analyzed by X-Ray Fluorescence spectroscopy (XRF), which provides a mass-based quantification with chemical selectivity. The NANOBADGE was benchmarked against a scanning mobility particle sizer (SMPS) and a DiSCmini by carrying out simultaneous measurements on test aerosols of ZnO or TiO 2 for particle sizes between 20 and 400 nm for which the DiSCmini has its highest accuracy. The effective density and shape of the NOAA present in the test aerosols were determined experimentally to compare number-based data obtained with the SMPS and the DiSCmini with mass-based data obtained with the NANOBADGE. The agreement between the SMPS and the NANOBADGE sampler was within ± 25 % on all test aerosols. The converted DiSCmini data matched the SMPS and sampler data for polydisperse aerosols in the specified size range as long as the DiSCmini assumptions meet the aerosol characteristics (i.e. lognormal size distribution with a given geometric standard deviation σg = 1.9). The detection limits of the NANOBADGE sampler were in the order of tens of nanograms per filter, which is low enough to reliably detect exposure levels below the recommended exposure limit (REL) of the National Institute for Occupational Safety and Health (NIOSH) and the Institut National de Recherche et de Sécurité (INRS) for ultrafine ZnO and TiO 2 even for short-term exposure situations. (paper)

  18. Higgs-Like Particle due to Revised Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2013-07-01

    Full Text Available A Higgs-like particle having zero net electric charge, zero spin, and a nonzero rest mass can be deduced from an earlier elaborated revised quantum electrodynamical theory which is based on linear symmetry breaking through a nonzero electric field divergence in the vacuum state. This special particle is obtained from a composite longitudinal solution based on a zero magnetic field strength and on a nonzero divergence but a vanishing curl of the electric field strength. The present theory further differs from that of the nonlinear spontaneously broken symmetry by Higgs, in which elementary particles obtain their masses through an interaction with the Higgs field. An experimental proof of the basic features of a Higgs-like particle thus supports the present theory, but does not for certain confirm the process which would generate massive particles through a Higgs field

  19. The effects of ambient conditions on the passive dust sampler when used in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.; Thorpe, A.

    1998-09-01

    A previous feasibility study of the Health and Safety Laboratory (HSL) electret-based passive dust sampler carried out during site sampling in coal mines showed that the measurements made with the passive sampler and those made with the MRE sampler correlated well in each of two mines, but the ratios of samples obtained with the passive sampler and the MRE sampler in the two mines were different. This means the passive sampler would need a separate calibration for each coal mine in which it was used. Laboratory tests and further underground trials were carried out to quantify the possible effects of temperature and humidity on ratios. The passive dust samplers used at Maltby Colliery in the UK were found to pass the acceptance criteria according to the CEN standard for the assessment of the performance of instruments for the measurement of airborne particles, provided that samplers exposed when coal was not being cut were not included in the analysis. Temperature and relative humidity slightly affected the behaviour of the passive sampler during laboratory trials and relative humidity was found to possibly affect the behaviour during field trials. Ventilation rates had no effect on the passive sampler behaviour but the orientation of the passive dust sampler with respect to air flow affected the behaviour during laboratory trials. Further work is needed to quantify effects. 7 refs., 14 figs., 3 tabs.

  20. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  1. Indoor Sampler Siting

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Michael D.; Lorenzetti, David M.

    2009-03-01

    Contaminant releases in or near a building can lead to significant human exposures unless prompt response is taken. U.S. Federal and local agencies are implementing programs to place air-monitoring samplers in buildings to quickly detect biological agents. We describe a probabilistic algorithm for siting samplers in order to detect accidental or intentional releases of biological material. The algorithm maximizes the probability of detecting a release from among a suite of realistic scenarios. The scenarios may differ in any unknown, for example the release size or location, weather, mode of building operation, etc. The algorithm also can optimize sampler placement in the face of modeling uncertainties, for example the airflow leakage characteristics of the building, and the detection capabilities of the samplers. In an illustrative example, we apply the algorithm to a hypothetical 24-room commercial building, finding optimal networks for a variety of assumed sampler types and performance characteristics. We also discuss extensions of this work for detecting ambient pollutants in buildings, and for understanding building-wide airflow, pollutant dispersion, and exposures.

  2. The orientation-averaged aspiration efficiency of IOM-like personal aerosol samplers mounted on bluff bodies.

    Science.gov (United States)

    Paik, Samuel Y; Vincent, James H

    2004-01-01

    This paper describes two sets of experiments that were intended to characterize the orientation-averaged aspiration efficiencies of IOM samplers mounted on rotating bluff bodies. IOM samplers were mounted on simplified, three-dimensional rectangular bluff bodies that were rotated horizontally at a constant rate. Orientation-averaged aspiration efficiencies (A360) were measured as a function of Stokes' number (St), velocity ratio (R) and dimension ratio (r). Aspiration efficiency (A) is the efficiency with which particles are transported from the ambient air into the body of a sampler, and A360 is A averaged over all orientations to the wind. St is a dimensionless variable that represents particle inertia, R is the ratio of the air velocity in the freestream and that at the plane of the sampler's entry orifice, and r is the ratio of the sampler's orifice diameter and the bluff body's width. The first set of experiments were instrumental in establishing a hierarchy of effects on orientation-averaged A. It was clear that compared to r, St had a much larger influence on A. It was also clear, however, that the effects of St were overpowered by the effects of R in many cases. As concluded in previous studies, R and St were considered the most important factors in determining A, even for A360. The second set of experiments investigated A360 of IOM samplers for a much wider range of r than examined in previous research. Two important observations were made from the experimental results. One was that the A360 of IOM samplers, as a function of St, did not change for an r-range of 0.066-0.4. This meant that an IOM sampler mounted on a near life-size mannequin would measure the same aerosol concentration as one not mounted on anything. The second observation was that the aspiration efficiency curve of the IOM sampler was close to the inhalability curve. This gave further evidence that the bluff body did not play a major role in influencing A360, as the IOM samplers, in these

  3. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments.

    Science.gov (United States)

    Su, Wei-Chung; Tolchinsky, Alexander D; Chen, Bean T; Sigaev, Vladimir I; Cheng, Yung Sung

    2012-09-01

    The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.

  4. Development of polyurethane-based passive samplers for ambient monitoring of urban-use insecticides in water.

    Science.gov (United States)

    Liao, Chunyang; Richards, Jaben; Taylor, Allison R; Gan, Jay

    2017-12-01

    Widespread use of insecticides for the control of urban pests such as ants, termites, and spiders has resulted in contamination and toxicity in urban aquatic ecosystems in different regions of the world. Passive samplers are a convenient and integrative tool for in situ monitoring of trace contaminants in surface water. However, the performance of a passive sampler depends closely on its affinity for the target analytes, making passive samplers highly specific to the types of contaminants being monitored. The goal of this study was to develop a passive sampler compatible with a wide range of insecticides, including the strongly hydrophobic pyrethroids and the weakly hydrophobic fipronil and organophosphates. Of six candidate polymeric thin films, polyurethane film (PU) was identified to be the best at enriching the test compounds. The inclusion of stable isotope labeled analogs as performance reference compounds (PRCs) further allowed the use of PU film for pyrethroids under non-equilibrium conditions. The PU sampler was tested in a large aquarium with circulatory water flow, and also deployed at multiple sites in surface streams in southern California. The concentrations of pesticides derived from the PU sampler ranged from 0.5 to 18.5 ng/L, which were generally lower than the total chemical concentration measured by grab samples, suggesting that suspended particles and dissolved organic matter in water rendered them less available. The influence of suspended particles and dissolved organic matter on bioavailability was more pronounced for pyrethroids than for fipronils. The results show that the developed PU film sampler, when coupled with PRCs, may be used for rapid and sensitive in-situ monitoring of a wide range of insecticides in surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Indigenous high volume air sampler

    International Nuclear Information System (INIS)

    Kotrappa, P.; Setty, N.P.N.; Raghunath, B.; Sivasubrahmanyam, P.S.

    1978-01-01

    A high volume air sampler for use in assessing concentrations of low levels of air borne particulates has been fabricated. The sampler will be of use in radioactive installations, conventional industries and environmental pollution analysis. It is comparable in performance with the imported Staplex air samplers. A turbine and motor system similar to the one found in conventional vacuum cleaners is used in its design. The sampler units can be produced in large numbers. (M.G.B.)

  6. Field performance evaluation during fog-dominated wintertime of a newly developed denuder-equipped PM1 sampler.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Lakshay; Gupta, Tarun

    2014-03-01

    This study presents the performance evaluation of a novel denuder-equipped PM1 (particles having aerodynamic diameter less than 1 μm) sampler, tested during fog-dominated wintertime, in the city of Kanpur, India. One PM1 sampler and one denuder-equipped PM1 sampler were co-located to collect ambient PM1 for 25 days. The mean PM1 mass concentration measured on foggy days with the PM1 sampler and the denuder-equipped PM1 sampler was found to be 165.95 and 135.48 μg/m(3), respectively. The mean PM1 mass concentration measured on clear days with the PM1 sampler and the denuder-equipped PM1 sampler was observed to be 159.66 and 125.14 μg/m(3), respectively. The mass concentration with denuder-fitted PM1 sampler for both foggy and clear days was always found less than the PM1 sampler. The same drift was observed in the concentrations of water-soluble ions and water-soluble organic carbon (WSOC). Moreover, it was observed that the use of denuder leads to a significant reduction in the PM positive artifact. The difference in the concentration of chemical species obtained by two samplers indicates that the PM1 sampler without denuder had overestimated the concentrations of chemical species in a worst-case scenario by almost 40 %. Denuder-fitted PM1 sampler can serve as a useful sampling tool in estimating the true values for nitrate, ammonium, potassium, sodium and WSOC present in the ambient PM.

  7. Triadic split-merge sampler

    Science.gov (United States)

    van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap

    2018-04-01

    In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.

  8. Acceleration of Vaporization, Atomization, and Ionization Efficiencies in Inductively Coupled Plasma by Merging Laser-Ablated Particles with Hydrochloric Acid Gas.

    Science.gov (United States)

    Nakazawa, Takashi; Izumo, Saori; Furuta, Naoki

    2016-01-01

    To accelerate the vaporization, atomization, and ionization efficiencies in laser ablation inductively coupled plasma mass spectrometry, we merged HCl gas with laser-ablated particles before introduction into the plasma, to convert their surface constituents from oxides to lower-melting chlorides. When particles were merged with HCl gas generated from a HCl solution at 200°C, the measured concentrations of elements in the particles were 135% higher on average than the concentrations in particles merged with ultrapure water vapor. Particle corrosion and surface roughness were observed by scanning electron microscopy, and oxide conversion to chlorides was confirmed by X-ray photoelectron spectroscopy. Under the optimum conditions, the recoveries of measured elements improved by 23% on average, and the recoveries of elements with high-melting oxides (Sr, Zr, and Th) improved by as much as 36%. These results indicate that vaporization, atomization, and ionization in the ICP improved when HCl gas was merged with the ablated particles.

  9. Introduction to SamplerCompare

    Directory of Open Access Journals (Sweden)

    Madeleine B. Thompson

    2011-08-01

    Full Text Available SamplerCompare is an R package for comparing the performance of Markov chain Monte Carlo (MCMC samplers. It samples from a collection of distributions with a collection of MCMC methods over a range of tuning parameters. Then, using log density evaluations per uncorrelated observation as a figure of merit, it generates a grid of plots showing the results of the simulation. It comes with a collection of predefined distributions and samplers and provides R and C interfaces for defining additional ones. It also provides the means to import simulation data generated by external systems. This document provides background on the package and demonstrates the basics of running simulations, visualizing results, and defining distributions and samplers in R.

  10. Field trials of an electret based passive dust sampler in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.A.; Brown, R.C.; Arthur, J. [Health and Safety Laboratory, Sheffield (United Kingdom)

    1997-12-31

    An electret-based passive dust sampler has been developed by the Health and Safety Laboratory, UK. The device consists of a small disc of electret (polymer holding a permanent electric charge) held between earthen plates, and it acts by attaching charged dust particles to itself. The device does not require a pump and its rate of sampling is independent of external air velocity, provided that the velocity exceeds a low limiting value. Experiments have been carried out in two coal mines. In each experiment two passive sampler were mounted alongside an MRE sampler at the statutory sampling point in the return roadway. Both passive samplers were mounted vertically but in one the plane of the electret was parallel to the air flow and in the other it was perpendicular. The result obtained from the first mine showed a good correlation between gravimetric estimates of dust concentration obtained with the passive samplers and respirable dust concentrations obtained with MRE. The correlation between the two sets of results at the second mine was not quite as good as those of the first, but was reasonable. In no instance was any significant difference observed between samples obtained from pairs of passive samples in different orientations. 8 refs., 5 figs., 2 tabs.

  11. A Pilot Study: The UNC Passive Aerosol Sampler in a Working Environment.

    Science.gov (United States)

    Shirdel, Mariam; Wingfors, Håkan; Andersson, Britt M; Sommar, Johan N; Bergdahl, Ingvar A; Liljelind, Ingrid E

    2017-10-01

    Dust is generally sampled on a filter using air pumps, but passive sampling could be a cost-effective alternative. One promising passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). The aim of this study is to characterize and compare the UNC sampler's performance with PM10 and PM2.5 impactors in a working environment. Area sampling was carried out at different mining locations using UNC samplers in parallel with PM2.5 and PM10 impactors. Two different collection surfaces, polycarbonate (PC) and carbon tabs (CT), were employed for the UNC sampling. Sampling was carried out for 4-25 hours. The UNC samplers underestimated the concentrations compared to PM10 and PM2.5 impactor data. At the location with the highest aerosol concentration, the time-averaged mean of PC showed 24% and CT 35% of the impactor result for PM2.5. For PM10, it was 39% with PC and 58% with CT. Sample blank values differed between PC and CT. For PM2.5, PC blank values were ~7 times higher than those of CT, but only 1.8 times higher for PM10. The blank variations were larger for PC than for CT. Particle mass concentrations appear to be underestimated by the UNC sampler compared to impactors, more so for PM2.5 than for PM10. CT may be preferred as a collection surface because the blank values were lower and less variable than for PC. Future validations in the working environment should include respirable dust sampling. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Monitoring of urban particulate using an electret-based passive sampler

    Energy Technology Data Exchange (ETDEWEB)

    Thorpe, A.; Hemingway, M.A.; Brown, R.C.

    1999-11-01

    Site sampling trials have been carried out in the urban environment in order to assess the usefulness of a passive sampling device, originally developed for personal monitoring of airborne dust levels in industry. The sampling element is a small disc of elect material (polymer carrying a permanent electric charge) within a metal frame weighing approximately 15 g. The sampler is designed to capture particles by electrostatic attraction, in which case the capture rate depends on their electrical mobility but is independent of the rate at which air flows past the device. Passive samplers, along with miniaturized cascade impactors, have been exposed to urban particulate for periods of up to 28 days in locations with significant different levels of airborne pollution. The cascade impactor data enabled good estimates to be made of PM{sub 10} and PMN{sub 2.5} levels, and data from the passive sampler correlated with the total dust sampled by the impactor and with both the size fractions, that with the PM{sub 10} being better. Too few data have yet been obtained for its accuracy to be established, but it is unlikely that it will approach that of pumped samplers. It has been shown to be potentially useful for multiple, simultaneous site sampling and for monitoring personal environmental exposure situations in which dispensing with a power source is particularly useful. Being small, the sampler is easy to hide or camouflage, and because it is cheap, its loss or damage is not a serious matter.

  13. 7 CFR 61.30 - Examination of sampler.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Examination of sampler. 61.30 Section 61.30... Cottonseed Samplers § 61.30 Examination of sampler. Each applicant for a license as a sampler and each... examination or test to show his ability properly to perform the duties for which he is applying for a license...

  14. Hayabusa2 Sampler: Collection of Asteroidal Surface Material

    Science.gov (United States)

    Sawada, Hirotaka; Okazaki, Ryuji; Tachibana, Shogo; Sakamoto, Kanako; Takano, Yoshinori; Okamoto, Chisato; Yano, Hajime; Miura, Yayoi; Abe, Masanao; Hasegawa, Sunao; Noguchi, Takaaki

    2017-07-01

    Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples.

  15. Operating manual for Ford's Farm Range air samplers

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Halverson, M.A.

    1980-10-01

    An air-sampling program was designed for a target enclosure at the Ford's Farm Range, Aberdeen Proving Ground, Maryland, where the Army test-fires tungsten and depleted-uranium armor penetrators. The primary potential particle inhalation hazard is depleted uranium. The sampling program includes workplace and filtered exhaust air sampling. Conventional isokinetic stack sampling was employed for the filtered exhaust air. Because of the need for rapid monitor response to concentration increases and decreases, conventional radioactive particle monitors were not used. Instead, real-time aerosol monitors employing a light-scattering technique were used for monitors requiring a fast response. For other monitoring functions, piezoelectric and beta-attenuation respirable-particle sampling techniques were used. The application of these technologies to the monitoring of airborne radioactive contaminants is addressed. Sampler installation and operation are detailed

  16. Assessment of exposure to composite nanomaterials and development of a personal respiratory deposition sampler for nanoparticles

    Science.gov (United States)

    Cena, Lorenzo

    2011-12-01

    -fiber efficiency of the screens calculated from experimental data was in good agreement with that estimated from theory for particles between 40 and 150 nm but deviated from theory for particles outside of this range. New coefficients for the single-fiber efficiency model were identified that minimized the sum of square error (SSE) between the experimental values and those estimated with the model. Compared to the original theory, the SSE calculated using the modified theory was at least threefold lower for all screens and flow rates. Since nylon fibers produce no significant spectral interference when ashed for spectrometric examination, the ability to accurately estimate collection efficiency of submicrometer particles makes nylon mesh screens an attractive collection substrate for nanoparticles. In the third study, laboratory experiments were conducted to develop a novel nanoparticle respiratory deposition (NRD) sampler that selectively collects nanoparticles in a worker's breathing zone apart from larger particles. The NRD sampler consists of a respirable cyclone fitted with an impactor and a diffusion stage containing eight nylon-mesh screens. A sampling criterion for nano-particulate matter (NPM) was developed and set as the target for the collection efficiency of the NRD sampler. The sampler operates at 2.5 Lpm and fits on a worker's lapel. The cut-off diameter of the impactor was experimentally measured to be 300 nm with a sharpness of 1.53. Loading at typical workplace levels was found to have no significant effect (2-way ANOVA, p=0.257) on the performance of the impactor. The effective deposition of particles onto the diffusion stage was found to match the NPM criterion, showing that a sample collected with the NRD sampler represents the concentration of nanoparticles deposited in the human respiratory system.

  17. Lidar measurements of boundary layer depolarization and CCSEM-EDX compositional analysis of airborne particles on collocated passive samplers throughout the forest canopy during the 2016 airborne pollen season at UMBS, Pellston, MI

    Science.gov (United States)

    Wozniak, M. C.; Steiner, A.; Ault, A. P.; Kort, E. A.; Lersch, T.; Casuccio, G.

    2017-12-01

    Observations of airborne pollen are typically made with volumetric samplers that obtain a time-averaged pollen concentration at a single point. While spatial variations in surface pollen concentrations may be known with these samplers given multiple sampling sites, real-time boundary layer transport of pollen grains cannot be determined except by particle dispersion or tracer transport models. Recently, light detection and ranging (lidar) techniques, such as depolarization, have been used to measure pollen transport and optical properties throughout the boundary layer over time. Here, we use a ground-based micro-pulse lidar (MPL) to observe boundary layer vertical profiles before, during and after the peak anemophilous (wind-driven) pollen season. The lidar depolarization ratio is measured in tandem with the normalized R-squared backscatter (NRB) intensity to determine the contribution of aspherical particles to the scatterers present throughout the boundary layer. Measurements are taken from April 15 - July 12, 2016 at the University of Michigan Biological Station (UMBS) PROPHET outdoor research lab and tower within a largely forested region. UMBS is dominated by Acer rubrum, Betula papyrifera, Pinus resinosa, Quercus rubra and Pinus strobus, all of which began flowering on 4/19, 5/3, 5/25, 5/25 and 6/14, respectively. Temperature, relative humidity and wind speed measured on site determine daytime conditions conducive to pollen dispersion from flowers. Lidar depolarization ratios between 0.08-0.14 and higher are observed in the daytime boundary layer on days shortly after the flowering dates of the aforementioned species, elevated above the background level of 0.06 or less. Lidar observations are supplemented with aerosol compositional analysis determined by computer-controlled scanning electron microscopy and energy-dispersive X-ray spectroscopy (CCSEM-EDX) on passive sampler data from below, within and above the forest canopy at PROPHET tower. Particles are

  18. Wind tunnel evaluation of the RAAMP sampler. Final report

    International Nuclear Information System (INIS)

    Vanderpool, R.W.; Peters, T.M.

    1994-11-01

    Wind tunnel tests of the Department of Energy RAAMP (Radioactive Atmospheric Aerosol Monitoring Program) monitor have been conducted at wind speeds of 2 km/hr and 24 km/hr. The RAAMP sampler was developed based on three specific performance objectives: (1) meet EPA PM10 performance criteria, (2) representatively sample and retain particles larger than 10 microm for later isotopic analysis, (3) be capable of continuous, unattended operation for time periods up to 2 months. In this first phase of the evaluation, wind tunnel tests were performed to evaluate the sampler as a potential candidate for EPA PM10 reference or equivalency status. As an integral part of the project, the EPA wind tunnel facility was fully characterized at wind speeds of 2 km/hr and 24 km/hr in conjunction with liquid test aerosols of 10 microm aerodynamic diameter. Results showed that the facility and its operating protocols met or exceeded all 40 CFR Part 53 acceptance criteria regarding PM10 size-selective performance evaluation. Analytical procedures for quantitation of collected mass deposits also met 40 CFR Part 53 criteria. Modifications were made to the tunnel's test section to accommodate the large dimensions of the RAAMP sampler's instrument case

  19. Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2004-01-01

    Full Text Available The interaction of aerosol particles composed of the protein bovine serum albumin (BSA and the inorganic salts sodium chloride and ammonium nitrate with water vapor has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA experiments complemented by transmission electron microscopy (TEM and Köhler theory calculations (100-300nm particle size range, 298K, 960hPa. BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter. Pure BSA particles exhibited deliquescence and efflorescence transitions at 35% relative humidity ( and a hygroscopic diameter increase by up to 10% at 95% in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation, and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation. Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10-90%. These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50% due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the evaporation of the decomposition products NH3 and HNO3. The

  20. Air sampler performance at Ford's farm range

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Johnston, J.W.

    1984-07-01

    An air-sampling system for a large-caliber depleted uranium (DU) penetrator firing range was tested. The objectives of the test were: to determine the bias between the monitoring readings and DU concentrations; and to determine if the target bay real-time monitor (RTM) tracks the decaying dust concentration. The test procedure was to operate total and respirable airborne particle samplers adjacent to the target bay monitors. A series of air samples was also taken after the test firings adjacent to the target bay RTM. Exhaust particle samples were analyzed for gross alpha, gross beta and uranium content. The target bay RTM correlated well (0.977) with the sequential samples. Average concentration from the RTM did not correlate with either the long-term total or respirable sampler DU concentrations. The monitor used to confirm a low dust concentration when the door is open correlated well (0.810) with the RTM; the other bay monitor did not. In the ventilation discharge, the long-term average monitor readings did not correlate with DU concentrations, probably due to levels near lower detection limits. Smearable surface-contamination samples showed highest contamination on the equipment, gravel floor and exhaust intake. The location air-intake contamination increased over the first 3 rounds. Contamination was reduced by a low-pressure water spray washdown to about the same concentration as often the second round, then remained at about twice the level. 2 references, 18 figures, 16 tables. (MF)

  1. Development of More Cost-Effective Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive-Adsorptive Sampling Techniques

    Science.gov (United States)

    2015-05-01

    ASTM ASTM International ASU Arizona State University ATD automated thermal desorption BENZ Benzene C/Co passive sampler concentration...Protection Agency [USEPA], 1998a, b; California Department of Toxic Substance Control, 2011; ASTM International [ASTM] D7758, 2011). This demonstration... microporous sintered polyethylene, through which the vapors diffuse. Figure 1b. Radiello sampler with regular (white) and low-uptake rate

  2. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    Science.gov (United States)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  3. Half-liter supernatant sampler system engineering work plan

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1995-01-01

    The Tank Waste Remediation System (TWRS) pretreatment facility project W-236B, known as the Initial Pretreatment Module (IPM), requires samples of supernatants and sludges from 200 Area tank farms for planned hot testing work in support of IPM design. The IPM project has proposed the development of several new sampler systems. These systems include a 0.5-l supernatant sampler, 3-l and 25-l supernatant and sludge samplers, and a 4,000-l sampler system. The 0.5-l sampler will support IPM sampling needs in the 1 to 3 l range starting in late fiscal year 1995. This sampler is intended to be used in conjunction with the existing 100 ml bottle-on-a-string. The 3-l and 25-l systems will be based on the Savannah River Site's sampler system and will support IPM sampling needs in the 3 to 100 liter range. Most of the hot testing required for design of the IPM must be accomplished in the next 3 years. This work plan defines the tasks associated with the development of a 0.5-l sampler system. This system will be referred to as the Half-Liter Supernatant Sampler System (HLSSS). Specifically, this work plan will define the scope of work, identify organizational responsibilities, identify major technical requirements, describe configuration control and verification requirements, and provide estimated costs and schedule. The sampler system will be fully operational, including trained staff and operating procedures, upon completion of this task

  4. Design of dry sand soil stratified sampler

    Science.gov (United States)

    Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong

    2018-04-01

    This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.

  5. Environmental monitoring of tritium in air with passive diffusion samplers

    International Nuclear Information System (INIS)

    Wood, M.J.; Workman, W.J.G.

    1992-01-01

    This paper reports on a field trail in which outdoor air was sampled with an active reference sampler and several passive HTO-in-air samplers simultaneously carried out at Chalk River Laboratories. Both passive and active samplers were changed on an approximately monthly schedule from 1990 September 2 to 1991 April 18. Average temperatures for the sampling intervals ranged from -8.06 degrees C to +15.5 degrees C and HTO-in-air concentrations measured by the active sampler were typically 10 Bq/m 3 . A total of 1290 passive HTO-in-air sampler measurements were made during the seven sampling intervals. The passive samplers used for the field trial were prepared with either tritium-free water or a solution of 50% tritium-free water and 50% ethylene glycol. As expected, the samplers prepared with the water-glycol solution performed more consistently than the samplers prepared with water only. Good agreement between passive and active sampler measurements was observed throughout the field trial

  6. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Vapor film collapse behavior on high temperature particle surface. JAERI's nuclear research promotion program, H10-027-3. Contract research

    International Nuclear Information System (INIS)

    Abe, Yutaka

    2002-03-01

    The experimental researches were conducted to study vapor film collapse behavior on high temperature melted core material coarsely mixed in the coolant under the film boiling condition. The film collapse is very important incipient incident of the trigger process for the vapor explosion in sever accident of nuclear reactor. In the experiment, pressure pulse was applied to the vapor film on a high temperature particle surface simulating melted core material to observed microscopic vapor film collapse behavior with a high-speed video camera of 40,500 fps. The particle surface temperature and pressure around the particle were simultaneously measured. The transition of the vapor film thickness and two-dimensional vapor-liquid interface movement and the velocity were estimated with visual data analysis technique, PIV and digital data analysis technique. Furthermore, heat conduction analysis was performed to estimate the vapor-liquid interfacial temperature with the measured temperature and estimated vapor film thickness. As the results, it was clarified that the vapor-liquid interface changed white from transparent view for all the experimental conditions. It is also clarified that the vapor-liquid interfacial temperature decreased under the saturation temperature when the pressure pulse arrive at the particle. The experimental facts indicates the possibility that the vapor film collapse occurs due to the liquid phase homogeneous moving toward the particle drove by the pressure reduction caused by the phase change inside the vapor film. (author)

  7. Performance improvements on passive activated charcoal 222Rn samplers

    International Nuclear Information System (INIS)

    Wei Suxia

    1996-01-01

    Improvements have been made on passive activated charcoal 222 Rn samplers with sintered metal filters. Based on the samplers of good adaptability to temperature and humidity developed before, better charcoal was selected to further improve their performance in radon absorption ability and moisture-resistance. And charcoal quantity in samplers was strictly controlled. The integration time constant of the improved samplers was about 4.3 days. As the sampler was combined with gamma spectrometer to measure radon concentration, the calibration factor was 0.518 min -1 ·Bq -1 ·m 3 for samplers of 7 days exposure time, and the minimum detectable concentration 0.28 Bq·m -3 if counting time for both background and sample is 1000 minutes. The improved samplers are suited to accurately determine the indoor and outdoor average radon concentration under conditions of great variation in temperature and humidity

  8. A passive sampler for atmospheric ozone

    International Nuclear Information System (INIS)

    Grosjean, D.; Hisham, M.W.M.

    1992-01-01

    A simple, cost-effective passive sampler has been developed for the determination of atmospheric ozone. This passive sampler is based on a colorant which fades upon reaction with ozone, whose concentration can be determined by reflectance measurement of the color change. Direct, on-site measurements are possible, and no chemical analyses are needed. Sampler design and validation studies have been carried out and included quantitative determination of color change vs exposure time (1-8 days), color change vs. ozone concentration (30-350 ppb), and response to changes in sampler configuration that modify the passive sampling rate. With indigo carmine as the colorant, the detection limits are 30 ppb. day and 120 ppb. day using a plastic grid and Teflon filter, respectively, as diffusion barriers. Interferences from nitrogen dioxide, formaldehyde and peroxyacetyl nitrate are 15, 4 and 16%, respectively, thus resulting in a negligible bias when measuring ozone in ambient air

  9. Development of a new passive sampler based on diffusive milligel beads for copper analysis in water

    International Nuclear Information System (INIS)

    Perez, M.; Reynaud, S.; Lespes, G.; Potin-Gautier, M.; Mignard, E.; Chéry, P.; Schaumlöffel, D.; Grassl, B.

    2015-01-01

    A new passive sampler was designed and characterized for the determination of free copper ion (Cu 2+ ) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k 0 ) and the sampler-water partition coefficient (K sw ), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). - Highlights: • Controlled geometry of new passive sampler with ellipsoidal shape. • Original manufacturing process based on droplet-based millifluidic device. • Pore size characterization of the sampler. • Mass-transfer and sampler-water partitioning coefficients by static exposure experiments

  10. Development of a new passive sampler based on diffusive milligel beads for copper analysis in water

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M.; Reynaud, S.; Lespes, G.; Potin-Gautier, M. [Université de Pau et des Pays de l’Adour/CNRS UMR IPREM 5254, Hélioparc, 2 av. du Président Angot, 64053 Pau (France); Mignard, E. [CNRS-Solvay-Université Bordeaux, UMR5258, Laboratoire du Futur, 178 Avenue du Dr. A. Schweitzer, 33608 Pessac Cedex (France); Chéry, P. [Bordeaux Science Agro, 1 cours du Général De Gaulle, Gradignan, 33175 (France); Schaumlöffel, D. [Université de Pau et des Pays de l’Adour/CNRS UMR IPREM 5254, Hélioparc, 2 av. du Président Angot, 64053 Pau (France); Grassl, B., E-mail: bruno.grassl@univ-pau.fr [Université de Pau et des Pays de l’Adour/CNRS UMR IPREM 5254, Hélioparc, 2 av. du Président Angot, 64053 Pau (France)

    2015-08-26

    A new passive sampler was designed and characterized for the determination of free copper ion (Cu{sup 2+}) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k{sub 0}) and the sampler-water partition coefficient (K{sub sw}), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). - Highlights: • Controlled geometry of new passive sampler with ellipsoidal shape. • Original manufacturing process based on droplet-based millifluidic device. • Pore size characterization of the sampler. • Mass-transfer and sampler-water partitioning coefficients by static exposure experiments.

  11. Characterization of the GENT PM10 sampler. Appendix 18

    International Nuclear Information System (INIS)

    Hopke, Philip K.; Xie Ying; Raunemaa, Taisto; Biegalski, Steven; Landsberger, Sheldon

    1995-01-01

    An integral part of the Co-ordinated Research Programme: Applied Research on Air Pollution using Nuclear-Related Analytical Techniques is the PM 10 sampler that was designed by Dr. W. Maenhaut of the University of Gent. Each participant was provided with such a sampler so that comparable samples will be obtained by each of the participating groups. Thus, in order to understand the characteristics of this sampler, we have undertaken several characterization studies in which we have examine the aerodynamic collection characteristics of the impactor inlet and the reproducibility of the sample mass collection. The sampler does provide a collection efficiency that follows the guidelines for a PM 10 sampler. Comparing one of the original samplers built at the University of Gent with a unit built from the same plans at Clarkson University showed good reproducibility in mass collection. (author)

  12. Statistical analysis of the DWPF prototypic sampler

    International Nuclear Information System (INIS)

    Postles, R.L.; Reeve, C.P.; Jenkins, W.J.; Bickford, D.F.

    1991-01-01

    The DWPF process will be controlled using assay measurements on samples of feed slurry. These slurries are radioactive, and thus will be sampled remotely. A Hydraguard trademark pump-driven sampler system will be used as the remote sampling device. A prototype Hydraguard trademark sampler has been studied in a full-scale mock-up of a DWPF process vessel. Two issues were of dominant interest: (1) what accuracy and precision can be provided by such a pump-driven sampler in the face of the slurry rheology; and, if the Hydraguard trademark sample accurately represents the slurry in its local area, (2) is the slurry homogeneous enough throughout for it to represent the entire vessel? To determine Hydraguard trademark Accuracy, a Grab Sampler of simpler mechanism was used as reference. This (Low) Grab Sampler was located as near to the intake port of the Hydraguard trademark as could be arranged. To determine Homogeneity, a second (High) Grab Sampler was located above the first. The data necessary to these determinations comes from the measurement system, so its important variables also affect the results. Thus, the design of the test involved not just Sampling variables, but also some of the Measurement variables as well. However, the main concern was the Sampler and not the Measurement System, so the test design included only such measurement variables as could not be circumvented (Vials, Dissolution Method, and Aliquoting). The test was executed by, or under the direct oversight of, expert technologists. It thus did not explore the many important particulars of ''routine'' plant operations (such as Remote Sample Preparation or Laboratory Shift Operation)

  13. Siting Samplers to Minimize Expected Time to Detection

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Travis; Lorenzetti, David M.; Sohn, Michael D.

    2012-05-02

    We present a probabilistic approach to designing an indoor sampler network for detecting an accidental or intentional chemical or biological release, and demonstrate it for a real building. In an earlier paper, Sohn and Lorenzetti(1) developed a proof of concept algorithm that assumed samplers could return measurements only slowly (on the order of hours). This led to optimal detect to treat architectures, which maximize the probability of detecting a release. This paper develops a more general approach, and applies it to samplers that can return measurements relatively quickly (in minutes). This leads to optimal detect to warn architectures, which minimize the expected time to detection. Using a model of a real, large, commercial building, we demonstrate the approach by optimizing networks against uncertain release locations, source terms, and sampler characteristics. Finally, we speculate on rules of thumb for general sampler placement.

  14. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Vapor film collapse behavior on high temperature particle surface. JAERI's nuclear research promotion program, H10-027-3. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka [Tsukuba Univ., Institute of Engineering Mechanics and Systems, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The experimental researches were conducted to study vapor film collapse behavior on high temperature melted core material coarsely mixed in the coolant under the film boiling condition. The film collapse is very important incipient incident of the trigger process for the vapor explosion in sever accident of nuclear reactor. In the experiment, pressure pulse was applied to the vapor film on a high temperature particle surface simulating melted core material to observed microscopic vapor film collapse behavior with a high-speed video camera of 40,500 fps. The particle surface temperature and pressure around the particle were simultaneously measured. The transition of the vapor film thickness and two-dimensional vapor-liquid interface movement and the velocity were estimated with visual data analysis technique, PIV and digital data analysis technique. Furthermore, heat conduction analysis was performed to estimate the vapor-liquid interfacial temperature with the measured temperature and estimated vapor film thickness. As the results, it was clarified that the vapor-liquid interface changed white from transparent view for all the experimental conditions. It is also clarified that the vapor-liquid interfacial temperature decreased under the saturation temperature when the pressure pulse arrive at the particle. The experimental facts indicates the possibility that the vapor film collapse occurs due to the liquid phase homogeneous moving toward the particle drove by the pressure reduction caused by the phase change inside the vapor film. (author)

  15. Functional design criteria for the retained gas sampler system

    International Nuclear Information System (INIS)

    Wootan, D.W.

    1995-01-01

    A Retained Gas Sampler System (RGSS) is being developed to capture and analyze waste samples from Hanford Flammable Gas Watch List Tanks to determine both the quantity and composition of gases retained in the waste. The RGSS consists of three main components: the Sampler, Extractor, and Extruder. This report describes the functional criteria for the design of the RGSS components. The RGSS Sampler is based on the WHC Universal Sampler design with modifications to eliminate gas leakage. The primary function of the Sampler is to capture a representative waste sample from a tank and transport the sample with minimal loss of gas content from the tank to the laboratory. The function of the Extruder is to transfer the waste sample from the Sampler to the Extractor. The function of the Extractor is to separate the gases from the liquids and solids, measure the relative volume of gas to determine the void fraction, and remove and analyze the gas constituents

  16. Passive sampler for dissolved organic matter in freshwater environments.

    Science.gov (United States)

    Lam, Buuan; Simpson, André J

    2006-12-15

    A passive sampler for the isolation of dissolved organic matter (DOM) from freshwater environments is described. The sampler consists of a molecular weight selective membrane (1000 kDa) and an anion exchange resin (diethylaminoethylcellulose (DEAE-cellulose)). NMR indicates the samplers isolate DOM that is nearly indistinguishable from that isolated using the batch DEAE-cellulose procedure. In a comparative study DOM isolated from Lake Ontario cost approximately 0.30 dollars/mg to isolate using the passive samplers while DOM isolated using the traditional batch procedure cost approximately 8-10 dollars/mg. The samplers have been shown to be effective in a range of freshwater environments including a large inland lake (Lake Ontario), fast flowing tributary, and wetland. Large amounts (gram quantities of DOM) can be easily isolated by increasing the size or number of samplers deployed. Samplers are easy to construct, negate the need for pressure filtering, and also permit a range of temporal and spatial experiments that would be very difficult or impossible to perform using conventional approaches. For example, DOM can be monitored on a regular basis at numerous different locations, or samplers could be set at different depths in large lakes. Furthermore, they could potentially be deployed into hard to reach environments such as wells, groundwater aquifers, etc., and as they are easy to use, they can be mailed to colleagues or included with expeditions going to difficult to reach places such as the Arctic and Antarctic.

  17. Comparison of passive soil vapor survey techniques at a Tijeras Arroyo site, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Eberle, C.S.; Wade, W.M.; Tharp, T.; Brinkman, J.

    1996-01-01

    Soil vapor surveys were performed to characterize the approximate location of soil contaminants at a hazardous waste site. The samplers were from two separate companies and a comparison was made between the results of the two techniques. These results will be used to design further investigations at the site

  18. Environmental HTO/HT sampler development

    International Nuclear Information System (INIS)

    Workman, W.J.G.; Brown, R.M.; Wood, M.J.

    1992-12-01

    Tests of retention by several drying agents of HTO from an air stream containing HT have been performed. Two batches of Molecular Sieve (MS) 4A retained up to 1.3% of HT passed through them in contrast to material tested in 1986, when retention was -4 . Retention of 10 -5 to 10 -6 was observed for DRIERITE (anhydrous calcium sulphate) and Silica Gel. DRIERITE is preferred over Silica Gel as a desiccant in an air sampler for environmental HTO/HT, because it is much easier to decontaminate for reuse. An improved air sampler has been designed, 2 units constructed and components procured for 3 more. The air sampler may be line or battery operated, accommodates up to four 120 g drier or oxidizer traps, and will pump up to 4 L/min for up to 24 hours on battery power. It is build into a rugged aluminum case and weighs approximately 11 kg overall, facilitating deployment in the field

  19. Environmental HTO/HT sampler development

    International Nuclear Information System (INIS)

    Workman, W.J.G.; Brown, R.M.; Wood, M.J.

    1994-01-01

    Tests of retention by several drying agents of HTO from an air stream containing HT have been performed. Two batches of Molecular Sieve (MS) 4A retained up to 1.3% of HT passed through them, in contrast to material tested in 1986, when retention was -4 . Retention of 10 -5 to 10 -6 was observed for DRIERITE (anhydrous calcium sulphate) and Silica Gel. DRIERITE is preferred over Silica Gel as a desiccant in an air sampler for environmental HTO/HT, because it is much easier to decontaminate for reuse. An improved air sampler has been designed, 2 units constructed and components procured for 3 more. The air sampler may be line or battery operated, accommodates up to four 120 g drier or oxidizer traps, and will pump up to 4 L/min for up to 24 hours on battery power. It is built into a rugged aluminum case and weighs approximately 11 kg overall, facilitating deployment in the field. (author). 5 refs., 2 tabs., 4 figs

  20. Comparison of the sampling rates and partitioning behaviour of polar and non-polar contaminants in the polar organic chemical integrative sampler and a monophasic mixed polymer sampler for application as an equilibrium passive sampler.

    Science.gov (United States)

    Jeong, Yoonah; Schäffer, Andreas; Smith, Kilian

    2018-06-15

    In this work, Oasis HLB® beads were embedded in a silicone matrix to make a single phase passive sampler with a higher affinity for polar and ionisable compounds than silicone alone. The applicability of this mixed polymer sampler (MPS) was investigated for 34 aquatic contaminants (log K OW -0.03 to 6.26) in batch experiments. The influence of flow was investigated by comparing uptake under static and stirred conditions. The sampler characteristics of the MPS was assessed in terms of sampling rates (R S ) and sampler-water partition coefficients (K SW ), and these were compared to those of the polar organic chemical integrative sampler (POCIS) as a reference kinetic passive sampler. The MPS was characterized as an equilibrium sampler for both polar and non-polar compounds, with faster uptake rates and a shorter time to reach equilibrium than the POCIS. Water flow rate impacted sampling rates by up to a factor of 12 when comparing static and stirred conditions. In addition, the relative accumulation of compounds in the polyethersulfone (PES) membranes versus the inner Oasis HLB sorbent was compared for the POCIS, and ranged from <1% to 83% depending on the analyte properties. This is indicative of a potentially significant lag-phase for less polar compounds within POCIS. The findings of this study can be used to quantitatively describe the partitioning and kinetic behaviour of MPS and POCIS for a range of aquatic organic contaminants for application in field sampling. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Development of an integrated sampler based on direct 222Rn/220Rn progeny sensors in flow-mode for estimating unattached/attached progeny concentration

    International Nuclear Information System (INIS)

    Mishra, Rosaline; Sapra, B.K.; Mayya, Y.S.

    2009-01-01

    A flow-mode integrated sampler consisting of a wire-mesh and filter-paper array along with passive solid state nuclear track detectors has been developed for estimating unattached and attached fraction of 222 Rn/ 220 Rn progeny concentration. The essential element of this sampler is the direct 222 Rn/ 220 Rn progeny sensor (DRPS/DTPS), which is an absorber-mounted-LR115 type nuclear track detector that selectively registers the alpha particles emitted from the progeny deposited on its surface. During sampling at a specified flow-rate, the unattached progeny is captured on the wire-mesh; while the attached progeny gets transmitted and is captured on the filter-paper. The alpha particles emitted by the deposited progeny atoms are registered on the sensors placed at a specified distance facing the wire-mesh and the filter-paper, respectively. The various steps involved in the development of this flow-mode direct progeny sampler such as the optimization of the sampling rate and the distance between the sensor and the deposition substrate are discussed. The sensitivity factor of the DTPS-loaded sampler for 220 Rn progeny deposited on the wire-mesh and filter-paper is found to be 23.77 ± 0.64 (track cm -2 h -1 ) (Bq m -3 ) -1 and 22.30 ± 0.18 (track cm -2 h -1 ) (Bq m -3 ) -1 , respectively; while that of DRPS-loaded sampler for 222 Rn progeny deposition, is 3.03 ± 0.14 (track cm -2 h -1 ) (Bq m -3 ) -1 and 2.08 ± 0.07 (track cm -2 h -1 ) (Bq m -3 ) -1 , respectively. The highlight of this flow-mode sampler is its high sensitivity and that it utilizes the passive technique for estimating the unattached and attached progeny concentration, thus doing away with the alpha counting procedures.

  2. The ''Gent'' stacked filter unit (SFU) sampler for the collection of atmospheric aerosols in two size fractions: Description and instructions for installation and use

    International Nuclear Information System (INIS)

    Maenhaut, W.; Francois, F.; Cafmeyer, J.

    1994-01-01

    This report contains a description and general instructions for the installation and use of the ''Gent'' Stacked Filter Unit (SFU) PM10 sampler. The sampler operates at a flow rate of 16 litres per min. It collects particulates which have an equivalent aerodynamic diameter (EAD) of less than 10 μm in separate ''coarse'' (2-10 μm EAD) and ''fine'' ( 10 μm EAD particles is accomplished by a PM10 pre-impaction stage upstream of the stacked filter cassette. The air is drawn through the sampler by means of a diaphragm vacuum pump, which is enclosed in a special housing together with a needle valve, vacuum gauge, flow meter, volume meter, time switch (for interrupted sampling) and hour meter. A list of manufacturers of the various components of the sampler is also given. (author). 4 figs, 1 tab

  3. A Passive Diffusion Sampler for HT- and HTO-in-Air

    International Nuclear Information System (INIS)

    Surette, R.A.; Nunes, J.C.

    2005-01-01

    Fusion research and tritium removal facilities potentially handle large inventories of tritium gas (HT). If any HT is released into the workplace, a fraction may be converted to tritiated water vapour (HTO). A convenient method to determine the activity concentration of each species is necessary to assess the potential hazard since the radiological hazard of HTO is more than 10 4 that due to HT. Passive samplers for measuring tritiated water vapour (HTO) have been shown to be suitable for use indoors and outdoors. These simple samplers consist of a standard 20-mL liquid scintillation vial with a diffusion orifice that determines the sampling rate.The total tritium samplers described herein are passive or diffusion samplers that contain a small amount of AECL-proprietary wet-proofed catalyst fixed to the underside of the sampling heads to allow conversion of the HT to HTO that is subsequently collected in the sink, (HTO), in the bottom of the sampler. After an appropriate sampling time, liquid scintillation cocktail is added to the vial and the activity collected determined by liquid scintillation analysis. When used in conjunction with the conventional HTO passive sampler the difference between the total and HTO samplers can be used to determine the HT fraction ((HT+HTO) - HTO HT). The sampling rates for the modified diffusion sampler were measured to be 4.6 and 8.1 L/d for HTO and HT, respectively. For a fifteen-minute sampling period, passive samplers can be used to measure tritium activity concentrations from 37 kBq/m 3 to 115 MBq/m 3

  4. Sampler collection gadget for epilithic diatoms.

    Science.gov (United States)

    Salomoni, S E; Torgan, L C; Rocha, O

    2007-11-01

    This work present a new gadget for sampling epilithic diatoms from both lentic and lotic enviroments. The sampler consists of a polystyrene cylinder, left to float on the surface of the water, to which stone substrates are attached. This epilithic diatom sampler (EDS) can be used to detect spatial and temporal richness and density variation in the study of the diatom community, as well as in water quality monitoring.

  5. 78 FR 42595 - Marine Vapor Control Systems

    Science.gov (United States)

    2013-07-16

    ... revise the substance As noted in the NPRM, the changes in this section were of this section. intended... the vapor-moving device, as recommended by CTAC in 1997 to maintain a minimum size of non-flammable...

  6. 50 CFR 697.12 - At-sea sea sampler/observer coverage.

    Science.gov (United States)

    2010-10-01

    ... sampler/observer access to and use of the vessel's communications equipment and personnel upon request for...) Allow the sea sampler/observer to inspect and copy the vessel's log, communications log, and records... must: (1) Notify the sea sampler/observer of any sea turtles, marine mammals, or other specimens taken...

  7. Automated particulate sampler field test model operations guide

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, S.M.; Miley, H.S.

    1996-10-01

    The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

  8. Sampler collection gadget for epilithic diatoms

    Directory of Open Access Journals (Sweden)

    SE. Salomoni

    Full Text Available This work present a new gadget for sampling epilithic diatoms from both lentic and lotic enviroments. The sampler consists of a polystyrene cylinder, left to float on the surface of the water, to which stone substrates are attached. This epilithic diatom sampler (EDS can be used to detect spatial and temporal richness and density variation in the study of the diatom community, as well as in water quality monitoring.

  9. Coalescent genealogy samplers: windows into population history.

    Science.gov (United States)

    Kuhner, Mary K

    2009-02-01

    Coalescent genealogy samplers attempt to estimate past qualities of a population, such as its size, growth rate, patterns of gene flow or time of divergence from another population, based on samples of molecular data. Genealogy samplers are increasingly popular because of their potential to disentangle complex population histories. In the last decade they have been widely applied to systems ranging from humans to viruses. Findings include detection of unexpected reproductive inequality in fish, new estimates of historical whale abundance, exoneration of humans for the prehistoric decline of bison and inference of a selective sweep on the human Y chromosome. This review summarizes available genealogy-sampler software, including data requirements and limitations on the use of each program.

  10. A critical assessment of passive air samplers for per- and polyfluoroalkyl substances

    Science.gov (United States)

    Karásková, Pavlína; Codling, Garry; Melymuk, Lisa; Klánová, Jana

    2018-07-01

    Since their inclusion in the Stockholm Convention, there has been a need for global monitoring of perfluorooctane sulfonate (PFOS), its salts and perfluorooctanesulfonyl fluoride (PFOSF), along with other non-listed highly fluorinated compounds. Passive air samplers (PAS) are ideal for geographic coverage of atmospheric monitoring. The most common type of PAS, using polyurethane foam (PUF) as a sorbent, was primarily developed for non-polar semivolatile organic compounds (SVOCs) and are not well-validated for polar substances such as the per- and polyfluoroalkyl substances (PFASs), however, they have been used for some PFASs, particularly PFOS. To evaluate their applicability, PAS were deployed for measurement of PFASs in outdoor and indoor air. Outdoors, two types of PAS, one consisting of PUF and one of XAD-2 resin, were deployed in an 18-week calibration study in parallel with a low-volume active air sampler (LV-AAS) in a suburban area. Indoors, PUF-PAS were similarly deployed over 12 weeks to evaluate their applicability for indoor monitoring. Samples were analysed for perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonates (PFSAs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs). In outdoor air, 17 out of the 21 PFAS were detected in more than 50% of samples, with a median ∑17PFASs of 18.0 pg m-3 while 20 compounds were detected in indoor air with a median concentration ∑20PFASs of 76.6 pg m-3 using AAS samplers. PFOS was the most common PFAS in the outdoor air while PFBA was most common indoors. Variability between PAS and AAS was observed and comparing gas phase and particle phase separately or in combination did not account for the variation observed. PUF-PAS may still have a valuable use in PFAS monitoring but more work is needed to identify the applicability of passive samplers for ionic PFAS.

  11. Enhanced surface sampler and process for collection and release of analytes

    Energy Technology Data Exchange (ETDEWEB)

    Addleman, Raymond S; Atkinson, David A; Bays, John T; Chouyyok, Wilaiwan; Cinson, Anthony D; Ewing, Robert G; Gerasimenko, Aleksandr A

    2015-02-03

    An enhanced swipe sampler and method of making are described. The swipe sampler is made of a fabric containing selected glass, metal oxide, and/or oxide-coated glass or metal fibers. Fibers are modified with silane ligands that are directly attached to the surface of the fibers to functionalize the sampling surface of the fabric. The swipe sampler collects various target analytes including explosives and other threat agents on the surface of the sampler.

  12. Quantum Gibbs Samplers: The Commuting Case

    Science.gov (United States)

    Kastoryano, Michael J.; Brandão, Fernando G. S. L.

    2016-06-01

    We analyze the problem of preparing quantum Gibbs states of lattice spin Hamiltonians with local and commuting terms on a quantum computer and in nature. Our central result is an equivalence between the behavior of correlations in the Gibbs state and the mixing time of the semigroup which drives the system to thermal equilibrium (the Gibbs sampler). We introduce a framework for analyzing the correlation and mixing properties of quantum Gibbs states and quantum Gibbs samplers, which is rooted in the theory of non-commutative {mathbb{L}_p} spaces. We consider two distinct classes of Gibbs samplers, one of them being the well-studied Davies generator modelling the dynamics of a system due to weak-coupling with a large Markovian environment. We show that their spectral gap is independent of system size if, and only if, a certain strong form of clustering of correlations holds in the Gibbs state. Therefore every Gibbs state of a commuting Hamiltonian that satisfies clustering of correlations in this strong sense can be prepared efficiently on a quantum computer. As concrete applications of our formalism, we show that for every one-dimensional lattice system, or for systems in lattices of any dimension at temperatures above a certain threshold, the Gibbs samplers of commuting Hamiltonians are always gapped, giving an efficient way of preparing the associated Gibbs states on a quantum computer.

  13. Selective laser vaporization of polypropylene sutures and mesh

    Science.gov (United States)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  14. Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants.

    Science.gov (United States)

    Perron, Monique M; Burgess, Robert M; Suuberg, Eric M; Cantwell, Mark G; Pennell, Kelly G

    2013-10-01

    Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan, can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling methods have been applied to assess dissolved concentrations in water and sediments primarily for legacy contaminants. Although the technology is applicable to some emerging contaminants, the use of passive samplers with emerging contaminants is limited. In the present study, the performance of 3 common passive samplers was evaluated for sampling PBDEs and triclosan. Passive sampling polymers included low-density polyethylene (PE) and polyoxymethylene (POM) sheets, and polydimethylsiloxane (PDMS)-coated solid-phase microextraction (SPME) fibers. Dissolved concentrations were calculated using measured sampler concentrations and laboratory-derived partition coefficients. Dissolved tri-, tetra-, and pentabrominated PBDE congeners were detected at several of the study sites at very low pg/L concentrations using PE and POM. Calculated dissolved water concentrations of triclosan ranged from 1.7 ng/L to 18 ng/L for POM and 8.8 ng/L to 13 ng/L for PE using performance reference compound equilibrium adjustments. Concentrations in SPME were not reported due to lack of detectable chemical in the PDMS polymer deployed. Although both PE and POM were found to effectively accumulate emerging contaminants from the water column, further research is needed to determine their utility as passive sampling devices for emerging contaminants. © 2013 SETAC.

  15. The influence of geometry and draught shields on the performance of passive samplers.

    Science.gov (United States)

    Hofschreuder, P; van der Meulen, W; Heeres, P; Slanina, S

    1999-04-01

    Passive samplers provide an excellent opportunity to perform indicative measurements or establish a dense network of measuring sites. A drawback compared with conventional active measuring methods is the larger spread of results. This variation can, to a large extent, be attributed to the influence of temperature, sampler geometry and wind on sampling results. A proper design of sampler geometry and optimum choice of draught shield can reduce the influence of wind velocity on a badge type sampler to less than 10%. Wire mesh screens prove to be inadequate in damping turbulence. Filters give good results. Attention should be paid to the size and isolation value of the walls of the sampler to prevent thermal updrafts occurring within the sampler. Tube type samplers are less influenced by wind, provided that turbulence is prevented from influencing diffusion within the sampler.

  16. Task plan for test of PRBT prototypic liquid sampler

    International Nuclear Information System (INIS)

    Jenkins, W.J.

    1992-01-01

    The primary objective of this task is to determine just how representative Precipitate Reactor Bottom Tank (PRBT) samples taken from the Hydragard trademark prototypic liquid sampler are of the in-tank contents and also to determine the homogeneity of the in-tank contents. This shall be accomplished by a statistical design study sampling plan for paired contrasts of the analysis results of samples taken from: (1) the Hydragard trademark prototypic liquid sampler paired with the more fundamental grab sampler at the lower elevation for the Hydragard trademark prototypic liquid sampler accuracy and (2) the grab sampler at the lower elevation paired with the grab sampler at the upper elevation for the in-tank homogeneity. These measurements are paired together to sharpen the contrast so that, as nearly as possible, only the conditions of the effect under study will differ between the two. This ''split-plot'' arrangement provides increased precision for the contrast under study by canceling out common extraneous effects, thereby enabling the detection of smaller effects. The secondary objective of the task is to determine the level of influence of the major contributors to the overall uncertainty in the sample preparation and measurement process. These major steps include: preparation method (H 2 SO 4 -HF Titanium dissolution); aliquoting and dilution within a dissolution; measurement and long-term behavior of the ICP and AA instruments, as monitored by the measurement of standards and blanks embedded within each block of samples for the measurement sequence. This sampling task, therefore, is mostly devoted to determining the sampler characteristics and is not intended to provide a comprehensive estimate of the overall uncertainty affecting DWPF sample analysis in routine operation

  17. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    International Nuclear Information System (INIS)

    Mercado-Zúñiga, C.; Vargas-García, J.R.; Hernández-Pérez, M.A.; Figueroa-Torres, M.Z.; Cervantes-Sodi, F.; Torres-Martínez, L.M.

    2014-01-01

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO 3 /H 2 SO 4 solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm

  18. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Zúñiga, C. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Vargas-García, J.R., E-mail: rvargasga@ipn.mx [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Hernández-Pérez, M.A. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Figueroa-Torres, M.Z. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico); Cervantes-Sodi, F. [Depto. Fisica y Matematicas, Univ. Iberoamericana, Mexico 01209 D.F. (Mexico); Torres-Martínez, L.M. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico)

    2014-12-05

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO{sub 3}/H{sub 2}SO{sub 4} solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm.

  19. Operability test report for 211BA flow proportional sampler

    International Nuclear Information System (INIS)

    Weissenfels, R.D.

    1995-01-01

    This operability report will verify that the 211-BA flow proportional sampler functions as intended by design. The sampler was installed by Project W-007H and is part of BAT/AKART for the BCE liquid effluent stream

  20. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  1. Sound Propagation in Gas-Vapor-Droplet Suspensions with Evaporation and Nonlinear Particle Relaxation

    Science.gov (United States)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.

  2. Determination of phenolic compounds in air by using cyclodextrin-silica hybrid microporous composite samplers.

    Science.gov (United States)

    Mauri-Aucejo, Adela R; Ponce-Català, Patricia; Belenguer-Sapiña, Carolina; Amorós, Pedro

    2015-03-01

    An analytical method for the determination of phenolic compounds in air samples based on the use of cyclodextrin-silica hybrid microporous composite samplers is proposed. The method allows the determination of phenol, guaiacol, cresol isomers, eugenol, 4-ethylphenol and 4-ethylguaiacol in workplaces according to the Norm UNE-EN 1076:2009 for active sampling. Therefore, the proposed method offers an alternative for the assessment of the occupational exposure to phenol and cresol isomers. The detection limits of the proposed method are lower than those for the NIOSH Method 2546. Storage time of samples almost reaches 44 days. Recovery values for phenol, guaiacol, o-cresol, m-cresol, p-cresol, 4-ethylguaiacol, eugenol and 4-ethylphenol are 109%, 99%, 102%, 94%, 94%, 91%, 95% and 102%, respectively with a coefficient of variation below 6%. The method has been applied to the assessment of exposure in different areas of a farm and regarding the quantification of these compounds in the vapors generated by burning incense sticks and an essential oil marketed as air fresheners. The acquired results are comparable with those provided from a reference method for a 95% of confidence level. The possible use of these samplers for the sampling of other toxic compounds such as phthalates is evaluated by qualitative analysis of extracts from incense sticks and essential oil samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Optimal relaxed causal sampler using sampled-date system theory

    NARCIS (Netherlands)

    Shekhawat, Hanumant; Meinsma, Gjerrit

    This paper studies the design of an optimal relaxed causal sampler using sampled data system theory. A lifted frequency domain approach is used to obtain the existence conditions and the optimal sampler. A state space formulation of the results is also provided. The resulting optimal relaxed causal

  4. Observation of 45 GHz current waveforms using HTS sampler

    International Nuclear Information System (INIS)

    Maruyama, M.; Suzuki, H.; Hato, T.; Wakana, H.; Nakayama, K.; Ishimaru, Y.; Horibe, O.; Adachi, S.; Kamitani, A.; Suzuki, K.; Oshikubo, Y.; Tarutani, Y.; Tanabe, K.

    2005-01-01

    We succeeded in observing high-frequency current waveforms up to 45 GHz using a high-temperature superconducting (HTS) sampler. In this experiment, we used a sampler circuit with a superconducting pickup coil, which magnetically detects current signals flowing through a micro-strip line on a printed board placed outside the cryochamber. This type of measurement enables non-contact current-waveform observation that seems useful for analyses of EMI, defects in LSI, etc. Computer simulation reveals that one of our latest versions of HTS sampler circuits having Josephson transmission lines with optimized biases as buffers has a potential of sampling high-frequency signals with a bandwidth above 100 GHz. To realize the circuit parameters required in the simulations, we developed an HTS circuit fabrication process employing a lower ground plane structure with SrSnO 3 insulating layers. We consider that improvement of the circuit fabrication process and optimization of the pickup coil lead to much higher signal frequency observable by the sampler

  5. Operability test procedure for 211BA flow proportional sampler

    International Nuclear Information System (INIS)

    Weissenfels, R.D.

    1994-01-01

    The purpose of this operability test procedure (OTP) is to verify the 211-BA flow proportional sampler system and components function correctly as intended by design. System test will include the sampling system, all associated instrumentation, and Facility Process Monitor and Control System (FPMCS). The combined chemical sewer stream from B Plant flows through sump 211BA-SMP-01 located in 211-BA and is continuously monitored for gamma and beta radiation and pH. 211-BA has been upgraded to include a flow proportional sampler. A specified sample volume will be withdrawn at programmed intervals from the 211BA sump and deposited in a 19 liter plastic carboy. The sampler will be programmed per the vendor installation and operations manual by B Plant instrument maintenance personnel. Samples will be taken during five consecutive sample cycles with the sample volumes and sample frequencies recorded for comparison purposes. Additional tests related to the sampler include the alarm circuitry for loss of power and failure to obtain sample

  6. Radial diffusive sampler for the determination of 8-h ambient ozone concentrations

    International Nuclear Information System (INIS)

    Plaisance, H.; Gerboles, M.; Piechocki, A.; Detimmerman, F.; Saeger, E. de

    2007-01-01

    The 8-h ozone radial diffusive sampler was evaluated according to the CEN protocol for the validation of diffusive samplers. All the parameters regarding the sampler characteristics were found to be consistent with the requirements of this protocol apart from the blank value, which must be evaluated and subtracted at each sampling. The nominal uptake rate was determined in laboratory conditions. However, the uptake rate depends on the mass uptake, temperature, humidity and on the combination of temperature and humidity. Based on laboratory experiments, an empirical model has been established which improved the agreement between the radial sampler and the reference method. This improvement was observed under several different meteorological and emission conditions of sampling. By using the model equation of uptake rate, the data quality objective of 30% for the expanded uncertainty included in the O 3 European Directive, is easily attained. Therefore, the sampler represents an appropriate indicative method. - A passive sampler has been fully validated for monitoring 8-h ozone concentrations in ambient air

  7. Evaluation of polyurethane foam passive air sampler (PUF) as a tool for occupational PAH measurements.

    Science.gov (United States)

    Strandberg, Bo; Julander, Anneli; Sjöström, Mattias; Lewné, Marie; Koca Akdeva, Hatice; Bigert, Carolina

    2018-01-01

    Routine monitoring of workplace exposure to polycyclic aromatic hydrocarbons (PAHs) is performed mainly via active sampling. However, active samplers have several drawbacks and, in some cases, may even be unusable. Polyurethane foam (PUF) as personal passive air samplers constitute good alternatives for PAH monitoring in occupational air (8 h). However, PUFs must be further tested to reliably yield detectable levels of PAHs in short exposure times (1-3 h) and under extreme occupational conditions. Therefore, we compared the personal exposure monitoring performance of a passive PUF sampler with that of an active air sampler and determined the corresponding uptake rates (Rs). These rates were then used to estimate the occupational exposure of firefighters and police forensic specialists to 32 PAHs. The work environments studied were heavily contaminated by PAHs with (for example) benzo(a)pyrene ranging from 0.2 to 56 ng m -3 , as measured via active sampling. We show that, even after short exposure times, PUF can reliably accumulate both gaseous and particle-bound PAHs. The Rs-values are almost independent of variables such as the concentration and the wind speed. Therefore, by using the Rs-values (2.0-20 m 3 day -1 ), the air concentrations can be estimated within a factor of two for gaseous PAHs and a factor of 10 for particulate PAHs. With very short sampling times (1 h), our method can serve as a (i) simple and user-friendly semi-quantitative screening tool for estimating and tracking point sources of PAH in micro-environments and (ii) complement to the traditional active pumping methods. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus.

    Science.gov (United States)

    Uhrbrand, K; Koponen, I K; Schultz, A C; Madsen, A M

    2018-04-01

    The aim of this study was to identify the most efficient sampling method for quantitative PCR-based detection of airborne human norovirus (NoV). A comparative experiment was conducted in an aerosol chamber using aerosolized murine norovirus (MNV) as a surrogate for NoV. Sampling was performed using a nylon (NY) filter in conjunction with four kinds of personal samplers: Gesamtstaubprobenahme sampler (GSP), Triplex-cyclone sampler (TC), 3-piece closed-faced Millipore cassette (3P) and a 2-stage NIOSH cyclone sampler (NIO). In addition, sampling was performed using the GSP sampler with four different filter types: NY, polycarbonate (PC), polytetrafluoroethylene (PTFE) and gelatine (GEL). The sampling efficiency of MNV was significantly influenced by both sampler and filter type. The GSP sampler was found to give significantly (P airborne NoV. The identification of a suitable NoV air sampler is an important step towards studying the association between exposure to airborne NoV and infection. © 2017 The Society for Applied Microbiology.

  9. Side-by-side determination of workers' exposure to wood dust with IOM and open-faced samplers.

    Science.gov (United States)

    Cavlović, Anka Ozana; Beljo Lučić, Ružica; Jug, Matija; Radmanović, Kristijan; Bešlić, Ivan

    2013-09-01

    Woodworkers' exposure to airborne particles is measured with different sampling techniques throughout the world. Due to a great number of exposure data obtained with different samplers, European countries have aimed over the last ten years to find a conversion factor for mass concentrations that would render these measurements comparable. Following the accepted EU standards and regulations, we replaced a 25 mm open-faced (OF) filter holder with an IOM head to determine woodworkers' exposure to inhalable dust and establish an IOM/OF sampler ratio that might serve as a reliable factor for converting the existing OF data to IOM dust mass concentration in the industrial environment. For this side-by-side sampling we used personal 25 mm OF (N=29) and IOM (N=29) sampling heads over eight working hours. The obtained IOM/OF ratios ranged between 0.7 and 2.3. However, mass concentrations obtained by IOM and OF samplers did not significantly differ. Our findings suggest that there is no need for conversion of the existing OF data for workers exposed to wood dust, provided that dust mass concentrations in the working environment range between 1 mg m-3 and 7 mg m-3. Future side-by-side measurements should also involve environments with low wood dust mass concentrations.

  10. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus

    DEFF Research Database (Denmark)

    Uhrbrand, Katrine; Kalevi Koponen, Ismo; Schultz, Anna Charlotte

    2017-01-01

    V. Sampling was performed using a nylon (NY) filter in conjunction with four kinds of personal samplers; Gesamtstaubprobenahme sampler (GSP), Triplex-cyclone sampler (TC), 3-piece closed-faced Millipore cassette (3P) and a 2-stage NIOSH cyclone sampler (NIO). In addition, sampling was performed using the GSP...

  11. Comparison of PM collection efficiency of Gent and Airmatrics MiniVol portable air sampler

    International Nuclear Information System (INIS)

    Begum, Bilkis A.; Biswas, Swapan K.

    2005-01-01

    Gent PM sampler was developed as an integral part of several International Atomic Energy Agency sponsored coordinated research programmes (CRP) for collecting air particulate samples. On the other hand, the MiniVol Portable Air Sampler is a commercial ambient air sampler for particulate matter and non-reactive gases used by different agencies. Air quality management system requires comparable air quality data to be collected by different stake holders for assessment and regulatory purposes. In order to compare the characteristics of Gent sampler with the MiniVol Portable Air Sampler, the reproducibility of the sample mass collection efficiency were examined and the measured mass concentrations were compared. It was found that in case of PM 10 both samplers collect almost same fraction of PM 10 mass when the Gent sampler was operated at 16 litre per minute flow rate. But in case of fine fraction, Portable sampler collects 70% higher PM 2.5 mass concentration compared to the Gent PM 2.2 mass concentrations. This is because, the Gent sampler was typically operated at 16 to 17 lpm resulting in an estimated 50% cut point of 2.2 μm.(author)

  12. The OPEnSampler: A Low-Cost, Low-Weight, Customizable and Modular Open Source 24-Unit Automatic Water Sampler

    Science.gov (United States)

    Nelke, M.; Selker, J. S.; Udell, C.

    2017-12-01

    Reliable automatic water samplers allow repetitive sampling of various water sources over long periods of time without requiring a researcher on site, reducing human error as well as the monetary and time costs of traveling to the field, particularly when the scale of the sample period is hours or days. The high fixed cost of buying a commercial sampler with little customizability can be a barrier to research requiring repetitive samples, such as the analysis of septic water pre- and post-treatment. DIY automatic samplers proposed in the past sacrifice maximum volume, customizability, or scope of applications, among other features, in exchange for a lower net cost. The purpose of this project was to develop a low-cost, highly customizable, robust water sampler that is capable of sampling many sources of water for various analytes. A lightweight aluminum-extrusion frame was designed and assembled, chosen for its mounting system, strength, and low cost. Water is drawn from two peristaltic pumps through silicone tubing and directed into 24 foil-lined 250mL bags using solenoid valves. A programmable Arduino Uno microcontroller connected to a circuit board communicates with a battery operated real-time clock, initiating sampling stages. Period and volume settings are programmable in-field by the user via serial commands. The OPEnSampler is an open design, allowing the user to decide what components to use and the modular theme of the frame allows fast mounting of new manufactured or 3D printed components. The 24-bag system weighs less than 10kg and the material cost is under $450. Up to 6L of sample water can be drawn at a rate of 100mL/minute in either direction. Faster flowrates are achieved by using more powerful peristaltic pumps. Future design changes could allow a greater maximum volume by filling the unused space with more containers and adding GSM communications to send real time status information.

  13. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  14. Tank 241-C-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-C-108 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  15. Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-107 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  16. Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ''Program Plan for the Resolution of Tank Vapor Issues'' (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ''Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994)

  17. Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-106 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  18. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of coal mine dust personal sampler units... Personal Sampler Unit § 74.5 Tests of coal mine dust personal sampler units. (a) The National Institute for... tests and evaluations to determine whether the pump unit of a CMDPSU that is submitted for approval...

  19. Development of vapor deposited silica sol-gel particles for use as a bioactive materials system.

    Science.gov (United States)

    Snyder, Katherine L; Holmes, Hallie R; VanWagner, Michael J; Hartman, Natalie J; Rajachar, Rupak M

    2013-06-01

    Silica-based sol-gel and bioglass materials are used in a variety of biomedical applications including the surface modification of orthopedic implants and tissue engineering scaffolds. In this work, a simple system for vapor depositing silica sol-gel nano- and micro-particles onto substrates using nebulizer technology has been developed and characterized. Particle morphology, size distribution, and degradation can easily be controlled through key formulation and manufacturing parameters including water:alkoxide molar ratio, pH, deposition time, and substrate character. These particles can be used as a means to rapidly modify substrate surface properties, including surface hydrophobicity (contact angle changes >15°) and roughness (RMS roughness changes of up to 300 nm), creating unique surface topography. Ions (calcium and phosphate) were successfully incorporated into particles, and induced apatitie-like mineral formation upon exposure to simulated body fluid Preosteoblasts (MC3T3) cultured with these particles showed up to twice the adhesivity within 48 h when compared to controls, potentially indicating an increase in cell proliferation, with the effect likely due to both the modified substrate properties as well as the release of silica ions. This novel method has the potential to be used with implants and tissue engineering materials to influence cell behavior including attachment, proliferation, and differentiation via cell-material interactions to promote osteogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  20. A programmable air sampler with adsorption tubes

    International Nuclear Information System (INIS)

    Riesing, J.; Roetzer, H.; Hick, H.

    1997-01-01

    The Air Sampler AS3 was utilized for the European Tracer Experiment (ETEX) to measure the concentrations of the perfluorocarbon tracers. At thirty-two sampling points these devices were placed to collect the tracer substances in adsorption tubes for subsequent laboratory analysis in the Environment Institute of the JRC Ispra. The Air Sampler is also suitable for monitoring the environment, particularly of industrial emitters or landfills, by sampling of volatile substances. The Air Sampler AS3 is a portable, user-friendly instrument due to light weight, ruggedness and reliable operation. It is capable of fully automatic sampling of air and gas with 24 adsorption tubes and program-controlled gas flow. Collection times can be programmed freely between 1 sec and 8 days and waiting times between 1 sec and 30 days. Programming is possible via keyboard, memory card or serial interface. A protocol of sampling control data is stored on a memory card giving documentation of sampling conditions. On the memory card there is space for the storage of 10 sampling programs and 10 sets of sampling control data. Before the start of ETEX the AS3 was used in a measurement campaign to measure the background concentrations of the perfluorocarbon tracers in Austria. In the provinces of Upper Austria and Salzburg the Air Sampler is used by the departments for environmental protection for the monitoring of BTX-concentrations in air. (author)

  1. Responses of low pressure Andersen sampler for collecting substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, K. [Research Reactor Institute, Kyoto University, Osaka (Japan); Yamada, Y.; Miyamoto, K.; Shimo, M. [Division of Radiotoxicology and Protection, National Institute of Radiological Sciences, Chiba (Japan)

    2000-05-01

    Some types of low pressure cascade impactors (Andersen, Berner, Davies, and MOUDI etc) have been used to measure the activity size distribution of radon progeny in the environment. In spite of their careful uses, their nonideal responses are not adequately known. Some important factors such as the wall loss, electrostatic attraction, and the surface nature of collecting substrates may affect the reliability of the impactor data. Size selective characteristics of a low pressure Andersen sampler for various collecting substrates were examined in a radon exposure chamber using several kinds of liquid (DOS) or solid (carnauba wax) carrier aerosols labelled with radon progeny. These carrier aerosols were produced by commercial condensation aerosol generator. Tested collecting substrates were, (1) uncoated clean stainless steel plate, (2) silicone oil or grease coated stainless steel plate, (3) polyethylene sheet covered stainless steel plate, (4) membrane filter, (5) glass fiber filter, and (6) quartz fiber filter. In the case of collecting liquid or sticky carrier aerosols, the effect of particle bounce was small and nearly any substrates might used on the impaction plate. On the other hand, in the case of solid carrier aerosols, an adhesive layer such as grease or oil might have to be applied to the substrate. It was concluded that a low pressure cascade impactor such as Andersen sampler might need an appropriate calibration procedure including the interstage characteristics for determining the accurate activity size distribution. (author)

  2. Performance characteristics of a low-volume PM10 sampler

    Science.gov (United States)

    Four identical PM10 pre-separators, along with four identical low-volume (1m3 hr-1) total suspended particulate (TSP) samplers were tested side-by-side in a controlled laboratory particulate matter (PM) chamber. The four PM10 and four TSP samplers were also tested in an oil pipe-cleaning field to ev...

  3. The neighborhood MCMC sampler for learning Bayesian networks

    Science.gov (United States)

    Alyami, Salem A.; Azad, A. K. M.; Keith, Jonathan M.

    2016-07-01

    Getting stuck in local maxima is a problem that arises while learning Bayesian networks (BNs) structures. In this paper, we studied a recently proposed Markov chain Monte Carlo (MCMC) sampler, called the Neighbourhood sampler (NS), and examined how efficiently it can sample BNs when local maxima are present. We assume that a posterior distribution f(N,E|D) has been defined, where D represents data relevant to the inference, N and E are the sets of nodes and directed edges, respectively. We illustrate the new approach by sampling from such a distribution, and inferring BNs. The simulations conducted in this paper show that the new learning approach substantially avoids getting stuck in local modes of the distribution, and achieves a more rapid rate of convergence, compared to other common algorithms e.g. the MCMC Metropolis-Hastings sampler.

  4. Monte-Carlo simulation of complex vapor-transport systems for RIB applications

    International Nuclear Information System (INIS)

    Zhang, Y.; Alton, G.D.

    2005-01-01

    In order to minimize decay losses of short-lived radioactive species at ISOL based RIB facilities, effusive-flow particle transit times between target and ion source must be as short as practically achievable. A Monte-Carlo code has been developed for simulating the effusive-flow of neutral particles through vapor-transport systems independent of materials of construction. The code provides average distance traveled and time information associated with the transit of individual particles through a system. It offers a cost effective and accurate means for arriving at vapor-transport system designs. In this report, the code will be described and results obtained by its use in evaluating several prototype vapor-transport systems using specular reflection, cosine and isotropic particle re-emission about the normal to the surface models following adsorption. Simulation results obtained with an isotropic distribution are in close agreement with experimental measurements of the properties of prototype vapor-transport systems fabricated at the Holifield Radioactive Ion Beam Facility

  5. Development of a new passive sampler based on diffusive milligel beads for copper analysis in water.

    Science.gov (United States)

    Perez, M; Reynaud, S; Lespes, G; Potin-Gautier, M; Mignard, E; Chéry, P; Schaumlöffel, D; Grassl, B

    2015-08-26

    A new passive sampler was designed and characterized for the determination of free copper ion (Cu(2+)) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k0) and the sampler-water partition coefficient (Ksw), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    Science.gov (United States)

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  7. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides.

    Science.gov (United States)

    Chaemfa, Chakra; Barber, Jonathan L; Gocht, Tilman; Harner, Tom; Holoubek, Ivan; Klanova, Jana; Jones, Kevin C

    2008-12-01

    Different passive air sampler (PAS) strategies have been developed for sampling in remote areas and for cost-effective simultaneous spatial mapping of POPs (persistent organic pollutants) over differing geographical scales. The polyurethane foam (PUF) disk-based PAS is probably the most widely used. In a PUF-based PAS, the PUF disk is generally mounted inside two stainless steel bowls to buffer the air flow to the disk and to shield it from precipitation and light. The field study described in this manuscript was conducted to: compare performance of 3 different designs of sampler; to further calibrate the sampler against the conventional active sampler; to derive more information on field-based uptake rates and equilibrium times of the samplers. Samplers were also deployed at different locations across the field site, and at different heights up a meteorological tower, to investigate the possible influence of sampler location. Samplers deployed <5m above ground, and not directly sheltered from the wind gave similar uptake rates. Small differences in dimensions between the 3 designs of passive sampler chamber had no discernable effect on accumulation rates, allowing comparison with previously published data.

  8. Cavitational micro-particles: plasma formation mechanisms

    International Nuclear Information System (INIS)

    Bica, Ioan

    2005-01-01

    Cavitational micro-particles are a class to which the micro-spheres, the micro-tubes and the octopus-shaped micro-particles belong. The cavitational micro-particles (micro-spheres, micro-tubes and octopus-shaped micro-particles) at an environmental pressure. The micro-spheres, the micro-tubes and the ligaments of the octopus-shaped micro-particles are produced in the argon plasma and are formed of vapors with low values of the molar concentration in comparison with the molar density of the gas and vapor mixture, the first one on the unstable and the last two on the stable movement of the vapors. The ligaments of the octopus-shaped micro-particles are open at the top for well-chosen values of the sub-cooling of the vapor and gas cylinders. The nitrogen in the air favors the formation of pores in the wall of the micro-spheres. In this paper we present the cavitational micro-particles, their production in the plasma and some mechanisms for their formation in the plasma. (author)

  9. Summary report on the design of the retained gas sampler system (retained gas sampler, extruder and extractor)

    International Nuclear Information System (INIS)

    Wootan, D.W.; Bolden, R.C.; Bridges, A.E.; Cannon, N.S.; Chastain, S.A.; Hey, B.E.; Knight, R.C.; Linschooten, C.G.; Pitner, A.L.; Webb, B.J.

    1994-01-01

    This document summarizes work performs in Fiscal Year 1994 to develop the three main components of Retained Gas Sampler System (RGSS). These primary components are the Retained Gas Sampler (RGS), the Retained Gas Extruder (RGE), and the Retained Gas Extractor (RGEx). The RGS is based on the Westinghouse Hanford Company (WHC) Universal Sampler design, and includes modifications to reduce gas leakage. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. Significant progress has been made in developing the RGSS. The RGSS is being developed by WHC to extract a representative waste sample from a Flammable Gas Watch List Tanks and to measure both the amount and composition of free and open-quotes boundclose quotes gases. Sudden releases of flammable gas mixtures are a safety concern for normal waste storage operations and eventual waste retrieval. Flow visualization testing was used to identify important fluid dynamic issues related to the sampling process. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. The safety analysis for the RGSS is being performed by Los Alamos National Laboratory and is more than sixty percent (60%) complete

  10. Use of the Single Particle Soot Photometer (SP2) as a pre-filter for ice nucleation measurements: effect of particle mixing state and determination of SP2 conditions to fully vaporize refractory black carbon

    Science.gov (United States)

    Schill, Gregory P.; DeMott, Paul J.; Levin, Ezra J. T.; Kreidenweis, Sonia M.

    2018-05-01

    Ice nucleation is a fundamental atmospheric process that impacts precipitation, cloud lifetimes, and climate. Challenges remain to identify and quantify the compositions and sources of ice-nucleating particles (INPs). Assessment of the role of black carbon (BC) as an INP is particularly important due to its anthropogenic sources and abundance at upper-tropospheric cloud levels. The role of BC as an INP, however, is unclear. This is, in part, driven by a lack of techniques that directly determine the contribution of refractory BC (rBC) to INP concentrations. One previously developed technique to measure this contribution uses the Single Particle Soot Photometer (SP2) as a pre-filter to an online ice-nucleating particle counter. In this technique, rBC particles are selectively heated to their vaporization temperature in the SP2 cavity by a 1064 nm laser. From previous work, however, it is unclear under what SP2 conditions, if any, the original rBC particles were fully vaporized. Furthermore, previous work also left questions about the effect of the SP2 laser on the ice-nucleating properties of several INP proxies and their mixtures with rBC.To answer these questions, we sampled the exhaust of an SP2 with a Scanning Mobility Particle Sizer and a Continuous Flow Diffusion Chamber. Using Aquadag® as an rBC proxy, the effect of several SP2 instrument parameters on the size distribution and physical properties of particles in rBC SP2 exhaust were explored. We found that a high SP2 laser power (930 nW/(220 nm PSL)) is required to fully vaporize a ˜ 0.76 fg rBC particle. We also found that the exhaust particle size distribution is minimally affected by the SP2 sheath-to-sample ratio; the size of the original rBC particle, however, greatly influences the size distribution of the SP2 exhaust. The effect of the SP2 laser on the ice nucleation efficiency of Snomax®, NX-illite, and Suwannee River Fulvic Acid was studied; these particles acted as proxies for biological, illite

  11. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)]. E-mail: fgarcias@imp.mx; Eliosa-Jimenez, Gaudencio [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Silva-Oliver, Guadalupe [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Godinez-Silva, Armando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)

    2007-06-15

    In this work, new (vapor + liquid) equilibrium data for the (N{sub 2} + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N{sub 2} + n-heptane) system.

  12. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    International Nuclear Information System (INIS)

    Garcia-Sanchez, Fernando; Eliosa-Jimenez, Gaudencio; Silva-Oliver, Guadalupe; Godinez-Silva, Armando

    2007-01-01

    In this work, new (vapor + liquid) equilibrium data for the (N 2 + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N 2 + n-heptane) system

  13. AN AFFINE-INVARIANT SAMPLER FOR EXOPLANET FITTING AND DISCOVERY IN RADIAL VELOCITY DATA

    International Nuclear Information System (INIS)

    Hou Fengji; Hogg, David W.; Goodman, Jonathan; Weare, Jonathan; Schwab, Christian

    2012-01-01

    Markov chain Monte Carlo (MCMC) proves to be powerful for Bayesian inference and in particular for exoplanet radial velocity fitting because MCMC provides more statistical information and makes better use of data than common approaches like chi-square fitting. However, the nonlinear density functions encountered in these problems can make MCMC time-consuming. In this paper, we apply an ensemble sampler respecting affine invariance to orbital parameter extraction from radial velocity data. This new sampler has only one free parameter, and does not require much tuning for good performance, which is important for automatization. The autocorrelation time of this sampler is approximately the same for all parameters and far smaller than Metropolis-Hastings, which means it requires many fewer function calls to produce the same number of independent samples. The affine-invariant sampler speeds up MCMC by hundreds of times compared with Metropolis-Hastings in the same computing situation. This novel sampler would be ideal for projects involving large data sets such as statistical investigations of planet distribution. The biggest obstacle to ensemble samplers is the existence of multiple local optima; we present a clustering technique to deal with local optima by clustering based on the likelihood of the walkers in the ensemble. We demonstrate the effectiveness of the sampler on real radial velocity data.

  14. Performance of prototype high-flow inhalable dust sampler in a livestock production facility.

    Science.gov (United States)

    Anthony, T Renée; Cai, Changjie; Mehaffy, John; Sleeth, Darrah; Volckens, John

    2017-05-01

    A high-flow inhalable sampler, designed for operational flow rates up to 10 L/min using computer simulations and examined in wind tunnel experiments, was evaluated in the field. This prototype sampler was deployed in collocation with an IOM (the benchmark standard sampler) in a swine farrowing building to examine the sampling performance for assessing concentrations of inhalable particulate mass and endotoxin. Paired samplers were deployed for 24 hr on 19 days over a 3-month period. On each sampling day, the paired samplers were deployed at three fixed locations and data were analyzed to identify agreement and to examine systematic biases between concentrations measured by these samplers. Thirty-six paired gravimetric samples were analyzed; insignificant, unsubstantial differences between concentrations were identified between the two samplers (p = 0.16; mean difference 0.03 mg/m 3 ). Forty-four paired samples were available for endotoxin analysis, and a significant (p = 0.001) difference in endotoxin concentration was identified: the prototype sampler, on average, had 120 EU/m 3 more endotoxin than did the IOM samples. Since the same gravimetric samples were analyzed for endotoxin content, the endotoxin difference is likely attributable to differences in endotoxin extraction. The prototype's disposable thin-film polycarbonate capsule was included with the filter in the 1-hr extraction procedure while the internal plastic cassette of the IOM required a rinse procedure that is susceptible to dust losses. Endotoxin concentrations measured with standard plastic IOM inserts that follow this rinsing procedure may underestimate the true endotoxin exposure concentrations. The maximum concentrations in the study (1.55 mg/m 3 gravimetric, 2328 EU/m 3 endotoxin) were lower than other agricultural or industrial environments. Future work should explore the performance of the prototype sampler in dustier environments, where concentrations approach particulates not otherwise

  15. Development of automatic smear testing sampler for radioactive contamination of floor in nuclear power plant

    International Nuclear Information System (INIS)

    Nozawa, Katsuro; Hashimoto, Hiroshi; Shinohara, Yohtaro; Iwaki, Kiyotaka

    1980-01-01

    The floor contamination with radioactive substances in the controlled area of nuclear power stations is strictly controlled, and it is tested by the smear method, wiping the contaminants on floors with filter papers or cloths and measuring the radioactive intensity to obtain contamination density. The works are very laborious, therefore the automatic smear sampler was developed. Simple operation, shortening of time required for wiping, constant and high efficiency of wiping, and easy numbering of samples were the aims in the development. The method of wiping, the mechanisms of wiping, cloth feeding and running, the surface pressure at the time of wiping, the number of times of wiping and required motor torque were studied. The outline of the developed sampler is explained. The performance of the sampler was compared with manual wiping. The efficiency of wiping with the sampler was 92%, assuming manual wiping as 100. Difference was not observed between careful manual wiping and the wiping with the sampler, therefore it was confirmed that this automatic floor smear sampler can be put in practical use. By conventional manual sampling, the maximum limit was about 400 samples/man-day, but when this sampler is used, about 1000 samples/sampler-day is possible. At present, this sampler is operated in Hamaoka Nuclear Power Station. (Kako, I.)

  16. Measurement of the activity size distribution of the polonium-218 under laboratory conditions

    International Nuclear Information System (INIS)

    Yoon, Suk Chul; Ha, Chung Woo

    1992-01-01

    A number of investigators have reported the formation of the radiolytic ultrafine particles produced by the interaction of ionizing radiation with water vapor. Previous studies have suggested that a very high localized concentration of the OH radical produced by the radiolysis of water can react with trace gas like organic vapors and produce lower vapor pressure compounds that can then nucleate. In order to determine water vapor and trace gas dependence of the active, positive-charged, first radon daughter, an experiment was conducted using a radon chamber. The activity size distribution of the radon daughter in the range of 0.5 - 100 nm was measured using the stacked wire screens sampler. Measurements were taken for different relative humidity. The resultant activity size distributions were analyzed. The addition of water vapor to the radon carrier gases resulted in the formation of ultrafine particles by OH radicals formed radon radiolysis. It may be due to the neutralization of charged Po-218 ion with water vapor through the radiolysis

  17. Development of a personal multi-pollutant exposure sampler for particulate matter and criteria gases

    Energy Technology Data Exchange (ETDEWEB)

    Chang, I.T.; Sarnat, J.; Wolfson, J.M.; Rojas-Bracho, L.; Suh, H.H.; Koutrakis, P. [Harvard Univ., Boston, MA (United States). School of Public Health

    1999-12-01

    A novel personal sampler is reported which allows simultaneous measurement of PM{sub 2,5}, and PM{sub 10}, ozone, nitrogen dioxide, and sulfur dioxide. This method combines previously used samplers for personal mass measurement with passive samplers for criteria gases and uses a single pump. Preliminarily results are reported for laboratory chamber tests and field comparisons with reference methods for both mass and criteria gases. These results demonstrate the suitability of this sampler of exposure assessment studies. (authors)

  18. A cheap and simple passive sampler using silicone rubber for the ...

    African Journals Online (AJOL)

    caffeine, personal care products, pharmaceuticals, pesticides and polycyclic aromatic hydrocarbons. Keywords: passive sampler, silicone rubber (PDMS) tubing, GCxGC-TOFMS, ..... concentrations may be derived by using performance reference compounds to determine in situ passive sampler sampling rates followed by ...

  19. Comparison of vapor sampling system (VSS) and in situ vapor sampling (ISVS) methods on Tanks C-107, BY-108, and S-102. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Edwards, J.A.; Evans, J.C.

    1996-08-01

    This report discusses comparison tests for two methods of collecting vapor samples from the Hanford Site high-level radioactive waste tank headspaces. The two sampling methods compared are the truck-mounted vapor sampling system (VSS) and the cart-mounted in-situ vapor sampling (ISVS). Three tanks were sampled by both the VSS and ISVS methods from the same access risers within the same 8-hour period. These tanks have diverse headspace compositions and they represent the highest known level of several key vapor analytes

  20. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification.

    Science.gov (United States)

    Bian, Xiaojun; Lan, Ying; Wang, Bing; Zhang, Yu Shrike; Liu, Baohong; Yang, Pengyuan; Zhang, Weijia; Qiao, Liang

    2016-12-06

    The early warning capability of the presence of biological aerosol threats is an urgent demand in ensuing civilian and military safety. Efficient and rapid air sample collection in relevant indoor or outdoor environment is a key step for subsequent analysis of airborne microorganisms. Herein, we report a portable battery-powered sampler that is capable of highly efficient bioaerosol collection. The essential module of the sampler is a polydimethylsiloxane (PDMS) microfluidic chip, which consisted of a 3-loop double-spiral microchannel featuring embedded herringbone and sawtooth wave-shaped structures. Vibrio parahemolyticus (V. parahemolyticus) as a model microorganism, was initially employed to validate the bioaerosol collection performance of the device. Results showed that the sampling efficacy reached as high as >99.9%. The microfluidic sampler showed greatly improved capturing efficiency compared with traditional plate sedimentation methods. The high performance of our device was attributed to the horizontal inertial centrifugal force and the vertical turbulence applied to airflow during sampling. The centrifugation field and turbulence were generated by the specially designed herringbone structures when air circulated in the double-spiral microchannel. The sawtooth wave-shaped microstructure created larger specific surface area for accommodating more aerosols. Furthermore, a mixture of bacterial aerosols formed by V. parahemolyticus, Listeria monocytogenes, and Escherichia coli was extracted by the microfluidic sampler. Subsequent integration with mass spectrometry conveniently identified the multiple bacterial species captured by the sampler. Our developed stand-alone and cable-free sampler shows clear advantages comparing with conventional strategies, including portability, easy-to-use, and low cost, indicating great potential in future field applications.

  1. Determination of respirable-sized crystalline silica in different ambient environments in the United Kingdom with a mobile high flow rate sampler utilising porous foams to achieve the required particle size selection

    Science.gov (United States)

    Stacey, Peter; Thorpe, Andrew; Roberts, Paul; Butler, Owen

    2018-06-01

    Inhalation of respirable crystalline silica (RCS) can cause diseases including silicosis and cancer. Levels of RCS close to an emission source are measured but little is known about the wider ambient exposure from industry emissions or natural sources. The aim of this work is to report the RCS concentrations obtained from a variety of ambient environments using a new mobile respirable (PM4) sampler. A mobile battery powered high flow rate (52 L min-1) sampler was developed and evaluated for particulate aerosol sampling employing foams to select the respirable particle size fraction. Sampling was conducted in the United Kingdom at site boundaries surrounding seven urban construction and demolition and five sand quarry sites. These are compared with data from twelve urban aerosol samples and from repeat measurements from a base line study at a single rural site. The 50% particle size penetration (d50) through the foam was 4.3 μm. Over 85% of predict bias values were with ±10% of the respirable convention, which is based on a log normal curve. Results for RCS from all construction and quarry activities are generally low with a 95 th percentile of 11 μg m-3. Eighty percent of results were less than the health benchmark value of 3 μg m-3 used in some states in America for ambient concentrations. The power cutting of brick and the largest demolition activities gave the highest construction levels. Measured urban background RCS levels were typically below 0.3 μg m-3 and the median RCS level, at a rural background location, was 0.02 μg m-3. These reported ambient RCS concentrations may provide useful baseline values to assess the wider impact of fugitive, RCS containing, dust emissions into the wider environment.

  2. Reuter Centrifugal Air Sampler: Measurement of Effective Airflow Rate and Collection Efficiency

    OpenAIRE

    Macher, J. M.; First, M. W.

    1983-01-01

    Incorrect calculation of effective air sampling rate and disregard of differences in collection efficiency among samplers can lead to false conclusions about the usefulness of samplers for measuring concentrations of airborne microorganisms.

  3. A mathematics sampler topics for the liberal arts

    CERN Document Server

    Berlinghoff, William P; Skrien, Dale

    2001-01-01

    Now in its fifth edition, A Mathematics Sampler presents mathematics as both science and art, focusing on the historical role of mathematics in our culture. It uses selected topics from modern mathematics-including computers, perfect numbers, and four-dimensional geometry-to exemplify the distinctive features of mathematics as an intellectual endeavor, a problem-solving tool, and a way of thinking about the rapidly changing world in which we live. A Mathematics Sampler also includes unique LINK sections throughout the book, each of which connects mathematical concepts with areas of interest th

  4. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  5. Formation and emission of fine particles from two coal-fired power plants

    DEFF Research Database (Denmark)

    Nielsen, M.T.; Livbjerg, H.; Fogh, C.L.

    2002-01-01

    , before the desulfurisation plant, and in the stack. The following sampling techniques are used: scanning mobility particle sizer, low pressure cascade impactor, dichotomous PM2.5 sampler, and total particle filter. The so-called multi-platform method used in this work Proves useful for gaining insight...

  6. Tank 241-C-111 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-111. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  7. Tank 241-BY-110 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-BY-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to the tank farm workers due to fugitive emissions from the tank

  8. Evaluation of passive samplers for the collection of dissolved organic matter in streams.

    Science.gov (United States)

    Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V

    2015-01-01

    Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.

  9. Overflow type sodium sampler for FBTR circuits

    International Nuclear Information System (INIS)

    Muralidaran, P.; Ganesan, V.; Chandran, K.; Periaswami, G.

    1996-01-01

    Obtaining a representative sample is crucial for getting reliable results in sodium analysis. Sampling liquid sodium reliability is complicated since impurities segregate while cooling. Selective sorption of certain elements calls for use of different crucible materials for various sodium impurities. Sampling methods currently in use such as flow through sampling and dip sampling are not the proper methods as they can not take care of the above problems. An overflow type sampler where the entire sample contained in a crucible can be used for analysis thus obviating problems due to segregation has been developed for use in Fast Breeder Test Reactor (FBTR). This report describes the construction and operation of this sampler. (author)

  10. Seasonal variability of 1-chloropyrene on atmospheric particles and photostability in toluene.

    Science.gov (United States)

    Ohura, Takeshi; Kitazawa, Atsushi; Amagai, Takashi

    2004-11-01

    The occurrence of a mutagenic compound, 1-chloropyrene (Cl-Py), in extracts of ambient particulate matter at an urban site in Japan has been investigated. Samples were collected with a high-volume air sampler for 24 h periods over the course of 1 week in winter (February), spring (May), summer (August), and autumn (November) 2002. The Cl-Py levels showed seasonal variation, ranging from 2.4 pg/m(3) (summer) to 18.9 pg/m(3) (winter). This variation would indicate that the lower temperatures in winter results in an increased distribution of Cl-Py from vapor phase to the particle phase. In addition, there is also the possibility that ambient Cl-Py is emitted from seasonal sources or is susceptible to photodegradation by sunlight, or both. The photodegradation of Cl-Py in a laboratory experiment was conducted to simulate the compound's fate on airborne particle surfaces. The degradation of Cl-Py proceeded by a first-order reaction with a rate constant of 0.72 h(-1). In the presence of a radical sensitizer, 9,10-anthraquinone (AQ), the photodegradation rate of Cl-Py was elevated in comparison with the rate in the absence of AQ. In addition, the dechlorination of Cl-Py (i.e., the formation of Py) occurred in the presence of AQ.

  11. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation,

    Science.gov (United States)

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake...

  12. Magnetic Particles Are Found In The Martian Atmosphere

    Science.gov (United States)

    1976-01-01

    The dark bullseye pattern seen at the top of Viking l's camera calibration chart indicates the presence of magnetic particles in the fine dust in the Martian atmosphere. A tiny magnet is mounted at that spot to catch wind-borne magnetic particles. The particles may have been tossed into the atmosphere surrounding the spacecraft at the time of landing and during the digging and delivery of the Mars soil sample by the surface sampler scoop. This picture was taken August 4.

  13. Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor.

    Science.gov (United States)

    Malinowski, Robert; Volpe, Giovanni; Parkin, Ivan P; Volpe, Giorgio

    2018-02-01

    The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner.

  14. UWB Sampler for Wireless Communications and Radar

    National Research Council Canada - National Science Library

    Han, Jeongwoo; Nguyen, Cam

    2005-01-01

    An ultra wideband (UWB) sampler, realized using step recovery and Schottky diodes on coplanar waveguide, coplanar strips and slotlines, has been developed for UWB wireless communications and radar systems...

  15. WHATS-3: An improved flow-through multi-bottle fluid sampler for deep-sea geofluid research

    Science.gov (United States)

    Miyazaki, Junichi; Makabe, Akiko; Matsui, Yohei; Ebina, Naoya; Tsutsumi, Saki; Ishibashi, Jun-ichiro; Chen, Chong; Kaneko, Sho; Takai, Ken; Kawagucci, Shinsuke

    2017-06-01

    Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to understanding subseafloor environments of Earth. Fluid chemistry, especially, provides crucial information towards elucidating the physical, chemical and biological processes that occur in these ecosystems. To accurately assess fluid and gas properties of deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and as such they are important assets of deep-sea geofluid research. Here, the development of a new flow-through, pressure-tight fluid sampler capable of four independent sampling events (two subsamples for liquid and gas analyses from each) is reported. This new sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a major upgrade from the previous WHATS-2 sampler with improvements in sample number, valve operational time, physical robustness, and ease of maintenance. Routine laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa pressure. Successful field tests of the new sampler were also carried out in five hydrothermal fields, two in Indian Ocean and three in Okinawa Trough (max. depth 3,300 m). Relations of Mg and major ion species demonstrated bimodal mixing trends between a hydrothermal fluid and seawater, confirming the high-quality of fluids sampled. The newly developed WHATS-3 sampler is well-balanced in sampling capability, field usability, and maintenance feasibility, and can serve as one of the best geofluid samplers available at present to conduct efficient research of deep-sea geofluid systems.

  16. The suitability of the IOM foam sampler for bioaerosol sampling in Occupational Environments.

    Science.gov (United States)

    Haatainen, Susanna; Laitinen, Juha; Linnainmaa, Markku; Reponen, Tiina; Kalliokoski, Pentti

    2010-01-01

    Concurrent samples were collected with Andersen and IOM foam samplers to determine whether if the IOM foam sampler can be applied to collect culturable microorganisms. Two different kinds of aerosols were studied: peat dust in a power plant and mist from coolant fluid aerosolized during grinding of blades and rollers in a paper mill. In the power plant, the concentrations of fungi were 2-3 times higher in the IOM samples than in the Andersen samples. However, more fungal genera were identified in the latter case. The methods yielded similar concentrations of bacteria and actinobacteria in the power plant. On the other hand, the performance of the IOM foam sampler was very poor in the paper mill, where stress-sensitive gram-negative bacteria dominated; low concentration of bacteria was detected in only one IOM sample even though the concentration of bacteria often exceeded even the upper detection limit in the Andersen impactor samples. It could be concluded that the IOM foam sampler performs quite well for collecting inhalable fungi and actinobacteria. However, the Andersen sampler provides better information on fungal genera and concentrations of gram-negative bacteria. Personal sampling with the IOM foam sampler provided an important benefit in the power plant, where the concentration ratio of personal to stationary samples was much higher for bacteria than for inhalable or respirable dust.

  17. ChemCam Passive Sky Spectroscopy at Gale Crater, Mars: Interannual Variability in Dust Aerosol Particle Size, Missing Water Vapor, and the Molecular Oxygen Problem

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.; Wolff, M. J.; Bender, S. C.; Lemmon, M. T.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lasue, J.; Meslin, P. Y.; Harri, A. M.; Genzer, M.; Kemppinen, O.; Martinez, G.; DeFlores, L. P.; Blaney, D. L.; Johnson, J. R.; Bell, J. F., III; Trainer, M. G.; Lefèvre, F.; Atreya, S. K.; Mahaffy, P. R.; Wong, M. H.; Franz, H. B.; Guzewich, S.; Villanueva, G. L.; Khayat, A. S.

    2017-12-01

    The Mars Science Laboratory's (MSL) ChemCam spectrometer measures atmospheric aerosol properties and gas abundances by operating in passive mode and observing scattered sky light at two different elevation angles. We have previously [e. g. 1, 2] presented the methodology and results of these ChemCam Passive Sky observations. Here we will focus on three of the more surprising results that we have obtained: (1) depletion of the column water vapor at Gale Crater relative to that of the surrounding region combined with a strong enhancement of the local column water vapor relative to pre-dawn in-situ measurements, (2) an interannual change in the effective particle size of dust aerosol during the aphelion season, and (3) apparent seasonal and interannual variability in molecular oxygen that differs significantly from the expected behavior of a non-condensable trace gas and differs significantly from global climate model expectations. The ChemCam passive sky water vapor measurements are quite robust but their interpretation depends on the details of measurements as well as on the types of water vapor vertical distributions that can be produced by climate models. We have a high degree of confidence in the dust particle size changes but since aerosol results in general are subject to a variety of potential systematic effects our particle size results would benefit from confirmation by other techniques [c.f. 3]. For the ChemCam passive sky molecular oxygen results we are still working to constrain the uncertainties well enough to confirm the observed surprising behavior, motivated by similarly surprising atmospheric molecular oxygen variability observed by MSL's Sample Analysis at Mars (SAM) instrument [4]. REFERENCES: [1] McConnochie, et al. (2017), Icarus (submitted). [2] McConnochie, et al. (2017), abstract # 3201, The 6th International Workshop on the Mars Atmosphere: Granada, Spain. [3] Vicente-Retortillo et al. (2017), GRL, 44. [4] Trainer et al. (2017), 2017 AGU Fall

  18. PM10 sampler deposited air particulates: Ascertaining uniformity of sample on filter through rotated exposure to radiation

    International Nuclear Information System (INIS)

    Owoade, Oyediran K.; Olise, Felix S.; Obioh, Imoh B.; Olaniyi, Hezekiah B.; Bolzacchini, Ezio; Ferrero, Luca; Perrone, Grazia

    2006-01-01

    For reproducibility of analytical results of samples deposited on filters using PM 10 sampler, homogeneity of the sample on the filter is very important especially when the size of the X-ray beam for the analysis is less than the size of filter. It is against this background that the air particulate samples collected on using PM 10 samplers are analysed to determine the elemental concentrations. Each sample was divided into four quadrants and each was analysed under same conditions to determine if the particles were deposited uniformly over the filter. Each analysis was done using EDXRF technique. The spectrometer consists of four secondary targets, which are automatically switched to in sequence in analysing each sample. The concentration of various elements detected was determined using TURBOQUANT (a brand name for a SPECTRO method which is used for screening analysis). Sixteen elements were detected in every sample. Results show that there was less than 10% deviation in the concentrations in different quadrants. There were a few elements like Ba, Cs, etc., which have deviation greater than 20%. The concentrations of these latter elements were close to detection limits of the spectrometer. We conclude that the analytical result of particulate samples deposited on filters by the PM 10 sampler can be reliable in terms of the homogeneity of the deposition. For such analytes with low concentrations, it would be important that the sampling time be increased to allow for higher mass deposition on the filter

  19. Short-term diffusive sampler for nitrogen dioxide monitoring in epidemiology

    International Nuclear Information System (INIS)

    Michaud, J.P.; Quackenboss, J.

    1991-01-01

    An automated timed exposure diffusive sampler (TEDS) for sampling nitrogen dioxide (NO 2 ) was developed for use in epidemiological studies. The TEDS sequentially exposes four passive sampling devices (PSD) by microprocessor controlled valves while a pump and air flow guide prevent sampler starvation. Two TEDS units and two portable, real-time NO 2 monitors were tested for accuracy, precision, sensitivity, and linearity of response. The accuracy of the TEDS was within 10 percent of the means of the measured values. The TEDS sensitivity was 20 to 30 ppb-hour for NO 2 . Co-location of the TEDS with a chemiluminescent NO x monitor (EPA reference method) showed a similar responses to ambient NO 2 . TEDS allows better time resolution than traditional diffusive samplers (i.e., Palmes tube) while sharing their ability to sample a variety of gases

  20. Fluidic Sampler. Tanks Focus Area. OST Reference No. 2007

    International Nuclear Information System (INIS)

    1999-01-01

    Problem Definition; Millions of gallons of radioactive and hazardous wastes are stored in underground tanks across the U.S. Department of Energy (DOE) complex. To manage this waste, tank operators need safe, cost-effective methods for mixing tank material, transferring tank waste between tanks, and collecting samples. Samples must be collected at different depths within storage tanks containing various kinds of waste including salt, sludge, and supernatant. With current or baseline methods, a grab sampler or a core sampler is inserted into the tank, waste is maneuvered into the sample chamber, and the sample is withdrawn from the tank. The mixing pumps in the tank, which are required to keep the contents homogeneous, must be shut down before and during sampling to prevent airborne releases. These methods are expensive, require substantial hands-on labor, increase the risk of worker exposure to radiation, and often produce nonrepresentative and unreproducible samples. How It Works: The Fluidic Sampler manufactured by AEA Technology Engineering Services, Inc., enables tank sampling to be done remotely with the mixing pumps in operation. Remote operation minimizes the risk of exposure to personnel and the possibility of spills, reducing associated costs. Sampling while the tank contents are being agitated yields consistently homogeneous, representative samples and facilitates more efficient feed preparation and evaluation of the tank contents. The above-tank portion of the Fluidic Sampler and the replacement plug and pipework that insert through the tank top are shown.

  1. Project R43.106: Field trails of a passive dust sampler in mines: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M. [Health and Safety Laboratory, Sheffield (United Kingdom). Environmental Measurement Groups

    1999-12-01

    Electret based passive dust samplers developed by the project were tested in four collieries in the United Kingdom and compared with MRE gravimetric site samplers (Casella type 113A) and CIP10 samplers (Capteur Indivuel de Poussiere 10 made by Arelco, France). Results of site sampling and personal sampling was assessed according to the draft-CFB standard (1998). The sampler did not satisfy the CEN criteria when results from all the collieries were analysed and therefore a general calibration function suitable for all mines could not be used. In the severe conditions of the coal mines, 62% of the passive samplers failed because the electrets lost more than 70% of their initial surface charge. Work is recommended on improving the charge stability of the electrets. 7 refs., 6 figs., 1 app.

  2. Mobile dynamic passive sampling of trace organic compounds: Evaluation of sampler performance in the Danube River.

    Science.gov (United States)

    Vrana, Branislav; Smedes, Foppe; Allan, Ian; Rusina, Tatsiana; Okonski, Krzysztof; Hilscherová, Klára; Novák, Jiří; Tarábek, Peter; Slobodník, Jaroslav

    2018-03-29

    A "dynamic" passive sampling (DPS) device, consisting of an electrically driven large volume water pumping device coupled to a passive sampler exposure cell, was designed to enhance the sampling rate of trace organic compounds. The purpose of enhancing the sampling rate was to achieve sufficient method sensitivity, when the period available for sampling is limited to a few days. Because the uptake principle in the DPS remains the same as for conventionally-deployed passive samplers, free dissolved concentrations can be derived from the compound uptake using available passive sampler calibration parameters. This was confirmed by good agreement between aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) derived from DPS and conventional caged passive sampler. The DPS device enhanced sampling rates of compounds that are accumulated in samplers under water boundary layer control (WBL) more than five times compared with the conventionally deployed samplers. The DPS device was deployed from a ship cruising downstream the Danube River to provide temporally and spatially integrated concentrations. A DPS-deployed sampler with surface area of 400cm 2 can reach sampling rates up to 83Ld -1 . The comparison of three passive samplers made of different sorbents and co-deployed in the DPS device, namely silicone rubber (SR), low density polyethylene (LDPE) and SDB-RPS Empore™ disks showed a good correlation of surface specific uptake for compounds that were sampled integratively during the entire exposure period. This provided a good basis for a cross-calibration between the samplers. The good correlation of free dissolved PAHs, PCBs and HCB concentration estimates obtained using SR and LDPE confirmed that both samplers are suitable for the identification of concentration gradients and trends in the water column. We showed that the differences in calculated aqueous concentrations between sampler types

  3. Europa Drum Sampler (EDuS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of the proposed work is to develop a robust and effective sample acquisition system for the Europa lander called the Europa Drum Sampler (EDuS)....

  4. WHATS-3: An Improved Flow-Through Multi-bottle Fluid Sampler for Deep-Sea Geofluid Research

    Directory of Open Access Journals (Sweden)

    Junichi Miyazaki

    2017-06-01

    Full Text Available Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to understanding subseafloor environments of Earth. Fluid chemistry, especially, provides crucial information toward elucidating the physical, chemical, and biological processes that occur in these ecosystems. To accurately assess fluid and gas properties of deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and as such they are important assets of deep-sea geofluid research. Here, the development of a new flow-through, pressure-tight fluid sampler capable of four independent sampling events (two subsamples for liquid and gas analyses from each is reported. This new sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a major upgrade from the previous WHATS-2 sampler with improvements in sample number, valve operational time, physical robustness, and ease of maintenance. Routine laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa pressure. Successful field tests of the new sampler were also carried out in five hydrothermal fields, two in Indian Ocean, and three in Okinawa Trough (max. depth 3,300 m. Relations of Mg and major ion species demonstrated bimodal mixing trends between a hydrothermal fluid and seawater, confirming the high quality of fluids sampled. The newly developed WHATS-3 sampler is well-balanced in sampling capability, field usability, and maintenance feasibility, and can serve as one of the best geofluid samplers available at present to conduct efficient research of deep-sea geofluid systems.

  5. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  6. Time and charge calibration of Cherenkov telescope data acquired by Domino Ring Sampler 4 chips

    Energy Technology Data Exchange (ETDEWEB)

    Hoerbe, Mario; Doert, Marlene [Ruhr-Universitaet Bochum (Germany); Bruegge, Kai; Buss, Jens; Bockermann, Christian; Egorov, Alexej [TU Dortmund (Germany)

    2016-07-01

    Very-high-energy gamma-ray astronomy aims to give an insight into the most energetic phenomena in our Universe. Earthbound Cherenkov telescopes can measure Cherenkov light emitted by atmospheric particle showers which are produced by incoming cosmic particles at high energies. Current Cherenkov telescopes, e.g. operated in the FACT and the MAGIC experiments, utilize Domino Ring Sampler 4 (DRS4) chips for recording signals at high speed coming from the telescopes' cameras. DRS4 chips will also be used in the cameras of the Large-Size telescopes of the projected Cherenkov Telescope Array (CTA). We aim at developing a software solution for the calibration of DRS4 data based on the streams-framework, a software tool for streaming analysis which has been developed within the Collaborative Research Center SFB 876. The objectives and the current status of the project are presented.

  7. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    Science.gov (United States)

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-09

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.

  8. Comparative evaluation of three impactor samplers for measuring airborne bacteria and fungi concentrations.

    Science.gov (United States)

    Méheust, Delphine; Gangneux, Jean-Pierre; Cann, Pierre Le

    2013-01-01

    Portable microbial samplers are useful for detecting microorganisms in the air. However, limited data are available on their performance when sampling airborne biological agents in a routine practice. We compared bacterial and fungal concentrations obtained in field conditions using three impactor samplers with different designs (AES Chemunex Sampl'Air, bioMérieux Air Ideal, and Sartorius AirPort MD8/BACTair). The linearity of mold collection was tested in the range of 100 L to 1000 L, and all the devices had a correlation coefficient higher than 0.95. For optimal comparison of the samplers, we performed experiments in different hospital rooms with varying levels of air biocontamination. Each sampling procedure was repeated to assess reproducibility. No significant difference between the samplers was observed for the mold concentrations on Sabouraud agar, whereas Sampl'Air collected significantly more bacteria on tryptic soy agar than Air Ideal or BACTair at one of the sites. Impactor location in the room was nevertheless associated with the variability observed with the three samplers at the highest microbial concentration levels. On the basis of their performance, autonomy and simplicity of use, these three impactors are suitable for routine indoor evaluation of microbial air contamination.

  9. Venera-15: water vapor at altitudes of 55 - 65 km.

    Science.gov (United States)

    Zasova, L. V.; Ignat'ev, N. I.; Moroz, V. I.; Khatuntsev, I. V.

    1999-02-01

    Spectra of Venus outgoing thermal radiation were measured in 1983 onboard the Venera-15 spacecraft (Venus' artificial satellite) in the 6 - 40 μm range at different latitudes and longitudes. Results of a new analysis of these spectra are presented, which have been elaborated in order to revise the water vapor content estimates.

  10. Comparative performance of two air samplers for monitoring airborne fungal propagules

    Directory of Open Access Journals (Sweden)

    L.G.F. Távora

    2003-05-01

    Full Text Available Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS. A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50. However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.

  11. Chemistry of the sea surface microlayer. 1. Fabrication and testing of the sampler

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.

    A screen sampler fabricated to study the sea surface microlayer (SML) has been described. The screen sampler was tested in the Mandovi estuary and adjacent waters. Physico-chemical parameters of the subsurface waters from a depth of 25 cm was also...

  12. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation (IPSW)

    Science.gov (United States)

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measur...

  13. 40 CFR 53.54 - Test for proper sampler operation following power interruptions.

    Science.gov (United States)

    2010-07-01

    ...) Mean sample flow rate. (i) From the certified measurements (Qref) of the test sampler flow rate... facilitate measurement of sample flow rate at the sampler downtube. (5) Means for creating an additional... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...

  14. Field evaluation of a tailor-made new passive sampler for the determination of NO2 levels in ambient air.

    Science.gov (United States)

    Ozden, Ozlem; Dogeroglu, Tuncay

    2008-07-01

    This study describes the field evaluation of a tailor-made new glass passive sampler developed for the determination of NO(2), based on the collection on triethanolemine (TEA)-coated fibre filter paper. The sampler has been derived from a Palmes design. The overall uncertainty of the sampler was determined by using Griess-Saltzman ASTM D 1607 standard test method as a reference method. The agreement between the results of the passive sampler and the reference method was +/-7.90% with the correlation coefficient of 0.90. Method precision in terms of coefficient of variance (CV) for three simultaneously applied passive samplers was 8.80%. The uptake rate of NO(2) was found to be 2.49 ml/min in a very good agreement with the value calculated from theory (2.63 ml/min). Sampler detection limit was 1.99 microg/m(3) for an exposure period of 1 week and the sampler can be stored safely for a period of up to 6 weeks before exposure. A comparison of the sampler performance was conducted against a commercially available diffusion tube (Gradko diffusion tube). The results from the applied statistical paired t test indicated that there was no significant difference between the performances of two passive samplers (R (2) > 0.90). Also, another statistical comparison was carried out between the dark and transparent glass passive samplers. The results from the dark-colour sampler were higher than that from the transparent sampler (approximately 25%) during the summer season because of the possible photodegradation of NO(2)-TEA complex.

  15. Measurements of gas and particle polycyclic aromatic hydrocarbons (PAHs) in air at urban, rural and near-roadway sites

    Science.gov (United States)

    Pratt, G. C.; Herbrandson, C.; Krause, M. J.; Schmitt, C.; Lippert, C. J.; McMahon, C. R.; Ellickson, K. M.

    2018-04-01

    We measured polycyclic aromatic hydrocarbons (PAHs) in gas and particle phases over two years using high volume samplers equipped with quartz fiber filters and XAD-4 at a rural site, an urban site, and a site adjacent to a heavily trafficked roadway. Overall results were generally as expected, in that concentrations increased from rural to urban to near-roadway sites, and PAHs with high vapor pressures (liquid subcooled, PoL) and low octanol-air partition coefficients (Koa) were mainly in the gas phase, while those with low PoL and high Koa were predominantly in the particle phase. Intermediate PAHs existed in both phases with the phase distribution following a seasonal pattern of higher gas phase concentrations in summer due to temperature effects. The overall pattern of phase distribution was consistent with PAH properties and ambient conditions and was similar at all three sites. The particle-bound fraction (ϕ) was well-described empirically by nonlinear regressions with log Koa and log PoL as predictors. Adsorption and absorption models underestimated the particle-bound fraction for most PAHs. The dual aerosol-air/soot-air model generally represented the gas-particle partitioning better than the other models across all PAHs, but there was a tendency to underestimate the range in the particle-bound fraction seen in measurements. There was a statistically insignificant tendency for higher PAHs in the particle phase at the near roadway site, and one piece of evidence that PAHs may be enriched on ultrafine particles at the near roadway site. Understanding the phase and particle size distributions of PAHs in highly polluted, high exposure microenvironments near traffic sources will help shed light on potential health effects.

  16. Applications of particle induced X-ray emission analysis to ambient aerosol studies

    International Nuclear Information System (INIS)

    Lannefors, H.

    1982-01-01

    The characteristics of Particle Induced X-ray Emission (PIXE) analysis in conjunction with different ambient aerosol samplers have been studied. Correction factors have been calculated for homogeneous and inhomogeneous rural and urban aerosol samples. The Nuclepore two stage filter sampler provided the most useful combination of the resolution and particle size fractionation in urban, rural and remote environments. The PIXE-analysis technique in combination with different samplers was employed in aerosol composition studies in rural and remote environments. Particular emphasis was laid on studies of aerosol long range transport. Based on air mass trajectory analysis and aerosol composition measurements the foreign contribution in southern Sweden was estimated to be 70 - 80% for S and Pb but only 30 - 50% for V and Ni. The spatial and temporal extension of a long range transport episode was studied using high time resolution continuous filter samplers in a network in southern Sweden. The variation in the concentration levels of sulphur agreed well with changes in the air mass history. Arctic summer elemental concentration levels as measured during the Swedish YMER-80 icebreaker expedition were typically one order of magnitude lower than Arctic winter levels. The combination of chemical information, optical properties and size distribution data supports the hypothesis of long range transport of air pollution into the Arctic especially during the winter. This takes place during the winter season because the Polar front is further south making conditions for long range transport up to the Arctic more favourable. (Auth.)

  17. PM{sub 10} sampler deposited air particulates: Ascertaining uniformity of sample on filter through rotated exposure to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Owoade, Oyediran K. [Environmental Research Laboratory (ERL), Physics Department, Obafemi Awolowo University, Ile-Ife (Nigeria)]. E-mail: oowoade2001@yahoo.com; Olise, Felix S. [Environmental Research Laboratory (ERL), Physics Department, Obafemi Awolowo University, Ile-Ife (Nigeria); Obioh, Imoh B. [Centre for Energy Research, Development (Cerd), Obafemi Awolowo University, Ile-Ife (Nigeria); Olaniyi, Hezekiah B. [Environmental Research Laboratory (ERL), Physics Department, Obafemi Awolowo University, Ile-Ife (Nigeria); Bolzacchini, Ezio [Universita Milano-Bicocca, Dipartimento di Scienze-Ambientali, Pizza della Scienza, Milan (Italy); Ferrero, Luca [Universita Milano-Bicocca, Dipartimento di Scienze-Ambientali, Pizza della Scienza, Milan (Italy); Perrone, Grazia [Universita Milano-Bicocca, Dipartimento di Scienze-Ambientali, Pizza della Scienza, Milan (Italy)

    2006-08-01

    For reproducibility of analytical results of samples deposited on filters using PM{sub 10} sampler, homogeneity of the sample on the filter is very important especially when the size of the X-ray beam for the analysis is less than the size of filter. It is against this background that the air particulate samples collected on using PM{sub 10} samplers are analysed to determine the elemental concentrations. Each sample was divided into four quadrants and each was analysed under same conditions to determine if the particles were deposited uniformly over the filter. Each analysis was done using EDXRF technique. The spectrometer consists of four secondary targets, which are automatically switched to in sequence in analysing each sample. The concentration of various elements detected was determined using TURBOQUANT (a brand name for a SPECTRO method which is used for screening analysis). Sixteen elements were detected in every sample. Results show that there was less than 10% deviation in the concentrations in different quadrants. There were a few elements like Ba, Cs, etc., which have deviation greater than 20%. The concentrations of these latter elements were close to detection limits of the spectrometer. We conclude that the analytical result of particulate samples deposited on filters by the PM{sub 10} sampler can be reliable in terms of the homogeneity of the deposition. For such analytes with low concentrations, it would be important that the sampling time be increased to allow for higher mass deposition on the filter.

  18. Evaluation of a passive method for determining particle penetration through protective clothing materials.

    Science.gov (United States)

    Jaques, Peter A; Portnoff, Lee

    2017-12-01

    The risk of workers' exposure to aerosolized particles has increased with the upsurge in the production of engineered nanomaterials. Currently, a whole-body standard test method for measuring particle penetration through protective clothing ensembles is not available. Those available for respirators neglect the most common challenges to ensembles, because they use active vacuum-based filtration, designed to simulate breathing, rather than the positive forces of wind experienced by workers. Thus, a passive method that measures wind-driven particle penetration through ensemble fabric has been developed and evaluated. The apparatus includes a multidomain magnetic passive aerosol sampler housed in a shrouded penetration cell. Performance evaluation was conducted in a recirculation aerosol wind tunnel using paramagnetic Fe 3 O 4 (i.e., iron (II, III) oxide) particles for the challenge aerosol. The particles were collected on a PVC substrate and quantified using a computer-controlled scanning electron microscope. Particle penetration levels were determined by taking the ratio of the particle number collected on the substrate with a fabric (sample) to that without a fabric (control). Results for each fabric obtained by this passive method were compared to previous results from an automated vacuum-based active fractional efficiency tester (TSI 3160), which used sodium chloride particles as the challenge aerosol. Four nonwoven fabrics with a range of thicknesses, porosities, and air permeabilities were evaluated. Smoke tests and flow modeling showed the passive sampler shroud provided smooth (non-turbulent) air flow along the exterior of the sampler, such that disturbance of flow stream lines and distortion of the particle size distribution were reduced. Differences between the active and passive approaches were as high as 5.5-fold for the fabric with the lowest air permeability (0.00067 m/sec-Pa), suggesting the active method overestimated penetration in dense fabrics

  19. Direct analysis of airborne mite allergen (Der f1) in the residential atmosphere by chemifluorescent immunoassay using bioaerosol sampler.

    Science.gov (United States)

    Miyajima, Kumiko; Suzuki, Yurika; Miki, Daisuke; Arai, Moeka; Arakawa, Takahiro; Shimomura, Hiroji; Shiba, Kiyoko; Mitsubayashi, Kohji

    2014-06-01

    Dermatophagoides farinae allergen (Der f1) is one of the most important indoor allergens associated with allergic diseases in humans. Mite allergen Der f1 is usually associated with particles of high molecular weight; thus, Der f1 is generally present in settled dust. However, a small quantity of Der f1 can be aerosolized and become an airborne component. Until now, a reliable method of detecting airborne Der f1 has not been developed. The aim of this study was to develop a fiber-optic chemifluorescent immunoassay for the detection of airborne Der f1. In this method, the Der f1 concentration measured on the basis of the intensity of fluorescence amplified by an enzymatic reaction between the labeled enzyme by a detection antibody and a fluorescent substrate. The measured Der f1 concentration was in the range from 0.49 to 250 ng/ml and a similar range was found by enzyme-linked immunosorbent assay (ELISA). This method was proved to be highly sensitive to Der f1 compared with other airborne allergens. For the implementation of airborne allergen measurement in a residential environment, a bioaerosol sampler was constructed. The airborne allergen generated by a nebulizer was conveyed to a newly sampler we developed for collecting airborne Der f1. The sampler was composed of polymethyl methacrylate (PMMA) cells for gas/liquid phases and some porous membranes which were sandwiched in between the two phases. Der f1 in air was collected by the sampler and measured using the fiber-optic immunoassay system. The concentration of Der f1 in aerosolized standards was in the range from 0.125 to 2.0 mg/m(3) and the collection rate of the device was approximately 0.2%. © 2013 Elsevier B.V. All rights reserved.

  20. Microstructure analysis of zirconium carbide layer on pyrocarbon-coated particles prepared by zirconium chloride vapor method

    International Nuclear Information System (INIS)

    Zhao Hongsheng; Liu Bing; Zhang Kaihong; Tang Chunhe

    2012-01-01

    Zirconium carbide (ZrC) layer on pyrocarbon-coated particles was successfully prepared in a fluidized bed coater furnace by chemical vapor deposition using a zirconium chloride (ZrCl 4 ) vapor method and quantitative controlling of the Zr-source through a ZrCl 4 powder feeder. The crystal phase, microstructure and chemical composition of ZrC-coating layer were analyzed using X-ray diffraction (XRD), optical metallographical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results show that the deposited ZrC-coating layer has smooth and compact surface, no obvious holes, clear interface with dense pyrocarbon layer, and a thickness of 35 μm. The main phase of ZrC-coating layer is fcc-ZrC crystal, which is composed of small grains with the size of 20–50 nm. The grain size increases monotonously with the deposition temperature increasing. The main elements of ZrC-coating layer are Zr and C, and the Zr/C molar ratio is close to 1:1. The analysis of composition and crystal structure suggest that a stoichiometric fcc-ZrC crystal was obtained and no obvious preferred orientation of the grains was found.

  1. Tank 241-C-109 headspace gas and vapor characterization results for samples collected in August 1994. Revision 2

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  2. Tank 241-BY-110 Headspace Gas and Vapor Characterization Results for Samples Collected in November 1994. Revision 2

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  3. Tank 241-C-105 headspace gas and vapor characterization results for samples collected in February 1994. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  4. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    Science.gov (United States)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  5. Experimental and theoretical investigations about the vaporization of laser-produced aerosols and individual particles inside inductively-coupled plasmas — Implications for the extraction efficiency of ions prior to mass spectrometry

    International Nuclear Information System (INIS)

    Flamigni, Luca; Koch, Joachim; Günther, Detlef

    2012-01-01

    Current quantification capabilities of laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) are known to be restricted by elemental fractionation as a result of LA-, transport-, and ICP-induced effects which, particularly, may provoke inaccuracies whenever calibration strategies on the basis of non-matrix matched standard materials are applied. The present study is dealing with the role of ICP in this complex scenario. Therefore, the vaporization process of laser-produced aerosols and subsequent diffusion losses occurring inside ICP sources were investigated using 2-D optical emission spectrometry (OES) and ICP-quadrupole (Q)MS of individual particles. For instance, Na- and Ca-specific OES of aerosols produced by LA of silicate glasses or metals revealed axial shifts in the onset and maximum position of atomic emission which were in the range of a few millimeters. The occurrence of these shifts was found to arise from composition-dependent particle/aerosol penetration depths, i.e. the displacement of axial vaporization starting points controlling the ion extraction efficiency through the ICP-MS vacuum interface due to a delayed, diffusion-driven expansion of oxidic vs. metallic aerosols. Furthermore, ICP-QMS of individual particles resulted in 1/e half-value signal durations of approximately 100 μs, which complies with modeled values if OES maxima are assumed to coincide with positions of instantaneous vaporization and starting points for atomic diffusion. To prove phenomena observed for their consistency, in addition, “ab initio” as well as semi-empirical simulations of particle/aerosol penetration depths followed by diffusion-driven expansion was accomplished indicating differences of up to 15% in the relative ion extraction efficiency depending on whether analytes are supplied as metals or oxides. Implications of these findings on the accuracy achievable by state-of-the-art LA-ICP-MS systems are outlined. - Highlights: ► Specification

  6. Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers

    Science.gov (United States)

    Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.

    2008-01-01

    Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatrazine, trifluralin, fluoranthene, pyrene, cis- and trans-nonachlor, and pentachloroanisole. Screening using Microtox resulted in no acutely toxic samples. POCIS samples screened by the YES assay failed to elicit a positive estrogenic response. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. Continuous air monitor for alpha-emitting aerosol particles

    International Nuclear Information System (INIS)

    McFarland, A.R.; Ortiz, C.A.; Rodgers, J.C.; Nelson, D.C.

    1991-01-01

    A new alpha continuous air monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of the interest. At the present time the authors have a prototype of the aerosol sampling system and they have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Wind tunnel tests show that ≥ 50% of 10 μm aerodynamic equivalent diameter (AED) particles penetrate the flow system from the ambient air to the collection filter when the flow rate is 57 L/min (2 cfm) and the wind speed is 1 m/s. The coefficient of variation of deposits of 10 μm AED aerosol particles on the collection filter is 7%. An inlet fractionator for removing high mobility background aerosol particles has been designed and successfully tested. The results show that it is possible to strip 95% of freshly formed radon daughters and 33% of partially aged radon daughters from the aerosol sample. This approach offers the opportunity to improve the signal-to-noise ratio in the alpha energy spectrum region of interest thereby enhancing the performance of background compensation algorithms

  8. Sampling of high amounts of bioaerosols using a high-volume electrostatic field sampler

    DEFF Research Database (Denmark)

    Madsen, A. M.; Sharma, Anoop Kumar

    2008-01-01

    For studies of the biological effects of bioaerosols, large samples are necessary. To be able to sample enough material and to cover the variations in aerosol content during and between working days, a long sampling time is necessary. Recently, a high-volume transportable electrostatic field...... and 315 mg dust (net recovery of the lyophilized dust) was sampled during a period of 7 days, respectively. The sampling rates of the electrostatic field samplers were between 1.34 and 1.96 mg dust per hour, the value for the Gravikon was between 0.083 and 0.108 mg dust per hour and the values for the GSP...... samplers were between 0.0031 and 0.032 mg dust per hour. The standard deviations of replica samplings and the following microbial analysis using the electrostatic field sampler and GSP samplers were at the same levels. The exposure to dust in the straw storage was 7.7 mg m(-3) when measured...

  9. Real-time aerosol photometer and optical particle counter comparison

    International Nuclear Information System (INIS)

    Santi, E.; Belosi, F.; Santachiara, G.; Prodi, F.; Berico, M.

    2010-01-01

    The paper presents the results of a comparison exercise among real-time aerosol samplers, based on different light scattering techniques. The comparison was carried out near to the ISAC institute in a box positioned inside the CNR research area in Bologna. Two nephelometers (Dust Trak from TSI, and Air Genius from Unitec) and an optical particle counter (ENVIRO-check from Grimm) were used for P M1 and P M10 fraction assessment. In the case of the optical particle counter, the particle number concentration in each size bin was also used. In parallel, two manual sampling lines were employed for reference (gravimetric) measurements. The results highlight different factor scales for the dust monitors, in comparison with gravimetric assessment, underlining the importance of a user calibration of such monitors as a function of the specific aerosol sampled. Moreover, the relative fluctuations of the hourly P M 10 and P M1 concentrations, against daily average concentrations, were studied in order to compare the ability of each sampler to follow changes in the aerosol size distribution. It was found that the photometers and optical particle counter revealed different behaviours. In the latter, a small increase in the particle concentration number in the coarse fraction gave a relatively high increase in the mass concentration that was not measured by the photometers. The explanation could be the relatively slight influence of a small particle number variation on the total scattered light for the photometers, unlike the case of the optical particle counter, where each particle contributes to the mass concentration. This aspect merits future research in order to better understand optical particle counter output used in P Mx monitoring activities.

  10. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  11. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  12. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  13. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongzheng; Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-15

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle. - Graphical abstract: An improved design of TRISO particle with porous SiC inner layer to replace the inner porous pyrolytic carbon layer was proposed and prepared by FB-CVD method. This new design is aimed to reduce the total internal pressure of the particles by reducing the formation of CO and to reduce the risks of amoeba effect. - Highlights: • An improved design of TRISO particle with porous SiC inner layer was proposed. • Three methods of preparing porous SiC layer are proposed and experimentally studied. • The density of porous SiC layer can be controlled by adjusting experimental parameters. • Formation mechanisms of porous SiC layer were given based on the FB-CVD principle. • TRISO particles with porous SiC inner layer were mass produced successfully.

  14. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    Science.gov (United States)

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  15. An Introduction to the DA-T Gibbs Sampler for the Two-Parameter Logistic (2PL Model and Beyond

    Directory of Open Access Journals (Sweden)

    Gunter Maris

    2005-01-01

    Full Text Available The DA-T Gibbs sampler is proposed by Maris and Maris (2002 as a Bayesian estimation method for a wide variety of Item Response Theory (IRT models. The present paper provides an expository account of the DAT Gibbs sampler for the 2PL model. However, the scope is not limited to the 2PL model. It is demonstrated how the DA-T Gibbs sampler for the 2PL may be used to build, quite easily, Gibbs samplers for other IRT models. Furthermore, the paper contains a novel, intuitive derivation of the Gibbs sampler and could be read for a graduate course on sampling.

  16. Determination of organochlorine pesticides in Indian coastal water using a moored in-situ sampler

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    An attempt has been made to determine the concentration of different organochlorine pesticides in the seawater off the central West Coast of India using an in-situ-sampler. The Seastar in-situ sampler is an instrument, which is designed to pump...

  17. Modeling random combustion of lycopodium particles and gas

    Directory of Open Access Journals (Sweden)

    M Bidabadi

    2016-06-01

    Full Text Available The random modeling combustion of lycopodium particles has been researched by many authors. In this paper, we extend this model and we also generate a different method by analyzing the effect of random distributed sources of combustible mixture. The flame structure is assumed to consist of a preheat-vaporization zone, a reaction zone and finally a post flame zone. We divide the preheat zone to different parts. We assumed that there is different distribution of particles in sections which are really random. Meanwhile, it is presumed that the fuel particles vaporize first to yield gaseous fuel. In other words, most of the fuel particles are vaporized at the end of the preheat zone. It is assumed that the Zel’dovich number is large; therefore, the reaction term in preheat zone is negligible. In this work, the effect of random distribution of particles in the preheat zone on combustion characteristics such as burning velocity, flame temperature for different particle radius is obtained.

  18. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  19. Field and modeling study of windblown particles from a uranium mill tailings pile. Interim report

    International Nuclear Information System (INIS)

    Schwendiman, L.C.; Sehmel, G.A.; Horst, T.W.; Thomas, C.W.; Perkins, R.W.

    1979-04-01

    A field study is reported, showing that for a carbonate-leach-process mill tailings pile in the Grants, New Mexico region much of the residual radioactive constituents in the tailings is found associated with particles 7 μm in diameter and smaller. As the tailings material dries, particle attachment and aggregation occurs with the result that radioactive constituents become associated more with larger particles. Soil samples taken at surface and subsurface on radial lines extending from the tailings pile for 5 miles showed the distribution of radium-226 and other radionuclides in the soil. The radeium-226 deposited on the soil was distributed in such a manner that about 1.6 Ci of randon-222 per day enters the atmosphere from this secondary source. The suspension and transport of particles were studied using an array of sampling towers and wind speed and velocity instrumentation that signaled designated samplers at upwind and downwind locations to operate when wind direction and speed criteria were satisfied. Flux of particles in various size ranges was determined as a function of wind speed. The radionuclide content of airborne particles as a function of particle size was measured for some samplers. A significant fraction of airborne radioactive material is associated with respirable particles. 56 figures, 13 tables

  20. A novel passive water sampler for in situ sampling of antibiotics.

    Science.gov (United States)

    Chen, Chang-Er; Zhang, Hao; Jones, Kevin C

    2012-05-01

    Passive water sampling has several advantages over active methods; it provides time-integrated data, can save on time and cost compared to active methods, and yield high spatial resolution data through co-deployment of simple, cheap units. However, one problem with many sampler designs in current use is that their uptake rates for trace substances of interest are flow-rate dependent, thereby requiring calibration data and other information to enable water concentrations to be derived from the mass per sampler. However, the 'family' of samplers employing the principle of diffusive gradients in thin films (DGT) provides an in situ means of quantitatively measuring labile species in aquatic systems without field calibration. So far, this technique has only been tested and applied in inorganic substances: metals, radionuclides, nutrients, etc. Design and applications of DGT to trace organic contaminants ('o-DGT') would be of widespread interest. This study describes the laboratory testing and performance characteristics of o-DGT, with the antibiotic sulfamethoxazole (SMX) as a model compound and XAD18 as the novel binding agent. o-DGT uptake of SMX increased with time and decreased with diffusion layer thickness, confirming the principle for SMX. XAD18 showed sufficiently high capacity for SMX for routine field applications. o-DGT measurement of SMX was independent of pH (6-9) and ionic strength (0.001-0.1 M) and not affected by flow rate once above static conditions. The diffusion coefficient of SMX in the sampler was measured using an independent diffusion cell and information is presented to allow temperature correction and derivation of aqueous concentrations from deployed samplers. The potential use of o-DGT for in situ measurement of pharmaceutical antibiotics is confirmed by this study and applications are briefly discussed.

  1. Comparison. US P-61 and Delft sediment samplers

    Science.gov (United States)

    Beverage, Joseph P.; Williams, David T.

    1990-01-01

    The Delft Bottle (DB) is a flow-through device designed by the Delft Hydraulic Laboratory (DHL), The Netherlands, to sample sand-sized sediment suspended in streams. The US P-61 sampler was designed by the Federal Interagency Sedimentation Project (FISP) at the St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minnesota, to collect suspended sediment from deep, swift rivers. The results of two point-sampling tests in the United States, the Mississippi River near Vicksburg, Mississippi, in 1983 and the Colorado River near Blythe, California, in 1984, are provided in this report. These studies compare sand-transport rates, rather than total sediment-transport rates, because fine material washes through the DB sampler. In the United States, the commonly used limits for sand-sized material are 0.062 mm to 2.00 mm (Vanoni 1975).

  2. Partitioning of organochlorine pesticides from water to polyethylene passive samplers

    International Nuclear Information System (INIS)

    Hale, Sarah E.; Martin, Timothy J.; Goss, Kai-Uwe; Arp, Hans Peter H.; Werner, David

    2010-01-01

    The mass transfer rates and equilibrium partitioning behaviour of 14 diverse organochlorine pesticides (OCP) between water and polyethylene (PE) passive samplers, cut from custom made PE sheets and commercial polyethylene plastic bags, were quantified. Overall mass transfer coefficients, k O , estimated PE membrane diffusion coefficients, D PE , and PE-water partitioning coefficients, K PE-water, are reported. In addition, the partitioning of three polycyclic aromatic hydrocarbons (PAHs) from water to PE is quantified and compared with literature values. K PE-water values agreed mostly within a factor of two for both passive samplers and also with literature values for the reference PAHs. As PE is expected to exhibit similar sorption behaviour to long-chain alkanes, PE-water partitioning coefficients were compared to hexadecane-water partitioning coefficients estimated with the SPARC online calculator, COSMOtherm and a polyparameter linear free energy relationship based on the Abraham approach. The best correlation for all compounds tested was with COSMOtherm estimated hexadecane-water partitioning coefficients. - The partitioning of organochlorine pesticides between single phase polyethylene passive samplers and water is quantified.

  3. Heavy water leak detection using diffusion sampler

    International Nuclear Information System (INIS)

    Joshi, M.L.; Hussain, S.A.

    1990-01-01

    In the Pressurrised Heavy Water Reactors (PHWRs) detection of the sources of heavy water leaks is importent both for the purpose of radiation hazard control as well as for the reduction of escape/loss of heavy water which, is an expensive nuclear material. This paper describes an application of tritium diffusion sampler for heavy water leak detection. The diffusion sampler comprises an usual tritium counting glass vial with a special orifice. The counting vial has water vapour, deficient in HTO concentration. The HTO present outside diffuses in the vial through the orifice, gets exchanged with water of the wet filter paper kept at the bottom and the moisture in the vial atmosphere which has HTO concentration lower than that outside. This results in continuation of net movement of HTO in the vial. The exchanged tritium is counted in liquid scintillation spectrometer. The method has a sensitivity of 10000 dpm/DAC-h. (author). 2 figs., 2 ta bs

  4. Prototype particulate stack sampler with single-cut nozzle and microcomputer calculating/display system

    International Nuclear Information System (INIS)

    Eler, J.C.; Littlefield, L.G.; Tillery, M.I.

    1979-01-01

    A prototype particulate stack sampler (PPSS) has been developed to improve on the existing EPA Method 5 sampling apparatus. Its primary features are (1) higher sampling rate (56 1/min); (2) display (on demand) of all required variables and calculated values by a microcomputer-based calculating and display system; (3) continuous stack gas moisture determination; (4) a virtual impactor nozzle with 3 μm mass median diameter cutpoint which collects fine and coarse particle fractions on separate glass fiber filters; (5) a variable-area inlet to maintain isokinetic sampling conditions; and (6) conversion to stainless steel components from the glass specified by EPA Method 5. The basic sampling techniques of EPA Method 5 have been retained; however, versatility in the form of optional in-stack filters and general modernization of the stack sampler have been provided in the prototype design. Laboratory testing with monodisperse dye aerosols has shown the present variable inlet, virtual impactor nozzle to have a collection efficiency which is less than 77% and significant wall losses. This is primarily due to lack of symmetry in this rectangular jet impactor and short transition lengths dictated by physical design constraints (required passage of the nozzle through a 7.6 cm (3 in) diameter stack port). Electronic components have shown acceptable service in laboratory testing although no field testing of the prototype under a broad range of temperature, humidity, and SO 2 concentration has been undertaken

  5. Mechanical reliability evaluation of alternate motors for use in a radioiodine air sampler

    International Nuclear Information System (INIS)

    Bird, S.K.; Huchton, R.L.; Motes, B.G.

    1984-03-01

    Detailed mechanical reliability studies of two alternate motors identified for use in the BNL Air Sampler wer conducted. The two motor types were obtained from Minnesota Electric Technology, Incorporated (MET) and TCS Industries (TCSI). Planned testing included evaluation of motor lifetimes and motor operability under different conditions of temperature, relative humidity, simulated rainfall, and dusty air. The TCSI motors were not lifetime tested due to their poor performance during the temperature/relative humidity tests. While operation on alternating current was satisfactory, on direct current only one of five TCSI motors completed all environmental testing. The MET motors had average lifetimes of 47 hours, 97 hours, and 188 hours, respectively, and exhibited satisfactory operation under all environmental test conditions. Therefore, the MET motor appears to be the better candidate motor for use in the BNL Air Sampler. However, because of the relatively high cost of purchasing and incorporating the MET motor into the BNL Air Sampler System, it is recommended that commercial air sampler systems be evaluated for use instead of the BNL system

  6. A comparison of four gravimetric fine particle sampling methods.

    Science.gov (United States)

    Yanosky, J D; MacIntosh, D L

    2001-06-01

    A study was conducted to compare four gravimetric methods of measuring fine particle (PM2.5) concentrations in air: the BGI, Inc. PQ200 Federal Reference Method PM2.5 (FRM) sampler; the Harvard-Marple Impactor (HI); the BGI, Inc. GK2.05 KTL Respirable/Thoracic Cyclone (KTL); and the AirMetrics MiniVol (MiniVol). Pairs of FRM, HI, and KTL samplers and one MiniVol sampler were collocated and 24-hr integrated PM2.5 samples were collected on 21 days from January 6 through April 9, 2000. The mean and standard deviation of PM2.5 levels from the FRM samplers were 13.6 and 6.8 microg/m3, respectively. Significant systematic bias was found between mean concentrations from the FRM and the MiniVol (1.14 microg/m3, p = 0.0007), the HI and the MiniVol (0.85 microg/m3, p = 0.0048), and the KTL and the MiniVol (1.23 microg/m3, p = 0.0078) according to paired t test analyses. Linear regression on all pairwise combinations of the sampler types was used to evaluate measurements made by the samplers. None of the regression intercepts was significantly different from 0, and only two of the regression slopes were significantly different from 1, that for the FRM and the MiniVol [beta1 = 0.91, 95% CI (0.83-0.99)] and that for the KTL and the MiniVol [beta1 = 0.88, 95% CI (0.78-0.98)]. Regression R2 terms were 0.96 or greater between all pairs of samplers, and regression root mean square error terms (RMSE) were 1.65 microg/m3 or less. These results suggest that the MiniVol will underestimate measurements made by the FRM, the HI, and the KTL by an amount proportional to PM2.5 concentration. Nonetheless, these results indicate that all of the sampler types are comparable if approximately 10% variation on the mean levels and on individual measurement levels is considered acceptable and the actual concentration is within the range of this study (5-35 microg/m3).

  7. A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    Science.gov (United States)

    Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.

    2017-12-01

    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of

  8. CERN Library | Ted Wilson presents "Engines of discovery: a century of particle accelerators" (revised and expanded edition) | 22 July

    CERN Multimedia

    2014-01-01

    Particle accelerators exploit the cutting edge of every aspect of today's technology and have themselves contributed to many of these technologies. The largest accelerators have been constructed as research tools for nuclear and high energy physics and there is no doubt that it is this field that has sustained their development culminating in the Large Hadron Collider.   Engines of discovery: a century of particle accelerators (revised and expanded edition), by Andrew Sessler and Ted Wilson, World Scientific, 2014, ISBN 9789814417198. An earlier book by the same authors, Engines of Discovery: A Century of Particle Accelerators, chronicled the development of these large accelerators and colliders, emphasising the critical discoveries in applied physics and engineering that drove the field. Particular attention was given to the key individuals who contributed, the methods they used to arrive at their particular discoveries and inventions, often recalling how their human strengths and attit...

  9. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  10. A carbon monoxide passive sampler: Research and development needs

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, G.W.; Apte, M.G.; Diamond, R.C.; Woods, A.L.

    1991-11-01

    In rare instances, carbon monoxide (CO) levels in houses can reach dangerously high concentrations, causing adverse health effects ranging from mild headaches to, under extreme conditions, death. Hundreds of fatal accidental carbon monoxide poisonings occur each year primarily due to the indoor operation of motor vehicles, the indoor use of charcoal for cooking, the operation of malfunctioning vented and unvented combustion appliances, and the misuse combustion appliances. Because there is a lack of simple, inexpensive, and accurate field sampling instrumentation, it is difficult for gas utilities and researchers to conduct field research studies designed to quantify the concentrations of CO in residences. Determining the concentration of CO in residences is the first step towards identifying the high risk appliances and high-CO environments which pose health risks. Thus, there exists an urgent need to develop and field-validate a CO-quantifying technique suitable for affordable field research. A CO passive sampler, if developed, could fulfill these requirements. Existing CO monitoring techniques are discussed as well as three potential CO-detection methods for use in a CO passive sampler. Laboratory and field research needed for the development and validation of an effective and cost-efficient CO passive sampler are also discussed.

  11. High-throughput liquid-absorption air-sampling apparatus and methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-11

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is < 10 cm of water, usually < 5 cm of water. The sampler's collection efficiency is usually > 20% for vapors or airborne particulates in the 2--3 microns range and > 50% for particles larger than 4 microns. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.

  12. Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations.

    Science.gov (United States)

    Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae

    2018-01-15

    Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (fraction were much higher than those in the fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.

    Science.gov (United States)

    Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2018-03-06

    A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.

  14. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  15. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  16. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-12-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5–95% at 298 K. The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions:

    (1 Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids.

    (2 Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts.

    (3 In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks and undergo transitions between swollen and collapsed network structures.

    (4 Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. Moreover, (semi-solid amorphous phases may influence the uptake of gaseous photo

  17. Performance Evaluation Report for Soil Vapor Extraction Operations at the Carbon Tetrachloride Site, February 1992 - September 1998

    International Nuclear Information System (INIS)

    Rohay, V. J.

    1999-01-01

    Soil vapor extraction (SVE) is being used to remove carbon tetrachloride from the vadose zone at the 200-ZP-2 Operable Unit. The purpose of this report is to evaluate both the SVE system operating data and the effectiveness of SVE in remediating the carbon tetrachloride contamination. This report has been revised to cover the operating period from February 25, 1992 through September 30, 1998. The scope of the report includes the history of SVE operations at 200-ZP-2, the efficiency of those operations over time, the volume of vapor processed per extraction system, the change in carbon tetrachloride concentrations with time, the mass of carbon tetrachloride removed per site, and recommendations for future operations and evaluations. This revision includes an update to the carbon tetrachloride conceptual model

  18. The use of passive samplers for monitoring polycyclic aromatic hydrocarbons in ambient air

    International Nuclear Information System (INIS)

    Jacob, J.; Grimmer, G.; Hildebrandt, A.

    1993-01-01

    In this study polycyclic aromatic hydrocarbon (PAH) concentrations of ambient air are compared to those present in leaves, spruce sprouts and in the corresponding soil used as passive samplers. Marked profile alterations were detected in various soil horizons with increasing relative concentrations of higher boiling and decreasing relative concentrations of lower boiling PAH with depth. There is no direct correlation between the absolute PAH masses found in air samples and those collected by passive samplers or detected in corresponding soil samples. Even the PAH profiles differ significantly: they can, however, be correlated by introducing PAH - and sampler-specific factors. The PAH profiles appear to indicate that coal combustion mostly contributes to the PAH air pollution in the FRG. The time course of the concentration of benzo(a)pyrene and benzo(e)pyrene during the past seven years as measured with spruce sprouts as biological passive sampler indicate a significant decrease of the PAH concentration (by a factor of two) in the FRG. First measurements in a clean air area of the Eastern part of the FRG exhibited up to ten times higher PAH concentrations than found in comparable areas of the western part of the country

  19. Development and evaluation of an ultrasonic personal aerosol sampler.

    Science.gov (United States)

    Volckens, J; Quinn, C; Leith, D; Mehaffy, J; Henry, C S; Miller-Lionberg, D

    2017-03-01

    Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time-integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5-3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low-cost electronics, open-source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM 2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM 2.5 across a broad range of concentrations. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  20. Baseline Design Compliance Matrix for the Type 4 In Situ Vapor Samplers and Supernate and Sludge and Soft Saltcake Grab Sampling

    International Nuclear Information System (INIS)

    BOGER, R.M.

    2000-01-01

    The DOE has identified a need to sample vapor space, exhaust ducts, supernate, sludge, and soft saltcake in waste tanks that store radioactive waste. This document provides the Design Compliance Matrix (DCM) for the Type 4 In-Situ Vapor Sampling (ISVS) system and the Grab Sampling System that are used for completing this type of sampling function. The DCM identifies the design requirements and the source of the requirements for the Type 4 ISVS system and the Grab Sampling system. The DCM is a single-source compilation design requirements for sampling and sampling support equipment and supports the configuration management of these systems

  1. Evaluation of the probability distribution of intake from a single measurement on a personal air sampler

    International Nuclear Information System (INIS)

    Birchall, A.; Muirhead, C.R.; James, A.C.

    1988-01-01

    An analytical expression has been derived for the k-sum distribution, formed by summing k random variables from a lognormal population. Poisson statistics are used with this distribution to derive distribution of intake when breathing an atmosphere with a constant particle number concentration. Bayesian inference is then used to calculate the posterior probability distribution of concentrations from a given measurement. This is combined with the above intake distribution to give the probability distribution of intake resulting from a single measurement of activity made by an ideal sampler. It is shown that the probability distribution of intake is very dependent on the prior distribution used in Bayes' theorem. The usual prior assumption, that all number concentrations are equally probable, leads to an imbalance in the posterior intake distribution. This can be resolved if a new prior proportional to w -2/3 is used, where w is the expected number of particles collected. (author)

  2. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  3. HTO/HT discriminating samplers constructed for the french experiment on the environmental behaviour of HT

    International Nuclear Information System (INIS)

    Ogram, G.L.

    1988-12-01

    The French Experiment on Environmental Tritium Behaviour was a field experiment carried out to determine the rate of formation of atmospheric HTO from a release of HT to the natural environment. The Canadian Fusion Fuels Technology Project and Ontario Hydro contributed to the project by supplying HTO/HT-discriminating, atmospheric tritium samplers. Each sampler consisted of a molecular-sieve trap to capture HTO followed by a Pd-impregnated molecular-sieve trap to oxidise and collect HT from the same air stream. This method was selected as it provided high sensitivity over short sampling periods and was convenient for field use. Laboratory tests indicated that this system measured HT concentrations reliably, but only achieved limited discrimination between HT and HTO at HTO/HT concentration ratios below 10 -2 to 10 -3 . Small cold traps were therefore operated during the French experiment in addition to the molecular-sieve samplers exhibited much improved discrimination in the field (approaching 10 4 ), possibly due to higher sampling flow rates than used in the laboratory. These results demonstrate that care should be taken in using desiccant-based, HTO/HT-discriminating samplers when the HT concentration is much higher than HTO concentration, and suggest the need to systematically characterize and perhaps improve the performance of discriminating samplers at low HTO/HT ratios

  4. Isokinetic sampler; Amostrador isocinetico

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luis Cesar C. de; Santos, Antonio Carlos dos [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Barrio, Lara B.A. del [AZ Armaturen do Brasil Ltda., Itatiba, SP (Brazil); Silva, Claudio B. da C. e; Silva, Ricardo R. da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    The Center of Research Leopoldo A. Miguez de Melo - CENPES - in association with AZ Armaturen Company do Brasil and TRANSPETRO developed and tested an Isokinetic sampler. This work presents the sampling principles and the results and performance of the tests realized in the 'Sitio de Testes de Atalaia' and in one of the terminals of bunker transfer of TRANSPETRO - 'Terminal Aquaviario da Baia de Guanabara'. In the 'Sitio de Testes' the products used were oil and water with BSW from 5% to 97% and in the terminal were tested samplings of bunker with ranges viscosities between (MF 180 to 380). (author)

  5. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li, E-mail: mawanli002@163.com; Li, Yi-Fan, E-mail: ijrc_pts_paper@yahoo.com

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m{sup 3} and 180 pg/m{sup 3}, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logK{sub p}) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logK{sub p}) also correlated with the sub-cooled liquid vapor pressure (logP{sub L}{sup o}). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning.

  6. Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage.

    Science.gov (United States)

    Morillas, Héctor; Maguregui, Maite; García-Florentino, Cristina; Marcaida, Iker; Madariaga, Juan Manuel

    2016-04-15

    Dry deposition is one of the most dangerous processes that can take place in the environment where the compounds that are suspended in the atmosphere can react directly on different surrounding materials, promoting decay processes. Usually this process is related with industrial/urban fog and/or marine aerosol in the coastal areas. Particularly, marine aerosol transports different types of salts which can be deposited on building materials and by dry deposition promotes different decay pathways. A new analytical methodology based on the combined use of Raman Spectroscopy and SEM-EDS (point-by-point and imaging) was applied. For that purpose, firstly evaporated seawater (presence of Primary Marine Aerosol (PMA)) was analyzed. After that, using a self-made passive sampler (SMPS), different suspended particles coming from marine aerosol (transformed particles in the atmosphere (Secondary Marine Aerosol (SMA)) and metallic airborne particulate matter coming from anthropogenic sources, were analyzed. Finally in order to observe if SMA and metallic particles identified in the SMPS can be deposited on a building, sandstone samples from La Galea Fortress (Getxo, north of Spain) located in front of the sea and in the place where the passive sampler was mounted were analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An innovative discrete multilevel sampler design

    International Nuclear Information System (INIS)

    Marvin, B.K.; De Clercq, P.J.; Taylor, B.B.; Mauro, D.M.

    1995-01-01

    An innovative, small-diameter PVC discrete multilevel sampler (DMLS) was designed for the Electric Power Research Institute (EPRI) to provide low-cost, discrete groundwater samples from shallow aquifers. When combined with appropriately-sized direct push soil sampling technologies, high resolution aquifer characterization can be achieved during initial site assessment or remediation monitoring activities. The sampler is constructed from 1-inch diameter PVC well materials, containing polyethylene tubing threaded through PVC disks. Self-expanding annular and internal bentonite seals were developed which isolate discrete sampling zones. The DMLS design allows customization of sampling and isolation zone lengths to suit site-specific goals. Installation of the DMLS is achieved using a temporary, expendable-tipped casting driven by direct push methods. This technique minimizes mobilization costs, site and soil column disturbances, and allows rapid installation in areas of limited overhead clearance. Successful pilot installations of the DMLS prototype have been made at a former manufactured gas plant (MGP) site and a diesel fuel spill site. Analysis of groundwater samples from these sites, using relative compound distributions and contaminant concentration profiling, confirmed that representative discrete samples were collected. This design provides both economical and versatile groundwater monitoring during all phases of site assessment and remediation

  8. Bayesian analysis for exponential random graph models using the adaptive exchange sampler

    KAUST Repository

    Jin, Ick Hoon

    2013-01-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the issue of intractable normalizing constants encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  9. Wear Particle Atlas. Revised

    Science.gov (United States)

    1982-06-28

    Superintendent NOTICE Reproduction of this document in any form by other than naval activities is/Jotbvlhorized except isys^iedcil approval of the SecretarWof...constant. •.■, -1 "if -w \\ SÄNPLlWi V» IVf Figure 3.1.1.1 Simplified Oil Path Ref 21 Scott. D, McCullagh. PJ and Campbell GW Condition Monitoring...Wear Particles in Human Synovial Fluid Arthritis and Rheumatism, 24 (1981) 912-918 30 Evans. C H .andTew W P isolationof Biological Materials

  10. On the growth of atmospheric nanoparticles by organic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Juuti, T.

    2013-09-01

    Atmospheric aerosol particles affect the visibility, damage human health and influence the Earth's climate by scattering and absorbing radiation and acting as cloud condensation nuclei (CCN). Considerable uncertainties are associated with the estimates of aerosol climatic effects and the extent of these effects depends on the particles size, composition, concentration and location in the atmosphere. Improved knowledge on the processes affecting these properties is of great importance in predicting future climate. Significant fraction of the atmospheric aerosol particles are formed in the atmosphere from trace gases through a phase change, i.e. nucleation. The freshly nucleated secondary aerosol particles are about a nanometer in diameter, and they need to grow tens of nanometers by condensation of vapors before they affect the climate. During the growth, the nanoparticles are subject to coagulational losses, and their survival to CCN sizes is greatly dependent on their growth rate. Therefore, capturing the nanoparticle growth correctly is crucial for representing aerosol effects in climate models. A large fraction of nanoparticle growth in many environments is expected to be due to organic compounds. However a full identification of the compounds and processes involved in the growth is lacking to date. In this thesis the variability in atmospheric nanoparticle growth rates with particle size and ambient conditions was studied based on observations at two locations, a boreal forest and a Central European rural site. The importance of various organic vapor uptake mechanisms and particle phase processes was evaluated, and two nanoparticle growth models were developed to study the effect of acid-base chemistry in the uptake of organic compounds by nanoparticles. Further, the effect of inorganic solutes on the partitioning of organic aerosol constituents between gas and particle phase was studied based on laboratory experiments. Observations of the atmospheric

  11. Effects of Hardness on Pintle Rod Performance in the Universal and Retained Gas Samplers

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    Interaction between hardness of the pintle rods and the retainer rings used in the core samplers is investigated. It is found that ordinary Rockwell C measurements are not sufficient and superficial hardness instruments are recommended to verify hardness since in-production hardness of pintle rods is found to vary widely and probably leads to some premature release of pistons in samplers

  12. Retained Gas Sampler Calibration and Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  13. Retained Gas Sampler Calibration and Simulant Tests

    International Nuclear Information System (INIS)

    CRAWFORD, B.A.

    2000-01-01

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis

  14. A Bayesian Sampler for Optimization of Protein Domain Hierarchies

    Science.gov (United States)

    2014-01-01

    Abstract The process of identifying and modeling functionally divergent subgroups for a specific protein domain class and arranging these subgroups hierarchically has, thus far, largely been done via manual curation. How to accomplish this automatically and optimally is an unsolved statistical and algorithmic problem that is addressed here via Markov chain Monte Carlo sampling. Taking as input a (typically very large) multiple-sequence alignment, the sampler creates and optimizes a hierarchy by adding and deleting leaf nodes, by moving nodes and subtrees up and down the hierarchy, by inserting or deleting internal nodes, and by redefining the sequences and conserved patterns associated with each node. All such operations are based on a probability distribution that models the conserved and divergent patterns defining each subgroup. When we view these patterns as sequence determinants of protein function, each node or subtree in such a hierarchy corresponds to a subgroup of sequences with similar biological properties. The sampler can be applied either de novo or to an existing hierarchy. When applied to 60 protein domains from multiple starting points in this way, it converged on similar solutions with nearly identical log-likelihood ratio scores, suggesting that it typically finds the optimal peak in the posterior probability distribution. Similarities and differences between independently generated, nearly optimal hierarchies for a given domain help distinguish robust from statistically uncertain features. Thus, a future application of the sampler is to provide confidence measures for various features of a domain hierarchy. PMID:24494927

  15. Vertical Distribution of Ozone and Nitric Acid Vapor on the Mammoth Mountain, Eastern Sierra Nevada, California

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2002-01-01

    Full Text Available In August and September 1999 and 2000, concentrations of ozone (O3 and nitric acid vapor (HNO3 were monitored at an elevation gradient (2184–3325 m on the Mammoth Mountain, eastern Sierra Nevada, California. Passive samplers were used for monitoring exposure to tropospheric O3 and HNO3 vapor. The 2-week average O3 concentrations ranged between 45 and 72 ppb, while HNO3 concentrations ranged between 0.06 and 0.52 μg/m3. Similar ranges of O3 and HNO3 were determined for 2 years of the study. No clear effects of elevation on concentrations of the two pollutants were detected. Concentrations of HNO3 were low and at the background levels expected for the eastern Sierra Nevada, while the measured concentrations of O3 were elevated. High concentrations of ozone in the study area were confirmed with an active UV absorption O3 monitor placed at the Mammoth Mountain Peak (September 5–14, 2000, average 24-h concentration of 56 ppb.

  16. Radioactive particle resuspension research experiments on the Hanford Reservation

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1977-02-01

    Experiments were conducted from 1972 to 1975 at several Hanford Reservation study sites to determine whether radioactive particles from these sites were resuspended and transported by wind and to determine, if possible, any interrelationships between wind speed, direction, airborne soil, and levels of radioactivity on airborne particles. Samples of airborne particles were collected with high volume air samplers and cascade particle impactors using both upwind and downwind air sampling towers. Most samples were analyzed for 137 Cs; some samples were analyzed for 239 Pu, 238 Pu and 241 Am; a few samples were analyzed for 90 Sr. This report summarizes measured air concentration ranges for these radionuclides at the study sites and compares air concentrations with fallout levels measured in 300 Area near the Reservation boundary

  17. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    Science.gov (United States)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  18. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  19. Carbon Nanotube Integrative Sampler (CNIS) for passive sampling of nanosilver in the aquatic environment.

    Science.gov (United States)

    Shen, Li; Fischer, Jillian; Martin, Jonathan; Hoque, Md Ehsanul; Telgmann, Lena; Hintelmann, Holger; Metcalfe, Chris D; Yargeau, Viviane

    2016-11-01

    Nanomaterials such as nanosilver (AgNP) can be released into the aquatic environment through production, usage, and disposal. Sensitive and cost-effective methods are needed to monitor AgNPs in the environment. This work is hampered by a lack of sensitive methods to detect nanomaterials in environmental matrixes. The present study focused on the development, calibration and application of a passive sampling technique for detecting AgNPs in aquatic matrixes. A Carbon Nanotube Integrative Sampler (CNIS) was developed using multi-walled carbon nanotubes (CNTs) as the sorbent for accumulating AgNPs and other Ag species from water. Sampling rates were determined in the laboratory for different sampler configurations and in different aquatic matrixes. The sampler was field tested at the Experimental Lakes Area, Canada, in lake water dosed with AgNPs. For a configuration of the CNIS consisting of CNTs bound to carbon fiber (i.e. CNT veil) placed in Chemcatcher® housing, the time weighted average (TWA) concentrations of silver estimated from deployments of the sampler in lake mesocosms dosed with AgNPs were similar to the measured concentrations of "colloidal silver" (i.e. <0.22μm in size) in the water column. For a configuration of CNIS consisting of CNTs in loose powder form placed in a custom made housing that were deployed in a whole lake dosed with AgNPs, the estimated TWA concentrations of "CNIS-labile Ag" were similar to the concentrations of total silver measured in the epilimnion of the lake. However, sampling rates for the CNIS in various matrixes are relatively low (i.e. 1-20mL/day), so deployment periods of several weeks are required to detect AgNPs at environmentally relevant concentrations, which can allow biofilms to develop on the sampler and could affect the sampling rates. With further development, this novel sampler may provide a simple and sensitive method for screening for the presence of AgNPs in surface waters. Copyright © 2016 Elsevier B.V. All

  20. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler.

    Directory of Open Access Journals (Sweden)

    Ji-Woon Park

    Full Text Available A culture-based colony counting method is the most widely used analytical technique for monitoring bioaerosols in both indoor and outdoor environments. However, this method requires several days for colony formation. In this study, our goal was fast monitoring (Sampling: 3 min, Detection: < 1 min of indoor bioaerosol concentrations with ATP bioluminescence assay using a bioaerosol sampler. For this purpose, a novel hand-held electrostatic rod-type sampler (110 mm wide, 115 mm long, and 200 mm tall was developed and used with a commercial luminometer, which employs the Adenosine triphosphate (ATP bioluminescence method. The sampler consisted of a wire-rod type charger and a cylindrical collector, and was operated with an applied voltage of 4.5 kV and a sampling flow rate of 150.7 lpm. Its performance was tested using Staphylococcus epidermidis which was aerosolized with an atomizer. Bioaerosol concentrations were measured using ATP bioluminescence method with our sampler and compared with the culture-based method using Andersen cascade impactor under controlled laboratory conditions. Indoor bioaerosol concentrations were also measured using both methods in various indoor environments. A linear correlation was obtained between both methods in lab-tests and field-tests. Our proposed sampler with ATP bioluminescence method may be effective for fast monitoring of indoor bioaerosol concentrations.

  1. PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Sun, Yang; Niu, Chengcheng; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.

    2014-03-01

    Phase-change contrast agents consisting of a perfluorocarbon (PFC) liquid core stabilized by a lipid, protein, or polymer shell have been proposed for a variety of clinical applications. Previous work has demonstrated that vaporization can be induced by laser irradiation through optical absorbers incorporated inside the droplet. In this study, Poly-lactide-coglycolic acid (PLGA) particles loaded with PFC liquid and silica-coated gold nanoparticles (GNPs) were developed and characterized using photoacoustic (PA) methods. Microsized PLGA particles were loaded with PFC liquid and GNPs (14, 35, 55nm each with a 20nm silica shell) using a double emulsion method. The PA signal intensity and optical vaporization threshold were investigated using a 375 MHz transducer and a focused 532-nm laser (up to 450-nJ per pulse). The laser-induced vaporization threshold energy decreased with increasing GNP size. The vaporization threshold was 850, 690 and 420 mJ/cm2 for 5μm-sized PLGA particles loaded with 14, 35 and 55 nm GNPs, respectively. The PA signal intensity increased as the laser fluence increased prior to the vaporization event. This trend was observed for all particles sizes. PLGA particles were then incubated with MDA-MB-231 breast cancer cells for 6 hours to investigate passive targeting, and the vaporization of the PLGA particles that were internalized within cells. The PLGA particles passively internalized by MDA cells were visualized via confocal fluorescence imaging. Upon PLGA particle vaporization, bubbles formed inside the cells resulting in cell destruction. This work demonstrates that GNPs-loaded PLGA/PFC particles have potential as PA theranostic agents in PA imaging and optically-triggered drug delivery systems.

  2. Silicone passive equilibrium samplers as ‘chemometers’ in eels and sediments of a Swedish lake

    DEFF Research Database (Denmark)

    Jahnke, Annika; Mayer, Philipp; McLachlan, Michael S.

    2014-01-01

    Passive equilibrium samplers deployed in two or more media of a system and allowed to come to equilibrium can be viewed as ‘chemometers’ that reflect the difference in chemical activities of contaminants between the media. We applied silicone-based equilibrium samplers to measure relative chemica...... diagenesis and sorption to phytoplankton. The ‘chemometer’ approach has the potential to become a powerful tool to study the thermodynamic controls on persistent organic chemicals in the environment and should be extended to other environmental compartments.......Passive equilibrium samplers deployed in two or more media of a system and allowed to come to equilibrium can be viewed as ‘chemometers’ that reflect the difference in chemical activities of contaminants between the media. We applied silicone-based equilibrium samplers to measure relative chemical...... activities of seven ‘indicator’ polychlorinated biphenyls (PCBs) and hexachlorobenzene in eels and sediments from a Swedish lake. Chemical concentrations in eels and sediments were also measured using exhaustive extraction methods. Lipid-normalized concentrations in eels were higher than organic carbon...

  3. Computational Thermodynamics Analysis of Vaporizing Fuel Droplets in the Human Upper Airways

    Science.gov (United States)

    Zhang, Zhe; Kleinstreuer, Clement

    The detailed knowledge of air flow structures as well as particle transport and deposition in the human lung for typical inhalation flow rates is an important precursor for dosimetry-and-health-effect studies of toxic particles as well as for targeted drug delivery of therapeutic aerosols. Focusing on highly toxic JP-8 fuel aerosols, 3-D airflow and fluid-particle thermodynamics in a human upper airway model starting from mouth to Generation G3 (G0 is the trachea) are simulated using a user-enhanced and experimentally validated finite-volume code. The temperature distributions and their effects on airflow structures, fuel vapor deposition and droplet motion/evaporation are discussed. The computational results show that the thermal effect on vapor deposition is minor, but it may greatly affect droplet deposition in human airways.

  4. Developments in Emission Measurements Using Lightweight Sensors and Samplers.

    Science.gov (United States)

    Lightweight emission measurement systems making use of miniaturized sensors and samplers have been developed for portable and aerial sampling for an array of pollutants. Shoebox-sized systems called “Kolibri”, weighing 3-5 kg, have been deployed on NASA-flown unmanned...

  5. Tank 241-BY-105 Headspace Gas and Vapor Characterization Results for Samples Collected in May 1994 and July 1994. Revision 2

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  6. Comparison of particulate matter exposure estimates in young children from personal sampling equipment and a robotic sampler.

    Science.gov (United States)

    Sagona, Jessica A; Shalat, Stuart L; Wang, Zuocheng; Ramagopal, Maya; Black, Kathleen; Hernandez, Marta; Mainelis, Gediminas

    2017-05-01

    Accurate characterization of particulate matter (PM) exposure in young children is difficult, because personal samplers are often too heavy, bulky or impractical to be used. The Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler was developed to help address this problem. In this study, we measured inhalable PM exposures in 2-year-olds via a lightweight personal sampler worn in a small backpack and evaluated the use of a robotic sampler with an identical sampling train for estimating PM exposure in this age group. PM mass concentrations measured by the personal sampler ranged from 100 to almost 1,200 μg/m 3 , with a median value of 331 μg/m 3 . PM concentrations measured by PIPER were considerably lower, ranging from 14 to 513 μg/m 3 with a median value of 56 μg/m 3 . Floor cleaning habits and activity patterns of the 2-year-olds varied widely by home; vigorous play and recent floor cleaning were most associated with higher personal exposure. Our findings highlight the need for additional characterization of children's activity patterns and their effect on personal exposures.

  7. Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method.

    Science.gov (United States)

    Xu, Zhenqiang; Yao, Maosheng

    2013-05-01

    Increasing evidences show that inhalation of indoor bioaerosols has caused numerous adverse health effects and diseases. However, the bioaerosol size distribution, composition, and concentration level, representing different inhalation risks, could vary with different living environments. The six-stage Andersen sampler is designed to simulate the sampling of different human lung regions. Here, the sampler was used in investigating the bioaerosol exposure in six different environments (student dorm, hospital, laboratory, hotel room, dining hall, and outdoor environment) in Beijing. During the sampling, the Andersen sampler was operated for 30 min for each sample, and three independent experiments were performed for each of the environments. The air samples collected onto each of the six stages of the sampler were incubated on agar plates directly at 26 °C, and the colony forming units (CFU) were manually counted and statistically corrected. In addition, the developed CFUs were washed off the agar plates and subjected to polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Results revealed that for most environments investigated, the culturable bacterial aerosol concentrations were higher than those of culturable fungal aerosols. The culturable bacterial and fungal aerosol fractions, concentration, size distribution, and diversity were shown to vary significantly with the sampling environments. PCR-DGGE analysis indicated that different environments had different culturable bacterial aerosol compositions as revealed by distinct gel band patterns. For most environments tested, larger (>3 μm) culturable bacterial aerosols with a skewed size distribution were shown to prevail, accounting for more than 60 %, while for culturable fungal aerosols with a normal size distribution, those 2.1-4.7 μm dominated, accounting for 20-40 %. Alternaria, Cladosporium, Chaetomium, and Aspergillus were found abundant in most

  8. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter

    Directory of Open Access Journals (Sweden)

    Pakbin Payam

    2008-11-01

    Full Text Available Abstract Background A newly designed electrostatic precipitator (ESP in tandem with Versatile Aerosol Concentration Enrichment System (VACES was developed by the University of Southern California to collect ambient aerosols on substrates appropriate for chemical and toxicological analysis. The laboratory evaluation of this sampler is described in a previous paper. The main objective of this study was to evaluate the performance of the new VACES-ESP system in the field by comparing the chemical characteristics of the PM collected in the ESP to those of reference samplers operating in parallel. Results The field campaign was carried out in the period from August, 2007 to March, 2008 in a typical urban environment near downtown Los Angeles. Each sampling set was restricted to 2–3 hours to minimize possible sampling artifacts in the ESP. The results showed that particle penetration increases and ozone concentration decreases with increasing sampling flow rate, with highest particle penetration observed between 100 nm and 300 nm. A reference filter sampler was deployed in parallel to the ESP to collect concentration-enriched aerosols, and a MOUDI sampler was used to collect ambient aerosols. Chemical analysis results showed very good agreement between the ESP and MOUDI samplers in the concentrations of trace elements and inorganic ions. The overall organic compound content of PM collected by the ESP, including polycyclic aromatic hydrocarbons (PAHs, hopanes, steranes, and alkanes, was in good agreement with that of the reference sampler, with an average ESP -to -reference concentration ratio of 1.07 (± 0.38. While majority of organic compound ratios were close to 1, some of the semi-volatile organic species had slightly deviated ratios from 1, indicating the possibility of some sampling artifacts in the ESP due to reactions of PM with ozone and radicals generated from corona discharge, although positive and negative sampling artifacts in the

  9. Effect of housing geometry on the performance of ChemcatcherTM passive sampler for the monitoring of hydrophobic organic pollutants in water

    International Nuclear Information System (INIS)

    Lobpreis, Tomas; Vrana, Branislav; Dominiak, Ewa; Dercova, Katarina; Mills, Graham A.; Greenwood, Richard

    2008-01-01

    Passive sampling of pollutants in water has been gaining acceptance for environmental monitoring. Previously, an integrative passive sampler (the Chemcatcher TM ) was developed and calibrated for the measurement of time weighted average concentrations of hydrophobic pollutants in water. Effects of physicochemical properties and environmental variables (water temperature and turbulence) on kinetic and thermodynamic parameters characterising the exchange of analytes between the sampler and water have been published. In this study, the effect of modification in sampler housing geometry on these calibration parameters was studied. The results obtained for polycyclic aromatic hydrocarbons show that reducing the depth of the cavity in the sampler body geometry increased the exchange kinetics by approximately twofold, whilst having no effect on the correlation between the uptake and offload kinetics of analytes. The use of performance reference compounds thus avoids the need for extensive re-calibration when the sampler body geometry is modified. - The effect of passive sampler geometry on accumulation kinetics of organic pollutants from water was evaluated

  10. Photodegradation of polyaromatic hydrocarbons in passive air samplers: Field testing different deployment chambers

    International Nuclear Information System (INIS)

    Bartkow, Michael E.; Kennedy, Karen E.; Huckins, James N.; Holling, Neil; Komarova, Tatiana; Mueller, Jochen F.

    2006-01-01

    Semi-permeable membrane devices (SPMDs) were loaded with deuterated anthracene and pyrene as performance reference compounds (PRCs) and deployed at a test site in four different chambers (open and closed box chamber, bowl chamber and cage chamber) for 29 days. The losses of PRCs and the uptake of polyaromatic hydrocarbons (PAHs) from the ambient air were quantified. UV-B levels measured in each deployment chamber indicated that SPMDs would be exposed to the most UV-B in the cage chamber and open box chamber. Significantly less PAHs were quantified in SPMDs deployed in the cage chamber and open box chamber compared to samplers from the other two chambers, suggesting that photodegradation of PAHs had occurred. The loss of PRCs confirmed these results but also showed that photodegradation was occurring in the closed box chamber. The bowl chamber appears to provide the best protection from the influence of direct photodegradation. - Photodegradation/loss of PAHs occurs from passive air samplers (SPMDs) deployed in various sampler chambers

  11. SLAC Library - Online Particle Physics Information

    Science.gov (United States)

    Online Particle Physics Information Compiled by Revised: April, 201 7 This annotated list provides a highly selective set of online resources that are useful to the particle physics community. It & Reports Particle Physics Journals & Reviews Online Journals and Tables of Contents Journal

  12. Waveform Sampler CAMAC Module

    International Nuclear Information System (INIS)

    Freytag, D.R.; Haller, G.M.; Kang, H.; Wang, J.

    1985-09-01

    A Waveform Sampler Module (WSM) for the measurement of signal shapes coming from the multi-hit drift chambers of the SLAC SLC detector is described. The module uses a high speed, high resolution analog storage device (AMU) developed in collaboration between SLAC and Stanford University. The AMU devices together with high speed TTL clocking circuitry are packaged in a hybrid which is also suitable for mounting on the detector. The module is in CAMAC format and provides eight signal channels, each recording signal amplitude versus time in 512 cells at a sampling rate of up to 360 MHz. Data are digitized by a 12-bit ADC with a 1 μs conversion time and stored in an on-board memory accessible through CAMAC

  13. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    Science.gov (United States)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  14. Method and apparatus for suppressing electron generation in a vapor source for isotope separation

    International Nuclear Information System (INIS)

    Janes, G.S.

    1979-01-01

    A system for applying accelerating forces to ionized particles of a vapor in a manner to suppress the flow of electron current from the vapor source. The accelerating forces are applied as an electric field in a configuration orthogonal to a magnetic field. The electric field is applied between one or more anodes in the plasma and one or more cathodes operated as electron emitting surfaces. The circuit for applying the electric field floats the cathodes with respect to the vapor source, thereby removing the vapor source from the circuit of electron flow through the plasma and suppressing the flow of electrons from the vapor source. The potential of other conducting structures contacting the plasma is controlled at or permitted to seek a level which further suppresses the flow of electron currents from the vapor source. Reducing the flow of electrons from the vapor source is particularly useful where the vapor is ionized with isotopic selectivity because it avoids superenergization of the vapor by the electron current

  15. TEM investigations of laser ablated particles

    International Nuclear Information System (INIS)

    Fliegel, D.; Dundas, S.; Kosler, J.; Klementova, M.

    2009-01-01

    Full text: Laser ablation inductively coupled plasma mass spectrometry suffers from fractionation effects hindering a non matrix matched calibration strategy. Different reasons for elemental fractionation that are related to the laser ablation, the transport and the vaporization in the plasma are discussed. One major question to be addressed linked to the vaporization yield in the ICP is in which of mineralogical phase the different ablated particle sizes enter the plasma. This contribution will investigate particles generated by a 213 nm laser from different samples such as minerals and alloys with respect to their chemical and phase compositions using high resolution TEM. (author)

  16. Passive Sampling to Capture the Spatial Variability of Coarse Particles by Composition in Cleveland, OH

    Science.gov (United States)

    Passive samplers deployed at 25 sites for three week-long intervals were used to characterize spatial variability in the mass and composition of coarse particulate matter (PM10-2.5) in Cleveland, OH in summer 2008. The size and composition of individual particles deter...

  17. Evaluation of PM-10 commercial inlets for new surveillance air sampler

    International Nuclear Information System (INIS)

    Langer, G.

    1986-01-01

    The inlet for the present Rock Flats Plant surveillance sampler does not meet the new but still tentative PM-10 (<10-μm particle mass) criterion for sampling the hazardous fraction of airborne dust. Since this criterion relates mainly to non-radioactive emissions, DOE and EPA are presently in the process of promulgating emission guidelines specifically for non-reactor DOE nuclear facilities. The authors present approach is to select a commercial inlet and modify its, if necessary, to meet the PM-10 criterion, keeping in mind that they may have to recover the dust collected in the inlet. There is no EPA-approved PM-10 inlet design; instead, EPA issued a performance specification. As a nuclear operation, Rocky Flats has to sample continuously to ensure no period remains unmonitored, instead of every sixth day, as set forth by EPA for non-nuclear installations. During this study period, the authors developed an inlet evaluation methodology to meet the above, anticipated EPA requirements. Also, they started testing two potential inlets. 6 references, 2 figures, 1 table

  18. Technique for controllable vapor-phase deposition of 1-nitro(14C)pyrene and other polycyclic aromatic hydrocarbons onto environmental particulate matter

    International Nuclear Information System (INIS)

    Lucas, S.V.; Lee, K.W.; Melton, C.W.; Lewtas, J.; Ball, L.M.

    1991-01-01

    To produce environmental particles fortified with a polycyclic aromatic hydrocarbon (PAH) for toxicology studies, an experimental apparatus was devised for deposition of the desired chemical species onto particles in a controlled and reproducible manner. The technique utilized consists of dispersion of the particles on a gaseous stream at a controlled rate, thermal vaporization of a solution of PAH, delivery of the vaporized PAH into the aerosol of particles at a controlled rate, subsequent condensation of the PAH onto the particles, and final recovery of the coated particles. The effectiveness of this approach was demonstrated by vapor-coating a 14 C-labeled PAH (1-nitro( 14 C)-pyrene) onto diesel engine exhaust particles that had previously been collected by tunnel dilution sampling techniques. Using the 14 C label as a tracer, the coated particles were characterized with respect to degree of coating, integrity of particle structure and absence of chemical decomposition of the coating substrate. The study demonstrates that the described method provides a controllable means for depositing a substance uniformly and with a high coating efficiency onto aerosolized particles. The technique was also used to vapor-coat benzo(a)pyrene onto diesel engine exhaust and urban ambient air particulate matter, and 2-nitrofluoranthene onto urban ambient air particulate matter. Coating efficiencies of about 400 micrograms/g particulate matter were routinely obtained on a single coating run, and up to 1200 micrograms/g (1200 ppm) were achieved after a second pass through the process. The coated particles were subsequently utilized in biological fate, distribution and metabolism studies

  19. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.

    Science.gov (United States)

    Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C

    2011-03-01

    A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.

  20. Characteristics and Sampling Efficiencies of Two Impactor Bioaerosol Samplers: MAS-100(Registered) (Microbial Air Monitoring System) and Single-Stage Andersen Viable Microbial Samplers

    National Research Council Canada - National Science Library

    Hottell, K

    2004-01-01

    .... A petri dish with agar is used as the impaction surface for these samplers. The MAS-l00 is a single-stage impactor that aspirates air through a 400-hole perforated entry plate onto an agar plate at an airflow rate of 100 L/min...

  1. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  2. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  3. Development of floor smear sampler (floor radioactive contamination measuring instrument) for nuclear facilities

    International Nuclear Information System (INIS)

    Miyagawa, Minoru; Ito, Haruo; Nozawa, Katsuro; Shinohara, Yotaro; Hashimoto, Hiroshi.

    1980-01-01

    The control of the floor contamination with radioactive substances in nuclear facilities is strictly carried out by smear method, in which the contaminants on floor surfaces are wiped off with filter papers or cloths, and the contamination density on the floor surfaces is measured through their intensity of radioactivity. This wiping work is laborious since it is carried out in leaning-over posture when many samples must be taken in wide floor area. Therefore, to achieve labor saving in this work, an automatic sampler was developed. In the floor smear sampler developed, samples are taken on long band type wiping cloths only by handle operation, and the sample numbers are printed. When many samples are taken in wide floor area, this is especially effective, and the labor saving by 1/3 to 1/2 can be achieved. At present, this sampler is put in practical use in Hamaoka Nuclear Power Station. At the time of trial manufacture, the method of wiping, the mechanisms of wiping, cloth feeding and running, the contact pressure and the number of times of wiping affecting wiping efficiency and the required torque of a motor were examined. The developed sampler is that of constant contact pressure, vibration wiping type, and the rate of sampling is 10 sec per one sample. 100 samples can be taken on one roll of wiping cloth. The results of performance test are reported. (Kako, I.)

  4. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  5. Accuracy criteria recommended for the certification of gravimetric coal-mine-dust samplers

    International Nuclear Information System (INIS)

    Bowman, J.D.; Bartley, D.L.; Breuer, G.M.; Doemeny, L.J.; Murdock, D.J.

    1984-07-01

    Procedures for testing bias and precision of gravimetric coal-mine-dust sampling units are reviewed. Performance criteria for NIOSH certification of personal coal-mine dust samplers are considered. The NIOSH criterion is an accuracy of 25% at the 95% confidence interval. Size distributions of coal-mine-dust are discussed. Methods for determining size distributions are described. Sampling and sizing methods are considered. Cyclone parameter estimation is discussed. Bias computations for general sampling units are noted. Recommended procedures for evaluating bias and precision of gravimetric coal mine dust personal samplers are given. The authors conclude that when cyclones are operated at lower rates, the NIOSH accuracy criteria can be met

  6. Numerical simulations on a high-temperature particle moving in coolant

    International Nuclear Information System (INIS)

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  7. Production of gaseous or vaporous fuels from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1951-05-16

    A process for the production of gaseous or vaporous fuels from solid carbonaceous materials consists of subjecting the materials in separate zones to at least three successive thermal treatments at least two of which are carried out at different temperature levels. The materials being maintained in zones in the form of beds of finely divided particles fluidized by the passage of gases or vapors upwardly there-through, and recovering product vapors or gases overhead. The total hot gaseous or vaporous effluent and entrained solids from one of the zones is passed directly without separation to another of the zones situated closely adjacent to and vertically above the first named zone in the same vessel, and the heat required in at least one of the thermal treatment zones is supplied at least in part as the sensible heat of residual solids transferred from a thermal treatment zone operated at a higher temperature.

  8. Water Vapor, Temperature, and Ice Particles in Polar Mesosphere as Measured by SABER/TIMED and OSIRIS/Odin Instruments

    Science.gov (United States)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Although many new details on the properties of mesospheric ice particles that farm Polar Mesospheric Clouds (PMCs) and also cause polar mesospheric summer echoes have been recently revealed, certain aspects of mesospheric ice microphysics and dynamics still remain open. The detailed relation between PMC parameters and properties of their environment, as well as interseasonal and interhemispheric differences and trends in PMC properties that are possibly related to global change, are among those open questions. In this work, mesospheric temperature and water vapor concentration measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to study the properties of PMCs with respect to the surrounding atmosphere. The cloud parameters, namely location, brightness, and altitude, are obtained from the observations made by the Optical Spectrograph and Infrared Imager System (OSIRIS) on the Odin satellite. About a thousand of simultaneous common volume measurements made by SABER and OSIRIS in both hemispheres from 2002 until 2008 are used. The correlation between PMC brightness (and occurrence rate) and temperatures at PMC altitudes and at the mesopause is analysed. The relation between PMC parameters, frost point temperature, and gaseous water vapor content in and below the cloud is also discussed. Interseasonal and interhemispheric differences and trends in the above parameters, as well as in PMC peak altitudes and mesopause altitudes are evaluated.

  9. 7 CFR 61.33 - Equipment of sampler; contents of certificate.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Equipment of sampler; contents of certificate. 61.33 Section 61.33 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS...

  10. The effect of size-selective samplers (cyclones) on XRD response

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2011-07-01

    Full Text Available The study evaluated five size-selective samplers used in the South African mining industry to determine how their performance affects the X-ray powder diffraction (XRD) response when respirable dust samples are analysed for quartz using direct...

  11. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter.

    Science.gov (United States)

    Negri, Ilaria; Mavris, Christian; Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  12. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  13. Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust.

    Science.gov (United States)

    Seaman, Clara E; Shahan, Michael R; Beck, Timothy W; Mischler, Steven E

    2018-03-01

    Float coal dust, generated by mining operations, is distributed throughout mine airways by ventilating air designed to purge gases and respirable dust. Float coal dust poses an explosion hazard in the event of a methane ignition. Current regulation requires the application of inert rock dust in areas subjected to float coal dust in order to mitigate the hazard. An alternate method using water sprays, which have been effective in controlling respirable dust hazards, has been proposed as a way to control float coal dust generated on longwall faces. However, the knockdown efficiency of the proposed water sprays on float coal dust needs to be verified. This study used gravimetric isokinetic Institute of Occupational Medicine (IOM) samplers alongside a real-time aerosol monitor (Cloud Aerosol Spectrometer with polarization; CAS-POL) to study the effects of spray type, operating pressure, and spray orientation on knockdown efficiencies for seven different water sprays. Because the CAS-POL has not been used to study mining dust, the CAS-POL measurements were validated with respect to the IOM samplers. This study found that the CAS-POL was able to resolve the same trends measured by the IOM samplers, while providing additional knockdown information for specific particle size ranges and locations in the test area. In addition, the CAS-POL data was not prone to the same process errors, which may occur due to the handling of the IOM filter media, and was able to provide a faster analysis of the data after testing. This study also determined that pressure was the leading design criteria influencing spray knockdown efficiency, with spray type also having some effect and orientation having little to no effect. The results of this study will be used to design future full-scale float coal dust capture tests involving multiple sprays, which will be evaluated using the CAS-POL.

  14. Development of a silicone-membrane passive sampler for monitoring cylindrospermopsin and microcystin LR-YR-RR in natural waters

    Science.gov (United States)

    Nyoni, Hlengilizwe; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Silicone membrane tubes were functionalised by filling them with synthesised γ-Fe2O3 nanoparticles and used as a passive sampling device for monitoring microcystins and cylindrospermopsin in aquatic environments. This novel device was calibrated for the measurement of microcystin and cylindrospermopsin concentrations in water. The effect of temperature and hydrodynamics on the sampler performance was studied in a flow-through system under controlled conditions. The chemical uptake of microcystins (MCs) and cylindrospermopsin (CYN) into the passive sampler remained linear and integrative throughout the exposure period. The rate of accumulation of most of the MC compounds tested was dependent on temperature and flow velocity. The use of 13C labelled polychlorinated biphenyls as performance reference compounds (PRCs) in silicone membrane/γ-Fe2O3 nanoparticle passive sampler, Chemcatcher and polar organic chemical integrative sampler (POCIS) was evaluated. The majority of PRCs improved the semi quantitative nature of water concentration estimated by the three samplers. The corrected sampling rate values of model biotoxin compounds were used to estimate the time-weighted average concentrations in natural cyanobacterial water blooms of the Hartbeespoort dam. The corrected sampling rates RScorr values varied from 0.1140 to 0.5628 Ld-1 between samplers with silicone membrane having the least RScorr values compared to the Chemcatcher and POCIS. The three passive sampling devises provided a more relevant picture of the biotoxin concentration in the Hartbeespoort dam. The results suggested that the three sampling devices are suitable for use in monitoring microcystins and cylindrospermopsin concentrations in aquatic environments.

  15. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  16. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    Science.gov (United States)

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  17. Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles

    Directory of Open Access Journals (Sweden)

    D. Niedermeier

    2011-11-01

    Full Text Available During the measurement campaign FROST 2 (FReezing Of duST 2, the Leipzig Aerosol Cloud Interaction Simulator (LACIS was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C and a slight increase in the second branch (T≤−35 °C. The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD

  18. Airborne radioiodine species sampler and it's application for measuring removal efficiencies of large charcoal adsorbers for ventilation exhaust air

    International Nuclear Information System (INIS)

    Emel, D.; Hetzer, D.; Pelletier, C.A.; Barefoot, E.D.; Cline, J.E.

    1976-01-01

    A program, sponsored by the Electric Power Research Institute, is underway to determine the chemical species of radioiodine coming from LWR power plants and their persistence in the nearby environment. In support of this program, an airborne radioiodine sampler, developed and used by the AEC was modified and tested. This sampler consists of five components. The components are: (1) a particulate filter, (2) CdI 2 on a matrix of chromosorb-P to retain I 2 , (3) 4-Iodophenol on a matrix of activated alumina to retain HOI, (4) silver exchanged molecular sieve-13X to retain organic iodides, and (5) impregnated charcoal to serve as a control. The AEC sampler has not been proof-tested for periods over 48 hours or for flow rates above 0.10 l/s. For maximum sensitivity, a sampler is required to be used for periods of one to two weeks and at a flow rate giving a bed residence time of 0.1 sec. The AEC sampler was scaled up in size to attain an air sampling rate of 0.9 l/s. Each media for this sampler (except the particulate filter) was tested in the laboratory for retention of the iodine species; I 2 , Organic, and HOI. The tests were conducted at typical conditions observed at the main iodine release points at nuclear power plants. Confirmatory tests were run at operating nuclear power plants. The test results showed that under normal plant conditions the sampler could be operated at flow rates up to 0.80 l/s and differentiate the iodine species I 2 , HOI, and CH 3 I. The retention efficiencies of each media for its specie of radioiodine were found to be: I 2 on CdI 2 - 87 +- 5%, HOI on IPH 94 +- 4%, and CH 3 I on Ag 13-X or KI charcoal 99 +- 1%

  19. Deliquescence and efflorescence of small particles.

    Science.gov (United States)

    McGraw, Robert; Lewis, Ernie R

    2009-11-21

    We examine size-dependent deliquescence/efflorescence phase transformation for particles down to several nanometers in size. Thermodynamic properties of inorganic salt particles, coated with aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer criterion (TLC) is introduced to define a limiting deliquescence relative humidity (RH(D)) for small particles. This requires: (1) equality of chemical potentials between salt in an undissolved core, and thin adsorbed solution layer, and (2) equality of chemical potentials between water in the thin layer and vapor phase. The usual bulk deliquescence conditions are recovered in the limit of large dry particle size. Nanosize particles are found to deliquesce at relative humidity just below the RH(D) on crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes precisely at the RH(D) defined by the TLC. Concepts and methods from nucleation theory including the kinetic potential, self-consistent nucleation theory, nucleation theorems, and the Gibbs dividing surface provide theoretical foundation and point to unifying features of small particle deliquescence/efflorescence processes. These include common thermodynamic area constructions, useful for interpretation of small particle water uptake measurements, and a common free-energy surface, with constant RH cross sections describing deliquescence and efflorescence related through the nucleation theorem.

  20. Composite sampling of a Bacillus anthracis surrogate with cellulose sponge surface samplers from a nonporous surface.

    Directory of Open Access Journals (Sweden)

    Jenia A M Tufts

    Full Text Available A series of experiments was conducted to explore the utility of composite-based collection of surface samples for the detection of a Bacillus anthracis surrogate using cellulose sponge samplers on a nonporous stainless steel surface. Two composite-based collection approaches were evaluated over a surface area of 3716 cm2 (four separate 929 cm2 areas, larger than the 645 cm2 prescribed by the standard Centers for Disease Control (CDC and Prevention cellulose sponge sampling protocol for use on nonporous surfaces. The CDC method was also compared to a modified protocol where only one surface of the sponge sampler was used for each of the four areas composited. Differences in collection efficiency compared to positive controls and the potential for contaminant transfer for each protocol were assessed. The impact of the loss of wetting buffer from the sponge sampler onto additional surface areas sampled was evaluated. Statistical tests of the results using ANOVA indicate that the collection of composite samples using the modified sampling protocol is comparable to the collection of composite samples using the standard CDC protocol (p  =  0.261. Most of the surface-bound spores are collected on the first sampling pass, suggesting that multiple passes with the sponge sampler over the same surface may be unnecessary. The effect of moisture loss from the sponge sampler on collection efficiency was not significant (p  =  0.720 for both methods. Contaminant transfer occurs with both sampling protocols, but the magnitude of transfer is significantly greater when using the standard protocol than when the modified protocol is used (p<0.001. The results of this study suggest that composite surface sampling, by either method presented here, could successfully be used to increase the surface area sampled per sponge sampler, resulting in reduced sampling times in the field and decreased laboratory processing cost and turn-around times.

  1. A survey of perfluoroalkyl sulfonamides in indoor and outdoor air using passive air samplers

    Energy Technology Data Exchange (ETDEWEB)

    Shoeib, M.; Harner, T. [Meteorological Service of Canada, Environment Canada (Canada); Wilford, B.; Jones, K. [Lancaster Univ. (United Kingdom). Environmental Science; Zhu, J. [Chemistry Research Division, Health Canada, Tunney' s Pasture, Ottawa (Canada)

    2004-09-15

    Perfluorooctane sulfonate (PFOS) has recently emerged as a priority environmental pollutant due to its widespread detection in biological samples from remote regions including the Arctic and the Mid-North Pacific Ocean. Because PFOS is fairly involatile, it is hypothesized that its occurrence in remote regions is the result of atmospheric transport of more volatile precursor compounds such as the perfluoroalkyl sulfonamides (PFASs). PFASs are used in variety of consumer products for water and oil resistance including surface treatments for fabric, upholstery, carpet, paper and leather. In a recent pilot study employing high volume air samples, indoor air concentrations of PFASs were approximately 100 times greater than outdoor levels. This is of significance because people typically spend about 90% of their time indoors 5 and this exposure may serve as an important uptake pathway. Indoor air also serves as a source of PFASs to the outside where PFASs are ultimately transported and distributed throughout the environment. The current study is intended to be a more comprehensive survey of indoor and outdoor air allowing more confident conclusions to be made. Passive air samplers comprised of polyurethane foam (PUF) disks were used. These are quiet, non-intrusive samplers that operate without the aid of a pump or electricity. Air movement delivers chemical to the sampler which has a high retention capacity for persistent organic pollutants (POPs). PUF disks samplers have been previously used successfully to monitor different classes of hydrophobic persistent organic pollutants POPs.

  2. Secondhand Exposure to Vapors From Electronic Cigarettes

    Science.gov (United States)

    Czogala, Jan; Fidelus, Bartlomiej; Zielinska-Danch, Wioleta; Travers, Mark J.; Sobczak, Andrzej

    2014-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are designed to generate inhalable nicotine aerosol (vapor). When an e-cigarette user takes a puff, the nicotine solution is heated and the vapor is taken into lungs. Although no sidestream vapor is generated between puffs, some of the mainstream vapor is exhaled by e-cigarette user. The aim of this study was to evaluate the secondhand exposure to nicotine and other tobacco-related toxicants from e-cigarettes. Materials and Methods: We measured selected airborne markers of secondhand exposure: nicotine, aerosol particles (PM2.5), carbon monoxide, and volatile organic compounds (VOCs) in an exposure chamber. We generated e-cigarette vapor from 3 various brands of e-cigarette using a smoking machine and controlled exposure conditions. We also compared secondhand exposure with e-cigarette vapor and tobacco smoke generated by 5 dual users. Results: The study showed that e-cigarettes are a source of secondhand exposure to nicotine but not to combustion toxicants. The air concentrations of nicotine emitted by various brands of e-cigarettes ranged from 0.82 to 6.23 µg/m3. The average concentration of nicotine resulting from smoking tobacco cigarettes was 10 times higher than from e-cigarettes (31.60±6.91 vs. 3.32±2.49 µg/m3, respectively; p = .0081). Conclusions: Using an e-cigarette in indoor environments may involuntarily expose nonusers to nicotine but not to toxic tobacco-specific combustion products. More research is needed to evaluate health consequences of secondhand exposure to nicotine, especially among vulnerable populations, including children, pregnant women, and people with cardiovascular conditions. PMID:24336346

  3. 7 CFR 801.5 - Tolerance for diverter-type mechanical samplers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerance for diverter-type mechanical samplers. 801.5 Section 801.5 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.5 Tolerance for diverter-type...

  4. A study of particle generation during laser ablation with applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyi [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  5. Evaluation of intake efficiencies and associated sediment-concentration errors in US D-77 bag-type and US D-96-type depth-integrating suspended-sediment samplers

    Science.gov (United States)

    Sabol, Thomas A.; Topping, David J.

    2013-01-01

    Accurate measurements of suspended-sediment concentration require suspended-sediment samplers to operate isokinetically, within an intake-efficiency range of 1.0 ± 0.10, where intake efficiency is defined as the ratio of the velocity of the water through the sampler intake to the local ambient stream velocity. Local ambient stream velocity is defined as the velocity of the water in the river at the location of the nozzle, unaffected by the presence of the sampler. Results from Federal Interagency Sedimentation Project (FISP) laboratory experiments published in the early 1940s show that when the intake efficiency is less than 1.0, suspended-sediment samplers tend to oversample sediment relative to water, leading to potentially large positive biases in suspended-sediment concentration that are positively correlated with grain size. Conversely, these experiments show that, when the intake efficiency is greater than 1.0, suspended‑sediment samplers tend to undersample sediment relative to water, leading to smaller negative biases in suspended-sediment concentration that become slightly more negative as grain size increases. The majority of FISP sampler development and testing since the early 1990s has been conducted under highly uniform flow conditions via flume and slack-water tow tests, with relatively little work conducted under the greater levels of turbulence that exist in actual rivers. Additionally, all of this recent work has been focused on the hydraulic characteristics and intake efficiencies of these samplers, with no field investigations conducted on the accuracy of the suspended-sediment data collected with these samplers. When depth-integrating suspended-sediment samplers are deployed under the more nonuniform and turbulent conditions that exist in rivers, multiple factors may contribute to departures from isokinetic sampling, thus introducing errors into the suspended-sediment data collected by these samplers that may not be predictable on the basis

  6. CAM and stack air sampler design guide

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1994-01-01

    About 128 air samplers and CAMs presently in service to detect and document potential radioactive release from 'H' and 'F' area tank farm ventilation stacks are scheduled for replacement and/or upgrade by Projects S-5764, S-2081, S-3603, and S-4516. The seven CAMs scheduled to be upgraded by Project S-4516 during 1995 are expected to provide valuable experience for the three remaining projects. The attached document provides design guidance for the standardized High Level Waste air sampling system

  7. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  8. Task QA plan for Modified Prototypic Hydragard trademark Sampler Overflow System Demonstration at TNX

    International Nuclear Information System (INIS)

    Snyder, T.K.

    1993-01-01

    The primary objective of this task is to evaluate the proposed design modifications to the sample system, including the adequacy of the recommended eductor and the quality of samples obtained from the modified system. Presently, the sample streams are circulated from the originating tank, through a Hydragard trademark sampler system, and back to the originating tank. The overflow from the Hydragard trademark sampler flows to the Recycle Collection Tank (RCT). This report outlines the planned quality assurance controls for the design modification task, including organization and personnel, surveillances, and records package

  9. Lithium vapor/aerosol studies. Interim summary report

    International Nuclear Information System (INIS)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.; Wilson, W.L.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538 0 C (1000 0 F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases in lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation

  10. Evaluation of Intake Efficiencies and Associated Sediment-Concentration Errors in US D-77 Bag-Type and US D-96-Type Depth-Integrating Suspended-Sediment Samplers

    Science.gov (United States)

    Sabol, T. A.; Topping, D. J.; Griffiths, R. E.

    2011-12-01

    Accurate measurements of suspended-sediment concentration require suspended-sediment samplers to operate isokinetically with an intake-efficiency of 1.0 ± 0.10. Results from 1940s Federal Interagency Sedimentation Project (FISP) laboratory experiments show that when the intake efficiency does not equal 1.0, suspended-sediment samplers either under- or oversample sediment relative to water, leading to biases in suspended-sediment concentration. The majority of recent FISP sampler development and testing has been conducted under uniform flow conditions using flume and slack-water tow tests, with little testing in actual turbulent rivers. Recent work has focused on the hydraulic characteristics and intake efficiencies of these samplers, without field investigations of the accuracy of the suspended-sediment data collected with these samplers. When depth-integrating suspended-sediment samplers are deployed under the non-uniform and turbulent conditions that exist in rivers, multiple factors may contribute to departures from isokinetic sampling. This introduces errors into the suspended-sediment data that may not be predictable on the basis of flume and tow tests alone. This study (1) evaluates the intake efficiencies of the older US D-77 bag-type and newer, FISP-approved US D-96 samplers at multiple river cross sections under a range of flow conditions; (2) examines if water temperature and sampling duration explain measured differences in intake efficiency between samplers and between laboratory and field tests; (3) models and predicts the directions and magnitudes of errors in measured suspended-sand concentration; and (4) determines if the relative differences in suspended-sediment concentration in a variety of size classes are consistent with the differences expected on the basis of the 1940s FISP-laboratory experiments. Results indicate that under river conditions, the intake efficiency of the US D-96 sampler is superior to that of the US D-77 bag-type sampler and

  11. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Don, E-mail: lee.sangdon@epa.gov [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Snyder, Emily G.; Willis, Robert [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Viani, Brian [Simbol Mining Corp., Pleasanton, CA 94566 (United States); Drake, John [U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); MacKinney, John [U.S. Department of Homeland Security, Washington, DC 20528 (United States)

    2010-04-15

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  12. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    International Nuclear Information System (INIS)

    Lee, Sang Don; Snyder, Emily G.; Willis, Robert; Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark; Viani, Brian; Drake, John; MacKinney, John

    2010-01-01

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  13. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.

    2003-01-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  14. Evaluation of personal inhalable aerosol samplers with different filters for use during anthrax responses.

    Science.gov (United States)

    Grinshpun, Sergey A; Weber, Angela M; Yermakov, Michael; Indugula, Reshmi; Elmashae, Yousef; Reponen, Tiina; Rose, Laura

    2017-08-01

    Risk of inhalation exposure to viable Bacillus anthracis (B. anthracis) spores has primarily been assessed using short-term, stationary sampling methods which may not accurately characterize the concentration of inhalable-sized spores reaching a person's breathing zone. While a variety of aerosol sampling methods have been utilized during previous anthrax responses, no consensus has yet been established for personal air sampling. The goal of this study was to determine the best sampler-filter combination(s) for the collection and extraction of B. anthracis spores. The study was designed to (1) evaluate the performance of four filter types (one mixed cellulose ester, MCE (pore size = 3 µm), two polytetrafluoroethylene, PTFE (1 and 3 µm), and one polycarbonate, PC (3 µm)); and (2) evaluate the best performing filters in two commercially available inhalable aerosol samplers (IOM and Button). Bacillus thuringiensis kurstaki [Bt(k)], a simulant for B. anthracis, served as the aerosol challenge. The filters were assessed based on criteria such as ability to maintain low pressure drop over an extended sampling period, filter integrity under various environmental conditions, spore collection and extraction efficiencies, ease of loading and unloading the filters into the samplers, cost, and availability. Three of the four tested collection filters-except MCE-were found suitable for efficient collection and recovery of Bt(k) spores sampled from dry and humid as well as dusty and clean air environments for up to 8 hr. The PC (3 µm) filter was identified as the best performing filter in this study. The PTFE (3 µm) demonstrated a comparable performance, but it is more expensive. Slightly higher concentrations were measured with the IOM inhalable sampler which is the preferred sampler's performance criterion when detecting a highly pathogenic agent with no established "safe" inhalation exposure level. Additional studies are needed to address the effects of

  15. The Winfrith portable self-contained air samplers, type W.A.S. 1

    International Nuclear Information System (INIS)

    Cavell, I.W.

    1961-11-01

    This memorandum describes a self-contained air sampler for collecting samples of airborne particulates on a standard 6 centimetre filter paper. Its construction, use and performance are discussed. (author)

  16. A new application of passive samplers as indicators of in-situ biodegradation processes.

    Science.gov (United States)

    Belles, Angel; Alary, Claire; Criquet, Justine; Billon, Gabriel

    2016-12-01

    In this paper, a method for evaluating the in-situ degradation of nitro polycyclic aromatic hydrocarbons (nitro-PAH) in sediments is presented. The methodology is adapted from the passive sampler technique, which commonly uses the dissipation rate of labeled compounds loaded in passive sampler devices to sense the environmental conditions of exposure. In the present study, polymeric passive samplers (made of polyethylene strips) loaded with a set of labeled polycyclic aromatic hydrocarbons (PAH) and nitro-PAH were immersed in sediments (in field and laboratory conditions) to track the degradation processes. This approach is theoretically based on the fact that a degradation process induces a steeper concentration gradient of the labeled compounds in the surrounding sediment, thereby increasing their compound dissipation rates compared with their dissipation in abiotic conditions. Postulating that the degradation magnitude is the same for the labeled compounds loaded in polyethylene strips and for their native homologs that are potentially present in the sediment, the field degradation of 3 nitro-PAH (2-nitro-fluorene, 1-nitro-pyrene, 6-nitro-chrysene) was semi-quantitatively analyzed using the developed method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Validation of ammonia diffusive and active samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures

    Science.gov (United States)

    Martin, Nicholas A.; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Stoll, Jean-Marc; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.

    2017-04-01

    Intensive animal farming, the increased use of fertilizers, and certain industrial processes are believed to be responsible for the observed increases in the amount fraction of ammonia (NH3) found in Europe. NH3 contributes to eutrophication and acidification of land and freshwater, potentially leading to a loss of biodiversity and undesirable changes to the ecosystem. It also contributes to the formation of secondary particulate matter (PM) formation, which is associated with poor air quality and adverse health outcomes. Measurements of ambient ammonia are principally carried out with low-cost diffusive samplers or by active sampling with denuders, with each method delivering time-integrated values over the monitoring period. However, such techniques have not yet been extensively validated. The goal of this work was to provide improvements in the metrological traceability through the determination of NH3 diffusive sampling rates. Five different designs of commercial diffusive samplers (FSM Radiello radial sampler, Gradko diffusion tube, Gradko DIFRAM-400, Passam ammonia sampler, and CEH ALPHA sampler) were employed, together with a pumped denuder sampler (CEH DELTA denuder) for comparison. All devices were simultaneously exposed for either 28 days or 14 days (dependent on sampler type) in a controlled atmosphere test facility (CATFAC) containing traceable amount fractions of humidified ammonia using new stable ammonia Primary Standard Gas Mixtures developed by gravimetry at NPL, under a wide range of conditions that are relevant to ambient monitoring. Online continuous monitoring of the ammonia test atmospheres was carried out by extractive sampling, employing a calibrated cavity ring-down spectrometer, which had been modified to account for cross interference by water vapour. Each manufacturer extracted the captured ammonia on the exposed samplers in the form of ammonium (NH4+) using their own accredited traceable wet chemical techniques, and then reported data

  18. Visual Chronicles from the Balkans and Central Europe: Samplers Remembered

    Directory of Open Access Journals (Sweden)

    Maria-Alina Asavei

    2016-03-01

    Full Text Available This paper examines the relationship between craft and popular culture by focusing on a peculiar type of textile sampler (needlework that used to be omnipresent in the last century both in rural and urban houses across Central and South-Eastern Europe. Although these hand-crafted items are no longer part of today’s ‘compulsory’ household, they are still regarded as nostalgic, familiar or emotional forms of materiality and tangibility which perform a cultural politics of identity. These vernacular textiles predate the digital age and the free market and yet co-evolve and interact with digital networks and technologies. This paper brings into focus ‘amateur’ and regional forms of home grown cultural expression and the ways in which these forms of folk creativity and materiality are recast in contemporary urban popular culture and arts. Thus, the main aim of this study is to explore the contemporary re-enactments of these vernacular samplers.

  19. Development of an automatic smear sampler and evaluation of surface contamination

    International Nuclear Information System (INIS)

    Seo, B. K.; Lee, B. J.; Lee, K. W.; Park, J. H.

    2004-01-01

    The surface contamination level of a radiation-controlled area is measured periodically according to atomic energy law and connection regulations. The measurement of surface contamination by an indirect method is subject to various kinds of error depending on the sampling person and consumes much time and effort in the sampling of large nuclear facilities. In this research, an automatic smear sampler is developed to solve these problems. The developed equipment is composed of a rotating sampling part, a sample transferring part, a power supply part a control part, and vacuum part. It improved the efficiency of estimation of the surface contamination level achieved periodically in a radiation-controlled area. Using an automatic smear sampler developed in this research, it is confirmed that radioactive contaminated materials are uniformly transferred to smear paper more than any sampling method by an operator. (authors)

  20. Numerical analysis of fragmentation mechanisms in vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi; Ikeda, Hirokazu; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-01-01

    Fragmentation of molten metal is the key process in vapor explosions. However this process is so rapid that the mechanisms have not been clarified yet in the experimental studies. Besides, numerical simulation is difficult because we have to analyze water, steam and molten metal simultaneously with evaporation and fragmentation. The authors have been developing a new numerical method, the Moving Particle Semi-implicit (MPS) method, based on moving particles and their interactions. Grids are not necessary. Incompressible flows with fragmentation on free surfaces have been calculated successfully using the MPS method. In the present study numerical simulation of the fragmentation processes using the MPS method is carried out to investigate the mechanisms. A numerical model to calculate evaporation from water to steam is developed. In this model, new particles are generated on water-steam interfaces. Effect of evaporation is also investigated. Growth of the filament is not accelerated when the normal evaporation is considered. This is because the normal evaporation needs a longer time than the moment of the jet impingement, though the filament growth is decided in this moment. Next, rapid evaporation based on spontaneous nucleation is considered. The filament growth is markedly accelerated. This result is consistent with the experimental fact that the spontaneous nucleation temperature is a necessary condition of small-scale vapor explosions. (J.P.N.)

  1. Particles, imaging and nuclei

    International Nuclear Information System (INIS)

    Harris, J.

    1986-01-01

    The book on particles, imaging and nuclei is one of the Background Readers for the Revised Nuffield Advanced Physics course. The contents contain five educational articles, which extend concepts covered in the course and examine recent developments in physics. Four of the articles on:- particles and the forces of nature, radioisotopes, lasers probe the atomic nucleus, and nuclear history, are indexed separately. (UK)

  2. Vaporization of structural materials in severe accidents

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1982-01-01

    Vaporized structural materials form the bulk of aerosol particles that can transport fission products in severe LWR accidents. As part of the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory, a model has been developed based on a mass transport coefficient to describe the transport of materials from the surface of a molten pool. In many accident scenarios, the coefficient can be calculated from existing correlations for mass transfer by natural convection. Data from SASCHA fuel melting tests (Karlsruhe, Germany) show that the partial pressures of many of the melt components (Fe, Cr, Co, Mn, Sn) required for the model can be calculated from the vapor pressures of the pure species and Raoult's law. These calculations indicate much lower aerosol concentrations than reported in previous studies

  3. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST and 200 WEST TANK FARMS FROM CY1995 TO CY2004

    International Nuclear Information System (INIS)

    HOCKING, M.J.

    2005-01-01

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log

  4. Assessment of benthic macroinvertebrates at Nile tilapia production using artificial substrate samplers

    Directory of Open Access Journals (Sweden)

    M. S. G. Moura e Silva

    Full Text Available Abstract Biomonitoring is a cheap and effective tool for evaluation of water quality, and infer on the balance of aquatic ecosystems. The benthic macroinvertebrates are bioindicators sensitive to environmental changes, and can assist in detecting and preventing impacts such as organic enrichment and imbalance in the food chain. We compared the structure of benthic communities on artificial substrate samplers located in places near and far from net cages for production of Nile tilapia (Oreochromis niloticus. Samplers were manufactured with nylon net, using substrates such as crushed stone, gravel, loofah and cattail leaves. Samples were collected after 30 days of colonization, rinsed and then the specimens were identified and quantified. The following metrics were calculated: richness of Operational Taxonomic Units, Margalef richness, abundance of individuals, Shannon index and evenness index. The macrobenthic community structure was strongly modified according to the proximity of the net cages. Metrics showed significant differences (p < 0.05 between near and distant sites, for both periods (dry and rainy seasons. The position of the samplers significantly affected the structure of macroinvertebrate community, as near sites showed higher values for the community metrics, such as richness and diversity. Near sites presented a larger number of individuals, observed both in the dry and rainy seasons, with a predominance of Chironomidae (Diptera in the dry season and Tubificidae (Oligochaeta in the rainy season.

  5. The performance of passive flow monitors and phosphate accumulating passive samplers when exposed to pulses in external water flow rate and/or external phosphate concentrations

    International Nuclear Information System (INIS)

    O'Brien, Dominique; Hawker, Darryl; Shaw, Melanie; Mueller, Jochen F.

    2011-01-01

    Passive samplers are typically calibrated under constant flow and concentration conditions. This study assessed whether concentration and/or flow pulses could be integrated using a phosphate passive sampler (P-sampler). Assessment involved three 21-day experiments featuring a pulse in flow rate, a pulse of filterable reactive phosphate (FRP) concentration and a simultaneous concentration and flow pulse. FRP concentrations were also determined by parallel grab sampling and the P-sampler calibrated with passive flow monitors (PFMs) and direct measurement of flow rates. The mass lost from the PFM over the deployment periods predicted water velocity to within 5.1, 0.48 and 7.1% when exposed to a flow rate pulse (7.5-50 cm s -1 ), concentration pulse (5-100 μg P L -1 ), or both simultaneously. For the P-sampler, good agreement was observed between the grab and passive measurements of FRP concentration when exposed to a pulse in flow (6% overestimation) or concentration (2% underestimation). - Highlights: → We assess the performance of the passive flow monitor and a phosphate passive sampler when exposed to changing environmental conditions. → The PFM responded quickly and accurately to a pulse in flow rate but showed little response to an external FRP pulse. → The ability of the sampler to provide an integrated measure of the average phosphate concentrations has been demonstrated. → The results presented demonstrate under which conditions the greatest accuracy is achieved when employing passive samplers. - The performance of an integrative phosphate passive sampler has been assessed when exposed to pulses in flow rate and concentration, both individually and simultaneously.

  6. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    Science.gov (United States)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  7. Retained gas sampler interim safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pasamehmetoglu, K.O.; Miller, W.O.; Unal, C.; Fujita, R.K.

    1995-01-13

    This safety assessment addresses the proposed action to install, operate, and remove a Retained Gas Sampler (RGS) in Tank 101-SY at Hanford. Purpose of the RGS is to help characterize the gas species retained in the tank waste; the information will be used to refine models that predict the gas-producing behavior of the waste tank. The RGS will take samples of the tank from top to bottom; these samples will be analyzed for gas constituents. The proposed action is required as part of an evaluation of mitigation concepts for eliminating episodic gas releases that result in high hydrogen concentrations in the tank dome space.

  8. Retained gas sampler interim safety assessment

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Miller, W.O.; Unal, C.; Fujita, R.K.

    1995-01-01

    This safety assessment addresses the proposed action to install, operate, and remove a Retained Gas Sampler (RGS) in Tank 101-SY at Hanford. Purpose of the RGS is to help characterize the gas species retained in the tank waste; the information will be used to refine models that predict the gas-producing behavior of the waste tank. The RGS will take samples of the tank from top to bottom; these samples will be analyzed for gas constituents. The proposed action is required as part of an evaluation of mitigation concepts for eliminating episodic gas releases that result in high hydrogen concentrations in the tank dome space

  9. Evaluation and application of a passive air sampler for polycylic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    Esen, Fatma; Evci, Yildiz M; Tasdemir, Yucel

    2017-08-24

    Sampling of 15 PAHs by the use of both passive air sampler developed (D-PAS) in our research group and PAS (C-PAS) having widespread use in the literature was conducted to compare the performances of the samplers. Sampling was carried out for 1-year period (February 2013-February 2014), in different sampling periods by employing D-PAS and C-PAS. D-PAS and C-PAS were run in parallel for 10, 20, 30, 40 and 60 days. Sampling rates were calculated for both PASs by the use of concentration values obtained from a high-volume air sampler (HVAS). It was determined that calculated sampling values are different from each other by definition of design of C-PAS and D-PAS and difference in environment as velocity of wind and temperature are having different effects upon sampling rates. Collected σ 15 PAHs amounts of 10-day periods in spring, summer, autumn and winter were obtained as 576 ± 333, 209 ± 29, 2402 ± 910 and 664 ± 246 ng for D-PAS and 1070 ± 522, 318 ± 292, 6062 ± 1501 and 6089 ± 4018 ng for C-PAS, respectively. In addition, according to seasons, when collected PAHs in two different samplers were considered, similar results were obtained for the summer time in which no combustion takes place with the aim of domestic heating, while there were differences determined for the seasons with combustion in need of domestic heating. Gas-phase σ 15 PAHs' concentrations were reported depending on seasons in the spring, summer, autumn and winter sequences as 46 ± 32, 9 ± 3, 367 ± 207 and 127 ± 93 ng m -3 for HVAS, respectively.

  10. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  11. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004

    Energy Technology Data Exchange (ETDEWEB)

    HOCKING, M.J.

    2005-01-31

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

  12. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part 2, Field tests

    Science.gov (United States)

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  13. A new sampler for simulating aerosol deposition in the respiratory tract

    International Nuclear Information System (INIS)

    Li Dehong; Zhuo Weihai; Yi Yanling; Chen Bo; Liu Haikuan

    2008-01-01

    For estimation of the deposition fractions of radon progeny in different regions of the respiratory tract, a new sampler consisting of three different configurations of sampling heads was developed. The deposition fractions of aerosols on the wire screens inside the sampling heads were calculated with the fan model of filtration theory. The deposition fractions of aerosols in different regions of the respiratory tract were calculated with the lung dose evaluation program (LUDEP) developed by National Radiological Protection Board (NRPB) as references. In general indoor and mine environments, the deviation between the deposition fractions of attached aerosol on the wire screens designed in this study and its reference values in the respiratory tract is less than 5%. It is possible to accurately estimate the deposition fractions of radon progeny in different regions of the respiratory tract through mimic measurements of radon progeny collected with the new sampler. (authors)

  14. Vapor-phase synthesis and characterization of ZnSe nanoparticles

    Science.gov (United States)

    Sarigiannis, D.; Pawlowski, R. P.; Peck, J. D.; Mountziaris, T. J.; Kioseoglou, G.; Petrou, A.

    2002-06-01

    Compound semiconductor nanoparticles are an exciting class of materials whose unique optical and electronic properties can be exploited in a variety of applications, including optoelectronics, photovoltaics, and biophotonics. The most common route for synthesizing such nanoparticles has been via liquid-phase chemistry in reverse micelles. This paper discusses a flexible vapor-phase technique for synthesis of crystalline compound semiconductor nanoparticles using gas-phase condensation reactions near the stagnation point of a counterflow jet reactor. ZnSe nanoparticles were formed by reacting vapors of dimethylzinc: triethylamine adduct and hydrogen selenide at 120Torr and room temperature (28°C). No attempt was made to passivate the surface of the particles, which were collected as random aggregates on silicon wafers or TEM grids placed downstream of the reaction zone. Particle characterization using TEM, electron diffraction, Raman and EDAX revealed that the aggregates consisted of polycrystalline ZnSe nanoparticles, almost monodisperse in size (with diameters of ~40nm). The polycrystalline nanoparticles appear to have been formed by coagulation of smaller single-crystalline nanoparticles with characteristic size of 3-5 run.

  15. Assessment the impact of samplers change on the uncertainty related to geothermalwater sampling

    Science.gov (United States)

    Wątor, Katarzyna; Mika, Anna; Sekuła, Klaudia; Kmiecik, Ewa

    2018-02-01

    The aim of this study is to assess the impact of samplers change on the uncertainty associated with the process of the geothermal water sampling. The study was carried out on geothermal water exploited in Podhale region, southern Poland (Małopolska province). To estimate the uncertainty associated with sampling the results of determinations of metasilicic acid (H2SiO3) in normal and duplicate samples collected in two series were used (in each series the samples were collected by qualified sampler). Chemical analyses were performed using ICP-OES method in the certified Hydrogeochemical Laboratory of the Hydrogeology and Engineering Geology Department at the AGH University of Science and Technology in Krakow (Certificate of Polish Centre for Accreditation No. AB 1050). To evaluate the uncertainty arising from sampling the empirical approach was implemented, based on double analysis of normal and duplicate samples taken from the same well in the series of testing. The analyses of the results were done using ROBAN software based on technique of robust statistics analysis of variance (rANOVA). Conducted research proved that in the case of qualified and experienced samplers uncertainty connected with the sampling can be reduced what results in small measurement uncertainty.

  16. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  17. Chemical interactions between aerosols and vapors in the primary circuit of an LWR during a severe accident

    International Nuclear Information System (INIS)

    Wheatley, C.J.

    1988-01-01

    Aerosol formation, agglomeration, convection and deposition within the primary circuit of an LWR during a severe accident significantly affect the transport of fission products, even though they may compose only a small fraction of the aerosol material. Intra-particle and vapor chemical interactions are important to this through mass transfer between the aerosol and vapor. The authors will describe a model that attempts to account for these processes and of the two-way coupling that exists with the thermal hydraulics. They will discuss what agglomeration and deposition mechanisms must be included, alternatives for treating intra-particle chemical interactions, mechanisms of aerosol formation, and methods for solving the resulting equations. Results will be presented that illustrate the importance of treating the two-way coupling and the extent to which disequilibrium between the aerosol and vapor affects fission product behavior

  18. Handbook of chemical vapor deposition principles, technology and applications

    CERN Document Server

    Pierson, Hugh O

    1999-01-01

    Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest

  19. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    Science.gov (United States)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  20. A Compact Diffusion Sampler for Environmental Applications Requiring HTO or HTO + HT Determinations

    International Nuclear Information System (INIS)

    Otlet, R.L.; Walker, A.J.; Mather, I.D.

    2005-01-01

    Passive diffusion samplers have now been in use in the UK for the measurement of tritium at environmental levels in the form of HTO and HTO + HT for more than ten years. At the outset their main purpose was to identify the direction of a possible inadvertent release of tritium into the environment. More recently, however, there has been growing interest in their use as stand-alone devices for tritium determination at environmental levels. This has necessitated a more rigorous design to reduce the 'draughts effect' in exposed locations and has also required modifications to enable the measurement of HTO + HT. The paper describes the recent design improvements and the results of validation tests carried out against dynamic, discriminating (dry-bed) samplers

  1. Liquid-vapor coexistence by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Baranyai, Andras; Cummings, Peter T.

    2000-01-01

    We present a simple and consistent molecular dynamics algorithm for determining the equilibrium properties of a bulk liquid and its coexisting vapor phase. The simulation follows the dynamics of the two systems simultaneously while maintaining the volume and the number of particles of the composite system fixed. The thermostat can constrain either the total energy or the temperature at a desired value. Division of the extensive properties between the two phases is governed by the difference of the corresponding intensive state variables. Particle numbers are continuous variables and vary only in virtual sense, i.e., the real sizes of the two systems are the same and do not change during the course of the simulation. Calculation of the chemical potential is separate from the dynamics; thus, one can replace the particle exchange step with other method if it improves the efficiency of the code. (c) 2000 American Institute of Physics

  2. New Rhizon in situ sampler for pore water studies in aquatic sediments: For example nutrient input from submarine groundwater discharge in costal areas.

    OpenAIRE

    Seeberg-Elverfeldt, J.; Schlüter, Michael; Kölling, M.; Feseker, T.

    2005-01-01

    To investigate coastal biogeochemical cycles, especially at the sediment/water interface,improved sampling methods are necessary. For this purpose, we developed apore water in situ sampler with miniature sampling devices, so called Rhizons. Rhizonsoil moisture samplers have been used as sampling devices in unsaturated soilsfor the last ten years. In aquatic science they have been rarely used to extract porewater from sediments. This study presents a new developed Rhizon In Situ Sampler(RISS) ...

  3. The determination of volatile chlorinated hydrocarbons in air. Sampling rate and efficiency of diffuse samplers

    Energy Technology Data Exchange (ETDEWEB)

    Giese, U.; Stenner, H.; Kettrup, A.

    1989-05-01

    When applicating diffusive sampling-systems to workplace air-monitoring it is necessary to know the behaviour of the diffusive-rate and the efficiency in dependence of concentration, exposition time and the type of pollutant. Especially concerning mixtures of pollutants there are negative influences by competition and mutual displacement possible. Diffusive-rate and discovery for CH/sub 2/Cl/sub 2/ and CHCl/sub 3/ were investigated using two different types of diffuse samplers. For this it was necessary to develop suitable defices for standard gas generation and for the exposition of diffusive-samplers to a standard gas mixture. (orig.).

  4. Iowa Developed Energy Activity Sampler (IDEAS), Grades 7-12: Social Studies.

    Science.gov (United States)

    Simonis, Doris G.

    Described is the Social Studies component of the Iowa Developed Energy Activity Sampler (IDEAS), a multidisciplinary energy education program designed for infusion into the curriculum of grades seven through twelve. Aspects of the energy situation addressed in these lessons include resource finiteness, exponential growth, standard of living,…

  5. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  6. Passive samplers and community science in regional air quality measurement, education and communication

    International Nuclear Information System (INIS)

    DeForest Hauser, Cindy; Buckley, Alexandra; Porter, Juliana

    2015-01-01

    Charlotte, in Mecklenburg County, North Carolina, was ranked in the top ten cities with the worst air quality for ozone in the United States by the American Lung Association from 2009 to 2011. Nearby counties that may experience similar air quality do not have state or county monitors. This study utilized NO x and ozone Ogawa passive samplers and community scientists to monitor air quality in five counties surrounding Charlotte and increase public engagement in air quality issues. Community scientists deployed samplers weekly at a residential site within each county. Samples were analyzed using spectrophotometry and ion chromatography. Elevated NO x concentrations were observed in four of the five counties relative to those with existing monitors. Ozone concentrations showed little county to county variation, except Iredell and Cabarrus which had higher concentrations than Rowan. Community involvement in this work led to an increase in local dissemination of the results, thus increasing air quality awareness. - Highlights: • NO x concentrations in four adjacent counties were higher than the Mecklenburg site. • Ozone concentrations showed little county to county variation. • Passive samplers and community science can extend the air quality monitoring network. • Community science increases community awareness of air quality issues. - Regional community air quality monitoring is important in educating communities about air quality science issues that can impact personal health and behavior

  7. Progress Toward Meeting NIF Specifications for Vapor Deposited Polyimide Ablator Coatings

    International Nuclear Information System (INIS)

    Letts, Stephan A.; Anthamatten, Mitchell; Buckley, Steven R.; Fearon, Evelyn; Nissen, April E.H.; Cook, Robert C.

    2004-01-01

    We are developing an evaporative coating technique for deposition of thick polyimide (PI) ablator layers on ICF targets. The PI coating technique utilizes stoichiometrically controlled fluxes from two Knudsen cell evaporators containing a dianhydride and a diamine to deposit a polyamic acid (PAA) coating. Heating the PAA coating to 300 deg. C converts the PAA coating to a polyimide. Coated shells are rough due to particles on the substrate mandrels and from damage to the coating caused by the agitation used to achieve a uniform coating. We have developed a smoothing process that exposes an initially rough PAA coated shell to solvent vapor using gas levitation. We found that after smoothing the coatings developed a number of wide (low-mode) defects. We have identified two major contributors to low-mode roughness: surface hydrolysis, and deformation during drying/curing. By minimizing air exposure prior to vapor smoothing, avoiding excess solvent sorption during vapor smoothing, and using slow drying we are able to deposit and vapor smooth coatings 160 μm thick with a surface roughness less than 20 nm RMS

  8. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  9. Development of a passive sampler based on a polymer inclusion membrane for total ammonia monitoring in freshwaters.

    Science.gov (United States)

    Almeida, M Inês G S; Silva, Adélia M L; Coleman, Rhys A; Pettigrove, Vincent J; Cattrall, Robert W; Kolev, Spas D

    2016-05-01

    A passive sampler for determining the time-weighted average total ammonia (i.e. molecular ammonia and the ammonium cation) concentration (C TWA) in freshwaters, which incorporated a polymer inclusion membrane (PIM) as a semi-permeable barrier separating the aqueous source solution from the receiving solution (i.e. 0.8 mol L(-1) HCl), was developed for the first time. The PIM was composed of dinonylnaphthalene sulfonic acid (DNNS) as a carrier, poly (vinyl chloride) (PVC) as a base polymer and 1-tetradecanol as a modifier. Its optimal composition was found to be 35 wt% commercial DNNS, 55 wt% PVC and 10 wt% 1-tetradecanol. The effect of environmental variables such as the water matrix, pH and temperature were also studied using synthetic freshwaters. The passive sampler was calibrated under laboratory conditions using synthetic freshwaters and exhibited a linear response within the concentration range 0.59-2.8 mg L(-1) NH4(+) (0.46-2.1 mg N L(-1)) at 20 °C. The performance of the sampler was further investigated under field conditions over 7 days. A strong correlation between spot sampling and passive sampling was achieved, thus providing a proof-of-concept for the passive sampler for reliably measuring the C(TWA) of total ammonia in freshwaters, which can be used as an indicator in tracking sources of faecal contamination in stormwater drains.

  10. ACT-XN: Revised version of an activation calculation code for fusion reactor analysis. Supplement of the function for the sequential reaction activation by charged particles

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Konno, Chikara; Hori, Jun-ichi; Kawasaki, Hiromitsu

    2007-09-01

    The ACT-XN is a revised version of the ACT4 code, which was developed in the Japan Atomic Energy Research Institute (JAERI) to calculate the transmutation, induced activity, decay heat, delayed gamma-ray source etc. for fusion devices. The ACT4 code cannot deal with the sequential reactions of charged particles generated by primary neutron reactions. In the design of present experimental reactors, the activation due to sequential reactions may not be of great concern as it is usually buried under the activity by primary neutron reactions. However, low activation material is one of the important factors for constructing high power fusion reactors in future, and unexpected activation may be produced through sequential reactions. Therefore, in the present work, the ACT4 code was newly supplemented with the calculation functions for the sequential reactions and renamed the ACT-XN. The ACT-XN code is equipped with functions to calculate effective cross sections for sequential reactions and input them in transmutation matrix. The FISPACT data were adopted for (x,n) reaction cross sections, charged particles emission spectra and stopping powers. The nuclear reaction chain data library were revised to cope with the (x,n) reactions. The charged particles are specified as p, d, t, 3 He(h) and α. The code was applied to the analysis of FNS experiment for LiF and Demo-reactor design with FLiBe, and confirmed that it reproduce the experimental values within 15-30% discrepancies. In addition, a notice was presented that the dose rate due to sequential reaction cannot always be neglected after a certain period cooling for some of the low activation material. (author)

  11. Unified Frequency-Domain Analysis of Switched-Series-RC Passive Mixers and Samplers

    NARCIS (Netherlands)

    Soer, M.C.M.; Klumperink, Eric A.M.; de Boer, Pieter-Tjerk; van Vliet, Frank Edward; Nauta, Bram

    2010-01-01

    Abstract—A wide variety of voltage mixers and samplers are implemented with similar circuits employing switches, resistors, and capacitors. Restrictions on duty cycle, bandwidth, or output frequency are commonly used to obtain an analytical expression for the response of these circuits. This paper

  12. Assessing the transport of PAH in the surficial sediment layer by passive sampler approach.

    Science.gov (United States)

    Belles, Angel; Alary, Claire; Criquet, Justine; Ivanovsky, Anastasia; Billon, Gabriel

    2017-02-01

    A new method based on passive samplers has been developed to assess the diffusive flux of fluorene, fluoranthene and pyrene in the sediment bed and across the sediment-water interface. The dissolved compound concentration gradient in the sediment in the vertical direction was measured at the outlet of a storm water pond by using polyethylene strips as passive samplers. Simultaneously, the dissipation of a set of tracer compounds preloaded in the passive samplers was measured to estimate the effective diffusion coefficients of the pollutants in the sediment. Both measurements were used to evaluate the diffusive flux of the compounds according to Fick's first law. The diffusive fluxes of the 3 studied compounds have been estimated with a centimetre-scale resolution in the upper 44cm of the sediment. According to the higher compound diffusion coefficient and the steeper concentration gradient in the surficial sediment layer, the results show that the net flux of compounds near the sediment interface (1cm depth) is on average 500 times higher than in the deep sediment, with average fluxes at 1cm depth on the order of 5, 0.1 and 0.1ng/m 2 /y for fluorene, fluoranthene and pyrene, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  14. Steady Particle States of Revised Electromagnetics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2006-07-01

    Full Text Available A revised Lorentz invariant electromagnetic theory leading beyond Maxwell's equations, and to a form of extended quantum electrodynamics, has been elaborated on the basis of a nonzero electric charge density and a nonzero electric field divergence in the vacuum state. Among the applications of this theory, there are steady electromagnetic states having no counterpart in conventional theory and resulting in models of electrically charged and neutral leptons, such as the electron and the neutrino. The analysis of the electron model debouches into a point-charge-like geometry with a very small characteristic radius but having finite self-energy. This provides an alternative to the conventional renormalization procedure. In contrast to conventional theory, an integrated radial force balance can further be established in which the electron is prevented from "exploding" under the action of its net self-charge. Through a combination of variational analysis and an investigation of the radial force balance, a value of the electronic charge has been deduced which deviates by only one percent from that obtained in experiments. This deviation requires further investigation. A model of the neutrino finally reproduces some of the basic features, such as a small but nonzero rest mass, an angular momentum but no magnetic moment, and long mean free paths in solid matter.

  15. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  16. Structure of zinc particles formed by condensation for transportation to an analytic device

    Energy Technology Data Exchange (ETDEWEB)

    Barone, T.; Wochele, J.; Ludwig, C.; Schuler, A.J.; Ketterer, B.

    2002-03-01

    Aerosol containing small particles with homogeneous structural characteristics are desired for analysis in Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). To investigate heavy metal evaporation behaviour during thermal treatment a laboratory on-line elemental analyzer has been developed. The analyzer consists of a Condensation Interface (CI) for the generation of aerosols and an ICP-OES as detector. The settings at the CI can strongly influence the particle formation, and therefore the quality of the measurements. To improve the method preliminary experiments were conducted to investigate the characteristics of zinc particles formed in the evaporation/condensation process. System conditions, such as vaporization temperature, carrier gas, and flow rate, were varied to investigate their influence on particle size, homogeneity and shape. The experiments suggest that particles vary most with temperature, lower vaporization temperatures resulted in the formation of smaller particles. (author)

  17. Performance of a hydrostatic sampler for collecting samples at the water-sediment interface in lakes

    Directory of Open Access Journals (Sweden)

    Fernando PEDROZO

    2008-02-01

    Full Text Available The water-sediment interface plays a significant role in the determination of the trophic degree of a waterbody. Numerous redox reactions take place there, resulting in the release of contaminants from the sediments to the water column. The aim of the present work was to develop an equipment for collecting samples from the water-sediment interface. Such equipment was to have a simple design, low construction cost, no depth limitations, and high levels of personal safety and to be reliable in the collection of samples. The performance of the hydrostatic sampler thus developed was tested against samples collected either remotely with a corer or directly with syringes by autonomous divers. The hydrostatic sampler permits access to depths where the costs of the traditional diving methodology are expensive, and where working conditions are dangerous for the diver. The hydrostatic sampler provides an additional means of collecting samples from the water-sediment interface, which together with pore-water samples, facilitates the investigation and understanding of chemical mechanisms in lakes, for instance, those that control the P release from sediment to the water column.

  18. Aromatic chemicals by iron-catalyzed hydrotreatment of lignin pyrolysis vapor.

    Science.gov (United States)

    Olcese, Roberto Nicolas; Lardier, George; Bettahar, Mohammed; Ghanbaja, Jaafar; Fontana, Sébastien; Carré, Vincent; Aubriet, Frédéric; Petitjean, Dominique; Dufour, Anthony

    2013-08-01

    Lignin is a potential renewable material for the production of bio-sourced aromatic chemicals. We present the first hydrotreatment of lignin pyrolysis vapors, before any condensation, using inexpensive and sustainable iron-silica (Fe/SiO2 ) and iron-activated carbon (Fe/AC) catalysts. Lignin pyrolysis was conducted in a tubular reactor and vapors were injected in a fixed bed of catalysts (673 K, 1 bar) with stacks to investigate the profile of coke deposit. More than 170 GC-analyzable compounds were identified by GCxGC (heart cutting)/flame ionization detector mass spectrometry. Lignin oligomers were analyzed by very high resolution mass spectrometry, called the "petroleomic" method. They are trapped by the catalytic fixed bed and, in particular, by the AC. The catalysts showed a good selectivity for the hydrodeoxygenation of real lignin vapors to benzene, toluene, xylenes, phenol, cresols, and alkyl phenols. The spent catalysts were characterized by temperature-programmed oxidation, transmission electron microscopy (TEM), and N2 sorption. Micropores in the Fe/AC catalyst are completely plugged by coke deposits, whereas the mesoporous structure of Fe/SiO2 is unaffected. TEM images reveal two different types of coke deposit: 1) catalytic coke deposited in the vicinity of iron particles and 2) thermal coke (carbonaceous particles ≈1 μm in diameter) formed from the gas-phase growth of lignin oligomers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Schultz, Shannon M.; Harris, Harold H.; Chickos, James S.

    2015-01-01

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to T b ) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol −1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of T B = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of T B = (549.1 ± 0.1) K is also estimated by extrapolation

  20. Overview: Homogeneous nucleation from the vapor phase-The experimental science.

    Science.gov (United States)

    Wyslouzil, Barbara E; Wölk, Judith

    2016-12-07

    Homogeneous nucleation from the vapor phase has been a well-defined area of research for ∼120 yr. In this paper, we present an overview of the key experimental and theoretical developments that have made it possible to address some of the fundamental questions first delineated and investigated in C. T. R. Wilson's pioneering paper of 1897 [C. T. R. Wilson, Philos. Trans. R. Soc., A 189, 265-307 (1897)]. We review the principles behind the standard experimental techniques currently used to measure isothermal nucleation rates, and discuss the molecular level information that can be extracted from these measurements. We then highlight recent approaches that interrogate the vapor and intermediate clusters leading to particle formation, more directly.

  1. Pesticide impact on aquatic invertebrates identified with Chemcatcher® passive samplers and the SPEAR(pesticides) index.

    Science.gov (United States)

    Münze, Ronald; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Kaske, Oliver; Beketov, Mikhail A; Hundt, Matthias; Bauer, Coretta; Schüürmann, Gerrit; Möder, Monika; Liess, Matthias

    2015-12-15

    Pesticides negatively affect biodiversity and ecosystem function in aquatic environments. In the present study, we investigated the effects of pesticides on stream macroinvertebrates at 19 sites in a rural area dominated by forest cover and arable land in Central Germany. Pesticide exposure was quantified with Chemcatcher® passive samplers equipped with a diffusion-limiting membrane. Ecological effects on macroinvertebrate communities and on the ecosystem function detritus breakdown were identified using the indicator system SPEARpesticides and the leaf litter degradation rates, respectively. A decrease in the abundance of pesticide-vulnerable taxa and a reduction in leaf litter decomposition rates were observed at sites contaminated with the banned insecticide Carbofuran (Toxic Units≥-2.8), confirming the effect thresholds from previous studies. The results show that Chemcatcher® passive samplers with a diffusion-limiting membrane reliably detect ecologically relevant pesticide pollution, and we suggest Chemcatcher® passive samplers and SPEARpesticides as a promising combination to assess pesticide exposure and effects in rivers and streams. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Identification of V-type nerve agents in vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator and fluoridating conversion tube.

    Science.gov (United States)

    Ohrui, Y; Nagoya, T; Kurimata, N; Sodeyama, M; Seto, Y

    2017-07-01

    A field-portable gas chromatography-mass spectrometry (GC-MS) system (Hapsite ER) was evaluated for the detection of nonvolatile V-type nerve agents (VX and Russian VX (RVX)) in the vapor phase. The Hapsite ER system consists of a Tri-Bed concentrator gas sampler, a nonpolar low thermal-mass capillary GC column and a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump. The GC-MS system was attached to a VX-G fluoridating conversion tube containing silver nitrate and potassium fluoride. Sample vapors of VX and RVX were converted into O-ethyl methylphosphonofluoridate (EtGB) and O-isobutyl methylphosphonofluoridate (iBuGB), respectively. These fluoridated derivatives were detected within 10 min. No compounds were detected when the VX and RVX samples were analyzed without the conversion tube. A vapor sample of tabun (GA) was analyzed, in which GA and O-ethyl N,N-dimethylphosphoramidofluoridate were detected. The molar recovery percentages of EtGB and iBuGB from VX and RVX vapors varied from 0.3 to 17%, which was attributed to variations in the vaporization efficiency of the glass vapor container. The conversion efficiencies of the VX-G conversion tube for VX and RVX to their phosphonate derivatives were estimated to be 40%. VX and RVX vapors were detected at concentrations as low as 0.3 mg m -3 . Gasoline vapor was found to interfere with the analyses of VX and RVX. In the presence of 160 mg m -3 gasoline, the detection limits of VX and RVX vapor were increased to 20 mg m -3 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  4. Synthesis, characterization and field evaluation of a new calcium-based CO2 absorbent for radial diffusive sampler

    Science.gov (United States)

    Cucciniello, Raffaele; Proto, Antonio; Alfano, Davide; Motta, Oriana

    2012-12-01

    In this paper the use of passive sampling as a powerful approach to monitor atmospheric CO2 is assessed. Suitable substrate based on calcium-aluminium oxide was synthetized according to a process which permits to control the particle size of the CaO/Al based sorbent. The study shows that hydration of substrate is an essential part of the process of CO2 absorption and subsequent conversion to carbonate. X-ray diffraction, thermogravimetric analysis, environmental scanning electron microscopic analysis were used in order to characterize the substrate and to establish the best performances both in terms of particle size and CO2 absorption capacity. Passive samplers for CO2 monitoring were prepared and then tested at laboratory level and in the atmospheric environment. Validation was performed by comparison with an infrared continuous detector. Thermogravimetric analysis results, carried out to evaluate the absorbing capability of this new passive device, were in accordance with data collected at the same time by the active continuous analyser. The diffusive sampling rate and the diffusion coefficient of CO2 respect to this new passive device were also evaluated resulting equal to 47 ± 3 ml min-1 and 0.0509 ± 0.005 cm2 s-1, respectively.

  5. Estimated effects of interfacial vaporization on fission product scrubbing

    International Nuclear Information System (INIS)

    Moody, F.J.; Nagy, S.G.

    1983-01-01

    When bubbles containing non-condensible gas rise through a water pool, interfacial evaporation causes a flow of vapor into the bubbles. The inflow reduces the outward particle motion toward the bubble wall, diminishing the effectiveness of fission product particle removal. This analysis provides an estimate of evaporation on pool scrubbing effectiveness. It is shown that hot gas, which boils water at the bubble wall, reduces the effective scrubbing height by less than five centimeters. Although the evaporative humidification in a rising bubble containing non-condensible gas has a diminishing effect on scrubbing mechanisms, substantial decontamination is still expected even for the limiting case of a saturated pool

  6. Design of data sampler in intelligent physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Wang Yinli; Ling Qiu

    2007-01-01

    It introduces the design of data sampler in intelligent physical start-up system for nuclear reactor. The hardware frame taking STμPSD3234A as the core and the firmware design based on USB interface are discussed. (authors)

  7. Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers

    International Nuclear Information System (INIS)

    Arditsoglou, Anastasia; Voutsa, Dimitra

    2008-01-01

    Two types of polar organic chemical integrative samplers (pharmaceutical POCIS and pesticide POCIS) were examined for their sampling efficiency of selected endocrine disrupting compounds (EDCs). Laboratory-based calibration of POCISs was conducted by exposing them at high and low concentrations of 14 EDCs (4-alkyl-phenols, their ethoxylate oligomers, bisphenol A, selected estrogens and synthetic steroids) for different time periods. The kinetic studies showed an integrative uptake up to 28 days. The sampling rates for the individual compounds were obtained. The use of POCISs could result in an integrative approach to the quality status of the aquatic systems especially in the case of high variation of water concentrations of EDCs. The sampling efficiency of POCISs under various field conditions was assessed after their deployment in different aquatic environments. - Calibration and field performance of polar organic integrative samplers for monitoring EDCs in aquatic environments

  8. Real-time measurements of airborne biologic particles using fluorescent particle counter to evaluate microbial contamination: results of a comparative study in an operating theater.

    Science.gov (United States)

    Dai, Chunyang; Zhang, Yan; Ma, Xiaoling; Yin, Meiling; Zheng, Haiyang; Gu, Xuejun; Xie, Shaoqing; Jia, Hengmin; Zhang, Liang; Zhang, Weijun

    2015-01-01

    Airborne bacterial contamination poses a risk for surgical site infection, and routine surveillance of airborne bacteria is important. Traditional methods for detecting airborne bacteria are time consuming and strenuous. Measurement of biologic particle concentrations using a fluorescent particle counter is a novel method for evaluating air quality. The current study was to determine whether the number of biologic particles detected by the fluorescent particle counter can be used to indicate airborne bacterial counts in operating rooms. The study was performed in an operating theater at a university hospital in Hefei, China. The number of airborne biologic particles every minute was quantified using a fluorescent particle counter. Microbiologic air sampling was performed every 30 minutes using an Andersen air sampler (Pusong Electronic Instruments, Changzhou, China). Correlations between the 2 different methods were analyzed by Pearson correlation coefficients. A significant correlation was observed between biologic particle and bacterial counts (Pearson correlation coefficient = 0.76), and the counting results from 2 methods both increased substantially between operations, corresponding with human movements in the operating room. Fluorescent particle counters show potential as important tools for monitoring bacterial contamination in operating theatres. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of a depth proportional intake device for automatic pumping samplers

    Science.gov (United States)

    Rand E. Eads; Robert B. Thomas

    1983-01-01

    Abstract - A depth proportional intake boom for portable pumping samplers was used to collect suspended sediment samples in two coastal streams for three winters. The boom pivots on the stream bed while a float on the downstream end allows debris to depress the boom and pass without becoming trapped. This equipment modifies point sampling by maintaining the intake...

  10. Steady Particle States of Revised Electromagnetics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2006-07-01

    Full Text Available A revised Lorentz invariant electromagnetic theory leading beyond Maxwell’s equations, and to a form of extended quantum electrodynamics, has been elaborated on the basis of a nonzero electric charge density and a nonzero electric field divergence in the vacuum state. Among the applications of this theory, there are steady electromagnetic states having no counterpart in conventional theory and resulting in models of electrically charged and neutral leptons, such as the electron and the neutrino. The analysis of the electron model debouches into a point-charge-like geometry with a very small characteristic radius but having finite self-energy. This provides an alternative to the conventional renormalization procedure. In contrast to conventional theory, an integrated radial force balance can further be established in which the electron is prevented from “exploding” under the action of its net self-charge. Through a combination of variational analysis and an investigation of the radial force balance, a value of the electronic charge has been deduced which deviates by only one percent from that obtained in experiments. This deviation requires further investigation. A model of the neutrino finally reproduces some of the basic features, such as a small but nonzero rest mass, an angular momentum but no magnetic moment, and long mean free paths in solid matter.

  11. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  12. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    International Nuclear Information System (INIS)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-01-01

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator

  13. (Vapor + liquid) equilibrium data for (carbon dioxide + 1,1-difluoroethane) system at temperatures from (258 to 343) K and pressures up to about 8 MPa

    International Nuclear Information System (INIS)

    Madani, Hakim; Valtz, Alain; Coquelet, Christophe; Meniai, Abdeslam Hassen; Richon, Dominique

    2008-01-01

    Accurate thermo-physical data are of utmost interest for the development of new efficient refrigeration systems. Carbon dioxide (R744) and 1,1-difluoroethane (R152a) are addressed here. Isothermal (vapor + liquid) equilibrium data are reported herein for (R744 + R152a) binary system in the (258-343) K temperature range and in the (0.14 to 7.65) MPa pressure range. A reliable 'static-analytic' method taking advantage of two online ROLSI TM micro capillary samplers is used for all thermodynamic measurements. The data are correlated using our in-house ThermoSoft thermodynamic model using the Peng-Robinson equation of state, the Mathias-Copeman alpha function, the Wong-Sandler mixing rules, and the NRTL model

  14. Orientation specific deposition of mesoporous particles

    Directory of Open Access Journals (Sweden)

    Tomas Kjellman

    2014-11-01

    Full Text Available We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface. A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  15. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    Science.gov (United States)

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  16. Coated air-stable cobalt--rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloys. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating on the particles. (U.S.)

  17. PERFORMANCE OF A NEW DIFFUSIVE SAMPLER FOR HG0 DETERMINATION IN THE TROPOSPHERE

    Science.gov (United States)

    Mercury behaves uniquely in the atmosphere due to its volatility and long lifetime. The existing methods for measuring atmospheric mercury are either expensive or labour intensive. The present paper presents a new measurement technique, the diffusive sampler, that is portable, in...

  18. Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms

    International Nuclear Information System (INIS)

    Pesce, Stephane; Morin, Soizic; Lissalde, Sophie; Montuelle, Bernard; Mazzella, Nicolas

    2011-01-01

    Polar organic chemical integrative samplers (POCIS) are valuable tools in passive sampling methods for monitoring polar organic pesticides in freshwaters. Pesticides extracted from the environment using such methods can be used to toxicity tests. This study evaluated the acute effects of POCIS extracts on natural phototrophic biofilm communities. Our results demonstrate an effect of POCIS pesticide mixtures on chlorophyll a fluorescence, photosynthetic efficiency and community structure. Nevertheless, the range of biofilm responses differs according to origin of the biofilms tested, revealing spatial variations in the sensitivity of natural communities in the studied stream. Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment. - Research highlights: → Polar organic chemical integrative samplers (POCIS) were used for monitoring polar organic pesticides in a contaminated river. → The acute effects of POCIS extracts were tested on natural phototrophic biofilm communities. → POCIS pesticide mixtures affected chlorophyll a fluorescence, photosynthetic efficiency and community structure. → Biofilm responses differed according to origin of the biofilms tested, revealing variations in the sensitivity of natural communities. → Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment. - Pesticide mixtures extracted from POCIS can affect chl a fluorescence, photosynthetic efficiency and community structure of natural biofilms.

  19. Improvements in the CHART D radiation-hydrodynamic code III: revised analytic equations of state

    International Nuclear Information System (INIS)

    Thompson, S.L.; Lauson, H.S.

    1974-03-01

    A revised set of in-line equation-of-state subroutines for the CHART D hydrodynamic code is described. The information generated is thermodynamically complete and self-consistent. The temperature and density range of validity is large. Solids, liquids, vapors, plasmas, and all types of phase mixtures are treated. Energy transport properties are calculated. The set of subroutines form a package which can easily be included in other hydrodynamic codes. (20 figures) (U.S.)

  20. Activity, size, and flux of resuspended particles from Rocky Flats soil

    International Nuclear Information System (INIS)

    Langer, G.

    1982-01-01

    Wind erosion processes that resuspend soil from Rocky Flats (rf) sites known as the pad field and the east field were studied. The soil in these sites contains above background amounts of Pu and Am. The following five major areas of concern were studied: Pu levels in source area soil; total Pu activity and activity-particle size relationship in the wind resuspended dust; culpability of suspected source areas for Pu activity reported by the RF surveillance samplers; Pu activity in the respirable and coarse fraction of wind resuspended dust; Pu activity in resuspended dust from wind tunnel simulations of wind erosion. Results indicate that Pu attached to wind blown dust from the pad field and the east field at rf does not present a health hazard. The Pu carrying dust particles are too large (> 3 μm) to be respirable and most are above the inhalable size (> 10 μm). For the July 1981 to March 1982 period, 90% of the Pu collected by the surveillance samplers east of the pad field originated from this field. For those months 90% of the winds over 14 m/s originated from the two western quadrants. Winds over 14 m/s resuspend most of the dust. From April to June 1982 there were no winds over 14 m/s and Pu originated about equally from the pad and east field. Wind tunnel resuspension of dust varied as the 2.8 to 4.2 power of wind speed for a soil moisture range of 14 to 1% respectively. Above 14% moisture little dust was resuspended. No measurable respirable particles (< 3 μm) were resuspended

  1. Investigation of the tritium release from Building 324 in which the stack tritium sampler was off, April 14 through 17, 1998

    International Nuclear Information System (INIS)

    Brown, D.H.

    1998-01-01

    On April 14, 1998, a Pacific Northwest National Laboratory (PNNL) researcher performing work in the Building 324 facility approached facility management and asked if facility management could turn off the tritium sampler in the main exhaust stack. The researcher was demonstrating the feasibility of treating components from dismantled nuclear weapons in a device called a plasma arc furnace and was concerned that the sampler would compromise classified information. B and W Hanford Company (BWHC) operated the facility, and PNNL conducted research as a tenant in the facility. The treatment of 200 components in the furnace would result in the release of up to about 20 curies of tritium through the facility stack. The exact quantity of tritium was calculated from the manufacturing data for the weapons components and was known to be less than 20 curies. The Notice of Construction (NOC) approved by the Washington State Department of Health (WDOH) had been modified to allow releasing 20 curies of tritium through the stack in support of this research. However, there were irregularities in the way the NOC modification was processed. The researcher was concerned that data performed on the sampler could be used to back-calculate the tritium content of the components, revealing classified information about the design of nuclear weapons. He had discussed this with the PNNZ security organization, and they had told him that data from the sampler would be classified. He was also concerned that if he could not proceed with operation of the plasma arc furnace, the furnace would be damaged. The researcher told BWHC management that the last time the furnace was shut down and restarted it had cost $0.5 million and caused a six month delay in the project's schedule. He had already begun heating up the furnace before recognizing the security problem and was concerned that stopping the heatup could damage the furnace. The NOC that allowed the research did not have an explicit requirement to

  2. BCE selector valves and flow proportional sampler

    International Nuclear Information System (INIS)

    Rippy, G.L.

    1994-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Electrical/Instrumentation systems for the B-Plant Process Condensate Treatment Facility (BCE) function as required by project criteria. Tests will be run to: Verify the operation of the solenoid valve and associated limit switches installed for the BCE portion of W-007H; Operate the solenoid valve and verify the proper operation of the associated limit switches based on the position of the solenoid valve;and, Demonstrate the integrity of the Sample Failure Alarm Relay XFA-211BA-BCE-1, and Power Failure ALarm Relay JFA-211BA-BCE-1 located inside the Flow Proportional Sampler in Building 211 BA

  3. Comparison of vapor sampling system (VSS) and in situ vapor sampling (ISVS) methods on Tanks C-107, BY-108, and S-102

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Edwards, J.A.; Evans, J.C.

    1996-05-01

    The objective of this report is to evaluate the equivalency of two methods used to sample nonradioactive gases and vapors in the Hanford Site high-level waste tank headspaces. In addition to the comparison of the two sampling methods, the effects of an in-line fine particle filter on sampling results are also examined to determine whether results are adversely affected by its presence. This report discusses data from a January 1996 sampling

  4. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Science.gov (United States)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  5. Milgrom's revision of Newton's laws: Dynamical and cosmological consequences

    International Nuclear Information System (INIS)

    Felten, J.E.; and University of Maryland, College Park)

    1984-01-01

    Milgrom's recent revision of Newtonian dynamics was introduced to eliminate the inference that large quantities of invisible mass exist in galaxies. I show by simple examples that a Milgrom acceleration, in the form presented so far, implies other far-reaching changes in dynamics. The momentum of an isolated system is not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applications require extreme caution. The model fails to provide a complete description of particle dynamics and should be thought of as a revision of Kepler's laws rather than Newton's

  6. Calibration sources for the G-M counter used with the BNL air sampler

    International Nuclear Information System (INIS)

    Huchton, R.L.; Bird, S.K.; Tkachyk, J.W.; Motes, B.G.

    1983-12-01

    Three calibration sources were designed, developed, and fabricated for a CDV-700 ratemeter equipped with a specially-shielded 6306 G-M detector. The CDV-700/6306 has been proposed for use with the BNL Air Sampler designed for radioiodine monitoring upon a nuclear reactor accident. Specifically, three sources were constructed in a geometry identical to the BNL Air Sampler radioiodine adsorption canister, which is a silver-silica-gel filled 2.75-inch diameter right circular cylinder with a 1.0 inch daimater annulus for insertion of the 6306 G-M detector. As fabricated, each source consisted of an outer stainless steel housing, an inner 133 Ba impregnated polyester liner, 4 weight percent silver steel lid. Respectively, the levels of 133 Ba, an 131 I simulant, were varied in the three sources to yield nominal CDV-700/6306 instrument responses of 200 cpm, 2000 cpm, and 20,000 cpm

  7. Investigation of a Particle into Liquid Sampler to Study the Formation & Ageing of Secondary Organic Aerosol

    Science.gov (United States)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Munoz, A.; Vazquez, M.; Rodenas, M.; Vera, T.; Borrás, E.

    2012-12-01

    The atmospheric oxidation of Volatile Organic Compounds (VOCs) in the presence of NOx results in the formation of tropospheric ozone and Secondary Organic Aerosol (SOA) [Hallquist et al., 2009]. Whilst SOA is known to affect both climate and human health, the VOC oxidation pathways leading to SOA formation are poorly understood [Solomon et al., 2007]. This is in part due to the vast number and the low concentration of SOA species present in the ambient atmosphere. It has been estimated as many as 10,000 to 100,000 VOCs have been detected in the atmosphere, all of which can undergo photo-chemical oxidation and contribute to SOA formation [Goldstein and Galbally, 2007]. Atmospheric simulation chambers such as the EUropean PHOtoREactor (EUPHORE) in Valencia, Spain, are often used to study SOA formation from a single VOC precursor under controlled conditions. SOA composition and formation can be studied using online techniques such as Aerosol Mass Spectrometry (AMS), which provide high time resolution but limited structural information [Zhang et al., 2007]. Offline techniques, such as collection onto filters, extraction and subsequent analysis, provide detailed SOA composition but only usually one or two samples per experiment. In this work we report time resolved SOA composition analysis using a Particle into Liquid Sampler (PILS) followed by Liquid Chromatography Ion-Trap Mass Spectrometry (LC-IT-MS/MS) and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS/MS). Experiments were performed at EUPHORE investigating the formation and composition of Methyl Chavicol SOA. Methyl Chavicol (also known as Estragole) was identified as the highest floral emission from an oil palm plantation in Malaysian Borneo and has also been observed in US pine forests [Bouvier-Brown et al., 2009; Misztal et al., 2010]. Previous studies indicate a high SOA yield from Methyl Chavicol at around 40 % [Lee et al., 2006], however currently there have been very few literature

  8. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  9. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  10. Fog camera to visualize ionizing charged particles

    International Nuclear Information System (INIS)

    Trujillo A, L.; Rodriguez R, N. I.; Vega C, H. R.

    2014-10-01

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  11. Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs

    International Nuclear Information System (INIS)

    Lee, Se-Jin; Ale, Debaki; Chang, Yoon-Seok; Oh, Jeong-Eun; Shin, Sun Kyoung

    2008-01-01

    This study monitored particle size-dependent variations in atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Two gas/particle partitioning models, the subcooled liquid vapor pressure (P L 0 ) and the octanol-air partition coefficient (K OA ) model, were applied to each particle sizes. The regression coefficients of each fraction against the gas/particle partition coefficient (K P ) were similar for separated particles within the same sample set but differed for particles collected during different periods. Gas/particle partitioning calculated from the integral of fractions was similar to that of size-segregated particles and previously measured bulk values. Despite the different behaviors and production mechanisms of atmospheric particles of different sizes, PCDD/F partitioning of each size range was controlled by meteorological conditions such as atmospheric temperature, O 3 and UV, which reflects no source related with certain particle size ranges but mixed urban sources within this city. Our observations emphasize that when assessing environmental and health effects, the movement of PCDD/Fs in air should be considered in conjunction with particle size in addition to the bulk aerosol. - Gas/particle partitioning of atmospheric PCDD/Fs for different particle sizes reflects the impacts of emitters of different size ranges

  12. The vapor pressure and enthalpy of vaporization of M-xylene

    International Nuclear Information System (INIS)

    Rothenberg, S.J.; Seiler, F.A.; Bechtold, W.E.; Eidson, A.F.

    1988-01-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 ± 0.1 (SE) kj/ g·mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 (± 0.1) (SE) kjg·mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization (ΔCpdeg.) of 35 ± 3 (SE) J/g·mol·K over the temperature range studied. (author)

  13. The influence of geometry and draught shields on the performance of passive samplers

    NARCIS (Netherlands)

    Hofschreuder, P.; Meulen, van der W.; Heeres, P.; Slanina, J.

    1999-01-01

    Passive samplers provide an excellent opportunity to perform indicative measurements or establish a dense network of measuring sites. A drawback compared with conventional active measuring methods is the larger spread of results. This variation can, to a large extent, be attributed to the influence

  14. High-temperature LDV seed particle development

    Science.gov (United States)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  15. A review of methods for sampling large airborne particles and associated radioactivity

    International Nuclear Information System (INIS)

    Garland, J.A.; Nicholson, K.W.

    1990-01-01

    Radioactive particles, tens of μm or more in diameter, are unlikely to be emitted directly from nuclear facilities with exhaust gas cleansing systems, but may arise in the case of an accident or where resuspension from contaminated surfaces is significant. Such particles may dominate deposition and, according to some workers, may contribute to inhalation doses. Quantitative sampling of large airborne particles is difficult because of their inertia and large sedimentation velocities. The literature describes conditions for unbiased sampling and the magnitude of sampling errors for idealised sampling inlets in steady winds. However, few air samplers for outdoor use have been assessed for adequacy of sampling. Many size selective sampling methods are found in the literature but few are suitable at the low concentrations that are often encountered in the environment. A number of approaches for unbiased sampling of large particles have been found in the literature. Some are identified as meriting further study, for application in the measurement of airborne radioactivity. (author)

  16. Silicone Wristband Passive Samplers Yield Highly Individualized Pesticide Residue Exposure Profiles.

    Science.gov (United States)

    Aerts, Raf; Joly, Laure; Szternfeld, Philippe; Tsilikas, Khariklia; De Cremer, Koen; Castelain, Philippe; Aerts, Jean-Marie; Van Orshoven, Jos; Somers, Ben; Hendrickx, Marijke; Andjelkovic, Mirjana; Van Nieuwenhuyse, An

    2018-01-02

    Monitoring human exposure to pesticides and pesticide residues (PRs) remains crucial for informing public health policies, despite strict regulation of plant protection product and biocide use. We used 72 low-cost silicone wristbands as noninvasive passive samplers to assess cumulative 5-day exposure of 30 individuals to polar PRs. Ethyl acetate extraction and LC-MS/MS analysis were used for the identification of PRs. Thirty-one PRs were detected of which 15 PRs (48%) were detected only in worn wristbands, not in environmental controls. The PRs included 16 fungicides (52%), 8 insecticides (26%), 2 herbicides (6%), 3 pesticide derivatives (10%), 1 insect repellent (3%), and 1 pesticide synergist (3%). Five detected pesticides were not approved for plant protection use in the EU. Smoking and dietary habits that favor vegetable consumption were associated with higher numbers and higher cumulative concentrations of PRs in wristbands. Wristbands featured unique PR combinations. Our results suggest both environment and diet contributed to PR exposure in our study group. Silicone wristbands could serve as sensitive passive samplers to screen population-wide cumulative dietary and environmental exposure to authorized, unauthorized and banned pesticides.

  17. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    showed an ultrafine mode centered at approximately 0.1 μm. Compared with coal combustion, co-combustion of coal and SRF increased the formation of submicron particles, especially ultrafine particles below 0.2 μm. The morphology of the particles indicated that supermicron particles were primarily formed...... by the melting of minerals. The ultrafine particles were generated through nucleation and coagulation of vaporized inorganic species, while for the particles in between supermicron and ultrafine particles, condensation of vaporized species or aggregation of nucleates on the existing spherical submicron particles...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  18. Multipurpose sampler device for liquid metal

    International Nuclear Information System (INIS)

    Nelson, P.A.; Kolba, V.M.; Holmes, J.T.

    1975-01-01

    A device for collecting samples or examining a flow of liquid metal is provided for use with such as a liquid-metal-cooled nuclear reactor. The sampler device includes a casing surrounded by an external heater for establishing an upper isothermal zone and a lower zone for heating the entering liquid metal. One of various inserts is suspended into the isothermal zone where it is surrounded by a shroud tube for directing liquid-metal flow from the heating zone into the top of the insert. Discharge flow from the insert gravitates through a helically wound tube in heat exchange contact with entering liquid-metal flow within the heating zone. The inserts comprise an overflow cup with upper and lower freeze seals, a filter for removing particulate matter, and a fixture for maintaining various sample materials in equilibrium with liquid-metal flow. (U.S.)

  19. Comparison of POCIS passive samplers vs. composite water sampling: A case study.

    Science.gov (United States)

    Criquet, Justine; Dumoulin, David; Howsam, Michael; Mondamert, Leslie; Goossens, Jean-François; Prygiel, Jean; Billon, Gabriel

    2017-12-31

    The relevance of Polar Organic Chemical Integrative Samplers (POCIS) was evaluated for the assessment of concentrations of 46 pesticides and 19 pharmaceuticals in a small, peri-urban river with multi-origin inputs. Throughout the period of POCIS deployment, 24h-average water samples were collected automatically, and showed the rapid temporal evolution of concentrations of several micropollutants, as well as permitting the calculation of average concentrations in the water phase for comparison with those estimated from POCIS passive samplers. In the daily water samples, cyproconazol, epoxyconazol and imidacloprid showed high temporal variations with concentrations ranging from under the limit of detection up to several hundreds of ngL -1 . Erythromycin, cyprofloxacin and iopromide also increased rapidly up to tens of ngL -1 within a few days. Conversely, atrazine, caffeine, diclofenac, and to a lesser extent carbamazepine and sucralose, were systematically present in the water samples and showed limited variation in concentrations. For most of the substances studied here, the passive samplers gave reliable average concentrations between the minimal and maximal daily concentrations during the time of deployment. For pesticides, a relatively good correlation was clearly established (R 2 =0.89) between the concentrations obtained by POCIS and those gained from average water samples. A slight underestimation of the concentration by POCIS can be attributed to inappropriate sampling rates extracted from the literature and for our system, and new values are proposed. Considering the all data set, 75% of the results indicate a relatively good agreement between the POCIS and the average water samples concentration (values of the ratio ranging between 0,33 and 3). Note further that this agreement between these concentrations remains valid considering different sampling rates extracted from the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation of sampling inhalable PM10 particulate matter (≤ 10 μm) using co-located high volume samplers

    International Nuclear Information System (INIS)

    Rajoy, R R S; Dias, J W C; Rego, E C P; Netto, A D Pereira

    2015-01-01

    This paper presents the results of the determination of the concentrations of atmospheric particulate matter ≤ 10 μm (PM10), collected simultaneously by six PM10 high volume samplers from two different manufacturers installed in the same location. Fifteen samples of 24 h were obtained with each equipment at a selected urban area of Rio de Janeiro city. The concentration of PM10 ranged between 10.73 and 54.04 μg m −3 . The samplers were considered comparable to each other, as the adopted methodology presented good repeatability

  1. Effect of Furnish on Temperature and Vapor Pressure Behavior in the Center of Mat Panels during Hot Pressing

    Directory of Open Access Journals (Sweden)

    Muhammad Navis Rofii

    2014-07-01

    Full Text Available Particleboard achieves its overall performance characteristics during hot pressing process. As this process is influenced by several factors, particularly temperature and pressure, it is very important to understand the behavior of both. This study investigates the effects of furnish materials on temperature and vapor pressure behavior inside particleboard mat panels during hot pressing. Strand type particles from hinoki and ring-flaker recycled wood particles were used as furnish for laboratory-scale particleboard panels with a target density of 0.76 g/cm³. Mat panels with a moisture content of about 10% were hot pressed at a platen temperature of 180°C and an initial pressure of 3 MPa until the mat center reached the same temperature as the platen. A press monitoring device (PressMAN Lite was used for detecting the temperature and vapor pressure change in the center of the mat panels. The study showed that the furnish type affected the temperature and vapor behavior inside the mat panels. Particleboard made of hinoki strand resulted in a longer plateau time, a higher plateau temperature and a higher gas pressure generated during hot pressing than those of ring-flaker recycled wood particles. Mixed board resulted in values between those of the two other furnish materials.

  2. Studies on airborne dust particles by neutron activation analysis

    International Nuclear Information System (INIS)

    Aoki, Atsushi; Ishii, Taka; Tomiyama, Tsuyoshi; Yamamoto, Isao.

    1974-01-01

    Neutron activation analysis was performed on the airborne dust particles collected at six places with different contaminating circumstances in Kyoto city and the suburbs of Okayama city, using an open type low volume air sampler with a membrance filter attached. Radioactivation by neutrons was performed with the reactor in the Research Reactor Institute of Kyoto University. Short half-life nuclides activated by thermal neutrons were measured. The concentration of airborne dust was usually high in November and December, while Na, Mn, K, etc. probably owing to soil origin showed similar seasonal change to the dust particles, as expected. The concentrations Cl and Br were in proportion to traffic volume, and it was considered to be caused by the exhaust gas from cars. Zn, V. et. were thick in factory areas, which seemed to show the relationship with oil fuel consumption. (Kobatake, H.)

  3. A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers.

    Science.gov (United States)

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Moses, W; Choong, W-S; Kao, C-M

    2014-12-11

    We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.

  4. Global evaluation and calibration of a passive air sampler for gaseous mercury

    Science.gov (United States)

    McLagan, David S.; Mitchell, Carl P. J.; Steffen, Alexandra; Hung, Hayley; Shin, Cecilia; Stupple, Geoff W.; Olson, Mark L.; Luke, Winston T.; Kelley, Paul; Howard, Dean; Edwards, Grant C.; Nelson, Peter F.; Xiao, Hang; Sheu, Guey-Rong; Dreyer, Annekatrin; Huang, Haiyong; Hussain, Batual Abdul; Lei, Ying D.; Tavshunsky, Ilana; Wania, Frank

    2018-04-01

    Passive air samplers (PASs) for gaseous mercury (Hg) were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time) that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day-1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m-3, this represents an ability to resolve concentrations to within 0.13 ng m-3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active-passive concentration further (8.7 ± 5.7 %), but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 %) represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed should be used, especially if conditions are highly variable or

  5. Evidence for the direct ejection of clusters from non-metallic solids during laser vaporization

    International Nuclear Information System (INIS)

    Bloomfield, L.A.; Yang, Y.A.; Xia, P.; Junkin, A.L.

    1991-01-01

    This paper reports on the formation of molecular scale particles or clusters of alkali halides and semiconductors during laser vaporization of solids. By measuring the abundances of cluster ions produced in several different source configurations, the authors have determined that clusters are ejected directly from the source sample and do not need to grow from atomic or molecular vapor. Using samples of mixed alkali halide powders, the authors have found that unalloyed clusters are easily produced in a source that prevents growth from occurring after the clusters leave the sample surface. However, melting the sample or encouraging growth after vaporization lead to the production of alloyed cluster species. The sizes of the ejected clusters are initially random, but the population spectrum quickly becomes structured as hot, unstable-sized clusters decay into smaller particles. In carbon, large clusters with odd number of atoms decay almost immediately. The hot even clusters also decay, but much more slowly. The longest lived clusters are the magic C 50 and C 60 fullerenes. The mass spectrum of large carbon clusters evolves in time from structureless, to only the even clusters, to primarily C 50 and C 60 . If cluster growth is encouraged, the odd clusters reappear and the population spectrum again becomes relatively structureless

  6. The vapor pressure and enthalpy of vaporization of M-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, S J; Seiler, F A; Bechtold, W E; Eidson, A F

    1988-12-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 {+-} 0.1 (SE) kj/ g{center_dot}mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 ({+-} 0.1) (SE) kjg{center_dot}mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization ({delta}Cpdeg.) of 35 {+-} 3 (SE) J/g{center_dot}mol{center_dot}K over the temperature range studied. (author)

  7. Passive samplers and community science in regional air quality measurement, education and communication.

    Science.gov (United States)

    DeForest Hauser, Cindy; Buckley, Alexandra; Porter, Juliana

    2015-08-01

    Charlotte, in Mecklenburg County, North Carolina, was ranked in the top ten cities with the worst air quality for ozone in the United States by the American Lung Association from 2009 to 2011. Nearby counties that may experience similar air quality do not have state or county monitors. This study utilized NOx and ozone Ogawa passive samplers and community scientists to monitor air quality in five counties surrounding Charlotte and increase public engagement in air quality issues. Community scientists deployed samplers weekly at a residential site within each county. Samples were analyzed using spectrophotometry and ion chromatography. Elevated NOx concentrations were observed in four of the five counties relative to those with existing monitors. Ozone concentrations showed little county to county variation, except Iredell and Cabarrus which had higher concentrations than Rowan. Community involvement in this work led to an increase in local dissemination of the results, thus increasing air quality awareness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. FAST MUSIC SPECTRUM PEAK SEARCH VIA METROPOLIS-HASTINGS SAMPLER

    Institute of Scientific and Technical Information of China (English)

    Guo Qinghua; Liao Guisheng

    2005-01-01

    A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metropolis-Hastings (MH) sampler, one of the most popular Markov Chain Monte Carlo (MCMC) techniques, to sample from it. The proposed method reduces greatly the tremendous computation and storage costs in conventional MUSIC techniques i.e., about two and four orders of magnitude in computation and storage costs under the conditions of the experiment in the paper respectively.

  9. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    Science.gov (United States)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  10. Sampling of BTX in Hat Yai city using cost effective laboratory-built PCB passive sampler.

    Science.gov (United States)

    Subba, Jas Raj; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2016-08-23

    A laboratory-built printed circuit board (PCB) passive sampler used for the monitoring of xylene and styrene in copy print shops was re-validated for detecting benzene, toluene and xylene (BTX) and applied for the sampling of ambient air from Hat Yai city, Songkhla, Thailand, in the month of November 2014. For monitoring, the PCB passive samplers were exposed to target analytes in 16 locations covering high to low exposure areas. After sampling, the samplers were thermally desorbed and the analytes were trapped by multi-walled carbon nanotubes packed into a micro-preconcentrator coupled to a gas chromatograph (GC) equipped with a flame ionization detector. At the optimum GC operating conditions, the linear dynamic ranges for BTX were 0.06-5.6 µg for benzene, 0.07-2.2 µg for toluene and 0.23-2.5 µg for xylene with R(2) > 0.99 with the limits of detection being 6.6, 6.8 and 19 ng for benzene, toluene and xylene, respectively. The concentrations of BTX in the 16 sampling sites were in the range of N.D.-1.3 ± 1.6, 4.50 ± 0.76-49.6 ± 3.7 and 1.00 ± 0.21-39.6 ± 3.1 µg m(-3), respectively. When compared to past studies, there had been an increase in the benzene concentration.

  11. Performance of an air sampler and a gamma-ray detector in a small unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Roy Poellaenen; Harri Toivonen; Kari Peraejaervi; Tero Karhunen; Petri Smolander; Tarja Ilander; Kimmo Rintala; Tuure Katajainen; Jarkko Niemelae; Marko Juusela; Timo Palos

    2009-01-01

    The performance of an air sampler and a small gamma-ray spectrometer was tested in an unmanned aerial vehicle (UAV) able to carry payload with mass up to 0.5 kg. Operation of the sampler was investigated with the aid of radon progeny normally present in outdoor air. Detection limits for several transuranium nuclides in air are of the order of 0.3 Bq m -3 assuming 0.5 h sampling time and 1 h counting time in direct alpha spectrometry. Unshielded 137 Cs and 60 Co point sources at the ground level were used to test the CsI spectrometer. Detection limits are approximately 1 GBq or larger depending on the flying altitude. (author)

  12. Elemental and organic carbon in flue gas particles of various wood combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaegauf, C.; Schmid, M.; Guentert, P.

    2005-12-15

    The airborne particulate matter (PM) in the environment is of ever increasing concern to authorities and the public. The major fractions of particles in wood combustion processes are in the size less than 1 micron, typically in the range of 30 to 300 nm. Of specific interest is the content of the elemental carbon (EC) and organic carbon (OC) in the particles since these substances are known for its particular potential as carcinogens. Various wood combustion systems have been analysed (wood chip boiler, pellet boiler, wood log boiler, wood stove and open fire). The sampling of the particles was done by mean of a multi-stage particle sizing sampler cascade impactor. The impactor classifies the particles collected according to their size. The 7 stages classify the particles between 0.4 and 9 microns aerodynamic diameter. The analytical method for determining the content of EC and OC in the particles is based on coulometry. The coulometer measures the conductivity of CO{sub 2} released by oxidation of EC in the samples at 650 {sup o}C. The OC content is determined by pyrolysis of the particle samples in helium atmosphere.

  13. Unipolar and bipolar diffusion charging of ultrafine particles

    International Nuclear Information System (INIS)

    Adachi, Motoaki; Okuyama, Kikuo; Kousaka, Yasuo.

    1985-01-01

    Unipolar and bipolar diffusion charging of monodisperse ultrafine particles of 4 - 100 nm in diameter has been studied experimentally and theoretically. The particles were charged by unipolar and bipolar ions generated by α-ray irradiation and the charge distribution of particles was directly observed in the electric field after the growth of them by condensation of di-butyl phthalate vapor. In both cases of unipolar and bipolar charging, the experimental results have been found in good agreement with the solution of basic equations where Fuchs' formula is used as the combination probability of an ion with a particle. (author)

  14. Comparison of marine sampling methods for organic contaminants: Passive samplers, water extractions, and live oyster deployment.

    Science.gov (United States)

    Raub, Kristin B; Vlahos, Penny; Whitney, Michael

    2015-08-01

    Laboratory and field trials evaluated the efficacy of three methods of detecting aquatic pesticide concentrations. Currently used pesticides: atrazine, metolachlor, and diazinon and legacy pesticide dieldrin were targeted. Pesticides were extracted using solid-phase extraction (SPE) of water samples, titanium plate passive samplers coated in ethylene vinyl acetate (EVA) and eastern oysters (Crassostrea viginica) as biosamplers. A laboratory study assessed the extraction efficiencies and precision of each method. Passive samplers yielded the highest precision of the three methods (RSD: 3-14% EVA plates; 19-60% oysters; and 25-56% water samples). Equilibrium partition coefficients were derived. A significant relationship was found between the concentration in oyster tissue and the ambient aquatic concentration. In the field (Housatonic River, CT (U.S.)) water sampling (n = 5) detected atrazine at 1.61-7.31 μg L(-1), oyster sampling (n = 2×15) detected dieldrin at n.d.-0.096 μg L(-1) SW and the passive samplers (n = 5×3) detected atrazine at 0.97-3.78 μg L(-1) SW and dieldrin at n.d.-0.68 μg L(-1) SW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Field testing, comparison, and discussion of five aeolian sand transport measuring devices operating on different measuring principles

    Science.gov (United States)

    Goossens, Dirk; Nolet, Corjan; Etyemezian, Vicken; Duarte-Campos, Leonardo; Bakker, Gerben; Riksen, Michel

    2018-06-01

    Five types of sediment samplers designed to measure aeolian sand transport were tested during a wind erosion event on the Sand Motor, an area on the west coast of the Netherlands prone to severe wind erosion. Each of the samplers operates on a different principle. The MWAC (Modified Wilson And Cooke) is a passive segmented trap. The modified Leatherman sampler is a passive vertically integrating trap. The Saltiphone is an acoustic sampler that registers grain impacts on a microphone. The Wenglor sampler is an optical sensor that detects particles as they pass through a laser beam. The SANTRI (Standalone AeoliaN Transport Real-time Instrument) detects particles travelling through an infrared beam, but in different channels each associated with a particular grain size spectrum. A procedure is presented to transform the data output, which is different for each sampler, to a common standard so that the samplers can be objectively compared and their relative efficiency calculated. Results show that the efficiency of the samplers is comparable despite the differences in operating principle and the instrumental and environmental uncertainties associated to working with particle samplers in field conditions. The ability of the samplers to register the temporal evolution of a wind erosion event is investigated. The strengths and weaknesses of the samplers are discussed. Some problems inherent to optical sensors are looked at in more detail. Finally, suggestions are made for further improvement of the samplers.

  16. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    Science.gov (United States)

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  17. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    International Nuclear Information System (INIS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-01-01

    The processes associated with the vaporization of microgram samples and modifiers in a graphite tube ET AAS were investigated by the example of transition metals. The vapor absorption spectra and vaporization behavior of μg-amounts Cd, Zn, Cu, Ag, Au, Ni, Co, Fe, Mn and Cr were studied using the UV spectrometer with CCD detector, coupled with a continuum radiation source. The pyrocoated, Ta or W lined tubes, with Ar or He as internal gases, and filter furnace were employed in the comparative experiments. It was found that the kinetics of atomic vapor release changed depending on the specific metal-substrate-gas combination; fast vaporization at the beginning was followed by slower 'tailing.' The absorption continuum, overlapped by black body radiation at longer wavelengths, accompanied the fast vaporization mode for all metals, except Cd and Zn. The highest intensity of the continuum was observed in the pyrocoated tube with Ar. For Cu and Ag the molecular bands overlapped the absorption continuum; the continuum and bands were suppressed in the filter furnace. It is concluded that the exothermal interaction of sample vapor with the material of the tube causes the energy evolution in the gas phase. The emitted heat is dispersed near the tube wall in the protective gas and partially transferred back to the surface of the sample, thus facilitating the vaporization. The increased vapor flow causes over-saturation and gas-phase condensation in the absorption volume at some distance from the wall, where the gas temperature is not affected by the reaction. The condensation is accompanied by the release of phase transition energy via black body radiation and atomic emission. The particles of condensate and molecular clusters cause the scattering of light and molecular absorption; slow decomposition of the products of the sample vapor-substrate reaction produces the 'tailing' of atomic absorption signal. The interaction of graphite with metal vapor or oxygen, formed in the

  18. Observing Tropospheric Water Vapor by Radio Occultation using the Global Positioning System

    Science.gov (United States)

    Kursinski, E. R.; Hajj, G. A.; Hardy, K. R.; Romans, L. J.; Schofield, J. T.

    1995-01-01

    Given the importance of water vapor to weather, climate and hydrology, global humidity observations from satellites are critical. At low latitudes, radio occultation observations of Earth's atmosphere using the Global Positioning System (GPS) satellites allow water vapor profiles to be retrieved with accuracies of 10 to 20% below 6 to 7 km altitude and approx. 5% or better within the boundary layer. GPS observations provide a unique combination of accuracy, vertical resolution (less than or equal to 1 km) and insensitivity to cloud and aerosol particles that is well suited to observations of the lower troposphere. These characteristics combined with the inherent stability of radio occultation observations make it an excellent candidate for the measurement of long term trends.

  19. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  20. EVALUATION OF MEMBRANE TYPE FOR USE IN DIFFUSION SAMPLERS TO MONITOR GROUND WATER QUALITY

    Science.gov (United States)

    The Discrete Multi-Level Sampler (DMLS®) system has proven to be a useful tool for obtaining discrete interval contaminant concentrations at hazardous waste sites. The DMLS® utilizes dialysis cells, which consist of a polypropylene vial, covered on both ends by a permeable membr...

  1. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Directory of Open Access Journals (Sweden)

    C. Degrendele

    2016-02-01

    Full Text Available This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs and current-use pesticides (CUPs in air. Two years (2012/2013 of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine had higher concentrations on coarse particles ( >  3.0 µm, which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide and lower potential for long-range atmospheric transport.

  2. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles......The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low...... volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...

  3. Experimental investigation on improving the removal effect of WFGD system on fine particles by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jingjing; Yang, Linjun; Yan, Jinpei; Xiong, Guilong; Shen, Xianglin [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Heterogeneous condensation of water vapor as a preconditioning technique for the removal of fine particles from flue gas was investigated experimentally in a wet flue gas desulfurization (WFGD) system. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent and the types of scrubber employed. Despite a little better effectiveness for the removal of fine particles in the rotating-stream-tray scrubber at the same liquid-to-gas ratio, The similar trends are obtained between the spray scrubber and rotating-stream-tray scrubber. Due to the formation of aerosol particles in the limestone and ammonia-based FGD processes, the fine particle removal efficiencies are lower than those for Na{sub 2}CO{sub 3} and water. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  4. A population-based exposure assessment methodology for carbon monoxide: Development of a carbon monoxide passive sampler and occupational dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G. [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    Two devices, an occupational carbon monoxide (CO) dosimeter (LOCD), and an indoor air quality (IAQ) passive sampler were developed for use in population-based CO exposure assessment studies. CO exposure is a serious public health problem in the U.S., causing both morbidity and mortality (lifetime mortality risk approximately 10{sup -4}). Sparse data from population-based CO exposure assessments indicate that approximately 10% of the U.S. population is exposed to CO above the national ambient air quality standard. No CO exposure measurement technology is presently available for affordable population-based CO exposure assessment studies. The LOCD and IAQ Passive Sampler were tested in the laboratory and field. The palladium-molybdenum based CO sensor was designed into a compact diffusion tube sampler that can be worn. Time-weighted-average (TWA) CO exposure of the device is quantified by a simple spectrophotometric measurement. The LOCD and IAQ Passive Sampler were tested over an exposure range of 40 to 700 ppm-hours and 200 to 4200 ppm-hours, respectively. Both devices were capable of measuring precisely (relative standard deviation <20%), with low bias (<10%). The LOCD was screened for interferences by temperature, humidity, and organic and inorganic gases. Temperature effects were small in the range of 10°C to 30°C. Humidity effects were low between 20% and 90% RH. Ethylene (200 ppm) caused a positive interference and nitric oxide (50 ppm) caused a negative response without the presence of CO but not with CO.

  5. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  6. The elemental composition of airborne particle in the Bangkok area

    Energy Technology Data Exchange (ETDEWEB)

    Sirinuntavid, Alice [Chemistry Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand); Pentamwa, Prapat [Environmental Scientist, Pollution Control Department, Bangkok (Thailand)

    1999-10-01

    Neutron Activation Analysis (NAA) has been applied to analyze the total suspended particle (TSP) airborne matter from two selected sites in the Bangkok city area. High volume air samplers were operated to collect TSP matter on cellulose nitrate membrane filters once a month throughout 1997. 20 elements were analyzed and Zn, Br, As, Sb, Cu, Cl were found with high enrichment factor at both sites. The enrichment factor of 20 elements in TSP of both sites gave the same interesting pattern. To studying the validation of the NAA technique, the standard reference material 1648, urban particulate matter, was analyzed and presented also. (author)

  7. The elemental composition of airborne particle in the Bangkok area

    International Nuclear Information System (INIS)

    Sirinuntavid, Alice; Pentamwa, Prapat

    1999-01-01

    Neutron Activation Analysis (NAA) has been applied to analyze the total suspended particle (TSP) airborne matter from two selected sites in the Bangkok city area. High volume air samplers were operated to collect TSP matter on cellulose nitrate membrane filters once a month throughout 1997. 20 elements were analyzed and Zn, Br, As, Sb, Cu, Cl were found with high enrichment factor at both sites. The enrichment factor of 20 elements in TSP of both sites gave the same interesting pattern. To studying the validation of the NAA technique, the standard reference material 1648, urban particulate matter, was analyzed and presented also. (author)

  8. Current experiments in elementary particle physics. Revision

    International Nuclear Information System (INIS)

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  9. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  10. Application of XAD-2 resin-based passive samplers and SPME–GC–MS/MS analysis for the monitoring of spatial and temporal variations of atmospheric pesticides in Luxembourg

    International Nuclear Information System (INIS)

    Schummer, Claude; Tuduri, Ludovic; Briand, Olivier; Appenzeller, Brice M.; Millet, Maurice

    2012-01-01

    Passive air sampling has been shown to be a very interesting alternative to high-volume sampling by overcoming its disadvantages (size, weight, expensiveness). However, to date, only limited data is available about passive air sampling of current-use pesticides. In order to test if passive samplers allow monitoring of spatial and temporal variations of atmospheric pesticide concentrations, five XAD-2-resin based passive air samplers were deployed at five locations in Luxembourg. Samplers were analyzed using accelerated solvent extraction coupled to solid-phase microextraction and gas chromatography with tandem mass spectrometry. Collected data was used to study the spatial and temporal variations of the concentrations of the compounds. Twenty two pesticides were detected between March and October, while no pesticides were detected from November to February. Highest concentrations were measured on the rural sites, suggesting that the used XAD-2 resin-based passive samplers allow the simultaneous monitoring of multiple current-use pesticides and identifying spatial and temporal variations. - Highlights: ► XAD-2 passive sampling of current-used pesticides. ► Coupling of ASE and SPME–GC–MS/MS for the analysis of pesticides in XAD-2 passive sampling. ► XAD-2 passive samplers suitable for current-used pesticides atmospheric sampling. ► XAD-2 passive samplers suitable for spatial and temporal atmospheric concentrations variations. - XAD-2 passive sampling of current-use pesticides in the atmosphere.

  11. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  12. Determining the spatial variability of personal sampler inlet locations.

    Science.gov (United States)

    Vinson, Robert; Volkwein, Jon; McWilliams, Linda

    2007-09-01

    This article examines the spatial variability of dust concentrations within a coal miner's breathing zone and the impact of sampling location at the cap lamp, nose, and lapel. Tests were conducted in the National Institute for Safety and Health Pittsburgh Research Laboratory full-scale, continuous miner gallery using three prototype personal dust monitors (PDM). The dust masses detected by the PDMs were used to calculate the percentage difference of dust mass between the cap lamp and the nose and between the lapel and the nose. The calculated percentage differences of the masses ranged from plus 12% to minus 25%. Breathing zone tests were also conducted in four underground coal mines using the torso of a mannequin to simulate a miner. Coal mine dust was sampled with multi-cyclone sampling cans mounted directly in front of the mannequin near the cap lamp, nose, and lapel. These four coal mine tests found that the spatial variability of dust levels and imprecision of the current personal sampler is a greater influence than the sampler location within the breathing zone. However, a one-sample t-test of this data did find that the overall mean value of the cap lamp/nose ratio was not significantly different than 1 (p-value = 0.21). However, when applied to the overall mean value of the lapel/nose ratio there was a significant difference from 1 (p-value sampling location for coal mine dust samples. But these results suggest that the cap location is slightly more indicative of what is breathed through the nose area.

  13. Two-Stage Variable Sample-Rate Conversion System

    Science.gov (United States)

    Tkacenko, Andre

    2009-01-01

    A two-stage variable sample-rate conversion (SRC) system has been pro posed as part of a digital signal-processing system in a digital com munication radio receiver that utilizes a variety of data rates. The proposed system would be used as an interface between (1) an analog- todigital converter used in the front end of the receiver to sample an intermediatefrequency signal at a fixed input rate and (2) digita lly implemented tracking loops in subsequent stages that operate at v arious sample rates that are generally lower than the input sample r ate. This Two-Stage System would be capable of converting from an input sample rate to a desired lower output sample rate that could be var iable and not necessarily a rational fraction of the input rate.

  14. Compact and portable system for evaluation of individual exposure at aerosol particle in urban area

    International Nuclear Information System (INIS)

    De Zaiacomo, T.

    1995-01-01

    A compact and portable system for real-time acquisition of aerosol concentration data in urban and extra-urban area is presented. It is based on two optical type aerosol monitors integrated by aerosol particle separating and collecting devices, assembled into a carrying case together with temperature and relative humidity sensors and a programmable analog data logger; data output is addressed to a dedicated printer or personal computer. Further data about particle size, morphological aspect and particle mass concentration are obtainable by weighing supports used to concurrently collect aerosol particles and/or by means of microanalytical techniques. System performances are evaluated from the point of view of portability, possibility of use as stationary sampler for long-term monitoring purposes and coherence between optical response and ponderal mass. Some tests are finally carried out, to investigate the effect of relative humidity on the optical response of this type of instruments

  15. Experiences of marijuana-vaporizer users.

    Science.gov (United States)

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  16. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  17. Estimated effects of interfacial vaporization on fission product scrubbing: Chapter 11

    International Nuclear Information System (INIS)

    Moody, F.J.; Nagy, S.G.

    1983-01-01

    When bubbles containing non-condensible gas rise through a water pool, interfacial evaporation causes a flow of vapor into the bubbles. The inflow reduces the outward particle motion toward the bubble wall, diminishing the effectiveness of fission product particle removal. This analysis provides an estimate of evaporation on pool scrubbing effectiveness. It is shown that hot gas, which boils water at the bubble wall, reduces the effective scrubbing height by less than five centimeters. Although the evaporative humidification in a rising bubble containing non-condensible gas has a diminishing effect on scrubbing mechanisms, substantial decontamination is still expected even for the limiting case of a saturated pool

  18. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  19. The revised geometric measure of entanglement for isotropic state

    International Nuclear Information System (INIS)

    Cao Ya

    2011-01-01

    Based on the revised geometric measure of entanglement (RGME), we obtain the analytical expression of isotropic state and generalize to n-particle and d-dimension mixed state case. Meantime, we obtain the relation about isotropic state E-tilde sin 2 (ρ) ≤ E re (ρ). The results indicate RGME is an appropriate measure of entanglement. (authors)

  20. Phenomenological in-situ TEM gas exposure studies of palladium particles on MgO at room temperature

    Science.gov (United States)

    Heinemann, K.; Poppa, H.; Osaka, T.

    1983-01-01

    It has been found that very small vapor-deposited catalytically active metal particles in the 1-2 nm size range on metal oxide substrates can undergo significant changes when they are exposed to gases such as oxygen or air, or even when allowed to 'anneal' at room temperature (RT) under vacuum conditions. The present investigation is concerned with continued in-situ gas exposures of as-deposited, 1 to 2 nm size palladium particles on MgO to air, oxygen, nitrogen, hydrogen, CO, and water vapor at RT. It is found that the low-pressure exposure to various gases at RT can significantly affect small palladium particles supported on MgO surfaces. Exposure to oxygen for 3 min at 0.0002 m bar produces a considerable amount of coalescence, flattening of the particles, and some distinct crystallographic particle shapes.

  1. High-throughput liquid-absorption air-sampling apparatus and methods

    Science.gov (United States)

    Zaromb, Solomon

    2000-01-01

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is 20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.

  2. High-throughput liquid-absorption air-sampling apparatus and methods

    International Nuclear Information System (INIS)

    2000-01-01

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is 20% for vapors or airborne particulates in the 2--3 microns range and > 50% for particles larger than 4 microns. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives

  3. Particle size distribution of airborne Aspergillus fumigatus spores emitted from compost using membrane filtration

    Science.gov (United States)

    Deacon, L. J.; Pankhurst, L. J.; Drew, G. H.; Hayes, E. T.; Jackson, S.; Longhurst, P. J.; Longhurst, J. W. S.; Liu, J.; Pollard, S. J. T.; Tyrrel, S. F.

    Information on the particle size distribution of bioaerosols emitted from open air composting operations is valuable in evaluating potential health impacts and is a requirement for improved dispersion simulation modelling. The membrane filter method was used to study the particle size distribution of Aspergillus fumigatus spores in air 50 m downwind of a green waste compost screening operation at a commercial facility. The highest concentrations (approximately 8 × 10 4 CFU m -3) of culturable spores were found on filters with pore diameters in the range 1-2 μm which suggests that the majority of spores are emitted as single cells. The findings were compared to published data collected using an Andersen sampler. Results were significantly correlated ( p < 0.01) indicating that the two methods are directly comparable across all particles sizes for Aspergillus spores.

  4. Soil separator and sampler and method of sampling

    Science.gov (United States)

    O'Brien, Barry H [Idaho Falls, ID; Ritter, Paul D [Idaho Falls, ID

    2010-02-16

    A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.

  5. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring. Quarterly report, April 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    Coggiola, M.J.

    1994-07-01

    Purpose of the instrument is for real-time (<1 min), ppB analysis of gaseous/particulate pollutants (VOCs, PAHs, heavy metals, transuranics) from DOE waste cleanup. It will consist of an isokinetic sampler, a pressure transition and sampling region for parallel analyses, two small mass spectrometers (one for organic analysis using field ionization, one [ion trap] for particulates using pyrolysis and electron-impact ionization), and a personal computer. A dimethylsilicone membrane will be used for the organic vapors. A forward-backward coincidence method will be used in the laser scattering particle detector. The instrument will be easily transportable to DOE waste sites, such as waste storage tanks

  6. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  7. Gibbs Ensemble Simulation on Polarizable Models: Vapor-liquid Equilibrium in Baranyai-Kiss Models of Water

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo

    2013-01-01

    Roč. 360, DEC 25 (2013), s. 472-476 ISSN 0378-3812 Grant - others:GA MŠMT(CZ) LH12019 Institutional support: RVO:67985858 Keywords : multi-particle move monte carlo * Gibbs ensemble * vapor-liquid-equilibria Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.241, year: 2013

  8. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  9. Aerosol Sampling System for Collection of Capstone Depleted Uranium Particles in a High-Energy Environment

    International Nuclear Information System (INIS)

    Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung-Sung; Parkhurst, MaryAnn; Hoover, Mark D.

    2009-01-01

    The Capstone Depleted Uranium Aerosol Study was undertaken to obtain aerosol samples resulting from a kinetic-energy cartridge with a large-caliber depleted uranium (DU) penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post-impact, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the vehicle commander, loader, gunner, and driver. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for depleted uranium concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol

  10. Discussion on numerical simulation techniques for patterns of water vapor rise and droplet deposition at NPP cooling tower

    International Nuclear Information System (INIS)

    Guo Dongpeng; Yao Rentai

    2010-01-01

    Based on the working principle of cooling tower, analysis and comparison are made of both advantages and disadvantages of the numerical simulation models, such as ORFAD, KUMULUS, ISCST:A, ANL/UI, CFD etc., which predict the rise and droplet deposition pattern of cooling tower water vapor. The results showed that, CFD model is currently a better model that is used of three-dimensional Renault fluid flow equations predicting the rise and droplet deposition pattern of cooling tower water vapor. The impact of the line trajectory deviation and the speed change inn plume rising is not considered in any other models, and they can not be used for prediction of particle rise and droplet deposition when a larger particle or large buildings in the direction of cooling tower. (authors)

  11. Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition.

    Science.gov (United States)

    Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto

    2016-01-01

    Nanocomposite SiO x particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiO x matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH 4 promotes reduction in the oxygen content x of SiO x , and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x  = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD.

  12. Preparation of ultrafine iron particles by chemical vapor deposition of Fe(CO) sub 5. Fe(CO) sub 5 wo gebryo to suru kiso kagaku hanno ni yoru tetsuchobiryushi no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Y; Kageyama, Y. (Mitsubishi Petrochemical Co. Ltd., Tokyo (Japan)): Iwata, M. (Nagoya University, Nagoya (Japan). Faculty of Engineering)

    1991-11-10

    An ultrafine iron particle preparing process was developed, which wses gaseous phase pyrolysis in magnetic field of iron pentacarbonyl, Fe(CO){sub 5}, based on the fact that Fe(CO){sub 5} has peculiar characters that its boiling point is as low as 103{degree}C, and starts decomposing in a low temperature zone of 100{degree}C or lower. Vaporizing and introducing into a reactor an fe(CO){sub 5}, andPyrolyzing it at 200-600{degree}C while being diluted with nitrogen and applied with a magnetic field produced uitrafine iron particles of a necklace-like chain comprisinh primary particles having diameter of 15 to 25 nm with 10 to 40 of them linked in a straight chain. It was found that the specific surface area is 30-50 m{sup 2}/g, with the diameter converted from the specific surface area being relatively close to the average diameter obtained from TEM photograph, and that the particle has few pores. Magnetically the iron powder has a coercivity of 123-131 KA/m and a specific saturation magnetization of 120-140 Am{sup 2}/kg, and is expected to be applied as a high density magnetic recording medium. 5 refs.,8 figs., 3 tabs.

  13. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  14. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  15. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection

    Science.gov (United States)

    Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.

    2017-10-01

    A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.

  16. astroABC : An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, E.; Madigan, M.

    2017-04-01

    Given the complexity of modern cosmological parameter inference where we arefaced with non-Gaussian data and noise, correlated systematics and multi-probecorrelated data sets, the Approximate Bayesian Computation (ABC) method is apromising alternative to traditional Markov Chain Monte Carlo approaches in thecase where the Likelihood is intractable or unknown. The ABC method is called"Likelihood free" as it avoids explicit evaluation of the Likelihood by using aforward model simulation of the data which can include systematics. Weintroduce astroABC, an open source ABC Sequential Monte Carlo (SMC) sampler forparameter estimation. A key challenge in astrophysics is the efficient use oflarge multi-probe datasets to constrain high dimensional, possibly correlatedparameter spaces. With this in mind astroABC allows for massive parallelizationusing MPI, a framework that handles spawning of jobs across multiple nodes. Akey new feature of astroABC is the ability to create MPI groups with differentcommunicators, one for the sampler and several others for the forward modelsimulation, which speeds up sampling time considerably. For smaller jobs thePython multiprocessing option is also available. Other key features include: aSequential Monte Carlo sampler, a method for iteratively adapting tolerancelevels, local covariance estimate using scikit-learn's KDTree, modules forspecifying optimal covariance matrix for a component-wise or multivariatenormal perturbation kernel, output and restart files are backed up everyiteration, user defined metric and simulation methods, a module for specifyingheterogeneous parameter priors including non-standard prior PDFs, a module forspecifying a constant, linear, log or exponential tolerance level,well-documented examples and sample scripts. This code is hosted online athttps://github.com/EliseJ/astroABC

  17. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part I, Deployment, recovery, data interpretation, and quality control and assurance

    Science.gov (United States)

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  18. Field test of the PNNL Automated Radioxenon Sampler/Analyzer (ARSA)

    International Nuclear Information System (INIS)

    Lagomarsino, R.J.; Ku, E.; Latner, N.; Sanderson, C.G.

    1998-07-01

    As part of the requirements of the Comprehensive Test Ban Treaty (CTBT), the Automated Radioxenon/Sampler Analyzer (ARSA) was designed and engineered by the Pacific Northwest National Laboratory (PNNL). The instrument is to provide near real-time detection and measurement of the radioxenons released into the atmosphere after a nuclear test. Forty-six field tests, designed to determine the performance of the ARSA prototype under simulated field conditions, were conducted at EML from March to December 1997. This final report contains detailed results of the tests with recommendations for improvements in instrument performance

  19. Field test of the PNNL Automated Radioxenon Sampler/Analyzer (ARSA)

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, R.J.; Ku, E.; Latner, N.; Sanderson, C.G.

    1998-07-01

    As part of the requirements of the Comprehensive Test Ban Treaty (CTBT), the Automated Radioxenon/Sampler Analyzer (ARSA) was designed and engineered by the Pacific Northwest National Laboratory (PNNL). The instrument is to provide near real-time detection and measurement of the radioxenons released into the atmosphere after a nuclear test. Forty-six field tests, designed to determine the performance of the ARSA prototype under simulated field conditions, were conducted at EML from March to December 1997. This final report contains detailed results of the tests with recommendations for improvements in instrument performance.

  20. Application of Discharges in Vapor of Evaporated Metals for the Film Deposition from the Ionized Stream

    International Nuclear Information System (INIS)

    Kostin, E.G.

    2006-01-01

    results of researches of the discharge device for ionization of the vapor of solid materials are presented. Evaporation of a material was made by an electron gun with a deviation of a beam on 180 degree. Diode type discharge device for ionization was placed above a surface of evaporated metal and was in a longitudinal adjustable magnetic field. Discharge was carried out in crossed electric and magnetic fields. Partial ionization of the vapor was made by primary and secondary electrons of the gun in a vapor cloud above evaporated substance. Physical properties and structure of the films. The comparative analysis of the films properties, besieged in conditions of influence of bombardment by ions of evaporated metal were studied depending on energy and the contents of ions in a stream of particles on a substrate

  1. Fixation of revision implants is improved by new surgical technique to crack the sclerotic endosteal rim.

    Science.gov (United States)

    Kold, S; Soballe, K; Mouzin, O; Chen, Xiangmei; Toft, M; Bechtold, J

    2002-01-01

    We used an experimental model producing a tissue response with a sclerotic endosteal neo-cortical rim associated with implant loosening in humans: a 6 mm PMMA cylinder pistoned 500 m concentrically in a 7.5 mm hole, with polyethylene particles. At a second operation at eight weeks, the standard revision procedure removed the fibrous membrane in one knee, and the crack revision procedure was used to crack the sclerotic endosteal rim in the contralateral knee. Once stability was achieved following the revision procedures, loaded Ti plasma sprayed implants were inserted into the revision cavities of 8 dogs for an additional 4 weeks. Revision implant fixation (ultimate shear strength and energy absorption) was significantly enhanced by cracking the sclerotic endosteal rim. In conclusion, we demonstrated a simple technique of cracking the sclerotic endosteal rim as an additional method for improving revision fixation. (Hip International 2002; 2: 77-9).

  2. Theoretical assessment of particle generation from sodium pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M., E-mail: monica.gmartin@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Herranz, L.E., E-mail: luisen.herranz@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Kissane, M.P., E-mail: Martin.KISSANE@oecd.org [Nuclear Safety Technology and Regulation Division, OECD Nuclear Energy Agency (NEA), 46 quai Alphonse Le Gallo, 92100 Boulogne-Billancourt (France)

    2016-12-15

    Highlights: • Development of particle generation model for sodium-oxides aerosol formation. • Development of partially validated numerical simulations to build up maps of saturation ratio. • Nucleation of supersaturated vapours as relevant source of aerosols over sodium pools. • Prediction of high concentrations of primary particles in the combustion zone. - Abstract: Potential sodium discharge in the containment during postulated Beyond Design Basis Accidents (BDBAs) in Sodium-cooled Fast Reactors (SFRs) would have major consequences for accident development in terms of energetics and source term. In the containment, sodium vaporization and subsequent oxidation would result in supersaturated oxide vapours that would undergo rapid nucleation creating toxic aerosols. Therefore, modelling this vapour nucleation is essential to proper source term assessment in SFRs. In the frame of the EU-JASMIN project, a particle generation model to calculate the particle generation rate and their primary size during an in-containment sodium pool fire has been developed. Based on a suite of individual models for sodium vaporization, oxygen natural circulation (3D modelling), sodium-oxygen chemical reactions, sodium-oxides-vapour nucleation and condensation, its consistency has been partially validated by comparing with available experimental data. As an outcome, large temperature and vapour concentration gradients set over the sodium pool have been found which result in large particle concentrations in the close vicinity of the pool.

  3. Global evaluation and calibration of a passive air sampler for gaseous mercury

    Directory of Open Access Journals (Sweden)

    D. S. McLagan

    2018-04-01

    Full Text Available Passive air samplers (PASs for gaseous mercury (Hg were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day−1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m−3, this represents an ability to resolve concentrations to within 0.13 ng m−3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active–passive concentration further (8.7 ± 5.7 %, but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 % represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed

  4. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  5. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

    International Nuclear Information System (INIS)

    Boies, Adam M; Girshick, Steven L; Roberts, Jeffrey T; Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-01-01

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO 2 ) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO 2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO 2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 0 C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10 7 particles cm -3 .

  6. Vapor pressure and enthalpy of vaporization of oil of catnip by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Gobble, Chase; Chickos, James

    2016-01-01

    Highlights: • Vaporization enthalpies of the nepetalactones from oil of catnip have been evaluated. • Vapor pressures from T = (298.15 to 350) K have been evaluated. • Oil of catnip has a vapor pressure similar to DEET at T = 298.15 K. - Abstract: The vaporization enthalpy and vapor pressure of the two nepetalactones found in Nepeta cataria have been evaluated by correlation gas chromatography. Vaporization enthalpies at T = 298.15 K of {(68.0 ± 1.9) and (69.4 ± 1.9)} kJ ⋅ mol"−"1 have been derived for the minor diastereomer, (4aS,7S,7aS)-nepetalactone, and major one, (4aS,7S,7aR)-nepetalactone, respectively. Vapor pressures also at T = 298.15 K of p = (1.2 ± 0.04) Pa and (0.91 ± 0.03) Pa have been evaluated for the minor and the major stereoisomer. In addition to being of interest because of the remarkable effect it has on various felids, oil of catnip is also quite effective in repelling mosquitoes, comparable to diethyl-m-toluamide (DEET). The vapor pressures evaluated in this work suggest that the two stereoisomers have similar volatility to DEET at ambient temperatures.

  7. Annealed coated air-stable cobalt--rare earth alloy particles

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloy. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating thereon. The coated particles are heated at a temperature ranging from 50 to 200 0 C for a period of time sufficient to increase their intrinsic coercive force by at least 10 percent. (U.S.)

  8. Revising Translations

    DEFF Research Database (Denmark)

    Rasmussen, Kirsten Wølch; Schjoldager, Anne

    2011-01-01

    The paper explains the theoretical background and findings of an empirical study of revision policies, using Denmark as a case in point. After an overview of important definitions, types and parameters, the paper explains the methods and data gathered from a questionnaire survey and an interview...... survey. Results clearly show that most translation companies regard both unilingual and comparative revisions as essential components of professional quality assurance. Data indicate that revision is rarely fully comparative, as the preferred procedure seems to be a unilingual revision followed by a more...... or less comparative rereading. Though questionnaire data seem to indicate that translation companies use linguistic correctness and presentation as the only revision parameters, interview data reveal that textual and communicative aspects are also considered. Generally speaking, revision is not carried...

  9. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

    Science.gov (United States)

    Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu

    2011-03-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Visualization study on hot particle-water interaction by using neutron radiography

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.; Moriyama, Kiyofumi; Sugimoto, Jun

    1999-01-01

    In relation to severe accident research of a nuclear reactor, an experiment was performed to simulate the premixing process in the vapor explosion by dropping hot stainless-steel particle into heavy water filled in a rectangular tank. The test rig consisted of a furnace and a rectangular tank (400 mm in height, 100 mm in width and 30 mm in depth) filled with heavy water kept at 4degC. The particle diameter used in the experiment were 6, 9 and 12 mm, and the initial temperature of the particle ranged from 600 to 1000degC. The behavior of gas dome generated by heated particle-subcooled water interaction was successfully visualized by high-frame-rate neutron radiography at the recording speed of 500 frames/s. Temporal and spatial variations of void fraction in the gas dome were measured by processing the images obtained. The void fraction measurement indicated the possibility that the ambient fluid was superheated by the hot particle-water contact and the vapor was generated in proportion to the particle size and temperature. Preliminary calculations of heat transfer from hot particle to water were conducted by using and empirical correlation for steady film boiling. Comparison between experimental and calculated results suggested that the transient heat transfer around the hot particle could not be explained only by steady film boiling but some other heat transfer mechanisms such as unsteady film boiling or hear transfer due to direct contact may be needed. (author)

  11. Device for sampling HTGR recycle fuel particles

    International Nuclear Information System (INIS)

    Suchomel, R.R.; Lackey, W.J.

    1977-03-01

    Devices for sampling High-Temperature Gas-Cooled Reactor fuel microspheres were evaluated. Analysis of samples obtained with each of two specially designed passive samplers were compared with data generated by more common techniques. A ten-stage two-way sampler was found to produce a representative sample with a constant batch-to-sample ratio

  12. A transient single particle model under FCI conditions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; SHANG Zhi; XU Ji-Jun

    2005-01-01

    The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.

  13. Vapor pressures and vaporization enthalpy of (−) α-bisabolol and (dl) menthol by correlation gas chromatography

    International Nuclear Information System (INIS)

    Keating, Leasa; Harris, Harold H.; Chickos, James S.

    2017-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of (−) α-bisabolol and (dl)-menthol have been measured as a function of temperature. • Vapor pressures, vaporization enthalpies and boiling temperatures have been compared to available literature data. • Vapor pressures of (l)-menthol are compared to (dl)-menthol. - Abstract: The vapor pressures and vaporization enthalpies of (−) α-bisabolol and (dl)-menthol, two GRAS chemicals (generally recognized as safe) are evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. Vaporization enthalpies of (96.6 ± 2.4) and (74.2 ± 2.8) kJ mol −1 and vapor pressures of p/Pa = (0.020 ± 0.003) and (4.5 ± 0.44) were evaluated at T = 298.15 K for (−) α-bisabolol and (dl)-menthol, respectively, and compared to literature values. The vapor pressures of both compounds from T = (298.15 to 500) K have been derived from correlations using vapor pressures of a series of 1-alkanols and corresponding gas chromatographic retention times at 10 K intervals. The results were fit to a second order polynomial. Calculated normal boiling temperatures of T B = (574.8 and 492.7) K are calculated for (−) α-bisabolol and (dl)-menthol, respectively. A normal boiling temperature of T B = (485.2, and 489.7) K has previously been reported for (dl)-menthol. Vapor pressures for both (l)-menthol and (dl)-menthol from a previous study and (dl)-menthol from this study are compared with literature values.

  14. Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies

    Science.gov (United States)

    Alvarez, David A.

    2010-01-01

    The success of an environmental monitoring study using passive samplers, or any sampling method, begins in the office or laboratory. Regardless of the specific methods used, the general steps include the formulation of a sampling plan, training of personnel, performing the field (sampling) work, processing the collected samples to recover chemicals of interest, analysis of the enriched extracts, and interpretation of the data. Each of these areas will be discussed in the following sections with emphasis on specific considerations with the use of passive samplers. Water is an extremely heterogeneous matrix both spatially and temporally (Keith, 1991). The mixing and distribution of dissolved organic chemicals in a water body are controlled by the hydrodynamics of the water, the sorption partition coefficients of the chemicals, and the amount of organic matter (suspended sediments, colloids, and dissolved organic carbon) present. In lakes and oceans, stratification because of changes in temperature, water movement, and water composition can occur resulting in dramatic changes in chemical concentrations with depth (Keith, 1991). Additional complications related to episodic events, such as surface runoff, spills, and other point source contamination, can result in isolated or short-lived pulses of contaminants in the water. The application of passive sampling technologies for the monitoring of legacy and emerging organic chemicals in the environment is becoming widely accepted worldwide. The primary use of passive sampling methods for environmental studies is in the area of surface-water monitoring; however, these techniques have been applied to air and groundwater monitoring studies. Although these samplers have no mechanical or moving parts, electrical or fuel needs which require regular monitoring, there are still considerations that need to be understood in order to have a successful study. Two of the most commonly used passive samplers for organic contaminants are

  15. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols

    Science.gov (United States)

    Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurtén, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David

    2018-01-01

    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H - (O - CH2 - CH2)n - OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10-7 to 5×10-2 Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass

  16. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  17. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    Science.gov (United States)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  18. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).

    Science.gov (United States)

    Ma, Jie; Li, Haiyan; Spiese, Richard; Wilson, John; Yan, Guangxu; Guo, Shaohui

    2016-06-01

    Vapor intrusion of synthetic fuel additives represented a critical yet still neglected problem at sites impacted by petroleum fuel releases. This study used an advanced numerical model to simulate the vapor intrusion risk of lead scavengers 1,2-dibromoethane (ethylene dibromide, EDB) and 1,2-dichloroethane (DCA) under different site conditions. We found that simulated EDB and DCA indoor air concentrations can exceed USEPA screening level (4.7 × 10(-3) μg/m(3) for EDB and 1.1 × 10(-1) μg/m(3) for DCA) if the source concentration is high enough (is still within the concentration range found at leaking UST site). To evaluate the chance that vapor intrusion of EDB might exceed the USEPA screening levels for indoor air, the simulation results were compared to the distribution of EDB at leaking UST sites in the US. If there is no degradation of EDB or only abiotic degradation of EDB, from 15% to 37% of leaking UST sites might exceed the USEPA screening level. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the screening criteria for petroleum hydrocarbon may not provide sufficient protectiveness for fuel releases containing EDB and DCA. Based on a thorough literature review, we also compiled previous published data on the EDB and DCA groundwater source concentrations and their degradation rates. These data are valuable in evaluating EDB and DCA vapor intrusion risk. In addition, a set of refined attenuation factors based on site-specific information (e.g., soil types, source depths, and degradation rates) were provided for establishing site-specific screening criteria for EDB and DCA. Overall, this study points out that lead scavengers EDB and DCA may cause vapor intrusion problems. As more field data of EDB and DCA become available, we recommend that USEPA consider including these data in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2016 Elsevier Ltd. All

  19. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  20. Raman spectroscopic identification of size-selected airborne particles for quantitative exposure assessment

    International Nuclear Information System (INIS)

    Steer, Brian; Gorbunov, Boris; Price, Mark C; Podoleanu, Adrian

    2016-01-01

    In this paper we present a method for the quantification of chemically distinguished airborne particulate matter, required for health risk assessment. Rather than simply detecting chemical compounds in a sample, we demonstrate an approach for the quantification of exposure to airborne particles and nanomaterials. In line with increasing concerns over the proliferation of engineered particles we consider detection of synthetically produced ZnO crystals. A multi-stage approach is presented whereby the particles are first aerodynamically size segregated from a lab-generated single component aerosol in an impaction sampler. These size fractionated samples are subsequently analysed by Raman spectroscopy. Imaging analysis is applied to Raman spatial maps to provide chemically specific quantification of airborne exposure against background which is critical for health risk evaluation of exposure to airborne particles. Here we present a first proof-of-concept study of the methodology utilising particles in the 2–4 μm aerodynamic diameter range to allow for validation of the approach by comparison to optical microscopy. The results show that the combination of these techniques provides independent size and chemical discrimination of particles. Thereby a method is provided to allow quantitative and chemically distinguished measurements of aerosol concentrations separated into exposure relevant size fractions. (paper)

  1. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    Science.gov (United States)

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  2. Potentialities of Revised Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2013-10-01

    Full Text Available The potentialities of a revised quantum electrodynamic theory (RQED earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by Dirac, as well as the rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear symmetry breaking. It will here be put into doubt whether the approach by Higgs is the only theory which becomes necessary for explaining the particle rest masses. In addition, RQED theory leads to new results beyond those being available from the theories by Dirac, Higgs and the Standard Model, such as in applications to leptons and the photon.

  3. Water sampling at the Berge Helene FPSO at Chinguetti field in Mauritania using passive samplers

    NARCIS (Netherlands)

    Korytar, P.; Galien, van der W.

    2007-01-01

    Three rounds of water sampling were performed at the Berge Helene FPSO at the Chinguetti field in Mauritania using passive samplers attached to the FPSO to determine the levels of contamination that could potentially accumulate in organisms. Two rounds were carried out prior to the commencement of

  4. Review of Particle Physics, 2012-2013

    CERN Document Server

    Beringer, J; Barnett, R M; Copic, K; Dahl, O; Groom, D E; Lin, C J; Lys, J; Murayama, H; Wohl, C G; Yao, W M; Zyla, P A; Amsler, C; Antonelli, M; Asner, D M; Baer, H; Band, H R; Basaglia, T; Bauer, C W; Beatty, J J; Belousov, V I; Bergren, E; Bernardi, G; Bertl, W; Bethke, S; Bichsel, H; Biebel, O; Blucher, E; Blusk, S; Brooijmans, G; Buchmueller, O; Cahn, R N; Carena, M; Ceccucci, A; Chakraborty, D; Chen, M C; Chivukula, R S; Cowan, G; D'Ambrosio, G; Damour, T; de Florian, D; de Gouvea, A; DeGrand, T; de Jong, P; Dissertori, G; Dobrescu, B; Doser, M; Drees, M; Edwards, D A; Eidelman, S; Erler, J; Ezhela, V V; Fetscher, W; Fields, B D; Foster, B; Gaisser, T K; Garren, L; Gerber, H J; Gerbier, G; Gherghetta, T; Golwala, S; Goodman, M; Grab, C; Gritsan, A V; Grivaz, J F; Grunewald, M; Gurtu, A; Gutsche, T; Haber, H E; Hagiwara, K; Hagmann, C; Hanhart, C; Hashimoto, S; Hayes, K G; Heffner, M; Heltsley, B; Hernandez-Rey, J J; Hikasa, K; Hocker, A; Holder, J; Holtkamp, A; Huston, J; Jackson, J D; Johnson, K F; Junk, T; Karlen, D; Kirkby, D; Klein, S R; Klempt, E; Kowalewski, R V; Krauss, F; Kreps, M; Krusche, B; Kuyanov, Yu.V; Kwon, Y; Lahav, O; Laiho, J; Langacker, P; Liddle, A; Ligeti, Z; Liss, T M; Littenberg, L; Lugovsky, K S; Lugovsky, S B; Mannel, T; Manohar, A V; Marciano, W J; Martin, A D; Masoni, A; Matthews, J; Milstead, D; Miquel, R; Monig, K; Moortgat, F; Nakamura, K; Narain, M; Nason, P; Navas, S; Neubert, M; Nevski, P; Nir, Y; Olive, K A; Pape, L; Parsons, J; Patrignani, C; Peacock, J A; Petcov, S T; Piepke, A; Pomarol, A; Punzi, G; Quadt, A; Raby, S; Raffelt, G; Ratcliff, B N; Richardson, P; Roesler, S; Rolli, S; Romaniouk, A; Rosenberg, L J; Rosner, J L; Sachrajda, C T; Sakai, Y; Salam, G P; Sarkar, S; Sauli, F; Schneider, O; Scholberg, K; Scott, D; Seligman, W G; Shaevitz, M H; Sharpe, S R; Silari, M; Sjostrand, T; Skands, P; Smith, J G; Smoot, G F; Spanier, S; Spieler, H; Stahl, A; Stanev, T; Stone, S L; Sumiyoshi, T; Syphers, M J; Takahashi, F; Tanabashi, M; Terning, J; Titov, M; Tkachenko, N P; Tornqvist, N A; Tovey, D; Valencia, G; van Bibber, K; Venanzoni, G; Vincter, M G; Vogel, P; Vogt, A; Walkowiak, W; Walter, C W; Ward, D R; Watari, T; Weiglein, G; Weinberg, E J; Wiencke, L R; Wolfenstein, L; Womersley, J; Woody, C L; Workman, R L; Yamamoto, A; Zeller, G P; Zenin, O V; Zhang, J; Zhu, R Y; Harper, G; Lugovsky, V S; Schaffner, P

    2012-01-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, Vcb & Vub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter.

  5. Review of Particle Physics, 2014-2015

    CERN Document Server

    Olive, K A; Amsler, C; Antonelli, M; Arguin, J-F; Asner, D M; Baer, H; Band, H R; Barnett, R M; Basaglia, T; Bauer, C W; Beatty, J J; Belousov, V I; Beringer, J; Bernardi, G; Bethke, S; Bichsel, H; Biebel, O; Blucher, E; Blusk, S; Brooijmans, G; Buchmueller, O; Burkert, V; Bychkov, M A; Cahn, R N; Carena, M; Ceccucci, A; Cerri, A; Chakraborty, D; Chen, M-C; Chivukula, R S; Copic, K; Cowan, G; Dahl, O; D'Ambrosio, G; Damour, T; de Florian, D; de Gouvea, A; DeGrand, T; de Jong, P; Dissertori, G; Dobrescu, B A; Doser, M; Drees, M; Dreiner, H K; Edwards, D A; Eidelman, S; Erler, J; Ezhela, V V; Fetscher, W; Fields, B D; Foster, B; Freitas, A; Gaisser, T K; Gallagher, H; Garren, L; Gerber, H-J; Gerbier, G; Gershon, T; Gherghetta, T; Golwala, S; Goodman, M; Grab, C; Gritsan, A V; Grojen, C; Groom, D E; Grunewald, M; Gurtu, A; Gutsche, T; Haber, H E; Hagiwara, K; Hanhart, C; Hashimoto, S; Hayato, Y; Hayes, K G; Heffner, M; Heltsley, B; Hernandez-Rey, J J; Hikasa, K; Hocker, A; Holder, J; Holtkamp, A; Huston, J; Jackson, J D; Johnson, K F; Junk, T; Kado, M; Karlen, D; Katz, U F; Klein, S R; Klempt, E; Kowalewski, R V; Krauss, F; Kreps, M; Krusche, B; Kuyanov, Yu V; Kwon, Y; Lahav, O; Laiho, J; Langacker, P; Liddle, A; Ligeti, Z; Lin, C-J; Liss, T M; Littenberg, L; Lugovsky, K S; Lugovsky, S B; Maltoni, F; Mannel, T; Manohar, A V; Marciano, W J; Martin, A D; Masoni, A; Matthews, J; Milstead, D; Molaro, P; Munig, K; Moortgat, F; Mortonson, M J; Murayama, H; Nakamura, K; Narain, M; Nason, P; Navas, S; Neubert, M; Nevski, P; Nir, Y; Pape, L; Parsons, J; Patrignani, C; Peacock, J A; Pennington, M; Petcov, S T; Piepke, A; Pomarol, A; Quadt, A; Raby, S; Rademacker, J; Raffelt, G; Ratcliff, B N; Richardson, P; Ringwald, A; Roesler, S; Rolli, S; Romaniouk, A; Rosenberg, L J; Rosner, J L; Rybka, G; Sachrajda, C T; Sakai, Y; Salam, G P; Sarkar, S; Sauli, F; Schneider, O; Scholberg, K; Scott, D; Sharma, V; Sharpe, S R; Silari, M; Sjostrand, T; Skands, P; Smith, J G; Smoot, G F; Spanier, S; Spieler, H; Spiering, C; Stahl, A; Stanev, T; Stone, S L; Sumiyoshi, T; Syphers, M J; Takahashi, F; Tanabashi, M; Terning, J; Tiator, L; Titov, M; Tkachenko, N P; Tornqvist, N A; Tovey, D; Valencia, G; Venanzoni, G; Vincter, M G; Vogel, P; Vogt, A; Wakely, S P; Walkowiak, W; Walter, C W; Ward, D R; Weiglein, G; Weinberg, D H; Weinberg, E J; White, M; Wiencke, L R; Wohl, C G; Wolfenstein, L; Womersley, J; Woody, C L; Workman, R L; Yamamoto, A; Yao, W-M; Zeller, G P; Zenin, O V; Zhang, J; Zhu, R-Y; Zimmermann, F; Zyla, P A; Harper, G; Lugovsky, V.S; Schaffner, P

    2014-01-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosyn...

  6. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air

    International Nuclear Information System (INIS)

    Zhang Yuzhong; Deng Shuxing; Liu Yanan; Shen Guofeng; Li Xiqing; Cao Jun; Wang Xilong; Reid, Brian; Tao Shu

    2011-01-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH LMW4 ) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH LMW4 within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. - Research highlights: → Design, field test and calibration of the novel passive air sampler, PAS-V-I. → Vertical concentration gradients of PAH LMW4 within a thin layer close to soil. → Comparison of results between PAS-V-I measurement and fugacity approach. → Potential application of PAS-V-I and further modifications. - A novel passive sampling device was developed and tested for measuring vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

  7. Revision total hip arthoplasty: factors associated with re-revision surgery.

    Science.gov (United States)

    Khatod, Monti; Cafri, Guy; Inacio, Maria C S; Schepps, Alan L; Paxton, Elizabeth W; Bini, Stefano A

    2015-03-04

    The survivorship of implants after revision total hip arthroplasty and risk factors associated with re-revision are not well defined. We evaluated the re-revision rate with use of the institutional total joint replacement registry. The purpose of this study was to determine patient, implant, and surgeon factors associated with re-revision total hip arthroplasty. A retrospective cohort study was conducted. The total joint replacement registry was used to identify patients who had undergone revision total hip arthroplasty for aseptic reasons from April 1, 2001, to December 31, 2010. The end point of interest was re-revision total hip arthroplasty. Risk factors evaluated for re-revision total hip arthroplasty included: patient risk factors (age, sex, body mass index, race, and general health status), implant risk factors (fixation type, bearing surface, femoral head size, and component replacement), and surgeon risk factors (volume and experience). A multivariable Cox proportional hazards model was used. Six hundred and twenty-nine revision total hip arthroplasties with sixty-three (10%) re-revisions were evaluated. The mean cohort age (and standard deviation) was 57.0 ± 12.4 years, the mean body mass index (and standard deviation) was 29.5 ± 6.1 kg/m(2), and most of the patients were women (64.5%) and white (81.9%) and had an American Society of Anesthesiologists score of associated with the risk of re-revision. For every ten-year increase in patient age, the hazard ratio for re-revision decreases by a factor of 0.72 (95% confidence interval, 0.58 to 0.90). For every five revision surgical procedures performed by a surgeon, the risk of revision decreases by a factor of 0.93 (95% confidence interval, 0.86 to 0.99). At the time of revision, a new or retained cemented femoral implant or all-cemented hip implant increases the risk of revision by a factor of 3.19 (95% confidence interval, 1.22 to 8.38) relative to a retained or new uncemented hip implant. A ceramic on a

  8. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  9. Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Piccardo, Maria Teresa; Pala, Mauro; Bonaccurso, Bruna; Stella, Anna; Redaelli, Anna; Paola, Gaudenzio; Valerio, Federico

    2005-01-01

    Nine polycyclic aromatic hydrocarbons (PAHs) were analysed in pine needles of different ages (from 6 to 30 months) collected from two species, Pinus nigra and Pinus pinaster, in seven sites located along a transect from a suburban to a rural area of Genoa (Italy). In all sites and for both species, concentrations of more volatile PAHs (phenanthrene, anthracene, fluoranthene, pyrene) were higher than those for other less volatile PAHs, which are preferentially sorbed to airborne particulates (benzo[a]anthracene, chrysene, benzofluoranthenes, benzo[a]pyrene). Concentrations of total PAHs found in P. nigra in the rural sites were, on the average, 2.3 times higher than those in P. pinaster growing nearby. In both pine species, concentrations of volatile PAHs increased according to needle age. Annual trends of other PAHs were more variable, with a general decrease in older needles. P. pinaster needles are shown to be more reliable passive samplers, since they are more resistant to plant diseases, and considerable variation in PAH concentration was observed in P. nigra needles with moulds and fungi. - The suitability of the pine needles as passive air samplers for persistent trace organics is demonstrated

  10. Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Piccardo, Maria Teresa [Environmental Chemistry Laboratory, National Cancer Research Institute, Genova. L.go Rosanna Benzi n. 10, 16132 Genova (Italy)]. E-mail: chimamb@istge.it; Pala, Mauro [Environmental Chemistry Laboratory, National Cancer Research Institute, Genova. L.go Rosanna Benzi n. 10, 16132 Genova (Italy); Bonaccurso, Bruna [Environmental Chemistry Laboratory, National Cancer Research Institute, Genova. L.go Rosanna Benzi n. 10, 16132 Genova (Italy); Stella, Anna [Environmental Chemistry Laboratory, National Cancer Research Institute, Genova. L.go Rosanna Benzi n. 10, 16132 Genova (Italy); Redaelli, Anna [Environmental Chemistry Laboratory, National Cancer Research Institute, Genova. L.go Rosanna Benzi n. 10, 16132 Genova (Italy); Paola, Gaudenzio [Botany Department, Genoa University, C.so Dogali 1 canc., 16136 Genova (Italy); Valerio, Federico [Environmental Chemistry Laboratory, National Cancer Research Institute, Genova. L.go Rosanna Benzi n. 10, 16132 Genova (Italy)

    2005-01-01

    Nine polycyclic aromatic hydrocarbons (PAHs) were analysed in pine needles of different ages (from 6 to 30 months) collected from two species, Pinus nigra and Pinus pinaster, in seven sites located along a transect from a suburban to a rural area of Genoa (Italy). In all sites and for both species, concentrations of more volatile PAHs (phenanthrene, anthracene, fluoranthene, pyrene) were higher than those for other less volatile PAHs, which are preferentially sorbed to airborne particulates (benzo[a]anthracene, chrysene, benzofluoranthenes, benzo[a]pyrene). Concentrations of total PAHs found in P. nigra in the rural sites were, on the average, 2.3 times higher than those in P. pinaster growing nearby. In both pine species, concentrations of volatile PAHs increased according to needle age. Annual trends of other PAHs were more variable, with a general decrease in older needles. P. pinaster needles are shown to be more reliable passive samplers, since they are more resistant to plant diseases, and considerable variation in PAH concentration was observed in P. nigra needles with moulds and fungi. - The suitability of the pine needles as passive air samplers for persistent trace organics is demonstrated.

  11. Performance evaluation and accuracy of passive capillary samplers (PCAPs) for estimating real-time drainage water fluxes

    Science.gov (United States)

    Successful monitoring of pollutant transport through the soil profile requires accurate, reliable, and appropriate instrumentation to measure amount of drainage water or flux within the vadose layer. We evaluated the performance and accuracy of automated passive capillary wick samplers (PCAPs) for ...

  12. Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Cloud Condensation Nuclei Counter—CCN (Figure 1) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the concentration of aerosol particles that can act as cloud condensation nuclei [1, 2]. The CCN draws the sample aerosol through a column with thermodynamically unstable supersaturated water vapor that can condense onto aerosol particles. Particles that are activated, i.e., grown larger in this process, are counted (and sized) by an Optical Particle Counter (OPC). Thus, activated ambient aerosol particle number concentration as a function of supersaturation is measured. Models CCN-100 and CCN-200 differ only in the number of humidifier columns and related subsystems: CCN-100 has one column and CCN-200 has two columns along with dual flow systems and electronics.

  13. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  14. High-frequency, long-duration water sampling in acid mine drainage studies: a short review of current methods and recent advances in automated water samplers

    Science.gov (United States)

    Chapin, Thomas

    2015-01-01

    Hand-collected grab samples are the most common water sampling method but using grab sampling to monitor temporally variable aquatic processes such as diel metal cycling or episodic events is rarely feasible or cost-effective. Currently available automated samplers are a proven, widely used technology and typically collect up to 24 samples during a deployment. However, these automated samplers are not well suited for long-term sampling in remote areas or in freezing conditions. There is a critical need for low-cost, long-duration, high-frequency water sampling technology to improve our understanding of the geochemical response to temporally variable processes. This review article will examine recent developments in automated water sampler technology and utilize selected field data from acid mine drainage studies to illustrate the utility of high-frequency, long-duration water sampling.

  15. Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community.

    Science.gov (United States)

    Yu, Chang Ho; Fan, Zhihua Tina; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J

    2011-10-01

    The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located ∼2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the particle deposition flux in the study area was higher (24-83 mg/m 2 ·day) than at the background sites (13-17 mg/m 2 ·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6-13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. [Box: see text].

  16. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  17. Sources and distribution of organic compounds using passive samplers in Lake Mead National Recreation Area, Nevada and Arizona, and their implications for potential effects on aquatic biota.

    Science.gov (United States)

    Rosen, Michael R.; Alvarez, David A.; Goodbred, Steven L.; Leiker, Thomas J.; Patino, Reynaldo

    2009-01-01

    Th e delineation of lateral and vertical gradients of organic contaminants in lakes is hampered by low concentrations and nondetection of many organic compounds in water. Passive samplers (semipermeable membrane devices [SPMDs] and polar organic chemical integrative samplers [POCIS]) are well suited for assessing gradients because they can detect synthetic organic

  18. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)

    2013-03-15

    Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.

  19. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  20. Chemically vapor deposited coatings for multibarrier containment of nuclear wastes

    International Nuclear Information System (INIS)

    Rusin, J.M.; Shade, J.W.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Chemical vapor deposition (CVD) was selected as a feasible method to coat ceramic cores, since the technology has previously been demonstrated for high-temperature gas-cooled reactor (HTGR) fuel particles. CVD coatings, including SiC, PyC (pyrolytic carbon), SiO 2 , and Al 2 O 3 were studied. This paper will discuss the development and characterization of PyC and Al 2 O 3 CVD coatings on supercalcine cores. Coatings were applied to 2 mm particles in either fluidized or vibrating beds. The PyC coating was deposited in a fluidized bed with ZrO 2 diluent from C 2 H 2 at temperatures between 1100 and 1200 0 C. The Al 2 O 3 coatings were deposited in a vibrated bed by a two-stage process to minimize loss of PyC during the overcoating operation. This process involved applying 10 μm of Al 2 O 3 using water vapor hydrolysis of AlCl 3 and then switching to the more surface-controlled hydrolysis via the H 2 + CO 2 reaction (3CO 2 + 3H 2 + 2AlCl 3 = Al 2 O 3 + 6HCl + 3CO). Typically, 50 to 80 μm Al 2 O 3 coatings were applied over 30 to 40 μm PyC coatings. The coatings were evaluated by metallographic examination, PyC oxidation tests, and leach resistance. After air oxidation for 100 hours at 750 0 C, the duplex PyC/Al 2 O 3 coated particles exhibited a weight loss of 0.01 percent. Leach resistance is being determined for temperatures from 50 to 150 0 C in various solutions. Typical results are given for selected ions. The leach resistance of supercalcine cores is significantly improved by the application of PyC and/or Al 2 O 3 coatings

  1. A Revised Calibration Function and Results for the Phoenix Mission TECP Relative Humidity Sensor

    Science.gov (United States)

    Zent, Aaron

    2014-01-01

    The original calibration function of the R(sub H) sensor on the Phoenix Thermal and Electrical Conductivity Sensor (TECP) has been revised in order to extend the range of the valid calibration, and to improve accuracy. The original function returned non-physical R(sub H) values at the lowest temperatures. To resolve this, and because the original calibration was performed against a pair of hygrometers that measured frost point (T(sub f)), the revised calibration equation is also cast in terms of frost point. Because of the complexity of maintaining very low temperatures and high R(sub H) in the laboratory, no calibration data exists at T is greater than 203K. However, sensor response during the mission was smooth and continuous down to 181 K. Therefore we have opted to include flight data in the calibration data set; selection was limited to data acquired during periods when the atmosphere is known to have been saturated. T(sub f) remained below 210 K throughout the mission(P is greater than 0.75 Pa). R(sub H), conversely, ranged from 1 to well under 0.01 diurnally, due to approximately 50 K temperature variations. To first order, both vapor pressure and its variance are greater during daylight hours. Variance in overnight humidity is almost entirely explained by temperature, while atmospheric turbulence contributes substantial variance to daytime humidity. Likewise, data gathered with the TECP aloft reflect higher H2O abundances than at the surface, as well as greater variance. There is evidence for saturation of the atmosphere overnight throughout much of the mission. In virtually every overnight observation, once the atmosphere cooled to T(sub f), water vapor begins to decrease, and tracks air temperature. There is no evidence for substantial decreases in water vapor prior to saturation, as expected for adsorptive exchange. Likewise, there is no evidence of local control of vapor by phases such as perchlorate hydrates hydrated minerals. The daytime average H2O

  2. Some mechanisms for the formation of octopus-shaped iron micro-particles

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    Fluid spheres (micro-spheres or/and drops) are formed out of the metallic solid (the carbon steel semi-finished product) in the argon plasma of the transferred electric arc. For short intervals of time, the spheres are at rest with relation to vapors. The movement of the vapors around the spheres is in the same plane. It consists of a movement around a circle combined with the movement produced by a definitely located whirl. The molar concentration of the vapors is small in comparison with the molar density of the mixture formed of vapors and gas. At the intersection of the sphere and the plane of movement of the vapors, distinct stagnation point is formed. They constitute points of the beginning/and end of the current lines. Each current line is a carrier of a vapor cylinder. In time, the cylinder-gas interface reaches points of temperature equal to that of the 'dew point' for iron. On this occasion a liquid membrane is formed. It delimits the vapor-gas mixture from the rest of the gas. Subsequent to the process of diffusion in non-stationary condition, the membrane becomes thicker and no vapors exist inside the tube. Needle-shaped micro-tubes are formed, in liquid phase, around the fluid sphere. By solidification, micro-particles occur, consisting of a central nucleus around which ligaments branch out

  3. Some mechanisms for the formation of octopus-shaped iron micro-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bica, Ioan E-mail: ibica2@yahoo.com

    2004-08-01

    Fluid spheres (micro-spheres or/and drops) are formed out of the metallic solid (the carbon steel semi-finished product) in the argon plasma of the transferred electric arc. For short intervals of time, the spheres are at rest with relation to vapors. The movement of the vapors around the spheres is in the same plane. It consists of a movement around a circle combined with the movement produced by a definitely located whirl. The molar concentration of the vapors is small in comparison with the molar density of the mixture formed of vapors and gas. At the intersection of the sphere and the plane of movement of the vapors, distinct stagnation point is formed. They constitute points of the beginning/and end of the current lines. Each current line is a carrier of a vapor cylinder. In time, the cylinder-gas interface reaches points of temperature equal to that of the 'dew point' for iron. On this occasion a liquid membrane is formed. It delimits the vapor-gas mixture from the rest of the gas. Subsequent to the process of diffusion in non-stationary condition, the membrane becomes thicker and no vapors exist inside the tube. Needle-shaped micro-tubes are formed, in liquid phase, around the fluid sphere. By solidification, micro-particles occur, consisting of a central nucleus around which ligaments branch out.

  4. Some mechanisms for the formation of octopus-shaped iron micro-particles

    Science.gov (United States)

    Bica, Ioan

    2004-08-01

    Fluid spheres (micro-spheres or/and drops) are formed out of the metallic solid (the carbon steel semi-finished product) in the argon plasma of the transferred electric arc. For short intervals of time, the spheres are at rest with relation to vapors. The movement of the vapors around the spheres is in the same plane. It consists of a movement around a circle combined with the movement produced by a definitely located whirl. The molar concentration of the vapors is small in comparison with the molar density of the mixture formed of vapors and gas. At the intersection of the sphere and the plane of movement of the vapors, distinct stagnation point is formed. They constitute points of the beginning/and end of the current lines. Each current line is a carrier of a vapor cylinder. In time, the cylinder-gas interface reaches points of temperature equal to that of the "dew point" for iron. On this occasion a liquid membrane is formed. It delimits the vapor-gas mixture from the rest of the gas. Subsequent to the process of diffusion in non-stationary condition, the membrane becomes thicker and no vapors exist inside the tube. Needle-shaped micro-tubes are formed, in liquid phase, around the fluid sphere. By solidification, micro-particles occur, consisting of a central nucleus around which ligaments branch out.

  5. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-01-01

    Graphical abstract: - Highlights: • The water vapor barrier efficiency of paper was enhanced via green-based emulsion coating. • Extremely high lipid content in the emulsion coating layer was firstly utilized to reduce WVTR in emulsion-based film. • A controlled WVTR of beeswax–chitosan emulsion coating could be obtained by dying at specific temperature. - Abstract: For lipid–hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax–chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax–chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated

  6. Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site

    International Nuclear Information System (INIS)

    Lin, C.-C.; Chen, S.-J.; Huang, K.-L.; Lee, W.-J.; Lin, W.-Y.; Liao, C.-J.; Chaung, H.-C.; Chiu, C.-H.

    2007-01-01

    This study investigated water-soluble ions in the sized particles (particularly nano (PM 0.01-0.056 )/ultrafine (PM 0.01-0.1 )) collected using MOUDI and Nano-MOUDI samplers near a busy road site and at a rural site. The analytical results demonstrate that nano and coarse particles exhibited the highest (16.3%) and lowest (8.37%) nitrate mass ratios, respectively. The mass ratio of NO 3 - was higher than that of SO 4 2- in all the sized particles at the traffic site. The secondary aerosols all displayed trimodal distributions. The aerosols in ultrafine particles collected at the roadside site exhibited Aitken mode distributions indicating they were of local origin. This finding was not observed for those ultrafine particles collected at the rural site. The mass median diameters (MMDs) of the nano, ultrafine, and fine particles were smaller at the traffic site than at the rural site, possibly related to the contribution of mobile engine emissions. - NO 3 - > SO 4 2- in mass ratio, different from common observations in rural areas, was found in (particularly the nano) traffic-associated particles

  7. The vaporization enthalpy and vapor pressure of S (+)-methamphetamine at T = 298.15 K by correlation gas chromatography

    International Nuclear Information System (INIS)

    Thornton, Melissa; Gobble, Chase; Chickos, James

    2014-01-01

    Highlights: • The vaporization enthalpy of (d)-methamphetamine was measured. • The vapor pressure of (d)-methamphetamine as a function of temperature was evaluated. • The vapor pressure of 4-benzylpiperidine as a function of temperature was evaluated. - Abstract: The vaporization enthalpy and vapor pressure of S (+)-methamphetamine is evaluated by correlation-gas chromatography. A vaporization enthalpy of (58.7 ± 4.3) kJ · mol −1 and a vapor pressure, p = (38 ± 9) Pa has been obtained using a variety of secondary aliphatic amines as standards. In addition, equations describing the vapor pressure temperature dependence are provided for standards and S (+)-methamphetamine covering the temperature range from T = 298.15 K to the boiling temperature. Boiling temperatures are reproduced within an interval of 8 K or less

  8. Using silver nano particles for sampling of toxic mercury vapors from industrial air sample

    Directory of Open Access Journals (Sweden)

    M. Osanloo

    2014-05-01

    .Conclusion: The presented adsorbent is very useful for sampling of the trace amounts of mercury vapors from air. Moreover, it can be regenerated easily is suitable or sampling at 25 to 70 °C. Due to oxidation of silver and reduction in uptake of nanoparticles, oven temperature of 245 °C is used for the recovery of metallic silver. Low amount of adsorbent, high absorbency, high repeatability for sampling, low cost and high accuracy are of the advantages of the presented method.

  9. A minimally invasive micro sampler for quantitative sampling with an ultrahigh-aspect-ratio microneedle and a PDMS actuator.

    Science.gov (United States)

    Liu, Long; Wang, Yan; Yao, Jinyuan; Yang, Cuijun; Ding, Guifu

    2016-08-01

    This study describes a novel micro sampler consisting of an ultrahigh-aspect-ratio microneedle and a PDMS actuator. The microneedle was fabricated by a new method which introduced reshaped photoresist technology to form a flow channel inside. The microneedle includes two parts: shaft and pedestal. In this study, the shaft length is 1500 μm with a 45° taper angle on the tip and pedestal is 1000 μm. Besides, the shaft and pedestal are connected by an arc connection structure with a length of 600 μm. The microneedles have sufficient mechanical strength to insert into skin with a wide safety margin which was proved by mechanics tests. Moreover, a PDMS actuator with a chamber inside was designed and fabricated in this study. The chamber, acting as a reservoir in sampling process as well as providing power, was optimized by finite element analysis (FEA) to decrease dead volume and improve sampling precision. The micro sampler just needs finger press to activate the sampling process as well as used for quantitative micro injection to some extent. And a volume of 31.5 ± 0.8 μl blood was successfully sampled from the ear artery of a rabbit. This micro sampler is suitable for micro sampling for diagnose or therapy in biomedical field.

  10. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  11. Simplified unified analysis of switched-RC passive mixers, samplers, and N -Path filters using the adjoint network

    NARCIS (Netherlands)

    Pavan, Shanthi; Klumperink, Eric A.M.

    2017-01-01

    Recent innovations in software defined CMOS radio transceiver architectures heavily rely on high linearity switched-RC sampler and passive-mixer circuits, driven by digitally programmable multiphase clocks. Although seemingly simple, the frequency domain analysis of these linear periodically time

  12. A guide to experimental elementary particle physics literature, 1988--1992. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.I.; Ezhela, V.V.; Filimonov, B.B. [Institute for High Energy Physics, Protvino, Moscow Region (Russian Federation)] [and others

    1993-09-01

    We present an indexed guide to the literature experimental particle physics for the years 1988--1992. About 4,000 papers are indexed by Beam/Target/Momentum, Reaction Momentum (including the final state), Final State Particle, and Accelerator/Detector/Experiment. All indices are cross-referenced to the paper`s title and reference in the ID/Reference/Title Index. The information in this guide is also publicly available from a regularly updated computer database.

  13. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  14. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  15. Revision Total Hip Arthoplasty: Factors Associated with Re-Revision Surgery

    OpenAIRE

    Khatod, M; Cafri, G; Inacio, MCS; Schepps, AL; Paxton, EW; Bini, SA

    2015-01-01

    The survivorship of implants after revision total hip arthroplasty and risk factors associated with re-revision are not well defined. We evaluated the re-revision rate with use of the institutional total joint replacement registry. The purpose of this study was to determine patient, implant, and surgeon factors associated with re-revision total hip arthroplasty.A retrospective cohort study was conducted. The total joint replacement registry was used to identify patients who had undergone revi...

  16. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  17. Copper-vapor-catalyzed chemical vapor deposition of graphene on dielectric substrates

    Science.gov (United States)

    Yang, Chao; Wu, Tianru; Wang, Haomin; Zhang, Xuefu; Shi, Zhiyuan; Xie, Xiaoming

    2017-07-01

    Direct synthesis of high-quality graphene on dielectric substrates is important for its application in electronics. In this work, we report the process of copper-vapor-catalyzed chemical vapor deposition of high-quality and large graphene domains on various dielectric substrates. The copper vapor plays a vital role on the growth of transfer-free graphene. Both single-crystal domains that are much larger than previous reports and high-coverage graphene films can be obtained by adjusting the growth duration. The quality of the obtained graphene was verified to be comparable with that of graphene grown on Cu foil. The progress reported in this work will aid the development of the application of transfer-free graphene in the future.

  18. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  19. SiO{sub 2} coating of silver nanoparticles by photoinduced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Boies, Adam M; Girshick, Steven L [Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 (United States); Roberts, Jeffrey T [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane, E-mail: jtrob@umn.ed, E-mail: slg@umn.ed [Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO{sub 2}) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO{sub 2} precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO{sub 2} coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 {sup 0}C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10{sup 7} particles cm{sup -3}.

  20. A miniature bird-borne passive air sampler for monitoring halogenated flame retardants.

    Science.gov (United States)

    Sorais, Manon; Rezaei, Ali; Okeme, Joseph O; Diamond, Miriam L; Izquierdo, Ricardo; Giroux, Jean-François; Verreault, Jonathan

    2017-12-01

    Birds have been used intensively as biomonitors of halogenated flame retardants (HFRs), and several studies have reported elevated tissue concentrations and inter-individual variability for these contaminants. While diet is known to be an important exposure pathway for HFRs in birds, it has been suggested that exposure through air may represent an underestimated source of HFRs for certain species. However, a method was not available for measuring the atmospheric exposure of individual birds to HFRs or other semi-volatile contaminants. The goal of this study was to develop a bird-borne passive air sampler (PAS) enabling the determination of individual atmospheric exposure to gas- and particle-phase HFRs using the ring-billed gull (Larus delawarensis) nesting in the Montreal area (QC, Canada). The new miniaturized elliptical-shaped PAS (mean weight: 2.72g) was tested using two sorbent types during three exposure periods (one, two and three weeks). Results showed that PAS using polyurethane foam (PUF) combined with a glass fiber filter collected all major polybrominated diphenyl ethers (PBDEs) and exhibited better performance for collecting highly hydrophobic DecaBDE mixture congeners compared to the PAS using polydimethylsiloxane (PDMS). Emerging HFRs including hexabromobenzene, Dechlorane 604 Component B, and Dechlorane plus (DP) isomers also were sampled by the PUF-based PAS. Sampling rates for most HFRs were comparable between the three exposure periods. This novel bird-borne PAS provides valuable information on the non-dietary exposure of free-ranging birds to HFRs. Copyright © 2017 Elsevier B.V. All rights reserved.