WorldWideScience

Sample records for vapor transport pvt

  1. Etude d'équations d'état en vue de représenter les propriétés PVT et les équilibres liquide-vapeur d'hydrocarbures Equations of State for Representing Pvt Properties and Vapor-Liquid Equilibria of Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Neau E.

    2006-11-01

    Full Text Available Une étude comparative de plusieurs équations d'état issues de la théorie de van der Waals a été effectuée dans le but de sélectionner des modèles capables de calculer les propriétés PVT d'hydrocarbures dans un large domaine de pression et température. 34 hydrocarbures de différentes tailles et structures ont été sélectionnés. Les données expérimentales d'équilibres liquide-vapeur (pressions de vapeur, volumes des liquides et les propriétés PVT de fluides comprimés ont été systématiquement comparées avec des résultats obtenus au moyen de différentes équations d'état. Il est apparu que seules les équations d'état complexes (notamment l'équation COR sont en mesure de représenter correctement les propriétés volumétriques dans un large domaine de température et de pression, le voisinage du point critique inclu. A comparative study of several equations of state (EOS derived from the van der Waals theory was performed. The aim was to select the models able to represent PVT properties of hydrocarbons in large pressure and temperature ranges. 34 hydrocarbons of various sizes and structures were selected. Experimental data of vapor liquid equilibria (vapor pressures and liquid volumes and PVT properties of compressed fluids were systematically compared with results obtained using selected EOS. It was shown that only the complex EOS (especially the COR equation are able to represent volumetric properties in wide temperature and presssure ranges, the critical region included.

  2. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products from the GOES-8 satellite spanning the 1987-1988 El Nino...

  3. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products spanning the 1987/1988 El Nino Southern Oscillation (ENSO)...

  4. On the density scaling of pVT data and transport properties for molecular and ionic liquids.

    Science.gov (United States)

    López, Enriqueta R; Pensado, Alfonso S; Fernández, Josefa; Harris, Kenneth R

    2012-06-07

    In this work, a general equation of state (EOS) recently derived by Grzybowski et al. [Phys. Rev. E 83, 041505 (2011)] is applied to 51 molecular and ionic liquids in order to perform density scaling of pVT data employing the scaling exponent γ(EOS). It is found that the scaling is excellent in most cases examined. γ(EOS) values range from 6.1 for ammonia to 13.3 for the ionic liquid [C(4)C(1)im][BF(4)]. These γ(EOS) values are compared with results recently reported by us [E. R. López, A. S. Pensado, M. J. P. Comuñas, A. A. H. Pádua, J. Fernández, and K. R. Harris, J. Chem. Phys. 134, 144507 (2011)] for the scaling exponent γ obtained for several different transport properties, namely, the viscosity, self-diffusion coefficient, and electrical conductivity. For the majority of the compounds examined, γ(EOS) > γ, but for hexane, heptane, octane, cyclopentane, cyclohexane, CCl(4), dimethyl carbonate, m-xylene, and decalin, γ(EOS) liquids. For viscosities and the self-diffusion coefficient-temperature ratio, we have tested the relation linking EOS and dynamic scaling parameters, proposed by Paluch et al. [J. Phys. Chem. Lett. 1, 987-992 (2010)] and Grzybowski et al. [J. Chem. Phys. 133, 161101 (2010); Phys. Rev. E 82, 013501 (2010)], that is, γ = (γ(EOS)/φ) + γ(G), where φ is the stretching parameter of the modified Avramov relation for the density scaling of a transport property, and γ(G) is the Grüneisen constant. This relationship is based on data for structural relaxation times near the glass transition temperature for seven molecular liquids, including glass formers, and a single ionic liquid. For all the compounds examined in our much larger database the ratio (γ(EOS)/φ) is actually higher than γ, with the only exceptions of propylene carbonate and 1-methylnaphthalene. Therefore, it seems the relation proposed by Paluch et al. applies only in certain cases, and is really not generally applicable to liquid transport properties such as

  5. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  6. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  7. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    Science.gov (United States)

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampl...

  8. Eddy transport of water vapor in the Martian atmosphere

    Science.gov (United States)

    Murphy, J. R.; Haberle, Robert M.

    1993-01-01

    Viking orbiter measurements of the Martian atmosphere suggest that the residual north polar water-ice cap is the primary source of atmospheric water vapor, which appears at successively lower northern latitudes as the summer season progresses. Zonally symmetric studies of water vapor transport indicate that the zonal mean meridional circulation is incapable of transporting from north polar regions to low latitudes the quantity of water vapor observed. This result has been interpreted as implying the presence of nonpolar sources of water. Another possibility is the ability of atmospheric wave motions, which are not accounted for in a zonally symmetric framework, to efficiently accomplish the transport from a north polar source to the entirety of the Northern Hemisphere. The ability or inability of the full range of atmospheric motions to accomplish this transport has important implications regarding the questions of water sources and sinks on Mars: if the full spectrum of atmospheric motions proves to be incapable of accomplishing the transport, it strengthens arguments in favor of additional water sources. Preliminary results from a three dimensional atmospheric dynamical/water vapor transport numerical model are presented. The model accounts for the physics of a subliming water-ice cap, but does not yet incorporate recondensation of this sublimed water. Transport of vapor away from this water-ice cap in this three dimensional framework is compared with previously obtained zonally symmetric (two dimensional) results to quantify effects of water vapor transport by atmospheric eddies.

  9. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  10. Lab-scale tests on ISV vapor transport phenomena

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Gardner, B.M.

    1996-01-01

    In situ vitrification (ISV) is a promising technology for remediating buried waste sites and contaminated soil sites. However, concerns exist that low soil permeabilities may limit vapor transport away from the advancing melt front and cause a melt expulsion that breaches ISV containment. As a result, two ISV lab tests were conducted at the Idaho National Engineering Laboratory (INEL) using INEL soil (permeability: 10 -6 cm/s) and a low permeability (10 -10 cm/s) clay material. The clay test also had a ceramic tube inserted vertically through the center of the area being melted to provide one-dimensional data on vapor transport. Results confirm that low soil permeabilities can limit vapor transport away from the advancing ISV melt front. In addition, peak pressures inside the ceramic tube were significantly greater than those outside the tube, indicating the importance of horizontal vapor transport around the advancing ISV melt front

  11. Electrical characterization of 6H-SiC grown by physical vapor transport method

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, G., E-mail: gzaremba@ite.waw.p [Institute of Electron Technology, Department of Analysis of Semiconductor Nanostructures, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Kaniewska, M.; Jung, W. [Institute of Electron Technology, Department of Analysis of Semiconductor Nanostructures, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Guziewicz, M. [Institute of Electron Technology, Department of Semiconductor Processing for Photonics, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Grasza, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland)

    2009-11-25

    Deep level transient spectroscopy (DLTS) and capacitance versus voltage (C-V) measurements have been used to study the electrical properties of electron traps in n-type 6H-silicon carbide (SiC) grown by physical vapor transport (PVT) technique, designed as Schottky diodes. Ir Schottky- and Ni ohmic-contacts were deposited by sputtering. Current versus voltage (I-V) measurements showed that sputter deposition of the Schottky contact yields diodes with a reduced barrier height and poor rectification characteristics. Four main electron traps revealed in DLTS spectra have activation energies at 0. 39, 0.41, 0,66, and 0.74 eV below the conduction band. Based on a comparison made with electron traps reported in the literature, we conclude that three of them are well-known traps found in the as-grown or irradiated material. There was no emission signature in the literature to make such a correspondence for the trap at 0.74 eV. Strongly nonhomogenous spatial distribution with a tendency of the trap to accumulation at the surface was found by DLTS and C-V profiling. This together with the fact that the trap at 0.74 eV has not been previously reported in as-grown or processed material makes it possible that the trap is sputter deposition induced defect.

  12. Thermodynamic and transport properties of sodium liquid and vapor

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed

  13. PVT Degradation Studies: NMR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-06

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. Nuclear magnetic resonance spectroscopy has been used to elucidate the state of water inside the PVT. The deuterium NMR results show that water absorbed by PVT under warm, humid conditions enters several distinct environments, and when the PVT is transferred from incubation to ambient temperature and humidity the water is lost on a time scale of a few hours from these samples. Most of the deuterium NMR peaks can be assigned to bulk liquid water, but almost 35% of the detected signal intensity is contained in a resonance that resembles spectra of water contained in nanometer-scale pores in mesoporous carbon.

  14. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  15. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    Gulstad, Line

    2005-01-01

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  16. PVT Degradation Studies: Acoustic Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-01

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regions with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.

  17. Radionuclide transport as vapor through unsaturated fractured rock

    International Nuclear Information System (INIS)

    Green, R.T.

    1986-01-01

    The objective of this study is to identify and examine potential mechanisms of radionuclide transport as vapor at a high-level radioactive waste repository located in unsaturated fractured rock. Transport mechanisms and processes have been investigated near the repository and at larger distances. Transport mechanisms potentially important at larger distances include ordinary diffusion, viscous flow and free convection. Ordinary diffusion includes self and binary diffusion, Knudsen flow and surface diffusion. Pressure flow and slip flow comprise viscous flow. Free convective flow results from a gas density contrast. Transport mechanisms or processes dominant near the repository include ordinary diffusion, viscous flow plus several mechanisms whose driving forces arise from the non-isothermal, radioactive nature of high-level waste. The additional mechanisms include forced diffusion, aerosol transport, thermal diffusion and thermophoresis. Near a repository vapor transport mechanisms and processes can provide a significant means of transport from a failed canister to the geologic medium from which other processes can transport radionuclides to the accessible environment. These issues are believed to be important factors that must be addressed in the assessment of specific engineering designs and site selection of any proposed HLW repository

  18. Interannual Variability in the Meridional Transport of Water Vapor

    Science.gov (United States)

    Cohen, Judah L.; Salstein, David A.; Rosen, Richard D.

    2000-01-01

    The zonal-mean meridional transport of water vapor across the globe is evaluated using the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis for 1948-97. The shape of the meridional profile of the climatological mean transport closely resembles that of previous mean climate descriptions, but values tend to be notably larger than in climatologies derived from radiosonde-only-based analyses. The unprecedented length of the NCEP-NCAR dataset invites a focus on interannual variations in the zonal-mean moisture transport, and these results for northern winter are highlighted here. Although interannual variability in the transport is typically small at most latitudes, a significant ENSO signal is present, marked by a strengthening of water vapor transports over much of the winter hemisphere during warm events. Because of an increase in tropical sea surface temperatures and in the frequency of warm events relative to cold events in the latter half of the 50-yr record, this interannual signal projects onto an overall trend toward enhanced meridional moisture transports in the global hydrological cycle.

  19. Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vapor as the Transport Agent

    Directory of Open Access Journals (Sweden)

    Shichao Zhao

    2018-02-01

    Full Text Available Molybdenum disulfide (MoS2 layers show excellent optical and electrical properties and have many potential applications. However, the growth of high-quality MoS2 layers is a major bottleneck in the development of MoS2-based devices. In this paper, we report a chemical vapor transport deposition method to investigate the growth behavior of monolayer/multi-layer MoS2 using water (H2O as the transport agent. It was shown that the introduction of H2O vapor promoted the growth of MoS2 by increasing the nucleation density and continuous monolayer growth. Moreover, the growth mechanism is discussed.

  20. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  1. PVT roadmap. A European guide for the development and market introduction of PVT technology

    International Nuclear Information System (INIS)

    Zondag, H.A.; Van Helden, W.G.J.; Bakker, M.; Affolter, P.; Eisenmann, W.; Fechner, H.; Rommel, M.; Schaap, A.; Soerensen, H.; Tripanagnostopoulos, Y.

    2006-06-01

    The aim of the roadmap is to identify promising markets for PVT (PhotoVoltaic Thermal) technology , and to identify the economical, policy, legislative and technical bottlenecks. In addition, the roadmap wants to inform the parties in the market on PVT. It thereby targets a broad range of professionals, including policy makers, solar manufacturers, installers and researchers. This work has been carried out within the PVT forum project, which is part of the EU-supported project PV-Catapult. The aim of PVT Forum is to lay the foundations for a large-scale introduction of PVT technology in Europe by means of this roadmap. In order to construct the roadmap, a two-step approach was taken. As a first step, PVT experts, PV and solar thermal industries and other stakeholders were brought together in two workshops, connected to the PVSEC 2004 in Paris and the Eurosun conference 2004 in Freiburg, to identify drivers and barriers for PVT. The results of these two workshops, that were presented in two workshop reports, were used as input for the roadmap presented here. As a second step, the PVT roadmap was written, formulating the necessary actions that should be taken on short, medium and long term in order to enlarge the market for PVT products. The chapters of the roadmap are written and reviewed by the various participants in PVT Forum. These participants have been selected for this project on the basis of their contribution to PVT development over the last years

  2. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  3. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    Science.gov (United States)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  4. PVT Panels. Fully renewable and competitive

    International Nuclear Information System (INIS)

    Bakker, M.; Strootman, K.J.; Jong, M.J.M.

    2003-10-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. PVT panels generate more solar energy per unit surface area than a combination of separate PV panels and solar thermal collectors, and share the aesthetic advantage of PV. After several years of research, PVT panels have been developed into a product that is now ready for market introduction. One of the most promising system concepts, consisting of 25 m 2 of PVT panels and a ground coupled heat pump, has been simulated in TRNSYS, and has been found to be able to fully cover both the building related electricity and heat consumption, while keeping the long-term average ground temperature constant. The cost and payback time of such a system have been determined; it has been found that the payback time of this system is approximately two-thirds of the payback time of an identical system but with 21 m 2 of PV panels and 4 m 2 of solar thermal collectors. Finally, by looking at the expected growth in the PV and solar thermal collector market, the market potential for for PVT panels has been found to be very large

  5. PVT roadmap. A European guide for the development and market introduction of PVT technology

    International Nuclear Information System (INIS)

    Zondag, H.A.; Van Helden, W.G.J.; Bakker, M.; Affolter, P.; Eisenmann, W.; Fechner, H.; Rommel, M.; Schaap, A.; Soerensen, H.; Tripanagnostopoulos, Y.

    2005-11-01

    In PVT technology, heat is extracted from PV cells. In this way, a device is made that produces both electricity and heat. In the EU-funded co-ordination action PV-Catapult, workshops on PVT were organised at the PVSEC 2004 Conference in Paris and the Eurosun 2004 conference in Freiburg, to obtain active participation of the PV and solar thermal communities. Currently, the results of the workshops are used in the drafting of a roadmap for the large-scale introduction of PVT technology on the market. First results will be presented here

  6. Thermal conductivity and PVT measurements of pentafluoroethane (refrigerant HFC-125)

    International Nuclear Information System (INIS)

    Tsvetkov, O.B.; Kletski, A.V.; Laptev, Yu.A.

    1995-01-01

    By means of the transient and steady-state coaxial cylinder methods, the thermal conductivity of pentfluoroethane was investigated at temperatures from 187 to 419 K and pressures from atmospheric to 6.0 MPa. The estimated uncertainty of the measured results is ± (2-3)%. The operation of the experimental apparatus was validated by measuring the thermal conductivity of R22 and R12. Determinations of the vapor pressure and PVT properties were carried out by a constant-volume apparatus for the temperature range 263 to 443 K, pressures up to 6 MPa, and densities from 36 to 516 kg m -3 . The uncertainties in temperature, pressure, and density are less than ±10 mK, ±0.08%, and ±0.1%, respectively

  7. The Effect of Cirrus Clouds on Water Vapor Transport in the Upper Troposphere and Lower Stratosphere

    Science.gov (United States)

    Lei, L.; McCormick, M. P.; Anderson, J.

    2017-12-01

    Water vapor plays an important role in the Earth's radiation budget and stratospheric chemistry. It is widely accepted that a large percentage of water vapor entering the stratosphere travels through the tropical tropopause and is dehydrated by the cold tropopause temperature. The vertical transport of water vapor is also affected by the radiative effects of cirrus clouds in the tropical tropopause layer. This latter effect of cirrus clouds was investigated in this research. The work focuses on the tropical and mid-latitude region (50N-50S). Water vapor data from the Microwave Limb Sounder (MLS) and cirrus cloud data from the Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation (CALIPSO) instruments were used to investigate the relationship between the water vapor and the occurrence of cirrus cloud. A 10-degree in longitude by 10-degree in latitude resolution was chosen to bin the MLS and CALIPSO data. The result shows that the maximum water vapor in the upper troposphere (below 146 hPa) is matched very well with the highest frequency of cirrus cloud occurrences. Maximum water vapor in the lower stratosphere (100 hPa) is partly matched with the maximum cirrus cloud occurrence in the summer time. The National Oceanic and Atmospheric Administration Interpolated Outgoing Longwave Radiation data and NCEP-DOE Reanalysis 2 wind data were used also to investigate the relationship between the water vapor entering the stratosphere, deep convection, and wind. Results show that maximum water vapor at 100 hPa coincides with the northern hemisphere summer-time anticyclone. The effects from both single-layer cirrus clouds and cirrus clouds above the anvil top on the water vapor entering the stratosphere were also studied and will be presented.

  8. Ballistic transport in graphene grown by chemical vapor deposition

    NARCIS (Netherlands)

    Calado, V.E.; Zhu, S.E.; Goswami, S.; Xu, Q.; Watanabe, K.; Taniguchi, T.; Janssen, G.C.A.M.; Vandersypen, L.M.K.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be

  9. Ballistic transport in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K.; Zhu, Shou-En; Janssen, G. C. A. M.; Watanabe, K.; Taniguchi, T.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene

  10. Ballistic transport in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K., E-mail: l.m.k.vandersypen@tudelft.nl [Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft (Netherlands); Zhu, Shou-En; Janssen, G. C. A. M. [Micro and Nano Engineering Laboratory, Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft (Netherlands); Watanabe, K.; Taniguchi, T. [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-01-13

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.

  11. Climatic Analysis of Oceanic Water Vapor Transports Based on Satellite E-P Datasets

    Science.gov (United States)

    Smith, Eric A.; Sohn, Byung-Ju; Mehta, Vikram

    2004-01-01

    Understanding the climatically varying properties of water vapor transports from a robust observational perspective is an essential step in calibrating climate models. This is tantamount to measuring year-to-year changes of monthly- or seasonally-averaged, divergent water vapor transport distributions. This cannot be done effectively with conventional radiosonde data over ocean regions where sounding data are generally sparse. This talk describes how a methodology designed to derive atmospheric water vapor transports over the world oceans from satellite-retrieved precipitation (P) and evaporation (E) datasets circumvents the problem of inadequate sampling. Ultimately, the method is intended to take advantage of the relatively complete and consistent coverage, as well as continuity in sampling, associated with E and P datasets obtained from satellite measurements. Independent P and E retrievals from Special Sensor Microwave Imager (SSM/I) measurements, along with P retrievals from Tropical Rainfall Measuring Mission (TRMM) measurements, are used to obtain transports by solving a potential function for the divergence of water vapor transport as balanced by large scale E - P conditions.

  12. Monte-Carlo simulation of complex vapor-transport systems for RIB applications

    International Nuclear Information System (INIS)

    Zhang, Y.; Alton, G.D.

    2005-01-01

    In order to minimize decay losses of short-lived radioactive species at ISOL based RIB facilities, effusive-flow particle transit times between target and ion source must be as short as practically achievable. A Monte-Carlo code has been developed for simulating the effusive-flow of neutral particles through vapor-transport systems independent of materials of construction. The code provides average distance traveled and time information associated with the transit of individual particles through a system. It offers a cost effective and accurate means for arriving at vapor-transport system designs. In this report, the code will be described and results obtained by its use in evaluating several prototype vapor-transport systems using specular reflection, cosine and isotropic particle re-emission about the normal to the surface models following adsorption. Simulation results obtained with an isotropic distribution are in close agreement with experimental measurements of the properties of prototype vapor-transport systems fabricated at the Holifield Radioactive Ion Beam Facility

  13. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    Science.gov (United States)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  14. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  15. Transport and sorption of volatile organic compounds and water vapor in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tsair-Fuh [Univ. of California, Berkeley, CA (United States)

    1995-07-01

    To gain insight on the controlling mechanisms for VOC transport in porous media, the relations among sorbent properties, sorption equilibrium and intraparticle diffusion processes were studied at the level of individual sorbent particles and laboratory columns for soil and activated carbon systems. Transport and sorption of VOCs and water vapor were first elucidated within individual dry soil mineral grains. Soil properties, sorption capacity, and sorption rates were measured for 3 test soils; results suggest that the soil grains are porous, while the sorption isotherms are nonlinear and adsorption-desorption rates are slow and asymmetric. An intragranular pore diffusion model coupled with the nonlinear Freundlich isotherm was developed to describe the sorption kinetic curves. Transport of benzene and water vapor within peat was studied; partitioning and sorption kinetics were determined with an electrobalance. A dual diffusion model was developed. Transport of benzene in dry and moist soil columns was studied, followed by gaseous transport and sorption in activated carbon. The pore diffusion model provides good fits to sorption kinetics for VOCs to soil and VOC to granular activated carbon and activated carbon fibers. Results of this research indicate that: Intraparticle diffusion along with a nonlinea sorption isotherm are responsible for the slow, asymmetric sorption-desorption. Diffusion models are able to describe results for soil and activated carbon systems; when combined with mass transfer equations, they predict column breakthrough curves for several systems. Although the conditions are simplified, the mechanisms should provide insight on complex systems involving transport and sorption of vapors in porous media.

  16. Thermal ionization and plasma state of high temperature vapor of UO2, Cs, and Na: Effect on the heat and radiation transport properties of the vapor phase

    International Nuclear Information System (INIS)

    Karow, H.U.

    1979-01-01

    The paper deals with the question how far the thermophysical state and the convective and radiative heat transport properties of vaporized reactor core materials are affected by the thermal ionization existing in the actual vapor state. The materials under consideration here are: nuclear oxide fuel (UO 2 ), Na (as the LMFBR coolant material), and Cs (alkaline fission product, partly retained in the fuel of the core zone). (orig./RW) [de

  17. Variations in Upper-Level Water Vapor Transport Diagnosed from Climatological Satellite Data

    Science.gov (United States)

    Lerner, Jeffrey A; Jedlovee, Gary J.; Atkinson, Robert J.

    1998-01-01

    GOES-7 VAS measurements during the Pathfinder period (1987-88) have been analysed to reveal seasonal and interannual variations in moisture transport. Long term measurements of quality winds and humidity from satellite estimates show superior benefit in diagnosing middle and upper tropospheric large scale climate variations such as ENSO events and direct circulation systems such as the Hadley Cell. A water Vapor Transport Index (WVTI) has been developed to diagnose preferred regions of strong moisture transport and to gauge the seasonal and interannual intensities detected in the GOES viewing area. Second-order variables that may be derived from GOES winds will be also discussed on the poster.

  18. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    Science.gov (United States)

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  19. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  20. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  1. Growth and characterization of Bi2Se3 crystals by chemical vapor transport

    Directory of Open Access Journals (Sweden)

    W. H. Jiao

    2012-06-01

    Full Text Available Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10, and high mobility (∼8000 cm2·V−1·s−1. The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

  2. Neutron counting and gamma spectroscopy with PVT detectors

    International Nuclear Information System (INIS)

    Mitchell, Dean James; Brusseau, Charles A.

    2011-01-01

    Radiation portals normally incorporate a dedicated neutron counter and a gamma-ray detector with at least some spectroscopic capability. This paper describes the design and presents characterization data for a detection system called PVT-NG, which uses large polyvinyl toluene (PVT) detectors to monitor both types of radiation. The detector material is surrounded by polyvinyl chloride (PVC), which emits high-energy gamma rays following neutron capture reactions. Assessments based on high-energy gamma rays are well suited for the detection of neutron sources, particularly in border security applications, because few isotopes in the normal stream of commerce have significant gamma ray yields above 3 MeV. Therefore, an increased count rate for high-energy gamma rays is a strong indicator for the presence of a neutron source. The sensitivity of the PVT-NG sensor to bare 252 Cf is 1.9 counts per second per nanogram (cps/ng) and the sensitivity for 252 Cf surrounded by 2.5 cm of polyethylene is 2.3 cps/ng. The PVT-NG sensor is a proof-of-principal sensor that was not fully optimized. The neutron detector sensitivity could be improved, for instance, by using additional moderator. The PVT-NG detectors and associated electronics are designed to provide improved resolution, gain stability, and performance at high-count rates relative to PVT detectors in typical radiation portals. As well as addressing the needs for neutron detection, these characteristics are also desirable for analysis of the gamma-ray spectra. Accurate isotope identification results were obtained despite the common impression that the absence of photopeaks makes data collected by PVT detectors unsuitable for spectroscopic analysis. The PVT detectors in the PVT-NG unit are used for both gamma-ray and neutron detection, so the sensitive volume exceeds the volume of the detection elements in portals that use dedicated components to detect each type of radiation.

  3. Recovery of rare earths from used polishes by chemical vapor transport process

    International Nuclear Information System (INIS)

    Ozaki, T.; Machida, K.; Adachi, G.

    1998-01-01

    Full text: Rare earth oxide polishes are widely used in the glass industry because of its mechanical and chemical polishing action. The Japanese glass industry use 2000 tons per year of the polishes, and a large portion of them are thrown away after their polishing lifetime. A dry recovery processes for rare earths from the used polishes have been investigated by using a chemical vapor transport method via the formation of vapor complexes RAl n Cl 3+3n (R = rare earths). A flow type reactor with various temperature gradients was employed for the process. The used polishes were mixed with active carbon, and chlorinated with N 2 + Cl 2 mixture at 1273 K. Aluminium oxide were also chlorinated at lower temperature and the resulting AlCl 3 were introduced to the reactor. The rare earth chlorides and AlCl 3 were converted to the vapor complexes. These were driven along the temperature gradient, decomposed according to the reverse reaction, and regenerated RCl 3 . About 90 % of the used polish were chlorinated after 2 hours. Rare earth chlorides, AlCl 3 , and FeCl 3 were fully transported after 82 hours. The rare earth chlorides were mainly condensed over the temperature range 1263-903 K. On the other hand, AlCl 3 and FeCl 3 were deposited at the temperature range below 413 K. CaCl 2 and SrCl 2 were hardly transported and remained in the residue. When the temperature gradient with the smaller slope was used, mutual separation efficiencies among the rare earths was improved. The highest CeCl 3 purity of 80% was obtained in the process

  4. Numerical modeling of water-vapor transport during pre-storm and COHMEX

    Science.gov (United States)

    Djuric, Dusan

    1986-01-01

    Initial conditions are designed for numerical simulation of mesocale processes in the atmosphere using the Limited Area Mesoscale Prediction System (LAMPS) model. These initial conditions represent an idealized baroclinic wave in which the transport of water vapor can be simulated. The constructed atmosphere has two homogeneous air masses, polar front, polar jet stream and a stratosphere. All these simulate the basic structure of the earth's atmosphere. The hydrostatic and geostrophic balances make it possible to evaluate mutually consistent fields of wind and of the height of isobaric surfaces.

  5. Measurements of mesospheric water vapor in 1984 and 1985 - Results and implications for middle atmospheric transport

    Science.gov (United States)

    Bevilacqua, Richard M.; Schwartz, Philip R.; Wilson, William J.

    1987-01-01

    The detailed results of ground-based mesospheric water vapor measurements obtained by microwave spectroscopy at the Jet Propulsion Laboratory (JPL) from December 1984 to April 1985 (JPL 1984/85), and an overview of results obtained the previous year from April to June 1984 are presented. The JPL 1984/85 spectral data appeared to contain an instrumental baseline curvature which was bracketed and removed. In general, the JPL 1984/85 results are in good agreement with those of previous measurements. They indicate water vapor mixing ratios between 6 and 8 ppmv at 60 or 65 km and falling off steeply with height above this point to values of less than 2 ppmv at 80 km. In addition, there is a large amount of day-to-day variability indicated in the data. A major result of the study is that it is found that both the observed vertical gradient of water vapor mixing ratio and its seasonal variation are consistent with the hypothesis that vertical transport time scales are smaller, perhaps by an order of magnitude, than values currently used in both one- and two-dimensional photochemical/dynamical models.

  6. Climate Change Intensification of Horizontal Water Vapor Transport in CMIP5

    Science.gov (United States)

    Lavers, D. A.; Ralph, F. M.; Waliser, D. E.; Gershunov, A.; Dettinger, M. D.

    2015-12-01

    The global water cycle is hypothesized to intensify with a warming Earth's atmosphere. To determine associated hydrological changes, most previous research has used precipitation scenarios without considering changes to the horizontal water vapor transport (IVT). As few studies have analyzed the IVT, and given that many extreme precipitation and flood events are driven by intense water vapor transport, it is the aim of this study to investigate projected changes to global IVT. Furthermore, this approach can identify climatological changes to the IVT between water source and sink regions. Using 22 global circulation models from the Climate Model Intercomparison Project Phase 5 (CMIP5) we evaluate, globally, the mean, standard deviation, and the 95th percentile of IVT from the historical simulations (1979-2005) and two emissions scenarios (2073-2099); representative concentration pathways (RCP4.5 and RCP8.5). This analysis is undertaken for December, January, and February (Boreal winter); and for June, July, and August (Austral winter). The CMIP5 historical multi-model mean has good agreement with the fields from the ECMWF ERA-Interim reanalysis, which provides confidence in the models' signal. In the future, under more extreme emissions (RCP8.5), multi-model mean IVT increases by 30-40% in the North Pacific and North Atlantic storm tracks and in the equatorial Pacific Ocean trade winds. The Arctic region has the largest relative IVT increase especially in Boreal winter. Analysis of low-altitude moisture and winds suggest that these projected changes are mainly due to higher atmospheric water vapor content.

  7. Performance analysis of photovoltaic thermal (PVT) water collectors

    International Nuclear Information System (INIS)

    Fudholi, Ahmad; Sopian, Kamaruzzaman; Yazdi, Mohammad H.; Ruslan, Mohd Hafidz; Ibrahim, Adnan; Kazem, Hussein A.

    2014-01-01

    Highlights: • Performances analysis of PVT collector based on energy efficiencies. • New absorber designs of PVT collectors were presented. • Comparison present study with other absorber collector designs was presented. • High efficiencies were obtained for spiral flow absorber. - Abstract: The electrical and thermal performances of photovoltaic thermal (PVT) water collectors were determined under 500–800 W/m 2 solar radiation levels. At each solar radiation level, mass flow rates ranging from 0.011 kg/s to 0.041 kg/s were introduced. The PVT collectors were tested with respect to PV efficiency, thermal efficiency, and a combination of both (PVT efficiency). The results show that the spiral flow absorber exhibited the highest performance at a solar radiation level of 800 W/m 2 and mass flow rate of 0.041 kg/s. This absorber produced a PVT efficiency of 68.4%, a PV efficiency of 13.8%, and a thermal efficiency of 54.6%. It also produced a primary-energy saving efficiency ranging from 79% to 91% at a mass flow rate of 0.011–0.041 kg/s

  8. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  9. Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules

    Science.gov (United States)

    Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier

    2018-03-01

    Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.

  10. The Effusive-Flow Properties of Target/Vapor-Transport Systems for Radioactive Ion Beam Applications

    CERN Document Server

    Kawai, Yoko; Liu, Yuan

    2005-01-01

    Radioactive atoms produced by the ISOL technique must diffuse from a target, effusively flow to an ion source, be ionized, be extracted, and be accelerated to research energies in a time commensurate with the lifetime of the species of interest. We have developed a fast valve system (closing time ~100 us) that can be used to accurately measure the effusion times of chemically active or inactive species through arbitrary geometry and size vapor transport systems with and without target material in the reservoir. The effusive flow times are characteristic of the system and thus serve as figures of merit for assessing the quality of a given vapor transport system as well as for assessing the permeability properties of a given target design. This article presents effusive flow data for noble gases flowing through a target reservoir and ion source system routinely used to generate radioactive species at the HRIBF with and without disks of 6 times and 10 times compressed Reticulated Vitreous Carbon Foam (RVCF) with...

  11. Pore-scale modeling of vapor transport in partially saturated capillary tube with variable area using chemical potential

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn

    2016-01-01

    Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters and the nu......Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... and the numerical solutions to the equation are compared with experimental results with excellent agreement. We demonstrate that isothermal vapor transport can be accurately modeled without modeling the details of the contact angle, microscale temperature fluctuations, or pressure fluctuations using a modification...

  12. The Water Vapor Source and Transport Characteristic of Rainy Seasons in Eastern China Base on Lagrangian Method

    Science.gov (United States)

    Shi, Y.; Jiang, Z.; Liu, Z.; Li, L.

    2017-12-01

    The Hybrid Single-Particle Lagrangian Integrated Trajectory platform is employed in this studyto simulate trajectories of air parcels in the different rainy seasons in East China from 1961 to 2010,with the purpose of investigating general and specific characteristics of moisture sources and the eventual relationship withprecipitation in each rainy season.The moisture transport andsource-sink characteristics of different rainy seasons have evident differences. The results show that the frontal pre-rainy season is mainly influenced bywinter monsoon system, and the precipitation is strongly affected by water vapor from Pacific Ocean (PO) and East China (EC). Afterthe onset of South China Sea Summer Monsoon (SCSMS), the moisture from Pacific Ocean decreases and from Indian Ocean monsoon area increases. Afterwards, with the northward of the rain belt, the parcels from Southwest region (South China Sea (SCS), Indian Ocean (IO) andIndo-China Peninsula and Indian Peninsula(IP)) decrease and from North region (EC, Eurasia (EA) and PO) increase. Besides, most of the land areas are water vapor sink region and most of sea areas are water vapor source region. Before the onset of SCSMS, EC and PO are two main water vapor source areas.After the onset of SCSMS, the source from PO decreasesand Indian monsoon area becomes the main vapor source region. IP is the main water vapor sink area for all four rainy seasons.As for moisture circulation characteristics, the results of vertical structure of water vapor transport indicate that the maximum water vapor transport in west and east boundaries is located in mid-troposphere and in south and north boundaries is at low-troposphere. The spatiotemporal analysis of moisture trajectory based onmultivariate empirical orthogonal function (MVEOF) indicates that the first mode has close relationship with the precipitation in North China and PDO pattern; the second mode is closely related with the precipitation in Yangtze-Huaihe river basin and

  13. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

    2011-01-01

    Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

  14. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  15. Vapor transport deposition of large-area polycrystalline CdTe for radiation image sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Keedong; Cha, Bokyung; Heo, Duchang; Jeon, Sungchae [Korea Electrotechnology Research Institute, 111 Hanggaul-ro, Ansan-si, Gyeonggi-do 426-170 (Korea, Republic of)

    2014-07-15

    Vapor transport deposition (VTD) process delivers saturated vapor to substrate, resulting in high-throughput and scalable process. In addition, VTD can maintain lower substrate temperature than close-spaced sublimation (CSS). The motivation of this work is to adopt several advantages of VTD for radiation image sensor application. Polycrystalline CdTe films were obtained on 300 mm x 300 mm indium tin oxide (ITO) coated glass. The polycrystalline CdTe film has columnar structure with average grain size of 3 μm ∝ 9 μm, which can be controlled by changing the substrate temperature. In order to analyze electrical and X-ray characteristics, ITO-CdTe-Al sandwich structured device was fabricated. Effective resistivity of the polycrystalline CdTe film was ∝1.4 x 10{sup 9}Ωcm. The device was operated under hole-collection mode. The responsivity and the μτ product estimated to be 6.8 μC/cm{sup 2}R and 5.5 x 10{sup -7} cm{sup 2}/V. The VTD can be a process of choice for monolithic integration of CdTe thick film for radiation image sensor and CMOS/TFT circuitry. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  17. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    KAUST Repository

    An, Alicia Kyoungjin; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung Gil; Ghaffour, NorEddine

    2017-01-01

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  18. Vapor-transport growth of high optical quality WSe2 monolayers

    Directory of Open Access Journals (Sweden)

    Genevieve Clark

    2014-10-01

    Full Text Available Monolayer transition metal dichalcogenides are atomically thin direct-gap semiconductors that show a variety of novel electronic and optical properties with an optically accessible valley degree of freedom. While they are ideal materials for developing optical-driven valleytronics, the restrictions of exfoliated samples have limited exploration of their potential. Here, we present a physical vapor transport growth method for triangular WSe2 sheets of up to 30 μm in edge length on insulating SiO2 substrates. Characterization using atomic force microscopy and optical microscopy reveals that they are uniform, monolayer crystals. Low temperature photoluminescence shows well resolved and electrically tunable excitonic features similar to those in exfoliated samples, with substantial valley polarization and valley coherence. The monolayers grown using this method are therefore of high enough optical quality for routine use in the investigation of optoelectronics and valleytronics.

  19. Observation of Zn vacancies in ZnO grown by chemical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, F.; Saarinen, K. [Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 TKK (Finland); Grasza, K.; Mycielski, A. [Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw (Poland)

    2006-03-15

    We have used positron annihilation spectroscopy to study the vacancy defects in ZnO crystals grown by both the conventional and contactless chemical vapor transport (CVT and CCVT). Our results show that Zn vacancies or Zn vacancy related defects are present in as-grown ZnO, irrespective of the growth method. Zn vacancies are observed in CVT-grown undoped ZnO and (Zn,Mn)O. The Zn vacancies present in undoped CCVT-ZnO are the dominant negatively charged point defect in the material. Doping the material with As introduces also Zn vacancy-related defect complexes with larger open volume. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    KAUST Repository

    An, Alicia Kyoungjin

    2017-01-30

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  1. Physical vapor transport growth and properties of SiC monocrystals of 4H polytype

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, G.; Hobgood, H.M.; Balakrishna, V.; Dunne, G.; Hopkins, R.H. [Northrop Grumman Corp., Pittsburgh, PA (United States). Electron. Sensors and Syst. Div.

    1997-07-01

    The physical vapor transport technique can be employed to fabricate large diameter silicon carbide crystals (up to 50 mm diameter) exhibiting uniform 4H-polytype over the full crystal volume. Crystal growth rate is controlled to first order by temperature conditions and ambient pressure. 4H-polytype uniformity is controlled by polarity of the seed crystal and the growth temperature. 4H-SiC crystals exhibit crystalline defects mainly in the form of dislocations with densities in the 10{sup 4} cm{sup -2} range and micropipe defects, the latter having densities as low as 10 cm{sup -2} in best crystals. Electrical conductivity in 4H-SiC bulk crystals ranges from <10{sup -2} {Omega} cm, n-type, to insulating (>10{sup 15} {Omega} cm) at room temperature. (orig.) 33 refs.

  2. Water Vapor Transport Over the Tropical Oceans During ENSO as Diagnosed from TRMM and SSM/I Data

    Science.gov (United States)

    Robertson, Franklin R.; Smith, Eric A.; Sohn, Byung-Ju

    2000-01-01

    Traditionally, large-scale water vapor transport [div Q] has been derived directly from circulation statistics in which transport processes are often depicted by mean and eddy motions. Thus detailed and accurate calculations of moisture transport terms over the globe are required. Notably, the lack of systematically spaced conventional measurements of meteorological variables over oceans has hindered understanding of the distribution and transport of water vapor. This motivates the use of indirect calculation methods in which horizontal divergence of water vapor is balanced by the evaporation minus precipitation, assuming the rate of changes of precipitable water and condensates is small over a sufficiently long time period. In order to obtain the water vapor transport, we need evaporation rate minus precipitation (E-P). Focussing on the differences in water vapor transport between El Nino and La Nina periods and their influences on atmospheric circulations, we study January, February, and March of 1998 and 1999 periods which represent El Nino and La Nina respectively. SSM/I-derived precipitation and evaporation rate from SSM/I wind and total precipitable water, in conjunction with NCEP SST and surface air temperature, are used for the calculation of the transport potential function. For the retrieval of evaporation we use a stability-dependent aerodynamic bulk scheme developed by Chou (1993). It was tested against aircraft covariance fluxes measured during cold air outbreaks over the North Atlantic Ocean. Chou et al. (1997) reported that the SSM/I retrieved latent heat flux over the western Pacific warm pool area were found to be comparable with daily mean fluxes of a ship measurements during TOGA/COARE.

  3. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  4. Properties of zinc selenide grown by chemical vapor transport and its application to room-temperature radiation detection

    International Nuclear Information System (INIS)

    Brunett, B.A.; Toney, J.E.; Schlesinger, T.E.; Yoon, H.; Goorsky, M.S.; Rudolph, P.

    1998-01-01

    The authors have characterized ZnSe material grown by chemical vapor transport in iodine using triple-axis X-ray diffraction (TAD), photo-induced current transient spectroscopy (PICTS), photoluminescence (PL), current-voltage measurements and gamma-ray spectroscopy. The material was found to have inadequate carrier transport for nuclear spectrometer use, but there was a discernible difference in performance between crystals which could be correlated with crystallinity as determined by the TAD rocking curves

  5. Radiative transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He

    International Nuclear Information System (INIS)

    Vadla, Cedomil; Horvatic, Vlasta; Niemax, Kay

    2003-01-01

    This paper is a review (with a few original additions) on the radiative transport and collisional transfer of energy in laser-excited cesium vapors in the presence of argon or helium. Narrow-band excitation of lines with Lorentz, Doppler and Voigt profiles is studied in order to calculate effective rates for pumping of spectral lines with profiles comprising inhomogeneous broadening components. The radiative transport of excitation energy is considered, and a new, simple and robust, but accurate theoretical method for quantitative treatment of radiation trapping in relatively optically thin media is presented. Furthermore, comprehensive lists of experimental values for the excitation energy transfer cross-sections related to thermal collisions in Cs-Ar and Cs-He mixtures are given. Within the collected cross-section data sets, specific regularities with respect to the energy defect, as well as the temperature, are discerned. A particular emphasis is put on the radiative and collisional processes important for the optimization of resonance-fluorescence imaging atomic filters based on Cs-noble gas systems

  6. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zhao, Rong; Ahktar, Meysam; Alruqi, Adel; Dharmasena, Ruchira; Jasinski, Jacek B.; Thantirige, Rukshan M.; Sumanasekera, Gamini U.

    2017-05-01

    In this work, we report the electrical transport properties of uniform and vertically oriented graphene (graphene nanowalls) directly synthesized on multiple substrates including glass, Si/SiO2 wafers, and copper foils using radio-frequency plasma enhanced chemical vapor deposition (PECVD) with methane (CH4) as the precursor at relatively low temperatures. The temperature for optimum growth was established with the aid of transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. This approach offers means for low-cost graphene nanowalls growth on an arbitrary substrate with the added advantage of transfer-free device fabrication. The temperature dependence of the electrical transport properties (resistivity and thermopower) were studied in the temperature range, 30-300 K and analyzed with a combination of 2D-variable range hopping (VRH) and thermally activated (TA) conduction mechanisms. An anomalous temperature dependence of the thermopower was observed for all the samples and explained with a combination of a diffusion term having a linear temperature dependence plus a term with an inverse temperature dependence.

  7. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    International Nuclear Information System (INIS)

    Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika

    2016-01-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH_4"+ in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L"−"1, with an average of 12.5 ng L"−"1. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH_4"+. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH_4"+ was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  8. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jie [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); Kang, Shichang, E-mail: shichang.kang@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Tian, Lide [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Junming [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Qianggong; Cong, Zhiyuan [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); and others

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH{sub 4}{sup +} in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L{sup −1}, with an average of 12.5 ng L{sup −1}. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH{sub 4}{sup +}. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH{sub 4}{sup +} was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  9. Final Report: Vapor Transport Deposition for Thin Film III-V Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, Shannon [Univ. of Oregon, Eugene, OR (United States); Greenaway, Ann [Univ. of Oregon, Eugene, OR (United States); Boucher, Jason [Univ. of Oregon, Eugene, OR (United States); Aloni, Shaul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-10

    Silicon, the dominant photovoltaic (PV) technology, is reaching its fundamental performance limits as a single absorber/junction technology. Higher efficiency devices are needed to reduce cost further because the balance of systems account for about two-thirds of the overall cost of the solar electricity. III-V semiconductors such as GaAs are used to make the highest-efficiency photovoltaic devices, but the costs of manufacture are much too high for non-concentrated terrestrial applications. The cost of III-V’s is driven by two factors: (1) metal-organic chemical vapor deposition (MOCVD), the dominant growth technology, employs expensive, toxic and pyrophoric gas-phase precursors, and (2) the growth substrates conventionally required for high-performance devices are monocrystalline III-V wafers. The primary goal of this project was to show that close-spaced vapor transport (CSVT), using water vapor as a transport agent, is a scalable deposition technology for growing low-cost epitaxial III-V photovoltaic devices. The secondary goal was to integrate those devices on Si substrates for high-efficiency tandem applications using interface nanopatterning to address the lattice mismatch. In the first task, we developed a CSVT process that used only safe solid-source powder precursors to grow epitaxial GaAs with controlled n and p doping and mobilities/lifetimes similar to that obtainable via MOCVD. Using photoelectrochemical characterization, we showed that the best material had near unity internal quantum efficiency for carrier collection and minority carrier diffusions lengths in of ~ 8 μm, suitable for PV devices with >25% efficiency. In the second task we developed the first pn junction photovoltaics using CSVT and showed unpassivated structures with open circuit photovoltages > 915 mV and internal quantum efficiencies >0.9. We also characterized morphological and electrical defects and identified routes to reduce those defects. In task three we grew epitaxial

  10. A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation

    Science.gov (United States)

    Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang

    2017-07-01

    Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.

  11. Experimental determination of PVT data, critical quantities and of the equation of state for sodium up to 2600 K and 500 bar

    International Nuclear Information System (INIS)

    Binder, H.

    1984-01-01

    In the present thesis the PVT-data of fluid sodium are measured up to 2600 K and 500 bar and the vapor pressure curve is determined up to the critical point, which is found to be Tsub(c) = 2485 +- 15 K / Psub(c) = 248 +- 5 bar, rhosub(c) = 0.30 +- 0.05 g/cm 3 . The measured values are used to investigate the attractive forces of sodium theoretically. (BHO)

  12. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    Science.gov (United States)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  13. Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Directory of Open Access Journals (Sweden)

    Zervos Matthew

    2008-01-01

    Full Text Available Abstract We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation.

  14. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Tan, C.W., E-mail: tanchengwen@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Yu, X.D. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Nie, Z.H. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Ma, H.L. [China Astronaut Research and Training Center, Beijing 100094 (China); Cai, H.N. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-12-15

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl{sub 6} as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10{sup 6} to 10{sup 7} (counts/cm{sup 2}) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  15. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    International Nuclear Information System (INIS)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z.; Tan, C.W.; Yu, X.D.; Nie, Z.H.; Ma, H.L.; Cai, H.N.

    2016-01-01

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl 6 as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10 6 to 10 7 (counts/cm 2 ) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  16. Universal method for effusive-flow characterization target ion source/vapor transport systems for radioactive ion beam generation (abstract)

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, J.-C.; Liu, Y.; Cole, J. A.; Williams, C.

    2004-01-01

    Worldwide interest in the use of accelerated radioactive ion beams (RIBs) for exploring reactions important in understanding the structure of the nucleus and nuclear astrophysical phenomena has motivated the construction of facilities dedicated to their production and acceleration. Many facilities utilize the isotope-separator-on-line (ISOL) method in which species of interest are generated within a solid or liquid target matrix. Experimentally useful RIBs are often difficult to generate by this technique because of the times required for diffusion from the interior of the target material, and to effusively transport the species of interest to the ion source following diffusion release in relation to its lifetime. Therefore, these delay times must be minimized. We have developed an experimental method that can be used to determine effusive-flow times of arbitrary geometry target/vapor transport systems. The technique utilizes a fast valve to measure effusive-flow times as short as 0.1 ms for any chemically active or inactive species through any target system, independent of size, geometry and materials of construction. In this report, we provide a theoretical basis for effusive flow through arbitrary geometry vapor transport systems, describe a universal experimental apparatus for measuring effusive-flow times, and provide time spectra for noble gases through prototype RIB target/vapor-transport systems

  17. Comparative study of initial growth stage in PVT growth of AlN on SiC and on native AlN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, B.M.; Heimann, P.; Bickermann, M.; Winnacker, A. [Department of Materials Science 6, University of Erlangen-Nuernberg, Martensstr. 7, 91058 Erlangen (Germany)

    2005-05-01

    The main issue in homoepitaxial growth of aluminum nitride (AlN) on native seed substrates appears to be aluminum oxynitride poisoning of seed surface leading to polycrystalline growth at 1750-1850 C. This is well below the lowest growth temperature appropriate for physical vapor transport (PVT) of bulk AlN, which is about 2150 C. Contrary, heteroepitaxial growth of AlN on SiC is relatively easy to achieve because of natural formation of a thin molten layer on the seed surface and VLS growth of AlN via the molten buffer layer. The most critical issue of AlN growth on SiC is cracking of the grown layer upon cooling as a result of different thermal expansion. Optimization of seeded growth process can be achieved by proper choice of SiC seed orientation and by use of ultra-pure starting material. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Atmospheric water vapor transport: Estimation of continental precipitation recycling and parameterization of a simple climate model. M.S. Thesis

    Science.gov (United States)

    Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    The advective transport of atmospheric water vapor and its role in global hydrology and the water balance of continental regions are discussed and explored. The data set consists of ten years of global wind and humidity observations interpolated onto a regular grid by objective analysis. Atmospheric water vapor fluxes across the boundaries of selected continental regions are displayed graphically. The water vapor flux data are used to investigate the sources of continental precipitation. The total amount of water that precipitates on large continental regions is supplied by two mechanisms: (1) advection from surrounding areas external to the region; and (2) evaporation and transpiration from the land surface recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. In a separate, but related, study estimates of ocean to land water vapor transport are used to parameterize an existing simple climate model, containing both land and ocean surfaces, that is intended to mimic the dynamics of continental climates.

  19. ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation

    Science.gov (United States)

    Lavers, David A.; Pappenberger, Florian; Richardson, David S.; Zsoter, Ervin

    2016-11-01

    In winter, heavy precipitation and floods along the west coasts of midlatitude continents are largely caused by intense water vapor transport (integrated vapor transport (IVT)) within the atmospheric river of extratropical cyclones. This study builds on previous findings that showed that forecasts of IVT have higher predictability than precipitation, by applying and evaluating the European Centre for Medium-Range Weather Forecasts Extreme Forecast Index (EFI) for IVT in ensemble forecasts during three winters across Europe. We show that the IVT EFI is more able (than the precipitation EFI) to capture extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase; conversely, the precipitation EFI is better during the negative NAO phase and at shorter leads. An IVT EFI example for storm Desmond in December 2015 highlights its potential to identify upcoming hydrometeorological extremes, which may prove useful to the user and forecasting communities.

  20. Detailed kinetic and heat transport model for the hydrolysis of lignocellulose by anhydrous hydrogen fluoride vapor

    Energy Technology Data Exchange (ETDEWEB)

    Rorrer, G.L.; Mohring, W.R.; Lamport, D.T.A.; Hawley, M.C.

    1988-01-01

    Anhydrous Hydrogen Fluoride (HF) vapor at ambient conditions efficiently and rapidly hydrolyzed lignocellulose to glucose and lignin. The unsteady-state reaction of HF vapor with a single lignocellulose chip was mathematically modeled under conditions where external and internal mass-transfer resistances were minimized. The model incorporated physical adsorption of HF vapor onto the lignocellulosic matrix and solvolysis of cellulose to glucosyl fluoride by adsorbed HF into the differential material and energy balance expressions. Model predictions for the temperature distribution and global glucose yield in the HF-reacting lignocellulose chip as a function of reaction time and HF vapor stream temperature agreed reasonably with the complimentary experimental data. The model correctly predicted that even when mass-transfer resistances for the reaction of HF vapor with a single lignocellulose chip are minimized, external and internal heat-transfer resistances are still significant.

  1. Silver chemical vapor generation for atomic absorption spectrometry: Minimization of transport losses, interferences and application to water analysis

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Kratzer, Jan; Vobecký, Miloslav; Benada, Oldřich; Matoušek, Tomáš

    2010-01-01

    Roč. 25, č. 10 (2010), s. 1618-1626 ISSN 0267-9477 R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501; CEZ:AV0Z50200510 Keywords : chemical vapor generation * 111Ag radioindicator * transport losses Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.372, year: 2010

  2. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems

    International Nuclear Information System (INIS)

    Hassani, Samir; Saidur, R.; Mekhilef, Saad; Taylor, Robert A.

    2016-01-01

    Highlights: • Environmental and ExPBT analysis of different PV/T configurations is presented. • The exergy payback time of nanofluid-based hybrid PV/T system is about 2 years. • Nanofluid-based hybrid PV/T system is a reliable solution for pollution prevention. • Nanofluid-based hybrid PV/T system is highly recommended at high solar concentration. - Abstract: Photovoltaic/thermal (PV/T) solar systems, which produce both electrical and thermal energy simultaneously, represent a method to achieve very high conversion rates of sunlight into useful energy. In recent years, nanofluids have been proposed as efficient coolants and optical filter for PV/T systems. Aim of this paper is to theoretically analyze the life cycle exergy of three different configurations of nanofluids-based PV/T hybrid systems, and compare their performance to a standard PV and PV/T system. Electrical and thermal performance of the analyzed solar collectors was investigated numerically. The life cycle exergy analysis revealed that the nanofluids-based PV/T system showed the best performance compared to a standard PV and PV/T systems. At the optimum value of solar concentration C, nanofluid-based PV/T configuration with optimized optical and thermal properties produces ∼1.3 MW h/m 2 of high-grade exergy annually with the lowest exergy payback time of 2 years, whereas these are ∼0.36, ∼0.79 MW h/m 2 and 3.48, 2.55 years for standard PV and PV/T systems, respectively. In addition, the nanofluids-based PV/T system can prevent the emissions of about 448 kg CO 2 eq m −2 yr −1 . Overall, it was found that the nanofluids-based PV/T with optimized optical and thermal properties has potential for further development in a high-concentration solar system.

  3. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    Science.gov (United States)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  4. Growth of Cd0.96Zn0.04Te single crystals by vapor phase gas transport method

    Directory of Open Access Journals (Sweden)

    S. H. Tabatabai Yazdi

    2006-03-01

    Full Text Available   Cd0.96Zn0.04Te crystals were grown using vapor phase gas transport method (VPGT. The results show that dendritic crystals with grain size up to 3.5 mm can be grown with this technique. X-ray diffraction and Laue back-reflection patterns show that dendritic crystals are single-phase, whose single crystal grains are randomly oriented with respect to the gas-transport axis. Electrical measurements, carried out using Van der Pauw method, show that the as-grown crystals have resistivity of about 104 Ω cm and n-type conductivity.

  5. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  6. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  7. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  8. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations....

  9. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  10. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  11. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  12. The effect of global-scale divergent circulation on the atmospheric water vapor transport and maintenance

    Science.gov (United States)

    Chen, Tsing-Chang

    1988-01-01

    The detection, distribution, and dynamics of atmospheric water on Earth was examined. How the high levels of water vapor and precipitation that occur over the tropics during the monsoon season result from the development of a strong divergent atmospheric circulation is discussed.

  13. What is the role of laminar cirrus cloud on regulating the cross-tropopause water vapor transport?

    Science.gov (United States)

    Wu, D. L.; Gong, J.; Tsai, V.

    2016-12-01

    Laminar cirrus is an extremely thin ice cloud found persistently inhabit in the tropical and subtropical tropopause. Due to its sub-visible optical depth and high formation altitude, knowledge about the characteristics of this special type of cloud is very limited, and debates are ongoing about its role on regulating the cross-tropopause transport of water vapor. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite has been continuously providing us with unprecedented details of the laminar cirrus since its launch in 2006. In this research, we adapted Winker and Trepte (1998)'s eyeball detection method. A JAVA-based applet and graphical user interface (GUI) is developed to manually select the laminar, which then automatically record the cloud properties, such as spatial location, shape, thickness, tilt angle, and whether its isolated or directly above a deep convective cloud. Monthly statistics of the laminar cirrus are then separately analyzed according to the orbit node, isolated/convective, banded/non-banded, etc. Monthly statistics support a diurnal difference in the occurring frequency and formation height of the laminar cirrus. Also, isolated and convective laminars show diverse behaviors (height, location, distribution, etc.), which strongly implies that their formation mechanisms and their roles on depleting the upper troposphere water vapor are distinct. We further study the relationship between laminar characteristics and collocated and coincident water vapor gradient measurements from Aura Microwave Limb Sounder (MLS) observations below and above the laminars. The identified relationship provides a quantitative answer to the role laminar cirrus plays on regulating the water vapor entering the stratosphere.

  14. Isobaric PVT Behavior of Poly(Carbonate) (PC)

    Science.gov (United States)

    Grassia, Luigi; D'Amore, Alberto

    2010-06-01

    The scaling law for relaxation times, τ(V,T) = ℑ(TVγ), recently proposed by Casalini and Roland, is utilized in the framework of KAHR (Kovacs Aklonis Hutchinson and Ramos) phenomenological theory. With this approach it is shown that the Pressure, Volume, Temperature (PVT) data obtained on Poly(carbonate)(PC) can be reliably predicted, in the region of the alpha relaxation, by using only two fitting parameters, namely: the relaxation time in the reference condition, τg, and the fractional exponent, β that describes the dispersion of the alpha relaxation.

  15. Optimal design of orientation of PV/T collector with reflectors

    International Nuclear Information System (INIS)

    Kostic, Lj.T.; Pavlovic, T.M.; Pavlovic, Z.T.

    2010-01-01

    Hybrid conversion of solar radiation implies simultaneous solar radiation conversion into thermal and electrical energy in the PV/Thermal collector. In order to get more thermal and electrical energy, flat solar radiation reflectors have been mounted on PV/T collector. To obtain higher solar radiation intensity on PV/T collector, position of reflectors has been changed and optimal position of reflectors has been determined by both experimental measurements and numerical calculation so as to obtain maximal concentration of solar radiation intensity. The calculated values have been found to be in good agreement with the measured ones, both yielding the optimal position of the flat reflector to be the lowest (5 o ) in December and the highest (38 o ) in June. In this paper, the thermal and electrical efficiency of PV/T collector without reflectors and with reflectors in optimal position have been calculated. Using these results, the total efficiency and energy-saving efficiency of PV/T collector have been determined. Energy-saving efficiency for PV/T collector without reflectors is 60.1%, which is above the conventional solar thermal collector, whereas the energy-saving efficiency for PV/T collector with reflectors in optimal position is 46.7%, which is almost equal to the values for conventional solar thermal collector. Though the energy-saving efficiency of PV/T collector decreases slightly with the solar radiation intensity concentration factor, i.e. the thermal and electrical efficiency of PV/T collector with reflectors are lower than those of PV/T collector without reflectors, the total thermal and electrical energy generated by PV/T collector with reflectors in optimal position are significantly higher than total thermal and electrical energy generated by PV/T collector without reflectors.

  16. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    Science.gov (United States)

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  17. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  18. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    NARCIS (Netherlands)

    Solanki, S.C.; Dubey, Swapnil; Tiwari, A.

    2009-01-01

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations,

  19. Long non-coding RNA PVT1: Emerging biomarker in digestive system cancer.

    Science.gov (United States)

    Zhou, Dan-Dan; Liu, Xiu-Fen; Lu, Cheng-Wei; Pant, Om Prakash; Liu, Xiao-Dong

    2017-12-01

    The digestive system cancers are leading cause of cancer-related death worldwide, and have high risks of morbidity and mortality. More and more long non-coding RNAs (lncRNAs) have been studied to be abnormally expressed in cancers and play a key role in the process of digestive system tumour progression. Plasmacytoma variant translocation 1 (PVT1) seems fairly novel. Since 1984, PVT1 was identified to be an activator of MYC in mice. Its role in human tumour initiation and progression has long been a subject of interest. The expression of PVT1 is elevated in digestive system cancers and correlates with poor prognosis. In this review, we illustrate the various functions of PVT1 during the different stages in the complex process of digestive system tumours (including oesophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma and pancreatic cancer). The growing evidence shows the involvement of PVT1 in both proliferation and differentiation process in addition to its involvement in epithelial to mesenchymal transition (EMT). These findings lead us to conclude that PVT1 promotes proliferation, survival, invasion, metastasis and drug resistance in digestive system cancer cells. We will also discuss PVT1's potential in diagnosis and treatment target of digestive system cancer. There was a great probability PVT1 could be a novel biomarker in screening tumours, prognosis biomarkers and future targeted therapy to improve the survival rate in cancer patients. © 2017 John Wiley & Sons Ltd.

  20. Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation

    Science.gov (United States)

    Basner, Mathias; Mollicone, Daniel; Dinges, David F.

    2011-12-01

    The Psychomotor Vigilance Test (PVT) objectively assesses fatigue-related changes in alertness associated with sleep loss, extended wakefulness, circadian misalignment, and time on task. The standard 10-min PVT is often considered impractical in applied contexts. To address this limitation, we developed a modified brief 3-min version of the PVT (PVT-B). The PVT-B was validated in controlled laboratory studies with 74 healthy subjects (34 female, aged 22-45 years) that participated either in a total sleep deprivation (TSD) study involving 33 h awake ( N=31 subjects) or in a partial sleep deprivation (PSD) protocol involving 5 consecutive nights of 4 h time in bed ( N=43 subjects). PVT and PVT-B were performed regularly during wakefulness. Effect sizes of 5 key PVT outcomes were larger for TSD than PSD and larger for PVT than for PVT-B for all outcomes. Effect size was largest for response speed (reciprocal response time) for both the PVT-B and the PVT in both TSD and PSD. According to Cohen's criteria, effect sizes for the PVT-B were still large (TSD) or medium to large (PSD, except for fastest 10% RT). Compared to the 70% decrease in test duration the 22.7% (range 6.9-67.8%) average decrease in effect size was deemed an acceptable trade-off between duration and sensitivity. Overall, PVT-B performance had faster response times, more false starts and fewer lapses than PVT performance (all psleep loss between PVT-B and PVT for all outcome variables (all P>0.15) but the fastest 10% response times during PSD ( P<0.001), and effect sizes increased from 1.38 to 1.49 (TSD) and 0.65 to 0.76 (PSD), respectively. In conclusion, PVT-B tracked standard 10-min PVT performance throughout both TSD and PSD, and yielded medium to large effect sizes. PVT-B may be a useful tool for assessing behavioral alertness in settings where the duration of the 10-min PVT is considered impractical, although further validation in applied settings is needed.

  1. Vapor Transport Through Fractures and Other High-Permeability Paths: Its Role in the Drift Scale Test at Yucca Mountain, Nevada

    Science.gov (United States)

    Mukhopadhyay, S.; Tsang, Y. W.

    2001-12-01

    Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high

  2. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    Science.gov (United States)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  3. High purity and semi-insulating 4H-SiC crystals grown by physical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, G.; Hobgood, H.McD.; Balakrishna, V.; Dunne, G.T.; Hopkins, R.H.; Thomas, R.N. [Northrop Grumman Corp., Pittsburgh, PA (United States). Science and Technology Center; Doolittle, W.A.; Rohatgi, A. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical and Computer Engineering

    1998-06-01

    High purity undoped and semi-insulating vanadium doped 4H-SiC single crystals with diameters up to 50 mm were grown by the physical vapor transport method. Undoped crystals exhibiting resistivities in the 10{sup 2} to 10{sup 3} {Omega}-cm range and photoconductive decay (PCD) lifetimes in the 2 to 9 {mu}s range, were grown from high purity SiC sublimation sources. The crystals were p-type due to the presence of residual acceptor impurities, mainly boron. The semi-insulating behavior of the vanadium doped crystals is attributed to compensation of residual acceptors by the deep level vanadium donor located near the middle of the band gap. (orig.) 6 refs.

  4. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    Science.gov (United States)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  5. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    International Nuclear Information System (INIS)

    Wang, Haiyan; Qi, Haiyang; Wang, Weizong; Yan, Joseph D; Geng, Jinyue; Wu, Yaowu

    2017-01-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg–Waage equation according to van de Sanden et al ’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman–Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes. (paper)

  6. Radiation-damage measurements on PVT-based plastic scintillators

    International Nuclear Information System (INIS)

    Ilie, S.; Schoenbacher, H.; Tavlet, M.

    1993-01-01

    Samples of PVT-based plastic scintillators produced by Nuclear Enterprise Technology Ltd. (NET) were irradiated up to 9 kGy, both with a gamma source and within a typical accelerator radiation field (CERN PS ACOL Irradiation Facility). The consequent reduction of scintillating efficiency and light transmission were measured, as well as subsequent recovery, over a period of several months. The main results show that irradiation affects more the light transmission than the light emission. The radiation type does not affect either the amount of transmission reduction or the recovery. Observations were also made by means of polarized light. Non-uniformities and internal stresses were observed in scintillator bulks which were polymerized too quickly. These defects influence the light transmission. (orig.)

  7. The high pressure PVT properties of deuterium oxide

    International Nuclear Information System (INIS)

    Fine, R.A.; Millero, F.J.

    1975-01-01

    The high pressure isothermal compressibilities of deuterium oxide from 5 to 100 degreeC and 0 to 1000 bars applied or gauge pressure were determined from sound speed data. These compressibilities were used to derive an equation of state of the form V 0 P/(V 0 - V/supP/) = B + A 1 P + A 2 P 2 , where V 0 and V/supP/ are the specific volumes at an applied pressure of zero and P; and B, A 1 , and A 2 are polynomial functions of temperature. The compressibilities derived from this equation of state are consistent with those derived from the sound speed data to plus-or-minus0.016times10 -6 bar -1 over the entire pressure and temperature range (this is equivalent to approx.0.2 m sec -1 in sound speed). The 1 atm sound-derived compressibilities agree on the average to plus-or-minus0.06times10 -6 bar -1 with the direct measurements of Millero and Lepple. The P--V--T data from the sound-derived equation are compared with the high pressure work of Bridgman, Kesselman, Juza et al., and Emmet and Millero. Good agreement (average deviation of plus-or-minus28times10 -6 cm 3 g -1 ) was found with the recent specific volume measurements of Emmet and Millero. The P--V--T properties of D 2 O are compared to pure water. D 2 O and H 2 O are shown to follow similar trends. Contrary to previous reports, the D 2 O/H 2 O ratios of the specific volumes and specific heats are shown to be functions of both temperature and pressure

  8. Performance improvement of the finned passive PVT system using reflectors like removable insulation covers

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mokhtari, Farhad

    2016-01-01

    Highlights: • A passive PVT system means the combination of a PV panel and a compact solar water heater. • Comparative study was done on performance characteristics in passive and hybrid PVT systems. • Reflectors effects on performance of a finned passive PVT system were numerically studied. • Results show that the finned passive PVT system has higher performance than the hybrid type. • Reflectors reduce the night heat losses and increase the solar radiation rate on PVT system. - Abstract: A passive photovoltaic–thermal system (PVT) is the combination of a photovoltaic (PV) panel and a compact solar water heater for co-generation of heat and electricity. This system bears considerable heat losses to ambient, particularly at noncollection times. One simple way to overcome this problem is to use a removable insulation cover on the collector's outer glazing. In this paper, the effects of the reflectors on day and night performance of a finned passive PVT system were numerically studied. At nonenergy collection time, the reflectors can turn and cover the collector cover glass as a nonconductor material. Simulation results showed that the reflectors reduce the night heat losses and increase the solar radiation rate on the absorber plate. The use of removable insulation reflectors resulted to saving extra sensibly thermal energy. Also, the solar cells power generation (P_s_c), in the case of reflectors installed, was reinforced.

  9. A roadmap for the development and market introduction of PVT technology

    International Nuclear Information System (INIS)

    Zondag, H.A.; Van Helden, W.G.J.; Bakker, M.; Elswijk, M.J.

    2005-11-01

    In PVT technology, heat is extracted from PV cells. In this way, a device is made that produces both electricity and heat. In the EU funded coordination action PV-Catapult, workshops on PVT were organised at the PVSEC 2004 Conference in Paris and the Eurosun 2004 conference in Freiburg, to obtain active participation of the PV and solar thermal communities. Currently, the results of the workshops are used in the drafting of a roadmap for the large scale introduction of PVT technology on the market. First results will be presented here

  10. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    Science.gov (United States)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  11. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  12. Short-term PV/T module temperature prediction based on PCA-RBF neural network

    Science.gov (United States)

    Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng

    2018-02-01

    Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.

  13. Android App Incorporating the PVT to Deliver Individualized Fatigue Risk Management in Commercial Trucking

    Data.gov (United States)

    National Aeronautics and Space Administration — The overarching objective of this project is to achieve an Android App that incorporates the Psychomotor Vigilance Task (PVT) to deliver Individualized Fatigue Risk...

  14. Characterization of single crystalline ZnTe and ZnSe grown by vapor phase transport

    Energy Technology Data Exchange (ETDEWEB)

    Trigubo, A B; Di Stefano, M C [FRBA-UTN, (1179) Buenos Aires (Argentina); Aguirre, M H [Dpto de Quim Inorg, Fac de Cs Quim, Univ Complutense, (28040) Madrid (Spain); Martinez, A M; D' Elia, R; Canepa, H; Heredia, E, E-mail: atrigubo@citefa.gov.a [CINSO-CITEFA: (1603) Villa Martelli, Pcia de Buenos Aires (Argentina)

    2009-05-01

    Tubular furnaces were designed and built to obtain single crystalline ZnTe and ZnSe ingots using respectively physical and chemical transport methods. Different temperature profiles and growth rates were analyzed in order to optimize the necessary crystalline quality for device development. Optical and scanning electron micrographs of the corrosion figures produced by chemical etching were used to obtain the dislocation density and the misorientation between adjacent subgrains in ZnTe and ZnSe wafers. Structural quality of the single crystalline material was determined by transmission electronic microscopy. Optical transmittance was measured by infrared transmission spectrometry and the resulting values were compared to commercial samples.

  15. Expression of hsa_circ_PVT1 in human hepatocellular carcinoma and its clinical significance

    Directory of Open Access Journals (Sweden)

    Yuan-xin ZHU

    2018-03-01

    Full Text Available Objective To determine the expression and clinical significance of circ-PVT1 in human hepatocellular carcinoma (HCC and its effect on HCC cell proliferation. Methods The expressions of circ-PVT1 in hepatocellular carcinoma and the matched tumor-adjacent tissues were detected by RT-qPCR and the relationship between pathological indexes and the expression level was analyzed in 46 patients. The expressions of circ-PVT1 in human normal liver cell line (L02 and hepatocellular carcinoma cell lines (HepG2, SMMC-7721, MHCC-97H, MHCC-97L, HCC-LM3 were detected by RT-qPCR and were compared thereafter. With knocking down the expression of circ-PVT1, si-circPVT1 was transfected into HepG2 and SMMC-7721 cells by using lipofectamine technique in vitro, with the si-NC being taken as negative control. After interfering the expression of circ-PVT1, the effect on the proliferation of hepatocellular carcinoma cells was detected by CCK-8 and EDU experiments and flow cytometry was conducted to observe the effect of circ-PVT1 on cell cycle. Results The expression level of circ-PVT1 was significantly higher in HCC tissues than in adjacent tissues (P<0.01, and its high expression level was significantly correlated with tumor size, TNM stage and differentiation degree. Similarly, in human hepatocellular carcinoma cell lines (HepG2, SMMC-7721, MHCC-97H, MHCC-97L, HCC-LM3, the expression level of circ-PVT1 was also higher than that in human normal liver cell line L02 (P<0.05. Compared with the negative control group, silencing of circ-PVT1 resulted in remarkable reduction in cell proliferation of HepG2 and SMMC-7721. Conclusion circ-PVT1 may act as a potential biomarker for HCC diagnosis and may become a novel proliferation factor. DOI: 10.11855/j.issn.0577-7402.2018.03.06

  16. Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT System

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2017-04-01

    Full Text Available In recent years, with the development of photovoltaic system and photo-thermal system technology, hybrid photovoltaic-thermal (PVT technology has been a breakthrough in many aspects. This paper describes the movable hybrid PVT system from the aspects of appearance structure, energy flow, and control circuit. The system is equipped with rolling wheels and the simulated light sources also can be removed so that the system can be used in the outdoor conditions. The movable system is also suitable for the PVT system and its related applications without any external power supply. This system combines two technologies: photovoltaic power generation and photo-thermal utilization. The first part of the power supply is for the systems own output power supply, and the second part is for generating thermal energy. The two separate parts can be controlled and monitored respectively through the control circuits and the touch screens. The experimental results show that the system can generate 691 kWh electric energy and 3047.8 kWh thermal energy each year under normal working conditions. The efficiency of the proposed movable hybrid PVT system is calculated to be approximately 42.82% using the revised equations that are proposed in this paper. Therefore, the movable hybrid PVT system can meet the daily demands of hot water and electricity power in remote areas or islands and other non-grid areas. It also can be used to conduct experiment tests for the PVT system.

  17. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  18. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  19. A decadal time series of water vapor and D / H isotope ratios above Zugspitze: transport patterns to central Europe

    Science.gov (United States)

    Hausmann, Petra; Sussmann, Ralf; Trickl, Thomas; Schneider, Matthias

    2017-06-01

    We present vertical soundings (2005-2015) of tropospheric water vapor (H2O) and its D / H isotope ratio (δD) derived from ground-based solar Fourier transform infrared (FTIR) measurements at Zugspitze (47° N, 11° E, 2964 m a.s.l.). Beside water vapor profiles with optimized vertical resolution (degrees of freedom for signal, DOFS, = 2.8), {H2O, δD} pairs with consistent vertical resolution (DOFS = 1.6 for H2O and δD) applied in this study. The integrated water vapor (IWV) trend of 2.4 [-5.8, 10.6] % decade-1 is statistically insignificant (95 % confidence interval). Under this caveat, the IWV trend estimate is conditionally consistent with the 2005-2015 temperature increase at Zugspitze (1.3 [0.5, 2.1] K decade-1), assuming constant relative humidity. Seasonal variations in free-tropospheric H2O and δD exhibit amplitudes of 140 and 50 % of the respective overall means. The minima (maxima) in January (July) are in agreement with changing sea surface temperature of the Atlantic Ocean. Using extensive backward-trajectory analysis, distinct moisture pathways are identified depending on observed δD levels: low column-based δD values (δDcol 95th percentile: 46° N, 4.6 km). Backward-trajectory classification indicates that {H2O, δD} observations are influenced by three long-range-transport patterns towards Zugspitze assessed in previous studies: (i) intercontinental transport from North America (TUS; source region: 25-45° N, 70-110° W, 0-2 km altitude), (ii) intercontinental transport from northern Africa (TNA; source region: 15-30° N, 15° W-35° E, 0-2 km altitude), and (iii) stratospheric air intrusions (STIs; source region: > 20° N, above zonal mean tropopause). The FTIR data exhibit significantly differing signatures in free-tropospheric {H2O, δD} pairs (5 km a.s.l.) - given as the mean with uncertainty of ±2 standard error (SE) - for TUS (VMRH2O = 2.4 [2.3, 2.6] × 103 ppmv, δD = -315 [-326, -303] ‰), TNA (2.8 [2.6, 2.9] × 103 ppmv, -251 [-257

  20. Boiling liquid expanded vapor explosion (BLEVE) of petroleum storage and transportation facilities case study Khartoum State

    International Nuclear Information System (INIS)

    Elatabani, E. G. M.

    2010-06-01

    The objective of this study includes the identification of possible causes of fires and explosions resulting from liquefied petroleum gases in Khartoum state, method of raising the awareness and knowledge of risks resulting from them, in addition to the proposal of safety precautions in the event of such incidents. The study was conducted in highly populated Khartoum state. It was in that context, the compilation and analysis of information on fire statistics was carried based on data collected through field studies and records of the civil defense - Administrative of Khartoum state, during period between (2007 - 2009). The procedure followed include statistical analysis of the collected data using program (e-views) method of estimation of least squares (LS). The obtained results of this method is negative sign and the percentage of house fires represent 98% from other type of fires (petroleum service stations - LPG tankers). These results, revealed that most of those fires were due to leakage of gas in residential houses attributed to lack of awareness of possible dangers and underestimation of safety precautions compared to those taken in to consideration in petroleum service stations and during transportation phases. The main recommendation of this study is to strengthen means of raising public awareness of dangers caused by liquefied petroleum gases fire through special media programs and training of workers in the field of civil defense and the empowerment of safety procedures. (Author)

  1. Distant and Regional Atmospheric Circulation Influences Governing Integrated Water Vapor Transport and the Occurrence of Extreme Precipitation Events

    Science.gov (United States)

    Bosart, L. F.; Papin, P. P.; Bentley, A. M.

    2017-12-01

    This presentation will show how the evolution of the large-scale and regional-scale atmospheric circulation contributes to the occurrence of extreme precipitation events (EPEs). An EPE requires that tropospheric moisture flux convergence (MFC) and the associated removal of hydrometeors be balanced by moisture replenishment via integrated (water) vapor transport (IVT) to continuously replenish condensed moisture. Moisture source regions may be distant or regional. Distant moisture sources may require the interaction of lower- and upper-level jet streams with a pre-existing mobile atmospheric disturbance to produce sufficient lift to condense moisture. Pre-existing regional moisture sources may require frontal lifting the presence of MFC to condense moisture. In cases of long-range IVT, such as moisture from a western North Pacific typhoon being drawn poleward along an atmospheric river (AR) toward the west coast of North America, moisture may be transported 1000s of kilometers along a low-level jet before a combination of dynamic and orographic lift results in an EPE. Alternatively, in the case of a typical summer warm and humid air mass over the continental United States, unused moisture may exist for several days in this air mass before sufficient MFC associated with a thermally direct mesoscale frontal circulation can concentrate and condense the moisture. In this case, there may be no long-range IVT via ARs. Instead, the atmospheric circulations may evolve to produce sustained MFC associated with mesoscale frontal circulations, especially in the presence of complex terrain, to produce an EPE. During this presentation, examples of EPEs associated with long-range IVT and distant MFC versus EPEs associated with regional MFC and mesoscale frontal circulations will be illustrated.

  2. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  3. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    OpenAIRE

    Ahed Hameed Jaaz; Husam Abdulrasool Hasan; Kamaruzzaman Sopian; Abdul Amir H. Kadhum; Tayser Sumer Gaaz; Ahmed A. Al-Amiery

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar ce...

  4. Spectrographic determination of impurities in ammonium bifluoride. IV.Study of the processes of vaporization, transport and excitation of the elements Fe, Mn, Mo, Ni, Pb and Si

    International Nuclear Information System (INIS)

    Alduan, F.A.; Capdevila, C.; Roca, M.

    1981-01-01

    The influences of the processes of vaporization, transport and excitation on the shape of the volatilization-excitation curves and on the values of the spectra-line intensities have been investigated in a method for the spectrographic determination of Fe, Mn, Mo, Ni, Pb and Si in ammonium bifluoride samples by direct current arc Ga 2 O 3 , GeO 2 , MgO and ZnO. The reaction products in the electrode cavity have been identified by X-ray powder diffraction analysis and the porcentages of vaporized and diffused element evaluated through analysis by total-burning spectrographic methods. In addition, the values of both the number of particles entering the discharge column and the transport efficiencies have been calculated. Thus, the origin of most observed differences has been explained. (author)

  5. Spectrographic determination of impurities in ammonium bifluoride. III. Study of the processes of vaporization, transport and excitation of the elements Al, B, Cu and Cr

    International Nuclear Information System (INIS)

    Alduan, F. A.; Roca, M.; Capdevila, C.

    1979-01-01

    The influences of the processes of vaporization, transport and excitation on the shape of the volatilization-excitation curves and on the values of the spectral-line intensities have been investigated in a method for the spectrographic determination of Al, B, Cu and Cr In ammonium bifluoride samples by direct current are excitation in Scribner type electrodes, with addition of different matrices (graphite, 63203, GeO 2 , MgO and Zn0). The reaction products in the electrode cavity have been identified by X-ray powder diffraction analysis and the percentages of vaporized and diffused element evaluated through analysis by total-burning spectrographic methods. In addition, the values of both the number of particles entering the discharge column and the transport efficiencies have been calculated. Thus, the origin of most observed differences has been explained. (Author) 11 refs

  6. Design, Simulation and Experimental Investigation of a Solar System Based on PV Panels and PVT Collectors

    Directory of Open Access Journals (Sweden)

    Annamaria Buonomano

    2016-06-01

    Full Text Available This paper presents numerical and experimental analyses aimed at evaluating the technical and economic feasibility of photovoltaic/thermal (PVT collectors. An experimental setup was purposely designed and constructed in order to compare the electrical performance of a PVT solar field with the one achieved by an identical solar field consisting of conventional photovoltaic (PV panels. The experimental analysis also aims at evaluating the potential advantages of PVT vs. PV in terms of enhancement of electrical efficiency and thermal energy production. The installed experimental set-up includes four flat polycrystalline silicon PV panels and four flat unglazed polycrystalline silicon PVT collectors. The total electrical power and area of the solar field are 2 kWe and 13 m2, respectively. The experimental set-up is currently installed at the company AV Project Ltd., located in Avellino (Italy. This study also analyzes the system from a numerical point of view, including a thermo-economic dynamic simulation model for the design and the assessment of energy performance and economic profitability of the solar systems consisting of glazed PVT and PV collectors. The experimental setup was modelled and partly simulated in TRNSYS environment. The simulation model was useful to analyze efficiencies and temperatures reached by such solar technologies, by taking into account the reference technology of PVTs (consisting of glazed collectors as well as to compare the numerical data obtained by dynamic simulations with the gathered experimental results for the PV technology. The numerical analysis shows that the PVT global efficiency is about 26%. Conversely, from the experimental point of view, the average thermal efficiency of PVT collectors is around 13% and the electrical efficiencies of both technologies are almost coincident and equal to 15%.

  7. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  8. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn) Assisted by Vapor Phase Transport of Methanol

    OpenAIRE

    Tamil Many K. Thandavan; Siti Meriam Abdul Gani; Chiow San Wong; Roslan Md Nor

    2014-01-01

    Zinc oxide (ZnO) nanowires (NWs) were synthesized using vapor phase transport (VPT) and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM) images as well as from the X-ray diffraction (XRD) profile. The photoluminescence (PL) profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defec...

  9. Artificial Neural Network based control for PV/T panel to track optimum thermal and electrical power

    International Nuclear Information System (INIS)

    Ben Ammar, Majed; Chaabene, Maher; Chtourou, Zied

    2013-01-01

    Highlights: ► We establish a state model of PV/T panel. ► We study the effect of mass flow rate on PV/T efficiency. ► A real time PV/T control algorithm is proposed. ► A model based optimal thermal and electrical power operation point is tracked. - Abstract: As solar energy is intermittent, many algorithms and electronics have been developed to track the maximum power generation from photovoltaic and thermal panels. Following technological advances, these panels are gathered into one unit: PV/T system. PV/T delivers simultaneously two kinds of power: electrical power and thermal power. Nevertheless, no control systems have been developed in order to track maximum power generation from PV/T system. This paper suggests a PV/T control algorithm based on Artificial Neural Network (ANN) to detect the optimal power operating point (OPOP) by considering PV/T model behavior. The OPOP computes the optimum mass flow rate of PV/T for a considered irradiation and ambient temperature. Simulation results demonstrate great concordance between OPOP model based calculation and ANN outputs.

  10. The Experimental Performance of an Unglazed PVT Collector with Two Different Absorber Types

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2012-01-01

    Full Text Available Photovoltaic-thermal collectors combine photovoltaic modules and solar thermal collectors, forming a single device that produces electricity and heat simultaneously. There are two types of liquid-type PVT collectors, depending on the existence or absence of a glass cover over the PV module. The glass-covered (glazed PVT collector produces relatively more thermal energy but has a lower electrical yield, whereas the uncovered (unglazed PVT collector has a relatively low thermal energy and somewhat higher electrical performance. The thermal and electrical performance of liquid-type PVT collectors is related not only to the collector design, such as whether a glass cover is used, but also to the absorber design, that is, whether the absorber is for the sheet-and-tube type or the fully wetted type. The design of the absorber, as it comes into contact with the PV modules and the liquid tubes, is regarded as important, as it is related to the heat transfer from the PV modules to the liquid in the tubes. In this paper, the experimental performance of two liquid-type PVT collectors, a sheet-and-tube type and a fully wetted type, was analyzed.

  11. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  12. The seasonal variation of water vapor and ozone in the upper mesosphere - Implications for vertical transport and ozone photochemistry

    Science.gov (United States)

    Bevilacqua, Richard M.; Summers, Michael E.; Strobel, Darrell F.; Olivero, John J.; Allen, Mark

    1990-01-01

    This paper reviews the data base supplied by ground-based microwave measurements of water vapor in the mesosphere obtained in three separate experiments over an eight-year period. These measurements indicate that the seasonal variation of water vapor in the mesosphere is dominated by an annual component with low values in winter and high values in summer, suggesting that the seasonal variation of water vapor in the mesosphere (below 80 km) is controlled by advective rather than diffusive processes. Both the seasonal variation and the absolute magnitude of the water vapor mixing ratios obtained in microwave measurements were corroborated by measurements obtained in the Spacelab GRILLE and ATMOS experiments, and were found to be consistent with several recent mesospheric dynamics studies.

  13. Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module

    International Nuclear Information System (INIS)

    Qiu, Zhongzhu; Zhao, Xudong; Li, Peng; Zhang, Xingxing; Ali, Samira; Tan, Junyi

    2015-01-01

    Aim of the paper is to present a theoretical investigation into the energy performance of a novel PV/T module that employs the MPCM (Micro-encapsulated Phase Change Material) slurry as the working fluid. This involved (1) development of a dedicated mathematical model and computer program; (2) validation of the model by using the published data; (3) prediction of the energy performance of the MPCM (Microencapsulated Phase Change Material) slurry based PV/T module; and (4) investigation of the impacts of the slurry flow state, concentration ratio, Reynolds number and slurry serpentine size onto the energy performance of the PV/T module. It was found that the established model, based on the Hottel–Whillier assumption, is able to predict the energy performance of the MPCM slurry based PV/T system at a very good accuracy, with 0.3–0.4% difference compared to a validated model. Analyses of the simulation results indicated that laminar flow is not a favorite flow state in terms of the energy efficiency of the PV/T module. Instead, turbulent flow is a desired flow state that has potential to enhance the energy performance of PV/T module. Under the turbulent flow condition, increasing the slurry concentration ratio led to the reduced PV cells' temperature and increased thermal, electrical and overall efficiency of the PV/T module, as well as increased flow resistance. As a result, the net efficiency of the PV/T module reached the peak level at the concentration ratio of 5% at a specified Reynolds number of 3,350. Remaining all other parameters fixed, increasing the diameter of the serpentine piping led to the increased slurry mass flow rate, decreased PV cells' temperature and consequently, increased thermal, electrical, overall and net efficiencies of the PV/T module. In overall, the MPCM slurry based PV/T module is a new, highly efficient solar thermal and power configuration, which has potential to help reduce fossil fuel consumption and carbon emission to

  14. The lncRNA PVT1 Contributes to the Cervical Cancer Phenotype and Associates with Poor Patient Prognosis.

    Directory of Open Access Journals (Sweden)

    Marissa Iden

    Full Text Available The plasmacytoma variant translocation 1 gene (PVT1 is an lncRNA that has been designated as an oncogene due to its contribution to the phenotype of multiple cancers. Although the mechanism by which PVT1 influences disease processes has been studied in multiple cancer types, its role in cervical tumorigenesis remains unknown. Thus, the present study was designed to investigate the role of PVT1 in cervical cancer in vitro and in vivo. PVT1 expression was measured by quantitative PCR (qPCR in 121 invasive cervical carcinoma (ICC samples, 30 normal cervix samples, and cervical cell lines. Functional assays were carried out using both siRNA and LNA-mediated knockdown to examine PVT1's effects on cervical cancer cell proliferation, migration and invasion, apoptosis, and cisplatin resistance. Our results demonstrate that PVT1 expression is significantly increased in ICC tissue versus normal cervix and that higher expression of PVT1 correlates with poorer overall survival. In cervical cancer cell lines, PVT1 knockdown resulted in significantly decreased cell proliferation, migration and invasion, while apoptosis and cisplatin cytotoxicity were significantly increased in these cells. Finally, we show that PVT1 expression is augmented in response to hypoxia and immune response stimulation and that this lncRNA associates with the multifunctional and stress-responsive protein, Nucleolin. Collectively, our results provide strong evidence for an oncogenic role of PVT1 in cervical cancer and lend insight into potential mechanisms by which PVT1 overexpression helps drive cervical carcinogenesis.

  15. Influence of boron vapor on transport behavior of deposited CsI during heating test simulating a BWR severe accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Isamu, E-mail: sato.isamu@jaea.go.jp; Onishi, Takashi; Tanaka, Kosuke; Iwasaki, Maho; Koyama, Shin-ichi

    2015-06-15

    In order to evaluate influence of B on the release and transport of Cs and I during severe accidents, basic experiments have been performed on the interaction between deposited Cs/I compounds and vapor/aerosol B compounds. CsI and B{sub 2}O{sub 3} were utilized as a Cs/I compound and a B compound, respectively. Deposited CsI on the thermal gradient tube (TGT) at temperatures ranging from 423 K to 1023 K was reacted with vapor/aerosol B{sub 2}O{sub 3}, and then observed how it changed Cs/I deposition profiles. As a result, vapor/aerosol B{sub 2}O{sub 3} stripped a portion of deposited CsI within a temperature range from 830 K to 920 K to make gaseous CsBO{sub 2} and I{sub 2}. In addition, gaseous I{sub 2} was re-deposited at a temperature range from 530 K to 740 K, while CsBO{sub 2} travelled through the sampling tubes and filters without deposition. It is evident that B enables Cs compounds such as CsBO{sub 2} to transport Cs to the colder regions.

  16. A Review on Photovoltaic-Thermal (PV-T) Air and Water Collectors

    International Nuclear Information System (INIS)

    Avezov, R.R.; Akhatov, J. S.; Avezova, N. R.

    2011-01-01

    This paper presents the state-of-the-art on photovoltaic-thermal PV-T collectors. There are presented two main classification groups: -Air and -Water PV-Thermal collectors, design and performance evaluation, comparison of the findings obtained by various researchers. The review also covers the description of different designs of air and water PV-T collectors, the results of theoretical and experimental works, focused to optimization of the technical and economical performances in terms of electrical as well as thermal outputs. (authors)

  17. General Approach to Characterize Reservoir Fluids Using a Large PVT Database

    DEFF Research Database (Denmark)

    Varzandeh, Farhad; Yan, Wei; Stenby, Erling Halfdan

    2016-01-01

    methods. We proposed a general approach to develop correlations for model parameters and applied it to the characterization for the PC-SAFT EoS. The approach consists in first developing the correlations based on the DIPPR database, and then adjusting the correlations based on a large PVT database......, the approach gives better PVT calculation results for the tested systems. Comparison was also made between PC-SAFT with the proposed characterization method and other EoS models. The proposed approach can be applied to other EoS models for improving their fluid characterization. Besides, the challenges...

  18. COMBINED UNCOVERED SHEET-AND-TUBE PVT-COLLECTOR SYSTEM WITH BUILT-IN STORAGE WATER HEATER

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2012-02-01

    Full Text Available This work describes the design and investigation of a simple combined uncovered sheet-and-tube photo-voltaic-thermal (PVT collector system. The PVT-collector system consists of a support, standard PV module (1.22x0.305m, area=0.37m2, fill factor=0.75, sheet-and-tube water collector and storage tank-heater. The collector was fixed under PV module. Inclination angle of the PVT-collector to the horizontal plane was 45 degree. The storage tank-heater played double role i.e. for storage of hot water and for water heating. The PVT-collector system could work in the fixed and tracking modes of operation. During investigations of PVT-collector in natural conditions, solar irradiance, voltage and current of PV module, ambient temperature and water temperature in storage tank were measured. Average thermal and electrical powers of the PVT-collector system at the tracking mode of operation observed were 39W and 21W, with efficiencies of 15% and 8% respectively at the input power of 260W. The maximum temperature of the water obtained was 42oC. The system was observed efficient for low-temperature applications. The PVT-collector system may be used as a prototype for design of PVT-collector system for domestic application, teaching aid and for demonstration purposes.

  19. 77 FR 65886 - Century Metal Recycling PVT. LTD v. Dacon Logistics, LLC dba CODA Forwarding, Great American...

    Science.gov (United States)

    2012-10-31

    ... FEDERAL MARITIME COMMISSION [Docket No. 12-09] Century Metal Recycling PVT. LTD v. Dacon Logistics, LLC dba CODA Forwarding, Great American Alliance Insurance Company, Avalon Risk Management, HAPAG... Recycling Pvt. Ltd d/ b/a/CMR American, LLC (Century Metal), hereinafter ``Complainant,'' against Dacon...

  20. Composition control of low-volatile solids through chemical vapor transport reactions. III. The example of gallium monoselenide: Control of the polytypic structure, non-stoichiometry and properties

    International Nuclear Information System (INIS)

    Zavrazhnov, A.; Naumov, A.; Sidey, V.; Pervov, V.

    2012-01-01

    Highlights: ► This work is devoted to the composition control of solids with selective CVT method. ► Phase identity and non-stoichiometry of solids (GaSe, etc.) depend on CVT-temperatures. ► The interrelation between the properties of GaSe and CVT conditions is also found. ► For iodide transporting system the diagram of phase stability of solids is adjusted. ► High temperatures and Se-rich non-stoichiometry are necessary for γ-GaSe stability. - Abstract: By means of particular examples, the present work demonstrates the possibility of directed delicate non-destructive control of structure, composition and properties of inorganic solids using the method of selective chemical vapor transport (SCVT). Gallium monoselenide GaSe is the main model object. Additional, though less detailed, explanation is given by the example of gallium monosulfide GaS. Experimental evidences on the possibility of the control of polytypic structure, non-stoichiometry and properties of gallium monoselenide were obtained in non-isothermal variant of selective chemical vapor transport which has non-destructive character. Diagnostics of the phase (polytypic) composition and non-stoichiometry of GaSe was performed with the use of X-ray diffractometry as well as with the use of cathode luminescence spectra. It was experimentally found that there exists a connection of non-stoichiometry and the properties of gallium selenides with the determining conditions of selective chemical vapor transport: temperature of controlled sample (T 2 ) and the difference of temperatures between the hot and cold zones (ΔT). It is shown that the phase diagram of Ga–Se system needs to be partially revised near the composition of Ga 1 Se 1 . The reason for such revision is the fact that two polytypes (ε-GaSe and γ-GaSe) exist on this phase diagram as independent phases.

  1. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah

    2013-04-10

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  2. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah; Li, Ruipeng; Ren, Yi; Chen, Long; Payne, Marcia M.; Bhansali, Unnat Sampatraj; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram

    2013-01-01

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  3. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  4. PC-PVT 2.0: An updated platform for psychomotor vigilance task testing, analysis, prediction, and visualization.

    Science.gov (United States)

    Reifman, Jaques; Kumar, Kamal; Khitrov, Maxim Y; Liu, Jianbo; Ramakrishnan, Sridhar

    2018-07-01

    The psychomotor vigilance task (PVT) has been widely used to assess the effects of sleep deprivation on human neurobehavioral performance. To facilitate research in this field, we previously developed the PC-PVT, a freely available software system analogous to the "gold-standard" PVT-192 that, in addition to allowing for simple visual reaction time (RT) tests, also allows for near real-time PVT analysis, prediction, and visualization in a personal computer (PC). Here we present the PC-PVT 2.0 for Windows 10 operating system, which has the capability to couple PVT tests of a study protocol with the study's sleep/wake and caffeine schedules, and make real-time individualized predictions of PVT performance for such schedules. We characterized the accuracy and precision of the software in measuring RT, using 44 distinct combinations of PC hardware system configurations. We found that 15 system configurations measured RTs with an average delay of less than 10 ms, an error comparable to that of the PVT-192. To achieve such small delays, the system configuration should always use a gaming mouse as the means to respond to visual stimuli. We recommend using a discrete graphical processing unit for desktop PCs and an external monitor for laptop PCs. This update integrates a study's sleep/wake and caffeine schedules with the testing software, facilitating testing and outcome visualization, and provides near-real-time individualized PVT predictions for any sleep-loss condition considering caffeine effects. The software, with its enhanced PVT analysis, visualization, and prediction capabilities, can be freely downloaded from https://pcpvt.bhsai.org. Published by Elsevier B.V.

  5. Effects of CdCl2 on the growth of CdTe on CdS films for solar cells by isothermal close-spaced vapor transport

    International Nuclear Information System (INIS)

    Vaccaro, P.O.; Meyer, G.O.; Saura, J.

    1991-01-01

    CdS/CdTe solar cells were made by depositing CdTe films by an isothermal close-spaced vapor transport method on sintered CdS/glass substrates. The influence of amounts of CdCl2 ranging from 0 wt% to 8 wt% in the CdTe source on the solar cells performance was studied. Increasing the CdCl2 content enhances the CdTe grainsize but degrades the spectral response and increases the reverse saturation current. An optimal CdCl2 concentration of 1 wt% was found for a growth temperature of 620 deg C. (Author)

  6. Pb sub(1-x) Sn sub(x) Te monocrystal growth by vapor phase transport, with formation of a liquid/solid growth interphase

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1983-01-01

    Due to segregation effects single-crystals of Pb sub(1-x) Sn sub(x) Te growth by Bridgman techniques have an inhomogenous composition profile. A vapor phase transport growth process has been developed in order to reduce convective flows. This is due to the very thin melt layer in front of the crystal, that makes convective flows small and solute mixing in the melt very low. By this process single-crystals with 60 mm lenght by 15 mm diameter and a high degree of homogeneity have been grown. (Author) [pt

  7. Low temperature carrier transport study of monolayer MoS{sub 2} field effect transistors prepared by chemical vapor deposition under an atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com; He, Jiazhu; Tang, Dan; Lu, Youming; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050 (China); Liu, Wenjun [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, 220 Handan Road, Shanghai 200433 (China); Wu, Jing, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com [Department of Physics, National University of Singapore, 21 Lower Kent Ridge Road, 117576 Singapore (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore (Singapore)

    2015-09-28

    Large size monolayer Molybdenum disulphide (MoS{sub 2}) was successfully grown by chemical vapor deposition method under an atmospheric pressure. The electrical transport properties of the fabricated back-gate monolayer MoS{sub 2} field effect transistors (FETs) were investigated under low temperatures; a peak field effect mobility of 59 cm{sup 2}V{sup −1}s{sup −1} was achieved. With the assist of Raman measurement under low temperature, this work identified the mobility limiting factor for the monolayer MoS{sub 2} FETs: homopolar phonon scattering under low temperature and electron-polar optical phonon scattering at room temperature.

  8. The Development of Monitoring and Control System of the Low PV/T Solar System

    OpenAIRE

    Okhorzina Alena; Bikbulatov Alexander; Yurchenko Alexey; Bernhard Norbert; Aldoshina Oksana

    2016-01-01

    The article presents an autonomous PV/T solar installation. Installing converts solar energy into electricity and heat. The description of its components and elements that enhance its effectiveness shows. The description of the control program and control of the installation is given. The control system provides for tracking the sun and cooling the photovoltaic module.

  9. Calibration of a plastic detector PVT of large dimensions for the detection gamma radiation

    International Nuclear Information System (INIS)

    Armenteros Carmona, J. C.; Suarez navarro, M. J.; Gonzalez-gonzalez, J. A.; Pujol, L.

    2011-01-01

    This article describes the development work on the porch Rad Sentry Canberra brand that uses 2 plastic scintillation detectors PVT large (172 x 32 x 4 cm). In this paper we present the different calibration necessary for the proper functioning of equipment: channel-energy calibration, energy resolution, and efficiency-energy.

  10. Evaluating the thermal and electrical performance of several uncovered PVT collectors with a field test

    NARCIS (Netherlands)

    de Keizer, C.; de Jong, M.; Mendes, T.; Katiyar, M.; Folkerts, W.; Rindt, C.C.M.; Zondag, H.A.

    Recently, there has been a lot of interest in PV thermal systems, which generate both heat and power. Within the WenSDak project, several companies and research institutes work together to (further) develop several uncovered PVT collectors. The outdoor performance of prototypes of these collectors

  11. Electrical Transport and Low-Frequency Noise in Chemical Vapor Deposited Single-Layer MoS2 Devices

    Science.gov (United States)

    2014-03-18

    PERSON 19b. TELEPHONE NUMBER Pullickel Ajayan Deepak Sharma, Matin Amani, Abhishek Motayed, Pankaj B. Shah, A. Glen Birdwell, Sina Najmaei, Pulickel...in chemical vapor deposited single-layer MoS2 devices Deepak Sharma1,2, Matin Amani3, Abhishek Motayed2,4, Pankaj B Shah3, A Glen Birdwell3, Sina

  12. Influence of the Flow Direction on the Mass Transport of Vapors through Membranes Consisting of Several Layers

    Czech Academy of Sciences Publication Activity Database

    Loimer, T.; Uchytil, Petr

    2015-01-01

    Roč. 67, OCT 2015 (2015), s. 2-5 ISSN 0894-1777 R&D Projects: GA MŠk 7AMB12AT010; GA MŠk(CZ) 7AMB14AT011 Institutional support: RVO:67985858 Keywords : porous media * phase change * vapor flow Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.128, year: 2015

  13. PVT: an efficient computational procedure to speed up next-generation sequence analysis.

    Science.gov (United States)

    Maji, Ranjan Kumar; Sarkar, Arijita; Khatua, Sunirmal; Dasgupta, Subhasis; Ghosh, Zhumur

    2014-06-04

    High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and molecular biology research. This technology generates substantially large data which puts up a major challenge to the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming. There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely used spliced alignment tools which although supports multithreading, does not efficiently utilize computational resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where we take up a modular approach by breaking TopHat's serial execution into a pipeline of multiple stages, thereby increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in TopHat so as to analyze large NGS data efficiently. We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage, memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined version of TopHat that removes the redundant computational steps during 'spliced alignment' and breaks the job into a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the execution time. PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end reads showed an

  14. A radiotracer study on the volatilization and transport effects of thermochemical reagents used in the analysis of alumina powders by slurry electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Peschel, Birgit U.; Herdering, Wilhelm; Broekaert, Jose A.C.

    2007-01-01

    A neutron-activated Al 2 O 3 powder SRM 699 (NIST) containing the γ-radiation emitting radionuclides 51 Cr, 59 Fe, 60 Co and 65 Zn has been used to study the influence of thermochemical reagents on the volatilization and transport efficiency for these trace elements in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) of Al 2 O 3 powders. From the signals in the γ-spectra for the radiotracers it has been found that less than 2% of the elements Cr, Fe, Co and Zn is left back in a graphite furnace from Al 2 O 3 powders at 2200 deg. C even without addition of a thermochemical reagent and the latter even was found to decrease the volatilization efficiencies. The recovery for the radiotracers on filters at the end of the transport tube as measured from the signals in the γ-spectra, however, was found to increase in most cases (i.e. from about 10% to more than 20%) when Pd(NO 3 ) 2 , Pd(NO 3 ) 2 + Mg(NO 3 ) 2 , PdCl 2 , IrCl 3 , SnCl 2 , AgCl, NaF, NH 4 Cl and NH 4 F were added at amounts generally used in electrothermal vaporization inductively coupled plasma mass spectrometry. However, when adding higher amounts as stoichiometrically required for a complete halogenation of the sample matrix in the case of AgCl, C 8 F 15 O 2 Na, IrCl 3 or PdCl 2 the transport efficiencies considerably decrease again. As shown in the case of NH 4 Cl the amount of thermochemical reagent used has to be optimized so as to obtain maximum analyte transport efficiencies. A comparison of the influence of NH 4 Cl on the transport efficiencies with its influence on the ETV-ICP-MS signals for Fe demonstrates the importance of transport efficiency changes for the effects of thermochemical reagents in electrothermal vaporization inductively coupled plasma mass spectrometry

  15. Mercury-free PVT apparatus for thermophysical property analyses of hydrocarbon reservoir fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lansangan, R.M.; Lievois, J.S.

    1992-08-31

    Typical reservoir fluid analyses of complex, multicomponent hydrocarbon mixtures include the volumetric properties, isothermal compressibility, thermal expansivity, equilibrium ratios, saturation pressure, viscosities, etc. These parameters are collectively referred to as PVT properties, an acronym for the primary state variables; pressure, volume, and temperature. The reservoir engineer incorporates this information together with the porous media description in performing material balance calculations. These calculations lead to the determination (estimation) of the initial hydrocarbon in-place, the future reservoir performance, the optimal production scheme, and the ultimate hydrocarbon recovery. About four years ago, Ruska Instrument Corporation embarked on a project to develop an apparatus designed to measure PVT properties that operates free of mercury. The result of this endeavor is the 2370 Hg-Free PVT system which has been in the market for the last three years. The 2370 has evolved from the prototype unit to its present configuration which is described briefly in this report. The 2370 system, although developed as a system-engineered apparatus based on existing technology, has not been exempt from this burden-of-proof Namely, the performance of the apparatus under routine test conditions with real reservoir fluids. This report summarizes the results of the performance and applications testing of the 2370 Hg-Free PVT system. Density measurements were conducted on a pure fluid. The results were compared against literature values and the prediction of an equation of state. Routine reservoir fluid analyses were conducted with a black oil and a retrograde condensate gas mixtures. Limited comparison of the results were performed based on the same tests performed on a conventional mercury-based PVT apparatus. The results of these tests are included in this report.

  16. Amplification of PVT1 contributes to the pathophysiology ofovarian and breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Yinghui; Kuo, Wen-Lin; Stilwell, Jackie; Takano, Hirokuni; Lapuk, Anna; Fridlyand, Jane; Mao, Jian-Hua; Yu, Mami; Ginzinger, David; Gray, Joe W.

    2007-10-09

    Purpose. This study was designed to elucidate the role of amplification at 8q24 in the pathophysiology of ovarian and breast cancer since increased copy number at this locus is one of the most frequent genomic abnormalities in these cancers. Experimental Design. To accomplish this, we assessed the association of amplification at 8q24 with outcome in ovarian cancers using FISH to tissue microarrays and measured responses of ovarian and breast cancer cell lines to specific small interfering RNAs (siRNA) against the oncogene, MYC, and a putative noncoding RNA, PVT1, both of which map to 8q24. Results. Amplification of 8q24 was associated with significantly reduced survival duration. In addition, siRNA-mediated reduction in either PVT1 or MYC expression inhibited proliferation in breast and ovarian cancer cell lines in which they were both amplified and over expressed but not in lines in which they were not amplified/over expressed. Inhibition of PVT1 expression also induced a strong apoptotic response in cell lines in which it was over expressed but not in lines in which it was not amplified/over expressed. Inhibition of MYC, on the other hand, did not induce an apoptotic response in cell lines in which MYC was amplified and over expressed. Conclusions. These results suggest that MYC and PVT1 contribute independently to ovarian and breast pathogenesis when over expressed because of genomic abnormalities. They also suggest that PVT1 mediated inhibition of apoptosis may explain why amplification of 8q24 is associated with reduced survival duration in patients treated with agents that act through apoptotic mechanisms.

  17. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    Science.gov (United States)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  18. Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT)

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Vanoli, Laura

    2012-01-01

    Highlights: ► Sheet and tube photovoltaic/thermal (PVT) solar collector are investigated. ► PVT is integrated in a novel solar trigeneration system. ► The trigeneration system is dynamically investigated for a mediterranean climate. ► PVT performance is excellent during the summer. ► During the winter PVT thermal energy significantly decreases. - Abstract: In this paper, a Solar Heating and Cooling (SHC) system including photovoltaic/thermal (PVT) collectors is considered, implementing a novel polygeneration system producing electricity, space heating and cooling and domestic hot water. In particular, PVT collectors operating up to 80 °C are considered. A case study for a university building located in Naples (Italy) is developed and discussed. The system is mainly composed by: PVT collectors, a single-stage LiBr–H 2 O absorption chiller, storage tanks and auxiliary heaters. The system also includes additional balance-of-plant devices: heat exchangers, pumps, controllers, cooling tower, etc. The PVT produces electricity which is utilized in part by the building lights and equipments and in part by the system parasitic loads; the rest is eventually sold to the grid. Simultaneously, the PVT system provides the heat required to drive the absorption chiller. The system performance is analyzed from both energetic and economic points of view by means of a zero-dimensional transient simulation model, developed with TRNSYS. The economic results show that the system under investigation can be profitable, provided that an appropriate funding policy is available. In addition, the overall energetic and economic results are comparable to those reported in literature for similar systems.

  19. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    Science.gov (United States)

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  20. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absorbers Design

    Directory of Open Access Journals (Sweden)

    Mustofa Mustofa

    2017-03-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperaturs were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficieny was about 19%, while thermal efficiency of above 50% and correspondeng cell efficiency of 11%, respectively

  1. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absor

    Directory of Open Access Journals (Sweden)

    Mustofa

    2015-10-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperatures were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficiency was about 19%, while thermal efficiency of above 50% and correspondent cell efficiency of 11%, respectively.

  2. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  3. Hard X-ray photoelectron spectroscopy study for transport behavior of CsI in heating test simulating a BWR severe accident condition: Chemical effects of boron vapors

    Energy Technology Data Exchange (ETDEWEB)

    Okane, T., E-mail: okanet@spring8.or.jp [Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Hyogo, 679-5148 (Japan); Kobata, M. [Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Hyogo, 679-5148 (Japan); Sato, I. [Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Kobayashi, K. [Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Hyogo, 679-5148 (Japan); Osaka, M. [Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Yamagami, H. [Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Hyogo, 679-5148 (Japan); Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555 (Japan)

    2016-02-15

    Highlights: • We have clarified the temperature-dependent chemical forms of Cs/I products. • We have examined the CsI-decomposing effects of B{sub 2}O{sub 3} vapor. • The possibility of Cs re-evaporation from CsI-deposited surface is suggested. • We have demonstrated the usefulness of HAXPES on FP chemistry. - Abstract: Transport behavior of CsI in the heating test, which simulated a BWR severe accident, was investigated by hard X-ray photoelectron spectroscopy (HAXPES) with an emphasis on the chemical effect of boron vapors. CsI deposited on metal tube at temperatures ranging from 150 °C to 750 °C was reacted with vapor/aerosol B{sub 2}O{sub 3}, and the chemical form of reaction products on the sample surface was examined from the HAXPES spectra of core levels, e.g., Ni 2p, Cs 3d and I 3d levels, and valence band. For the samples at ∼300 °C, while the chemical form of major product on the sample surface without an exposure to B{sub 2}O{sub 3} was suggested to be CsI from the HAXPES spectra, an intensity ratio of Cs/I was dramatically reduced at the sample surface after the reaction with B{sub 2}O{sub 3}. The results suggest the possibility of significant decomposition of deposited CsI induced by the chemical reaction with B{sub 2}O{sub 3} at specific temperatures.

  4. Optimization Design Method and Experimental Validation of a Solar PVT Cogeneration System Based on Building Energy Demand

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2017-08-01

    Full Text Available Photovoltaic-thermal (PVT technology refers to the integration of a photovoltaic (PV and a conventional solar thermal collector, representing the deep exploitation and utilization of solar energy. In this paper, we evaluate the performance of a solar PVT cogeneration system based on specific building energy demand using theoretical modeling and experimental study. Through calculation and simulation, the dynamic heating load and electricity load is obtained as the basis of the system design. An analytical expression for the connection of PVT collector array is derived by using basic energy balance equations and thermal models. Based on analytical results, an optimized design method was carried out for the system. In addition, the fuzzy control method of frequency conversion circulating water pumps and pipeline switching by electromagnetic valves is introduced in this paper to maintain the system at an optimal working point. Meanwhile, an experimental setup is established, which includes 36 PVT collectors with every 6 PVT collectors connected in series. The thermal energy generation, thermal efficiency, power generation and photovoltaic efficiency have been given in this paper. The results demonstrate that the demonstration solar PVT cogeneration system can meet the building energy demand in the daytime in the heating season.

  5. Life cycle cost analysis of single slope hybrid (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, G.N.

    2009-01-01

    This paper presents the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth. Effects of various parameters, namely interest rate, life of the system and the maintenance cost have been taken into account. The comparative cost of distilled water produced from passive solar still (Rs. 0.70/kg) is found to be less than hybrid (PV/T) active solar still (Rs. 1.93/kg) for 30 years life time of the systems. The payback periods of the passive and hybrid (PV/T) active solar still are estimated to be in the range of 1.1-6.2 years and 3.3-23.9 years, respectively, based on selling price of distilled water in the range of Rs. 10/kg to Rs. 2/kg. The energy payback time (EPBT) has been estimated as 2.9 and 4.7 years, respectively. (author)

  6. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  7. Growth of single - crystals of Pb1-x Snx Te by vapor phase transport with the formation of a liquid/solid growth interface

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1985-01-01

    Due to segregation effects single-crystals of Pb 1-x Sn x Te growth by Bridgman techniques have an inhomogeneous composition profile. A vapor phase transport growth process has been developed in order to reduce convective flows. This is due to the very thin melt layer in front of the crystal, that makes convective flows small and solute mixing in the melt very low. By this process single-crystals with 60mm length by 15 mm diameter and a high degree of homogeneity have been grown. A process for determination of the exact composition profile by measurements of the crystal density, for isomorphous alloys of the type A 1-x B x , is also shown. (Author) [pt

  8. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn Assisted by Vapor Phase Transport of Methanol

    Directory of Open Access Journals (Sweden)

    Tamil Many K. Thandavan

    2014-01-01

    Full Text Available Zinc oxide (ZnO nanowires (NWs were synthesized using vapor phase transport (VPT and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM images as well as from the X-ray diffraction (XRD profile. The photoluminescence (PL profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defects in the ZnO NWs. Raman scattering results show a significant peak at 143 cm−1 and possible functionalization on the wall of ZnO NWs. Growth of ZnO NWs in (0002 with an estimated distance between adjacent lattice planes 0.26 nm was determined from transmission electron microscopy (TEM analysis.

  9. InGaAs/InP, quantum wells and quantum wires grown by vapor levitation epitaxy using chloride transport

    International Nuclear Information System (INIS)

    Cox, H.M.; Morais, P.C.; Hwang, D.M.; Bastos, P.; Gmitter, T.J.; Nazar, L.; Worlock, J.M.; Yablonovitch, E.; Hummel, S.G.

    1988-09-01

    A variety of InGaAs/InP quantum structures have been grown by vapor levitation epitaxy (VLE) and investigated by low temperature photoluminescence (PL). Excellent long-range uniformity of QW peak positions across a two-inch diameter wafer is achieved. Monolayer thickness variations in single QW's are used to establish an essentially unambiguous correlation of QW thickness with energy upshift for ultra-thin quantum wells. PL evidence is presented of the growth, for the first time by any technique, of an InGaAs/InP QW of single monolayer thickness (2.93 (angstrom)). Quantum wires were fabricated entirely by VLE as thin as one monolayer and estimated to be three unit cells wide. (author) [pt

  10. Effects of temperature, pressure and pure copper added to source material on the CuGaTe{sub 2} deposition using close spaced vapor transport technique

    Energy Technology Data Exchange (ETDEWEB)

    Abounachit, O. [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Chehouani, H., E-mail: chehouani@hotmail.fr [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Djessas, K. [CNRS-PROMES Tecnosud, Rambla de la Thermodynamique, 66100 Perpignan (France)

    2013-07-01

    The quality of CuGaTe{sub 2} (CGT) thin films elaborated by close spaced vapor transport technique has been studied as a function of the source temperature (T{sub S}), iodine pressure (P{sub I2}) and the amount (X{sub Cu}) of pure copper added to the stoichiometric starting material. A thermodynamic model was developed for the Cu–Ga–Te–I system to describe the CGT deposition. The model predicts the solid phase composition with possible impurities for the operating conditions previously mentioned. The conditions of stoichiometric and near-stoichiometric deposition were determined. The value of T{sub S} must range from 450 to 550 °C for P{sub I2} varying between 0.2 and 7 kPa. Adding an amount up to 10% of pure copper to the starting material improves the quality of the deposit layers and lowers the operating interval temperature to 325–550 °C. These optimal conditions were tested experimentally at 480 °C and 500 °C. The X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy have proved that the addition of pure copper to the stoichiometric source material can be considered as a supplementary operating parameter to improve the quality of CGT thin films. - Highlights: • The stoichiometric CuGaTe{sub 2} (CGT) has been deposited by close spaced vapor transport. • The Cu–Ga–Te–I system has been studied theoretically by minimizing the Gibbs energy. • The quality of thin films has been improved by pure copper added to the source CGT. • The temperature, pressure and the amount of copper added to grow CGT are determined. • The thermodynamic predictions are in good agreement with experimental results.

  11. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  12. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  13. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  14. Halide-oxide carbon vapor transport of ZnO: Novel approach for unseeded growth of single crystals with controllable growth direction

    Science.gov (United States)

    Colibaba, G. V.

    2018-05-01

    The thermodynamic analysis of using HCl + CO gas mixture as a chemical vapor transport agent (TA) for ZnO single crystal growth in closed ampoules, including 11 chemical species, is carried out for wide temperature and loaded TA pressure ranges. The advantages of HCl + CO TA for faster and more stable growth are shown theoretically in comparison with HCl, HCl + H2 and CO. The influence of the growth temperature, of the TA density, of the HCl/CO ratio, and of the undercooling on the ZnO mass transport rate was investigated theoretically and experimentally. The HCl/CO ratios favorable for the growth of m planes and (0001)Zn surface were found. It was shown that HCl + CO TA provides: (i) a rather high growth rate (up to 1.5 mm per day); (ii) a decrease of wall adhesion effect and an etch pit density down to 103 cm-2; (iii) a minimization of growth nucleus quantity down to 1; (iv) stable unseeded growth of the high crystalline quality large single crystals with a controllable preferred growth direction. The characterization by the photoluminescence spectra, the transmission spectra and the electrical properties are analyzed.

  15. Long non-coding RNA PVT1 as a novel potential biomarker for predicting the prognosis of colorectal cancer.

    Science.gov (United States)

    Fan, Heng; Zhu, Jian-Hua; Yao, Xue-Qing

    2018-05-01

    Long non-coding RNA (lncRNA) plays a very important role in the occurrence and development of various tumors, and is a potential biomarker for cancer diagnosis and prognosis. The purpose of this study was to investigate the relationship between the expression of lncRNA plasmacytoma variant translocation 1 (PVT1) and the prognostic significance in patients with colorectal cancer. The expression of PVT1 was measured by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in cancerous and adjacent tissues of 210 colorectal cancer patients. The disease-free survival and overall survival of colorectal cancer patients were evaluated by Kaplan-Meier analysis, and univariate and multivariate analysis were performed by Cox proportional-hazards model. Our results revealed that PVT1 expression in cancer tissues of colorectal cancer was significantly higher than that of adjacent tissues ( Pcolorectal cancer patients, whether at TNM I/II stage or at TNM III/IV stage. A multivariate Cox regression analysis demonstrated that high PVT1 expression was an independent predictor of poor prognosis in colorectal cancer patients. Our results suggest that high PVT1 expression might be a potential biomarker for assessing tumor recurrence and prognosis in colorectal cancer patients.

  16. Method and apparatus for maintaining condensable constituents of a gas in a vapor phase during sample transport

    Science.gov (United States)

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-18

    A system for fluid transport at elevated temperatures having a conduit having a fluid inlet end and a fluid outlet end and at least one heating element disposed within the conduit providing direct heating of a fluid flowing through the conduit. The system is particularly suited for preventing condensable constituents of a high temperature fluid from condensing out of the fluid prior to analysis of the fluid. In addition, operation of the system so as to prevent the condensable constituents from condensing out of the fluid surprisingly does not alter the composition of the fluid.

  17. Simple PVT quantitative method of Kr under high pure N2 condition

    International Nuclear Information System (INIS)

    Li Xuesong; Zhang Zibin; Wei Guanyi; Chen Liyun; Zhai Lihua

    2005-01-01

    A simple PVT quantitative method of Kr in the high pure N 2 was studied. Pressure, volume and temperature of the sample gas were measured by three individual methods to obtain the sum sample with food uncertainty. The ratio of Kr/N 2 could measured by GAM 400 quadrupole mass spectrometer. So the quantity of Kr could be calculated with the two measured data above. This method can be suited for quantitative analysis of other simple composed noble gas sample with high pure carrying gas. (authors)

  18. Investigations on the performance of a double pass, hybrid - type (PV/T) solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A solar hybrid energy system having photovoltaic and thermal (PV/T) devices, which produces both thermal and electrical energies simultaneously is considered for analysis. A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study its thermal and electrical performance. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such a way that the absorber plate is partially covered by solar cells. The raise in temperature of the solar cell is expected to decrease its electrical performance. Thin metallic strips called slats are attached longitudinally at the bottom side of the absorber plate to improve the system performance by increasing the cooling rate of the absorber plate. Thermal and electrical performances of the whole system at varying cooling conditions are presented. An artificial neural network model is used for forecasting the system performance at any desired conditions. The proposed model can be successfully used for evaluating the effect of different operating parameters under different ambient conditions for predicting the overall performance of the system.

  19. Experimental study of arsenic speciation in vapor phase to 500°C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases.

    OpenAIRE

    Pokrovski , Gleb S.; Zakirov , Ildar V.; Roux , Jacques; Testemale , Denis; Hazemann , Jean-Louis; Y. U. Bychkov , Andrew; V. Golikova , Galina

    2002-01-01

    The stoichiometry and stability of arsenic gaseous complexes were determined in the system As-H2O ± NaCl ± HCl ± H2S at temperatures up to 500°C and pressures up to 600 bar, from both measurements of As(III) and As(V) vapor-liquid and vapor-solid partitioning, and X-ray absorption fine structure (XAFS) spectroscopic study of As(III)-bearing aqueous fluids. Vapor-aqueous solution partitioning for As(III) was measured from 250 to 450°C at the saturated vapor pressure of the system (Psat) with a...

  20. A study of 2014 record drought in India with CFSv2 model: role of water vapor transport

    KAUST Repository

    Ramakrishna, S. S. V. S.; Brahmananda Rao, V.; Srinivasa Rao, B. R.; Hari Prasad, D.; Nanaji Rao, N.; Panda, Roshmitha

    2016-01-01

    The Indian summer monsoon season of 2014 was erratic and ended up with a seasonal rainfall deficit of 12 % and a record drought in June. In this study we analyze the moisture transport characteristics for the monsoon season of 2014 using both NCEP FNL reanalysis (FNL) and CFSv2 (CFS) model data. In FNL, in June 2014 there was a large area of divergence of moisture flux. In other months also there was lesser flux. This probably is the cause of 2014 drought. The CFS model overestimated the drought and it reproduces poorly the observed rainfall over central India (65E–95E; 5N–35N). The correlation coefficient (CC) between the IMD observed rainfall and CFS model rainfall is only 0.1 while the CC between rainfall and moisture flux convergence in CFS model is only 0.20 and with FNL data −0.78. This clearly shows that the CFS model has serious difficulty in reproducing the moisture flux convergence and rainfall. We found that the rainfall variations are strongly related to the moisture convergence or divergence. The hypothesis of Krishnamurti et al. (J Atmos Sci 67:3423–3441, 2010) namely the intrusion of west African desert air and the associated low convective available potential energy inhibiting convection and rainfall shows some promise to explain dry spells in Indian summer monsoon. However, the rainfall or lack of it is mainly explained by convergence or divergence of moisture flux. © 2016 Springer-Verlag Berlin Heidelberg

  1. A study of 2014 record drought in India with CFSv2 model: role of water vapor transport

    KAUST Repository

    Ramakrishna, S. S. V. S.

    2016-09-16

    The Indian summer monsoon season of 2014 was erratic and ended up with a seasonal rainfall deficit of 12 % and a record drought in June. In this study we analyze the moisture transport characteristics for the monsoon season of 2014 using both NCEP FNL reanalysis (FNL) and CFSv2 (CFS) model data. In FNL, in June 2014 there was a large area of divergence of moisture flux. In other months also there was lesser flux. This probably is the cause of 2014 drought. The CFS model overestimated the drought and it reproduces poorly the observed rainfall over central India (65E–95E; 5N–35N). The correlation coefficient (CC) between the IMD observed rainfall and CFS model rainfall is only 0.1 while the CC between rainfall and moisture flux convergence in CFS model is only 0.20 and with FNL data −0.78. This clearly shows that the CFS model has serious difficulty in reproducing the moisture flux convergence and rainfall. We found that the rainfall variations are strongly related to the moisture convergence or divergence. The hypothesis of Krishnamurti et al. (J Atmos Sci 67:3423–3441, 2010) namely the intrusion of west African desert air and the associated low convective available potential energy inhibiting convection and rainfall shows some promise to explain dry spells in Indian summer monsoon. However, the rainfall or lack of it is mainly explained by convergence or divergence of moisture flux. © 2016 Springer-Verlag Berlin Heidelberg

  2. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    Science.gov (United States)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  3. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    Energy Technology Data Exchange (ETDEWEB)

    Anderson L. Ward; Glendon W. Gee; John S. Selker; Caly Cooper

    2002-04-24

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts a typical of low ionic strength infiltration. In the field, this mechanism could force flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contact angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface

  4. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks; A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    Energy Technology Data Exchange (ETDEWEB)

    Anderson l. Ward; Glendon W. Gee; John S. Selker; Clay Cooper

    2002-04-24

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts atypical of low ionic strength infiltration. In the field, this mechanism could for ce flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contract angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface

  5. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    International Nuclear Information System (INIS)

    Ward, Anderson L.; Gee, Glendon W.; Selker, John S.; Cooper, Caly

    2002-01-01

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts a typical of low ionic strength infiltration. In the field, this mechanism could force flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contact angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tension

  6. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    International Nuclear Information System (INIS)

    Ward, Anderson L.; Gee, Glendon W.; Selker, John S.; Cooper, Clay

    2002-01-01

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts atypical of low ionic strength infiltration. In the field, this mechanism could for ce flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contract angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tens ion

  7. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Science.gov (United States)

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  8. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  9. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC).

    Science.gov (United States)

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A

    2017-08-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current I SC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  10. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT Collector with Jet Impingement and Compound Parabolic Concentrator (CPC

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2017-08-01

    Full Text Available This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT collector and compound parabolic concentrators (CPC on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C. It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  11. Development of a cloud-based system for remote monitoring of a PVT panel

    Science.gov (United States)

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques

    2016-10-01

    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  12. Nighttime radiative cooling potential of unglazed and PV/T solar collectors: parametric and experimental analyses

    DEFF Research Database (Denmark)

    Pean, Thibault Quentin; Gennari, Luca; Olesen, Bjarne W.

    2015-01-01

    Nighttime radiative cooling technology has been studied both by means of simulations and experiments, to evaluate its potential and to validate the existing theoretical models used to describe it. Photovoltaic/thermal panels (PV/T) and unglazed solar collectors have been chosen as case studies....... The obtained values showed a good agreement with the ones found in the literature about solar panels or other kinds of heat sinks used for radiative cooling applications. The panels provided a cooling performance per night ranging between 0.2 and 0.9 kWh/m2 of panel. The COP values (defined as the ratio....... An experimental setup has been constructed and tested during summer of 2014, at the Technical University of Denmark. The cooling performance (heat loss) has been measured simultaneously for both types of panels, installed side-by-side. The experimental results have been compared with the results from a commercial...

  13. Compensation of PVT Variations in ToF Imagers with In-Pixel TDC.

    Science.gov (United States)

    Vornicu, Ion; Carmona-Galán, Ricardo; Rodríguez-Vázquez, Ángel

    2017-05-09

    The design of a direct time-of-flight complementary metal-oxide-semiconductor (CMOS) image sensor (dToF-CIS) based on a single-photon avalanche-diode (SPAD) array with an in-pixel time-to-digital converter (TDC) must contemplate system-level aspects that affect its overall performance. This paper provides a detailed analysis of the impact of process parameters, voltage supply, and temperature (PVT) variations on the time bin of the TDC array. Moreover, the design and characterization of a global compensation loop is presented. It is based on a phase locked loop (PLL) that is integrated on-chip. The main building block of the PLL is a voltage-controlled ring-oscillator (VCRO) that is identical to the ones employed for the in-pixel TDCs. The reference voltage that drives the master VCRO is distributed to the voltage control inputs of the slave VCROs such that their multiphase outputs become invariant to PVT changes. These outputs act as time interpolators for the TDCs. Therefore the compensation scheme prevents the time bin of the TDCs from drifting over time due to the aforementioned factors. Moreover, the same scheme is used to program different time resolutions of the direct time-of-flight (ToF) imager aimed at 3D ranging or depth map imaging. Experimental results that validate the analysis are provided as well. The compensation loop proves to be remarkably effective. The spreading of the TDCs time bin is lowered from: (i) 20% down to 2.4% while the temperature ranges from 0 °C to 100 °C; (ii) 27% down to 0.27%, when the voltage supply changes within ±10% of the nominal value; (iii) 5.2 ps to 2 ps standard deviation over 30 sample chips, due to process parameters' variation.

  14. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  15. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  16. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  17. Influence of CO{sup 2} on PVT properties of an oil crude at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nilo Ricardo; Bonet, Euclides Jose [Centro de Estudos de Petroleo (CEPETRO/UNICAMP), SP (Brazil); Elias Junior, Antonio; Trevisan, Osvair Vidal [Universidade Estadual de Campinas (DEP/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2012-07-01

    The current oil frontier in Brazil is in Santos and Campos Basins, where huge oil accumulations were identified recently. Well tests have shown high values of pressure and concentration of carbon dioxide in these reservoirs. The characterization of the fluids existing in the pores of the reservoir rocks is a task for the exploitation of the hydrocarbons. The objective of this work is to present the experimental set up that was assembled to perform PVT analysis for oils at high pressure, moderate temperature and high CO{sub 2} content, oils analogous to that found in the new Brazilian pre-salt discoveries. Samples of dead oil and synthetic gas were received at the laboratory, where the recombination was carried out to obtain live oil, with twelve mole percent CO{sub 2}. The fluids were maintained inside special cylinders, with a floating piston, separating two compartments, one with the test fluid and the other with hydraulic fluid. Pressure was provided by a positive displacement pump connected to the bottles. The experiments achieved pressures up to 70 MPa at constant temperature, conditions expected for the reservoir. Starting at the high pressure, the fluid volume was increased by withdrawing the hydraulic fluid from the cylinder. Pressure and volume were recorded to determine the bubble point and compressibility of the system. The pressure drop continued until the mixture was in the two phase region, finishing the constant composition expansion process. After that, the sample was re-pressurized and the PVT bottle was agitated to reach the thermodynamic equilibrium, when the live oil was at single phase again. An aliquot of this mixture was transferred, keeping their pressure and temperature conditions, to a high pressure viscometer and to a densimeter. Another portion of live oil was flashed to a test tube and to a gasometer, to render the gas oil ratio. Afterwards, successive additions of carbon dioxide increased its concentration in live oil to 15, 20 and 35

  18. EXERGY AND CARBON CREDITS FOR SERIES CONNECTED N PHOTOVOLTAIC THERMAL - COMPOUND PARABOLIC CONCENTRATOR (PVT-CPC) COLLECTOR: AT CONSTANT OUTLET TEMPERATURE

    OpenAIRE

    Rohit Tripathi 1,*, G. N. Tiwari 2

    2017-01-01

    In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...

  19. Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

    OpenAIRE

    Rohit Tripathi; Sumit Tiwari; G. N. Tiwari

    2016-01-01

    In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...

  20. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  1. Evidence for the role of horizontal transfer in generating pVT1, a large mosaic conjugative plasmid from the clam pathogen, Vibrio tapetis.

    Directory of Open Access Journals (Sweden)

    Gaël Erauso

    Full Text Available The marine bacterium Vibrio tapetis is the causative agent of the brown ring disease, which affects the clam Ruditapes philippinarum and causes heavy economic losses in North of Europe and in Eastern Asia. Further characterization of V. tapetis isolates showed that all the investigated strains harbored at least one large plasmid. We determined the sequence of the 82,266 bp plasmid pVT1 from the CECT4600(T reference strain and analyzed its genetic content. pVT1 is a mosaic plasmid closely related to several conjugative plasmids isolated from Vibrio vulnificus strains and was shown to be itself conjugative in Vibrios. In addition, it contains DNA regions that have similarity with several other plasmids from marine bacteria (Vibrio sp., Shewanella sp., Listonella anguillarum and Photobacterium profundum. pVT1 contains a number of mobile elements, including twelve Insertion Sequences or inactivated IS genes and an RS1 phage element related to the CTXphi phage of V. cholerae. The genetic organization of pVT1 underscores an important role of horizontal gene transfer through conjugative plasmid shuffling and transposition events in the acquisition of new genetic resources and in generating the pVT1 modular organization. In addition, pVT1 presents a copy number of 9, relatively high for a conjugative plasmid, and appears to belong to a new type of replicon, which may be specific to Vibrionaceae and Shewanelleacae.

  2. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  3. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  4. Energy and exergy analysis of a two pass photovoltaic –thermal (PV/T) air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study elaborately its thermal and electrical performance corresponding to the warm and humid environment. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such way that the absorber plate is partially covered by solar cells. Thin metallic strips (called slats) are attached longitudinally at the bottom side of the absorber plate to improve the overall system performance (by increasing the cooling rate of the absorber plate). Thermal and electrical performances of the whole system at different cooling rates are presented. The exergy analysis of double pass hybrid solar air (PV/T) heater with slats has also been carried out. The instantaneous overall energy and overall exergy efficiency of the double pass hybrid (PV/T) solar air heater varies between 29 – 37 percent and 14-17 percent respectively. These obtained values are comparable with that of published results.

  5. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    Science.gov (United States)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  6. Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with ·-Grooved Absorber Plate

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Hafidz Ruslan; Kamaruzzaman Sopian; Jin, G.L.

    2009-01-01

    A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass ·-groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm -2 and 817 ± 8 Wm -2 . The speed of air passing through the collector was set between (69.6 ± 2.2) x 10 -4 kg/s to (695.8 ± 2.2) x 10 -4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without ·-groove absorber. The study found that the PV/T collector with ·-groove absorber plate has higher efficiency than the PV/T without ·-groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase. (author)

  7. Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NARCIS (Netherlands)

    Qin, C.; Hassanizadeh, S.M.; van Oosterhout, L.M.

    2016-01-01

    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor

  8. Spectrographic determination of impurities in ammonium bifluoride. III. Study of the processes of vaporization, transport and excitation of the elements Al, B, Cu and Cr; Determinacion espectrografico de impurezas en bifluoruro amonico. III. Estudio de los procesos de volatilizacion, transporte y excitacion de los elementos Al, B, Cu, Cr

    Energy Technology Data Exchange (ETDEWEB)

    Alduan, F A; Roca, M; Capdevila, C

    1979-07-01

    The influences of the processes of vaporization, transport and excitation on the shape of the volatilization-excitation curves and on the values of the spectral-line intensities have been investigated in a method for the spectrographic determination of Al, B, Cu and Cr In ammonium bifluoride samples by direct current are excitation in Scribner type electrodes, with addition of different matrices (graphite, 63203, GeO{sub 2}, MgO and Zn0). The reaction products in the electrode cavity have been identified by X-ray powder diffraction analysis and the percentages of vaporized and diffused element evaluated through analysis by total-burning spectrographic methods. In addition, the values of both the number of particles entering the discharge column and the transport efficiencies have been calculated. Thus, the origin of most observed differences has been explained. (Author) 11 refs.

  9. Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions

    International Nuclear Information System (INIS)

    Hazami, Majdi; Riahi, Ali; Mehdaoui, Farah; Nouicer, Omeima; Farhat, Abdelhamid

    2016-01-01

    The endeavor of this paper is to study the potential offered by the expenditure of a PV/T (photovoltaic thermal) solar system in Tunisian households. This investigation is performed according to two-folded approaches. Firstly, outdoor experiments were carried out during July 2014 for both passive and active mode. An exhaustive energy and exergy analysis was then performed to evaluate the instantaneous thermal and the electrical exergy outputs of the PV/T solar system. The results showed that the maximum instantaneous thermal and electric energy efficiency in active mode are about 50 and 15%, respectively. It was found also that the maximum thermal and electric exergy efficiencies were about 50 and 14.8%, respectively. The second approach is the evaluation of the monthly/annual performances of the PV/T solar system under typical climate area of Tunisia by using TRNSYS program. The results showed that the active mode enhances the electric efficiency and the exergy of the PV/T system by 3 and 2.5% points, respectively. The results showed that the optimized PV/T solar system covert the major part of the hot water and the electric needs of Tunisian household's with an expected annual average gain of about 14.60 and 5.33%, respectively. An economic appraisal was performed. - Highlights: • The present work studies the potential of using PV/T solar collector in Tunisian. • The maximum thermal and electric efficiencies are 50 and 15%, respectively. • The maximum thermal and electric exergy efficiencies were 50 and 14.8%. • The results showed that the expected annual gain are 14.60 and 5.33%. • The PV/T is compared to a high quality commercial solar collectors and a PV panel.

  10. AGENCY CONTRIBUTION IN ACHIEVING TEMPORARY AGENCY WORKERS’ ORGANIZATIONAL COMMITMENT: A STUDY IN ABC (PVT LTD

    Directory of Open Access Journals (Sweden)

    T.G.T.N Perera

    2017-12-01

    Full Text Available Temporary agency workers are coming under non-standard employments, who have temporary attachment to the working organization. With dynamic business environment and flexible work arrangements, temporary agency employments are also emerged in Sri Lanka. Temporary agency workers are dual committed employees. However, with this dual commitment, organizations face issues in achieving temporary agency workers’ commitment due to low attention of agencies to temporary agency workers. Even though the Client organization provides due attention to temporary agency workers, they fail to receive due commitment due to the lack of attention from agency to temporary agency workers. This study was conducted to identify the agency related factors affecting temporary agency workers’ commitment. This was carried out as a cross sectional field study with a sample of 93 workers from temporary agency works in the ABC (pvt ltd. 93 temporary agency workers were selected as sample. Data were collected via a standard questionnaire that met accepted standards of validity and reliability. Descriptive statistics, Simple ranking, Factor analysis, ANOVA and Independent Sample T-Test technique were performed to analyze data. No of Temporary workers to supervisor (temp to consult ratio is the most influencing factor of temporary agency workers’ commitment in agency context. Job satisfaction, agency support, side bets, interactional justice, lack of alternative employments, procedural justice, distributive justice, reciprocity norm acceptance, socialization, breach of psychological contract, lack of skill transferability are the other factors, which are ordered from most influencing factor to less affecting factor to workers’ organizational commitment . Findings revealed that eleven out of thirteen factors are job related factors, other two are organization related and person related factors. Most client companies provide their attention, while agencies fail to provide

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  12. Data mining in forecasting PVT correlations of crude oil systems based on Type1 fuzzy logic inference systems

    Science.gov (United States)

    El-Sebakhy, Emad A.

    2009-09-01

    Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.

  13. A systemic study of stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc2O3 to Lu2O3 mediated by alkaline chlorides as complex former

    International Nuclear Information System (INIS)

    Sun Yanhui; He Peng; Chen Huani

    2007-01-01

    A systematic study has been carried out for the stepwise chlorination-chemical vapor transport (SC-CVT) characteristics of pure rare earth oxides from Sc 2 O 3 to Lu 2 O 3 mediated by the vapor complexes KLnCl 4 and NaLnCl 4 (Ln = Sc, Y and La-Lu) used NaCl and KCl as complex former, respectively. The results showed that the SC-CVT characteristics are similarly for NaCl and KCl as complex former, the main deposition temperature of the rare earth chlorides LnCl 3 is in the increasing order ScCl 3 3 3 , and then with a systematically decreasing trend from the early lanthanide chlorides to the end one. The results also showed that the total transported amount of the produced chlorides is YCl 3 > ScCl 3 , and they are much higher than that of most lanthanoid chlorides. For lanthanoids, the total transported amount of chloride increases systematically from the early lanthanoid chlorides to the end one except for EuCl 3 and GdCl 3 mediated by KCl and NaCl as complex former, respectively, which showed the divergence effect of Gd in the total transport efficiency. But there are some differences in SC-CVT characteristics of pure rare earth oxide mediated by KCl and NaCl as complex former, that is the main deposition temperature region for the same rare earth element was lower for KCl than that for NaCl as complex former except for LaCl 3 , CeCl 3 , YbCl 3 and LuCl 3 , while the total transport amount of rare earth chloride for KCl as complex former is higher than that for NaCl except for LaCl 3 and EuCl 3 . More over, the discussion was carried out for Sc and Y on the one hand and the lanthanides contain 4f electron as another hand based on the 4f electron hybridization assumption. Further more, the transport characteristics of rare earth oxides with alkaline chlorides as complex former in this study were compared to that with AlCl 3 as complex former

  14. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  15. Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor type

    Energy Technology Data Exchange (ETDEWEB)

    Fraisse, G.; Johannes, K. [Laboratoire Optimisation de la Conception et Ingenierie de l' Environnement, Ecole Superieure d' Ingenieurs de Chambery, Campus Scientifique Savoie Technolac, 73376 Le Bourget du Lac Cedex (France); Menezo, C. [Centre de Thermique de Lyon, Domaine Scientifique de La Doua, Bat. Freyssinet, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex (France)

    2007-11-15

    The integration of photovoltaic (PV) modules in buildings allows one to consider a multifunctional frame and then to reduce the cost by substitution of components. In order to limit the rise of the cell operating temperature, a photovoltaics/thermal (PV/T) collector combines a solar water heating collector and PV cells. The recovered heat energy can be used for heating systems and domestic hot water. A combination with a Direct Solar Floor is studied. Its low operating temperature level is appropriate for the operating conditions of the mono- or poly-crystalline photovoltaic modules which are selected in that study. However, for a system including a glass covered collector and localised in Macon area in France, we show that the annual photovoltaic cell efficiency is 6.8% which represents a decrease of 28% in comparison with a conventional non-integrated PV module of 9.4% annual efficiency. This is obviously due to a temperature increase related to the cover. On the other hand, we show that without a glass cover, the efficiency is 10% which is 6% better than a standard module due to the cooling effect. Moreover, in the case of a glazed PV/T collector with a conventional control system for Direct Solar Floor, the maximum temperature reached at the level of the PV modules is higher than 100{sup o}C. This is due to the oversize of the collectors during the summer when the heating needs are null, i.e. without a heated swimming pool for example. This temperature level does not allow the use of EVA resin (ethylene vinyl acetate) in PV modules due to strong risks of degradation. The current solution consists of using amorphous cells or, if we do not enhance the thermal production, uncovered PV/T collector. Further research led to water hybrid PV/T solar collectors as a one-piece component, both reliable and efficient, and including the thermal absorber, the heat exchanger and the photovoltaic functions. (author)

  16. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS

    DEFF Research Database (Denmark)

    Yan, Wei; Varzandeh, Farhad; Stenby, Erling Halfdan

    2015-01-01

    non-cubic EoS models, such as the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) EoS and the Soave modified Benedict-Webb-Rubin (Soave-BWR) EoS, may partly replace the roles of these classical cubic models in the upstream oil industry. Here, we attempt to make a comparative study...... for the four models. For PVT prediction, the non-cubic models show advantages in some high pressure high temperature (HPHT) fluids but no clear advantages in general, indicating the necessity for further improvement of the characterization procedure....

  17. Methodology to characterize an unsampled oil interval, integrating PVT (Pressure/Volumen/Temperature) analysis and production log; Metodologia para caracterizacao de oleo de intervalo nao-amostrado, integrando analise PVT e perfil de producao

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, Diogo Reato; Souza, Ana Paula Martins de; Vieira, Alexandre J.M. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work presents a new methodology for characterizing an unsampled oil interval, using basically production log data and PVT analyses available in the well. The methodology was applied to a real case, where the live oil samples were collected during a well test run in three different depths, revealing some evidence of a compositional grading due to gravity. Each individual sample was a mixture of the fluid produced from the reservoir bottom to the sampling point, since the whole interval was perforated and the isolation had to be made with a packer. The first sample was corresponding to the mixture of lower and all upper oils. The other two samples are only the heavier and that oil with part of the one from the upper interval. In order to identify the fluid properties from the upper interval, needed for production development studies, the following procedure was devised: equation-of-state tuning, reproducing the sampled fluid properties; conversion of volumetric flowrates from production log into mass and molar flowrates; flowrate ratio calculation, between the upper and lower intervals; upper interval fluid composition estimative; upper interval fluid properties simulation, using the previously tuned equation-of-state, thus generating what was considered a representative, synthetic PVT analysis. (author)

  18. Distribution and transport of water vapor in the UTLS over the Tibetan Plateau as inferred from the MLS satellite data and WRF model simulations

    Science.gov (United States)

    Jain, S.; Kar, S. C.

    2016-12-01

    Water vapor is an important minor constituent in the lower stratosphere as it influences the stratospheric chemistry and total radiation budget. The spatial distribution of water vapor mixing ratio (WVMR) obtained from Aura Microwave Limb Sounder (MLS) satellite at 100 hPa level shows prominent maxima over the Tibetan Plateau during August 2015. The Asian monsoon upper level anticyclone is also known to occur over this region during this period. The Indian Meteorological Department (IMD) and National Centre of Medium Range Weather Forecasting (NCMRWF) observed daily gridded rainfall data shows moderate to heavy rainfall over the Tibetan Plateau, suggesting active convection from 26 July to 10 August 2015. The atmospheric conditions are simulated over the Asian region for the 15-day period using the Weather Research Forecasting (WRF) model. The simulations are carried out using two nested domains with resolution of 12 km and 4 km. The initial and boundary conditions are taken from the NGFS (up-graded version of the NCEP GFS) data. The WRF WVMR profiles are observed to be comparatively moist than the MLS profiles in the UTLS region over the Tibetan Plateau. This may be due to the relatively higher temperatures (1-2 K) simulated in the WRF model near 100 hPa level. It is noted that the WRF model has a drying tendency at all the levels. The UTLS WVMR and temperatures show poor sensitivity to the convective schemes. The parent domain and the explicit convective scheme simulate almost same moisture over time in the inner domain. The cloud micro-physics is observed to play a rather important role in controlling the UTLS water vapor content. The WSM-6 convective scheme is observed to simulate the UTLS moisture comparatively well and therefore the processes associated with the formation of ice, snow and graupel formation may be of much more importance in controlling the UTLS WVMR in the WRF model. The 24 hr, 48 hr and 72 hr forecast averaged for the 15-day period shows that

  19. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  20. Signal-to-Noise Ratio in PVT Performance as a Cognitive Measure of the Effect of Sleep Deprivation on the Fidelity of Information Processing.

    Science.gov (United States)

    Chavali, Venkata P; Riedy, Samantha M; Van Dongen, Hans P A

    2017-03-01

    There is a long-standing debate about the best way to characterize performance deficits on the psychomotor vigilance test (PVT), a widely used assay of cognitive impairment in human sleep deprivation studies. Here, we address this issue through the theoretical framework of the diffusion model and propose to express PVT performance in terms of signal-to-noise ratio (SNR). From the equations of the diffusion model for one-choice, reaction-time tasks, we derived an expression for a novel SNR metric for PVT performance. We also showed that LSNR-a commonly used log-transformation of SNR-can be reasonably well approximated by a linear function of the mean response speed, LSNRapx. We computed SNR, LSNR, LSNRapx, and number of lapses for 1284 PVT sessions collected from 99 healthy young adults who participated in laboratory studies with 38 hr of total sleep deprivation. All four PVT metrics captured the effects of time awake and time of day on cognitive performance during sleep deprivation. The LSNR had the best psychometric properties, including high sensitivity, high stability, high degree of normality, absence of floor and ceiling effects, and no bias in the meaning of change scores related to absolute baseline performance. The theoretical motivation of SNR and LSNR permits quantitative interpretation of PVT performance as an assay of the fidelity of information processing in cognition. Furthermore, with a conceptual and statistical meaning grounded in information theory and generalizable across scientific fields, LSNR in particular is a useful tool for systems-integrated fatigue risk management. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  1. Catalyst-free vapor-phase transport growth of vertically aligned ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; Bakin, A.S.; Elshaer, A.; Waag, A. [Inst. of Semiconductor Technology, Technical Univ. Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Inst. of Applied Physics, Technical Univ. Braunschweig (Germany); Bertram, F.; Christen, J. [Dept. of Solid State Physics, Univ. of Magdeburg (Germany)

    2006-03-15

    ZnO nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Fabrication methods, especially for nanorods have been based mostly on catalyst-assisted growth methods that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on the growth of ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3} using purely elemental sources, without catalysis and at relatively low temperatures and growth pressure in a specially designed vapor-phase transport system. ZnO nanorods with widths of 80-900 nm and lengths of 4-12 {mu}m were obtained. Nanorod concentrations of up to 10{sup 9} cm{sup -2} with homogenous luminescence and high purity were noted. (orig.)

  2. Effects of the gate dielectric on the subthreshold transport of carbon nanotube network transistors grown by using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Jeong, Seung Geun; Park, Wan Jun

    2010-01-01

    In this study, we investigated the subthreshold slope of random network carbon nanotube transistors with different geometries and passivations. Single-wall carbon nanotubes with lengths of 1-2 m were grown by using plasma-enhanced chemical vapor deposition to form the transistor channels. A critical channel length, where the subthreshold slope was saturated, of 7 μm was obtained. This was due to the percolational behavior of the nanotube random networks. With the dielectric passivation, the subthreshold slope was dramatically reduced from 9 V/decade to 0.9 V/decade by reducing interfacial trap sites, which then reduced the interface capacitance between the nanotube network and the gate dielectric.

  3. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  4. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  5. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  6. High-quality graphene grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition and its electrical transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, He; Shen, Chengmin, E-mail: cmshen@iphy.ac.cn; Tian, Yuan; Bao, Lihong; Chen, Peng; Yang, Rong; Yang, Tianzhong; Li, Junjie; Gu, Changzhi; Gao, Hong-Jun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-08

    High-quality continuous uniform monolayer graphene was grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition. The morphology of graphene was investigated by Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. Analysis results confirm that high quality single-layer graphene was fabricated on PtRh{sub 20} foil at 1050 °C using a lower flux of methane under low pressure. Graphene films were transferred onto the SiO{sub 2}/Si substrate by the bubbling transfer method. The mobility of a test field effect transistor made of the graphene grown on PtRh{sub 20} was measured and reckoned at room temperature, showing that the carrier mobility was about 4000 cm{sup 2} V{sup −1} s{sup −1}. The results indicate that desired quality of single-layer graphene grown on PtRh{sub 20} foils can be obtained by tuning reaction conditions.

  7. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  8. Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system

    International Nuclear Information System (INIS)

    Qiu, Zhongzhu; Ma, Xiaoli; Zhao, Xudong; Li, Peng; Ali, Samira

    2016-01-01

    Highlights: • An experimental investigation to a novel MPCM slurry based PV/T system was conducted. • The system had the reduced solar efficiency at a higher solar radiation. • The system had the increased solar efficiency at a higher slurry Reynolds number. • The most favourite MPCM concentration was around 10%. • The experimental results approved the accuracy of the established computer model. - Abstract: As a follow-on work of the authors’ theoretical study, the paper presented an experimental investigation into the energy performance of a novel PV/T thermal and power system employing the Micro-encapsulated Phase Change Material (MPCM) slurry as the working fluid. A prototype PV/T module of 800 mm × 1600 mm × 50 mm was designed and constructed based on the previous modelling recommendation. The performance of the PV/T module and associated thermal and power system were tested under various solar radiations, slurry Reynolds numbers and MPCM concentrations. It was found that (1) increasing solar radiation led to the increased PV/T module temperature, decreased solar thermal and electrical efficiencies and reduced slurry pressure drop; (2) increasing the slurry Reynolds number led to the increased solar thermal and electrical efficiencies, decreased module temperature, and increased pressure drop; and (3) increasing the MPCM concentration led to the reduced module temperature and increased pressure drop. The experimental results were used to examine the accuracy of the established computer model, giving a derivation scale ranging from 1.1% to 6.1% which is an acceptable error level for general engineering simulation. The recommended operational conditions of the PV/T system were (1) MPCM slurry weight concentration of 10%, (2) slurry Reynolds number of 3000, and (3) solar radiation of 500–700 W/m"2; at which the system could achieve the net overall solar efficiencies of 80.8–83.9%. To summarise, the MPCM slurry based PV/T thermal and power system

  9. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  10. Development of a dual-sinker densimeter for high-accuracy fluid P-V-T measurements

    International Nuclear Information System (INIS)

    McLinden, M.O.; Frederick, N.V.

    1993-01-01

    A dual-sinker densimeter to very accurately measure the pressure-volume-temperature (P-V-T) properties of fluids over a temperature range of 80 K to 520 K and at pressures up to 35 MPa is in the final stages of development at NIST. The density of a fluid is determined by measuring the difference in the buoyancy forces experienced by two sinkers of identical mass, surface area, and surface material, but very different volumes. The buoyancy forces on the sinkers are transmitted to a semi-microbalance by means of a magnetic suspension coupling. This paper reviews the principle of the measurement and describes the overall design of the system

  11. Energy and economic analysis of an On-grid PV/T system in a dairy farm in Chile

    International Nuclear Information System (INIS)

    Coca-Ortegón, Adriana; Atienza-Márquez, Antonio; Coronas, Alberto; Merino, Gabriel; Gontupi, Jorge; Salazar, Francisco

    2017-01-01

    The objective of this study is to evaluate the performance of an on-grid PV/T system in a dairy farm located in Osorno (Chile), operated under the Net-Metering scheme. All equipment installed in the farm is driven by electricity and the daily average electric consumption is 235 kWh. The study analyses first the existing installation, second a conventional solar installation (with photovoltaic and solar thermal technologies), and third a photovoltaic installation plus a photovoltaic-thermal hybrid installation. We did a sensibility analysis of the solar contribution factor to the self-consumption (electric and thermal), by varying the mass flow rate in the solar thermal circuit, and the energy storage size. This analysis allowed to optimize the sizing and the operation of the solar systems. The systems are compared in terms of annual energy production per unit area, unit price of energy produced and percentage of energy exported to the grid. (author)

  12. Mercury-free PVT apparatus for thermophysical property analyses of hydrocarbon reservoir fluids. Final report, August 16, 1990--July 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lansangan, R.M.; Lievois, J.S.

    1992-08-31

    Typical reservoir fluid analyses of complex, multicomponent hydrocarbon mixtures include the volumetric properties, isothermal compressibility, thermal expansivity, equilibrium ratios, saturation pressure, viscosities, etc. These parameters are collectively referred to as PVT properties, an acronym for the primary state variables; pressure, volume, and temperature. The reservoir engineer incorporates this information together with the porous media description in performing material balance calculations. These calculations lead to the determination (estimation) of the initial hydrocarbon in-place, the future reservoir performance, the optimal production scheme, and the ultimate hydrocarbon recovery. About four years ago, Ruska Instrument Corporation embarked on a project to develop an apparatus designed to measure PVT properties that operates free of mercury. The result of this endeavor is the 2370 Hg-Free PVT system which has been in the market for the last three years. The 2370 has evolved from the prototype unit to its present configuration which is described briefly in this report. The 2370 system, although developed as a system-engineered apparatus based on existing technology, has not been exempt from this burden-of-proof Namely, the performance of the apparatus under routine test conditions with real reservoir fluids. This report summarizes the results of the performance and applications testing of the 2370 Hg-Free PVT system. Density measurements were conducted on a pure fluid. The results were compared against literature values and the prediction of an equation of state. Routine reservoir fluid analyses were conducted with a black oil and a retrograde condensate gas mixtures. Limited comparison of the results were performed based on the same tests performed on a conventional mercury-based PVT apparatus. The results of these tests are included in this report.

  13. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  14. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Hui-Jun Guo

    2014-09-01

    Full Text Available Polytype stability is very important for high quality SiC single crystal growth. However, the growth conditions for the 4H, 6H and 15R polytypes are similar, and the mechanism of polytype stability is not clear. The kinetics aspects, such as surface-step nucleation, are important. The kinetic Monte Carlo method is a common tool to study surface kinetics in crystal growth. However, the present lattice models for kinetic Monte Carlo simulations cannot solve the problem of the competitive growth of two or more lattice structures. In this study, a competitive lattice model was developed for kinetic Monte Carlo simulation of the competition growth of the 4H and 6H polytypes of SiC. The site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. Surface steps on seeds and large ratios of diffusion/deposition have positive effects on the 4H polytype stability. The 3D polytype distribution in a physical vapor transport method grown SiC ingot showed that the facet preserved the 4H polytype even if the 6H polytype dominated the growth surface. The theoretical and experimental results of polytype growth in SiC suggest that retaining the step growth mode is an important factor to maintain a stable single 4H polytype during SiC growth.

  15. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  16. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  17. ANÁLISIS DE PÉRDIDAS ENERGÉTICAS Y ECONÓMICAS POR TRANSPORTE DE VAPOR EN TUBERÍAS SIN UN ADECUADO AISLAMIENTO TÉRMICO

    Directory of Open Access Journals (Sweden)

    Carlos Aristizábal

    2014-05-01

    Full Text Available Se presenta el cálculo de las pérdidas de recursos energéticos y económicos por el deterioro o ausencia de aislante térmico en las tuberías de transporte de vapor al interior de una empresa dedicada a la  producción de licores, así como la predicción de ahorros alcanzados al aplicar aislantes en zonas detectadas como críticas. Se utilizan  modelos de  transferencia de calor para sistemas radiales y cálculos económicos a partir de costos de aislantes térmicos, recursos másicos y energéticos, y eventuales ahorros alcanzados por la implementación de aislantes. Se encontró que las pérdidas energéticas pueden reducirse hasta en un 99%, con rápida recuperación de los costos de inversión según la selección del aislante. Los modelos presentados pueden ser adaptados por otras empresas que deseen evaluar de manera rápida y efectiva los eventuales ahorros en costos de producción derivados de la minimización de pérdidas energéticas a través de sus tuberías.

  18. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors

    International Nuclear Information System (INIS)

    Al-Waeli, Ali H.A.; Chaichan, Miqdam T.; Kazem, Hussein A.; Sopian, K.

    2017-01-01

    Highlights: • Three types of nanoparticles (Al 2 O 3 , CuO and SiC) were added to water which was used as a base fluid. • The resulted nanofluid was used for cooling an indoor PV/T system. • The used nanofluids improved the thermal and electrical efficiencies of the PV/T system. • The stability of nanofluids was examined for an extended period and found to be stable. • SiC nanofluid showed better thermal conductivity and stability compared with Al 2 O 3 and CuO nanofluids. - Abstract: The reduction in efficiency of photovoltaic (PV) units due to increases in cell temperature occurs when a small part of the absorbed solar radiation is converted into electricity and the remaining part is lost as heat. Recently, the addition of a range of nanomaterials with high thermal conductivity to the cooling fluid in PV/T systems has been the subject of much research. In this study, three nanomaterials were added to water as a base fluid with several volume fractions to determine the best concentration and nanoparticle for this application. The PV/T system was setup in an indoor laboratory. Knowing which material has a better effect on the PV unit in particular, and the PV/T unit in general, is important for deciding which nanomaterial is more suitable for the system. The results reveal that nanofluid gives higher thermal conductivity with very little increase in the fluid density and viscosity compared with the base fluid. The studied volume fractions were 0.5, 1, 2, 3, and 4% and the selected nanoparticles were Al 2 O 3 , CuO, and SiC. It was found that silicon carbide nanoparticles have the best stability and the highest thermal conductivity compared to the other two nano-substances. Copper oxide nanofluid has higher thermal conductivity than aluminium oxide but lower stability, although it was found here that this material reliably stable compared to in other studies. The nanofluid reduced the indoor PV/T system temperature and enhanced its generated power.

  19. Booted selective internal radiation therapy (B-SIRT) using 90Y-loaded glass microspheres induces prolonged overall survival for PVT patients

    International Nuclear Information System (INIS)

    Garin, E.; Lenoir, L.; Edeline, J.; Laffont, S.; Mesbah, H.; Poree, P.; Boucher, E.; Rolland, Y.

    2015-01-01

    Full text of publication follows. Goal: evaluation of the response rate and survival of hepatocellular carcinoma PVT patients treated with Therasphere using the boost concept. Material and methods: Therasphere was administered in 40 PVT hepatocellular carcinoma patients (main = 11, lobar = 23, segmental = 6). MAA SPECT/CT quantitative analysis was used for the calculation of the tumour dose (TD), the healthy injected liver dose (HLD) and the injected liver dose (LD). Response was evaluated at 3 months using EASL criterion. OS was evaluated using Kaplan and Meyer tests. Results: Mean 90 Y-loaded microspheres injected activity was 3.1 ± 1.5 GBq. Mean LD was 143 ± 49 Gy. Median TD was 316 Gy for responding lesions versus 133 Gy for non responding lesion (p<0.0001). With a threshold TD of 205 Gy, MAA-SPECT/CT was predictive of response with a sensibility of 100%, and an overall accuracy of 90% (0FN, 4FP). Knowing the TD and the HLD, 40% of the patients received an intensification of the treatment (increase of the injected activity with the goal to achieve a TD> 205 Gy with a LD > 150 Gy and a HLD<120 Gy) with a good response rate (81%) and without increased liver grade III toxicity (6.2% as against 12.5% in the non boosted patients, ns). 6 patients were put aside, 5 received a lobar hepatectomy. Median OS was 18.2 months [12-27]. It was 4 m [12-27] for patients with a TD < 205 Gy versus 21.5 m [12-28.5] for patients with a TD > 205 Gy. OS was 12 m [3-∞] for patients with main PVT versus 21.5 m [12-28.7] for patients segmental or lobar PVT (ns). Finally Os was 23.2 m for patients with a TD > 205 Gy and a good PVT targeting (n = 34). Conclusion: boosted selective internal radiation therapy using 90 Y-loaded glass microspheres induces prolonged overall survival for PVT patients without increasing liver toxicity. (authors)

  20. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  1. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  2. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  3. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  4. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system

    International Nuclear Information System (INIS)

    Al-Waeli, Ali H.A.; Sopian, K.; Chaichan, Miqdam T.; Kazem, Hussein A.; Hasan, Husam Abdulrasool; Al-Shamani, Ali Najah

    2017-01-01

    Highlights: • Nano-SiC-water used as a base fluid for cooling an outdoor PV/T system. • The used nanofluid improved the thermal and electrical efficiencies of the PV/T system. • The stability of nanofluid was examined for an extended period and found to be stable. • The overall effectiveness found to be 88.9% compared to the separate PV system. - Abstract: The thermophysical properties of nanofluid composed of water and SiC nanoparticles without the use of a surfactant as a coolant for a PV/T system was investigated. It was observed that the addition of 3 wt% of these nanoparticles to water caused an increase in the resulting fluid density by up to 0.0082% and an increase of viscosity by up to 1.8%. Moreover, the thermal conductivity was enhanced by up to 8.2% for the tested temperature range of 25 °C–60 °C. The stability of the nanofluid was examined at intervals of three months and it was found that after six months the thermal conductivity reduced by up to 0.003 W/m K, indicating that the solution was stable and suitable for use for long periods. The use of 3 wt% SiC nanofluid increased the electrical efficiency by up to 24.1% compared to the PV system alone, while the thermal efficiency increased by up to 100.19% compared to the use of water for cooling. The final results indicated that the total effectiveness of the PV/T nanofluid system had a higher overall efficiency of about 88.9% compared to the separate PV system.

  5. Vaporization of structural materials in severe accidents

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1982-01-01

    Vaporized structural materials form the bulk of aerosol particles that can transport fission products in severe LWR accidents. As part of the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory, a model has been developed based on a mass transport coefficient to describe the transport of materials from the surface of a molten pool. In many accident scenarios, the coefficient can be calculated from existing correlations for mass transfer by natural convection. Data from SASCHA fuel melting tests (Karlsruhe, Germany) show that the partial pressures of many of the melt components (Fe, Cr, Co, Mn, Sn) required for the model can be calculated from the vapor pressures of the pure species and Raoult's law. These calculations indicate much lower aerosol concentrations than reported in previous studies

  6. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  7. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  8. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  9. Anisotropy of electrical resistivity in PVT grown WSe2-x crystals

    Science.gov (United States)

    Solanki, G. K.; Patel, Y. A.; Agarwal, M. K.

    2018-05-01

    Single crystals of p-type WSe2 and WSe1.9 were grown by a physical vapour transport technique. The anisotropy in d.c. electrical resistivity was investigated in these grown crystals. The off-stoichiometric WSe1.9 exhibited a higher anisotropy ratio as compared to WSe2 crystals. The electron microscopic examination revealed the presence of a large number of stacking faults in these crystals. The resistivity enhancement along the c-axis and anisotropic effective mass ratio explained on the basis of structural disorder introduced due to off-stoichiometry.

  10. P-V-T properties of a polymer liquid crystal subjected to pre-drawing at several temperatures

    International Nuclear Information System (INIS)

    Broza, Georg; Castano, Victor M.; Martinez-Barrera, Gonzalo; Menard, Kevin P.; Simoes, Carla

    2005-01-01

    We have studied the copolymer of poly(ethylene terephthalate) (PET) with 0.6mole fraction of p-hydroxybenzoic acid (PHB). It is a longitudinal polymer liquid crystal (PLC). A number of otherwise identical samples were subjected to drawing to achieve in turn 20%, 40%, 60%, 80% and 100% increase in length. The drawing was performed isothermally at 60, 100 and 140 deg. C. Pressure-volume-temperature (P-V-T) results have been obtained for pressures up to 200Jcm -3 and temperatures up to 150 deg. C or so. Parameters of the Hartmann equation of state have been evaluated. Drawing first results in an increase in specific (and also free) volume, then in a decrease caused by increased orientation of the PLC, and finally in an apparent increase caused by the appearance of voids. The tensile modulus E has been determined for all pre-drawn samples. It reflects the volumetric changes a rebours: the initial increase in specific volume results in lower E values, orientation in E increase, and void formation in a second decrease

  11. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  12. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    Science.gov (United States)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  13. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  14. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  15. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  16. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  17. A study of photovoltaic/thermal (PVT)-ground source heat pump hybrid system by using fuzzy logic control

    International Nuclear Information System (INIS)

    Andrew Putrayudha, S.; Kang, Eun Chul; Evgueniy, E.; Libing, Y.; Lee, Euy Joon

    2015-01-01

    Renewable Heat Obligation (RHO) implementation in every country becomes an important issue to utilize more renewable energy sources while reducing the usage of fossil fuel. In 2014, South Korea has a target that every commercial building construction that exceeding 10,000 m 2 has to have on-site new & renewable power generation such as combined heat in the beginning of 2016. Photovoltaic/Thermal (PVT) and Geothermal hybrid systems have been introduced in previous research (E.J. Lee et al.) and it showed a great result from its efficiency and also its power consumption for single and multi-building cases. In this paper, Fuzzy Logic control has been applied to optimize the energy consumption of the system. By comparing it with conventional on–off control, fuzzy logic control system shows a better result in reducing primary energy consumption for both heating and cooling systems annually. Two cases were introduced in this paper, GSHP system and PVT–GSHP system with both on–off and fuzzy logic applied respectively. As a result, it shows that fuzzy logic control consumed 13.3% less energy compared with on–off controller for GSHP system annually and 18.3% less energy compared to on–off controller for PVT–GSHP system annually. - Highlights: • Two renewable systems were designed to produce heating, cooling and electricity. • System optimization by applying Fuzzy Logic in terms of energy saving. • Conventional on–off control system vs advance fuzzy logic control system. • Assumption used based on previous research experience, guidelines.

  18. Gas transport in porous media

    CERN Document Server

    Ho, Clifford K

    2006-01-01

    This book presents a compilation of state-of-the art studies on gas and vapor transport processes in porous and fractured media. A broad set of models and processes are presented, including advection/diffusion, the Dusty Gas Model, enhanced vapor diffusion, phase change, coupled processes, solid/vapor sorption, and vapor-pressure lowering. Numerous applications are also presented that illustrate these processes and models in current problems facing the scientific community. This book fills a gap in the general area of transport in porous and fractured media; an area that has historically been dominated by studies of liquid-phase flow and transport. This book identifies gas and vapor transport processes that may be important or dominant in various applications, and it exploits recent advances in computational modeling and experimental methods to present studies that distinguish the relative importance of various mechanisms of transport in complex media.

  19. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  20. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  1. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  2. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  3. Determination of heat losses in the Cerro Prieto, Baja California, geothermal field steam transportation network based on the thermal insulation condition of the steam pipelines; Determinacion de perdidas de calor en la red de transporte de vapor del campo geotermico de Cerro Prieto, Baja California, con base en el estado fisico del aislamiento termico de vaporductos

    Energy Technology Data Exchange (ETDEWEB)

    Ovando Castelar, Rosember; Garcia Gutierrez, Alfonso; Martinez Estrella, Juan Ignacio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rovando@iie.org.mx; Canchola Felix, Ismael; Jacobo Galvan, Paul; Miranda Herrera, Carlos; Mora Perez, Othon [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, B.C. (Mexico)

    2011-07-15

    In Cerro Prieto Geothermal Field (CPGF), the steam from producing wells is transported to power plants through a large and complex system of pipes thermally insulated with a 2 inches thick mineral wool or a fiber glass layer and an external aluminum or iron cover. The insulation material has been exposed to weather conditions during the field operation and has suffered density and thickness changes. In some cases the insulation has been lost completely, increasing heat transfer from the pipes to the environment. This paper analyzes the impact of the conditions of thermal insulation on heat losses in the CPGF steam-pipeline network. The heat losses are calculated by applying an iterative method to determine the surface temperature based on a heat balance calculated from the three basic mechanisms of heat transfer: conduction, convection, and radiation. Finally, using length and diameter data corresponding to the condition of the thermal insulation of each pipeline-and field operation data, the overall heat losses are quantified for steam lines throughout the pipeline network in the field. The results allow us to evaluate the magnitude of the heat losses in comparison with the overall energy losses occurring during steam transport from wells to the power plants. [Spanish] En el Campo Geotermico de Cerro Prieto (CGCP), BC, el transporte de vapor desde los pozos hasta las plantas generadoras de electricidad se lleva a cabo mediante un extenso y complejo sistema de tuberias que tipicamente se encuentran aisladas termicamente con una capa de 2 pulgadas de material aislante a base de lana mineral o fibra de vidrio, y una proteccion mecanica de aluminio o hierro galvanizado. Debido a la exposicion a las condiciones meteorologicas a traves del tiempo de operacion del campo, el aislamiento ha experimentado cambios en su densidad y espesor y en ocasiones se ha perdido por completo, lo cual repercute en una mayor transferencia de calor de las tuberias hacia el medio ambiente

  4. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  5. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  6. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  7. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  8. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  9. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  10. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  11. Frequency of asymptomatic pulmonary emboli (PE) in patients with a proximal profound veinal thrombosis (PVT) of inferior limbs during the FRAXODI study

    International Nuclear Information System (INIS)

    Gauthier, H.; Rosso, J.; Charbonnier, B.; Meignan, M.

    1997-01-01

    FRAXODI, an European multi-center program (n=70), allowed to compare the efficiency of Fraxiparin (20 500 UI AXa/mL) once a day with the conventional treatment by Fraxiparin (10 250 UI AXa/mL) twice a day by sub-cutaneous injection in patients with a PVT of inferior limbs without clinical signs of PE. A pulmonary scintigraphy has been performed at registration in 622 patients (delay ≤ 48 h): a sole perfusion with at least 4 incidences of which 2 were posterior oblique incidences or coupled to a ventilation scintigraphy (Xe-133, Kr-81 or aerosols) in 379 patients. Three diagnostic categories were defined: no PE in case of normal examination or under-segmentary perfusion anomalies (≤ 3); high probability (HP) of PE if at least a defect of normally ventilated segmentary perfusion existed; non-contributing examination in all the other cases. On the ensemble of the group, 367 patients have had at least a defect of segmentary perfusion, 296 patients had two or more. One hundred and forty one patients have had solely defects of sub-segmentary perfusion; 77 patients have had 3 or less then 3. One hundred and fourteen patients have had a normal examination. In the sub-group of ventilation scintigraphy, 235 patients have had at least one defect of segmentary perfusion, 88 patients have had defects of sub-segmentary perfusion and 56 patients have had a normal examination. The diagnosis analysis showed that 42% of patients have had a HP scintigraphy, 30% a non-contributive scintigraphy and the PE could be eliminated in 27% of patients. These results: 1 - demonstrated the extreme frequency of HP aspects of PE in patients afflicted with PVT; 2 - allowed estimating in this patients, as a function of the results of the PIOPED study, the frequency of asymptomatic PE in more then 50%; 3 - allowed recommending in the systematic practice a perfusion scintigraphy in case of PVT without clinical signs of PE providing the over-estimation of secondary PE occurrence during the

  12. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  13. Vapor-Driven Propulsion of Catalytic Micromotors

    Science.gov (United States)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  14. Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature

    Science.gov (United States)

    Eckels, David E.; Hass, William J.

    1989-05-30

    A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

  15. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  16. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  17. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  18. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  19. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  20. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  1. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  2. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  3. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  4. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  5. Effects of Solutally Dominant Convection on Physical Vapor Transport for a Mixture of Hg{sub 2}Br{sub 2} and Br{sub 2} under Microgravity Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geug-Tae [Hannam University, Daejeon (Korea, Republic of); Kown, Moo Hyun [Woosuk University, Wanju (Korea, Republic of)

    2014-02-15

    The convective flow structures in the vapor phase on earth are shown to be single unicellular, indicating the solutally dominant convection is important. These findings reflect that the total molar fluxes show asymmetrical patterns in a viewpoint of interfacial distributions. With decreasing the gravitational level form 1 g{sub 0} down to 1.0x10{sup -4} g{sub 0}, the total molar fluxes decay first order exponentially. It is also found that the total molar fluxes decay first order exponentially with increasing the partial pressure of component B, PB (Torr) form 5 Torr up to 400 Torr.. Under microgravity environments less than 1 g{sub 0}, a diffusive-convection mode is dominant and, results in much uniformity in front of the crystal regions in comparisons with a normal gravity acceleration of 1 g{sub 0}.

  6. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  7. Preparation, Delivery, and Evaluation of Picomole Vapor Standards

    Science.gov (United States)

    2013-07-10

    trace vapor standards is consistent production and a reliable means to transport and deliver the vapor to the analytical system being evaluated...8 32.6 8.92 Ethylbenzene 100-41-4 9.21 8.31x10-9 32.8 8.41 1,7-Octadiene 3710-30-3 22.5 4.74x10-9 31.8 10.7 Styrene 100-42-5 6.21 2.77x10-9 31.9

  8. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  9. Center for low-gravity fluid mechanics and transport phenomena

    Science.gov (United States)

    Kassoy, D. R.; Sani, R. L.

    1991-01-01

    Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.

  10. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  11. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  12. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  13. Physical and mathematical modeling of diesel fuel liquid and vapor movement in porous media

    International Nuclear Information System (INIS)

    Johnson, T.E.; Kreamer, D.K.

    1994-01-01

    Two-dimensional physical modeling of diesel fuel leaks was conducted in sand tanks to determine liquid and vapor migration characteristics. Mathematical modeling provided estimation of vapor concentrations at discrete times and distances from the vapor source and was compared to the physical experiment. The mathematical gaseous diffusion model was analogous to the Theis equation for ground-water flow, accounted for sorptive effects of the media, and was calibrated using measured concentrations from the sand tank. Mathematically different positions of the vapor source were tested to better relate observed liquid flow rates and media configuration to gaseous concentrations. The calculated diffusion parameters were then used to estimate theoretical, three-dimensional vapor transport from a hypothetical liquid leak of 2.0 1/hr for 30 days. The associated three-dimensional vapor plume, which would be reasonably detectable by commercially available vadose zone monitors, was estimated to have a diameter of 8 m with a vapor concentration of 50 ppm at the outside edge of the vapor plume. A careful application of the method and values can be used to give a first approximation to the number of vapor monitors required at a field site as well as the optimal locations for the monitors

  14. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  15. Solid vapor pressure for five heavy PAHs via the Knudsen effusion method

    International Nuclear Information System (INIS)

    Fu Jinxia; Suuberg, Eric M.

    2011-01-01

    Highlights: → We report on vapor pressures and enthalpies of fusion and sublimation of five heavy PAHs. → Solid vapor pressures were measured using Knudsen effusion method. → Solid vapor pressures for benzo[b]fluoranthene, and indeno[1,2,3-cd]pyrene have not been published in the open literature. → Reported subcooled liquid state vapor pressures may or may not lend themselves to correction to sublimation vapor pressure. → Subcooled liquid state vapor pressures might sometimes actually be closer to actual solid state sublimation vapor pressures. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) are compounds resulting from incomplete combustion and many fuel processing operations, and they are commonly found as subsurface environmental contaminants at sites of former manufactured gas plants. Knowledge of their vapor pressures is the key to predict their fate and transport in the environment. The present study involves five heavy PAHs, i.e. benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene, which are all as priority pollutants classified by the US EPA. The vapor pressures of these heavy PAHs were measured by using Knudsen effusion method over the temperature range of (364 to 454) K. The corresponding values of the enthalpy of sublimation were calculated from the Clausius-Clapeyron equation. The enthalpy of fusion for the five PAHs was also measured by using differential scanning calorimetry and used to convert earlier published sub-cooled liquid vapor pressure data to solid vapor pressure in order to compare with the present results. These adjusted values do not agree with the present measured actual solid vapor pressure values for these PAHs, but there is good agreement between present results and other earlier published sublimation data.

  16. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  17. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  18. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  19. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  20. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  1. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  2. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  3. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    Science.gov (United States)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  4. Scanning Raman lidar for tropospheric water vapor profiling and GPS path delay correction

    Science.gov (United States)

    Tarniewicz, Jerome; Bock, Olivier; Pelon, Jacques R.; Thom, Christian

    2002-01-01

    The design of a ground based and transportable combined Raman elastic-backscatter lidar for the remote sensing of lower tropospheric water vapor and nitrogen concentration is described. This lidar is intended to be used for an external calibration of the wet path delay of GPS signals. A description of the method used to derive water vapor and nitrogen profiles in the lower troposphere is given. The instrument has been tested during the ESCOMPTE campaign in June 2001 and first measurements are presented.

  5. A Hybrid Model through the Fusion of Type-2 Fuzzy Logic Systems and Sensitivity-Based Linear Learning Method for Modeling PVT Properties of Crude Oil Systems

    Directory of Open Access Journals (Sweden)

    Ali Selamat

    2012-01-01

    Full Text Available Sensitivity-based linear learning method (SBLLM has recently been used as a predictive tool due to its unique characteristics and performance, particularly its high stability and consistency during predictions. However, the generalisation capability of SBLLM is sometimes limited depending on the nature of the dataset, particularly on whether uncertainty is present in the dataset or not. Since it made use of sensitivity analysis in relation to the data sets used, it is surely very prone to being affected by the nature of the dataset. In order to reduce the effects of uncertainties in SBLLM prediction and improve its generalisation ability, this paper proposes a hybrid system through the unique combination of type-2 fuzzy logic systems (type-2 FLSs and SBLLM; thereafter the hybrid system was used to model PVT properties of crude oil systems. Type-2 FLS has been choosen in order to better handle uncertainties existing in datasets beyond the capability of type-1 fuzzy logic systems. In the proposed hybrid, the type-2 FLS is used to handle uncertainties in reservoir data so that the cleaned data from type-2 FLS is then passed to the SBLLM for training and then final prediction using testing dataset follows. Comparative studies have been carried out to compare the performance of the newly proposed T2-SBLLM hybrid system with each of the constituent type-2 FLS and SBLLM. Empirical results from simulation show that the proposed T2-SBLLM hybrid system has greatly improved upon the performance of SBLLM, while also maintaining a better performance above that of the type-2 FLS.

  6. Investigation of heat transfer and fluid flow in transitional regime inside a channel with staggered plates heated by radiation for PV/T system

    International Nuclear Information System (INIS)

    Ali, Ahmed Hamza H.; Ahmed, Mahmoud; Abdel-Gaied, S.M.

    2013-01-01

    This study investigates experimentally and theoretically the effects of operating and configuration parameters on convection heat transfer process and fluid flow characteristics for air flowing in transitional regimes through parallel plate channels with staggered plates segments heated by radiant heat flux. This configuration is to be utilized in air heater solar collectors and/or in a combined photovoltaic and air heater solar collector systems (PV/T). The operating parameters tested were Reynolds number (Re) values ranging from 2580 to 4650 with a combination of incident radiation heat flux (q inc ) values of 400, 700, and 1000 W/m 2 , respectively. The experimental results show that the local Nusselt number (Nu x ) is not unique function of the axial distance, in addition, a linear relationship between Re and apparent friction factor (f) was observed. Moreover, the model results show that combination of Re values in the laminar flow regime with proper selection of both plate's length and thickness can lead to enhancement in the heat transfer from the plate segments to the air stream. This is due to self-oscillatory flow mixer in wake zone behind each plate segment. Consequently, this will lead to avoid the need of more pumping power for the case of the flow falling within the transitional regime in the channel. - Highlights: • The local heat transfer coefficient is not unique function in the axial distance. • A linear relationship between Reynolds number and apparent friction factor is observed for Re > 3500. • The plate thickness is the dominant parameter affects both values of the heat transfer and friction factor. • Shorter plates' length, at any plate thickness, leads to periodic boundary layers interruption mechanisms

  7. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  8. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  9. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  10. Sensor technology for hazardous cargo transportation safety.

    Science.gov (United States)

    2013-08-01

    The overall goal of this research project was to develop oxidant vapor detection devices that can be : used to ensure the safety of hazardous freight transportation systems. Two nanotechnology-based : systems originally developed for improvised explo...

  11. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  12. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  13. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  14. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  15. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  16. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  17. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  18. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.

    1976-01-01

    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)

  19. Framework for simulating droplet vaporization in turbulent flows

    Science.gov (United States)

    Palmore, John; Desjardins, Olivier

    2017-11-01

    A framework for performing direct numerical simulations of droplet vaporization is presented. The work is motivated by spray combustion in engines wherein fuel droplets vaporize in a turbulent gas flow. The framework is built into a conservative finite volume code for simulating low Mach number turbulent multiphase flows. Phase tracking is performed using a discretely conservative geometric volume of fluid method, while the transport of mass fraction and temperature is performed using the BQUICK scheme. Special attention is given to the implementation of transport equations near the interface to ensure the consistency between fluxes of mass, momentum, and scalars. The effect of evaporation on the flow appears as a system of coupled source terms which depend on the local thermodynamic equilibrium between the phases. The sources are implemented implicitly using an unconditionally stable, monotone scheme. Two methodologies for resolving the system's thermodynamic equilibrium are compared for their accuracy, robustness, and computational expense. Verification is performed by comparing results to known solutions in one and three dimensions. Finally, simulations of droplets vaporizing in turbulence are demonstrated, and trends for mass fraction and temperature fields are discussed.

  20. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  1. Transport Statistics - Transport - UNECE

    Science.gov (United States)

    Sustainable Energy Statistics Trade Transport Themes UNECE and the SDGs Climate Change Gender Ideas 4 Change UNECE Weekly Videos UNECE Transport Areas of Work Transport Statistics Transport Transport Statistics About us Terms of Reference Meetings and Events Meetings Working Party on Transport Statistics (WP.6

  2. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  3. Trends of total water vapor column above the Arctic from satellites observations

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  4. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  5. Space-Time Variations in Water Vapor as Observed by the UARS Microwave Limb Sounder

    Science.gov (United States)

    Elson, Lee S.; Read, William G.; Waters, Joe W.; Mote, Philip W.; Kinnersley, Jonathan S.; Harwood, Robert S.

    1996-01-01

    Water vapor in the upper troposphere has a significant impact on the climate system. Difficulties in making accurate global measurements have led to uncertainty in understanding water vapor's coupling to the hydrologic cycle in the lower troposphere and its role in radiative energy balance. The Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite is able to retrieve water vapor concentration in the upper troposphere with good sensitivity and nearly global coverage. An analysis of these preliminary retrievals based on 3 years of observations shows the water vapor distribution to be similar to that measured by other techniques and to model results. The primary MLS water vapor measurements were made in the stratosphere, where this species acts as a conserved tracer under certain conditions. As is the case for the upper troposphere, most of the stratospheric discussion focuses on the time evolution of the zonal mean and zonally varying water vapor. Stratospheric results span a 19-month period and tropospheric results a 36-month period, both beginning in October of 1991. Comparisons with stratospheric model calculations show general agreement, with some differences in the amplitude and phase of long-term variations. At certain times and places, the evolution of water vapor distributions in the lower stratosphere suggests the presence of meridional transport.

  6. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  7. Vaporized wall material/plasma interaction during plasma disruption

    International Nuclear Information System (INIS)

    Merrill, B.J.; Carroll, M.C.; Jardin, S.C.

    1983-01-01

    The purpose of this paper is to discuss a new plasma disruption model that has been developed for analyzing the consequences to the limiter/first wall structures. This model accounts for: nonequilibrium surface vaporization for the ablating structure, nonequilibrium ionization of and radiation emitted from the ablated material in the plasma, plasma particle and energy transport, and plasma electromagnetic field evolution during the disruption event. Calculations were performed for a 5 ms disruption on a stainless steel flat limiter as part of a D-shaped first wall. These results indicated that the effectiveness of the ablated wall material to shield the exposed structure is greater than predicted by earlier models, and that the rate of redeposition of the ablated wall material ions is very dramatic. Impurity transport along magnetic field lines, global plasma motion, and radiation transport in an optically thick plasma are important factors that require additional modeling. Experimental measurements are needed to verify these models

  8. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  9. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  10. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  11. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  12. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  13. Ion vapor deposition and its application

    International Nuclear Information System (INIS)

    Bollinger, H.; Schulze, D.; Wilberg, R.

    1981-01-01

    Proceeding from the fundamentals of ion vapor deposition the characteristic properties of ion-plated coatings are briefly discussed. Examples are presented of successful applications of ion-plated coatings such as coatings with special electrical and dielectric properties, coatings for corrosion prevention, and coatings for improving the surface properties. It is concluded that ion vapor deposition is an advantageous procedure in addition to vapor deposition. (author)

  14. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  15. Experiences of marijuana-vaporizer users.

    Science.gov (United States)

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  16. Vapor pressures and thermophysical properties of selected hexenols and recommended vapor pressure for hexan-1-ol

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Matějka, P.

    2015-01-01

    Roč. 402, Sep (2015), 18-29 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alcohols * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization enthalpy Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  17. Water vapor and gas transport through PEO PBT block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2002-01-01

    Introduction At the bore well natural gas is saturated with water. Downstream the presence of water may cause: formation of methane hydrates (blocking eventually the pipeline), condensation of water in the pipeline and corrosion effects. A process used for the dehydration of natural gas is glycol

  18. LNAPL DISTRIBUTION AND HYDROCARBON VAPOR TRANSPORT IN THE CAPILLARY FRINGE

    Science.gov (United States)

    Vertical distributions of water and light nonaqueous phase liquid (LNAPL) from a well document aviation gasoline spill at the US Coast Guard Air Station in Traverse City, Michigan were measured. Two field sampling methods for the determination of LNAPL content were presented. E...

  19. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    Science.gov (United States)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  20. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  1. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  2. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  3. Quantum transport in semiconductor nanowires

    NARCIS (Netherlands)

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS)

  4. Hydrogen transport in the containment

    International Nuclear Information System (INIS)

    Royl, P.; Mueller, C.; Travis, J.R.; Wilson, T.

    1995-01-01

    For the description of transport phenomena in water vapor/hydrogen mixtures released in nuclear meltdown accidents, an integrated analytical model is being developed for LWR containments. Thermal and mechanical loads due to recombination and combustion are to be calculable. The 3-dimensional GASFLOW code was taken over from LANL in exchange for HDR experimental results and Battelle BMC program results. (orig.)

  5. Vapor-fed bio-hybrid fuel cell.

    Science.gov (United States)

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  6. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  7. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  8. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine,

  9. Recommended Vapor Pressure of Solid Naphthalen

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Růžička, V.

    2005-01-01

    Roč. 50, - (2005), s. 1956-1970 ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : solid naphthalene * vapor pressure * enthalpy of vaporization * enthalpy of fusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.610, year: 2005

  10. Effect of granosan vapors on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Lishenko, N P; Lishenko, I D

    1974-01-01

    Experiments were performed to determine the effects of granosan on the germination of vetch seeds. Vetch seeds were stored from 4-6 days in ethyl mercuric chloride vapors. Results indicated that the vapors caused a sharp decrease in germination and caused chromosomal aberrations during the anaphase.

  11. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  12. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a.... In addition, chemicals that are likely to be gases at ambient temperatures and which have low water... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more...

  13. Risk assessment of metal vapor arcing

    Science.gov (United States)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  14. Vaporizing Flow in Hot Fractures: Observations from Laboratory Experiments

    International Nuclear Information System (INIS)

    Kneafsey, T.; Pruess, K.

    1998-01-01

    Understanding water seepage in hot fractured rock is important in a number of fields including geothermal energy recovery and nuclear waste disposal. Heat-generating high-level nuclear waste packages which will be emplaced in the partially saturated fractured tuffs at the potential high-level nuclear waste repository at Yucca Mountain, Nevada, if it becomes a high-level nuclear waste repository, will cause significant impacts on moisture distribution and migration. Liquid water, which occupies anywhere from 30 to 100% of the porespace, will be vaporized as the temperature reaches the boiling temperature. Flowing primarily in fractures, the vapor will condense where it encounters cooler rock, generating mobile water. This water will flow under gravitational and capillary forces and may flow back to the vicinity of the emplaced waste where it may partially escape vaporization. Water flowing down (sub-) vertical fractures may migrate considerable distances through fractured rock that is at above-boiling temperatures; thus, flowing condensate may contact waste packages, and provide a pathway for the transport of water-soluble radionuclides downward to the saturated zone. Thermally-driven flow processes induced by repository heat may be as important or even more important for repository performance than natural infiltration. For a nominal thermal loading of 57 kW/acre, vaporization may generate an average equivalent percolation flux from condensate of 23.1 mm/yr over 1,000 years, and 5.2 mm/yr over 10,000 years. These numbers are comparable to or larger than current estimates of net infiltration at Yucca Mountain. This condensate, which is generated in the immediate vicinity (meters) of the waste packages, will likely have a larger impact on waste package and repository performance than a similar amount of water introduced at the land surface

  15. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  16. Evaluation of a Fully Automated Analyzer for Rapid Measurement of Water Vapor Sorption Isotherms for Applications in Soil Science

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2014-01-01

    The characterization and description of important soil processes such as water vapor transport, volatilization of pesticides, and hysteresis require accurate means for measuring the soil water characteristic (SWC) at low water potentials. Until recently, measurement of the SWC at low water...... potentials was constrained by hydraulic decoupling and long equilibration times when pressure plates or single-point, chilled-mirror instruments were used. A new, fully automated Vapor Sorption Analyzer (VSA) helps to overcome these challenges and allows faster measurement of highly detailed water vapor...

  17. Scoping studies of vapor behavior during a severe accident in a metal-fueled reactor

    International Nuclear Information System (INIS)

    Spencer, B.W.; Marchaterre, J.F.

    1985-01-01

    Scoping calculations have been performed examining the consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel. The principal gas and vapor species released are shown to be Xe, Cs,and bond sodium contained within the fuel porosity. Fuel vapor pressure is insignificant, and there is no energetic fuel-coolant interaction for the conditions considered. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core (although reactor-material experiments are needed to confirm these high condensation rates). If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the implication is that the ability of vapor expansion to perform appreciable work on the system is largely eliminated. Furthermore, the ability of an expanding vapor bubble to transport fuel and fission product species to the cover gas region where they may be released to the containment is also largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool

  18. Design, development and tests of high-performance silicon vapor chamber

    International Nuclear Information System (INIS)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-01-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 10 3 kg m −3 . Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m −1  ⋅ K −1 . Under high g environment, experimental results show good liquid transport capabilities of the wick structures. (paper)

  19. Design, development and tests of high-performance silicon vapor chamber

    Science.gov (United States)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-03-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 103 kg m-3. Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m-1 ṡ K-1. Under high g environment, experimental results show good liquid transport capabilities of the wick structures.

  20. Expansion of a vapor bubble and aerosols transfer

    International Nuclear Information System (INIS)

    Breton, J.P.; Lapicore, A.; Porrachia, A.; Natta, M.; Amblard, M.; Berthoud, G.

    1979-08-01

    Experimental results on the expansion and collapse of two phase vapor bubble, and on the aerosols transport outside the tank are presented. Two facilities using small source of hot water (2 cm 3 ) or bigger ones (1000 cm 3 ) were used and are described. Two models are developped to analyze the results on the bubble. They show the heat and mass transfer from the bubble to the surroundings and the following reduction in the mechanical energy delivered by the bubble, and the decrease in this reduction due to noncondensables and to scale effect. The models developed or the aerosol transfer show that most particles are likely transported from the bubble to the cover gas

  1. Experimental study of the spill and vaporization of a volatile liquid

    International Nuclear Information System (INIS)

    Bohl, Douglas; Jackson, Gregory

    2007-01-01

    Pool and vapor cloud characteristics of an acetone spill issuing from the downstream wall of a flow obstruction oriented perpendicular to a uniform flow were investigated experimentally. Data indicate that the spill event was largely governed by the temperature of the surface in relation to the boiling point of the spilled liquid. The free stream velocity (ranging from 0.75 to 3.0 m/s) also impacted the spreading of the spill. Planar laser-induced fluorescence (PLIF) was used to measure acetone vapor concentrations during the transient pool spreading and vaporization in a window 60 cm long by 50 cm high and located downstream of the 16 cm high obstruction. The recirculation region induced by the flow obstruction caused upstream transport of the acetone vapor along the spill surface, after which it was convected vertically along the obstruction wall before being entrained into the flow and convected downstream. The recirculating flow caused regions of vapor within the flammability limits to be localized near the flow obstruction. These regions moved into and out of the measurement plane by large three-dimensional flow structures. The flammable region of the evolved vapor cloud was observed to grow well past the downstream edge of the measurement domain. With decreasing wind speeds, both the mass of acetone vapor within the flammability limits and the total spill event time increased significantly. The data presented herein provides a basis for validating future spill models of hazardous chemical releases, where complex turbulent flow modeling must be coupled with spill spreading and vaporization dynamics

  2. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    Science.gov (United States)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  3. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material

    International Nuclear Information System (INIS)

    Jouhara, H.; Milko, J.; Danielewicz, J.; Sayegh, M.A.; Szulgowska-Zgrzywa, M.; Ramos, J.B.; Lester, S.P.

    2016-01-01

    A novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name “heat mat” and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system. - Highlights: • A new flat heat pipe PV/T system that can be used as building materials is reported. • The new solar collector enhanced the performance of the PV by about 15%. • The new solar collector is capable of absorbing heat from ambient efficiently. • The new system is efficient from the solar/thermal conversion point of view.

  4. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  5. Thermosyphon analysis of a repository: A simplified model for vapor flow and heat transfer

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Powell, M.W.

    1994-01-01

    A simplified model is developed for thermally-driven buoyant gas flow in an unsaturated repository such as that anticipated at Yucca Mountain. Based on a simplified thermosyphon model, the strength of buoyant gas flow is related to key thermal-hydraulic parameters (e.g., bulk permeability and maximum repository temperature). The effects of buoyant gas flow on vapor flow and heat transport near the repository horizon are assessed, namely: (i) the strength of buoyant flow through the repository, (ii) the effect of buoyant flow on vapor transfer, and (iii) the effect of buoyant flow on heat transfer

  6. DOE/DOE Tight Oil Flammability & Transportation Spill Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lord, David L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This presentation describes crude oils, their phase behavior, the SPR vapor pressure program, and presents data comparisons from various analytical techniques. The overall objective is to describe physical properties of crude oil relevant to flammability and transport safety

  7. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  8. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  9. Vaporization of Samarium trichloride studied by thermogravimetry

    International Nuclear Information System (INIS)

    Esquivel, Marcelo R.; Pasquevich, Daniel M.

    2003-01-01

    In the present work, the vaporization reaction of SmCl 3 (l) obtained from the 'in situ' reaction of Sm 2 O 3 (s) and Cl 2 (g)-C(s) was studied by thermogravimetry under controlled atmosphere. The effects of both the temperature between 825 C degrees and 950 C degrees and the total flow gas on the vaporization rate of the following reaction: SmCl 3 (l) = SmCl 3 (g) were analyzed. The vaporization rate of the process was found to be independent of then total gas flow rate and highly dependent on the temperature. E ap calculation led to a value of 240 ± 10 kJ.mol -1 . A comparison between this value and that of the molar enthalpy of vaporization allow to the conclusion that the reaction occur in conditions near to equilibrium. The SmCl 3 identity was determined by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). (author)

  10. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  11. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  12. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2011-01-01

    , we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development

  13. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  14. 78 FR 42595 - Marine Vapor Control Systems

    Science.gov (United States)

    2013-07-16

    ... revise the substance As noted in the NPRM, the changes in this section were of this section. intended... the vapor-moving device, as recommended by CTAC in 1997 to maintain a minimum size of non-flammable...

  15. A technique to depress desflurane vapor pressure.

    Science.gov (United States)

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  16. Metal Vapor Arcing Risk Assessment Tool

    Science.gov (United States)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  17. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  18. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  19. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  20. Effect of impact angle on vaporization

    Science.gov (United States)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  1. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  2. Characterization of chemical agent transport in paints.

    Science.gov (United States)

    Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent

    2013-09-15

    A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. Published by Elsevier B.V.

  3. Investigation of the vaporization of boric acid by transpiration thermogravimetry and knudsen effusion mass spectrometry.

    Science.gov (United States)

    Balasubramanian, R; Lakshmi Narasimhan, T S; Viswanathan, R; Nalini, S

    2008-11-06

    The vaporization of H3BO3(s) was studied by using a commercial thermogravimetric apparatus and a Knudsen effusion mass spectrometer. The thermogravimetric measurements involved use of argon as the carrier gas for vapor transport and derivation of vapor pressures of H3BO3(g) in the temperature range 315-352 K through many flow dependence and temperature dependence runs. The vapor pressures as well as the enthalpy of sublimation obtained in this study represent the first results from measurements at low temperatures that are in accord with the previously reported near-classical transpiration measurements (by Stackelberg et al. 70 years ago) at higher temperatures (382-413 K with steam as the carrier gas). The KEMS measurements performed for the first time on boric acid showed H3BO3(g) as the principal vapor species with no meaningful information discernible on H2O(g) though. The thermodynamic parameters, both p(H3BO3) and Delta sub H degrees m(H3BO3,g), deduced from KEMS results in the temperature range 295-342 K are in excellent agreement with the transpiration results lending further credibility to the latter. All this information points toward congruent vaporization at the H3BO3 composition in the H2O-B2O3 binary system. The vapor pressures obtained from transpiration (this study and that of Stackelberg et al.) as well as from KEMS measurements are combined to recommend the following: log [p(H3BO3)/Pa]=-(5199+/-74)/(T/K)+(15.65+/-0.23), valid for T=295-413 K; and Delta sub H degrees m=98.3+/-9.5 kJ mol (-1) at T=298 K for H3BO3(s)=H3BO3(g).

  4. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  5. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  6. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  7. Vapor pressure and enthalpy of vaporization of oil of catnip by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Gobble, Chase; Chickos, James

    2016-01-01

    Highlights: • Vaporization enthalpies of the nepetalactones from oil of catnip have been evaluated. • Vapor pressures from T = (298.15 to 350) K have been evaluated. • Oil of catnip has a vapor pressure similar to DEET at T = 298.15 K. - Abstract: The vaporization enthalpy and vapor pressure of the two nepetalactones found in Nepeta cataria have been evaluated by correlation gas chromatography. Vaporization enthalpies at T = 298.15 K of {(68.0 ± 1.9) and (69.4 ± 1.9)} kJ ⋅ mol"−"1 have been derived for the minor diastereomer, (4aS,7S,7aS)-nepetalactone, and major one, (4aS,7S,7aR)-nepetalactone, respectively. Vapor pressures also at T = 298.15 K of p = (1.2 ± 0.04) Pa and (0.91 ± 0.03) Pa have been evaluated for the minor and the major stereoisomer. In addition to being of interest because of the remarkable effect it has on various felids, oil of catnip is also quite effective in repelling mosquitoes, comparable to diethyl-m-toluamide (DEET). The vapor pressures evaluated in this work suggest that the two stereoisomers have similar volatility to DEET at ambient temperatures.

  8. Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes

    Czech Academy of Sciences Publication Activity Database

    Verevkin, S. P.; Krasnykh, E. L.; Vasiltsova, T. V.; Koutek, Bohumír; Doubský, Jan; Heintz, A.

    2003-01-01

    Roč. 206, - (2003), s. 331-339 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z4055905 Keywords : aldehydes * vapor pressure * enthalpy of vaporization Subject RIV: CC - Organic Chemistry Impact factor: 1.165, year: 2003

  9. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Schultz, Shannon M.; Harris, Harold H.; Chickos, James S.

    2015-01-01

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to T b ) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol −1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of T B = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of T B = (549.1 ± 0.1) K is also estimated by extrapolation

  10. Heat transport system

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acts as a pneumatic spring for the system. This system is suitable for use in a nuclear-powered artificial heart

  11. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    Science.gov (United States)

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.

  12. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments

    International Nuclear Information System (INIS)

    Khan, Ali M.; Wick, Lukas Y.; Harms, Hauke; Thullner, Martin

    2016-01-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. - Highlights: • The column setup allows resolving vapor-phase VOC concentration gradients at cm scale resolution. • Vapor-phase and liquid-phase concentrations are measured simultaneously. • Isotopically labelled VOC was used as reference species of low biodegradability. • Biodegradation rates in the unsaturated zone can be very high and act at a cm scale. • Unsaturated material can be an effective bio-barrier avoiding biodegradable VOC emissions. - Microbial degradation activity can be sufficient to remove VOC from unsaturated porous media after a few centimeter of vapor-phase diffusive transport and mayeffectively avoid atmospheric emissions.

  13. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhao, Yuping; Li, Chengchen; Chen, Mingming; Yu, Xiao; Chang, Yunwei; Chen, Anqi; Zhu, Hai; Tang, Zikang

    2016-01-01

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  14. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuping; Li, Chengchen [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Mingming, E-mail: andychain@live.cn [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Yu, Xiao; Chang, Yunwei [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Anqi [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Zhu, Hai, E-mail: zhuhai5@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Tang, Zikang, E-mail: zktang@umac.mo [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau (China)

    2016-12-09

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  15. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  16. TEXTILE SURFACE MODIFICATION BY PYHSICAL VAPOR DEPOSITION – (REVIEW

    Directory of Open Access Journals (Sweden)

    YUCE Ismail

    2017-05-01

    Full Text Available Textile products are used in various branches of the industry from automotive to space products. Textiles produced for industrial use are generally referred to as technical textiles. Technical textiles are nowadays applied to several areas including transportation, medicine, agriculture, protection, sports, packaging, civil engineering and industry. There are rapid developments in the types of materials used in technical textiles. Therefore, modification and functionalization of textile surfaces is becoming more crucial. The improvements of the properties such as anti-bacterial properties, fire resistivity, UV radiation resistance, electrical conductivity, self cleaning, and super hydrophobic, is getting more concern with respect to developments in textile engineering. The properties of textile surfaces are closely related to the fiber structure, the differences in the polymer composition, the fiber mixture ratio, and the physical and chemical processes applied. Textile surface modifications can be examined in four groups under the name mechanical, chemical, burning and plasma. Surface modifications are made to improve the functionality of textile products. Textile surface modifications affect the properties of the products such as softness, adhesion and wettability. The purpose of this work is to reveal varieties of vapor deposition modifications to improve functionality. For this purpose, the pyhsical vapor deposition methods, their affects on textile products and their end-uses will be reviewed.

  17. A dispersion safety factor for LNG vapor clouds

    Energy Technology Data Exchange (ETDEWEB)

    Vílchez, Juan A. [TIPs – Trámites, Informes y Proyectos, SL, Llenguadoc 10, 08030 Barcelona (Spain); Villafañe, Diana [Centre d’Estudis del Risc Tecnològic (CERTEC), Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia (Spain); Casal, Joaquim, E-mail: joaquim.casal@upc.edu [Centre d’Estudis del Risc Tecnològic (CERTEC), Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia (Spain)

    2013-02-15

    Highlights: ► We proposed a new parameter: the dispersion safety factor (DSF). ► DSF is the ratio between the distance reached by the LFL and that reached by the visible cloud. ► The results for the DSF agree well with the evidence from large scale experiments. ► Two expressions have been proposed to calculate DSF as a function of H{sub R}. ► The DSF may help in indicating the danger of ignition of a LNG vapor cloud. -- Abstract: The growing importance of liquefied natural gas (LNG) to global energy demand has increased interest in the possible hazards associated with its storage and transportation. Concerning the event of an LNG spill, a study was performed on the relationship between the distance at which the lower flammability limit (LFL) concentration occurs and that corresponding to the visible contour of LNG vapor clouds. A parameter called the dispersion safety factor (DSF) has been defined as the ratio between these two lengths, and two expressions are proposed to estimate it. During an emergency, the DSF can be a helpful parameter to indicate the danger of cloud ignition and flash fire.

  18. A dispersion safety factor for LNG vapor clouds

    International Nuclear Information System (INIS)

    Vílchez, Juan A.; Villafañe, Diana; Casal, Joaquim

    2013-01-01

    Highlights: ► We proposed a new parameter: the dispersion safety factor (DSF). ► DSF is the ratio between the distance reached by the LFL and that reached by the visible cloud. ► The results for the DSF agree well with the evidence from large scale experiments. ► Two expressions have been proposed to calculate DSF as a function of H R . ► The DSF may help in indicating the danger of ignition of a LNG vapor cloud. -- Abstract: The growing importance of liquefied natural gas (LNG) to global energy demand has increased interest in the possible hazards associated with its storage and transportation. Concerning the event of an LNG spill, a study was performed on the relationship between the distance at which the lower flammability limit (LFL) concentration occurs and that corresponding to the visible contour of LNG vapor clouds. A parameter called the dispersion safety factor (DSF) has been defined as the ratio between these two lengths, and two expressions are proposed to estimate it. During an emergency, the DSF can be a helpful parameter to indicate the danger of cloud ignition and flash fire

  19. Water vapor profiling using microwave radiometry

    Science.gov (United States)

    Wang, J. R.; Wilheit, T. T.

    1988-01-01

    Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.

  20. Vapor pressure and thermodynamics of beryllium carbide

    International Nuclear Information System (INIS)

    Rinehart, G.H.; Behrens, R.G.

    1980-01-01

    The vapor pressure of beryllium carbide has been measured over the temperature range 1388 to 1763 K using Knudsen-effusion mass spectrometry. Vaporization occurs incongruently according to the reaction Be 2 C(s) = 2Be(g) + C(s). The equilibrium vapor pressure above the mixture of Be 2 C and C over the experimental temperature range is (R/J K -1 mol -1 )ln(p/Pa) = -(3.610 +- 0.009) x 10 5 (K/T) + (221.43 +- 1.06). The third-law enthalpy change for the above reaction obtained from the present vapor pressures is ΔH 0 (298.15 K) = (740.5 +- 0.1) kJ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (732.0 +- 1.8) kJ mol -1 . The enthalpy of formation for Be 2 C(s) calculated from the present third-law vaporization enthalpy and the enthalpy of formation of Be(g) is ΔH 0 sub(f)(298.15 K) = -(92.5 +- 15.7) kJ mol -1 . (author)

  1. Vapor pumps and gas-driven machines

    International Nuclear Information System (INIS)

    Guillet, R.

    1991-01-01

    The vapor pump, patented in 1979 by Gaz de France, is an additional mass and heat exchanger which uses the combustion air of fuel-burning machines as an additional cold source. This cold source is preheated and, above all, humidified before reaching the burner, by means of the residual sensible and latent heat in the combustion products of the fuel-burning process. This final exchanger thus makes it possible, in many cases, to recover all the gross calorific value of natural gas, even when the combustion products leave the process at a wet temperature greater than 60 0 C, the maximum dew point of the products of normal combustion. Another significant advantage of the vapor pump being worth highlighting is the selective recycling of water vapor by the vapor pump which reduces the adiabatic combustion temperature and the oxygen concentration in the combustion air, two factors which lead to considerable reductions in nitrogen oxides formation, hence limiting atmospheric pollution. Alongside a wide range of configurations which make advantageous use of the vapor pump in association with gas-driven machines and processes, including gas turbines, a number of boiler plant installations are also presented [fr

  2. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  3. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  4. HTO deposition by vapor exchange between atmosphere and soil

    International Nuclear Information System (INIS)

    Bunnenberg, C.

    1989-01-01

    HTO deposition to soils occurs by vapor exchange between atmosphere and soil-air, when the concentration gradient is directed downwards, and it is principally independent from simultaneous transport of H 2 O. In relatively dry top soil, which is frequently the case, as it tries to attain equilibrium with the air humidity, HTO diffuses into deeper soil driven by the same mechanisms that caused the deposition process. The resulting HTO profile is depending on the atmospheric supply and the soil physical conditions, and it is the source for further tritium pathways, namely root uptake by plants and reemission from soil back into the ground-level air. Simulation experiments with soil columns exposed to HTO labeled atmospheres have proved the theoretical expectation that under certain boundary conditions the HTO profile can be described by an error function. The key parameter is the effective diffusion coefficient, which in turn is a function of the sorption characteristics of the particular soil. (orig.) [de

  5. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  6. Kinetics of chemical vapor deposition of boron on molybdenum

    International Nuclear Information System (INIS)

    Tanaka, H.; Nakanishi, N.; Kato, E.

    1987-01-01

    Experimental rate data of chemical vapor deposition of boron by reduction of boron trichloride with hydrogen are analyzed to determine the reaction mechanism. The experiments were conducted at atmospheric pressure. The weight change of the sample was noted by means of a thermobalance. Molybdenum was used as the substrate. It has been found that the outer layer of the deposited film is Mo/sub 2/B/sub 5/ and the inner layer is MoB, and in the stational state of the reaction, the diffusion in the solid state is considered not to be rate controlling. When mass transport limitation was absent, the reaction orders with respect to boron trichloride and hydrogen were one third and one half, respectively. By comparing these orders with those obtained from Langmuir-Hinshelwood type equations, the rate controlling mechanism is identified to be the desorption of hydrogen chloride from the substrate

  7. A solution to water vapor in the National Transonic Facility

    Science.gov (United States)

    Gloss, Blair B.; Bruce, Robert A.

    1989-01-01

    As cryogenic wind tunnels are utilized, problems associated with the low temperature environment are being discovered and solved. Recently, water vapor contamination was discovered in the National Transonic Facility, and the source was shown to be the internal insulation which is a closed-cell polyisocyanurate foam. After an extensive study of the absorptivity characteristics of the NTF thermal insulation, the most practical solution to the problem was shown to be the maintaining of a dry environment in the circuit at all times. Utilizing a high aspect ratio transport model, it was shown that the moisture contamination effects on the supercritical wing pressure distributions were within the accuracy of setting test conditions and as such were considered negligible for this model.

  8. Monitoring middle-atmospheric water vapor over Seoul by using a 22 GHz ground-based radiometer SWARA

    Science.gov (United States)

    Ka, Soohyun; de Wachter, Evelyn; Kaempfer, Niklaus; Oh, Jung Jin

    2010-10-01

    Water vapor is the strongest natural greenhouse gas in the atmosphere. It is most abundant in the troposphere at low altitudes, due to evaporation at the ocean surface, with maximum values of around 6 g/kg. The amount of water vapor reaches a minimum at tropopause level and increases again in the middle atmosphere through oxidation of methane and vertical transport. Water vapor has both positive and negative effects on global warming, and we need to study how it works on climate change by monitoring water vapor concentration in the middle atmosphere. In this paper, we focus on the 22 GHz ground-based radiometer called SWARA (Seoul Water vapor Radiometer) which has been operated at Sookmyung women's university in Seoul, Korea since Oct. 2006. It is a joint project of the University of Bern, Switzerland, and the Sookmyung Women's University of Seoul, South Korea. The SWARA receives 22.235 GHz emitted from water vapor spontaneously and converts down to 1.5 GHz with +/- 0.5 GHz band width in 61 kHz resolution. To represent 22.235 GHz water vapor spectrum precisely, we need some calibration methods because the signal shows very weak intensity in ~0.1 K on the ground. For SWARA, we have used the balancing and the tipping curve methods for a calibration. To retrieve the water vapor profile, we have applied ARTS and Qpack software. In this paper, we will present the calibration methods and water vapor variation over Seoul for the last 4 years.

  9. Auxiliary Electrodes for Chromium Vapor Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    2018-05-15

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establish a sodium activity.

  10. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  11. Numerical modeling of a vaporizing multicomponent droplet

    Science.gov (United States)

    Megaridis, C. M.; Sirignano, W. A.

    The fundamental processes governing the energy, mass, and momentum exchange between the liquid and gas phases of vaporizing, multicomponent liquid droplets have been investigated. The axisymmetric configuration under consideration consists of an isolated multicomponent droplet vaporizing in a convective environment. The model considers different volatilities of the liquid components, variable liquid properties due to variation of the species concentrations, and non-Fickian multicomponent gaseous diffusion. The bicomponent droplet model was employed to examine the commonly used assumptions of unity Lewis number in the liquid phase and Fickian gaseous diffusion. It is found that the droplet drag coefficients, the vaporization rates, and the related transfer numbers are not influenced by the above assumptions in a significant way.

  12. Secondhand Exposure to Vapors From Electronic Cigarettes

    Science.gov (United States)

    Czogala, Jan; Fidelus, Bartlomiej; Zielinska-Danch, Wioleta; Travers, Mark J.; Sobczak, Andrzej

    2014-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are designed to generate inhalable nicotine aerosol (vapor). When an e-cigarette user takes a puff, the nicotine solution is heated and the vapor is taken into lungs. Although no sidestream vapor is generated between puffs, some of the mainstream vapor is exhaled by e-cigarette user. The aim of this study was to evaluate the secondhand exposure to nicotine and other tobacco-related toxicants from e-cigarettes. Materials and Methods: We measured selected airborne markers of secondhand exposure: nicotine, aerosol particles (PM2.5), carbon monoxide, and volatile organic compounds (VOCs) in an exposure chamber. We generated e-cigarette vapor from 3 various brands of e-cigarette using a smoking machine and controlled exposure conditions. We also compared secondhand exposure with e-cigarette vapor and tobacco smoke generated by 5 dual users. Results: The study showed that e-cigarettes are a source of secondhand exposure to nicotine but not to combustion toxicants. The air concentrations of nicotine emitted by various brands of e-cigarettes ranged from 0.82 to 6.23 µg/m3. The average concentration of nicotine resulting from smoking tobacco cigarettes was 10 times higher than from e-cigarettes (31.60±6.91 vs. 3.32±2.49 µg/m3, respectively; p = .0081). Conclusions: Using an e-cigarette in indoor environments may involuntarily expose nonusers to nicotine but not to toxic tobacco-specific combustion products. More research is needed to evaluate health consequences of secondhand exposure to nicotine, especially among vulnerable populations, including children, pregnant women, and people with cardiovascular conditions. PMID:24336346

  13. Vapor characterization of Tank 241-C-103

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Story, M.S.

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program

  14. Vapor characterization of Tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

  15. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  16. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  17. Vapor deposition in basaltic stalactites, Kilauea, Hawaii

    Science.gov (United States)

    Baird, A. K.; Mohrig, D. C.; Welday, E. E.

    Basaltic stalacties suspended from the ceiling of a large lava tube at Kilauea, Hawaii, have totally enclosed vesicles whose walls are covered with euhedral FeTi oxide and silicate crystals. The walls of the vesicles and the exterior surfaces of stalactites are Fe and Ti enriched and Si depleted compared to common basalt. Minerals in vesicles have surface ornamentations on crystal faces which include alkali-enriched, aluminosilicate glass(?) hemispheres. No sulfide-, chloride-, fluoride-, phosphate- or carbonate-bearing minerals are present. Minerals in the stalactites must have formed by deposition from an iron oxide-rich vapor phase produced by the partial melting and vaporization of wall rocks in the tube.

  18. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  19. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  20. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  1. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  2. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  3. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    Science.gov (United States)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  4. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2015-01-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell. (paper)

  5. Separation of aromatics by vapor permeation through solvent swollen membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ito, A.; Adachi, K.; Feng, Y. [Niigata University, Niigata (Japan)

    1995-12-20

    A vapor permeation process for aromatics separation from a hydrocarbon mixture was studied by means of the simultaneous permeation of dimethylsulfoxide vapor as an agent for membrane swelling and preferential permeation of aromatics. The separation performance of the process was demonstrated by a polyvinylalcohol membrane for mixed vapors of benzene/cyclohexane, xylene/octane and a model gasoline. The aromatic vapors preferentially permeated from these mixed vapor feeds. The separation factor was over 10. The separation mechanism of the process mainly depends on the relative salability of the vapors between aromatics and other hydrocarbons in dimethylsulfoxide. 14 refs., 9 figs., 1 tab.

  6. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    Explosive boiling, defined as energy transfer leading to formation of vapor rapidly enough to produce large shock waves, has been widely studied in a number of contexts. Depending upon the nature and temperatures of the liquids and mode of contacting, large-scale mixing and explosive vaporization may occur, or alternatively, only relatively non-energetic, film-type boiling may exist. The key difference is whether a mechanism is operative for increasing the liquid-liquid interfacial area in a time scale consistent with the formation of a detonation wave. Small drops of a cold volatile liquid were dropped onto a free surface of a hot, non-volatile liquid. The critical Weber number for coalescence is obtained from the envelope of the film boiling region. Markedly different behavior for the two hot liquids is observed. A 'splash' theory for local propagation of vapor explosions in spontaneously nucleating liquid-liquid systems is now formulated. After a random contact is made, explosive growth and coalescence of the vapor bubbles occurs as soon as the surrounding pressure is relieved, resulting in a high-pressure vapor layer at the liquid-liquid contact area. This amounts to an impact pressure applied to the free surface, with a resulting velocity distribution obtained from potential flow theory. The peak pressure predictions are. consistent with data for Freon-oil mixing, but further evaluation will await additional experimental data. Nevertheless, the current inference is that a UO 2 -Na vapor explosion in a reactor environment cannot be visualized. In conclusion: The propagation model presented here differs in some details from that of Henry and Fauske, although both are consistent with some peak pressure data obtained by Henry, et al. Clearly, additional experimental information is needed for further evaluation of these theories. Nevertheless, it should be emphasized that even at this time a number of important observations concerning the requirements for a vapor

  7. Knudsen cell vaporization of rare earth nitrides: enthalpy of vaporization of HoN098

    International Nuclear Information System (INIS)

    Brown, R.C.; Clark, N.J.

    1975-01-01

    The enthalpy of vaporization of HoN 0 . 98 was measured by the weight-loss Knudsen cell technique using Motzfeldt-Whitman extrapolations to zero orifice area. A third-law enthalpy of vaporization of HoN 0 . 98 of 155.9 +- 5 kcal mole -1 was obtained compared to a second-law value of 162.0 +- 5 kcal mole -1 . Similar measurements on the nitrides of samarium, erbium, and ytterbium gave third-law enthalpies of vaporization of 126.8 +-- 5 kcal mole -1 ; 159.6 +- 5 kcal mole -1 , and 121.0 +- 5 kcal mole -1 , respectively. 7 tables

  8. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  9. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  10. General well function for soil vapor extraction

    Science.gov (United States)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  11. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  12. Atomic lithium vapor laser isotope separation

    International Nuclear Information System (INIS)

    Olivares, I.E.; Rojas, C.

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the 6 LiD 2 and the 7 LiD 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  13. Resonant second harmonic generation in potassium vapor

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.; Lawrence Berkeley Lab., CA

    1995-06-01

    Picosecond pulses are used to study resonant second harmonic generation in potassium vapor. Although the process is both microscopically and macroscopically forbidden, it can readily be observed. The results can be quantitatively understood by a multiphoton-ionization-initiated, dc-field-induced, coherent transient model

  14. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  15. A FGGE water vapor wind data set

    Science.gov (United States)

    Stewart, Tod R.; Hayden, Christopher M.

    1985-01-01

    It has been recognized for some time that water vapor structure visible in infrared imagery offers a potential for obtaining motion vectors when several images are considered in sequence (Fischer et al., 1981). A study evaluating water vapor winds obtained from the VISSR atmospheric sounder (Stewart et al., 1985) has confirmed the viability of the approach. More recently, 20 data sets have been produced from METEOSAT water vapor imagery for the FGGE period of 10-25 November 1979. Where possible, two data sets were prepared for each day at 0000 and 1200 GMT and compared with rawinsondes over Europe, Africa, and aircraft observations over the oceans. Procedures for obtaining winds were, in general, similar to the earlier study. Motions were detected both by a single pixel tracking and a cross correlation method by using three images individually separated by one hour. A height assignment was determined by matching the measured brightness temperature to the temperature structure represented by the FGGE-IIIB analyses. Results show that the METEOSAT water vapor winds provide uniform horizontal coverage of mid-level flow over the globe with good accuracy.

  16. External fuel vaporization study, phase 2

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  17. Atomic-vapor-laser isotope separation

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures

  18. Fractional condensation of biomass pyrolysis vapors

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria; Brilman, Derk Willem Frederik; Garcia Perez, M.; Wang, Zhouhong; Oudenhoven, Stijn; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.

    2011-01-01

    In this paper, we have investigated the possibilities to steer the composition and, thus, the quality of pyrolysis liquids by the reactor temperature and the pyrolysis vapor condenser temperature. Pine wood was pyrolyzed in a 1 kg/h fluidized-bed pyrolysis reactor operated at 330 or 480 °C. The

  19. 75 FR 65151 - Marine Vapor Control Systems

    Science.gov (United States)

    2010-10-21

    ... Classification UFL Upper flammable limit USCG U.S. Coast Guard VCS Vapor control system VOC Volatile organic... transfer substance to new Subpart P, beginning with 33 CFR 154.2000, to facilitate the substantive changes... that guidance. Limit requirements for flame arresters or flame screens to the flammable, combustible...

  20. Covering sources of toxic vapors with foam

    International Nuclear Information System (INIS)

    Aue, W. P.; Guidetti, F.

    2009-01-01

    In a case of chemical terrorism, first responders might well be confronted with a liquid source of toxic vapor which keeps spreading out its hazardous contents. With foam as an efficient and simple means, such a source could be covered up in seconds and the spread of vapors mitigated drastically. Once covered, the source could then wait for a longer time to be removed carefully and professionally by a decontamination team. In order to find foams useful for covering up toxic vapor sources, a large set of measurements has been performed in order to answer the following questions: - Which foams could be used for this purpose? - How thick should the foam cover be? - For how long would such a foam cover be effective? - Could the practical application of foam cause a spread of the toxic chemical? The toxic vapors sources included GB, GD and HD. Among the foams were 10 fire fighter foams (e.g. AFFF, protein) and the aqueous decontamination foam CASCAD. Small scale experiments showed that CASCAD is best suited for covering a toxic source; a 10 cm layer of it covers and decontaminates GB. The large scale experiments confirmed that any fire fighter foam is a suitable cover for a longer or shorter period.(author)

  1. Similarities and differences in vapor explosion criteria

    International Nuclear Information System (INIS)

    Cronenberg, A.W.

    1978-01-01

    An overview of recent ideas pertaining to vapor explosion criteria indicates that in general sense, a consensus of opinion is emerging on the conditions applicable to explosive vaporization. Experimental and theoretical work has lead a number of investigators to the formulation of such conditions which are quite similar in many respects, although the quantitative details of the model formulation of such conditions are somewhat different. All model concepts are consistent in that an initial period of stable film boiling, separating molten fuel from coolant, is considered necessary (at least for large-scale interactions and efficient intermixing), with subsequent breakdown of film boiling due to pressure and/or thermal effects, followed by intimate fuel-coolant contact and a rapid vaporization process which is sufficient to cause shock pressurization. Although differences arise as to the conditions for and the energetics associated with film boiling destabilization and the mode and energetics of fragmentation and intermixing. However, the principal area of difference seems to be the question of what constitutes the requisite condition(s) for rapid vapor production to cause shock pressurization

  2. HYDROCARBON VAPOR DIFFUSION IN INTACT CORE SLEEVES

    Science.gov (United States)

    The diffusion of 2,2,4-trimethylpentane (TMP) and 2,2,5-trimethylhexane (TMH) vapors put of residually contaminated sandy soil from the U.S. Environmental Protection Agency (EPA) field research site at Traverse City, Michigan, was measured and modeled. The headspace of an intact ...

  3. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  4. Terahertz radiation in alkali vapor plasmas

    International Nuclear Information System (INIS)

    Sun, Xuan; Zhang, X.-C.

    2014-01-01

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization

  5. Vapor pressure of selected organic iodides

    Czech Academy of Sciences Publication Activity Database

    Fulem, M.; Růžička, K.; Morávek, P.; Pangrác, Jiří; Hulicius, Eduard; Kozyrkin, B.; Shatunov, V.

    2010-01-01

    Roč. 55, č. 11 (2010), 4780-4784 ISSN 0021-9568 R&D Projects: GA ČR GA203/08/0217 Institutional research plan: CEZ:AV0Z10100521 Keywords : vapor pressure * static method * organic iodides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.089, year : 2010

  6. Study of vaporization of sodium metaborate by transpiration thermogravimetry and Knudsen effusion mass spectrometry.

    Science.gov (United States)

    Narasimhan, T S Lakshmi; Viswanathan, R; Nalini, S

    2011-11-17

    The vaporization of solid sodium metaborate NaBO(2)(s) was studied by transpiration thermogravimetry (TTG) and Knudsen effusion mass spectrometry (KEMS). The transpiration measurements, performed for the first time on NaBO(2)(s), involved use of argon as the carrier gas for vapor transport and derivation of vapor pressure of NaBO(2)(g) (by assuming it as the sole vapor species) through many flow-dependence runs and temperature-dependence runs in the temperature range 1075-1218 K. The KEMS measurements performed in the temperature range 1060-1185 K confirmed NaBO(2)(g) as the principal vapor species over NaBO(2)(s), in accord with the previously reported KEMS studies. The values of p(NaBO(2)) obtained by both TTG and KEMS are consistent within the uncertainties associated with each method and so are the second- and third-law values of enthalpy of sublimation, the latter aspect consistently missing in all previous vaporization studies. The results of both TTG and KEMS were combined to recommend the following thermodynamic parameters pertinent to the sublimation reaction, NaBO(2)(s) = NaBO(2)(g): Log{p(NaBO(2))/Pa} = -(17056 ± 441)/(T/K) + (14.73 ± 0.35) for the temperature range 1060-1218 K; Δ(r)H°(m)(298.15 K) = (346.3 ± 9.4) kJ·mol(-1); and Δ(r)S°(m)(298.15 K) = (210.2 ± 6.8) J·mol(-1)·K(-1).

  7. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    Science.gov (United States)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  8. Framework for reactive mass transport

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Reactive transport modeling is applicable for a range of porous materials. Here the modeling framework is focused on cement-based materials, where ion diffusion and migration are described by the Poisson-Nernst-Planck equation system. A two phase vapor/liquid flow model, with a sorption hysteresis...... description is coupled to the system. The mass transport is solved by using the finite element method where the chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained...

  9. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  10. The vapor pressure and enthalpy of vaporization of M-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, S J; Seiler, F A; Bechtold, W E; Eidson, A F

    1988-12-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 {+-} 0.1 (SE) kj/ g{center_dot}mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 ({+-} 0.1) (SE) kjg{center_dot}mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization ({delta}Cpdeg.) of 35 {+-} 3 (SE) J/g{center_dot}mol{center_dot}K over the temperature range studied. (author)

  11. The vapor pressure and enthalpy of vaporization of M-xylene

    International Nuclear Information System (INIS)

    Rothenberg, S.J.; Seiler, F.A.; Bechtold, W.E.; Eidson, A.F.

    1988-01-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 ± 0.1 (SE) kj/ g·mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 (± 0.1) (SE) kjg·mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization (ΔCpdeg.) of 35 ± 3 (SE) J/g·mol·K over the temperature range studied. (author)

  12. 46 CFR 182.480 - Flammable vapor detection systems.

    Science.gov (United States)

    2010-10-01

    ... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.480 Flammable vapor... permit calibration in a vapor free atmosphere. (g) Electrical connections, wiring, and components for a...

  13. Ammonia IR Absorbance Measurements with an Equilibrium Vapor Cell

    National Research Council Canada - National Science Library

    Field, Paul

    2004-01-01

    Infrared (IR) absorbance spectra were acquired for 18 ammonia vapor pressures. The vapor pressures were generated with 15 gravimetrically prepared aqueous solutions and three commercial aqueous solutions using a dynamic method I.E...

  14. Water vapor movement in freezing aggregate base materials.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  15. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    2013-04-03

    agricultural crops. To meet the requirements for these and other demanding applications, new sensing approaches with improved sensor selectivity are required...of these vapors with key side- chain amino acids. DNT-binding peptide receptors were further conjugated to an oligo(ethylene glycol) hydrogel for vapor...coefficient for DNT over TNT vapor. Vapor-phase binding performance was attributed to the ability of the oligo(ethylene glycol) hydrogel to maintain the

  16. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  17. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  18. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  19. Review of literature on the asymmetric collapse of vapor bubbles

    International Nuclear Information System (INIS)

    Fremd, R.; Froehlich, G.

    1977-06-01

    This report contains a review of literature on the asymmetric collape of vapor bubbles by cavitation with special consideration to vapor explosions. Two numerical models, which describe the collapse of cavities in the neighbourhood of a solid surface, are presented. Moreover experimental results for this case are provided. Propositions to apply the numerical models to vapor explosions are made. (orig.) [de

  20. The separation of hydrocarbons from waste vapor streams

    International Nuclear Information System (INIS)

    Behling, R.D.; Ohlrogge, K.; Peinemann, K.V.; Kyburz, E.

    1989-01-01

    Hydrocarbon vapors generated from industrial processes dispersed into air are contributing factors for the creation of photochemical smog. The separation of hydrocarbon vapor by means of membranes is in case of some applications a technically simple and economic process. A membrane vapor separation process with a following treatment of the retentate by catalytic incineration is introduced in this paper

  1. Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Růžička, M.

    2011-01-01

    Roč. 303, č. 2 (2011), s. 205-216 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : thiophene sulfolane * dimethyl sulfoxide * vapor pressure * heat capacity * vaporization enthalpy * recommended vapor pressure equation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  2. 33 CFR 154.826 - Vapor compressors and blowers.

    Science.gov (United States)

    2010-07-01

    ...) Excessive shaft bearing temperature. (d) If a centrifugal compressor, fan, or lobe blower handles vapor in... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which handles...

  3. Growth of molybdenum disulphide using iodine as transport material

    Indian Academy of Sciences (India)

    In the present paper an attempt has been made to describe the chemical vapor transport (CVT) technique used for the growth of molybdenum disulphide (MoS2) single crystals. Iodine (I2) is used as transporting material for this purpose. The energy dispersive analysis by X-ray (EDAX) confirmed the stoichiometry of the ...

  4. The vaporization enthalpy and vapor pressure of S (+)-methamphetamine at T = 298.15 K by correlation gas chromatography

    International Nuclear Information System (INIS)

    Thornton, Melissa; Gobble, Chase; Chickos, James

    2014-01-01

    Highlights: • The vaporization enthalpy of (d)-methamphetamine was measured. • The vapor pressure of (d)-methamphetamine as a function of temperature was evaluated. • The vapor pressure of 4-benzylpiperidine as a function of temperature was evaluated. - Abstract: The vaporization enthalpy and vapor pressure of S (+)-methamphetamine is evaluated by correlation-gas chromatography. A vaporization enthalpy of (58.7 ± 4.3) kJ · mol −1 and a vapor pressure, p = (38 ± 9) Pa has been obtained using a variety of secondary aliphatic amines as standards. In addition, equations describing the vapor pressure temperature dependence are provided for standards and S (+)-methamphetamine covering the temperature range from T = 298.15 K to the boiling temperature. Boiling temperatures are reproduced within an interval of 8 K or less

  5. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    Science.gov (United States)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  6. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data

    Energy Technology Data Exchange (ETDEWEB)

    Schlaepfer, D. [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Institut, Villigen (Switzerland)] [and others

    1996-03-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

  7. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    Science.gov (United States)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  8. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  9. Vapor hydration and subsequent leaching of transuranic-containing SRL and WV glasses

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Gerding, T.J.

    1989-09-01

    Prior to contact by liquid water and subsequent leaching, high-level nuclear waste glass subject to disposal in the unsaturated environment at Yucca Mountain, Nevada, will be altered through contact with humid air. Conditions could range from temperatures as high as 200 degree C to ambient repository temperature after cooling and relative humidities up to 100% depending on the air flow and heat transport dynamics of the waste package and near field environments. However, under any potential set of temperature/humidity conditions, the glass will undergo alteration via well-established vapor phase hydration processes. In the present paper, the results of a set of parametric experiments are described, whereby vapor phase hydrated glasses were subjected to leaching under static conditions. The purpose of the experiments was to (1) compare the leaching of vapor phase altered glass to that of fresh glass, (2) to develop techniques for determining the radionuclide content of secondary phases that formed during the hydration reaction, and (3) to provide a basis for performing long-term saturated and unsaturated testing of vapor hydrated glass. 3 refs., 2 figs., 2 tabs

  10. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  11. Mass spectrometric study of Nd2S3 vaporization

    International Nuclear Information System (INIS)

    Fenochka, B.V.

    1987-01-01

    The authors conduct a mass-spectrometric study of neodymium(III) sulfide vaporization. The chemical composition of the samples was stoichiometric and the samples were vaporized from tantalum effusion cells. When the vapor over Nd 2 S 3 is ionized by electrons the mass spectra shows monovalent cations of Nd, S, NdS, and NdO. The enthalpy of vaporization if Nd atoms from Nd 2 S 3 at average experimental temperatures and the standard enthalpy of reaction is shown. Also presented is the enthalpy of vaporization of NdS molecules from Nd 2 S 3 at average experimental temperatures and the standard enthalpy of reaction

  12. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  13. Liquid-liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials

  14. Thermodynamics of the vaporization of uranium tetrabromide

    International Nuclear Information System (INIS)

    Singh, Z.; Prasad, R.; Venugopal, P.V.; Roy, K.N.; Sood, D.D.

    1981-01-01

    Vapour pressures of solid and liquid uranium tetrabromide have been measured in the temperature range of 696 to 805 K and 805 to 1003 K respectively by transpiration and evaporation-temperature techniques. The vapour pressures obtained by the two techniques are in good agreement and have been combined to give the reported vapour-pressure equations for solid and liquid uranium tetrabromide. The melting temperature, the normal boiling temperature, the standard enthalpy of vaporization ΔH 0 (vap, 298.15 K), and the standard entropy of vaporization ΔS 0 (vap, 298.15 K) are reported. The enthalpy of fusion ΔH 0 (fus, 802 K) is also reported. The thermodynamic quantities from the present study are compared with those in the literature and critically analysed. (author)

  15. Improved cell for water-vapor electrolysis

    Science.gov (United States)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  16. Ceramic composites by chemical vapor infiltration

    International Nuclear Information System (INIS)

    Stinton, D.P.

    1987-01-01

    Composites consisting of silicon carbide matrices reinforced with continuous ceramic fibers are being developed for high-temperature structural applications. Chemical vapor deposition (CVD) techniques are very effective in fabricating composites with high strengths and exceptional fracture toughness. Mechanical properties of infiltrated composites are controlled by the strength of the interfacial bond between the fibers and matrix. This paper describes two CVD techniques and reviews the models being developed to better understand and control the infiltration process

  17. DuPont Chemical Vapor Technical Report

    International Nuclear Information System (INIS)

    MOORE, T.L.

    2003-01-01

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH and Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations

  18. Discharge characteristics of copper vapor laser

    International Nuclear Information System (INIS)

    Nemoto, Koshichi; Fujii, Takashi

    1988-01-01

    This report describes about the copper vapor laser and experimental results of it's discharge characteristics. We measured time varing of plasma regist, and analyzed electron density. (1) The plasma regist is larger than 100Ω at the beginning of discharge, and is rapidly reduced to about 10Ω. (2) The electron density is estimated about 1∼2 x 10 12 /cc at the begining of discharge. (author)

  19. Quality and Control of Water Vapor Winds

    Science.gov (United States)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  20. Estimating evaporative vapor generation from automobiles based on parking activities

    International Nuclear Information System (INIS)

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S.

    2015-01-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade–Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5–8% less than calculation without considering parking activity. - Highlights: • We applied real parking distribution data to estimate evaporative vapor generation. • We applied real hourly temperature data to estimate hourly incremental vapor generation rate. • Evaporative emission for Florence is estimated based on parking distribution and hourly rate. - A new approach is proposed to quantify the weighted evaporative vapor generation based on parking distribution with an hourly incremental vapor generation rate

  1. Marketing practices of vapor store owners.

    Science.gov (United States)

    Cheney, Marshall; Gowin, Mary; Wann, Taylor Franklin

    2015-06-01

    We examined the marketing strategies for local vapor stores in a large metropolitan area in Oklahoma. Vapor store owners or managers (n = 33) participated in individual interviews regarding marketing practices in 2014. We asked owners about their marketing strategies and the groups they targeted. We transcribed the interviews and analyzed them for themes. Store owners used a variety of marketing strategies to bring new customers to their stores and keep current customers coming back. These marketing strategies showed many parallels to tobacco industry strategies. Most owners engaged in some form of traditional marketing practices (e.g., print media), but only a few used radio or television advertising because of budget constraints. Owners used social media and other forms of electronic communication, pricing discounts and specials, and loyalty programs. Owners also had booths at local events, sponsored community events, and hosted them in their stores. Owners attempted to target different groups of users, such as college students and long-term smokers. Local vapor store marketing practices closely resemble current and former tobacco industry marketing strategies. Surveillance of marketing practices should include local and Web-based strategies.

  2. Released air during vapor and air cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz [VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Hydromechanics and Hydraulic Equipment, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2016-06-30

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  3. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  4. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  5. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  6. Characterization of a Compact Water Vapor Radiometer

    Science.gov (United States)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  7. Marketing Practices of Vapor Store Owners

    Science.gov (United States)

    Gowin, Mary; Wann, Taylor Franklin

    2015-01-01

    Objectives. We examined the marketing strategies for local vapor stores in a large metropolitan area in Oklahoma. Methods. Vapor store owners or managers (n = 33) participated in individual interviews regarding marketing practices in 2014. We asked owners about their marketing strategies and the groups they targeted. We transcribed the interviews and analyzed them for themes. Results. Store owners used a variety of marketing strategies to bring new customers to their stores and keep current customers coming back. These marketing strategies showed many parallels to tobacco industry strategies. Most owners engaged in some form of traditional marketing practices (e.g., print media), but only a few used radio or television advertising because of budget constraints. Owners used social media and other forms of electronic communication, pricing discounts and specials, and loyalty programs. Owners also had booths at local events, sponsored community events, and hosted them in their stores. Owners attempted to target different groups of users, such as college students and long-term smokers. Conclusions. Local vapor store marketing practices closely resemble current and former tobacco industry marketing strategies. Surveillance of marketing practices should include local and Web-based strategies. PMID:25880960

  8. A multistratum approach to soil vapor extraction

    International Nuclear Information System (INIS)

    Fuhr, J.M.; Giesler, R.S.

    1993-01-01

    An innovative soil remediation design was implemented to address petroleum hydrocarbon contamination in a gradationally stratified subsurface environment containing alternating layers of clay, sand and clayey sand, and perched water tables in north Florida. The soil vapor extraction (SVE) design enables remediation to focus on distinct subsurface intervals depending on changing site conditions such as constituent concentration levels and periodic water-table fluctuations. Contaminated soils were assessed from the land surface to the top of a two foot thick perched water table located at 13 feet below land surface (bls), and also were encountered below the perched water table downward to another perched water table at 45 feet bls. Use of an organic vapor analyzer equipped with a flame ionization detector revealed hydrocarbon vapor concentrations in soil samples ranging to greater than 1,000 parts per million (ppm). Nonaqueous phase liquids were encountered on both perched water tables. Based on the site assessment, a multistratum soil and ground-water remediation system was designed and constructed. A pilot test was conducted to aid in the design of an effective SVE system

  9. Experimental study of vapor bubble dynamics

    International Nuclear Information System (INIS)

    Pasquini, Maria-Elena

    2015-01-01

    The object of this thesis is an experimental study of vapor bubble dynamics in sub-cooled nucleate boiling. The test section is locally heated by focusing a laser beam: heat fluxes from 1 e4 to 1.5 e6 W/m 2 and water temperature between 100 and 88 C have been considered. Three boiling regimes have been observed. Under saturated conditions and with low heat fluxes a developed nucleate boiling regime has been observed. Under higher sub-cooling and still with low heat fluxes an equilibrium regime has been observed in which the liquid flowrate evaporating at the bubble base is compensated by the vapor condensing flowrate at bubble top. A third regime have been observed at high heat fluxes for all water conditions: it is characterized by the formation of a large dry spot on the heated surface that keeps the nucleation site dry after bubble detachment. The condensation phase starts after bubble detachment. Bubble equivalent radius at detachment varies between 1 and 2.5 mm. Bubble properties have been measured and non-dimensional groups have been used to characterize bubble dynamics. Capillary waves have been observed on the bubble surface thanks to high-speed images acquisition. Two main phenomena have been proposed to explain capillary waves effects on bubble condensation: increasing of the phases interface area and decreasing of vapor bubble translation velocity, because of the increased drag force on the deformed bubble. (author) [fr

  10. Nuclear vapor thermal reactor propulsion technology

    International Nuclear Information System (INIS)

    Maya, I.; Diaz, N.J.; Dugan, E.T.; Watanabe, Y.; McClanahan, J.A.; Wen-Hsiung Tu; Carman, R.L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF 4 ) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF 4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (∼100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development

  11. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  12. Calculating the enthalpy of vaporization for ionic liquid clusters.

    Science.gov (United States)

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  13. Tracking an atmospheric river in a warmer climate: from water vapor to economic impacts

    Science.gov (United States)

    Dominguez, Francina; Dall'erba, Sandy; Huang, Shuyi; Avelino, Andre; Mehran, Ali; Hu, Huancui; Schmidt, Arthur; Schick, Lawrence; Lettenmaier, Dennis

    2018-03-01

    Atmospheric rivers (ARs) account for more than 75 % of heavy precipitation events and nearly all of the extreme flooding events along the Olympic Mountains and western Cascade Mountains of western Washington state. In a warmer climate, ARs in this region are projected to become more frequent and intense, primarily due to increases in atmospheric water vapor. However, it is unclear how the changes in water vapor transport will affect regional flooding and associated economic impacts. In this work we present an integrated modeling system to quantify the atmospheric-hydrologic-hydraulic and economic impacts of the December 2007 AR event that impacted the Chehalis River basin in western Washington. We use the modeling system to project impacts under a hypothetical scenario in which the same December 2007 event occurs in a warmer climate. This method allows us to incorporate different types of uncertainty, including (a) alternative future radiative forcings, (b) different responses of the climate system to future radiative forcings and (c) different responses of the surface hydrologic system. In the warming scenario, AR integrated vapor transport increases; however, these changes do not translate into generalized increases in precipitation throughout the basin. The changes in precipitation translate into spatially heterogeneous changes in sub-basin runoff and increased streamflow along the entire Chehalis main stem. Economic losses due to stock damages increase moderately, but losses in terms of business interruption are significant. Our integrated modeling tool provides communities in the Chehalis region with a range of possible future physical and economic impacts associated with AR flooding.

  14. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000 0 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O 2 , O, Pu, PuO and PuO 2 . The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu 6 + from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO 2 for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed

  15. Water transport in desert alluvial soil

    International Nuclear Information System (INIS)

    Kearl, P.M.

    1982-04-01

    Safe storage of radioactive waste buried in an arid alluvial soil requires extensive site characterization of the physical process influencing moisture movement which could act as a transport medium for the migration of radionuclides. The field portion of this study included an infiltration plot instrumented with thermocouple psychrometers and neturon moisture probe access holes. Baseline information shows a zone of higher moisture content at approximately 1.5 m (5 ft) in depth. A sprinkler system simulated a 500-year precipitation event. Results revealed water penetrated the soil to 0.9 m (2.9 ft). Due to the low moisture content, vapor transport was primarily responsible for water movement at this depth. Temperature gradients are substantially responsible for vapor transport by preferentially sorting water-vapor molecules from the surrounding air by using the soil as a molecular sieve. Adsorbed and capillary water vapor pressure increases in response to a temperature increase and releases additional water to the soil pore atmosphere to be diffused away

  16. Chamber transport

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2001-01-01

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system

  17. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    Science.gov (United States)

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  18. Chemical interactions between aerosols and vapors in the primary circuit of an LWR during a severe accident

    International Nuclear Information System (INIS)

    Wheatley, C.J.

    1988-01-01

    Aerosol formation, agglomeration, convection and deposition within the primary circuit of an LWR during a severe accident significantly affect the transport of fission products, even though they may compose only a small fraction of the aerosol material. Intra-particle and vapor chemical interactions are important to this through mass transfer between the aerosol and vapor. The authors will describe a model that attempts to account for these processes and of the two-way coupling that exists with the thermal hydraulics. They will discuss what agglomeration and deposition mechanisms must be included, alternatives for treating intra-particle chemical interactions, mechanisms of aerosol formation, and methods for solving the resulting equations. Results will be presented that illustrate the importance of treating the two-way coupling and the extent to which disequilibrium between the aerosol and vapor affects fission product behavior

  19. UV light-emitting-diode photochemical mercury vapor generation for atomic fluorescence spectrometry.

    Science.gov (United States)

    Hou, Xiaoling; Ai, Xi; Jiang, Xiaoming; Deng, Pengchi; Zheng, Chengbin; Lv, Yi

    2012-02-07

    A new, miniaturized and low power consumption photochemical vapor generation (PVG) technique utilizing an ultraviolet light-emitting diode (UV-LED) lamp is described, and further validated via the determination of trace mercury. In the presence of formic acid, the mercury cold vapor is favourably generated from Hg(2+) solutions by UV-LED irradiation, and then rapidly transported to an atomic fluorescence spectrometer for detection. Optimum conditions for PVG and interferences from concomitant elements were investigated in detail. Under optimum conditions, a limit of detection (LOD) of 0.01 μg L(-1) was obtained, and the precision was better than 3.2% (n = 11, RSD) at 1 μg L(-1) Hg(2+). No obvious interferences from any common ions were evident. The methodology was successfully applied to the determination of mercury in National Research Council Canada DORM-3 fish muscle tissue and several water samples.

  20. Evidence of water vapor in excess of saturation in the atmosphere of Mars.

    Science.gov (United States)

    Maltagliati, L; Montmessin, F; Fedorova, A; Korablev, O; Forget, F; Bertaux, J-L

    2011-09-30

    The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.