WorldWideScience

Sample records for vapor pressure determination

  1. Determination of Cannabinoid Vapor Pressures to Aid in Vapor Phase Detection of Intoxication.

    Science.gov (United States)

    Lovestead, Tara M; Bruno, Thomas J

    2017-09-01

    The quest for a reliable means to detect cannabis intoxication with a breathalyzer is ongoing. To design such a device, it is important to understand the fundamental thermodynamics of the compounds of interest. The vapor pressures of two important cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), are presented, as well as the predicted normal boiling temperature (NBT) and the predicted critical constants (these predictions are dependent on the vapor pressure data). The critical constants are typically necessary to develop an equation of state (EOS). EOS-based models can provide estimations of thermophysical properties for compounds to aid in designing processes and devices. An ultra-sensitive, quantitative, trace dynamic headspace analysis sampling called porous layered open tubular-cryoadsorption (PLOT-cryo) was used to measure vapor pressures of these compounds. PLOT-cryo affords short experiment durations compared to more traditional techniques for vapor pressure determination (minutes versus days). Additionally, PLOT-cryo has the inherent ability to stabilize labile solutes because collection is done at reduced temperature. The measured vapor pressures are approximately 2 orders of magnitude lower than those measured for n-eicosane, which has a similar molecular mass. Thus, the difference in polarity of these molecules must be impacting the vapor pressure dramatically. The vapor pressure measurements are presented in the form of Clausius-Clapeyron (or van't Hoff) equation plots. The predicted vapor pressures that would be expected at near ambient conditions (25 °C) are also presented.

  2. Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid

    Science.gov (United States)

    Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent

    2007-01-01

    This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…

  3. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  4. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  5. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  6. Vapor Pressure of Hexamethylene Triperoxide Diamine (HTMD) Determined with Secondary Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    2015-07-03

    rate constant for decomposition of 10-3 sec-1, three orders of magnitude higher than triacetone triperoxide ( TATP , 10-6 sec-1) with trimethylamine... TATP and diacetone diperoxide (DADP)) but only succeeded in assigning an upper limit on the vapor pressure of HMTD (0.04 Pa) [5]. The authors

  7. Development of a quasi-adiabatic calorimeter for the determination of the water vapor pressure curve.

    Science.gov (United States)

    Mokdad, S; Georgin, E; Hermier, Y; Sparasci, F; Himbert, M

    2012-07-01

    Progress in the knowledge of the water saturation curve is required to improve the accuracy of the calibrations in humidity. In order to achieve this objective, the LNE-CETIAT and the LNE-CNAM have jointly built a facility dedicated to the measurement of the saturation vapor pressure and temperature of pure water. The principle is based on a static measurement of the pressure and the temperature of pure water in a closed, temperature-controlled thermostat, conceived like a quasi-adiabatic calorimeter. A copper cell containing pure water is placed inside a temperature-controlled copper shield, which is mounted in a vacuum-tight stainless steel vessel immersed in a thermostated bath. The temperature of the cell is measured with capsule-type standard platinum resistance thermometers, calibrated with uncertainties below the millikelvin. The vapor pressure is measured by calibrated pressure sensors connected to the cell through a pressure tube whose temperature is monitored at several points. The pressure gauges are installed in a thermostatic apparatus ensuring high stability of the pressure measurement and avoiding any condensation in the tubes. Thanks to the employment of several technical solutions, the thermal contribution to the overall uncertainty budget is reduced, and the remaining major part is mainly due to pressure measurements. This paper presents a full description of this facility and the preliminary results obtained for its characterization.

  8. DETERMINATION OF SATURATION VAPOR PRESSURE OF LOW VOLATILE SUBSTANCES THROUGH THE STUDY OF EVAPORATION RATE BY THERMOGRAVIMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. V. Ralys

    2015-11-01

    Full Text Available Subject of Study.Research of vapor pressure of low volatile substances is a complicated problem due to both direct experimental implementation complexity and, most significantly, the issues faced correctness of the analysis and processing of experimental data. That is why it is usually required engaging the reference substances (with vapor pressures well studied. The latter drastically reduces the effectiveness of the experimental methods used and narrows their applicability. The paper deals with an approach to the evaporation process description (sublimation of low volatile substances based on molecular kinetic description in view of diffusive and convection processes. The proposed approach relies on experimental thermogravimetricfindingsina wide range of temperatures, flow rates ofthe purge gas and time. Method. A new approach is based on the calculation of the vapor pressure and uses the data about the speed of evaporation by thermogravimetric analysis depending on the temperature, the flow rate of the purge gas, and the evaporation time. The basis for calculation is the diffusion-kinetic description of the process of evaporation (mass loss of the substance from the exposed surface. The method is applicable to determine the thermodynamic characteristics for both the evaporation (the equilibrium liquid - vapor and sublimation (the equilibrium solid - vapor. We proposed the appropriate method of the experiment and analysis of its data in order to find the saturated vapor pressure of individual substances of low volatility. Main Results. The method has been tested on substances with insufficiently reliable and complete study of the thermodynamic characteristics but, despite this, are often used (because of the other data limitations as reference ones. The vaporization process (liquid-vapor has been studied for di-n-butyl phthalate C16H22O4 at 323,15–443,15 К, and sublimation for benzoic acid C7H6O2at 303,15–183,15 К. Both processes have

  9. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid

    DEFF Research Database (Denmark)

    Rodier, Marion; Li, Qingfeng; Berg, Rolf W.

    2016-01-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed...... with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available...... in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case...

  10. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  11. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    Science.gov (United States)

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  12. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    there were flaws in the original data prior to its publication. 3. FITTING METHODS Our process for correlating experimental vapor pressure ...2. Penski, E.C. Vapor Pressure Data Analysis Methodology, Statistics, and Applications; CRDEC-TR-386; U.S. Army Chemical Research, Development, and... Chemical Biological Center: Aberdeen Proving Ground, MD, 2006; UNCLASSIFIED Report (ADA447993). 11. Kemme, H.R.; Kreps, S.I. Vapor Pressure of

  13. Determinação da pressão de vapor de compostos orgânicos por cromatografia gasosa Determination of vapor pressure of organic compounds by gas chromatography

    Directory of Open Access Journals (Sweden)

    Fabrício P. Povh

    2006-06-01

    Full Text Available O conhecimento das pressões de vapor dos compostos naturais e suas propriedades críticas, de grande interesse para a extração supercrítica e impregnação de polímeros pelo processo supercrítico, é imprescindível para se fazer a modelagem termodinâmica do equilíbrio de fases. No entanto, a escassez de dados experimentais desses compostos, devida à alta volatilidade, ou facilidade à degradação em temperaturas baixas, requer a utilização de métodos especiais. Neste trabalho, determinaram-se as pressões de vapor da curcumina, nicotina, d-limoneno, beta-mirceno, citronelal e linalol, através de um método que utiliza medidas de tempo de retenção por cromatografia gasosa. Utilizou-se detector de ionização de chama e coluna em fase estacionária não polar, em condições isotérmicas. O método apresenta vantagens em relação a outros métodos, quanto à rapidez de análise, quantidade e repetibilidade das amostras. Para as determinações das pressões de vapor destes compostos naturais requer-se o conhecimento da temperatura normal de ebulição, ou temperatura de fusão e das pressões de vapor dos homólogos dos compostos analisados.The knowledge of the vapor pressures of natural compounds, as well as their critical properties are of great interest for the application of supercritical extraction and supercritical impregnation dye, and necessary for the thermodynamic modeling of equilibria phase. The scarcity of experimental data for these compounds results from their low volatility or easiness to degrade at low temperatures, therefore, requires the use of special methods. In this work, the vapor pressures of curcumin, nicotine, d-limonene, ß-myrcene, citronellal and linalool were determined through a method based on the retention time in a gas chromatographer column. A flame ionization detector and a column with non-polar stationary phase were used, under isothermal conditions. This method has the advantages of giving

  14. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine,

  15. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...... are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using...

  16. A new generalized correlation for accurate vapor pressure

    Directory of Open Access Journals (Sweden)

    Luis Fernando Cardona Palacio

    2016-08-01

    Full Text Available In this work, a new generalized correlation for pure substances is proposed for the estimation of vapor pressure, applicable in wide temperature range. Was used equilibrium liquid-vapor data with 28 refrigerants and minimizing the sum of the squares of the relative deviation in liquid-vapour pressure were determined the parameters and constants characteristics of the new equation and generalized for any pure substance using the acentric factor. Vapor pressure predictions were made for 45 pure substances who they didn´t not participate in the minimization, generated percent relative average deviation of 1.6073%. The results were compared with others equations for calculating the vapor pressure and  the  comparison  indicates  that  the  proposed  method provide  more  accurate  results  than  other  methods  used  in  this  work. Finally, the calculations of enthalpies of vaporization were done with deviations of 0.880% and the Waring criterion was applied to check the constants presed in this paper

  17. Dynamic response of vaporizing droplet to pressure oscillation

    Science.gov (United States)

    Yuan, Lei; Shen, Chibing; Zhang, Xinqiao

    2017-02-01

    Combustion instability is a major challenge in the development of the liquid propellant engines, and droplet vaporization is viewed as a potential mechanism for driving instabilities. Based on the previous work, an unsteady droplet heating and vaporization model was developed. The model and numerical method are validated by experimental data available in literature, and then the oscillatory vaporization of n-Heptane droplet exposed to unsteady harmonic nitrogen atmosphere was numerically investigated over a wide range of amplitudes and frequencies. Also, temperature variations inside the droplet were demonstrated under oscillation environments. It was found that the thermal wave is attenuated with significantly reduced wave intensities as it penetrates deep into droplet from the ambient gas. Droplet surface temperature exhibits smaller fluctuation than that of the ambient gas, and it exhibits a time lag with regard to the pressure variation. Furthermore, the mechanism leading to phase lag of vaporization rate with respect to pressure oscillation was unraveled. Results show that this phase lag varies during the droplet lifetime and it is strongly influenced by oscillation frequency, indicating droplet vaporization is only capable of driving combustion instability in some certain frequency domains. Instead, the amplitude of the oscillation does not have very significant effects. It is noteworthy that thermal inertia of the droplet also plays a considerable role in determining the phase lag.

  18. Referred Air Method 25E: Determination of a Vapor Phase Organic Concentration in Waste Samples

    Science.gov (United States)

    This method is applicable for determining the vapor pressure of waste. The headspace vapor of the sample is analyzed for carbon content by a headspace analyzer, which uses a flame ionization detector (FID).

  19. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    OpenAIRE

    Jeong, Jae; Lee, Sung; Jeon, Je-Beom; Kim, Suk

    2015-01-01

    Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the va...

  20. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  1. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.

    Energy Technology Data Exchange (ETDEWEB)

    Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

    2005-08-01

    Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be

  2. Halogenated methyl-phenyl ethers (anisoles) in the environment: determination of vapor pressures, aqueous solubilities, Henry's law constants, and gas/water- (Kgw), n-octanol/water- (Kow) and gas/n-octanol (Kgo) partition coefficients.

    Science.gov (United States)

    Pfeifer, O; Lohmann, U; Ballschmiter, K

    2001-11-01

    Halogenated methyl-phenyl ethers (methoxybenzenes, anisoles) are ubiquitous organics in the environment although they are not produced in industrial quantities. Modelling the fate of organic pollutants such as halogenated anisoles requires a knowledge of the fundamental physico-chemical properties of these compounds. The isomer-specific separation and detection of 60 of the 134 possible congeners allowing an environmental fingerprinting are reported in this study. The vapor pressure p0(L) of more than 60 and further physico-chemical properties of 26 available congeners are given. Vapor pressures p0(L), water solubilities S(L)W, and n-octanol/water partition coefficients Kow were determined by capillary HR-GC (High Resolution Gas Chromatography) on a non-polar phase and by RP-HPLC (Reversed Phase High Performance Liquid Chromatography) on a C18 phase with chlorobenzenes as reference standards. From these experimental data the Henry's law constants H, and the gas/water Kgw and gas/n-octanol Kgo partition coefficients were calculated. We found that vapor pressures, water solubilities, and n-octanol/water partition coefficients of the halogenated anisoles are close to those of the chlorobenzenes. A similar environmental fate of both groups can, therefore, be predicted.

  3. LOX vaporization in high-pressure, hydrogen-rich gas

    Science.gov (United States)

    Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    LOX droplet vaporization in high-pressure hydrogen-rich gas is analyzed, with special attention to thermodynamic effects which compel the surface to heat to the critical state and to supercritical vaporization processes on heating to criticality. Subcritical vaporization is modeled using a quasi-steady diffusion-controlled gas-phase transport formulation coupled to an effective-conductivity internal-energy-transport model accounting for circulation effects. It is demonstrated how the droplet surface might heat to the critical state, for ambient pressures slightly greater than the critical pressure of oxygen, such that the bulk of propellant within the droplet remains substantially below the critical mixing temperature.

  4. Numerical Analyses and Forecasting of Surface Air Temperature and Water Vapor Pressure.

    Science.gov (United States)

    Analyses and forecasting of heat exchange, fog probability and visibility over the oceans and a number of other numerical environmental analyses/forecasts require a detailed analysis and forecasting of surface air vapor pressure and temperature. Based on earlier encouraging studies by a few Norwegian researchers, such response computation and numerical analysis/forecasting of surface air vapor pressure and temperature is outlined. It is shown that the changes of surface air properties, and sea- air temperature and vapor pressure differences are mainly determined by

  5. Vapor Pressure of Bis-(2-chloroethyl)ethylamine (HN1)

    Science.gov (United States)

    2013-10-01

    The spectra that were obtained to compute the vapor-phase absorptivity coefficient showed traces of water vapor that purged during the first day of... barometer . Bath temperature, gas flow rate, and ambient pressure were recorded at 4 s intervals using a National Instruments (Austin, TX) LabVIEW

  6. Metal vapor condensation under high pressure (mercury vapor to 500 psia). [Heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S.; Bonilla, C.F.

    1975-01-01

    Mercury vapor up to 500 psia was condensed outside a cylindrical tube in both horizontal and vertical positions. Results show consistently low heat transfer coefficients compared to Nusselt's theory. Two auxiliary mercury vapor condensers downstream of the boiler vent were used to control and safeguard the system. Constantan wires were spot welded on the surface inside the test condenser tube. The heat flux ranged from 20,000 to 45,000 Btu/h-ft/sup 2/ and the temperature differences between vapor and condensing wall from 6 to 50/sup 0/F. The condensation heat transfer coefficients, ranging from 850 to 3,500 Btu/h-/sup 0/F-ft/sup 2/, are only about 3 to 9 percent of those predicted by Nusselt's theory. Due to the positive pressure in the system for most test runs, the chance of any in-leakage of noncondensable gases into the boiler is extremely small. Since no substantial change of heat transfer rate resulted from wide variations in the heat load on the reflux condenser at some specific heat flux on the test condenser tube, the low heat transfer rate of mercury vapor condensation was not due to the presence of any non-condensable gas. The test data for high vapor pressure up to 500 psia reveal that the heat transfer coefficient is independent of the vapor pressure level. The condensation coefficients calculated based on kinetic theory are much smaller than unity and decreasewith vapor pressure. It is hypothesized that dimer content in the metal vapor phase might behave as non-condensable or semi-condensable gas and create a diffusional barrier at the vapor-liquid interface near the condensate film. This dimer vapor could be the main cause of interfacial resistance during metal vapor condensation process. 41 figures, 7 tables, 58 references. (DLC)

  7. Effects of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech

    Directory of Open Access Journals (Sweden)

    Fatih Bayraktar

    2015-04-01

    Full Text Available This study was designed to determine the effect of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech (Fagus orientalis Lipsky. The study area was located in Ortaköy, Artvin, and the experimental area had the same soil structure and aspect. The study showed that transpiration and leaf vapor pressure deficit increased but leaf water potential decreased by altitudinal gradient

  8. Vapor pressure and intramolecular hydrogen bonding in fluorotelomer alcohols.

    Science.gov (United States)

    Krusic, Paul J; Marchione, Alexander A; Davidson, Fredric; Kaiser, Mary A; Kao, Chien-Ping C; Richardson, Raymond E; Botelho, Miguel; Waterland, Robert L; Buck, Robert C

    2005-07-21

    Vapor pressure and aqueous solubility are important parameters used to estimate the potential for transport of chemical substances in the atmosphere. For fluorotelomer alcohols (FTOHs), currently under scrutiny by environmental scientists as potential precursors of persistent perfluorocarboxylates (PFCAs), vapor pressure is the more significant property since these compounds are only very sparingly soluble in water. We have measured the vapor pressures of a homologous series of fluorotelomer alcohols, F(CF2CF2)nCH2CH2OH (n = 2-5), in the temperature range 21-250 degrees C by three independent methods: (a) a method suitable for very low vapor pressures at ambient temperatures (gas-saturation method), (b) an improved boiling point method at controlled pressures (Scott method), and (c) a novel method, requiring milligram quantities of substance, based on gas-phase NMR, a technique largely unfamiliar to chemists and holding promise for studies of relevance to environmental chemistry. The concordant values obtained indicate that recently published vapor pressure data overestimate the vapor pressure at ambient temperature, and therefore the volatility, of this series of fluorinated compounds. It was suggested that substantial intramolecular -O-H...F- hydrogen bonding between the hydroxylic proton and the two fluorines next to the ethanol moiety was responsible for their putative high volatility. Therefore, we have used gas-phase NMR, gas-phase FTIR, 2D NMR heteronuclear Overhauser effect measurements, and high-level ab initio computations to investigate the intramolecular hydrogen bonding in fluorotelomer alcohols. Our studies unequivocally show that hydrogen bonding of this type is not significant and cannot contribute to and cause unusual volatility. The substantially lower vapor pressure at ambient temperatures than previously reported resulting from our work is important in developing a valid understanding of the environmental transport behavior of this class of

  9. Vapor phase growth of functional pentacene films at atmospheric pressure

    NARCIS (Netherlands)

    Rolin, C.; Vasseur, K.; Niesen, B.; Willegems, M.; Müller, R.; Steudel, S.; Genoe, J.; Heremans, P.

    2012-01-01

    Compared to traditional vacuum evaporation techniques for small organic molecules, organic vapor phase deposition (OVPD) possesses a extra processing parameter: the pressure of process gas Pch. Here, the influence of large Pch variations (from 0.1 mbar to atmospheric pressure) on pentacene thin film

  10. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    Science.gov (United States)

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 46 CFR 154.438 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A are mostly flat surfaces,the Po must not exceed 69 kPa gauge (10 psig). (b) If the surfaces of an independent tank type A are formed by bodies of revolution, the design calculation of the Po must be specially...

  12. Water vapor pressure versus environmental lapse rate near the tropopause

    Science.gov (United States)

    Ferreira, Antonio; Castanheira, Jose; Gimeno, Luis

    2010-05-01

    The relationship between water vapor pressure and temperature lapse rate in the vicinity of the tropopause was investigated using in situ observations. The water vapor partial pressures and the lapse rates within a vertical distance of ±1.5 km around the first thermal tropopause were calculated from the vertical soundings conducted by the NOAA/CMDL at several locations in the last few decades (GMD Data Archive). A positive non-linear relationship between the two quantities was found to hold across the studied tropopause region at mid-latitudes and polar latitudes. A similar analysis was performed on the 300 and 250 hPa pressure levels (which often intercept the tropopause region), by collecting temperature and humidity observations within 1979-2008 from the Integrated Global Radiosonde Archive (IGRA). A relationship having almost the same shape was detected for statically stable lapse rates at all latitude zones. Given the relevance of water vapor in the radiative transfer in the upper troposphere, the results are an indication of a local influence of water vapor on the thermal structure of the transition layer between the troposphere and stratosphere

  13. New expressions to describe solution nonideal osmotic pressure, freezing point depression, and vapor pressure.

    Science.gov (United States)

    Fullerton, G D; Zimmerman, R J; Cantu, C; Cameron, I L

    1992-12-01

    New empirical expressions for osmotic pressure, freezing point depression, and vapor pressure are proposed based on the concepts of volume occupancy and (or) hydration force. These expressions are in general inverse relationships in comparison to the standard ideal expressions for the same properties. The slopes of the new equations are determined by the molecular weight of the solute and known constants. The accuracy and precision of the molecular weights calculated from the slope are identical and approximately 1% for the experiments reported here. The nonideality of all three colligative expressions is described by a dimensionless constant called the solute-solvent interaction parameter I. The results on sucrose have the same I = 0.26 for all three solution properties. The nonideality parameter I increased from 0.26 on sucrose to 1.7 on hemoglobin to successfully describe the well-known nonideal response of macromolecules.

  14. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    Science.gov (United States)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  15. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    Science.gov (United States)

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  16. Apparatus to measure the vapor pressure of slowly decomposing compounds from 1 Pa to 105 Pa

    OpenAIRE

    Berg, Robert F.

    2015-01-01

    This article describes an apparatus and method for measuring vapor pressures in the range from 1 Pa to 105 Pa. Its three distinctive elements are : (1) the static pressure measurements were made with only a small temperature difference between the vapor and the condensed phase, (2) the sample was degassed in situ, and (3) the temperature range extended up to 200 °C. The apparatus was designed to measure metal-organic precursors, which often are toxic, pyrophoric, or unstable. Vapor pressures ...

  17. Modified headspace solid-phase microextraction for the determination of quantitative relationships between components of mixtures consisting of alcohols, esters, and ethers - impact of the vapor pressure difference of the compounds.

    Science.gov (United States)

    Dawidowicz, Andrzej Lech; Szewczyk, Joanna; Dybowski, Michal P

    2017-07-01

    The quantitative relationship between analytes established by the headspace solid-phase microextraction procedure for multicomponent mixtures depends not only on the character and strength of interactions of individual components with solid-phase microextraction fiber but also on their vapor pressure in the applied headspace solid-phase microextraction system. This study proves that vapor pressure is of minor importance when the sample is dissolved/suspended in a low-volatility liquid of the same physicochemical character as that of the used solid phase microextraction fiber coating. It is demonstrated for mixtures of alcohols, esters, ethers and their selected representatives by applying a headspace solid-phase microextraction system composed of Carbowax fiber and sample solutions in polyethyleneglycol. The observed differences in quantitative relations between components of the examined mixtures established by their direct analysis and by modified headspace solid-phase microextraction are insignificant (Fexp  headspace solid phase microextraction system due to low components concentration in polyethyleneglycol suspensions (Raoult's law) and due to strong specific interactions of analyte molecules with polyethyleneglycol molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, Jillian L., E-mail: JillianLGoldfarb@gmail.co [Division of Engineering, Brown University, Providence, RI 02912 (United States); Suuberg, Eric M., E-mail: Eric_Suuberg@brown.ed [Division of Engineering, Brown University, Providence, RI 02912 (United States)

    2010-06-15

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) g . mol{sup -1} were measured over the temperature range of (301 to 486) K using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin, and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents.

  19. Melt-vapor phase transition in the lead-selenium system at atmospheric and low pressure

    Science.gov (United States)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.

    2016-03-01

    The boiling temperature and the corresponding vapor phase composition in the existence domain of liquid solutions were calculated from the partial pressures of saturated vapor of the components and lead selenide over liquid melts in the lead-selenium system. The phase diagram was complemented with the liquid-vapor phase transition at atmospheric pressure and in vacuum of 100 Pa, which allowed us to judge the behavior of the components during the distillation separation.

  20. U.S. Strategic Petroleum Reserve Vapor Pressure Committee 2009 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Ray (Allen Energy Services, Inc., Longview, TX); Eldredge, Lisa (DynMcDermott Petroleum Operations, Harahan, LA); DeLuca, Charles (DynMcDermott Petroleum Operations, Harahan, LA); Mihalik, Patrick (DynMcDermott Petroleum Operations, Harahan, LA); Maldonado, Julio (U.S. Department of Energy, Harahan, LA); Lord, David L.; Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Berndsen, Gerard (U.S. Department of Energy, Harahan, LA)

    2010-05-01

    This report comprises an annual summary of activities under the U.S. Strategic Petroleum Reserve (SPR) Vapor Pressure Committee in FY2009. The committee provides guidance to senior project management on the issues of crude oil vapor pressure monitoring nd mitigation. The principal objectives of the vapor pressure program are, in the event of an SPR drawdown, to minimize the impact on the environment and assure worker safety and public health from crude oil vapor emissions. The annual report reviews key program areas ncluding monitoring program status, mitigation program status, new developments in measurements and modeling, and path forward including specific recommendations on cavern sampling for the next year. The contents of this report were first presented to SPR senior anagement in December 2009, in a deliverable from the vapor pressure committee. The current SAND report is an adaptation for the Sandia technical audience.

  1. An Inexpensive Microscale Method for Measuring Vapor Pressure, Associated Thermodynamic Variables, and Molecular Weight

    Science.gov (United States)

    Demuro, Jason C.; Margarian, Hovanes; Mkhikian, Artavan; No, Kwang Hi; Peterson, Andrew R.

    1999-08-01

    Existing methods for measuring vapor pressure are too expensive or not quantitative enough for chemistry classes in secondary schools. Our method measures the vapor pressure inside a bubble trapped in a graduated microtube made from a disposable 1-mL glass pipet. Vapor pressures of water, methanol, and ethanol are measured over temperature ranges of 4-90 °C. The enthalpy and entropy of vaporization and boiling points, calculated using the Clausius-Clapeyron equation, agree well with published values. The vapor pressures of aqueous solutions of ethanol and methanol plotted against mole fractions of water give positive deviations from Raoult's law, but concentrations were identified from which molecular weights of the alcohols could be calculated. These molecular weights are not significantly different from published values. Sources of error in the method are analyzed. A procedure for use in secondary schools is outlined.

  2. Reappraisal of disparities between osmolality estimates by freezing point depression and vapor pressure deficit methods.

    Science.gov (United States)

    Winzor, Donald J

    2004-02-15

    As a response to recent expression of concern about possible unreliability of vapor pressure deficit measurements (K. Kiyosawa, Biophys. Chem. 104 (2003) 171-188), the results of published studies on the temperature dependence of the osmotic pressure of aqueous polyethylene glycol solutions are shown to account for the observed discrepancies between osmolality estimates obtained by freezing point depression and vapor pressure deficit osmometry--the cause of the concern.

  3. Controlled Growth of Non-Uniform Arsenic Profiles in Silicon Reduced-Pressure Chemical Vapor Deposition Epitaxial Layers

    NARCIS (Netherlands)

    Popadic, M.; Scholtes, T.L.M.; De Boer, W.; Sarubbi, F.; Nanver, L.K.

    2009-01-01

    An empirical model of As surface segregation during reduced-pressure chemical vapor deposition Si epitaxy is presented. This segregation mechanism determines the resulting doping profile in the grown layer and is here described by a model of simultaneous and independent As adsorption and segregation

  4. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  5. Apparatus to measure the vapor pressure of slowly decomposing compounds from 1 Pa to 105 Pa

    Science.gov (United States)

    Berg, Robert F.

    2016-01-01

    This article describes an apparatus and method for measuring vapor pressures in the range from 1 Pa to 105 Pa. Its three distinctive elements are : (1) the static pressure measurements were made with only a small temperature difference between the vapor and the condensed phase, (2) the sample was degassed in situ, and (3) the temperature range extended up to 200 °C. The apparatus was designed to measure metal-organic precursors, which often are toxic, pyrophoric, or unstable. Vapor pressures are presented for naphthalene, ferrocene, diethyl phthalate, and TEMAH (tetrakisethylmethylaminohafnium). Also presented are data for the temperature-dependent decomposition rate of TEMAH. PMID:27274567

  6. Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Liu, Y.A.

    2013-01-01

    In the present work, a group contribution method is proposed for the estimation of vapor pressures and heats of vaporization of organic liquids found in edible fat/oil and biofuel industries as a function of temperature. The regression of group contribution parameters was based on an extensive...... databank (2036 values) composed by fatty compounds, i.e., fatty acids, methyl-, ethyl-, propyl- and butyl- esters, fatty alcohols, tri-, di- and monoacylglycerols and hydrocarbons. This new methodology gives improved predictions when compared to a prior group contribution equation (Ceriani and Meirelles...

  7. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)]. E-mail: fgarcias@imp.mx; Eliosa-Jimenez, Gaudencio [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Silva-Oliver, Guadalupe [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Godinez-Silva, Armando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)

    2007-06-15

    In this work, new (vapor + liquid) equilibrium data for the (N{sub 2} + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N{sub 2} + n-heptane) system.

  8. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis

  9. Indoor/outdoor connections exemplified by processes that depend on an organic compound's saturation vapor pressure

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2003-01-01

    Outdoor and indoor environments are profitably viewed as parts of a whole connected through various physical and chemical interactions. This paper examines four phenomena that share a dependence on vapor pressure-the extent to which an organic compound in the gas phase sorbs on airborne particles...... first estimates of the above processes. For typical indoor conditions, only larger compounds with lower-saturation vapor pressures (e.g., tetracosane, pentacosane, or di-2-ethylhexyl phthalate) have airborne particle concentrations comparable to or larger than gas phase concentrations. Regardless......'s saturation vapor pressure correlates in a linear fashion with the logarithms of equilibrium coefficients characteristic of each of these four phenomena. Since, to a rough approximation, the log of an organic compound's vapor pressure scales with its molecular weight, molecular weight can be used to make...

  10. Liquid-propellant droplet vaporization and combustion in high pressure environments

    Science.gov (United States)

    Yang, Vigor

    1991-01-01

    In order to correct the deficiencies of existing models for high-pressure droplet vaporization and combustion, a fundamental investigation into this matter is essential. The objective of this research are: (1) to acquire basic understanding of physical and chemical mechanisms involved in the vaporization and combustion of isolated liquid-propellant droplets in both stagnant and forced-convective environments; (2) to establish droplet vaporization and combustion correlations for the study of liquid-propellant spray combustion and two-phase flowfields in rocket motors; and (3) to investigate the dynamic responses of multicomponent droplet vaporization and combustion to ambient flow oscillations.

  11. New Micro-Method for Prediction of Vapor Pressure of Energetic Materials

    Science.gov (United States)

    2014-07-01

    temperatures for 14 compounds (mix of energetic and non-energetic materials). References for vapor pressures: TNT, urea nitrate , PETN, RDX, HMX, TATB...standard Melamine Sigma Aldrich Urea Nitrate Matt Sherrill (U.S. Army Research Laboratory [ARL]) RDX Class 5; Lot HOL88M675079 HMX Class 5; Lot...energetic materials). References for vapor pressures: TNT, urea nitrate , PETN, RDX, HMX, TATB, and HNS (20), caffeine (19, 21 both values used in linear

  12. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  13. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  14. Prediction of the liquid-vapor equilibrium pressure using the quasi-Gaussian entropy theory

    NARCIS (Netherlands)

    Amadei, A; Roccatano, D; Apol, M.E F; Berendsen, H.J.C.; Di Nola, A.

    1996-01-01

    We derived a method to evaluate the liquid-vapor equilibrium pressure, with high accuracy over a large range of temperature, using the quasi-Gaussian entropy theory. The final expression that we obtain for the equilibrium pressure as a function of the temperature can be considered as a very accurate

  15. Atmospheric pressure synthesis of photoluminescent hybrid materials by sequential organometallic vapor infiltration into polyethylene terephthalate fibers

    Science.gov (United States)

    Akyildiz, Halil I.; Mousa, Moataz Bellah M.; Jur, Jesse S.

    2015-01-01

    Exposing a polymer to sequential organometallic vapor infiltration (SVI) under low pressure conditions can significantly modify the polymer's chemical, mechanical, and optical properties. We demonstrate that SVI of trimethylaluminum into polyethylene terephthalate (PET) can also proceed readily at atmospheric pressure, and at 60 °C the extent of reaction determined by mass uptake is independent of pressure between 2.5 Torr and 760 Torr. At 120 °C, however, the mass gain is 50% larger at 2.5 Torr relative to that at 760 Torr, indicating that the precursor diffusion in the chamber and fiber matrix decreases at higher source pressure. Mass gain decreases, in general, as the SVI process temperature increases both at 2.5 Torr and 760 Torr attributed to the faster reaction kinetics forming a barrier layer, which prevents further diffusion of the reactive species. The resulting PET/Al-Ox product shows high photoluminescence compared to untreated fibers. A physical mask on the polymer during infiltration at 760 Torr is replicated in the underlying polymer, producing an image in the polymer that is visible under UV illumination. Because of the reduced precursor diffusivity during exposure at 760 Torr, the image shows improved resolution compared to SVI performed under typical 2.5 Torr conditions.

  16. Economic feasibility of replacing sodium vapor and high pressure mercury vapor bulbs with LEDs for street lighting

    Directory of Open Access Journals (Sweden)

    Olusola Olorunfemi Bamisile

    2016-01-01

    Full Text Available The main aim of this article is to examine the feasibility of an energy audit program. LEDs are used to replace the sodium vapor lamps and high-pressured mercury vapor lamps that are currently used for the street lighting system in the Turkish Republic of Northern Cyprus. 44% of the fossil fuels imported into the Turkish Republic of Northern Cyprus is used for electricity generation, which makes the reduction in the consumption of electicity very important. This project will save as much as 36,880,410 kWh on site annually and 111,758,818 kWh from the source. The economic, environmental, and fossil fuels savings of this project are also evaluated.

  17. Vapor pressures of substituted polycarboxylic acids are much lower than previously reported

    Directory of Open Access Journals (Sweden)

    A. J. Huisman

    2013-07-01

    Full Text Available The partitioning of compounds between the aerosol and gas phase is a primary focus in the study of the formation and fate of secondary organic aerosol. We present measurements of the vapor pressure of 2-methylmalonic (isosuccinic acid, 2-hydroxymalonic (tartronic acid, 2-methylglutaric acid, 3-hydroxy-3-carboxy-glutaric (citric acid and DL-2,3-dihydroxysuccinic (DL-tartaric acid, which were obtained from the evaporation rate of supersaturated liquid particles levitated in an electrodynamic balance. Our measurements indicate that the pure component liquid vapor pressures at 298.15 K for tartronic, citric and tartaric acids are much lower than the same quantity that was derived from solid state measurements in the only other room temperature measurement of these materials (made by Booth et al., 2010. This strongly suggests that empirical correction terms in a recent vapor pressure estimation model to account for the inexplicably high vapor pressures of these and similar compounds should be revisited, and that due caution should be used when the estimated vapor pressures of these and similar compounds are used as inputs for other studies.

  18. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.

    Science.gov (United States)

    Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda V; Duchowicz, Pablo R

    2016-06-01

    The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Low-Pressure Chemical Vapor (LPCVD) Graphene Growth Study and Raman Characterization

    Science.gov (United States)

    2013-12-01

    films deposited for a growth study is discussed. Low pressure chemical vapor deposition was utilized to grow graphene layers onto copper foil substrates...exfoliation method (3); however, recent efforts have focused on graphene synthesis by conventional methods, such as chemical vapor deposition ( CVD ) and...ultrahigh vacuum, high temperature annealing (i.e., epitaxial graphene from SiC) (4, 5). CVD , in particular, is a promising growth technique because

  20. Pressure-coupled vaporization and combustion responses of liquid-fuel droplets in high-pressure environments

    Science.gov (United States)

    Yang, Vigor; Shuen, J. S.; Hsiao, C. C.

    1991-01-01

    The dynamic responses of liquid-fuel droplet vaporization and combustion to ambient pressure oscillations are examined. The analysis is based on the complete sets of conservation equations for both gas and liquid phases, and accommodates detailed treatments of finite-rate chemical kinetics and variable properties. With a full account of thermodynamic phase equilibrium at the droplet surface, the model enables a systematic examination of the effects of ambient flow conditions on the droplet behavior. The responses of hydrocarbon fuel droplets in both sub- and super-critical environments are investigated. Results indicate that the droplet gasification and burning mechanisms depend greatly on the ambient pressure. In particular, a rapid enlargement of the vaporization and combustion responses occurs when the droplet surface reaches its critical point, mainly due to the strong variations of latent heat of vaporization and thermophysical properties at the critical state.

  1. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhne, W.

    2012-12-03

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that

  2. Growth of a dry spot under a vapor bubble at high heat flux and high pressure

    CERN Document Server

    Nikolayev, Vadim; Lagier, G -L; Hegseth, J

    2016-01-01

    We report a 2D modeling of the thermal diffusion-controlled growth of a vapor bubble attached to a heating surface during saturated boiling. The heat conduction problem is solved in a liquid that surrounds a bubble with a free boundary and in a semi-infinite solid heater by the boundary element method. At high system pressure the bubble is assumed to grow slowly, its shape being defined by the surface tension and the vapor recoil force, a force coming from the liquid evaporating into the bubble. It is shown that at some typical time the dry spot under the bubble begins to grow rapidly under the action of the vapor recoil. Such a bubble can eventually spread into a vapor film that can separate the liquid from the heater thus triggering the boiling crisis (critical heat flux).

  3. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  4. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Suuberg, E.M.; Oja, V.; Lilly, W.D.

    1997-12-31

    As the world continues to deplete its petroleum reserves, then heavy crude oil, coal liquids, and other heavy fossil fuels may be required to meet the world energy needs. Heavy fossil fuels contain molecules that are large and more aromatic and that contain more heteroatoms than those found in liquid crude oil. There is also significant current interest in general area of coal pyrolysis, particularly with respect to comprehensive models of this complicated phenomenon. This interest derives from central role of pyrolysis in all thermally driven coal conversion processes - gasification, combustion, liquefaction, mild gasification, or thermal beneficiation. There remain several key data needs in these application areas. Among them is a need for a more reliable correlation for prediction of the vapor pressures of heavy, primary coal tars. Such information is important in design of all coal conversion processes, in which the volatility of tarry products is of major concern. This paper presents work on the vapor pressures of coal tars using the continuous knudsen effusion technique.

  5. Desenvolvimento de um equipamento para avaliação do efeito do etanol na pressão de vapor e entalpia de vaporização em gasolinas automotivas Development of a device to valuate the effect of ethanol on the vapor pressure and vaporization enthalpy of fuel gasolines

    Directory of Open Access Journals (Sweden)

    Renato Cataluña

    2006-06-01

    Full Text Available The quality of the gasoline utilized for fueling internal combustion engines with spark ignition is directly affected by the gasoline's properties. Thus, the fuel's properties must be in perfect equilibrium to allow the engine to perform optimally, not only insofar as fuel consumption is concerned, but also in order to reduce the emission of pollutants. Vapor pressure and vaporization enthalpy are important properties of a gasoline determining the fuel's behavior under different operating conditions in internal combustion engines. The study reported here involved the development of a device to determine the vapor pressure and the vaporization enthalpy of formulations containing volumes of 5, 15 and 25% of ethanol in four base gasolines (G1, G2, G3 and G4. The chemical composition of these gasolines was determined using a gas chromatographer equipped with a flame ionization detector (FID.

  6. Observations on vapor pressure in SPR caverns : sources.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Darrell Eugene

    2010-05-01

    considered through computations using the Multimechanism Deformation Coupled Fracture (MDCF) model, suggesting a relative minor, but potentially significant, contribution to the regain process. Apparently, gains in gas content can be generated from the oil itself during storage because the salt dome has been heated by the geothermal gradient of the earth. The heated domal salt transfers heat to the oil stored in the caverns and thereby increases the gas released by the volatile components and raises the boiling point pressure of the oil. The process is essentially a variation on the fractionation of oil, where each of the discrete components of the oil have a discrete temperature range over which that component can be volatized and removed from the remaining components. The most volatile components are methane and ethane, the shortest chain hydrocarbons. Since this fractionation is a fundamental aspect of oil behavior, the volatile component can be removed by degassing, potentially prohibiting the evolution of gas at or below the temperature of the degas process. While this process is well understood, the ability to describe the results of degassing and subsequent regain is not. Trends are not well defined for original gas content, regain, and prescribed effects of degassing. As a result, prediction of cavern response is difficult. As a consequence of this current analysis, it is suggested that solutioning brine of the final fluid exchange of a just completed cavern, immediately prior to the first oil filling, should be analyzed for gas content using existing analysis techniques. This would add important information and clarification to the regain process. It is also proposed that the quantity of volatile components, such as methane, be determined before and after any degasification operation.

  7. Comparative evaluation of naturally ventilated screenhouse and evaporative cooled greenhouse based on optimal vapor pressure deficit

    NARCIS (Netherlands)

    Shamshiri, Ramin; Ahmad, Desa; Wan Ismail, Wan Ishak; Man, Hasfalin Che; Zakaria, Abd Jamil; Beveren, Van Peter; Yamin, Muhammad

    2016-01-01

    The objective of this study was to compare two closed-field plant production environments for tomato cultivation based on optimal vapor pressure deficit (VPD). Experiment was carried out in tropical lowlands of Malaysia by collecting 11 days of sample data during March (2014), from an evaporative

  8. The Action of Pressure-Radiation Forces on Pulsating Vapor Bubbles

    NARCIS (Netherlands)

    Hao, Y.; Oguz, H.N.; Prosperetti, Andrea

    2001-01-01

    The action of pressure-radiation (or Bjerknes) forces on gas bubbles is well understood. This paper studies the analogous phenomenon for vapor bubbles, about which much less is known. A possible practical application is the removal of boiling bubbles from the neighborhood of a heated surface in the

  9. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10... Headquarters for reading purposes or it may be purchased from the Society at 100 Barr Harbor Drive, West...

  10. Atmospheric pressure chemical vapor deposition of ZnO: Process modeling and experiments

    NARCIS (Netherlands)

    Deelen, J. van; Illiberi, A.; Kniknie, B.; Beckers, E.H.A.; Simons, P.J.P.M.; Lankhorst, A.

    2014-01-01

    The deposition of zinc oxide has been performed by atmospheric pressure chemical vapor deposition and trends in growth rates are compared with the literature. Diethylzinc and tertiary butanol were used as the primary reactants and deposition rates above 800 nm/min were obtained. The reaction

  11. Atmospheric pressure chemical vapor deposition of ZnO: Process modeling and experiments

    NARCIS (Netherlands)

    Deelen, J. van; Illiberi, A.; Kniknie, B.; Beckers, E.H.A.; Simons, P.J.P.M.; Lankhorst, A.

    2013-01-01

    The deposition of zinc oxide has been performed by atmospheric pressure chemical vapor deposition and trends in growth rates are compared with the literature. Diethylzinc and tertiary butanol were used as the primary reactants and deposition rates above 800 nm/minwere obtained. The reaction

  12. Solid state phase transition and vapor pressure studies in ammonium nitrate-potassium nitrate binary system

    Science.gov (United States)

    Chien, Wen-Ming

    The solid-state phase transitions in ammonium nitrate (NH4NO 3) and potassium nitrate (KNO3) solid solutions and the equilibrium NH4NO3-KNO3 (AN-KN) phase diagram have been determined. The phase transitions and phase diagram were determined by using the differential scanning calorimetry (DSC) and high temperature X-ray diffractometry. Samples of several different compositions were made for these analyses in a special "Dry Room" with very low humidity. In the X-ray diffraction experiments, the samples were heated on Pt-Rh strip and LaB6 or Si was added for internal calibration. Equilibrium phase diagram was also calculated by using the "FactSage" computer program. A single (AN III) phase region without any phase transitions between 293 to 373 K was observed for compositions between 5 to 25wt% KNO3 in NH4NO3 that is critical for air bag gas generators. The higher temperature KNO3 (KN I) phase has a wide stability range, from 100%KNO3 to 20%KNO3 solution. There is one eutectic, two eutectoids, and two peritectoids in this phase diagram. Two newly discovered solid-state phases were found in the mid-composition range of AN-KN solid solutions. Details of phase equilibria and lattice expansions during heating have been determined. Phase diagram calculations show a reasonable match of the phase boundaries. The total vapor pressures as well as the average molecular weights of pure ammonium nitrate and 16% KNO3 solid solution were measured at various temperatures by the torsion-Knudsen effusion method. The partial pressures of NH4NO3 (PNH4NO 3), NH3 (PNH3), and HNO3 (PHNO 3) have also been determined.

  13. Vapor pressures, aqueous solubilities, and Henry's law constants of some brominated flame retardants.

    Science.gov (United States)

    Tittlemier, Sheryl A; Halldorson, Thor; Stern, Gary A; Tomy, Gregg T

    2002-09-01

    The subcooled liquid vapor pressures (P0(L),25S) and aqueous solubilities (Sw,25s) were determined and Henry's law constants (H25s) were estimated for a number of brominated flame retardants (BFRs) at 25 degrees C. The established methods of the gas chromatography-retention time and generator column techniques were used to experimentally determine P0(L),25 and Sw,25 for hexabromobenzene and a series of brominated diphenyl ether (BDE) congeners. The H25 was estimated as the ratio of P0(L)25 to the subcooled liquid aqueous solubility. Values of PL0(L),25 obtained ranged from 0.000000282 Pa (BDE-190) to 0.259 Pa (BDE-3); Sw,25 ranged from 0.00000087 g/L (BDE-153 and BDE-154) to 0.00013 g/L (BDE-15); and H25 ranged from 0.0074 Pa m3/mol (BDE-183) to 21 Pa m3/mol (BDE-15). An increase in the bromine content of polybrominated diphenyl ether congeners resulted in significant decreases Of P0(L),25, Sw25, and H25. A simple four-compartment equilibrium distribution model suggested that the majority of BFRs being released into the environment would reside in soil and sediment and have localized distributions. The model also suggested that lower brominated congeners tend to be somewhat more mobile. Degradative debromination reactions that yield these congeners would mobilize them environmentally, and ultimately affect the fate and distribution of BFRs.

  14. Vapor pressure data for fatty acids obtained using an adaptation of the DSC technique

    Energy Technology Data Exchange (ETDEWEB)

    Matricarde Falleiro, Rafael M. [LPT, Departamento de Processos Quimicos (DPQ), Faculdade de Engenharia Quimica, Universidade de Campinas (UNICAMP), 13083-852 Campinas - SP (Brazil); Akisawa Silva, Luciana Y. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo (UNIFESP), 09972-270 Diadema - SP (Brazil); Meirelles, Antonio J.A. [EXTRAE, Departamento de Engenharia de Alimentos (DEA), Faculdade de Engenharia de Alimentos, Universidade de Campinas (UNICAMP), 13083-862 Campinas - SP (Brazil); Kraehenbuehl, Maria A., E-mail: mak@feq.unicamp.br [LPT, Departamento de Processos Quimicos (DPQ), Faculdade de Engenharia Quimica, Universidade de Campinas (UNICAMP), 13083-852 Campinas - SP (Brazil)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer Vapor pressure data of fatty acids were measured by Differential Scanning Calorimetry. Black-Right-Pointing-Pointer The DSC technique is especially advantageous for expensive chemicals. Black-Right-Pointing-Pointer High heating rate was used for measuring the vapor pressure data. Black-Right-Pointing-Pointer Antoine constants were obtained for the selected fatty acids. - Abstract: The vapor pressure data for lauric (C{sub 12:0}), myristic (C{sub 14:0}), palmitic (C{sub 16:0}), stearic (C{sub 18:0}) and oleic (C{sub 18:1}) acids were obtained using Differential Scanning Calorimetry (DSC). The adjustments made in the experimental procedure included the use of a small sphere (tungsten carbide) placed over the pinhole of the crucible (diameter of 0.8 mm), making it possible to use a faster heating rate than that of the standard method and reducing the experimental time. The measurements were made in the pressure range from 1333 to 9333 Pa, using small sample quantities of fatty acids (3-5 mg) at a heating rate of 25 K min{sup -1}. The results showed the effectiveness of the technique under study, as evidenced by the low temperature deviations in relation to the data reported in the literature. The Antoine constants were fitted to the experimental data whose values are shown in Table 5.

  15. Pressure dependence of in situ boron-doped silicon films prepared by low-pressure chemical vapor deposition. II. Resistivity

    Science.gov (United States)

    Haji, L.; Hamedi, L.; Loisel, B.; Gauneau, M.; Joubert, P.; Sarret, M.

    1989-11-01

    The effects of silane pressure and temperature on the in situ boron incorporation and resistivity of low-pressure chemical vapor deposited polycrystalline silicon films were studied in the ranges of 2.5×10-3-1 Torr and 515-700 °C. By lowering the silane pressure, the boron concentration increases (up to 1×1022 cm-3) and the resistivity decreases down to about 2×10-3 Ω cm without annealing. For high deposition pressure (≥0.1 Torr), the resistivity decreases as the temperature is lowered. In this latter case the secondary-ion mass spectrometry profiles reveal a boron accumulation at the layer-substrate interface, which is always observed independently of the substrate nature.

  16. The Relative Importance of Aqueous vs. Vapor-Pressure Dependent Pathways for Particulate Organic Nitrate Formation

    Science.gov (United States)

    Zare, A.; Pye, H. O. T.; Cohen, R. C.

    2016-12-01

    Formation of biogenic derived organic nitrates is known as an important immediate sink of atmospheric nitrogen oxides. Although, subsequent oxidation and photolysis of organic nitrates can return a part of the sequestered NOx to the atmosphere, other removal pathways in combination with wet and dry deposition and hydrolysis of particulate organic nitrates is of central importance in irreversible NOx removal from the atmosphere. The aim of this work is to understand how and to what degree the particle phase participates in removal of NOx. We implement a new BVOC oxidation gas phase mechanism (including a detailed representation of OH- and NO3-initiated organic nitrates) and an explicit representation of organic nitrate aerosols formation, including irreversible aqueous-phase uptake and reversible partitioning onto pre-existing organic aerosol, into the CMAQ model. Using these mechanisms, we simulate observations from the SOAS field campaigns over the southeast US in summer 2013 and examine the relative role of water-mediated vs vapor pressure processes in determining aerosol from organic nitrates.

  17. Vapor-pressure deficit and extreme climatic variables limit tree growth.

    Science.gov (United States)

    Sanginés de Cárcer, Paula; Vitasse, Yann; Peñuelas, Josep; Jassey, Vincent E J; Buttler, Alexandre; Signarbieux, Constant

    2017-11-03

    Assessing the effect of global warming on forest growth requires a better understanding of species-specific responses to climate change conditions. Norway spruce and European beech are among the dominant tree species in Europe and are largely used by the timber industry. Their sensitivity to changes in climate and extreme climatic events, however, endangers their future sustainability. Identifying the key climatic factors limiting their growth and survival is therefore crucial for assessing the responses of these two species to ongoing climate change. We studied the vulnerability of beech and spruce to warmer and drier conditions by transplanting saplings from the top to the bottom of an elevational gradient in the Jura Mountains in Switzerland. We (1) demonstrated that a longer growing season due to warming could not fully account for the positive growth responses, and the positive effect on sapling productivity was species-dependent, (2) demonstrated that the contrasting growth responses of beech and spruce were mainly due to different sensitivities to elevated vapor-pressure deficits (VPD), (3) determined the species-specific limits to VPD above which growth rate began to decline, and (4) demonstrated that models incorporating extreme climatic events could account for the response of growth to warming better than models using only average values. These results support that the sustainability of forest trees in the coming decades will depend on how extreme climatic events will change, irrespective of the overall warming trend. © 2017 John Wiley & Sons Ltd.

  18. Vapor Pressure and Predicted Stability of American Contact Dermatitis Society Core Allergens.

    Science.gov (United States)

    Jou, Paul C; Siegel, Paul D; Warshaw, Erin M

    2016-01-01

    Accurate patch testing is reliant on proper preparation of patch test allergens. The stability of patch test allergens is dependent on several factors including vapor pressure (VP). This investigation reviews the VP of American Contact Dermatitis Society Core Allergens and compares stability predictions based on VP with those established through clinical testing. Standard references were accessed for determining VP in millimeters of mercury and associated temperature in degrees celsius. If multiple values were listed, VP at temperatures that most approximate indoor storage conditions (20°C and 25°C) were chosen. For mixes, the individual component with the highest VP was chosen as the overall VP, assuming that the most volatile substance would evaporate first. Antigens were grouped into low (≤0.001 mm Hg), moderate (0.001 mm Hg), and high (≥1 mm Hg) volatility using arbitrary cutoff values. This review is consistent with previously reported data on formaldehyde, acrylates, and fragrance material instability. Given lack of testing data, VP can be useful in predicting patch test compound stability. Measures such as air-tight multidose reagent containers, sealed single-application dispensers, preparation of patches immediately before application, and storage at lower temperatures may remedy some of these issues.

  19. Some possible filler alloys with low vapor pressures for refractory-metal brazing

    Science.gov (United States)

    Morris, J. F.

    1973-01-01

    A compilation of eutectics and melting-point minima for binary combinations of metals having vapor pressures below 10 to the minus 10th power torr at 1500 degrees K and .00005 torr at 2000 degree K is presented. These compositions and others near them on their phase diagrams are potential special brazing fillers for refractory metals. Some possible problems and advantages for fusion bonds of such mixtures are indicated. Evaluations of brazing fillers containing refractory metals are reported.

  20. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, 1 January 1996--31 March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Suuberg, E.M.

    1996-09-01

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude. Sophisticated general correlative approaches are slowly being developed, based upon group contribution methods, or based upon some key functional features of the molecules. These are as yet difficult to apply to coal tars. The detailed group contribution methods, in which fairly precise structural information is needed, do not lend themselves well for application to very complex, poorly characterized coal tars. The methods based upon more global types of characterizations have not yet dealt much with the question of oxygenated functional groups. In short, only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well- established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. A significant amount of time has been devoted during this quarter to developing techniques for measurements of vapor pressures of coal tar related compounds, and mixtures, in a ``continuous`` mode, using the effusion technique.

  1. Apparatus to measure the vapor pressure of slowly decomposing compounds from 1 Pa to 10(5) Pa.

    Science.gov (United States)

    Berg, Robert F

    2015-11-01

    This article describes an apparatus and method for measuring vapor pressures in the range from 1 Pa to 10(5) Pa. Its three distinctive elements are : (1) the static pressure measurements were made with only a small temperature difference between the vapor and the condensed phase, (2) the sample was degassed in situ, and (3) the temperature range extended up to 200 °C. The apparatus was designed to measure metal-organic precursors, which often are toxic, pyrophoric, or unstable. Vapor pressures are presented for naphthalene, ferrocene, diethyl phthalate, and TEMAH (tetrakisethylmethylaminohafnium). Also presented are data for the temperature-dependent decomposition rate of TEMAH.

  2. Assessment of Fluctuation Patterns Similarity in Temperature and Vapor Pressure Using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    A. Araghi

    2014-12-01

    Full Text Available Period and trend are two main effective and important factors in hydro-climatological time series and because of this importance, different methods have been introduced and applied to study of them, until now. Most of these methods are statistical basis and they are classified in the non-parametric tests. Wavelet transform is a mathematical based powerful method which has been widely used in signal processing and time series analysis in recent years. In this research, trend and main periodic patterns similarity in temperature and vapor pressure has been studied in Babolsar, Tehran and Shahroud synoptic stations during 55 years period (from 1956 to 2010, using wavelet method and the sequential Mann-Kendall trend test. The results show that long term fluctuation patterns in temperature and vapor pressure have more correlations in the arid and semi-arid climates, as well as short term oscillation patterns in temperature and vapor pressure in the humid climates, and these dominant periods increase with the aridity of region.

  3. Oxidation of uranium in low partial pressures of oxygen and water vapor at 100/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Weirick, L J

    1984-06-01

    Oxygen isotope studies indicate that a previously proposed theory describing the oxidation of uranium is incorrect. This theory had proposed that the uranium reacted directly with water vapor to form uranium dioxide and hydrogen and the hydrogen subsequently reacted with the free oxygen to form water. This study shows that oxygen reacts directly with uranium, the role of water vapor being to affect the uranium oxide structure which is formed. The reaction rate of uranium with water vapor in the absence of oxygen was linear and proportional to the water vapor pressure for water vapor pressures between 2 and 20 Torr. Hydrogen was produced by the reaction at a rate of almost two moles for every one mole of uranium dioxide formed. The oxide was identified as UO/sub 2/ /sub 0/. The reaction of uranium with water vapor in the presence of oxygen showed three separate regions of reaction response. In one region, at low oxygen pressure, the reaction was the same as with no oxygen, a second region at oxygen pressures between 0.05 and 1 Torr was a transition stage and in the third region, at oxygen pressures above 1 Torr, the reaction rate was linear and independent of both oxygen and water vapor pressure. The oxide formed was identified as nominally U/sub 4/O/sub 9/. Only a small amount of hydrogen was produced.

  4. Fast membrane osmometer as alternative to freezing point and vapor pressure osmometry.

    Science.gov (United States)

    Grattoni, Alessandro; Canavese, Giancarlo; Montevecchi, Franco Maria; Ferrari, Mauro

    2008-04-01

    Osmometry is an essential technique for solution analysis and the investigation of chemical and biological phenomena. Commercially available osmometers rely on the measurements of freezing point, vapor pressure, and osmotic pressure of solutions. Although vapor pressure osmometry (VPO) and freezing point osmometry (FPO) can perform rapid and inexpensive measurements, they are indirect techniques, which rely on thermodynamic assumptions, which limit their applicability. While membrane osmometry (MO) provides a potentially unlimited direct measurement of osmotic pressure and solution osmolality, the conventional technique is often time-consuming and difficult to operate. In the present work, a novel membrane osmometer is presented. The instrument significantly reduces the conventional MO measurement time and is not subject to the limitations of VPO and FPO. For this paper, the osmotic pressure of aqueous sucrose solutions was collected in a molality range 0-5.5, by way of demonstration of the new instrument. When compared with data found in the literature, the experimental data were generally in good agreement. However, differences among results from the three techniques were observed.

  5. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  6. Pressure dependence of in situ boron-doped silicon films prepared by low-pressure chemical vapor deposition. I. Microstructure

    Science.gov (United States)

    Joubert, P.; Sarret, M.; Haji, L.; Hamedi, L.; Loisel, B.

    1989-11-01

    In situ boron-doped silicon films have been deposited by the low-pressure chemical vapor deposition technique in the pressure and temperature ranges of 1-2.5×10-3 Torr and 515-700 °C, respectively. These films have been investigated by means of x-ray diffraction and transmission electron microscopy in order to study the influence of the silane partial pressure and deposition temperature on the microstructure of the doped films. X-ray experiments combined with gradual etching were performed in order to check the in-depth distribution of the crystallite textures. The microstructure of the boron-doped and undoped polysilicon films are compared.

  7. Two-phase pressure drop during CO{sub 2} vaporization in horizontal smooth minichannels

    Energy Technology Data Exchange (ETDEWEB)

    Pamitran, A.S.; Choi, Kwang-Il [Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Oh, Jong-Taek [Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-dong, Yeosu, Chonnam 550-749 (Korea); Oh, Hoo-Kyu [Department of Refrigeration and Air Conditioning Engineering, Pukyong National University, 100, Yongdang-dong, Nam-Ku, Busan 608-739 (Korea)

    2008-12-15

    Pressure drop experiments for a natural refrigerant vaporization of CO{sub 2} were performed in horizontal minichannels. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 2000 and 3000 mm. This test section was uniformly heated by applying electric current directly to the tubes. Experiments were performed at inlet saturation temperatures of -10, -5 and 10 C, mass flux ranges from 200 to 600 kg m{sup -2} s{sup -1} and heat flux ranges from 10 to 30 kW m{sup -2}. The current study showed the significant effect of mass flux, tube diameter, and saturation temperature on the pressure drop. The experimental results were compared against 13 existing two-phase pressure drop prediction methods. A new pressure drop prediction method based on the Lockhart-Martinelli method was developed with 9.41% mean deviation. (author)

  8. GOZCARDS Source Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpH2O) contains zonal means and related...

  9. GOZCARDS Merged Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpH2O) contains zonal means and related...

  10. Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor

    Science.gov (United States)

    Wang, Xiaoming; Zhang, Kefei; Wu, Suqin; He, Changyong; Cheng, Yingyan; Li, Xingxing

    2017-08-01

    Surface pressure is a necessary meteorological variable for the accurate determination of integrated water vapor (IWV) using Global Navigation Satellite System (GNSS). The lack of pressure observations is a big issue for the conversion of historical GNSS observations, which is a relatively new area of GNSS applications in climatology. Hence the use of the surface pressure derived from either a blind model (e.g., Global Pressure and Temperature 2 wet, GPT2w) or a global atmospheric reanalysis (e.g., ERA-Interim) becomes an important alternative solution. In this study, pressure derived from these two methods is compared against the pressure observed at 108 global GNSS stations at four epochs (00:00, 06:00, 12:00 and 18:00 UTC) each day for the period 2000-2013. Results show that a good accuracy is achieved from the GPT2w-derived pressure in the latitude band between -30 and 30° and the average value of 6 h root-mean-square errors (RMSEs) across all the stations in this region is 2.5 hPa. Correspondingly, an error of 5.8 mm and 0.9 kg m-2 in its resultant zenith hydrostatic delay (ZHD) and IWV is expected. However, for the stations located in the mid-latitude bands between -30 and -60° and between 30 and 60°, the mean value of the RMSEs is 7.3 hPa, and for the stations located in the high-latitude bands from -60 to -90° and from 60 to 90°, the mean value of the RMSEs is 9.9 hPa. The mean of the RMSEs of the ERA-Interim-derived pressure across at the selected 100 stations is 0.9 hPa, which will lead to an equivalent error of 2.1 mm and 0.3 kg m-2 in the ZHD and IWV, respectively, determined from this ERA-Interim-derived pressure. Results also show that the monthly IWV determined using pressure from ERA-Interim has a good accuracy - with a relative error of better than 3 % on a global scale; thus, the monthly IWV resulting from ERA-Interim-derived pressure has the potential to be used for climate studies, whilst the monthly IWV resulting from GPT2w

  11. Determination of some refractory elements and Pb by fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry with platform and wall vaporization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuefei; Hu Bin, E-mail: binhu@whu.edu.cn

    2011-02-15

    Platform and wall vaporization for electrothermal vaporization (ETV)-inductively coupled plasma mass spectrometry (ICP-MS) determination of some refractory elements (Ti, V, Cr, Mo, La and Zr) and Pb were comparatively studied with the use of poly (tetrafluoroethylene) (PTFE) as fluorinating reagent. The factors affecting the vaporization behaviors of the target analytes in the platform and tube wall vaporization including vaporization temperature and time, pyrolytic temperature and time were studied in detail, and the flow rates of carrier gas/auxiliary carrier gas, were carefully optimized. Under the optimal conditions, the signal profiles, signal intensity, interferences of coexisting ions and analytical reproducibility for wall and platform vaporization ETV-ICP-MS were compared. It was found that both wall and platform vaporization could give very similar detection limits, but the platform vaporization provided higher signal intensity and better precision for some refractory elements and Pb than the wall vaporization. Especially for La, the signal intensity obtained by platform vaporization was 3 times higher than that obtained by wall vaporization. For platform vaporization ETV-ICP-MS, the limits of detection (LODs) of 0.001 {mu}g L{sup -1} (La) {approx} 0.09 {mu}g L{sup -1} (Ti) with the relative standard deviations (RSDs) of 1.5% (Pb) {approx} 15.5% (Zr) were obtained. While for wall vaporization ETV-ICP-MS, LODs of 0.005 {mu}g L{sup -1} (La) {approx} 0.4 {mu}g L{sup -1} (Pb) with RSDs of 3.2% (Mo) {approx} 12.8% (Zr) were obtained. Both platform and tube wall vaporization techniques have been used for slurry sampling fluorination assisted ETV-ICP-MS direct determination of Ti, V, Cr, Mo, La, Zr and Pb in certified reference materials of NIES No. 8 vehicle exhaust particulates and GBW07401 soil, and the analytical results obtained are in good agreement with the certified values.

  12. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere

    Science.gov (United States)

    Ficklin, Darren L.; Novick, Kimberly A.

    2017-02-01

    Via air temperature increases and relative humidity changes, climate change will modify vapor pressure deficit (VPD), which is an important determinant of water vapor and CO2 exchange between the land surface and atmosphere. VPD is the difference between the water vapor the air can hold at saturation (es) and the actual amount of water vapor (ea). Here we assess changes in VPD, es, and ea in the United States (U.S.) for the recent past (1979-2013) and the future (2065-2099) using gridded, observed climate data and output from general circulation models. Historically, VPD has increased for all seasons, driven by increases in es and declines in ea. The spring, summer, and fall seasons exhibited the largest areal extent of significant increases in VPD, which was largely concentrated in the western and southern portions of the U.S. The changes in VPD stemmed from recent air temperature increases and relative humidity decreases. Projections indicate similar, amplified patterns into the future. For the summer, the general circulation model ensemble median showed a 51% projected increase (quartile range of 39 and 64%) in summer VPD for the U.S., reflecting temperature-driven increases in es but decreases or minimal changes in relative humidity that promotes negligible changes in ea. Using a simple model for plant hydraulic functioning, we also show that in the absence of stomatal acclimation, future changes in VPD can reduce stomatal conductance by 9-51%, which is a magnitude comparable to the expected decline in stomatal conductance from rising CO2.

  13. EPA Method 245.1: Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry

    Science.gov (United States)

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine mercuric chloride and methoxyethylmercuric acetate as total mercury using cold vapor atomic absorption spectrometry.

  14. Studies in graphene growth and processing using atmospheric pressure chemical vapor deposition

    Science.gov (United States)

    Merrell, Andrew Nephi

    This dissertation focuses on graphene, a promising two-dimensional, carbon material with many favorable electronic properties. The prospect of implementing graphene into a wide variety of potential device applications is enticing, but many factors stand in the way before this goal is realized. Atmospheric pressure chemical vapor deposition (APCVD) is a graphene production method that may be compatible with large-scale growth. Motivated by the need to more fully understand APCVD growth of graphene, a system is constructed, and several studies are carried out. Specifically, a detailed study is presented which involves the effects of hydrogen and contaminant oxygen in APCVD-grown graphene. The research shows that hydrogen is an important factor to control during the cooling stage of APCVD, as it has a direct effect on the formation of oxides on the copper foil (copper is used as the catalyst for graphene growth in APCVD). It is also determined that hydrogen, as well as the reaction chamber, play an important role in the formation of SiO2 nanoparticles, which accumulate on the copper surface during graphene growth. Methods for patterning and processing graphene are also explored in this dissertation, as such methods are crucial in the realization of graphene-based devices. The method of e-beam assisted metal deposition used in conjunction with masked-CVD growth is proposed as an effective alternative to conventional processing methods such as photolithography and electron-beam lithography. The proposed methods have several advantages, which pave the way for lowering graphene/metal contact resistance, and preserving the intrinsic properties of graphene during device fabrication.

  15. Probabilistic approach: back pressure turbine for geothermal vapor-dominated system

    Science.gov (United States)

    Alfandi Ahmad, Angga; Xaverius Guwowijoyo, Fransiscus; Pratama, Heru Berian

    2017-12-01

    Geothermal bussiness nowadays needs to be accelerated in a way that profit can be obtained as soon as reasonable possible. One of the many ways to do this is by using one of geothermal wellhead generating unit (GWGU), called backpressure turbine. Backpressure turbine can be used in producing electricity as soon as there is productive or rather small-scale productive well existed after finished drilling. In a vapor dominated system, steam fraction in the wellhead capable to produce electricity based on each well productivity immediately. The advantage for using vapor dominated system is reduce brine disposal in the wellhead so it will be a cost benefit in operation. The design and calculation for backpressure turbine will use probablistic approach with Monte Carlo simulation. The parameter that will be evaluated in sensitivity would be steam flow rate, turbine inlet pressure, and turbine exhaust pressure/atmospheric pressure. The result are probability for P10, P50, and P90 of gross power output which are 1.78 MWe, 2.22 MWe and 2.66 Mwe respectively. Whereas the P10, P50, and P90 of SSC are 4.67 kg/s/MWe, 5.19 kg/s/MWe and 5.78 kg/s/MWe respectively.

  16. Porous tungsten prepared by atmospheric-pressure chemical vapor deposition with WF6 and its characterization

    Science.gov (United States)

    Li, Ying; Yu, Xiaodong; Tan, Chengwen; Wang, Fuchi; Ma, Honglei; Yue, Jintao

    2017-05-01

    Porous tungsten (W) is used in aeronautic and aerospace engineering, power electronics field and metallurgical industry. In this study, porous W with 98wt% W was prepared on a carbon foam substrate by atmospheric-pressure chemical vapor deposition (CVD) with tungsten fluoride (WF6) as the precursor. The porous W with 78.1346% porosity displayed a pure α-W phase and the uniform surface. The mode pore diameter of porous W is 208.0 µm. In a compression test, the fracture strength of porous W is 20.3 MPa.

  17. Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor

    Directory of Open Access Journals (Sweden)

    X. Wang

    2017-08-01

    Full Text Available Surface pressure is a necessary meteorological variable for the accurate determination of integrated water vapor (IWV using Global Navigation Satellite System (GNSS. The lack of pressure observations is a big issue for the conversion of historical GNSS observations, which is a relatively new area of GNSS applications in climatology. Hence the use of the surface pressure derived from either a blind model (e.g., Global Pressure and Temperature 2 wet, GPT2w or a global atmospheric reanalysis (e.g., ERA-Interim becomes an important alternative solution. In this study, pressure derived from these two methods is compared against the pressure observed at 108 global GNSS stations at four epochs (00:00, 06:00, 12:00 and 18:00 UTC each day for the period 2000–2013. Results show that a good accuracy is achieved from the GPT2w-derived pressure in the latitude band between −30 and 30° and the average value of 6 h root-mean-square errors (RMSEs across all the stations in this region is 2.5 hPa. Correspondingly, an error of 5.8 mm and 0.9 kg m−2 in its resultant zenith hydrostatic delay (ZHD and IWV is expected. However, for the stations located in the mid-latitude bands between −30 and −60° and between 30 and 60°, the mean value of the RMSEs is 7.3 hPa, and for the stations located in the high-latitude bands from −60 to −90° and from 60 to 90°, the mean value of the RMSEs is 9.9 hPa. The mean of the RMSEs of the ERA-Interim-derived pressure across at the selected 100 stations is 0.9 hPa, which will lead to an equivalent error of 2.1 mm and 0.3 kg m−2 in the ZHD and IWV, respectively, determined from this ERA-Interim-derived pressure. Results also show that the monthly IWV determined using pressure from ERA-Interim has a good accuracy − with a relative error of better than 3 % on a global scale; thus, the monthly IWV resulting from ERA-Interim-derived pressure has the potential to be used for climate studies

  18. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    Science.gov (United States)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  19. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Science.gov (United States)

    2010-10-01

    ... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and that...

  20. The vapor pressures and activities of dicarboxylic acids reconsidered: the impact of the physical state of the aerosol

    Directory of Open Access Journals (Sweden)

    V. Soonsin

    2010-12-01

    Full Text Available We present vapor pressure data of the C2 to C5 dicarboxylic acids deduced from measured evaporation rates of single levitated particles as both, aqueous droplets and solid crystals. The data of aqueous solution particles over a wide concentration range allow us to directly calculate activities of the dicarboxylic acids and comparison of these activities with parameterizations reported in the literature. The data of the pure liquid state acids, i.e. the dicarboxylic acids in their supercooled melt state, exhibit no even-odd alternation in vapor pressure, while the acids in the solid form do. This observation is consistent with the known solubilities of the acids and our measured vapor pressures of the supercooled melt. Thus, the gas/particle partitioning of the different dicarboxylic acids in the atmosphere depends strongly on the physical state of the aerosol phase, the difference being largest for the even acids. Our results show also that, in general, measurements of vapor pressures of solid dicarboxylic acids may be compromised by the presence of polymorphic forms, crystalline structures with a high defect number, and/or solvent inclusions in the solid material, yielding a higher vapor pressure than the one of the thermodynamically stable crystalline form at the same temperature.

  1. H2O and CO2 vapor pressure measurements at temperatures relevant to the middle atmosphere of Earth and Mars

    Science.gov (United States)

    Nachbar, M.; Duft, D.; Leisner, T.

    2017-09-01

    Measurements of the vapor pressure of H2O and CO2 at temperatures relevant to the middle atmosphere of Earth and Mars are rare but important in order to describe cloud formation and ice particle growth processes. In this contribution we present a novel technique for measuring the vapor pressure of condensable gases by analyzing the depositional growth rates on free nanoparticles at high supersaturation. The method is applied to measure the vapor pressure of CO2 between 75K and 85K. By comparison with previous measurements and parameterizations we are able to show the excellent functionality of the method. In addition, the method is used to measure the vapor pressure over H2O ice between 135K and 160K. We show that the vapor pressure of so called stacking disordered ice Isd deposited at temperatures below 160K is significantly higher compared to hexagonal ice Ih. The consequences for ice cloud formation in the atmosphere of Earth and Mars will be discussed.

  2. High-pressure vapor-liquid equilibria of two binary systems: Carbon dioxide + cyclohexanol and carbon dioxide + cyclohexanone

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, S. [Ecole Nationale Superieure de Chimie et Physique de Bordeaux, Talence (France); Richon, D. [Ecole Nationale Superieure des Mines de Paris, Fontainebleau (France)

    1997-01-01

    Vapor-liquid equilibria for carbon dioxide + cyclohexanol and carbon dioxide + cyclohexanone were measured using an apparatus based on a static-analytic method with in situ samplings. P, T, x, y measurements were made at pressures up to 22 MPa. The carbon dioxide + cyclohexanol system was studied at 433 and 473 K, and carbon dioxide + cyclohexanone, at 433 and 473 K. The results are correlated by the Redlich-Kwong-Soave and Peng and Robinson equations and several mixing rules. The best fittings are obtained with the Peng-Robinson equation of state and a two-parameter mixing rule, i.e., within 1.1% for both pressures and vapor mole fractions on the carbon dioxide + cyclohexanone system and within 1.9% for pressures and 2.9% for vapor mole fractions on the carbon dioxide + cyclohexanol system. More recent equations by Patel and Teja and Salim and Trebble show no significant advantages.

  3. Effect of Vapor Pressure Scheme on Multiday Evolution of SOA in an Explicit Model

    Science.gov (United States)

    Lee-Taylor, J.; Madronich, S.; Aumont, B.; Camredon, M.; Emmons, L. K.; Tyndall, G. S.; Valorso, R.

    2011-12-01

    Recent modeling of the evolution of Secondary Organic Aerosol (SOA) has led to the critically important prediction that SOA mass continues to increase for several days after emission of primary pollutants. This growth of organic aerosol in dispersing plumes originating from urban point sources has direct implications for regional aerosol radiative forcing. We investigate the robustness of predicted SOA mass growth downwind of Mexico City in the model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere), by assessing its sensitivity to the choice of vapor pressure prediction scheme. We also explore the implications for multi-day SOA mass growth of glassification / solidification of SOA constituents during aging. Finally we use output from the MOZART-4 chemical transport model to evaluate our results in the regional and global context.

  4. Luminescence of mesoporous silicon powders treated by high-pressure water vapor annealing

    Science.gov (United States)

    Gelloz, Bernard; Loni, Armando; Canham, Leigh; Koshida, Nobuyoshi

    2012-07-01

    We have studied the photoluminescence of nanocrystalline silicon microparticle powders fabricated by fragmentation of PSi membranes. Several porosities were studied. Some powders have been subjected to further chemical etching in HF in order to reduce the size of the silicon skeleton and reach quantum sizes. High-pressure water vapor annealing was then used to enhance both the luminescence efficiency and stability. Two visible emission bands were observed. A red band characteristic of the emission of Si nanocrystals and a blue band related to localized centers in oxidized powders. The blue band included a long-lived component, with a lifetime exceeding 1 sec. Both emission bands depended strongly on the PSi initial porosity. The colors of the processed powders were tunable from brown to off-white, depending on the level of oxidation. The surface area and pore volume of some powders were also measured and discussed. The targeted applications are in cosmetics and medicine.

  5. The predictable influence of soil temperature and barometric pressure changes on vapor intrusion

    Science.gov (United States)

    Barnes, David L.; McRae, Mary F.

    2017-02-01

    Intrusion of volatile organic compounds in the gas phase has impacted many buildings in many different locations. Various building and environmental factors such as buoyancy of heated air and changes in barometric pressure can influence indoor air concentrations due to vapor intrusion in these buildings resulting in seasonal and daily variability. One environmental factor that previous research has not adequately addressed is soil temperature. In this study we present two northern region study sites where the seasonal trends in indoor air VOC concentrations positively correlate with soil temperature, and short-term (days) variations are associated with barometric pressure changes. We present simple and multivariate linear relationships of indoor air concentrations as a function of soil temperature and barometric pressure. Results from this study show that small changes in soil temperature can result in relatively large changes in indoor air VOC concentrations where the gas phase VOCs are sourced from non-aqueous phase liquids contained in the soil. We use the results from this study to show that a five degree Celsius increase in soil temperature, a variation in soil temperature that is possible in many climatic regions, results in a two-fold increase in indoor air VOC concentrations. Additionally, analysis provides insight into how building ventilation, diffusion, and the relative rate of soil-gas flow across the slab both from the subsurface into the building and from the building into the subsurface impact short term variations in concentrations. With these results we are able to provide monitoring recommendations for practitioners.

  6. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO{sub 2} + alkanol) binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Gutierrez, Jorge E. [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Araus, Karina A. [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.c [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2011-05-15

    Research highlights: (Vapor + liquid) equilibria of three (CO{sub 2} + C{sub 5} alcohol) binary systems were measured. Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. No liquid immiscibility was observed at the temperatures and pressures studied. Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. Correlation results showed relative deviations {<=}8 % (liquid) and {<=}2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO{sub 2} + 3-methyl-2-butanol), (CO{sub 2} + 2-pentanol), and (CO{sub 2} + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO{sub 2} + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  7. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2016-02-15

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  8. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    Science.gov (United States)

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  9. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    CERN Document Server

    Makarieva, A M; Sheil, D; Nobre, A D; Li, B -L

    2010-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from the fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 deg C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the...

  10. Electrical properties of low pressure chemical vapor deposited silicon nitride thin films for temperatures up to 650 °C

    NARCIS (Netherlands)

    Tiggelaar, Roald M.; Groenland, A.W.; Sanders, Remco G.P.; Gardeniers, Johannes G.E.

    2009-01-01

    The results of a study on electrical conduction in low pressure chemical vapor deposited silicon nitride thin films for temperatures up to 650 °C are described. Current density versus electrical field characteristics are measured as a function of temperature for 100 and 200 nm thick stoichiometric

  11. Membership function model for defining optimality of vapor pressure deficit in closed-field cultivation of tomato

    NARCIS (Netherlands)

    Shamshiri, R.; Che Man, H.; Zakaria, A.J.; Beveren, van Peter; Wan Ismail, W.I.; Ahmad, D.

    2017-01-01

    Estimation of plant's evapotranspiration (ET) or water loss to the atmosphere depends on the vapor pressure deficit (VPD) of the closed-field environment (greenhouse). The objective of this work was to develop a membership function model for defining optimal VPD of greenhouse air for tomato

  12. A thermodynamic study of glucose and related oligomers in aqueous solution: Vapor pressures and enthalpies of mixing

    DEFF Research Database (Denmark)

    Cooke, S.A.; Jonsdottir, Svava Osk; Westh, Peter

    2002-01-01

    -mentioned systems at 318.15 K. A theoretical model is examined in which existing interaction parameters, calculated for the water + 1,2-ethanediol system by using a molecular mechanical approach, are incorporated into the UNIQUAC equation to describe the vapor pressures of the aforementioned series of saccharides...

  13. An Integrated Approach to Introducing Biofuels, Flash Point, and Vapor Pressure Concepts into an Introductory College Chemistry Lab

    Science.gov (United States)

    Hoffman, Adam R.; Britton, Stephanie L.; Cadwell, Katie D.; Walz, Kenneth A.

    2011-01-01

    Students explore the fundamental chemical concepts of vapor pressure and flash point in a real-world technical context, while gaining insight into the contemporary societal issue of biofuels. Lab activities were developed using a closed-cup instrument to measure the flash point of various biodiesel samples. Pre- and post-tests revealed that the…

  14. HIGH PRESSURE VAPOR-LIQUID EQUILIBRIA OF PALM FATTY ACIDS DISTILLATES-CARBON DIOXIDE SYSTEM

    Directory of Open Access Journals (Sweden)

    Nélio T. MACHADO

    1997-12-01

    Full Text Available Vapor-Liquid equilibria of palm fatty acids distillates/carbon dioxide system has been investigated experimentally at temperatures of 333, 353, and 373 K and pressures of 20, 23, 26, and 29 MPa using the static method. Experimental data for the quasi-binary system palm fatty acids distillates/carbon dioxide has been correlated with Redlich-Kwong-Aspen equation of state. Modeling shows good agreement with experimental data. Selectivity obtained indicates that supercritical carbon dioxide is a reasonable solvent for separating saturated (palmitic acid and unsaturated (oleic+linoleic acids fatty acids from palm fatty acids distillates in a continuous multistage countercurrent column.Foi investigado experimentalmente o equilíbrio líquido-vapor para o sistema Destilado Ácido de Óleo de Palma (PFAD/Dióxido de Carbono, nas temperaturas de 333, 353 e 373 K e pressões de 20, 23, 26 e 29 MPa, usando-se o método estático. Os dados experimentais do sistema pseudo-binário PFAD/CO2 foram correlacionados com a equação de estado de Redlich-Kwong do pacote computacional ASPEN. O modelo reproduz bem os resultados experimentais. A seletividade obtida indica que o CO2 supercrítico é um solvente razoável para a separação em coluna multi-estágio e contínua, do ácido graxo saturado (ácido palmítico daqueles insaturados (ácido oleico e ácido linoleico contidos no PFAD.

  15. Electron transport in mercury vapor: cross sections, pressure and temperature dependence of transport coefficients and NDC effects★

    Science.gov (United States)

    Mirić, Jasmina; Simonović, Ilija; Petrović, Zoran Lj.; White, Ronald D.; Dujko, Saša

    2017-11-01

    In this work we propose a complete and consistent set of cross sections for electron scattering in mercury vapor. The set is validated through a series of comparisons between swarm data calculated using a multi term theory for solving the Boltzmann equation and Monte Carlo simulations, and the available experimental data. Other sets of cross sections for electron scattering in mercury vapor were also used as input in our numerical codes with the aim of testing their completeness, consistency and accuracy. The calculated swarm parameters are compared with measurements in order to assess the quality of the cross sections in providing data for plasma modeling. In particular, we discuss the dependence of transport coefficients on the pressure and temperature of mercury vapor, and the occurrence of negative differential conductivity (NDC) in the limit of lower values of E/N. We have shown that the phenomenon of NDC is induced by the presence of mercury dimers and that can be controlled by varying either pressure or temperature of mercury vapor. The effective inelastic cross section for mercury dimers is estimated for a range of pressures and temperatures. It is shown that the measured and calculated drift velocities agree very well only if the effective inelastic cross section for mercury dimers and thermal motion of mercury atoms are carefully considered and implemented in numerical calculations. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  16. Effect of Furnish on Temperature and Vapor Pressure Behavior in the Center of Mat Panels during Hot Pressing

    Directory of Open Access Journals (Sweden)

    Muhammad Navis Rofii

    2014-07-01

    Full Text Available Particleboard achieves its overall performance characteristics during hot pressing process. As this process is influenced by several factors, particularly temperature and pressure, it is very important to understand the behavior of both. This study investigates the effects of furnish materials on temperature and vapor pressure behavior inside particleboard mat panels during hot pressing. Strand type particles from hinoki and ring-flaker recycled wood particles were used as furnish for laboratory-scale particleboard panels with a target density of 0.76 g/cm³. Mat panels with a moisture content of about 10% were hot pressed at a platen temperature of 180°C and an initial pressure of 3 MPa until the mat center reached the same temperature as the platen. A press monitoring device (PressMAN Lite was used for detecting the temperature and vapor pressure change in the center of the mat panels. The study showed that the furnish type affected the temperature and vapor behavior inside the mat panels. Particleboard made of hinoki strand resulted in a longer plateau time, a higher plateau temperature and a higher gas pressure generated during hot pressing than those of ring-flaker recycled wood particles. Mixed board resulted in values between those of the two other furnish materials.

  17. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  18. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    Science.gov (United States)

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    Science.gov (United States)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  20. Uniformly Distributed Graphene Domain Grows on Standing Copper via Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shih-Hao Chan

    2013-01-01

    Full Text Available Uniformly distributed graphene domains were synthesized on standing copper foil by a low-pressure chemical vapor deposition system. This method improved the distribution of the graphene domains at different positions on the same piece of copper foil along the forward direction of the gas flow. Scanning electron microscopy (SEM showed the average size of the graphene domains to be about ~20 m. This results show that the sheet resistance of monolayer graphene on a polyethylene terephthalate (PET substrate is about ~359 /□ whereas that of the four-layer graphene films is about ~178 /□, with a transmittance value of 88.86% at the 550 nm wavelength. Furthermore, the sheet resistance can be reduced with the addition of HNO3 resulting in a value of 84 /□. These values meet the absolute standard for touch sensor applications, so we believe that this method can be a candidate for some transparent conductive electrode applications.

  1. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals.

    Science.gov (United States)

    Bhhatarai, Barun; Gramatica, Paola

    2011-10-01

    The majority of perfluorinated chemicals (PFCs) are of increasing risk to biota and environment due to their physicochemical stability, wide transport in the environment and difficulty in biodegradation. It is necessary to identify and prioritize these harmful PFCs and to characterize their physicochemical properties that govern the solubility, distribution and fate of these chemicals in an aquatic ecosystem. Therefore, available experimental data (10-35 compounds) of three important properties: aqueous solubility (AqS), vapor pressure (VP) and critical micelle concentration (CMC) on per- and polyfluorinated compounds were collected for quantitative structure-property relationship (QSPR) modeling. Simple and robust models based on theoretical molecular descriptors were developed and externally validated for predictivity. Model predictions on selected PFCs were compared with available experimental data and other published in silico predictions. The structural applicability domains (AD) of the models were verified on a bigger data set of 221 compounds. The predicted properties of the chemicals that are within the AD, are reliable, and they help to reduce the wide data gap that exists. Moreover, the predictions of AqS, VP, and CMC of most common PFCs were evaluated to understand the aquatic partitioning and to derive a relation with the available experimental data of bioconcentration factor (BCF).

  2. Nematicidal potential of hydrolates from the semi industrial vapor-pressure extraction of Spanish aromatic plants.

    Science.gov (United States)

    Andrés, Maria Fe; González-Coloma, Azucena; Muñoz, Ruben; De la Peña, Felipe; Julio, Luis Fernando; Burillo, Jesus

    2017-06-22

    The nematicidal activity of hydrolate by-products from the semi industrial vapor-pressure essential oil extraction of selected aromatic plant species (commercial: Lavandula × intermedia Emeric ex Loisel. var. super, Thymus vulgaris L., T. zygis Loefl ex L. and experimentally pre-domesticated: L. luisieri (Rozeira) Rivas-Martínez) was investigated against the root-knot nematode Meloidogyne javanica by in vitro and in vivo bioassays. Liquid-liquid extraction of hydrolates yielded the corresponding aqueous and organic fractions which were biological and chemically studied. Hydrolates from L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis showed strong in vitro nematicidal effects against M. javanica (J2 mortality and suppression of egg hatching). In the case of the Thymus species, the active components were found in the organic fraction, characterized by thymol as major component. Conversely, the nematicidal activity of L. × intermedia var. super and L. luisieri remained in the corresponding aqueous fractions. In vivo tests on tomato seedlings at sublethal doses of the hydrolates/organic fractions induced a significant reduction of nematode infectivity. In pot experiments, all hydrolates tested on tomato plants significantly affect the infection frequency and reproduction rate of the nematode population. This study demonstrates that L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis hydrolates could be an exploitable source of potential waste protection products on root-knot nematodes.

  3. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-22

    In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH3 NH3 PbI3 perovskite. We observed that the Pb(SCN)2 film transformed to PbI2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN)2 is only 4 % of PbI2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration.

    Science.gov (United States)

    Chen, Zongping; Zhang, Wen; Palma, Carlos-Andres; Lodi Rizzini, Alberto; Liu, Bilu; Abbas, Ahmad; Richter, Nils; Martini, Leonardo; Wang, Xiao-Ye; Cavani, Nicola; Lu, Hao; Mishra, Neeraj; Coletti, Camilla; Berger, Reinhard; Klappenberger, Florian; Kläui, Mathias; Candini, Andrea; Affronte, Marco; Zhou, Chongwu; De Renzi, Valentina; Del Pennino, Umberto; Barth, Johannes V; Räder, Hans Joachim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus

    2016-11-30

    Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different spectroscopic and microscopic characterizations. Facile, large-area transfer of GNRs onto insulating substrates and subsequent device fabrication demonstrate their promising potential as semiconducting materials, exhibiting high current on/off ratios up to 6000 in field-effect transistor devices. This value is 3 orders of magnitude higher than values reported so far for other thin-film transistors of structurally defined GNRs. Notably, on-surface mass spectrometry analyses of polymer precursors provide unprecedented evidence for the chemical structures of the resulting GNRs, especially the heteroatom doping and heterojunctions. These results pave the way toward the scalable and controllable growth of GNRs for future applications.

  5. Water vapor pressure over molten KH2PO4 and demonstration of water electrolysis at ∼300ºC

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nikiforov, Aleksey Valerievich; Petrushina, Irina

    2016-01-01

    with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH2PO4 can be split by electrolysis via the reaction 2H2O......—H2O. The water vapor pressure above the melt, when contained in a closed ampoule, was determined quantitatively vs. temperature by use of Raman spectroscopy with methane or hydrogen gas as an internal calibration standard, using newly established relative ratios of Raman scattering cross sections...... of hydrogen-bonding has a high affinity for remaining in the melt. The formed hydrogen and oxygen gasses were detected by means of the characteristic Raman gas-phase spectra....

  6. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  7. Eggshell permeability: a standard technique for determining interspecific rates of water vapor conductance.

    Science.gov (United States)

    Portugal, Steven J; Maurer, Golo; Cassey, Phillip

    2010-01-01

    Typically, eggshell water vapor conductance is measured on whole eggs, freshly collected at the commencement of a study. At times, however, it may not be possible to obtain whole fresh eggs but rather egg fragments or previously blown eggs. Here we evaluate and describe in detail a technique for modern laboratory analysis of eggshell conductance that uses fragments from fresh and museum eggs to determine eggshell water vapor conductance. We used fresh unincubated eggs of domesticated chickens (Gallus gallus domesticus), ducks (Anas platyrhynchos domesticus), and guinea fowl (Numida meleagris) to investigate the reliability, validity, and repeatability of the technique. To assess the suitability of museum samples, museum and freshly collected black-headed gull eggs (Larus ridibundus) were used. Fragments were cut out of the eggshell from the blunt end (B), equator (E), and pointy end (P). Eggshell fragments were glued to the top of a 0.25-mL micro test tube (Eppendorf) filled with 200 μL of distilled water and placed in a desiccator at 25°C. Eppendorfs were weighed three times at 24-h intervals, and mass loss was assumed to be a result of water evaporation. We report the following results: (1) mass loss between weighing sessions was highly repeatable and consistent in all species; (2) the majority of intraspecific variability in eggshell water vapor conductance between different eggs of the same species was explained through the differences in water vapor conductance between the three eggshell parts of the same egg (B, E, and P); (3) the technique was sensitive enough to detect significant differences between the three domestic species; (4) there was no overall significant difference between water vapor conductance of museum and fresh black-headed gull eggs; (5) there was no significant difference in water vapor conductance for egg fragments taken from the same egg both between different trials and within the same trial. We conclude, therefore, that this technique

  8. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  9. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    Science.gov (United States)

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Determination of total mercury by vapor generation in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Poznan Technical University, Poznan (Poland)

    2008-07-01

    The analytical performance of non-chromatographic coupled hydride generation, integrated atom trap (HG-IAT) atomizer flame absorption spectrometry (FAAS) systems were evaluated for the determination of total mercury in environmental samples. Mercury, using formation of mercury vapors were atomized in air-acetylene flame-heated IAT. A new design of vapor generation integrated atom trap flame atomic absorption spectrometry (VG-IAT-FAAS) hyphenated technique that would exceed the operational capabilities of existing arrangements was investigated. This novel approach enables to decrease the detection limit down to low pg mL{sup -1} levels. The concentration detection limit, defined as 3 times the blank standard deviation was 0.4 ng mL{sup -1}. For a 120 s in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 750 folds for Hg, using vapor generation-atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed by RSD, was 9.3% (n = 6) for Hg. Reference and real sample materials were analyzed. The accuracy of the method was verified by the use of certified reference materials and by aqueous standard calibration technique. The measured Hg content, in reference materials, were in satisfactory agreement with the certified values, The hyphenated technique was applied for mercury determinations in coal fly ash, sewage and water.

  11. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage.

    Science.gov (United States)

    Ke, Jie; Parrott, Andrew J; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C; Poliakoff, Martyn; George, Michael W

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  12. Densities and vapor pressures of mixed-solvent desiccant systems containing {l_brace}glycol (diethylene, or triethylene, or tetraethylene glycol) + salt (magnesium chloride) + water{r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shangyi [R and D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Soriano, Allan N. [R and D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila 1002 (Philippines); Li Menghui, E-mail: mhli@cycu.edu.t [R and D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2010-09-15

    In this present work, new experimental data for density and vapor pressure of the mixed-solvent desiccant systems containing {l_brace}(40.0 wt%) glycol + salt + water{r_brace} were reported for temperatures up to 343.15 K at normal atmospheric condition. The considered glycols were diethylene, triethylene, and tetraethylene glycol; and the salt is magnesium chloride (wt% = 4.0, 9.0, and 16.0). The density and vapor pressure were presented as functions of temperature and compositions. An empirical equation was used to correlate the temperature and compositional dependence of the present density data and a model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the measured vapor pressure as functions of temperature and composition. Satisfactory results were obtained for both density and vapor pressure calculations.

  13. GOZCARDS Source Water Vapor 1 month L3 10 degree Zonal Means on a Vertical Pressure Grid V1 (GozSmlpH2O) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Water Vapor 1 month L3 10 degree Zonal Averages on a Vertical Pressure Grid product (GozSmlpH2O) contains zonal means and related...

  14. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  15. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Directory of Open Access Journals (Sweden)

    A. M. Makarieva

    2013-01-01

    Full Text Available Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power – this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  16. Influence of short-term blood pressure variability on blood pressure determinations

    NARCIS (Netherlands)

    Bos, W. J.; van Goudoever, J.; van Montfrans, G. A.; Wesseling, K. H.

    1992-01-01

    To evaluate the effect of blood pressure variability on Riva Rocci Korotkoff blood pressure determinations, we studied the intra-arterial pressure during Riva Rocci Korotkoff determinations in 25 patients. In 50 measurements with a cuff deflation rate of 2.5 mm Hg/sec, the systolic intra-arterial

  17. Effects of air temperature and water vapor pressure deficit on storage of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae).

    Science.gov (United States)

    Ghazy, Noureldin Abuelfadl; Suzuki, Takeshi; Amano, Hiroshi; Ohyama, Katsumi

    2012-10-01

    To determine the optimum air temperature and water vapor pressure deficit (VPD) for the storage of the predatory mite, Neoseiulus californicus, 3-day-old mated females were stored at air temperatures of 0, 5, 10, or 15 °C and VPDs of 0.1, 0.3, or 0.5 kPa for 10, 20, or 30 days. At 10 °C and 0.1 kPa, 83 % of females survived after 30 days of storage; this percentage was the highest among all conditions. VPDs of 0.3 and 0.5 kPa regardless of air temperature, and an air temperature of 0 °C regardless of VPD were detrimental to the survival of the females during storage. Since the highest survival was observed at 10 °C and 0.1 kPa, the effect of the storage duration on the post-storage quality of the stored females and their progeny was investigated at 25 °C to evaluate the effectiveness of the storage condition. The oviposition ability of the stored females, hatchability, and sex ratio of their progeny were not affected even when the storage duration was extended to 30 days. Although a slight decrease in the survival during the immature stages of progeny was observed when the storage duration was ≥20 days, the population growth of N. californicus may not be affected when individuals stored in these conditions are applied to greenhouses and agricultural fields. The results indicate that mated N. californicus females can be stored at 10 °C and 0.1 kPa VPD for at least 30 days.

  18. Determining the Enthalpy of Vaporization of Salt Solutions Using the Cooling Effect of a Bubble Column Evaporator

    Science.gov (United States)

    Fan, Chao; Pashley, Richard M.

    2016-01-01

    The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…

  19. Isobaric low pressure vapor-liquid equilibrium data for the binary system monochloroacetic acid + dichloroacetic acid

    NARCIS (Netherlands)

    Londono, A.; Jongmans, Mark; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Isobaric vapor–liquid equilibrium (VLE) data for the binary system monochloroacetic acid + dichloroacetic acid have been measured at 5, 7.5, and 10 kPa. The VLE data measured in this work is thermodynamically consistent according to the Herington area method. The non-ideal behavior in the vapor

  20. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  1. Characteristics of low vapor pressure oil ignition developed with irradiation of mega hertz level ultrasonic

    Energy Technology Data Exchange (ETDEWEB)

    Takuya Fuse; Yasuki Hirota; Noriyuki Kobayashi; Masanobu Hasatani; Yoshio Tanaka [Nagoya University, Nagoya (Japan). Department of Energy Engineering and Science

    2004-11-01

    In liquid fuel vaporizing type combustor for civil use, large amount of the electric power is consumed in pre-heating of fuel vaporizer during a standby period. Reduction of consumed power in pre-heating is regarded as important to develop a performance of the vaporizing type combustor from the viewpoint of energy saving. We proposed the oil combustion system using the MHz-ultrasonic atomizing method without the preheating process. In this work, we manufactured kerosene pre-vaporizing combustor with ultrasonic oscillator which had frequency of 1.7 MHz. Low CO and NOx emission had been already achieved with manufactured combustor by authors in 2002. Aiming to investigate fundamental characteristics of the ignition process with ultrasonic atomizing, the ignition time requirement was measured and the flame luminescence was detected with spectroscopic analysis in order to consider the mixing state on pre-mixing combustor by judging differences of the flame luminescence. As the results, ultrasonic atomizing method was very effective for vaporization of kerosene. But heat release rate of only 0.54 kW was obtained with input power of 33 W because the effect of the sound absorption was not negligible. The time requirement for the ignition was influenced by an equivalence ratio and balance between primary air flow rate and secondary one. Especially, the ignition time had different tendencies between fuel rich and fuel lean condition. With flow visualization, it was clarified that probability of the ignition depended on a difference of flow pattern of the fuel aerosol. 17 refs., 12 figs., 1 tab.

  2. High-pressure vapor-liquid equilibria for ethylene + 4-methyl-1-pentane and 1-butene + 1-hexene

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, S. [Ecole Nationale Superieure de Chimie et Physique de Bordeaux, Talence (France); Richon, D. [Ecole Nationale Superieure des Mines de Paris, Fontainebleau (France)

    1996-03-01

    Isothermal vapor-liquid equilibria (VLE) for the ethylene + 4-methyl-1-pentene and 1-butene + 1-hexene binary systems were measured by the static method at several temperatures for pressures in the range (0.3 to 8.5) MPa. Representations of VLE data by the Soave and Peng-Robinson cubic equations of state are compared in both modes: predictive and binary parameter adjustment. As the two binary systems behave almost ideally, there is no significant difference between their representation qualities through both equations of state.

  3. Very Long Single and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-01-01

    A new method for producing long, small diameter, single and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  4. Oxygen source-oriented control of atmospheric pressure chemical vapor deposition of VO2 for capacitive applications

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2016-06-01

    Full Text Available Vanadium dioxides of different crystalline orientation planes have successfully been fabricated by chemical vapor deposition at atmospheric pressure using propanol, ethanol and O2 gas as oxygen sources. The thick a-axis textured monoclinic vanadium dioxide obtained through propanol presented the best electrochemical response in terms of the highest specific discharge capacity of 459 mAh g-1 with a capacitance retention of 97 % after 1000 scans under constant specific current of 2 A g-1. Finally, the electrochemical impedance spectroscopy indicated that the charge transfer of Li+ through the vanadium dioxide / electrolyte interface was easier for this sample enhancing significantly its capacitance performance.

  5. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.

    2002-01-01

    Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.

  6. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. In-situ epitaxial growth of heavily phosphorus doped SiGe by low pressure chemical vapor deposition

    CERN Document Server

    Lee, C J

    1998-01-01

    We have studied epitaxial crystal growth of Si sub 1 sub - sub x Ge sub x films on silicon substrates at 550 .deg. C by low pressure chemical vapor deposition. In a low PH sub 3 partial pressure region such as below 1.25x10 sup - sup 3 Pa, both the phosphorus and carrier concentrations increased with increasing PH sub 3 partial pressure, but the deposition rate and the Ge fraction remained constant. In a higher PH sub 3 partial pressure region, the deposition rate, the phosphorus concentration, and the carrier concentration decreased, while the Ge fraction increased. These suggest that high surface coverage of phosphorus suppresses both SiH sub 4 and GeH sub 4 adsorption/reactions on the surfaces, and its suppression effect on SiH sub 4 is actually much stronger than on GeH sub 4. In particular, epitaxial crystal growth is largely controlled by surface coverage effect of phosphorus in a higher PH sub 3 partial pressure region.

  8. Fuel Vaporization Effects

    Science.gov (United States)

    Bosque, M. A.

    1983-01-01

    A study of the effects of fuel-air preparation characteristics on combustor performance and emissions at temperature and pressure ranges representative of actual gas turbine combustors is discussed. The effect of flameholding devices on the vaporization process and NOx formation is discussed. Flameholder blockage and geometry are some of the elements that affect the recirculation zone characteristics and subsequently alter combustion stability, emissions and performance. A water cooled combustor is used as the test rig. Preheated air and Jet A fuel are mixed at the entrance of the apparatus. A vaporization probe is used to determine percentage of vaporization and a gas sample probe to determine concentration of emissions in the exhaust gases. The experimental design is presented and experimental expected results are discussed.

  9. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  10. [Time lag effect between stem sap flow and photosynthetically active radiation, vapor pressure deficit of Acacia mangium].

    Science.gov (United States)

    Wang, Hua; Zhao, Ping; Cai, Xi-An; Ma, Ling; Rao, Xing-Quan; Zeng, Xiao-Ping

    2008-02-01

    Based on the measurement of the stem sap flow of Acacia mangium with Granier' s thermal dissipation probe, and the cross-correlation and time serial analysis of the sap flow and corresponding photosynthetically active radiation and vapor pressure deficit, this paper studied the time lag effect between the stem sap flow of A. mangium and the driving factors of the tree canopy transpiration. The results indicated that the main driving factors of the transpiration were photosynthetically active radiation (PAR) and vapor pressure deficit (VPD). Sap flux density (Js) was more dependent on PAR than on VPD, and the dependence was more significant in dry season than in wet season. Sap flow lagged behind PAR but advanced than VPD in both dry and wet seasons. The time lag did not show any significant variation across different size tree individuals, but showed significant variation in different seasons. Time lag effect was not correlated with tree height, diameter at the breast, and canopy size. The time lag between Js and VPD was significantly related to nighttime water recharge in dry season, but reversed in wet season.

  11. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Method for estimating critical properties of heavy compounds suitable for cubic equations of state and its application to the prediction of vapor pressures

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Ioannis, Smirlis; Iakovos, Yakoumis

    1997-01-01

    Cubic equations of state (EoS) are often used for correlating and predicting phase equilibria. Before extending any EoS to mixtures, reliable vapor-pressure prediction is essential. This requires experimental, if possible, critical temperatures T-c, pressures P-c, and acentric factor omega...... or extensive pure-compound vapor-pressure data which, for heavy and/or complex compounds, are often not available. This work presents a method for estimating T-c, P-c, and omega values for heavy compounds (typically with MW > 130) suitable for vapor-pressure calculations with generalized cubic Eo......S at a single experimental vapor-pressure point (e.g., the normal boiling point). We have employed a modified version of the Peng-Robinson EoS, but we have verified that any cubic EoS yields similar results at least for n-alkanes up to n-octacosane (MW = 394). The method is applied to the prediction of vapor...

  13. Effect of iodine doping in the deposition solution and iodine vapor pressure in the sensitization treatment on the properties of PbSe films

    Science.gov (United States)

    Suh, Youngjoon; Suh, Sang-Hee

    2017-09-01

    Effect of iodine-doping in the deposition solution and iodine vapor pressure during the sensitization process on the morphological, microstructural, electrical, and optical properties of PbSe films was studied. Undoped and iodine-doped PbSe films of polycrystalline particles were coated on thermally oxidized silicon substrates by chemical bath deposition. The PbSe films were oxidized at 380°C for 30 min and then iodinated at different iodine vapor pressures at 380°C for 5 min. When the iodine vapor pressure was below 20 Pa, PbSeO3 was the main phase formed on the surface of PbSe microcrystals for both undoped and iodine-doped films. As the iodine vapor pressure was increased above 20 Pa, Pb3I2O2 and PbI2 phases were formed in both types of films and PbSeO3 disappeared in the undoped film. Only the iodine-doped films showed photo response. The sheet resistance and IR signal-to-noise ratio had maximum values at the iodine vapor pressure of 17.5 Pa in the iodine-doped film. The x-ray diffraction spectra, scanning electron microscopy morphologies, and EDS analyses of the sensitized PbSe films show that the main role of iodine in the sensitization is helping solid-state sintering of PbSe microcrystals which may lead to redistribution of oxygen atoms in the effective atomic sites.

  14. Extracting oscillometric pulses from the cuff pressure: does it affect the pressures determined by oscillometric blood pressure monitors?

    Science.gov (United States)

    Amoore, John N

    2006-10-01

    Oscillometric noninvasive blood pressure measurement devices determine the pressures by analysing the relationship between the pressure in an occluding cuff and low-amplitude pressure pulses (oscillometric pulses) induced in the cuff by the arterial pressure wave. This paper examines the effects on the pulses and oscillometric pulse amplitude envelope of the filters that extract the pulses from the cuff pressure. The cuff pressure and oscillometric pulses extracted by the filter were recorded from a Critikon DINAMAP and a Datex Cardiocap, chosen because of accessibility of the filtered and unfiltered signals. The unfiltered oscillometric pulses were determined by subtracting the cuff pressure from a baseline constructed to represent either the Critikon's step deflation cuff pressure or the Datex's gradual pressure decrease. Waveforms were recorded from a noninvasive blood pressure test simulator and three volunteers. The filter alters the shape of oscillometric pulses causing a shift in the oscillometric pulse amplitude envelope drawn from the filtered pulses compared with that drawn from the unfiltered pulses in human subjects, but not the test simulator. The pulse shape distortion is dependent on the filter characteristics and the oscillometric pulse shape. Further work is required to explore whether this may help explain why simulators with artificial waveforms cannot validate noninvasive blood pressure monitors and why noninvasive blood pressure monitors may not be accurate in all patient groups.

  15. Determination of forces induced by steam flow in turbines; Determinacion de fuerzas inducidas por flujo de vapor en turbinas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Castrejon, Juan Carlos

    2008-09-15

    blades, has a harmonic pattern. The pressure field variation as time function is uniform: the peaks and valleys across the axial clearance are always in phase. However the instant picture of the pressure field it's different: the peaks and valleys are not in phase and the number of peaks and valley changed across the clearance. In the case of the forces acting on blades, a Fourier on the forces calculated was used to determine the coefficients and frequency of a Fourier equation which can be used to calculate the alternating stresses on the blade in order to predict the useful life blades. [Spanish] Las vibraciones inducidas por flujo de vapor en turbinas representan uno de los problemas que enfrenta la operacion de turbinas de vapor cuya capacidad rebasa los 300 MW. Ademas estas constituyen uno de los limites tecnologicos para el desarrollo de turbinas de vapor de mas de 1 GW. Este tipo de fenomeno tiene su origen en la interaccion del rotor con el fluido que se encuentra en sus proximidades. El flujo de vapor dentro de la turbina es complejo, ya que es turbulento e inestable. A medida que el flujo pasa una etapa de estator o de rotor, se generan secundarios, vortices en los filos de salida, estelas con caracteristicas de flujo diferentes al flujo principal en los pasajes. Estas variaciones en el flujo son las que inducen vibraciones forzadas en los alabes. Ademas existen varios factores que contribuyen a la aplicacion de vibraciones en alabes inducidas por flujo como son: inestabilidad del flujo de vapor en los claros de los sellos, secuencia de apertura de las valvulas, estelas de las toberas, obstrucciones en algunas de las toberas y diferente espaciamiento en las toberas. Las vibraciones por flujo pueden ser peligrosas si su frecuencia coincide con la frecuencia natural del sistema, provocando efectos mas nocivos que las vibraciones por desbalance o por desalineamiento, pues tienen amplitudes mas grandes y provocan esfuerzos alternantes en los componentes del

  16. Prediciton of high-pressure vapor liquid equilibrium of six binary systems, carbon dioxide with six esters, using an artificial neural network model

    Directory of Open Access Journals (Sweden)

    C. Si-Moussa

    2008-03-01

    Full Text Available Artificial neural networks are applied to high-pressure vapor liquid equilibrium (VLE related literature data to develop and validate a model capable of predicting VLE of six CO2-ester binaries (CO2-ethyl caprate, CO2-ethyl caproate, CO2-ethyl caprylate, CO2-diethyl carbonate, CO2-ethyl butyrate and CO2-isopropyl acetate. A feed forward, back propagation network is used with one hidden layer. The model has five inputs (two intensive state variables and three pure ester properties and two outputs (two intensive state variables.The network is systematically trained with 112 data points in the temperature and pressure ranges (308.2-328.2 K, (1.665-9.218 MPa respectively and is validated with 56 data points in the temperature range (308.2-328.2 K. Different combinations of network architecture and training algorithms are studied. The training and validation strategy is focused on the use of a validation agreement vector, determined from linear regression analysis of the plots of the predicted versus experimental outputs, as an indication of the predictive ability of the neural network model. Statistical analyses of the predictability of the optimised neural network model show excellent agreement with experimental data (a coefficient of correlation equal to 0.9995 and 0.9886, and a root mean square error equal to 0.0595 and 0.00032 for the predicted equilibrium pressure and CO2 vapor phase composition respectively. Furthermore, the comparison in terms of average absolute relative deviation between the predicted results for each binary for the whole temperature range and literature results predicted by some cubic equation of state with various mixing rules and excess Gibbs energy models shows that the artificial neural network model gives far better results.

  17. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  18. Determinação da entalpia de vaporização de líquidos pelo método do isoteniscópio de Smith e Menzies Determination of the enthalpy of vaporization of liquid compounds by the Smith Menzies (isoteniscope method

    Directory of Open Access Journals (Sweden)

    Adriana Passarella Gerola

    2010-01-01

    Full Text Available This article proposes an experimental procedure to determine the enthalpy (and entropy of vaporization of organic liquid compounds, by the Smith-Menzies (isoteniscope method. The values of vapor pressure at different temperatures were obtained and ΔvH (and ΔvS were graphically determined, using the Clausius-Clapeyron equation. The results for diethyl-ether, propanone, ethanol and n-hexane are in very good agreement with those from literature. A historical and thermodynamic discussion on equations that correlates vapor pressures and temperature precedes the experimental proposition.

  19. Occurrence of cubic GaN and strain relaxation in GaN buffer layers grown by low-pressure metalorganic vapor phase epitaxy on (0001) sapphire substrates

    Science.gov (United States)

    Cheng, Lisen; Zhou, Kuan; Zhang, Ze; Zhang, Guoyi; Yang, Zhijian; Tong, Yuzhen

    1999-02-01

    Investigations on GaN buffer layers grown by low-pressure metalorganic vapor phase epitaxy on (0001) sapphire substrates indicated that the mechanisms by way of which GaN buffer layers relax stresses introduced by the lattice mismatch and thermal expansion coefficient difference between GaN epilayer and sapphire substrate are related to both the crystallographic structure of GaN and thickness of the buffer layers. Beside forming misfit dislocations, mismatch-induced stresses can also be relaxed by forming stacking faults and microtwin boundaries parallel to (11-1) of GaN near the interface between GaN and sapphire substrate in cubic GaN buffer layers. It was found that, in cubic GaN buffer layers, there exists a critical thickness within which the stacking faults and/or microtwin boundaries parallel to (11-1) of GaN can be formed. This critical value is determined to be 50 nm.

  20. 75 FR 14628 - Pressure Sensitive Plastic Tape From Italy; Determination

    Science.gov (United States)

    2010-03-26

    ... COMMISSION Pressure Sensitive Plastic Tape From Italy; Determination On the basis of the record \\1\\ developed... antidumping duty finding on pressure sensitive plastic tape from Italy would be likely to lead to continuation... from Italy: Investigation No. AA1921-167 (Third Review). Issued: March 22, 2010. By order of the...

  1. Methylmercury determination in seafood by photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry.

    Science.gov (United States)

    Covaci, Eniko; Senila, Marin; Ponta, Michaela; Darvasi, Eugen; Petreus, Dorin; Frentiu, Maria; Frentiu, Tiberiu

    2017-08-01

    A non-chromatographic method based on double liquid-liquid extraction and measurements by UV photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry was developed and characterized for methylmercury determination in seafood. Samples were prepared following the procedure recommended in JRC Technical Report of European Commission formerly proposed for the determination of methylmercury in seafood by thermal decomposition atomic absorption spectrometry, namely confinement of Hg species in 47% HBr solution, extraction of CH3Hg+ in toluene and back-extraction in 1% l-cysteine aqueous solution. Mercury cold vapor was generated by flow injection UV photo-reduction from CH3Hg+ in 0.6molL-1 HCOOH, while quantification was performed against external Hg2+ aqueous standards and measuring Hg 253.652nm emission using a low power/Ar consumption plasma microtorch (15W, 100mLmin-1) and a low resolution microspectrometer (Ocean Optics). The figures of merit and analytical capability were assessed by analyzing certified reference materials and test samples of fish fillet and discussed in relation with requirements for Hg determination in seafood in European legislation (Decisions 2007/333/EC and 2002/657/EC) as well as compared to performances achieved in thermal decomposition atomic absorption spectrometry. The limit of detection and quantification of 2µgkg-1 and 6µgkg-1 respectively, precision of 2.7-9.4% and accuracy of 99±8% of the proposed method for the determination of CH3Hg+ fulfill the demands of European legislation for Hg quantification. The limit of detection and quantification were better than those in the used reference method or other non-/chromatographic methods taken for comparison. The analysis of certified reference materials and the Bland and Altman test performed on 12 test samples confirmed trueness of the proposed method and its reliability for the determination of traces of CH3Hg+ with 95% confidence level. The

  2. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  3. Determining the Pressure inside an Unopened Carbonated Beverage

    Science.gov (United States)

    de Grys, Hans

    2007-01-01

    New methodologies for determining the pressure inside an unopened carbonated beverage are presented. Such investigations also help the students to think deeply about a subject, giving them better understanding.

  4. Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillars.

    Science.gov (United States)

    Skibitzki, Oliver; Capellini, Giovanni; Yamamoto, Yuji; Zaumseil, Peter; Schubert, Markus Andreas; Schroeder, Thomas; Ballabio, Andrea; Bergamaschini, Roberto; Salvalaglio, Marco; Miglio, Leo; Montalenti, Francesco

    2016-10-05

    In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and μ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.

  5. Experimental results for hydrocarbon refrigerant vaporization inside brazed plate heat exchangers at high pressure

    DEFF Research Database (Denmark)

    Desideri, Adriano; Ommen, Torben Schmidt; Wronski, Jorrit

    2016-01-01

    In recent years the interest in small capacity organic Rankine cycle (ORC) power systems for harvesting low qualitywaste thermal energy from industrial processes has been steadily growing. Micro ORC systems are normally equippedwith brazed plate heat exchangers which allows for efficient heat...... transfer with a compact design. An accurate prediction of the heat transfer process characterizing these devices is required from the design phase to the development of modelbased control strategies. The current literature is lacking experimental data and validated correlations for vaporization of organic...... fluids at typical working conditions of ORC systems for low temperature waste heat recovery (WHR) applications. Based on these premises, a novel testrig has been recently designed and built at the Technical University of Denmark to simulate the evaporating condition occurring in a small capacity ORC...

  6. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate.

    Science.gov (United States)

    Fresquez, Mark R; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H; Pappas, R Steven

    2017-05-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection (LODs) for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method LOD was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Antibacterial effects of allspice, garlic, and oregano essential oils in tomato films determined by overlay and vapor-phase methods.

    Science.gov (United States)

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; McHugh, T H; Levin, C E; Mandrell, R; Friedman, Mendel

    2009-09-01

    Physical properties as well as antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes of allspice, garlic, and oregano essential oils (EOs) in tomato puree film-forming solutions (TPFFS) formulated into edible films at 0.5% to 3% (w/w) concentrations were investigated in this study. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor-phase diffusion of the antimicrobial from the film to the bacteria. The results indicate that the antimicrobial activities against the 3 pathogens were in the following order: oregano oil > allspice oil > garlic oil. Listeria monocytogenes was less resistant to EO vapors, while E. coli O157:H7 was more resistant to EOs as determined by both overlay and vapor-phase diffusion tests. The presence of plant EO antimicrobials reduced the viscosity of TPFFS at the higher shear rates, but did not affect water vapor permeability of films. EOs increased elongation and darkened the color of films. The results of the present study show that the 3 plant-derived EOs can be used to prepare tomato-based antimicrobial edible films with good physical properties for food applications by both direct contact and indirectly by vapors emanating from the films.

  8. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. Aceves-Mijares

    2012-01-01

    Full Text Available Silicon Rich Oxide (SRO has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD. In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept that SRO emission properties are due to oxidation state nanoagglomerates rather than to nanocrystals. The emission mechanism is similar to Donor-Acceptor decay in semiconductors, and a wide emission spectrum, from 450 to 850 nm, has been observed. The results show that emission is a function of both silicon excess in the film and excitation energy. As a result different color emissions can be obtained by selecting the suitable excitation energy.

  9. Facile Fabrication of Boron-Doped Titania Nanopowders by Atmospheric Pressure Chemical Vapor Synthesis Route and its Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    K. Saberyan

    2014-04-01

    Full Text Available The Atmospheric Pressure Chemical Vapor Synthesis (APCVS route is a process that can be used for the synthesis of doped-nanocrystalline powders with very small crystallite sizes having a narrow particle size distribution and high purity. In this study, APCVS technique was used to prepare boron-doped titania nanopowders. The effects of temperature, borate flow rate and water flow rate on the amount of doped boron were studied. The resultant powders were characterized by inductively coupled plasma (ICP, X-ray diffraction (XRD, nitrogen adsorption technique (BET, UV-visible DRS spectroscopy, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The optimum boron precursor flow rate was 80 sccm. The highest amount of doped boron was attained when water flow rate was 900 sccm. In comparison to the pristine TiO2, the boron-doped TiO2 nanoparticles showed blue-shift in band-gap energy of the samples.

  10. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  11. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.; Cha, Min Suk

    2016-10-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface.

  12. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Marisa A. A., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com [Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Coutinho, João A. P. [CICECO, Departamento de Química, Universidade de Aveiro, P-3810-193 Aveiro (Portugal); Santos, Luís M. N. B. F., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com [Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids. The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.

  13. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants1[OPEN

    Science.gov (United States)

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2016-01-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD. Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD. We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD. In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability. PMID:27208264

  14. Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

    Science.gov (United States)

    Promulgated quality assurance Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

  15. Calibrated vapor generator source

    Science.gov (United States)

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  16. High-pressure vapor-liquid equilibrium data for CO2-orange peel oil

    Directory of Open Access Journals (Sweden)

    G.R. Stuart

    2000-06-01

    Full Text Available Recently, there has been a growing interest in fractionating orange peel oil by the use of supercritical carbon dioxide (SCCO2. However, progress in this area has been hindered by the lack of more comprehensive work concerning the phase equilibrium behavior of the SCCO2-orange peel oil system. In this context, the aim of this work is to provide new phase equilibrium data for this system over a wide range of temperatures and pressures, permitting the construction of coexistence PT-xy curves as well as the P-T diagram. The experiments were performed in a high-pressure variable-volume view cell in the temperature range of 50-70ºC from 70 to 135 atm and in the CO2 mass fraction composition range of 0.35-0.98. Based on the experimental phase equilibrium results, appropriate operating conditions can be set for high-pressure fractionation purposes.

  17. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  18. Heat transport in cold-wall single-wafer low pressure chemical-vapor-deposition reactors

    NARCIS (Netherlands)

    Hasper, A.; Schmitz, J.E.J.; Holleman, J.; Verweij, J.F.

    1992-01-01

    A model is formulated to understand and predict wafer temperatures in a tungsten low pressure chemical‐vapor‐deposition (LPCVD) single‐wafer cold‐wall reactor equipped with hot plate heating. The temperature control is usually carried out on the hot plate temperature. Large differences can occur

  19. Determination of mercury by electrochemical cold vapor generation atomic fluorescence spectrometry using polyaniline modified graphite electrode as cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianjuan [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gan Wuer, E-mail: wgan@ustc.edu.c [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan Lingzhong; Zhang Hanchang; He Youzhao [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-02-15

    An electrochemical cold vapor generation system with polyaniline modified graphite electrode as cathode material was developed for Hg (II) determination by coupling with atomic fluorescence spectrometry. This electrochemical cold vapor generation system with polyaniline/graphite electrode exhibited higher sensitivity; excellent stability and lower memory effect compared with graphite electrode electrochemical cold vapor generation system. The relative standard deviation was 2.7% for eleven consecutive measurements of 2 ng mL{sup -1} Hg (II) standard solution and the mercury limit of detection for the sample blank solution was 1.3 rg mL{sup -1} (3sigma). The accuracy of the method was evaluated through analysis of the reference materials (GBW09101) (Human hair) and GBW (08517) (Laminaria Japonica Aresch) and the proposed method was successfully applied to the analysis of human hairs.

  20. Determination of optimum pressurizer level for kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee Jae Yong; Kim, Yo Han; Lee, Dong Hyuk [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are performed. The methodology is developed by evaluating {sup d}ecrease in secondary heat removal{sup e}vents such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling. The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. 6 refs., 5 figs. (Author)

  1. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.O. [Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km.7.5, E-07122 Palma de Mallorca (Spain); Elsholz, O. [Hamburg University of Applied Sciences, Lohbruegger Kirchstrasse 65, 21033 Hamburg (Germany); Forteza, R. [Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km.7.5, E-07122 Palma de Mallorca (Spain); Cerda, V. [Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km.7.5, E-07122 Palma de Mallorca (Spain)]. E-mail: victor.cerda@uib.es

    2006-07-28

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl{sub 2} in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L{sup -1}. The detection limit (3{sigma} {sub b}/S) achieved is 5 ng L{sup -1}. The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L{sup -1} Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.

  2. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  3. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  4. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    Science.gov (United States)

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  5. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Science.gov (United States)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Denissen, C.; Suijker, J.; Awakowicz, P.; Mentel, J.

    2015-08-01

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  6. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  7. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L(-1)) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm(3) g(-1)) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  8. Determinants of blood pressure distribution in school children.

    Science.gov (United States)

    Durrani, Anisa M; Fatima, Wasim

    2012-06-01

    Hypertension (potential risk for cardiovascular diseases) is a major health problem in developed and developing countries affecting approximately one billion individuals worldwide. Many of the risk factors associated with development of hypertension are preventable. Early identification of children at risk for hypertension is important to prevent serious complications. The present study aimed at determining the percentile of systolic blood and diastolic blood pressure and to investigate distribution of blood pressure and its association with anthropometric variables. A cross-sectional study among 701 school children (in the age group of 12-16 years), selected by stratified random sampling was conducted in Aligarh. Personal data were collected through a pre-tested questionnaire. Blood pressure, weight and height were measured through standardized techniques and quetelet index was used to determine BMI. The distributions of blood pressure by anthropometric characteristics were examined. Mean, standard deviation, chi square and correlation coefficient were used for statistical analysis using SPSS 12 software. High blood pressure was defined as systolic and/or diastolic blood pressure over the 95th percentile. Out of 363 boys, 34 (9.36%) and out of 338 girls, 32 (9.46%) had hypertension with overall prevalence of 66 (9.4%) children. Mean systolic blood and diastolic blood pressure were higher as the range of weight, height and BMI increased and blood pressure of children showed positive correlation with anthropometrics characteristics. It is therefore recommended that the children must be screened regularly for blood pressure to detect the prevalence so that remedial measure may be initiated as early as possible.

  9. Determination of Mercury in Mainstream Cigarette Smoke by Conventional and Amalgamation Cold Vapor Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    McDaniel RL

    2014-12-01

    Full Text Available A method for differentiation of gas- and particulate-phase mercury in mainstream cigarette smoke was developed using electrostatic precipitation (EP as the trap for the particulate phase and impingers containing acidic potassium permanganate solution as the trap for the gas-phase portion. The mercury collected from the gas phase was analyzed by conventional cold vapor atomic absorption spectrometry (CVAAS and the particulate phase was analyzed by gold amalgamation CVAAS. Cigarettes were smoked under two smoking regimes, FTC (35-mL puff volume, 2 s puff duration and one puff every 60 s and an alternative (45-mL puff volume, 2 s puff duration, one puff every 30 s and 50% of any ventilation holes blocked currently recommended by the Massachusetts Department of Health. For the 1R4F reference cigarette smoked under the FTC smoking regime, the mercury found in the particulate phase was less than 0.2 ng/cig, compared with 4.9 ng/cig in the gas phase. By changing smoking parameters, the mercury concentration in mainstream smoke was found to change proportional to the delivery of cigarette smoke condensate (CSC for the same type of cigarette. However, the mercury level for different types of cigarettes smoked under the same smoking parameters had no linear relationship with CSC delivery. Spiked recovery was 98% AA± 8% for gas-phase mercury and 97% AA± 2% for the particulate phase. These results indicate that the analytical method developed is suitable for the determination of mercury in mainstream smoke. For routine analytical work in a smoking laboratory, only the gas phase needs to be analyzed for determination of mercury in mainstream smoke because the amount of mercury in the particulate phase is negligible.

  10. Chemical purging of an intermediate steam heater of a boiler unit at supercritical pressure using moist vapor with ammonia salt pressure (EDEK)

    Energy Technology Data Exchange (ETDEWEB)

    Aleynikov, G.I.; Aldayev, V.A.; Kuz' micheva, L.V.; Mamet, A.P.; Taratata, V.A.

    1980-01-01

    The technology of chemical purging of intermediate steam heater with moist vapor with the addition of reagents, for example ammonia salt EDTK (AEDTK), has been developed. Conditions of conducting chemical purging under test stand conditions have been determined: the concentration of AEDKT, moisture value, temperature of the cleansing agent, rate of its movement and corrosion activity in the presence and in the absence of corrosion inhibitors are determined. Under operating conditions the chemical purging technology using moist steam with the addition of AEDTK and corrosion inhibitors was checked while carrying out cleansing of TGMP-114 steam unit superheaters of a 300MW power unit of the Kostromoskaya state regional power plant. The amount of deposits on the internal surface of the II stage of the superheater following 50,000 hours of use was 2500-3000g/m/sup 2/; the deposits were very dense and consisted of scale.

  11. DETERMINATION OF HEAT TRANSFER COEFFICIENTS FOR FRENCH PLASTIC SEMEN STRAW SUSPENDED IN STATIC NITROGEN VAPOR OVER LIQUID NITROGEN.

    Science.gov (United States)

    Santo, M V; Sansinena, M; Chirife, J; Zaritzky, N

    2015-01-01

    The use of mathematical models describing heat transfer during the freezing process is useful for the improvement of cryopreservation protocols. A widespread practice for cryopreservation of spermatozoa of domestic animal species consists of suspending plastic straws in nitrogen vapor before plunging into liquid nitrogen. Knowledge of surface heat transfer coefficient (h) is mandatory for computational modelling; however, h values for nitrogen vapor are not available. In the present study, surface heat transfer coefficients for plastic French straws immersed in nitrogen vapor over liquid nitrogen was determined; vertical and horizontal positions were considered. Heat transfer coefficients were determined from the measurement of time-temperature curves and from numerical solution of heat transfer partial differential equation under transient conditions using finite elements. The h values experimentally obtained for horizontal and vertically placed straws were compared to those calculated using correlations based on the Nusselt number for natural convection. For horizontal straws the average obtained value was h=12.5 ± 1.2 W m(2) K and in the case of vertical straws h=16 ± 2.48 W m(2) K. The numerical simulation validated against experimental measurements, combined with accurate h values provides a reliable tool for the prediction of freezing curves of semen-filled straws immersed in nitrogen vapor. The present study contributes to the understanding of the cryopreservation techniques for sperm freezing based on engineering concepts, improving the cooling protocols and the manipulation of the straws.

  12. Nanocell with a pressure-controlled Rb atomic vapor column thickness: Critical influence of the thickness on optical processes

    Science.gov (United States)

    Sargsyan, A.; Amiryan, A.; Cartaleva, S.; Sarkisyan, D.

    2017-07-01

    A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0-1 atm, the NC thickness is smoothly varied in the range L = 140-1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.

  13. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition.

    Science.gov (United States)

    Fang, Wenjing; Hsu, Allen L; Song, Yi; Birdwell, Anthony G; Amani, Matin; Dubey, Madan; Dresselhaus, Mildred S; Palacios, Tomás; Kong, Jing

    2014-06-24

    In this work, we investigated the growth mechanisms of bilayer graphene on the outside surface of Cu enclosures at low pressures. We observed that the asymmetric growth environment of a Cu enclosure can yield a much higher (up to 100%) bilayer coverage on the outside surface as compared to the bilayer growth on a flat Cu foil, where both sides are exposed to the same growth environment. By simultaneously examining the graphene films grown on both the outside and inside surfaces of the Cu enclosure, we find that carbon can diffuse from the inside surface to the outside via exposed copper regions on the inside surface. The kinetics of this process are examined by coupling the asymmetric growth between the two surfaces through a carbon diffusion model. Finally, using these results, we show that the coverage of bilayer graphene can be tuned simply by changing the thickness of the Cu foil, further confirming our model of carbon delivery through the Cu foil.

  14. Contribution to vapor generation-inductively coupled plasma spectrometric techniques for determination of sulfide in water samples.

    Science.gov (United States)

    Cmelík, Jirí; Machát, Jirí; Otruba, Vítezslav; Kanický, Viktor

    2010-03-15

    Vapor generation-inductively coupled plasma-optical emission spectrometry was used for the determination of sulfide in water samples preserved by the addition of a zinc acetate and sodium hydroxide solution. Hydrogen sulfide and acid-volatile sulfides were transformed, by acidification, to a gaseous phase in a vapor generator and subsequently detected by inductively coupled plasma optical emission spectrometry. Compounds interfering with iodometric titration and spectrophotometric determination were examined as potential chemical interferents. The proposed method provides results comparable to iodometric titration in the tested concentration range 0.06-22.0 mg L(-1). Limit of detection for the determination of hydrogen sulfide by this method is 0.03 mg L(-1). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    Science.gov (United States)

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are

  16. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...... and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient...... of thermal expansion have been explored....

  17. Determinants and limits of pressure-preset ventilation: a mathematical model of pressure control.

    Science.gov (United States)

    Marini, J J; Crooke, P S; Truwit, J D

    1989-09-01

    In recent years, four square-wave modes of pressure-preset mechanical ventilation (PPV)--pressure control, pressure support, inverse ratio, and airway pressure release ventilation--have been introduced to clinical practice. Conceptually, they share important features. Yet, because there remains widespread uncertainty regarding their ventilatory characteristics, efficacy, and appropriate use, the potential range of application is only now being investigated. To construct a unifying mathematical model of PPV, we developed a system of equations for prediction of the major "outcome" variables of PPV--tidal volume, minute ventilation, auto-positive end-expiratory pressure, mean alveolar pressure, and mechanical work--from the primary clinical "inputs" from patient (resistance, compliance) and clinician (applied pressure, frequency, inspiratory time fraction). Our analysis revealed distinct bounding limits for the outcome variables of ventilation and pressure and important implications for their clinical determinants. Although simplifying assumptions were required to enable construction of this mathematical analogue of respiratory system behavior, this model provides a firm conceptual framework for understanding the physiological interactions between PPV and the patients they are intended to help.

  18. Determining the Optimum Exposure and Recovery Periods for Efficient Operation of a QCM Based Elemental Mercury Vapor Sensor

    Directory of Open Access Journals (Sweden)

    K. M. Mohibul Kabir

    2015-01-01

    Full Text Available In recent years, mass based transducers such as quartz crystal microbalance (QCM have gained huge interest as potential sensors for online detection of elemental mercury (Hg0 vapor from anthropogenic sources due to their high portability and robust nature enabling them to withstand harsh industrial environments. In this study, we determined the optimal Hg0 exposure and recovery times of a QCM based sensor for ensuring its efficient operation while monitoring low concentrations of Hg0 vapor (<400 ppbv. The developed sensor was based on an AT-cut quartz substrate and utilized two gold (Au films on either side of the substrate which functions as the electrodes and selective layer simultaneously. Given the temporal response mechanisms associated with mass based mercury sensors, the experiments involved the variation of Hg0 vapor exposure periods while keeping the recovery time constant following each exposure and vice versa. The results indicated that an optimum exposure and recovery periods of 30 and 90 minutes, respectively, can be utilized to acquire the highest response magnitudes and recovery rate towards a certain concentration of Hg0 vapor whilst keeping the time it takes to report an accurate reading by the sensor to a minimum level as required in real-world applications.

  19. Atomic fluorescence method for determination of concentration of alkali metal vapor using a laser source

    Energy Technology Data Exchange (ETDEWEB)

    Budkin, L.A.; Okhotnikov, O.G.; Pak, G.T.; Pikhtelev, A.I.; Puzanov, S.L.

    1984-04-01

    An experimental investigation into the temperature dependence of the cesium vapor concentration has been carried out within the 20-80 deg C temperature range on the base of the atomic fluorescence method with the use of a semiconductor laser. The relation allowing one to study the alkali metal atomic concentration as a function of the vapor temperature and also the method sensitivity as a function of the laser intensity has been derived using the balance equations. A good agreement of the experimental results with estimated ones has been obtained. The method sensitivity has been found to grow with the laser intensity.

  20. Liquid-vapor equilibrium of the systems butylmethylimidazolium nitrate-CO2 and hydroxypropylmethylimidazolium nitrate-CO2 at high pressure: influence of water on the phase behavior.

    Science.gov (United States)

    Bermejo, M Dolores; Montero, Marta; Saez, Elisa; Florusse, Louw J; Kotlewska, Aleksandra J; Cocero, M José; van Rantwijk, Fred; Peters, Cor J

    2008-10-30

    Ionic liquids (IL) are receiving increasing attention due to their potential as "green" solvents, especially when used in combination with SC-CO2. In this work liquid-vapor equilibria of binary mixtures of CO2 with two imidazolium-based ionic liquids (IL) with a nitrate anion have been experimentally determined: butylmethylimidazolium nitrate (BMImNO3) and hydroxypropylmethylimidazolium nitrate (HOPMImNO3), using a Cailletet apparatus that operates according to the synthetic method. CO2 concentrations from 5 up to 30 mol % were investigated. It was found that CO2 is substantially less soluble in HOPMImNO3 than in BMImNO3. Since these ILs are very hygroscopic, water easily can be a major contaminant, causing changes in the phase behavior. In case these Ils are to be used in practical applications, for instance, together with CO2 as a medium in supercritical enzymatic reactions, it is very important to have quantitative information on how the water content will affect the phase behavior. This work presents the first systematic study on the influence of water on the solubility of carbon dioxide in hygroscopic ILs. It was observed that the presence of water reduces the absolute solubility of CO2. However, at fixed ratios of CO2/IL, the bubble point pressure remains almost unchanged with increasing water content. In order to explain the experimental results, the densities of aqueous mixtures of both ILs were determined experimentally and the excess molar volumes calculated.

  1. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    Science.gov (United States)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  2. Activity coefficients and free energies of nonionic mixed surfactant solutions from vapor-pressure and freezing-point osmometry.

    Science.gov (United States)

    MacNeil, Jennifer A; Ray, Gargi Basu; Leaist, Derek G

    2011-05-19

    The thermodynamic properties of mixed surfactant solutions are widely investigated, prompted by numerous practical applications of these systems and by interest in molecular association and self-organization. General techniques for measuring thermodynamic activities, such as isopiestic equilibration, are well-established for multicomponent solutions. Surprisingly, these techniques have not yet been applied to mixed surfactant solutions, despite the importance of the free energy for micelle stability. In this study, equations are developed for the osmotic coefficients of solutions of nonionic surfactant A + nonionic surfactant B. A mass-action model is used, with virial equations for the activity coefficients of the micelles and free surfactant monomer species. The equations are fitted to osmotic coefficients of aqueous decylsulfobetaine + dodecylsulfobetaine solutions measured by vapor-pressure and freezing-point osmometry. Equilibrium constants for mixed-micelle formation are calculated from the free monomer concentrations at the critical micelle concentrations. The derived activity coefficients of the micelles and free monomers indicate large departures from ideal solution behavior, even for dilute solutions of the surfactants. Stoichiometric activity coefficients of the total surfactant components are evaluated by Gibbs-Duhem integration of the osmotic coefficients. Relatively simple colligative property measurements hold considerable promise for free energy studies of multicomponent surfactant solutions. © 2011 American Chemical Society

  3. Quantitative relationships for the prediction of the vapor pressure of some hydrocarbons from the van der Waals molecular surface

    Directory of Open Access Journals (Sweden)

    Olariu Tudor

    2015-01-01

    Full Text Available A quantitative structure - property relationship (QSPR modeling of vapor pressure at 298.15 K, expressed as log (VP / Pa was performed for a series of 84 hydrocarbons (63 alkanes and 21 cycloalkanes using the van der Waals (vdW surface area, SW/Å2, calculated by the Monte Carlo method, as the molecular descriptor. The QSPR model developed from the subset of 63 alkanes (C1-C16, deemed as the training set, was successfully used for the prediction of the log (VP / Pa values of the 21 cycloalkanes, which was the external prediction (test subset. A QSPR model was also developed for a series composed of all 84 hydrocarbons. Both QSPR models were statistically tested for their ability to fit the data and for prediction. The results showed that the vdW molecular surface used as molecular descriptor (MD explains the variance of the majority of the log (VP / Pa values in this series of 84 hydrocarbons. This MD describes very well the intermolecular forces that hold neutral molecules together. The clear physical meaning of the molecular surface values, SW/Å2, could explain the success of the QSPR models obtained with a single structural molecular descriptor.

  4. Suppression of Graphene Nucleation by Turning Off Hydrogen Supply Just before Atmospheric Pressure Chemical Vapor Deposition Growth

    Directory of Open Access Journals (Sweden)

    Seiya Suzuki

    2017-11-01

    Full Text Available To exploit the extraordinary property of graphene in practical electrical and optical devices, it is necessary to produce large-sized, single-crystal graphene. Atmospheric pressure chemical vapor deposition (APCVD on polycrystalline Cu surface is a promising scalable route of graphene synthesis but the unavoidable multiple nucleation limits their reachable domain size. Here, we report that effective suppression of nucleation was achieved by only turning off hydrogen supply before introduction of the carbon source for graphene growth. The density of graphene decreased from 72.0 to 2.2 domains/cm2 by turning off hydrogen for 15 min. X-ray photoelectron spectroscopy and Raman spectroscopy studies show that the Cu surface was covered with 3–4 nm thick highly crystalline Cu2O, which would be caused by oxidation by residual oxidative gasses in the chamber during the turning off period. It was also revealed that elevating the temperature in Ar followed by annealing in H2/Ar before turning off hydrogen led to the enlargement of the Cu domain, resulting in the further suppression of nucleation. By optimizing such growth parameters in the CVD process, a single-crystal graphene with ~2.6 mm in diameter was successfully obtained.

  5. Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition.

    Science.gov (United States)

    Hoye, Robert L Z; Muñoz-Rojas, David; Musselman, Kevin P; Vaynzof, Yana; MacManus-Driscoll, Judith L

    2015-05-27

    A close-proximity atmospheric pressure chemical vapor deposition (AP-CVD) reactor is developed for synthesizing high quality multicomponent metal oxides for electronics. This combines the advantages of a mechanically controllable substrate-manifold spacing and vertical gas flows. As a result, our AP-CVD reactor can rapidly grow uniform crystalline films on a variety of substrate types at low temperatures without requiring plasma enhancements or low pressures. To demonstrate this, we take the zinc magnesium oxide (Zn(1-x)Mg(x)O) system as an example. By introducing the precursor gases vertically and uniformly to the substrate across the gas manifold, we show that films can be produced with only 3% variation in thickness over a 375 mm(2) deposition area. These thicknesses are significantly more uniform than for films from previous AP-CVD reactors. Our films are also compact, pinhole-free, and have a thickness that is linearly controllable by the number of oscillations of the substrate beneath the gas manifold. Using photoluminescence and X-ray diffraction measurements, we show that for Mg contents below 46 at. %, single phase Zn(1-x)Mg(x)O was produced. To further optimize the growth conditions, we developed a model relating the composition of a ternary oxide with the bubbling rates through the metal precursors. We fitted this model to the X-ray photoelectron spectroscopy measured compositions with an error of Δx = 0.0005. This model showed that the incorporation of Mg into ZnO can be maximized by using the maximum bubbling rate through the Mg precursor for each bubbling rate ratio. When applied to poly(3-hexylthiophene-2,5-diyl) hybrid solar cells, our films yielded an open-circuit voltage increase of over 100% by controlling the Mg content. Such films were deposited in short times (under 2 min over 4 cm(2)).

  6. Inaccuracy in determining mean arterial pressure with oscillometric blood pressure techniques.

    Science.gov (United States)

    Vos, Jorn; Vincent, Hieronymus H; Verhaar, Marianne C; Bos, Willem J W

    2013-05-01

    Accurate determination of MAP is important in the calibration of pressure waveforms for calculating central blood pressure (BP). Currently, a precise, individualized measurement of mean arterial pressure (MAP) can be obtained only with intra-arterial measurements of BP or with applanation tonometry. We conducted a study of whether easy-to-use oscillometric devices, validated for systolic and diastolic BP measurements (BHS protocol), give accurate determinations of MAP. We compared measurements of MAP made with the WatchBP Office oscillometric monitor in 102 subjects with values of MAP assessed by pulse-wave analysis (PWA) (SphygmoCor). The mean (± SD) oscillometric MAP assessed with the WatchBP Office monitor was 97 ± 12.5 mm Hg, which was equivalent to 23.6 ± 9.1% of the pulse pressure (PP) above diastolic blood pressure (DBP). The MAP as assessed through PWA was 106 ± 14.6 mm Hg (P < 0.01), or 37.7 ± 3.9% of the PP above DBP. In simultaneous measurements made on both arms with the WatchBP Office monitor we observed individual differences in pressure in the left vs. the right arm. The MAP displayed by the WatchBP Office monitor is too imprecise to be used for calibrations. We suggest that devices for measuring BP not display MAP unless their accuracy is tested.

  7. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Energy Technology Data Exchange (ETDEWEB)

    Vandam, T.M.; Blewitt, G.; Heflin, M.B. [NOAA, Silver Spring, MD (United States)]|[Univ. of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom)]|[Jet Propulsion Laboratory, Pasadena, CA (United States)

    1994-12-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged.

  8. Does vapor pressure deficit drive the seasonality of δ13C of the net land-atmosphere CO2 exchange across the United States?

    Science.gov (United States)

    Raczka, B.; Biraud, S. C.; Ehleringer, J. R.; Lai, C.-T.; Miller, J. B.; Pataki, D. E.; Saleska, S. R.; Torn, M. S.; Vaughn, B. H.; Wehr, R.; Bowling, D. R.

    2017-08-01

    The seasonal pattern of the carbon isotope content (δ13C) of atmospheric CO2 depends on local and nonlocal land-atmosphere exchange and atmospheric transport. Previous studies suggested that the δ13C of the net land-atmosphere CO2 flux (δsource) varies seasonally as stomatal conductance of plants responds to vapor pressure deficit of air (VPD). We studied the variation of δsource at seven sites across the United States representing forests, grasslands, and an urban center. Using a two-part mixing model, we calculated the seasonal δsource for each site after removing background influence and, when possible, removing δ13C variation of nonlocal sources. Compared to previous analyses, we found a reduced seasonal (March-September) variation in δsource at the forest sites (0.5‰ variation). We did not find a consistent seasonal relationship between VPD and δsource across forest (or other) sites, providing evidence that stomatal response to VPD was not the cause of the global, coherent seasonal pattern in δsource. In contrast to the forest sites, grassland and urban sites had a larger seasonal variation in δsource (5‰) dominated by seasonal transitions in C3/C4 grass productivity and in fossil fuel emissions, respectively. Our findings were sensitive to the location used to account for atmospheric background variation within the mixing model method that determined δsource. Special consideration should be given to background location depending on whether the intent is to understand site level dynamics or regional scale impacts of land-atmosphere exchange. The seasonal amplitude in δ13C of land-atmosphere CO2 exchange (δsource) varied across land cover types and was not driven by seasonal changes in vapor pressure deficit. The largest seasonal amplitudes of δsource were at grassland and urban sites, driven by changes in C3/C4 grass productivity and fossil fuel emissions, respectively. Mixing model approaches may incorrectly calculate δsource when

  9. Simultaneous Determination of Furan and Vinyl Acetate in Vapor Phase of Mainstream Cigarette Smoke by GC-MS

    Directory of Open Access Journals (Sweden)

    AIFEI XU

    Full Text Available ABSTRACT A simple and sensitive method for simultaneous determination of furan and vinyl acetate (VA in vapor phase of mainstream cigarette smoke with cold trap and gas chromatography-mass spectrometry (GC-MS was developed. A Cambridge filter pad (CFP was placed in front of the impingers of smoking machine to remove the particle phase from cigarette smoke. Furan and VA in vapor phase of mainstream cigarette smoke were collected in two impingers connected in series by filled with methanol at -78°C. The solutions were added with deuterium-labeled furan-d4 and VA-d6 as internal standards and analyzed by GC-MS. The results showed that the calibration curves for furan and VA were linear (r2 > 0.9995 over the studied concentration range. The intra- and inter-day precision values for furan and VA were <7.07% and <9.62%, respectively. The extraction recoveries of furan and VA were in the range of 94.5-97.7% and 92.3-94.9%, respectively. Moreover, the limits of detection for furan and VA were 0.028 µg mL-1 and 1.3 ng mL-1, respectively. The validated method has been successfully applied to determine the emissions of furan and VA in the vapor phase of mainstream cigarette smoke under International Organization for Standardization (ISO and Canadian Intense (CI smoking regimen.

  10. HIGH-PRESSURE VAPOR-LIQUID EQUILIBRIUM DATA FOR BINARY AND TERNARY SYSTEMS FORMED BY SUPERCRITICAL CO2, LIMONENE AND LINALOOL

    Directory of Open Access Journals (Sweden)

    MELO S. A. B. VIEIRA DE

    1999-01-01

    Full Text Available The feasibility of deterpenating orange peel oil with supercritical CO2 depends on relevant vapor-liquid equilibrium data because the selectivity of this solvent for limonene and linalool (the two key components of the oil is of crucial importance. The vapor-liquid equilibrium data of the CO2-limonene binary system was measured at 50, 60 and 70oC and pressures up to 10 MPa, and of the CO2-linalool binary system at 50oC and pressures up to 85 bar. These results were compared with published data when available in the literature. The unpublished ternary phase equilibrium of CO2-limonene-linalool was studied at 50oC and up to 9 MPa. Selectivities obtained using these ternary data were compared with those calculated using binary data and indicate that a selective separation of limonene and linalool can be achieved.

  11. Atmospheric-pressure plasma-enhanced chemical vapor deposition of a-SiCN:H films: role of precursors on the film growth and properties.

    Science.gov (United States)

    Guruvenket, Srinivasan; Andrie, Steven; Simon, Mark; Johnson, Kyle W; Sailer, Robert A

    2012-10-24

    Atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) using Surfx Atomflow(TM) 250D APPJ was utilized to synthesize amorphous silicon carbonitride coatings using tetramethyldisilizane (TMDZ) and hexamethyldisilizane (HMDZ) as the single source precursors. The effect of precursor chemistry and substrate temperature (T(s)) on the properties of a-SiCN:H films were evaluated, while nitrogen was used as the reactive gas. Surface morphology of the films was evaluated using atomic force microscopy (AFM); chemical properties were determined using Fourier transform infrared spectroscopy (FTIR); thickness and optical properties were determined using spectroscopic ellipsometry and mechanical properties were determined using nanoindentation. In general, films deposited at substrate temperature (T(s)) films deposited at T(s) > 200 °C depicted strong Si-N and Si-CN absorption. Refractive indices (n) of the thin films showed values between 1.5 and 2.0, depending on the deposition parameters. Mechanical properties of the films determined using nanoindentation revealed that these films have hardness between 0.5 GPa and 15 GPa, depending on the T(s) value. AFM evaluation of the films showed high roughness (R(a)) values of 2-3 nm for the films grown at low T(s) (films grown at T(s) ≥ 300 °C exhibited atomically smooth surface with R(a) of ~0.5 nm. Based on the gas-phase (plasma) chemistry, precursor chemistry and the other experimental observations, a possible growth model that prevails in the AP-PECVD of a-SiCN:H thin films is proposed.

  12. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    Directory of Open Access Journals (Sweden)

    Dalong Zhang

    Full Text Available The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L. productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1 without environment control and (2 with a micro-fog system operating when the air vapor pressure deficit (VPD of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR, and to a lesser extent caused by leaf area ratio (LAR. Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season.

  13. Investigation of Boron Thermal Diffusion from Atmospheric Pressure Chemical Vapor Deposited Boron Silicate Glass for N-Type Solar Cell Process Application

    OpenAIRE

    Ikuo Kurachi; Kentaro Yoshioka

    2016-01-01

    An atmospheric pressure chemical vapor deposition (AP-CVD) system has been newly developed for boron silicate glass (BSG) film deposition dedicating to solar cell manufacturing. Using the system, thermal boron diffusion from the BSG film is investigated and confirmed in terms of process stability for surface property before BSG deposition and BSG thickness. No degradation in carrier lifetime is also confirmed. A boron diffusion simulator has been newly developed and demonstrated for optimizat...

  14. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Meng, E-mail: youmou@rift.mech.tohoku.ac.jp [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Sasaki, Shinichirou [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Suzuki, Ken; Miura, Hideo [Fracture and Reliability Research Institute, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • For the first time, we succeeded in the LPCVD growth of monolayer graphene using acetylene as the precursor gas. • The growth rate is very high when acetylene is used as the source gas. Our process has exhibited the potential to shorten the growth time of CVD graphene. • We found that the domain size, defects density, layer number and the sheet resistance of graphene can be changed by changing the acetylene flow rates. • We found that it is also possible to form bilayer graphene using acetylene. However, further study are necessary to reduce the defects density. - Abstract: Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  15. Using an Atmospheric Pressure Chemical Vapor Deposition Process for the Development of V2O5 as an Electrochromic Material

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2017-02-01

    Full Text Available Vanadium pentoxide coatings were grown by atmospheric pressure chemical vapor deposition varying the gas precursor ratio (vanadium (IV chloride:water and the substrate temperature. All samples were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, cyclic voltammetry, and transmittance measurements. The water flow rate was found to affect the crystallinity and the morphological characteristics of vanadium pentoxide. Dense stacks of long grains of crystalline oxide are formed at the highest amount of water utilized for a substrate temperature of 450 °C. Accordingly, it was indicated that for higher temperatures and a constant gas precursor ratio of 1:7, the surface morphology becomes flattened, and columnar grains of uniform size and shape are indicated, keeping the high crystalline quality of the material. Hence, it was possible to define a frame of operating parameters wherein single-phase vanadium pentoxide may be reliably expected, including a gas precursor ratio of 1:7 with a substrate temperature of >450 °C. The as-grown vanadium pentoxide at 550 °C for a gas precursor ratio of 1:7 presented the best electrochemical performance, including a diffusion coefficient of 9.19 × 10−11 cm2·s−1, a charge density of 3.1 mC·cm−2, and a coloration efficiency of 336 cm2·C−1. One may then say that this route can be important for the growth of large-scale electrodes with good performance for electrochromic devices.

  16. Spatial and temporal changes in vapor pressure deficit and their impacts on crop yields in China during 1980-2008

    Science.gov (United States)

    Zhang, Shuai; Tao, Fulu; Zhang, Zhao

    2017-08-01

    Vapor pressure deficit (VPD) is a widely used measure of atmospheric water demand. It is closely related to crop evapotranspiration and consequently has major impacts on crop growth and yields. Most previous studies have focused on the impacts of temperature, precipitation, and solar radiation on crop yields, but the impact of VPD is poorly understood. Here, we investigated the spatial and temporal changes in VPD and their impacts on yields of major crops in China from 1980 to 2008. The results showed that VPD during the growing period of rice, maize, and soybean increased by more than 0.10 kPa (10 yr)-1 in northeastern and southeastern China, although it increased the least during the wheat growing period. Increases in VPD had different impacts on yields for different crops and in different regions. Crop yields generally decreased due to increased VPD, except for wheat in southeastern China. Maize yield was sensitive to VPD in more counties than other crops. Soybean was the most sensitive and rice was the least sensitive to VPD among the major crops. In the past three decades, due to the rising trend in VPD, wheat, maize, and soybean yields declined by more than 10.0% in parts of northeastern China and the North China Plain, while rice yields were little affected. For China as a whole, the trend in VPD during 1980-2008 increased rice yields by 1.32%, but reduced wheat, maize, and soybean yields by 6.02%, 3.19%, and 7.07%, respectively. Maize and soybean in the arid and semi-arid regions in northern China were more sensitive to the increase in VPD. These findings highlight that climate change can affect crop growth and yield through increasing VPD, and water-saving technologies and agronomic management need to be strongly encouraged to adapt to ongoing climate change.

  17. Note: implementation of a cold spot setup for controlled variation of vapor pressures and its application to an InBr containing discharge lamp.

    Science.gov (United States)

    Briefi, S

    2013-02-01

    In order to allow for a systematic investigation of the plasma properties of discharges containing indium halides, which are proposed as an efficient alternative for mercury based low pressure discharge lamps, a controlled variation of the indium halide density is mandatory. This can be achieved by applying a newly designed setup in which a well-defined cold spot location is implemented and the cold spot temperature can be adjusted between 50 and 350 °C without influencing the gas temperature. The performance of the setup has been proved by comparing the calculated evaporated InBr density (using the vapor pressure curve) with the one measured via white light absorption spectroscopy.

  18. Determination of pressure drop across activated carbon fiber respirator cartridges.

    Science.gov (United States)

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by

  19. Radiative Vaporization of Graphite in the Temperature Range of 4000 to 4500 deg K

    Science.gov (United States)

    Lundell, John H.; Dickey, Robert R.

    1976-01-01

    The vaporization of graphite under intense laser radiation is considered both theoretically and experimentally. Under intense radiation, the mass-loss rate can be high enough to cause the flow in the laser plume to be supersonic. Under these conditions, the vaporization process is coupled to the plume gasdynamics. Experimental results are presented for surface temperatures of 3985 to 4555 K and mass-loss rates from 0.52 to 27.0 g/sq cm sec. The data are used to determine the vapor pressure of graphite in a range of 2 to 11 atm, and the results are shown to be in good agreement with the JANAF vapor pressure curve, if the vaporization coefficients are unity. The assumption of unity vaporization coefficients is shown to be reasonable by a comparison of the present results with other recent vapor pressure results for graphite.

  20. Determining the precipitable water vapor thresholds under different rainfall strengths in Taiwan

    Science.gov (United States)

    Yeh, Ta-Kang; Shih, Hsuan-Chang; Wang, Chuan-Sheng; Choy, Suelynn; Chen, Chieh-Hung; Hong, Jing-Shan

    2018-02-01

    Precipitable Water Vapor (PWV) plays an important role for weather forecasting. It is helpful in evaluating the changes of the weather system via observing the distribution of water vapor. The ability of calculating PWV from Global Positioning System (GPS) signals is useful to understand the special weather phenomenon. In this study, 95 ground-based GPS and rainfall stations in Taiwan were utilized from 2006 to 2012 to analyze the relationship between PWV and rainfall. The PWV data were classified into four classes (no, light, moderate and heavy rainfall), and the vertical gradients of the PWV were obtained and the variations of the PWV were analyzed. The results indicated that as the GPS elevation increased every 100 m, the PWV values decreased by 9.5 mm, 11.0 mm, 12.2 mm and 12.3 mm during the no, light, moderate and heavy rainfall conditions, respectively. After applying correction using the vertical gradients mentioned above, the average PWV thresholds were 41.8 mm, 52.9 mm, 62.5 mm and 64.4 mm under the no, light, moderate and heavy rainfall conditions, respectively. This study offers another type of empirical threshold to assist the rainfall prediction and can be used to distinguish the rainfall features between different areas in Taiwan.

  1. Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS)†

    OpenAIRE

    Kenduzler, Erdal; Ates, Mehmet; Arslan, Zikri; McHenry, Melanie; Tchounwou, Paul B.

    2012-01-01

    A method based on cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS) has been developed for determination of inorganic mercury, Hg(II), and total mercury in fish otoliths. Sodium borohydride (NaBH4) was used as the only reducing agent and its concentration was optimized across an acidity gradient to selectively reduce Hg(II) without affecting methylmercury, CH3Hg(I). Inorganic Hg was quantitatively reduced to elemental mercury (Hg0) with 1×10−4% (m/v) NaBH4. CH3Hg...

  2. Determining the Pressure inside an Unopened Carbonated Beverage

    Science.gov (United States)

    de Grys, Hans

    2007-07-01

    Soft drinks provide a unique way to explore chemical principles. A challenging exercise for students is to determine the pressure of the carbon dioxide gas inside a sealed 12 ounce soft drink can. When presented as an open-ended problem, this exercise encourages students to think deeply about the principles involved and to develop creative strategies that are sound both theoretically and practically. A number of different methods are discussed for solving the problem, including solutions that use the ideal gas law, gas collection via water displacement, and Henry's law. The investigation includes aspects of gas behavior, equilibrium, solubility, and acids and bases.

  3. Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit.

    Science.gov (United States)

    Engel, Victor C; Griffin, Kevin L; Murthy, Ramesh; Patterson, Lane; Klimas, Christie; Potosnak, Mark

    2004-10-01

    Cottonwood (Populus deltoides Bartr. ex Marsh.) trees grown for 9 months in elevated carbon dioxide concentration ([CO2]) showed significant increases in height, leaf area and basal diameter relative to trees in a near-ambient [CO2] control treatment. Sample trees in the CO2 treatments were subjected to high and low atmospheric vapor pressure deficits (VPD) over a 5-week period at both high and low soil water contents (SWC). During these periods, transpiration rates at both the leaf and canopy levels were calculated based on sap flow measurements and leaf-to-sapwood area ratios. Leaf-level transpiration rates were approximately equivalent across [CO2] treatments when soil water was not limiting. In contrast, during drought stress, canopy-level transpiration rates were approximately equivalent across [CO2] treatments, indicating that leaf-level fluxes during drought stress were reduced in elevated [CO2] by a factor equal to the leaf area ratio of the two canopies. The shift from equivalent leaf-level transpiration to equivalent canopy-level transpiration with increasing drought stress suggests maximum water use rates were controlled primarily by atmospheric demand at high SWC and by soil water availability at low SWC. Changes in VPD had less effect on transpiration than changes in SWC for trees in both CO2 treatments. Transpiration rates of trees in both CO2 treatments reached maximum values at a VPD of about 2.0 kPa at high SWC, but leveled off and decreased slightly in both canopies as VPD increased above this value. At low SWC, increasing VPD from approximately 1.4 to 2.5 kPa caused transpiration rates to decline slightly in the canopies of trees in both treatments, with significant (P = 0.004) decreases occurring in trees in the near-ambient [CO2] treatment. The transpiration responses at high VPD in the presence of high SWC and throughout the low SWC treatment suggest some hydraulic limitations to water use occurred. Comparisons of midday leaf water potentials

  4. Direct atomic absorption determination of cadmium and lead in strongly interfering matrices by double vaporization with a two-step electrothermal atomizer

    Science.gov (United States)

    Grinshtein, Ilia L.; Vilpan, Yuri A.; Saraev, Alexei V.; Vasilieva, Lubov A.

    2001-03-01

    Thermal pretreatment of a sample using double vaporization in a two-step atomizer with a purged vaporizer makes possible the direct analysis of samples with strongly interfering matrices including solids. A porous-graphite capsule or a filter inserted into the vaporizer is used for solid sample analysis. The technique was used for the direct determination of Cd and Pb in human urine, potatoes, wheat, bovine liver, milk powder, grass-cereal mixtures, caprolactam, bituminous-shale and polyvinyl chloride plastic without chemical modification or any other sample pretreatment.

  5. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    Science.gov (United States)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  6. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    Science.gov (United States)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  7. Simple, Efficient, and Rapid Methods to Determine the Potential for Vapor Intrusion into the Home: Temporal Trends, Vapor Intrusion Forecasting, Sampling Strategies, and Contaminant Migration Routes

    Science.gov (United States)

    Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements of volatile organic compound (VOC) concentrations in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evide...

  8. The influence of methanol addition during the film growth of SnO 2 by atmospheric pressure chemical vapor deposition

    NARCIS (Netherlands)

    Volintiru, I.; Graaf, A. de; Deelen, J. van; Poodt, P.W.G.

    2011-01-01

    Undoped tin oxide (SnO2) thin films have been deposited in a stagnant point flow chemical vapor deposition reactor from a water/tin tetrachloride mixture. By adding methanol during the deposition process the film electrical properties change significantly: ten times more conductive SnO 2 films are

  9. A Method to Determine Diastolic Blood Pressure Based on Pressure Pulse Propagation in the Electronic Palpation Method

    Science.gov (United States)

    2001-10-25

    electronically palpated pulse. This particular patient seems to have arrhythmia, and, because of that, oscillometric blood pressure methods may give...of multiple oscillometric methods for blood pressure measurement in finger�, Proceedings of The First Joint BMES/EMBS Conference Serving Humanity...1 of 4 A METHOD TO DETERMINE DIASTOLIC BLOOD PRESSURE BASED ON PRESSURE PULSE PROPAGATION IN THE ELECTRONIC PALPATION METHOD H. S. S

  10. Low temperature carrier transport study of monolayer MoS{sub 2} field effect transistors prepared by chemical vapor deposition under an atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com; He, Jiazhu; Tang, Dan; Lu, Youming; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050 (China); Liu, Wenjun [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, 220 Handan Road, Shanghai 200433 (China); Wu, Jing, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com [Department of Physics, National University of Singapore, 21 Lower Kent Ridge Road, 117576 Singapore (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore (Singapore)

    2015-09-28

    Large size monolayer Molybdenum disulphide (MoS{sub 2}) was successfully grown by chemical vapor deposition method under an atmospheric pressure. The electrical transport properties of the fabricated back-gate monolayer MoS{sub 2} field effect transistors (FETs) were investigated under low temperatures; a peak field effect mobility of 59 cm{sup 2}V{sup −1}s{sup −1} was achieved. With the assist of Raman measurement under low temperature, this work identified the mobility limiting factor for the monolayer MoS{sub 2} FETs: homopolar phonon scattering under low temperature and electron-polar optical phonon scattering at room temperature.

  11. Molar Heat Capacity (Cv) for Saturated and Compressed Liquid and Vapor Nitrogen from 65 to 300 K at Pressures to 35 MPa.

    Science.gov (United States)

    Magee, J W

    1991-01-01

    Molar heat capacities at constant volume (Cv ,) for nitrogen have been measured with an automated adiabatic calorimeter. The temperatures ranged from 65 to 300 K, while pressures were as high as 35 MPa. Calorimetric data were obtained for a total of 276 state conditions on 14 isochores. Extensive results which were obtained in the saturated liquid region (Cv((2)) and Cσ ) demonstrate the internal consistency of the Cv (ρ,T) data and also show satisfactory agreement with published heat capacity data. The overall uncertainty of the Cv values ranges from 2% in the vapor to 0.5% in the liquid.

  12. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition.

    Science.gov (United States)

    Quesada-González, Miguel; Boscher, Nicolas D; Carmalt, Claire J; Parkin, Ivan P

    2016-09-28

    The work presented here describes the preparation of transparent interstitial boron-doped TiO2 thin-films by atmospheric pressure chemical vapor deposition (APCVD). The interstitial boron-doping, on TiO2, proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), is shown to enhance the crystallinity and significantly improve the photocatalytic activity of the TiO2 films. The synthesis, highly suitable for a reel-to-reel process, has been carried out in one step.

  13. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Flores, Erico Marlon de Moraes [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br

    2009-06-15

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L{sup - 1} KBr in 6 mol L{sup - 1} HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L{sup - 1} HCl and 2.5% m/v NaBH{sub 4} solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g{sup - 1} for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  14. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Duarte, Fábio Andrei; Bizzi, Cezar Augusto; Antes, Fabiane Goldschmidt; Dressler, Valderi Luiz; Flores, Érico Marlon de Moraes

    2009-06-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  15. Microspectroscopic imaging of solution plasma: How do its physical properties and chemical species evolve in atmospheric-pressure water vapor bubbles?

    Science.gov (United States)

    Yui, Hiroharu; Banno, Motohiro

    2018-01-01

    In this article, we review the development of scientific instruments for obtaining information on the evolution of physical properties and chemical species of solution plasma (SP). When a pulsed high voltage is applied between electrodes immersed in an aqueous solution, SP is formed in water vapor bubbles transiently generated in the solution under atmospheric pressure. To clarify how SP emerges in water vapor bubbles and is sustained in solutions, an instrument with micrometer spatial resolution and nanosecond temporal resolution is required. To meet these requirements, a microscopic system with a custom-made optical discharge cell was newly developed, where the working distance between the SP and the microscopic objective lens was minimized. A hollow electrode equipped in the discharge cell also enabled us to control the chemical composition in water vapor bubbles. To study the spatial and temporal evolutions of chemical species in micrometer and nano- to microsecond regions, a streak camera with a spectrometer and a CCD detector with a time-gated electronic device were combined with the microscope system. The developed instrument is expected to contribute to providing a new means of developing new schemes for chemical reactions and material syntheses.

  16. Fiber-Optic Determination of N2, O2, and Fuel Vapor in the Ullage of Liquid-Fuel Tanks

    Science.gov (United States)

    Nguyen, Quang-Viet

    2008-01-01

    development by many research groups and companies. However, the direct measurement of nitrogen (N2) is a challenge to most OBIGGS ullage sensors (such as tunable diode laser absorption) as they cannot measure N2 directly but depend on the measurement of oxygen (O2). The problem with a singular measure of O2, is that as the concentration (number density) of O2 decreases due to the inerting process or due to lower pressures from high altitudes, the precision and accuracy of the O2 measurement decreases. However, measuring O2 density in combination with N2 density (which is more abundant in air and in a N2-inerted fuel tank) can provide a much more accurate and reliable determination of the OBIGGS efficacy.

  17. Simple device to determine the pressure applied by pressure clips for the treatment of earlobe keloids

    Directory of Open Access Journals (Sweden)

    Aashish Sasidharan

    2015-01-01

    Full Text Available Background: Keloids of the ear are common problems. Various treatment modalities are available for the treatment of ear keloids. Surgical excision with intralesional steroid injection along with compression therapy has the least recurrence rate. Various types of devices are available for pressure therapy. Pressure applied by these devices is uncontrolled and is associated with the risk of pressure necrosis. We describe here a simple and easy to use device to measure pressure applied by these clips for better outcome. Objectives: To devise a simple method to measure the pressure applied by various pressure clips used in ear keloid pressure therapy. Materials and Methods: By using a force sensitive resistor (FSR, the pressure applied gets converted into voltage using electrical wires, resistors, capacitors, converter, amplifier, diode, nine-volt (9V cadmium battery and the voltage is measured using a multimeter. The measured voltage is then converted into pressure using pressure voltage graph that depicts the actual pressure applied by the pressure clip. Results: The pressure applied by different clips was variable. The spring clips were adjustable by slight variation in the design whereas the pressure applied by binder clips and magnet discs was not adjustable. Conclusion: The uncontrolled/suboptimal pressure applied by certain pressure clips can be monitored to provide optimal pressure therapy in ear keloid for better outcome.

  18. Experimental test results from an environmental protection agency test method for determination of vapor suppressant effectiveness

    Science.gov (United States)

    Tock, Richard W.; Ahern, Daniel W.

    2005-04-01

    The results obtained from laboratory experiments conducted using Environmental Protection Agency (EPA) subpart WWWW of 40 Code of Federal Regulations (CFR) part 63 (1)-test method are discussed in this article. The original test method was developed to measure the effectiveness of wax suppressants used to reduce hazardous air pollutant (HAP) emissions from unsaturated polyester (UP)/vinyl ester resins. Wax additions of ˜1.5% by weight to commercial UP resins suppress HAP emissions through the formation of surface barrier films. However, the tests performed in this study included the use of limestone and an adjunct, organic fiber reinforcement, rather than the wax. The addition of either commercial product to the UP formulations tested in this study was also shown to reduce HAP emissions. Suppression was a combination of absorption and an increased diffusion path barrier for the volatile organic carbon (VOC) components. Based on the limited data obtained, it was shown that the oil absorption characteristics of the two adjunct products could be used to estimate the expected level of vapor suppression for a specific resin formulation. Values reported in the literature for the oil adsorption characteristics of the adjunct limestone and the commercial biomass fiber were used in the laboratory tests. Although the oil adsorption characteristic of any ingredient added to a base resin formulation is indicative of its potential for emissions reduction, the EPA test protocol is still required to be performed for validation. Such screening tests will always be needed due to the variability associated with commercial UP resins and the evolution of customized UP/fiberglass composite formulations developed by custom molding shops.

  19. Density distributions of OH, Na, water vapor, and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution

    Science.gov (United States)

    Sasaki, Koichi; Ishigame, Hiroaki; Nishiyama, Shusuke

    2015-07-01

    This paper reports the density distributions of OH, Na, water vapor and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution. The densities of OH, Na and H2O had different spatial distributions, while the Na density had a similar distribution to mist, suggesting that mist is the source of Na in the gas phase. When the flow rate of helium toward the electrolyte surface was increased, the distributions of all the species densities concentrated in the neighboring region to the electrolyte surface more significantly. The densities of all the species were sensitive to the electric polarity of the power supply. In particular, we never detected Na and mist when the electrolyte worked as the anode of the dc discharge. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  20. Determination of inorganic and total mercury by vapor generation atomic absorption spectrometry using different temperatures of the measurement cell

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, Luiz Eduardo [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Goldschmidt, Fabiane [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Paniz, Jose Neri Gottfried [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Moraes Flores, Erico Marlon de [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Dressler, Valderi Luiz [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil)]. E-mail: valdres@quimica.ufsm.br

    2005-06-30

    A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg{sup 2+} or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 deg. C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg{sup 2+} concentrations. Parameters such as the type of acid (HCl or HNO{sub 3}) and its concentration, reductant (NaBH{sub 4}) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg{sup 2+} and total Hg determinations were: 1.0 mol l{sup -1} HCl as carrier solution, carrier flow rate of 3.5 ml min{sup -1}, 0.1% (m/v) NaBH{sub 4}, reductant flow rate of 1.0 ml min{sup -1} and carrier gas flow rate of 200 ml min{sup -1}. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 {mu}g l{sup -1} Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g{sup -1}. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l{sup -1} HCl solution for analyte extraction. The Hg{sup 2+} and CH{sub 3}Hg{sup +} concentrations found were in agreement with certified ones.

  1. Effect of pressure and Al doping on structural and optical properties of ZnO nanowires synthesized by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Antaryami [Oak Ridge Institute for Science and Education, Research Participation Program, U.S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC), Redstone Arsenal, AL 35898 (United States); Simmons, Jay G. [Department of Chemistry, Duke University, Durham, NC 27708 (United States); Everitt, Henry O. [U.S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC), Redstone Arsenal, AL 35898 (United States); Shen, Gang; Margaret Kim, Seongsin [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Kung, Patrick, E-mail: patkung@eng.ua.edu [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2014-02-15

    The effect of Al doping concentration and oxygen ambient pressure on the structural and optical properties of chemical vapor deposition-grown, Al-doped ZnO nanowires is studied. As Al doping increases, the strength of the broad visible emission band decreases and the UV emission increases, but the growth rate depends on the oxygen pressure in a complex manner. Together, these behaviors suggest that Al doping is effective in reducing the number of oxygen vacancies responsible for visible emission, especially at low oxygen ambient pressure. The intensities and quantum efficiencies of these emission mechanisms are discussed in terms of the effect growth and doping conditions have on the underlying excitonic decay mechanisms. -- Highlights: • Correlated study of the photoluminescence of undoped and Al-doped ZnO nanowires. • Comparative study of structural and optical properties of ZnO and Al:ZnO nanowires. • Study of excitonic decay relaxation channels as function of pressure and Al doping. • More effective reduction of oxygen vacancies by Al doping at lower pressure.

  2. Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG

    Science.gov (United States)

    Ghaebi, Hadi; Abbaspour, Ghader

    2017-11-01

    In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.

  3. Quantitative absorption spectroscopy of residual water vapor in high-purity gases: pressure broadening of the 1.39253-microm H2O transition by N2, HCl, HBr, Cl2, and O2.

    Science.gov (United States)

    Vorsa, Vasil; Dheandhanoo, Seksan; Ketkar, Suhas N; Hodges, Joseph T

    2005-02-01

    We determined the respective pressure-broadening coefficients of HCl, HBr, Cl2, and O2 (expressed relative to that of the reference gas N2) for the (v1,v2,v3)J(Ka,Kc) = (0,0,0)3(0,3) --> (1,0,1)2(0,2) rovibrational transition of H2 16O that occurs at 1.39253 microm. The experiment used a continuous-wave cavity ring-down spectroscopy analyzer to measure the peak absorption losses as a function of added moisture concentration. The measured pressure-broadening coefficients for HCl, HBr, Cl2, and O2 are, respectively, 2.76, 2.48, 1.39, and 0.49 times that of the N2 pressure-broadening coefficient, and detection limits for water vapor range from 0.22 nmol mol(-1) for O2 matrix gas to 2.3 nmol mol(-1) for HBr matrix gas. The degradation of the detection limit (relative to the N2 matrix gas) is ascribed to a pressure-broadening-induced reduction in peak absorption cross section and to elevated background loss from the matrix gas.

  4. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  5. VAPOR PRESSURES, LIQUID MOLAR VOLUMES, VAPOR NON- IDEALITIES, AND CRITICAL PROPERTIES OF SOME FLUORINATED ETHERS: CF3OCF2OCF3, CF3OCF2 CF2H, c-CF2CF2CF2O, CF3OCF2H, AND CF3OCH3; AND OF CCl3F AND CF2ClH

    Science.gov (United States)

    Vapor pressures, compressibilities, expansivities, and molar volumes of the liquid phase have been measured between room temperature and the critical temperature for a series of fluorinated ethers: CF3OCF2OCF3, CF3OCF2CF2H, c-CF2CF2CF2O, CF3OCF2H, and CF3OCH3. Vapor-phase non-ide...

  6. Vapor pressure and specific electrical conductivity in the solid and molten H2O-CsH2PO4-CsPO3 system—a novel electrolyte for water electrolysis at ~ 225–400 °C

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Berg, Rolf W.; Bjerrum, Niels J.

    2018-01-01

    cells. Freshly prepared 99.7 ± 0.3% gravimetric pure CDP with correct X-ray diffraction and DSC diagram melted at ~ 345 °C. The vapor pressures, above CDP alone and mixed with 20–50 mol% CsPO3 or 13 mol% H2O, were determined in sealed ampoules up to 355 °C by means of Raman spectroscopy based...

  7. Ultra-trace determination of methylmercuy in seafood by atomic fluorescence spectrometry coupled with electrochemical cold vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Wenchuan, E-mail: zuhongshuai@126.com [Beijing Institute of Technology, College of Chemistry, Beijing 100081 (China); Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Wang, Zhenghao [Beijing Normal University, College of Chemistry, Beijing 100875 (China)

    2016-03-05

    Highlights: • Methylmercury detection by ECVG-AFS without pre-separation by HPLC is proposed. • Methylmercury is atomized by direct electrochemical reduction with no reductant. • Remarkably better sensitivity is obtained than the traditional HPLC-UV-AFS method. • Glassy carbon is the best cathode material to generate Hg vapor from methylmercury. - Abstract: A homemade electrochemical flow cell was adopted for the determination of methylmercury. The cold vapor of mercury atoms was generated from the surface of glassycarbon cathode through the method of electrolytic reduction and detected by atomic fluorescence spectroscopy subsequently. The operating conditions were optimized with 2 ng mL{sup −1} methylmercury standard solution. The caliberation curve was favorably linear when the concentrations of standard HgCH{sub 3}{sup +} solutions were in the range of 0.2–5 ng mL{sup −1}(as Hg). Under the optimized conditions, the limit of detection (LOD) for methylmercury was 1.88 × 10{sup −3} ng mL{sup −1} and the precision evaluated by relative standard deviation was 2.0% for six times 2 ng mL{sup −1} standard solution replicates. The terminal analytical results of seafood samples, available from local market, showed that the methylmercury content ranged within 3.7–45.8 ng g{sup −1}. The recoveries for methylmercury spiked samples were found to be in the range of 87.6–103.6% and the relative standard deviations below 5% (n = 6)were acquired, which showed this method was feasible for real sample analysis.

  8. An appraisal of blood pressure control and its determinants among ...

    African Journals Online (AJOL)

    Background: Achieving guideline-recommended blood pressure is imperative in reducing the rising tide of uncontrolled hypertension and its attendant sequelae, which are major causes of morbidity and mortality globally. The aim of the study was to describe the pattern of blood pressure control and identify the factors ...

  9. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  10. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    Science.gov (United States)

    Jung, Hanearl; Kim, Doyoung; Kim, Hyungjun

    2014-04-01

    The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O2 gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O2 ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O2 from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10-3 Ω cm for undoped ZnO to 2.05 × 10-3 Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  11. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hanearl [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Doyoung [School of Electrical and Electronic Engineering, Ulsan College, 57 Daehak-ro, Nam-gu, Ulsan 680-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-04-01

    Highlights: • Undoped and Ga doped ZnO thin films were deposited using DEZ and TMGa. • Effects of Ga doping using TMGa in Ga doped ZnO were investigated. • Degraded properties from excessive doping were analyzed using chemical bondings. - Abstract: The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O{sub 2} gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O{sub 2} ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O{sub 2} from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10{sup −3} Ω cm for undoped ZnO to 2.05 × 10{sup −3} Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  12. Expert system for determining welding condition for a pressure vessel

    National Research Council Canada - National Science Library

    Fukuda, Shuichi; Morita, Hideki; Yamauchi, Yoshihisa; Nagasawa, Isao; Tsuji, Shuichi

    1990-01-01

    This paper describes the outline of the expert system for producing a Welding Procedure Specification for a pressure vessel which was developed with the grant from the Ministry of International Trade...

  13. Intracranial Pressure Is a Determinant of Sympathetic Activity

    OpenAIRE

    Eric A. Schmidt; Eric A. Schmidt; Fabien Despas; Fabien Despas; Anne Pavy-Le Traon; Anne Pavy-Le Traon; Zofia Czosnyka; John D. Pickard; Kamal Rahmouni; Atul Pathak; Atul Pathak; Jean M. Senard; Jean M. Senard

    2018-01-01

    Intracranial pressure (ICP) is the pressure within the cranium. ICP rise compresses brain vessels and reduces cerebral blood delivery. Massive ICP rise leads to cerebral ischemia, but it is also known to produce hypertension, bradycardia and respiratory irregularities due to a sympatho-adrenal mechanism termed Cushing response. One still unresolved question is whether the Cushing response is a non-synaptic acute brainstem ischemic mechanism or part of a larger physiological reflex for arteria...

  14. Total mercury determination in different tissues of broiler chicken by using cloud point extraction and cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Shah, A Q; Kazi, T G; Baig, J A; Afridi, H I; Kandhro, G A; Arain, M B; Kolachi, N F; Wadhwa, S K

    2010-01-01

    A cloud point extraction (CPE) method has been developed for the determination of total mercury (Hg) in different tissues of broiler chicken by cold vapor atomic absorption spectrometry (CVAAS). The broiler chicken tissues (leg, breast, liver and heart) were subjected to microwave assisted digestion in a mixture of nitric acid and hydrogen peroxide (2:1 ratio), prior to preconcentration by CPE. Various parameters such as the amount of ammonium O,O-diethyldithiophosphate (DDTP), concentrations of Triton X-114, equilibrium temperature, time and centrifugation have been studied in order to find the best conditions for the determination of mercury. For validation of proposed method a certified reference material, DORM-2 was used. No significant difference p>0.05 was observed between the experimental results and the certified values of CRM (paired t-test). The limit of detection and quantitation obtained under the optimal conditions were 0.117 and 0.382 microg/kg, respectively. The accumulation of Hg in different tissues were found in the order of, liver>muscles>heart. The concentration of Hg in chicken tissues were found in the range of 1.57-2.75, 1.40-2.27, 1.55-4.22, and 1.39-2.61 microg/kg in leg, breast, liver and heart, respectively. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qingyang, E-mail: liuqingyang0807@yahoo.com.c [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China)

    2010-07-15

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg{sup 0}, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL{sup -1} for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  16. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples.

    Science.gov (United States)

    Bagheri, Habib; Naderi, Mehrnoush

    2009-06-15

    A new method based on single-drop microextraction (SDME) combined with electrothermal vaporization atomic absorption spectroscopy (ETV-AAS) was developed for the trace determination of mercury in water samples. A microdrop of m-xylene was applied as the extraction solvent. After extraction, the microdrop was introduced, directly, into a graphite furnace of AAS. Some important extraction parameters such as type of solvent, volume of solvent, sample stirring, ionic strength, sample pH, chelating agent concentration, sample temperature, and extraction time were investigated and optimized. The highest possible microdrop volume of 10 microL, a sampling temperature of 27 degrees C, and use of m-xylene containing dithizone, as complexing agent, are major parameters led to achieve a high enrichment factor of 970. Under the optimized conditions, the detection limit of the method was 0.01 microg L(-1) and the relative standard deviation was 6.1% (n=7). The proposed method has been successfully applied to the determination of Hg in two river water samples. The effects of interfering species such as Pt, Pd, Cu, Au, and Bi, having the tendency to form complexes with dithizone, at two concentration levels of 100 and 1000 microg L(-1) were also studied.

  17. Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer.

    Science.gov (United States)

    Shen, Hsien-Hua; Chung, Lung-Yuan; Yao, Da-Jeng

    2015-03-01

    Dielectric breakdown is a common problem in a digital microfluidic system, which limits its application in chemical or biomedical applications. We propose a new fabrication of an electrowetting-on-dielectric (EWOD) device using Si3N4 deposited by low-pressure chemical vapor deposition (LPCVD) as a dielectric layer. This material exhibits a greater relative permittivity, purity, uniformity, and biocompatibility than polymeric films. These properties also increase the breakdown voltage of a dielectric layer and increase the stability of an EWOD system when applied in biomedical research. Medium droplets with mouse embryos were manipulated in this manner. The electrical properties of the Si3N4 dielectric layer-breakdown voltage, refractive index, relative permittivity, and variation of contact angle with input voltage-were investigated and compared with a traditional Si3N4 dielectric layer deposited as a plasma-enhanced chemical vapor deposition to confirm the potential of LPCVD Si3N4 applied as the dielectric layer of an EWOD digital microfluidic system.

  18. Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer

    Science.gov (United States)

    Shen, Hsien-Hua; Chung, Lung-Yuan

    2015-01-01

    Dielectric breakdown is a common problem in a digital microfluidic system, which limits its application in chemical or biomedical applications. We propose a new fabrication of an electrowetting-on-dielectric (EWOD) device using Si3N4 deposited by low-pressure chemical vapor deposition (LPCVD) as a dielectric layer. This material exhibits a greater relative permittivity, purity, uniformity, and biocompatibility than polymeric films. These properties also increase the breakdown voltage of a dielectric layer and increase the stability of an EWOD system when applied in biomedical research. Medium droplets with mouse embryos were manipulated in this manner. The electrical properties of the Si3N4 dielectric layer—breakdown voltage, refractive index, relative permittivity, and variation of contact angle with input voltage—were investigated and compared with a traditional Si3N4 dielectric layer deposited as a plasma-enhanced chemical vapor deposition to confirm the potential of LPCVD Si3N4 applied as the dielectric layer of an EWOD digital microfluidic system. PMID:25825614

  19. Origin of donor and acceptor species in undoped ZnSe grown by low-pressure metalorganic chemical vapor deposition

    Science.gov (United States)

    Morimoto, Keizo

    1988-11-01

    Effects of the [H2 Se]/[Dimethylzinc] source ratio on the electrical properties in the temperature range of 15-300 K and on the cathodoluminescence properties at 77 K have been investigated for undoped ZnSe films grown in one deposition run on (100)GaAs substrates at 350 °C by metalorganic chemical vapor deposition. The properties correlated with each other and depended on the degrees of deviation from stoichiometry. The dominant donor is identified with selenium vacancy from the dependence of donor concentration on the ratio and on the film thickness. Two kinds of acceptors were introduced according to the deviation from stoichiometry. They are tentatively associated with NSe and NaZn . Extended lattice defects which reduce the electron mobility are favored at the high ratios and they seem a principal factor of the high-resistive property of this material.

  20. Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grindlay, Guillermo, E-mail: guillermo.grindlay@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 - Alicante (Spain); Mora, Juan; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 - Alicante (Spain); de Loos-Vollebregt, M.T.C. [Delft University of Technology, Fac. Applied Sciences, Julianalaan 67, 2628 BC - Delft (Netherlands)

    2009-10-12

    The determination of Pb, Se and As in wine has a great interest due to health risks and legal requirements. To perform the analysis of wine, two considerations must be taken into account: (i) the low concentration level of the analytes; and (ii) the risk of interferences due to wine matrix components. The goal of this work is to evaluate electrothermal vaporization (ETV) sample introduction for ultratrace determination of Pb, Se and As in wine samples by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained with ETV-ICP-MS were compared to those obtained with conventional liquid sample introduction in ICP-MS and electrothermal atomic absorption spectrometry (ETAAS). Analytical figures of merit of ETV sample introduction strongly depend on the amount of wine sample, on the modifier nature (i.e. Pd, ascorbic acid or citric acid) and concentration and on the temperature program. Wine matrix components exert a great influence on analyte transport efficiency. Due to this fact, the analysis of wine cannot be performed by means of external calibration but the standard addition methodology should be used. The determination of Pb and Se in wine by ETV-ICP-MS provides similar results as conventional liquid sample introduction ICP-MS. For As, the concentration values obtained with ETV sample introduction were between two and four times lower than with the conventional system. These differences are related to the lower intensity of polyatomic interferences (i.e. {sup 40}Ar{sup 35}Cl{sup +} vs. {sup 75}As{sup +}) obtained for ETV sample introduction when compared to the conventional system. Finally, no differences for Pb determination were observed between ETV sample introduction and ETAAS. Unfortunately, the limits of detection for As and Se in ETAAS were not low enough to quantify these elements in the wine samples tested.

  1. Partial vapor-phase hydrolysis of peptide bonds: A method for mass spectrometric determination of O-glycosylated sites in glycopeptides

    DEFF Research Database (Denmark)

    Mirgorodskaya, E; Hassan, H; Wandall, H H

    1999-01-01

    , the resulting mass spectra allowed unambiguous determination of the glycosylation sites. Examples are shown with mannosyl- and mucin-type glycopeptides. Performing the hydrolysis in vapor eliminates the risk for contamination of the sample with impurities from the reagents, thus allowing analysis...

  2. Mathematical relationships between vapor pressure, water solubility, Henry's law constant, n-octanol/water partition coefficent and gas chromatographic retention index of polychlorinated-dibenzo-dioxins.

    Science.gov (United States)

    Wan, Y H; Wong, P K

    2002-01-01

    Mathematical relationships between vapor pressures (P), water solubilities (S), Henry's law constants (Hc). noctanol/water partition coefficients (Kow) and gas chromatograph retention indices (GC-RIs) of polychlorinated-dibenzo-dioxins (PCDDs) were established. A model equation was established between GC-RIs (= RI) and other physico-chemical parameters (K) of PCDDs in the form of log K = aRI2 + bRI + c with correlation coefficients (R2) greater than 0.97, except Hc. These equations were derived from 56 experimental data of PCDDs reported previously. The values of P, S, Hc and Kow of PCDDs predicted by these equations based on their GC-RIs in the present study deviated from those calculated by the SOFA method in a previous study by only 0.19, 0.13, 0.18 and 0.096 log units, respectively.

  3. Experimental Study on the Mercury Vapor Pressures in Amalgam-Dosed Discharge Tubes for Compact Fluorescent Lamps during Switch-off Period

    Science.gov (United States)

    Yasuda, Takeo; Kando, Masashi

    Ballast-integrated compact fluorescent lamps are widely used for replacing incandescent lamps as energy saving alternative light sources. In spite of their high efficacies, the luminous run-up characteristics of the lamps having outer globes are slow and rather unsatisfactory, especially within a second or two. This problem is due to the lower mercury vapor pressure PHg of amalgam dosed in the discharge tube than that of liquid mercury. In order to improve the luminous flux at starting the lamp ignition, the PHg changes in the discharge tubes including bismuth-indium main amalgam and indium auxiliary amalgam were studied during switch-off period by atomic absorption spectrometry using 254 nm line. The amounts of mercury absorbed in both the main and auxiliary amalgam were also measured by wet chemical analyses. It is found that the PHg during switch-off period is not controlled by only the auxiliary amalgam but also the main amalgam.

  4. High-throughput walkthrough detection portal for counter terrorism: detection of triacetone triperoxide (TATP) vapor by atmospheric-pressure chemical ionization ion trap mass spectrometry.

    Science.gov (United States)

    Takada, Yasuaki; Nagano, Hisashi; Suzuki, Yasutaka; Sugiyama, Masuyuki; Nakajima, Eri; Hashimoto, Yuichiro; Sakairi, Minoru

    2011-09-15

    With the aim of improving security, a high-throughput portal system for detecting triacetone triperoxide (TATP) vapor emitted from passengers and luggage was developed. The portal system consists of a push-pull air sampler, an atmospheric-pressure chemical ionization (APCI) ion source, and an explosives detector based on mass spectrometry. To improve the sensitivity of the explosives detector, a novel linear ion trap mass spectrometer with wire electrodes (wire-LIT) is installed in the portal system. TATP signals were clearly obtained 2 s after the subject under detection passed through the portal system. Preliminary results on sensitivity and throughput show that the portal system is a useful tool for preventing the use of TATP-based improvised explosive devices by screening persons in places where many people are coming and going. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions.

    Science.gov (United States)

    Luo, Paifeng; Liu, Zhaofan; Xia, Wei; Yuan, Chenchen; Cheng, Jigui; Lu, Yingwei

    2015-02-04

    Recently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length. More strikingly, CH3NH3PbI3 absorbers by LPCVD demonstrate excellent moisture-resistant feature even under laser illumination and high-temperature conditions, which indicates that our proprietary method is very suitable for the future low-cost, nonvacuum production of the new generation photovoltaic devices. Finally, high efficiency of 12.73% is successfully achieved under fully open-air conditions. To the best of our knowledge, this is the first report of efficient PSCs with such a high humidity above 60%.

  6. Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    2015-08-01

    Full Text Available The Si(0001 face and C(000-1 face dependences on growth pressure of epitaxial graphene (EG grown on 4H-SiC substrates by ethene chemical vapor deposition (CVD was studied using atomic force microscopy (AFM and micro-Raman spectroscopy (μ-Raman. AFM revealed that EGs on Si-faced substrates had clear stepped morphologies due to surface step bunching. However, This EG formation did not occur on C-faced substrates. It was shown by μ-Raman that the properties of EG on both polar faces were different. EGs on Si-faced substrates were relatively thinner and more uniform than on C-faced substrates at low growth pressure. On the other hand, D band related defects always appeared in EGs on Si-faced substrates, but they did not appear in EG on C-faced substrate at an appropriate growth pressure. This was due to the μ-Raman covering the step edges when measurements were performed on Si-faced substrates. The results of this study are useful for optimized growth of EG on polar surfaces of SiC substrates.

  7. Pressure drop and heat transfer during two-phase flow vaporization of propane in horizontal smooth minichannels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang-Il; Pamitran, A.S. [Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Oh, Jong-Taek [Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-dong, Yeosu, Chonnam 550-749 (Korea); Saito, Kiyoshi [Department of Applied Mechanics and Aerospace Engineering, Waseda University, 1-104, Totsuka-machi, Shinjuku-ku, Tokyo 169-8050 (Japan)

    2009-08-15

    This study examined the two-phase flow boiling pressure drop and heat transfer for propane, as a long term alternative refrigerant, in horizontal minichannels. The pressure drop and local heat transfer coefficients were obtained for heat fluxes ranging from 5-20 kW m{sup -2}, mass fluxes ranging from 50-400 kg m{sup -2} s{sup -1}, saturation temperatures of 10, 5 and 0 C, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and lengths of 1000 mm and 2000 mm, respectively. The present study showed the effect of mass flux, heat flux, inner tube diameter and saturation temperature on pressure drop and heat transfer coefficient. The experimental results were compared against several existing pressure drop and heat transfer coefficient prediction methods. Because the study on evaporation with propane in minichannels was limited, new correlations of pressure drop and boiling heat transfer coefficient were developed in this present study. (author)

  8. Interference of nitrite and nitrogen dioxide on mercury and selenium determination by chemical vapor generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Nunes, Dayana [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil); Pereira dos Santos, Eliane Pereira [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil); Barin, Juliano Smanioto [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil); Mortari, Sergio Roberto [Curso de Ciencias Farmaceuticas, Centro Universitario Franciscano, UNIFRA, 97010-032, Santa Maria, RS (Brazil); Dressler, Valderi Luiz [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil); Moraes Flores, Erico Marlon de [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil)]. E-mail: flores@quimica.ufsm.br

    2005-06-30

    In this study, a systematic investigation was performed concerning the interference of nitrogen oxides on the determination of selenium and mercury by hydride generation atomic absorption spectrometry (HG AAS) and cold vapor atomic absorption spectrometry (CV AAS). The effect of nitrate, nitrite and NO{sub 2} dissolved in the condensed phase was evaluated. No effect of NO{sub 3} {sup -} on Se and Hg determination was observed up to 100 mg of sodium nitrate added to the reaction vessel. The Se signal was reduced by about 80% upon the addition of 6.8 mg NO{sub 2} {sup -}. For Hg, no interference of nitrite was observed up to 20 mg of NO{sub 2} {sup -}. A complete suppression of the Se signal was observed when gaseous NO{sub 2} was introduced into analytical solutions. For Hg, a signal decrease between 8 and 13% occurred. For Se, bubbling argon or heating the solution was not able to recover the original absorbance values, whereas Hg signals were recovered with these procedures. When gaseous NO{sub 2} was passed directly into the atomizer, Se signals decreased similarly to when NO{sub 2} was bubbled in analytical solutions. The addition of urea, hydroxylamine hydrochloride and sulfamic acid (SA) was investigated to reduce the NO{sub 2} effect in sample digests containing residual NO{sub 2}, but only SA was effective in reducing the interference. Based on the results, it is possible to propose the use of SA to prevent interferences in Se and Hg determinations by HG AAS and CV AAS, respectively.

  9. Trends in population blood pressure and determinant factors for population blood pressure.

    Science.gov (United States)

    Andersen, Ulla Overgaard

    2017-03-01

    Strategies to reduce the burden of blood pressure attributable diseases require knowledge of secular trend in PBP and its determinants. The issues were investigated in the Copenhagen City Heart Study. The design of CCHS is a repeated measures study. Such designs are uniquely suited to studying changes of an outcome and what risk factors may be associated with that outcome. Repeated measures studies are very well suited for trend analysis by using mixed effect analyses. SBP decreased about 2 mmHg in 25 years. The risk factors age, gender and BMI were found valid as determinant factors for secular trends in SBP. In addition, the following factors were identified: household income and the interactions ''gender*age'' and ''survey*age''. The interaction ''gender*age'' stated that the difference between SBP in the two genders was great in the young individuals and diminished by age. The interaction ''survey*age'' stated that SBP in the young individuals decreased more with survey than SBP in the older individuals. Thus, the 20 years old subjects in survey 2, 3 and 4 have lower SBP than the 20 years old subjects in preceding surveys. The slopes were less steep in higher ages. In the group of elderly and old subjects the trend is partly explained by treatment bias because more and more subjects leave the untreated group and start treatment. The factor ''household income'' was significant only in the female population and stated that high-income women had lower SBP and a more beneficial secular trend in SBP than low-income women. Marital status, self-reported physical exercise and alcohol intake were not significant factors. A number of factors, that are interesting in relation to SBP, were not included in the CCHS and therefore not investigated. Among them are salt intake, childhood factors, genetic factors and the DASH diet. A survival study was performed to investigate the mortality rate in relation to SBP changes during the observation period. A Cox regression analysis

  10. High-pressure vapor-liquid equilibria of systems containing ethylene glycol, water and methane - Experimental measurements and modeling

    DEFF Research Database (Denmark)

    Folas, Georgios; Berg, Ole J.; Solbraa, Even

    2007-01-01

    This work presents new experimental phase equilibrium measurements of the binary MEG-methane and the ternary MEG-water-methane system at low temperatures and high pressures which are of interest to applications related to natural gas processing. Emphasis is given to MEG and water solubility...

  11. Geometric parameters determination of a single vapor bubble growth and heat transfer associated: non condensable influence on the onset of convective instabilities; Determination des caracteristiques geometriques de la croissance d'une bulle de vapeur et des transferts de chaleur associes: influence des incondensables sur le declenchement d'instabilites convectives

    Energy Technology Data Exchange (ETDEWEB)

    Barthes, M.; Reynard, Ch.; Santini, R.; Tadrist, L. [Laboratoire Institut Universitaire des Systemes Thermiques Industriels (IUSTI), CNRS UMR 6595, DME, 13 - Marseille (France)

    2005-06-01

    We present here an experimental work of a single vapor bubble growth in a subcooled liquid bulk (FC-72) at atmospheric pressure. The vapor bubble grows on a downward facing heating element (at constant heating power) on an artificial nucleation site located in the centre of the heated surface. Bubble dynamics are studied thanks to image proceeding. The temporal evolution of geometric parameters, such as diameter, height, volume and shape, are measured. The analysis of some parameters enables us to determine the influence of the heating power on the heat and mass transfers. Moreover an observation, using a shadowgraphy method, of the different modes of convective instabilities is presented. The non condensable gas influence on the occurrence of the instability is discussed. (authors)

  12. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Zalach, J.; Franke, St. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative scheme is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.

  13. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  14. Estimating central systolic blood pressure during oscillometric determination of blood pressure: proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry.

    Science.gov (United States)

    Brett, Sally Emma; Guilcher, Antoine; Clapp, Brian; Chowienczyk, Phil

    2012-06-01

    Central systolic blood pressure is usually estimated by transformation of a peripheral arterial waveform obtained by tonometry and calibrated from conventional measurements of brachial artery blood pressure from a brachial cuff using the oscillometric principle. We investigated whether central blood pressure could be obtained directly from a brachial cuff waveform, allowing the measurement of central blood pressure to be incorporated into the standard oscillometric determination of blood pressure. Values of central systolic blood pressure obtained from a brachial cuff waveform were compared with those obtained using a pressure-tipped intra-aortic catheter in 29 individuals undergoing cardiac catheterization. To remove errors introduced by the measurement of peripheral blood pressure, transformed brachial waveforms were calibrated using values of mean and diastolic pressure from the intra-aortic catheter. In a second study, the values obtained from the brachial cuff were compared with those obtained using a noninvasive tonometric method using calibration from mean and diastolic and from systolic and diastolic blood pressure derived from a standard oscillometric algorithm in 100 individuals (46 women, 19-81 years) with blood pressure ranging from 89/52 to 230/117 mmHg. In study 1, the mean difference ± SD of brachial cuff-derived values and intra-aortic values was 0.0 ± 5.9 mmHg. In study 2, the mean difference for brachial cuff-derived values and tonometer values was -0.6 ± 3.9 and 1.6 ± 4.5 mmHg when calibrated using brachial mean and diastolic and brachial systolic and diastolic pressures, respectively. Central systolic blood pressure can be obtained from a brachial cuff waveform with an accuracy comparable to that of a tonometer.

  15. Vaporization of graphite in the temperature range of 4000 to 4500 K

    Science.gov (United States)

    Lundell, J. H.; Dickey, R. R.

    1976-01-01

    The vaporization of graphite under intense laser radiation is considered both theoretically and experimentally. Under intense radiation, the mass-loss rate can be high enough to cause the flow in the laser plume to be supersonic. It is shown that under these conditions the vaporization process is coupled to the plume gasdynamics and the mass-loss rate for graphite is 62% of the free vaporization rate. Experimental results are presented for surface temperatures from 3985 to 4555 K and mass-loss rates from 0.56 to 27.0 g per sq cm sec. The results are used to determine the vapor pressure of graphite in a pressure range of 2 to 11 atm, and the values are shown to be in agreement with the JANAF vapor pressure curve.

  16. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  17. Novel chemical vapor deposition process of ZnO films using nonequilibrium N2 plasma generated near atmospheric pressure with small amount of O2 below 1%

    Science.gov (United States)

    Nose, Yukinori; Yoshimura, Takeshi; Ashida, Atsushi; Uehara, Tsuyoshi; Fujimura, Norifumi

    2016-05-01

    We propose a novel chemical vapor deposition (CVD) process of ZnO films involving a nonequilibrium N2 plasma generated near atmospheric pressure with small O2 concentration (O2%) below 1%. In the optical emission (OE) spectra of the plasma, OE lines corresponding to the NO-γ system ( A 2 Σ + → X 2 Πγ + ) were observed, despite the only introduced gases being N2 and O2; these vanish at an O2% of more than 1%. ZnO films were grown on a glass substrate placed in the plasma at a growth temperature of as low as 200 °C and at an O2% of below 1% in the presence of the NO-γ system. This plasma yielded almost the same growth rate for ZnO films as O2 plasma including atomic O radicals that are often observed in low-pressure O2 plasma, suggesting that some highly reactive oxidant was sufficiently generated in such a small O2%. ZnO films synthesized using this plasma exhibited excellent ( 0001 ) preferred orientation without other diffractions such as 10 1 ¯ 1 diffraction, and with an optical bandgap of 3.30 eV. Based on the analyses of the plasma and the exhaust gases, the coexistence state of NO-γ and O3 should be essential and useful for the decomposition and oxidation of Zn source material in the proposed CVD process.

  18. Effect of water vapor on plasma morphology, OH and H2O2 production in He and Ar atmospheric pressure dielectric barrier discharges

    Science.gov (United States)

    Du, Yanjun; Nayak, Gaurav; Oinuma, Gaku; Peng, Zhimin; Bruggeman, Peter J.

    2017-04-01

    Although atmospheric pressure dielectric barrier discharges (DBDs) have a long history, the effects of water vapor on the discharge morphology and kinetics have not been studied intensively. We report a simultaneous investigation of discharge morphology, OH and H2O2 production in Ar and He DBDs operated at different water vapor concentrations and powers. The combined study allows us to assess the impact of the discharge morphology and power on the concentration dependence of the OH and H2O2 production. The morphology of the discharge is investigated by ICCD images and current-voltage waveforms. These diagnostics are complemented by broadband absorption and a colorimetric method to measure the gas temperature and the OH and H2O2 concentrations. The number of filaments in Ar DBD increases with increasing water concentration and power. The surface discharge part of the micro-discharge also reduces with increasing water concentration most likely due to a change in surface conductivity of the dielectric with changing water concentration. The OH density in the case of Ar is approximately double the OH density in He for similar power and water admixture. In contrast to the root square dependence of the OH density on the water concentration in He similar to diffuse RF discharges, the OH density in Ar increases for small water concentrations followed by a saturation and reduces for higher water concentrations. This dependence of OH density on water concentration is found to correlate with changes in discharge morphology. An analytical balance of the production and destruction mechanism of H2O2 is shown to be able to reproduce the ratio of the measured OH and H2O2 density for realistic values of electron densities.

  19. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  20. Vaporization and configuration effects in a high-pressure/high-temperature combustor equipped with multiple Venturi-type fuel injectors

    Science.gov (United States)

    Locke, Randy J.; Chun, K. S.; Lee, C. M.; Ratvasky, William J.

    1994-03-01

    The flow field and fuel/air mixing patterns produced in an optically accessible, premixing/prevaporization section of a high pressure/high temperature combustor were examined via focused Schlieren high-speed photography. A focal plane, approximately 8 mm thick and centered within this section downstream of the fuel injectors, was imaged at a framing rate of 8,000 frames/second. High-speed focused Schlieren images were obtained for three different Venturi-type fuel injector configurations under identical experimental parameters. The results demonstrate the efficacy of this technique to discern fuel spray patternization, fuel-air mixing efficiencies, and mixing times of various fuel injector arrangements.

  1. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.

    Science.gov (United States)

    Paudel, Indira; Naor, Amos; Gal, Yoni; Cohen, Shabtai

    2015-04-01

    For isohydric trees mid-day water uptake is stable and depends on soil water status, reflected in pre-dawn leaf water potential (Ψpd) and mid-day stem water potential (Ψmd), tree hydraulic conductance and a more-or-less constant leaf water potential (Ψl) for much of the day, maintained by the stomata. Stabilization of Ψl can be represented by a linear relationship between canopy resistance (Rc) and vapor pressure deficit (D), and the slope (BD) is proportional to the steady-state water uptake. By analyzing sap flow (SF), meteorological and Ψmd measurements during a series of wetting and drying (D/W) cycles in a nectarine orchard, we found that for the range of Ψmd relevant for irrigated orchards the slope of the relationship of Rc to D, BD is a linear function of Ψmd. Rc was simulated using the above relationships, and its changes in the morning and evening were simulated using a rectangular hyperbolic relationship between leaf conductance and photosynthetic irradiance, fitted to leaf-level measurements. The latter was integrated with one-leaf, two-leaf and integrative radiation models, and the latter gave the best results. Simulated Rc was used in the Penman-Monteith equation to simulate tree transpiration, which was validated by comparing with SF from a separate data set. The model gave accurate estimates of diurnal and daily total tree transpiration for the range of Ψmds used in regular and deficit irrigation. Diurnal changes in tree water content were determined from the difference between simulated transpiration and measured SF. Changes in water content caused a time lag of 90-105 min between transpiration and SF for Ψmd between -0.8 and -1.55 MPa, and water depletion reached 3 l h(-1) before noon. Estimated mean diurnal changes in water content were 5.5 l day(-1) tree(-1) at Ψmd of -0.9 MPa and increased to 12.5 l day(-1) tree(-1) at -1.45 MPa, equivalent to 6.5 and 16.5% of daily tree water use, respectively. Sixteen percent

  2. Tolman's length and limiting supersaturation of vapor

    Science.gov (United States)

    Alekseechkin, Nikolay V.

    2018-01-01

    The classical Kelvin formula for the equilibrium vapor pressure over a droplet of radius R is extended to small radii and vapor non-ideality, from where the limiting supersaturation condition is obtained by relating the point R = 0 to the value of limiting (spinodal) supersaturation of vapor. The analysis of different dependences of the Tolman length on radius, δ (R) , obeying this condition suggests that (i) the value of δ (0) is positive and the function δ (R) decreases with increasing radius; (ii) the curvature effect (the dependence of surface tension on radius) in the nucleation region is determined by the value of δ (0) . At the same time, this effect is weakly sensitive to the form of the function δ (R) and insensitive to its asymptotic value δ∞ .

  3. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy

    Science.gov (United States)

    Lu, W.; Chou, I.-Ming; Burruss, R.C.

    2008-01-01

    Most submarine gas hydrates are located within the two-phase equilibrium region of hydrate and interstitial water with pressures (P) ranging from 8 to 60 MPa and temperatures (T) from 275 to 293 K. However, current measurements of solubilities of methane in equilibrium with hydrate in the absence of a vapor phase are limited below 20 MPa and 283.15 K, and the differences among these data are up to 30%. When these data were extrapolated to other P-T conditions, it leads to large and poorly known uncertainties. In this study, in situ Raman spectroscopy was used to measure methane concentrations in pure water in equilibrium with sI (structure one) methane hydrate, in the absence of a vapor phase, at temperatures from 276.6 to 294.6 (??0.3) K and pressures at 10, 20, 30 and 40 (??0.4%) MPa. The relationship among concentration of methane in water in equilibrium with hydrate, in mole fraction [X(CH4)], the temperature in K, and pressure in MPa was derived as: X(CH4) = exp [11.0464 + 0.023267 P - (4886.0 + 8.0158 P)/T]. Both the standard enthalpy and entropy of hydrate dissolution at the studied T-P conditions increase slightly with increasing pressure, ranging from 41.29 to 43.29 kJ/mol and from 0.1272 to 0.1330 kJ/K ?? mol, respectively. When compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for methane concentration measurements eliminates possible uncertainty caused by sampling and ex situ analysis, (2) it is simple and efficient, and (3) high-pressure data can be obtained safely. ?? 2007 Elsevier Ltd. All rights reserved.

  4. Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS)†

    Science.gov (United States)

    Kenduzler, Erdal; Ates, Mehmet; Arslan, Zikri; McHenry, Melanie; Tchounwou, Paul B.

    2012-01-01

    A method based on cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS) has been developed for determination of inorganic mercury, Hg(II), and total mercury in fish otoliths. Sodium borohydride (NaBH4) was used as the only reducing agent and its concentration was optimized across an acidity gradient to selectively reduce Hg(II) without affecting methylmercury, CH3Hg(I). Inorganic Hg was quantitatively reduced to elemental mercury (Hg0) with 1×10−4% (m/v) NaBH4. CH3Hg(I) required a minimum of 0.5% (m/v) NaBH4 for complete reduction. Increasing the HCl concentration of solution to 5% (v/v) improved the selectivity toward Hg(II) as it decreased the signals from CH3Hg(I) to baseline levels. Potassium ferricyanide solution was the most effective in eliminating the memory effects of Hg compared with a number of chelating and oxidizing agents, including EDTA, gold chloride, thiourea, cerium ammonium nitrate and 2-mercaptoethylamine chloride. The relative standard deviation (RSD) was less than 5% for 1.0 μg L−1 Hg(II) solution. The detection limits were 4.2 and 6.4 ng L−1 (ppt) for Hg(II) and total Hg, respectively. Sample dissolution conditions and recoveries were examined with ultra-pure CaCO3 (99.99%) spiked with Hg(II) and CH3HgCl. Methylmercury was stable when dissolution was performed with up to 20% (v/v) HCl at 100 oC. Recoveries from spiked solutions were higher than 95% for both Hg(II) and CH3Hg(I). The method was applied to the determination of Hg(II) and total Hg concentrations in the otoliths of red emperor (CRM 22) and Pacific halibut. Total Hg concentration in the otoliths was 0.038 ± 0.004 μg g−1 for the red emperor and 0.021 ± 0.003 μg g−1 for the Pacific halibut. Inorganic Hg accounted for about 25% of total Hg indicating that Hg in the otoliths was predominantly organic mercury (e.g., methylmercury). However, as opposed to the bioaccumulation in tissues, methylmercury levels in otoliths was very low suggesting a

  5. Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS).

    Science.gov (United States)

    Kenduzler, Erdal; Ates, Mehmet; Arslan, Zikri; McHenry, Melanie; Tchounwou, Paul B

    2012-05-15

    A method based on cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS) has been developed for determination of inorganic mercury, Hg(II), and total mercury in fish otoliths. Sodium borohydride (NaBH(4)) was used as the only reducing agent and its concentration was optimized across an acidity gradient to selectively reduce Hg(II) without affecting methylmercury, CH(3)Hg(I). Inorganic Hg was quantitatively reduced to elemental mercury (Hg(0)) with 1 × 10(-4)% (m/v) NaBH(4). CH(3)Hg(I) required a minimum of 0.5% (m/v) NaBH(4) for complete reduction. Increasing the HCl concentration of solution to 5% (v/v) improved the selectivity toward Hg(II) as it decreased the signals from CH(3)Hg(I) to baseline levels. Potassium ferricyanide solution was the most effective in eliminating the memory effects of Hg compared with a number of chelating and oxidizing agents, including EDTA, gold chloride, thiourea, cerium ammonium nitrate and 2-mercaptoethylamine chloride. The relative standard deviation (RSD) was less than 5% for 1.0 μg L(-1) Hg(II) solution. The detection limits were 4.2 and 6.4 ng L(-1) (ppt) for Hg(II) and total Hg, respectively. Sample dissolution conditions and recoveries were examined with ultra-pure CaCO(3) (99.99%) spiked with Hg(II) and CH(3)HgCl. Methylmercury was stable when dissolution was performed with up to 20% (v/v) HCl at 100°C. Recoveries from spiked solutions were higher than 95% for both Hg(II) and CH(3)Hg(I). The method was applied to the determination of Hg(II) and total Hg concentrations in the otoliths of red emperor (CRM 22) and Pacific halibut. Total Hg concentration in the otoliths was 0.038 ± 0.004 μg g(-1) for the red emperor and 0.021 ± 0.003 μg g(-1) for the Pacific halibut. Inorganic Hg accounted for about 25% of total Hg indicating that Hg in the otoliths was predominantly organic mercury (e.g., methylmercury). However, as opposed to the bioaccumulation in tissues, methylmercury levels in otoliths was

  6. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004

    Energy Technology Data Exchange (ETDEWEB)

    HOCKING, M.J.

    2005-01-31

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

  7. Determination of Pt, Pd and Rh in Brassica Napus using solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nischkauer, Winfried [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Getreidemarkt 9/164-IAC, A-1060 Vienna (Austria); Herincs, Esther [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Getreidemarkt 9/164-IAC, A-1060 Vienna (Austria); University of Natural Resources and Life Sciences, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad Lorenz Straße 24, A-3430 Tulln (Austria); Puschenreiter, Markus; Wenzel, Walter [University of Natural Resources and Life Sciences, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad Lorenz Straße 24, A-3430 Tulln (Austria); Limbeck, Andreas, E-mail: A.Limbeck@tuwien.ac.at [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Getreidemarkt 9/164-IAC, A-1060 Vienna (Austria)

    2013-11-01

    Conventional approaches for the analysis of platinum group elements (PGEs) in plant material suffer from sample digestion which results in sample dilution and therefore requires high sample intakes to maintain the sensitivity. The presented solid-sampling method avoids sample digestion while improving sensitivity when compared to digestion-based inductively coupled plasma optical emission spectrometry (ICP-OES) methods and allows the analysis of sample masses of 5 mg or less. Detection limits of 0.38 μg g{sup −1}, 0.14 μg g{sup −1} and 0.13 μg g{sup −1} were obtained for Pt, Pd and Rh, respectively using a sample intake of 5 mg. The reproducibility of the procedure ranged between 4.7% (Pd) relative standard deviation (RSD, n = 7) and 7.1% (Rh) RSD for 25 ng analytes. For quantification, aqueous standards were applied on paper filter strips and dried. Only the dried filters were introduced into the electrothermal vaporization unit. This approach successfully removed memory-effects observed during analysis of platinum which occurred only if liquid standards came into contact with the graphite material of the furnace. The presented method for overcoming the Pt-memory-effects may be of further interest for the analysis of other carbide-forming analytes as it does not require any technical modification of the graphite furnace (e.g., metal inlays, pyrolytic coating). Owing to lack of suitable certified reference materials, the proposed method was compared with conventional ICP-OES analysis of digested samples and a good agreement was obtained. As a result of the low sample consumption, it was possible to determine the spatial distribution of PGEs within a single plant. Significant differences in PGE concentrations were observed between the shoots (stem, leaves) and the roots. Pd was mainly found in the roots, whereas Pt and Rh were also found in higher concentrations in the shoots. - Highlights: • The uptake of Pt, Pd and Rh by hydroponically grown plants was

  8. Si{sub 3}N{sub 4} coating for improvement of anti-oxidation and anti-wear properties by low pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Yun; Kim, Ok Hee; Park, Chong Ook [Korea Advanced Inst. of Science and Technology, Taejeon (Korea, Republic of); Yeh, Byung Hahn; Jung, Bahl [Agency of Defence Development, Taejon (Korea, Republic of)

    1995-10-01

    The deposition properties of Si{sub 3}N{sub 4} deposited by low pressure chemical vapor deposition were studied to evaluate Si{sub 3}N{sub 4} as part of multi-layer coatings for anti-oxidation and anti-wear coating of graphite in the propellant-burning environment. Si{sub 3}N{sub 4} was deposited on the pack-SiC coated graphite and the tendencies of deposition rate and surface morphology changes with temperatures and reaction gas ratios were investigated. In low deposition temperatures the deposition rate increased with increasing temperature but in high temperatures the deposition rate decreased with increasing temperature. The grain size of Si{sub 3}N{sub 4} decreased with increasing temperature. In condition that the range of reaction gas ratios is 20 {<=} NH{sub 3}/SiH{sub 4} {<=} 40, the deposition rate and surface morphology did not change. The Si{sub 3}N{sub 4} deposited at 800-1300 degree was amorphous, and by post-annealing at 1300 degree in N{sub 2} ambient, the Si{sub 3}N{sub 4} crystallized. (author). 15 refs., 10 figs.

  9. Doping characteristics of Si-doped n-GaN Epilayers grown by low-pressure metal-organic chemical-vapor deposition

    CERN Document Server

    Noh, S K; Park, S E; Lee, I H; Choi, I H; Son, S J; Lim, K Y; Lee, H J

    1998-01-01

    We studied doping behaviors through analysis of the electronic properties of a series of undoped and Si-doped GaN epilayers grown on (0001) sapphire substrates by the low-pressure metal-organic chemical-vapor deposition (LP-MOCVD) technique. The doping efficiency was in the range of 0.4 - 0.8, and an empirical relation expressed as eta = 0.45 log[Si] - 8.1 was obtained. The temperature dependence of carrier concentration showed that the donor activation energy monotonically decreased from 17.6 meV to almost zero as the doping level increased. We suggest that the reduction in the activation energy is related not to autodoped defect centers but to doped Si donors and that the behavior originates from the formation of an impurity band. On the basis of an abrupt change in the compensation ratio from 0.9 to 0.5 by Si-doping, an exceptional difference in the Hall mobility between the undoped and the Si-doped films is explained by a mixed conduction mechanism of electrons and holes.

  10. Strained In1-xGaxAsyP1-y/InP quantum well heterostructures grown by low-pressure metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Carvalho Jr Wilson de

    1999-01-01

    Full Text Available We have investigated the optical and the structural properties of strained In1-xGaxAsyP1-y/InP and strain compensated In1-xGaxAsyP1-y/In1-zGazAsqP1-q/InP multi-quantum well heterostructures grown by low-pressure metalorganic vapor phase epitaxy at different growth conditions. Our results indicate an increase of the compositional fluctuation of quaternary materials as the alloy composition moves from the outer spinodal isotherm into the miscibility gap region. In1-xGaxAsyP1-y layers grown at high tensile strained values exhibit a three-dimensional-like growth mode. Strain compensated structures revealed the presence of a broad photoluminescence emission band below the fundamental quantum well transition, well defined elongated features along the [011] direction and interface undulations. All these effects were found to be strongly dependent on the growth temperature and the number of wells.

  11. Molecular-dynamics evaluation of fluid-phase equilibrium properties by a novel free-energy perturbation approach: application to gas solubility and vapor pressure of liquid hexane.

    Science.gov (United States)

    Kuwajima, Satoru; Kikuchi, Hiroaki; Fukuda, Mitsuhiro

    2006-03-28

    A novel free-energy perturbation method is developed for the computation of the free energy of transferring a molecule between fluid phases. The methodology consists in drawing a free-energy profile of the target molecule moving across a binary-phase structure built in the computer. The novelty of the method lies in the difference of the definition of the free-energy profile from the common definition. As an important element of the method, the process of making a correction to the transfer free energy with respect to the cutoff of intermolecular forces is elucidated. In order to examine the performance of the method in the application to fluid-phase equilibrium properties, molecular-dynamics computations are carried out for the evaluation of gas solubility and vapor pressure of liquid n-hexane at 298.15 K. The gas species treated are methane, ethane, propane, and n-butane, with the gas solubility expressed as Henry's constant. It is shown that the method works fine and calculated results are generally in good agreement with experiments. It is found that the cutoff correction is strikingly large, constituting a dominant part of the calculated transfer free energy at the cutoff of 8 A.

  12. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit.

    Science.gov (United States)

    Kawase, Miki; Hanba, Yuko T; Katsuhara, Maki

    2013-07-01

    We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.

  13. Enhancement of the Stomatal Response to Blue Light by Red Light, Reduced Intercellular Concentrations of CO(2), and Low Vapor Pressure Differences.

    Science.gov (United States)

    Assmann, S M

    1988-05-01

    The effects of environmental parameters on the blue light response of stomata were studied by quantifying transient increases in stomatal conductance in Commelina communis following 15 seconds by 0.100 millimole per square meter per second pulses of blue light. Because conductance increases were not observed following red light pulses of the same or greater (30 seconds by 0.200 millimole per square meter per second) fluences, the responses observed could be reliably attributed to the specific blue light response of the guard cells, rather than to guard cell chlorophyll. In both Paphiopedilum harrisianum, which lacks guard cell chloroplasts, and Commelina, the blue light response was enhanced by 0.263 millimole per square meter per second continuous background red light. Thus, the blue light response and its enhancement do not require energy derived from red-light-driven photophosphorylation by the guard cell chloroplasts. In Commelina, reduction of the intercellular concentration of CO(2) by manipulation of ambient CO(2) concentrations resulted in an enhanced blue light response. In both Commelina and Paphiopedilum, the blue light response was decreased by an increased vapor pressure difference. The magnitude of blue-light-specific stomatal opening thus appears to be sensitive to environmental conditions that affect the carbon and water status of the plant.

  14. Enhancement of the Stomatal Response to Blue Light by Red Light, Reduced Intercellular Concentrations of CO2, and Low Vapor Pressure Differences 1

    Science.gov (United States)

    Assmann, Sarah M.

    1988-01-01

    The effects of environmental parameters on the blue light response of stomata were studied by quantifying transient increases in stomatal conductance in Commelina communis following 15 seconds by 0.100 millimole per square meter per second pulses of blue light. Because conductance increases were not observed following red light pulses of the same or greater (30 seconds by 0.200 millimole per square meter per second) fluences, the responses observed could be reliably attributed to the specific blue light response of the guard cells, rather than to guard cell chlorophyll. In both Paphiopedilum harrisianum, which lacks guard cell chloroplasts, and Commelina, the blue light response was enhanced by 0.263 millimole per square meter per second continuous background red light. Thus, the blue light response and its enhancement do not require energy derived from red-light-driven photophosphorylation by the guard cell chloroplasts. In Commelina, reduction of the intercellular concentration of CO2 by manipulation of ambient CO2 concentrations resulted in an enhanced blue light response. In both Commelina and Paphiopedilum, the blue light response was decreased by an increased vapor pressure difference. The magnitude of blue-light-specific stomatal opening thus appears to be sensitive to environmental conditions that affect the carbon and water status of the plant. PMID:16666108

  15. Maternal smoking: a life course blood pressure determinant?

    Science.gov (United States)

    Cabral, Maria; Fonseca, Maria João; González-Beiras, Camila; Santos, Ana Cristina; Correia-Costa, Liane; Barros, Henrique

    2017-05-31

    Exposure to maternal smoking early in life may affect blood pressure (BP) control mechanisms. We examined the association between maternal smoking (before conception, during pregnancy and 4 years after delivery) and BP in preschool children. We evaluated 4,295 of Generation XXI children, recruited at birth in 2005-2006 and re-evaluated at the age of 4. At birth, information was collected by face-to-face interview and additionally abstracted from clinical records. At 4y follow-up, interviews were performed and children's BP measured. Linear regression models were fitted to estimate the association between maternal smoking and children's BP. Children of smoking mothers presented significantly higher BP levels. After adjustment for maternal education, gestational hypertensive disorders and child's Body Mass Index, children exposed during pregnancy to maternal smoking presented a higher systolic BP (SBP) z-score (β=0.08, 95%CI 0.04; 0.14). In crude models, maternal smoking was associated with higher SBP z-score at every assessed period. However, after adjustment, an attenuation of the association estimates occurred (β=0.08, 95% CI 0.03; 0.13 before conception; β=0.07, 95%CI 0.02; 0.12; β=0.04, 95%CI -0.02; 0.10, and β=0.06, 95%CI 0.00; 0.13 for the 1st, 2nd and 3rd pregnancy trimesters, respectively; and β=0.07, 95%CI 0.02; 0.12 for current maternal smoking). No significant association was observed for diastolic BP z-score levels. Maternal smoking before, during and after pregnancy was independently associated with systolic BP z-score in preschool children. This study provides additional evidence to the public health relevance of maternal smoking cessation programs if early cardiovascular health of children is envisaged. Using observational longitudinal data from the birth cohort Generation XXI, this study showed that exposure to maternal smoking- before pregnancy, during pregnancy and 4 years after delivery- was associated with a systolic BP-raising effect in

  16. Determination of pressure effect on thermocouple electromotive force using multi-anvil apparatus

    Science.gov (United States)

    Nishihara, Yu; Fuke, Kazuki; Tange, Yoshinori; Higo, Yuji

    2016-04-01

    We developed a method to determine the absolute pressure effect on thermocouple electromotive force (EMF), based on a single wire method using Kawai-type multi-anvil apparatus. In this method, pressure conditions along the wires were evaluated based on in situ X-ray diffraction using synchrotron X-ray radiation. The pressure effect of the Seebeck coefficients of chromel and alumel was determined up to 7 GPa and 600°C by the analyses of single wire EMFs and pressure-temperature profiles along the wires. The temperature correction for the type K thermocouple was calculated to be from 0°C to -3°C in the studied conditions. Since the multi-anvil apparatus is capable of achieving much higher pressure and temperature, the method presented in this study promises to reveal absolute temperature correction for thermocouples over a wide range of pressure and temperature conditions.

  17. Thermodynamic properties of isomeric pentanols under elevated pressures determined by the acoustic method

    Science.gov (United States)

    Dzida, M.

    2008-02-01

    Three isomeric pentanols were studied: pentan-1-ol, 2-methyl-1-buta- nol, and 2-methyl-2-butanol. Isobaric heat capacities and internal pressure at pressures up to 100 MPa and temperatures ranging from 293 K to 318 K were determined by the acoustic method. In calculations the measured speeds of sound as function of temperature and pressure together with densities as function of temperature under atmospheric pressure and the literature isobaric heat capacities for the atmospheric pressure were used. To this end, the method, based on the suggestion of Davis and Gordon [1] was applied. The results obtained show that the effect of pressure on and the values of isobaric heat capacity and internal presure of 2-methyl-2-butanol is higher than that of pentan-1-ol, 2-methyl-1-butanol over the whole pressure range. That facilitates telling 2-methyl-2-butanol from pentan-1-ol and 2-methyl-1-butanol.

  18. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.

    Science.gov (United States)

    Yuan, Xiaoda; Carter, Brady P; Schmidt, Shelly J

    2011-01-01

    Similar to an increase in temperature at constant moisture content, water vapor sorption by an amorphous glassy material at constant temperature causes the material to transition into the rubbery state. However, comparatively little research has investigated the measurement of the critical relative humidity (RHc) at which the glass transition occurs at constant temperature. Thus, the central objective of this study was to investigate the relationship between the glass transition temperature (Tg), determined using thermal methods, and the RHc obtained using an automatic water vapor sorption instrument. Dynamic dewpoint isotherms were obtained for amorphous polydextrose from 15 to 40 °C. RHc was determined using an optimized 2nd-derivative method; however, 2 simpler RHc determination methods were also tested as a secondary objective. No statistical difference was found between the 3 RHc methods. Differential scanning calorimetry (DSC) Tg values were determined using polydextrose equilibrated from 11.3% to 57.6% RH. Both standard DSC and modulated DSC (MDSC) methods were employed, since some of the polydextrose thermograms exhibited a physical aging peak. Thus, a tertiary objective was to compare Tg values obtained using 3 different methods (DSC first scan, DSC rescan, and MDSC), to determine which method(s) yielded the most accurate Tg values. In general, onset and midpoint DSC first scan and MDSC Tg values were similar, whereas onset and midpoint DSC rescan values were different. State diagrams of RHc and experimental temperature and Tg and %RH were compared. These state diagrams, though obtained via very different methods, showed relatively good agreement, confirming our hypothesis that water vapor sorption isotherms can be used to directly detect the glassy to rubbery transition. Practical Application: The food polymer science (FPS) approach, pioneered by Slade and Levine, is being successfully applied in the food industry for understanding, improving, and

  19. Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N. (Los Alamos, NM); Wray, William O. (Los Alamos, NM)

    1994-01-01

    Apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established.

  20. Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.; Wray, W.O.

    1994-12-27

    The apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established. 3 figures.

  1. Determination of dynamic pressure on infinite piezoelectric hollow cylinder from electric potential difference measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.M. [Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)], E-mail: wanghuiming@zju.edu.cn; Ding, H.J. [Department of Civil Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027 (China)

    2009-06-15

    An analytical method is developed for evaluating the dynamic pressure acted at the surface of infinite piezoelectric hollow cylinder by measuring the electric potential difference between the internal and external surfaces. By virtue of the separation of variables method and the orthogonal expansion technique, the inverse boundary problem is transformed to a second kind Volterra integral equation about the unknown dynamic pressure. The interpolation method is employed to solve the integral equation and the dynamic pressure is determined. The present method is suitable for the hollow cylinder with arbitrary thickness subjected to arbitrary dynamic pressure. Numerical experiments are also presented.

  2. Determination of blood pressure and associated risk factors in administrative workers of the University of Manizales.

    OpenAIRE

    Aragon, Arturo Jose; Grand, Valentina; Lopez, Johnny; Pérez, Benjamin; Quintero, Carolina; Ramirez, Paula; Rojas Lopez, Giovanny; Sanchez, Diana; Aristizabal, Jose Fernando; Castaño Castrillon, Jose Jaime; Aguirre, Cesar

    2006-01-01

    High blood pressure is defined as a chronic elevation in systolic pressure and diastolic and represents a common disease in humanity.Some of the factors that can cause high blood pressure in people between 18 and 65 are: age, race, sex, smoking, alcohol consumption, and obesity.OBJECTIVESThe aim of this study was to determine the high levels of blood pressure and risk factors associated with the administrative staff of the University of Manizales.MATERIALS AND METHODSOf the 151 people who at ...

  3. Determination of air and hydrofoil pressure coefficient by laser doppler anemometry

    OpenAIRE

    Ristić Slavica S.; Puharić Mirjana A.; Kutin Marina M.; Matić Dušan R.

    2010-01-01

    Some results of experiments performed in water cavitation tunnel are presented. Pressure coefficient (Cp) was experimentally determined by Laser Doppler Anemometry (LDA) measurements. Two models were tested: model of airplane G4 (Super Galeb) and hydrofoil of high speed axial pump. These models are not prepared for conventional pressure measurements, so that LDA is applied for Cp determination. Numerical results were obtained using a code for average Navier-Stokes equations solutions. Compari...

  4. Boiling point of volatile liquids at various pressures

    National Research Council Canada - National Science Library

    Luisa Maria Valencia; Cristhian Andres Aguirre-Tellez

    2017-01-01

    .... In response to this phenomenon, an investigation on the coexistence of both gas and liquid phases of a volatile substance in a closed system was made, establishing vapor pressure as the determining...

  5. Determination of Minimum Miscibility Pressure in supercritical extractor using oil saturated sample

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Søgaard, Erik Gydesen; Abbasi, Waqas A.

    2009-01-01

      The main parameter for determination of the possibilities to enhance oil recovery by e.g. CO2 injection into a specific oil field is the measurement of Minimum Miscibility Pressure (MMP). This pressure is the lowest pressure for which a gas can obtain miscibility through a multi contact process...... with a given oil reservoir at the reservoir temperature. The oil formation to which the process is applied must be operated at or above the MMP. Before field trial this parameter is to be determined at the laboratory which traditionally is done by help of a slim tube or a raising bubble experiments. However...... vessel containing the sample at different increasing pressure levels. The oil displaced in such a way was collected and measured. The volume of extracted oil was plotted against the increasing pressure. The form of the graph is similar to that typically obtained from a slim tube experiment.  Following...

  6. Vaporization of comet nuclei - Light curves and life times

    Science.gov (United States)

    Cowan, J. J.; Ahearn, M. F.

    1979-01-01

    The effects of vaporization from the nucleus of a comet are examined and it is shown that a latitude dependence of vaporization can explain the asymmetries in cometary light curves. An attempt is made to explain the observed variation in molecular production rates with heliocentric distance when employing CO2 and clathrate hydrate ice as cometary nuclei substances. The energy balance equation and the vapor pressure equations of water and CO2 are used in calculating the vaporization from a surface. Calculations were carried out from both dry-ice and water-ice nuclei, using a variety of different effective visual albedos, but primarily for a thermal infrared of 0 (emission). Attention is given to cometary lifetimes and light curves and it was determined that the asymmetry in light curves occurs (occasionally) as a 'seasonal' effect due to a variation in the angle between the comet's rotation axis and the sun-comet line.

  7. Role of peak pressure in determining the auditory hazard of impulse noise

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, J.H.; Gautier, I.M.; Curd, D.L.; Hamernik, R.P.; Salvi, R.J.

    1986-04-01

    Most current Damage Risk Criteria (DRC) for human exposure to impulse noise are written in terms of peak pressure as the primary index of the traumatic potential or hazard associated with exposure to an impulse noise. Since the peak pressure is only one of many parameters of an impulse, there is a question whether or not a DRC based on peak pressure can reflect accurately the hazard to hearing posed by impulse noise. The experiments described in this report were designed to determine whether peak pressure is an adequate quantifier for an impulse noise DRC. The general approach was to construct two types of impulse noise with the same Fourier pressure spectrum, but with different peak pressures. This makes it possible to compare the hearing loss and injury resulting from impulses that have the same total energy distributed the same way across frequency, but with different peak pressures. The threshold shift measured during the first few hours after exposure showed systematic variation with both peak pressure and energy level. The permanent threshold shift (20 to 30 days postexposure) and the loss of sensory cells showed strong dependence on energy level, with a less-pronounced dependence on peak pressure. These results indicate that peak pressure is not a sufficient indicator of auditory hazard; however, energy alone is not a sufficient indicator either.

  8. Raman study of light-emitting SiN{sub x} films grown on Si by low-pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, F. [A.N. Sevchenko Institute of Applied Physics Problems, Kurchatov Str. 7, 220045 Minsk (Belarus); Vlasukova, L. [Belarusian State University, Nezavisimosty Ave. 4, 220030 Minsk (Belarus); Parkhomenko, I., E-mail: irinaparkhomen@gmail.com [Belarusian State University, Nezavisimosty Ave. 4, 220030 Minsk (Belarus); Milchanin, O. [A.N. Sevchenko Institute of Applied Physics Problems, Kurchatov Str. 7, 220045 Minsk (Belarus); Mudryi, A. [Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, P. Brovki Str. 17, 220072 Minsk (Belarus); Togambaeva, A. [Al-Farabi Kazakh National University, Al-Farabiy Ave. 71, 050038 Almaty (Kazakhstan); Korolik, O. [Belarusian State University, Nezavisimosty Ave. 4, 220030 Minsk (Belarus)

    2015-03-31

    Si-rich silicon nitride (SRSN) films were deposited on Si wafers by low pressure chemical vapor deposition (LPCVD) technique and, subsequently, annealed at (800–1200) °C to form Si precipitates. The composition of SiN{sub x} films was measured by Rutherford backscattering spectrometry (RBS). Two sets of samples differed by the amount of excessive Si (Si{sub exc}) in silicon nitride were studied. Evolution of Si nanoclusters from amorphous to crystalline ones during high temperature treatment was examined by Raman scattering (RS) spectroscopy. The amorphous Si clusters were already revealed in as-deposited SiN{sub x} while the annealing results in their crystallization. The crystalline nanoprecipitates are only registered in nitride films after annealing at 1200 °C. A dependence of Raman scattering intensity from the Si wafer on the temperature of annealing of SiN{sub x}/Si structures was revealed. This information was used to explain the phase transformations in SRSNs during high temperature treatments. The peculiarities of photoluminescence (PL) spectra for two sets of Si-rich SiN{sub x} films are explained taking into account the contribution from the quantum confinement effect of Si nanocrystals and from the native defects in silicon nitride matrix, such as N- and K-centers. - Highlights: • The size of Si nanocrystals in Si-rich SiN{sub x} films depends on Si excess content. • Excess Si remains in SiN{sub 0.46} as randomly distributed Si atoms in atomic network. • In SiN{sub 1} films practically all excess Si is aggregated into Si nanoclusters.

  9. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  11. Electrochemical performance of LiFePO{sub 4} modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianling [Department of Physical Chemistry, University of Science and Technology Beijing, No. 30 College Road, Haidian District, Beijing 100083 (China); Department of Applied Chemistry, Aichi Institute of Technology, Yachigusa 1247, Yakusa-cho, Toyota 470-0392 (Japan)], E-mail: lijianling@metall.ustb.edu.cn; Suzuki, Tomohiro; Naga, Kazuhisa; Ohzawa, Yoshimi; Nakajima, Tsuyoshi [Department of Applied Chemistry, Aichi Institute of Technology, Yachigusa 1247, Yakusa-cho, Toyota 470-0392 (Japan)

    2007-09-25

    Using the pressure-pulsed chemical vapor infiltration (PCVI) technique, pyrolytic carbon (pyrocarbon) films were deposited on the surface of LiFePO{sub 4} particles for cathode material of lithium-ion batteries. The electrochemical performance of the original LiFePO{sub 4} and PCVIed LiFePO{sub 4} materials was evaluated using a three electrodes cell by galvanostatic charging/discharging at 25, 40 and 55 deg. C, respectively. Morphology and structure of LiFePO{sub 4} were analyzed by SEM, XRD and Raman. The resulting carbon contents at 500, 1000, 2000, 3000 and 5000 pulses were 2.7, 4.7, 9.5, 15.1 and 19.4%, respectively and these samples were abbreviated as 500P, 1000P, 2000P, 3000P and 5000P, respectively. All the PCVIed samples exhibited excellent rate performance. The tendency was more and more obvious with the increase of the current densities. The specific capacities of 500P, 1000P and 2000P were maintained at 117, 124 and 132 mAh g{sup -1}, respectively, which were 120.8, 264.7 and 29.47% larger than those of corresponding original LiFePO{sub 4}, respectively, at a 5C rate at 55 deg. C. The EIS measurement showed that electrochemical reaction resistance (R{sub ct}) of PCVIed LiFePO{sub 4} were obviously decreased, indicating a fast kinetics compared to the original LiFePO{sub 4}. The cycle ability of the 2000P sample was tested at 25 deg. C and C/2 rate. The cell was cycled for 150 cycles and no obviously capacity fade was observed. Its specific capacity of 115 mAh g{sup -1} at 150th cycle is 1.7 times higher than that of original LiFePO{sub 4}.

  12. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Science.gov (United States)

    Curry, J. J.; Estupiñán, E. G.; Lapatovich, W. P.; Henins, A.; Shastri, S. D.; Hardis, J. E.

    2012-02-01

    Total vapor-phase densities of Dy in equilibrium with a DyI3/InI condensate and Tm in equilibrium with a TmI3/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  13. Isobaric (vapor + liquid) equilibria of the binary system maleic anhydride and diethyl phthalate at p = (2.67, 5.33, and 8.00) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Xu Wei [Department of Chemistry, Institute of Science, Tianjin University, Tianjin 300072 (China); Liu Zhihua [Department of Chemistry, Institute of Science, Tianjin University, Tianjin 300072 (China); Tian Yiling [Department of Chemistry, Institute of Science, Tianjin University, Tianjin 300072 (China)]. E-mail: sdwfliu@yahoo.com.cn; Zhu Rongjiao [Department of Chemistry, Institute of Science, Tianjin University, Tianjin 300072 (China)

    2006-11-15

    Saturated vapor pressures of pure diethyl phthalate were measured with the ebulliometer. And isobaric (vapor + liquid) equilibrium data for the binary system (maleic anhydride + diethyl phthalate) at p = (2.67, 5.33, and 8.00) kPa were determined using the ebulliometric method. The parameters of the NRTL model for the binary system were obtained by calculating equilibrium compositions of the liquid and vapor phase with the experimental equilibrium temperatures, pressures and feed compositions. Moreover (vapor + liquid) equilibrium data for the binary system were predicted by use of the UNIFAC model. Predicted results were compared with those from the ebulliometric method, and showed good agreement.

  14. Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Deyuan [Beijing Titan Instruments Co., Ltd., Beijing 100015 (China); Gao, Feng; Zhang, Zhaohui [Beijing Entry–Exit Inspection and Quarantine Bureau, Beijing 100026 (China); Zhao, Liqian [Beijing Titan Instruments Co., Ltd., Beijing 100015 (China); Liu, Jixin, E-mail: ljx2117@gmail.com [Beijing Titan Instruments Co., Ltd., Beijing 100015 (China); Ye, Jianping; Li, Junwei; Zheng, Fengxi [Beijing Titan Instruments Co., Ltd., Beijing 100015 (China)

    2013-10-01

    A novel method, which coupled an on-line solid phase extraction (SPE) enrichment with ultraviolet vapor generation (UVG) atomic fluorescence spectrometry (AFS), was developed to improve the sensitivity of mercury determination and to remove the interference of some anion and organics to UVG of mercury. A high mercury retention efficiency and maximum exclusion of inorganic and organic matrix in water samples were achieved by using C{sub 18} SPE mini cartridge modified with sodium diethyldithiocarbamate (DDTC). Fast and efficient elution from the cartridge was found by using L-cysteine mixing solution. Furthermore, through the investigation of different UV reactor designs, the most important factor was the structure of the reactor (which corresponded roughly to the photon flux) wherein the tubing was sintered into the UV lamp to give the highest UV generation efficiency. The second factor was the materials of the tubing (which roughly corresponded to the working wavelength). Synthetic quartz, characterized by the highest transparency at 185 nm, attained the highest UVG efficiency, suggesting that the most favorable wavelength for UVG was 185 nm. Under optimum conditions, the achievable detection limit (3σ) with sample loadings of 10.0 mL was 0.03 ng L{sup −1} and 0.08 ng L{sup −1} with different manifolds, respectively. The method was successfully applied to the determination of Hg in tap water, river water and lake water samples. - Graphical abstract: An interference free ultraviolet vapor generation based method was applied to determine ultratrace mercury in water sample. - Highlights: • Hg was enriched by on-line solid phase extraction. • Hg was detected by ultraviolet vapor generation AFS. • The interference of some anion and some organics was removed. • The effects of details of UV set were systemically discussed.

  15. Vapor Pressure of Ammonium Perchlorate

    Science.gov (United States)

    data indicate that ammonium perchlorate sublimes by the dissociation process NH4ClO4 sub (s) = NH3 sub (g) + HClO4 sub (g). The heat of dissociation has been found to be 58 + or - 2 kcal/mole in the cited temperature range.

  16. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    Te,Se)3 crystal lattice during subsequent solidification and Bridgman crystal growth. Substitutional Sb is isoelectronic on a bismuth (Bi) site and... lattice during growth. If one assumes unity incorporation (i.e., one I becomes incorporated from one SbI3 molecule that hits the surface), then a...J Appl Physics. 1999;85:7807. 3. Mzerd A, Sayah D, Tedenac JC , Boyer A. Optimal crystal growth conditions of thin films of BiTe semiconductors. J

  17. Ultrasonic water level determination of the high-pressure boilers tubes; Determinacao do nivel d'agua em tubos verticais de caldeiras aquatubulares por ultra-som

    Energy Technology Data Exchange (ETDEWEB)

    Goettems, Felipe Samuel; Reolon, Amon Marques; Avancini, Flavio; Braga, Rubem Manoel de; Reguly, Afonso [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Lab. de Metalurgia Fisica], e-mail: fgoettems@demet.ufrgs.br

    2006-07-01

    Electric power is very important to our society and thermoelectric power plant. They are especially important mainly in the summer when there is a scarcity in water supply to hydroelectric power plants. Southern Brazilian thermoelectric power plants employ high-pressure boilers in order to generate water vapor which, in turn, moves turbines to produce electricity. These high-pressure boilers must work in a continuous way to avoid damages caused by emergency halts. To accomplish this, some actions must be taken. The water height inside of the tubes must be kept in a strict level to avoid thermal gradient in both water walls and super-heater header. In this water walls the water become in vapor. The best way to regulate the valves that command the water level is through the control of the water height and this is the main purpose of this work. The ultrasound is a nondestructive test which is able in doing this control without damaging the tube. This method allows determining the water level, improving the system performance and reducing the maintenance costs caused by tube collapse. (author)

  18. Droplet Vaporization in a Supercritical Microgravity Environment

    Science.gov (United States)

    Curtis, E. W.; Farrell, P. V.

    1987-01-01

    A model is presented which describes single liquid droplet vaporization at nearly critical liquid pressures and temperatures. A modified Redlich-Kwong equation of state is used to evaluate the fugacities and liquid and vapor mole fractions at the interface under the assumption of interface equilibrium. Results obtained for different droplet sizes and conditions indicate significant differences in behavior in comparison with low-pressure quasi-steady droplet vaporization.

  19. Sulfur trace determination in petroleum products by isotope dilution ICP-MS using direct injection by thermal vaporization (TV-ICP-IDMS).

    Science.gov (United States)

    Heilmann, Jens; Heumann, Klaus G

    2009-01-01

    An accurate, sensitive, and fast method for direct determination of total sulfur in petroleum products after thermal vaporization of an isotope-diluted sample was developed by using ICP-MS. (34)S-labelled dibenzothiophene spike was used for the isotope dilution step. The isotope-diluted sample was injected into a thermal vaporizer which was directly connected by a heated transfer line to the plasma torch. Sample transport was achieved by using a helium gas flow, and the isotope ratio (34)S/(32)S was determined within seconds after injection. No other sample preparation other than the simple and fast isotope dilution step, which enables accurate and sensitive determination of sulfur at high sample throughputs, is necessary. Thus, this technique fits all needs for routine analyses. Validation of the TV-ICP-IDMS method was carried out by analyzing the certified gas oil reference materials BCR672 and BCR107. Comparison of results for noncertified low- and high-boiling samples, obtained from an ICP-IDMS microwave-assisted digestion method, also resulted in very good agreement. The low detection limit of 40 ng/g and the large dynamic range of TV-ICP-IDMS fulfill all necessities to allow analysis of sulfur in different petroleum products, e.g., even at the low concentration level of 'sulfur-free' gasoline.

  20. Determining cyclone particle holdup by pressure Drop for a CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.H.; Zhang, H.; Yang, H.R.; Yang, S.; Lu, J.F.; Yue, G.X. [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing (China)

    2007-12-15

    An experimental study was conducted to assess the possibility of determining particle holdup by measuring the pressure drop of a conventional cyclone used in a circulating fluidized bed (CFB) boiler. It was found that within a wide range of inlet solid concentrations, i.e., 0.54-4.42 kg/kg-gas, the cyclone pressure drop increased linearly with inlet solid concentration at a given gas velocity, while the pressure drop between the dust exit and the vortex finder of the cyclone remained almost constant. Since particle holdup increases virtually linearly with solid flow rate, the particle holdup in the cyclone can be derived from the cyclone pressure drop, and therefore, an equation set was proposed to calculate the particle holdup from the cyclone pressure drop. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Structure determination from a single high-pressure-frozen virus crystal.

    Science.gov (United States)

    Burkhardt, Anja; Wagner, Armin; Warmer, Martin; Reimer, Rudolph; Hohenberg, Heinrich; Ren, Jingshan; Fry, Elizabeth E; Stuart, David I; Meents, Alke

    2013-02-01

    Successful cryogenic X-ray structure determination from a single high-pressure-frozen bovine enterovirus 2 crystal is reported. The presented high-pressure-freezing procedure is based on a commercially available device and allows the cryocooling of macromolecular crystals directly in their mother liquor without the time- and crystal-consuming search for optimal cryoconditions. The method is generally applicable and will allow cryogenic data collection from all types of macromolecular crystals.

  2. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ni [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Jiang, Shiuh-Jen, E-mail: sjjiang@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chen, Yen-Ling [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Sahayam, A.C. [National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad (India)

    2015-02-20

    Highlights: • Determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions in a single run. • Accurate analysis using isotope dilution and standard addition methods. • Vapor generation ICP-MS yielded superior detection limits compared to ETV-ICP-MS. • No sample dissolution increased sample through put. • Analysis of GBW09305 Cosmetic (Cream) reference material for accuracy. - Abstract: A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL{sup −1} Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g{sup −1} for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.

  3. Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Chiou, Chwei-Sheng; Jiang, Shiuh-Jen; Kumar Danadurai, K. Suresh

    2001-07-01

    A method employing a vapor generation system and LC combined with inductively coupled plasma mass spectrometry (LC-ICP-MS) is presented for the determination of mercury in biological tissues. An open vessel microwave digestion system was used to extract the mercury compounds from the sample matrix. The efficiency of the mobile phase, a mixture of L-cysteine and 2-mercaptoethanol, was evaluated for LC separation of inorganic mercury [Hg(II)], methylmercury (methyl-Hg) and ethylmercury (ethyl-Hg). The sensitivity, detection limits and repeatability of the liquid chromatography (LC) ICP-MS system with a vapor generator were comparable to, or better than, that of an LC-ICP-MS system with conventional pneumatic nebulization, or other sample introduction techniques. The experimental detection limits for various mercury species were in the range of 0.05-0.09 ng ml -1 Hg, based on peak height. The proposed method was successfully applied to the determination of mercury compounds in a swordfish sample purchased from the local market. The accuracy of the method was evaluated by analyzing a marine biological certified reference material (DORM-2, NRCC).

  4. The interaction of the theophylline metastable phase with water vapor

    Science.gov (United States)

    Matvienko, A. A.; Boldyrev, V. V.; Sidel'Nikov, A. A.; Chizhik, S. A.

    2008-07-01

    The conditions of hydration of the stable and metastable theophylline phases were determined. Two-phase metastable phase/monohydrate and stable phase/monohydrate equilibrium pressures were measured at 25, 30, and 35°C. The metastable phase began to react with water vapor at lower relative humidities than the stable phase. Processes that occurred with the metastable and stable theophylline phases over various water pressure ranges were considered. The metastable phase exhibited an unusual behavior at 25°C and relative humidity 47%. At constant water vapor pressure and temperature, theophylline was initially hydrated and then lost water and again became anhydrous. Two consecutive processes occurred in the system, the formation of theophylline monohydrate from the metastable phase and its decomposition to the stable phase. The ratio between the rates of these processes determined the content of the monohydrate at the given time moment.

  5. C and Si delta doping in Ge by CH{sub 3}SiH{sub 3} using reduced pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yuji, E-mail: yamamoto@ihp-microelectronics.com [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Ueno, Naofumi; Sakuraba, Masao [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577 (Japan); Murota, Junichi [Micro System Integration Center, Tohoku University, 519-1176, Aramaki aza Aoba, Aoba-ku, Sendai 980-0845 (Japan); Mai, Andreas [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Tillack, Bernd [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Technische Universität Berlin, HFT4, Einsteinufer 25, 10587 Berlin (Germany)

    2016-03-01

    C and Si delta doping in Ge are investigated using a reduced pressure chemical vapor deposition system to establish atomic-order controlled processes. CH{sub 3}SiH{sub 3} is exposed at 250 °C to 500 °C to a Ge on Si (100) substrate using H{sub 2} or N{sub 2} carrier gas followed by a Ge cap layer deposition. At 350 °C, C and Si are uniformly adsorbed on the Ge surface and the incorporated C and Si form steep delta profiles below detection limit of SIMS measurement. By using N{sub 2} as carrier gas, the incorporated C and Si doses in Ge are saturated at one mono-layer below 350 °C. At this temperature range, the incorporated C and Si doses are nearly the same, indicating CH{sub 3}SiH{sub 3} is adsorbed on the Ge surface without decomposing the C−Si bond. On the other hand, by using H{sub 2} as carrier gas, lower incorporated C is observed in comparison to Si. CH{sub 3}SiH{sub 3} injected with H{sub 2} carrier gas is adsorbed on Ge without decomposing the C−Si bond and the adsorbed C is reduced by dissociation of the C−Si bond during temperature ramp up to 550 °C. The adsorbed C is maintained on the Ge surface in N{sub 2} at 550 °C. - Highlights: • C and Si delta doping in Ge is investigated using RPCVD system by CH{sub 3}SiH{sub 3} exposure. • Atomically flat C and Si delta layers are fabricated at 350 °C. • Incorporated C and Si doses are saturated at one mono-layer below 350 °C. • CH{sub 3}SiH{sub 3} adsorption occurred without decomposing C−Si bond. • Adsorbed C is desorbed due to dissociation by hydrogen during postannealing at 550 °C.

  6. Dependence of O2 and Ar2 flow rates on the physical properties of ATO thin films deposited by atmospheric pressure chemical vapor deposition (APCVD)

    Science.gov (United States)

    Fadavieslam, M. R.; Sadra, S.

    2017-11-01

    Antimony-doped tin oxide SnO2:Sb thin films were fabricated through atmospheric pressure chemical vapor deposition at T = 350 °C on soda lime glass substrates. After preparing the thin films, the effects of oxygen and argon flow rates on the structural, optical, and electrical properties were investigated. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, optical absorption (UV-Vis), and electrical resistance measurements using the two-point probe technique and the Hall effect. The results showed that the films contained uniform polycrystalline structures. Accordingly, the structural, morphological, optical, and electrical properties of the samples indicated the following effects: (a) Increasing the oxygen flow rate from 60 to 160 cc/min decreased the intensity of XRD peaks, the average roughness from 48.5 to 47.9 nm, the average transmission from 44 to 40 (in the visible region), the optical band gap from 3.74 to 3.66 eV, and the carrier mobility from 239.52 to 21.08 cm2/V.S; moreover, it increased the average grain size from 74 to 79 nm, the thickness from 320 to 560 nm, the specific resistance from 3.38 × 10-2 to 14.9 × 10-2 Ω cm, the carrier concentration from 7.72 × 1017 to 1.99 × 1018 cm-3, and the Seebeck coefficient from 47.2 to 57.85 μVk-1 (at 400 K). (b) Increasing the argon flow rate of 40 cc/min to 120 cc/min decreased the intensity of XRD peaks, the average size of grains from 88 nm to 61 nm, the optical band gap from 3.66 to 2.73 eV, the carrier concentration from 1.99 × 1018 to 1.73 × 1017 cm-3, and the Seebeck coefficient from 57.85 to 36.59 μVk-1 (at 400 k); moreover, this increased the average roughness from 47.9 to 50.8 nm, the average transmission from 40 to 64 (in the visible region), thickness from 560 to 620 nm, specific resistance from 14.9 × 10-2 to 39.87 × 10-2 Ω cm, and carrier mobility from 21.08 to 90.61 μv/vs. (c) All thin films had degenerate n

  7. Vapor Detector

    Science.gov (United States)

    Waddell, H. M.; Garrard, G. C.; Houston, D. W.

    1982-01-01

    Detector eliminates need for removing covers to take samples. Detector is canister consisting of screw-in base and clear plastic tube that contains two colors of silica gel. Monoethylhydrazine and nitrogen tetroxide vapors are visually monitored with canister containing color-changing gels.

  8. Determination of air and hydrofoil pressure coefficient by laser doppler anemometry

    Directory of Open Access Journals (Sweden)

    Ristić Slavica S.

    2010-01-01

    Full Text Available Some results of experiments performed in water cavitation tunnel are presented. Pressure coefficient (Cp was experimentally determined by Laser Doppler Anemometry (LDA measurements. Two models were tested: model of airplane G4 (Super Galeb and hydrofoil of high speed axial pump. These models are not prepared for conventional pressure measurements, so that LDA is applied for Cp determination. Numerical results were obtained using a code for average Navier-Stokes equations solutions. Comparisons between computational and experimental results prove the effectiveness of the LDA. The advantages and disadvantages of LDA application are discussed. Flow visualization was made by air bubbles.

  9. Expansion of the laser ablation vapor plume into a background gas: Part A, Analysis

    OpenAIRE

    Wen, Sy-Bor; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2006-01-01

    A study of the gas dynamics of the vapor plume generated during laser ablation was conducted including a counterpropagating internal shock wave. The density, pressure, and temperature distributions between the external shock wave front and the sample surface were determined by solving the integrated conservation equations of mass, momentum, and energy. The positions of the shock waves and the contact surface (boundary that separates the compressed ambient gas and the vapor plume) were ob...

  10. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    Science.gov (United States)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  11. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  12. Ionic liquids based single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of Co, Hg and Pb in biological and environmental samples

    Science.gov (United States)

    Xia, Linbo; Li, Xuan; Wu, Yunli; Hu, Bin; Chen, Rui

    2008-11-01

    A new method of ionic liquids based cycle flow single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the determination of trace Co, Hg and Pb with 1-(2-pyridylazo)-2-naphthol (PAN) as both extractant and chemical modifier and 1-butyl-3-methylimidazolium hexafluorophosphate as the extraction solvent. Several factors that influence the microextraction efficiency, such as sample pH, sample flow rate, microdrop volume and extraction time, were investigated and the optimized microextraction conditions were established. Co, Hg and Pb in the post-extraction ionic liquids phase were directly determined by ETV-ICP-MS with the use of PAN as chemical modifier. The chemical modification of PAN in ETV-ICP-MS was studied and the factors affecting the vaporization behaviors of target analytes were investigated. Under the optimized conditions, the detection limits of the method were 1.5, 9.8 and 6.7 pg/mL for Co, Hg and Pb, with the relative standard deviations for 0.5 ng/mL ( n = 7) of Co, Hg and Pb were 7.7%, 5.2% and 12.0%, respectively. After 10 min of extraction, the enrichment factors were 350 (Co), 50 (Hg) and 60 (Pb). The proposed method was successfully applied to the determination of trace Co, Hg and Pb in human serum and environmental water samples. In order to validate the developed method, a certified reference material of human hair (GBW07601) was analyzed and the determined values were in good agreement with the certified values.

  13. A Model for the Determination of Diffusion Capacity Under Non-Standard Temperature and Pressure Conditions

    Directory of Open Access Journals (Sweden)

    Eitzinger Bernhard

    2014-07-01

    Full Text Available The diffusion capacity of cigarette paper has been reported to be an important parameter in relation to the self-extinguishment of cigarettes and also in relation to carbon monoxide yields. Although the diffusion capacity is routinely measured and instruments for this measurement have been available for several years, differences between measured values obtained on the same paper sample but on different instruments or in different laboratories may be substantial and may make it difficult to use these values, for example, as a basis for paper specifications. Among several reasons, deviations of temperature and pressure from standard conditions, especially within the measurement chamber of the instrument, may contribute to the high variation in diffusion capacity data. Deviations of temperature and pressure will have an influence on the gas flow rates, the diffusion processes inside the measurement chamber and consequently the measured CO2 concentration. Generally, the diffusion capacity is determined from a mathematical model, which describes the diffusion processes inside the measurement chamber. Such models provide the CO2 concentration in the outflow gas for a given diffusion capacity. For practical applications the inverse model is needed, that is, the diffusion capacity shall be determined from a measured CO2 concentration. Often such an inverse model is approximated by a polynomial, which, however, is only valid for standard temperature and pressure. It is shown that relative approximation errors from such polynomials, even without temperature and pressure deviations, cannot always be neglected and it is proposed to eliminate such errors by direct inversion of the model with a comparably simple iterative method. A model which includes temperature and pressure effects is described and the effects of temperature and pressure deviations on the diffusion capacity are theoretically estimated by comparing the output of a model with and without

  14. On-line continuous generation of zinc chelates in the vapor phase by reaction with sodium dithiocarbamates and determination by atomic fluorescence spectrometry

    Science.gov (United States)

    Duan, Xuchuan; Sun, Rui; Fang, Jinliang

    2017-02-01

    The present study shows for the first time that a volatile zinc chelate species can be generated by the on-line continuous merging of an acidified sample solution with an aqueous sodium diethyldithiocarbamate solution followed by rapid separation using a frit-based bubble gas-liquid separator at room temperature. The operating conditions for the generation of the vaporous zinc chelate were preliminarily investigated by non-dispersive atomic fluorescence spectrometry. The possible mechanism of zinc vapor generation is discussed. The study shows that the volatile species is an intermediate species with very similar properties to diethyldithiocarbamic acid and a very short half-life in the acidic solution. Moreover, this species can only be generated by on-line mixing and rapid separation. The efficiency of generation was 33-85% depending on acidity. Under optimal conditions, the flow rates of the sample and Na-DDTC solution were 1.3 ml min- 1, the carrier argon flow rate was 225 ml min- 1, the acid concentration of the sample solution and the concentration of Na-DDTC were 0.05 M and 0.4% (m/v), respectively, the detection limit of zinc was 0.33 (3σ) ng ml- 1, and the relative standard deviation (RSD) was 1.3%. The accuracy of the method was verified by the determination of zinc in the plant reference materials GBW10015 (spinach) and GBW10045 (rice). The results were in good agreement with the certified reference values.

  15. Chemical vapor generation sample introduction for the determination of As, Cd, Sb, Hg, and Pb in nail polish by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Huang, Fan-Feng; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A. C.

    2018-02-01

    This paper describes a flow injection vapor generation (VG) method using inductively coupled plasma mass spectrometry (ICP-MS) for determining As, Cd, Sb, Hg, and Pb in nail polish. The samples for VG were prepared as aqueous slurries of a nail polish (0.5% m/v), thiourea (1% m/v), Co(II) (0.75 μg mL- 1), and HCl (1.2% v/v). Chemical VG of As, Cd, Sb, Hg, and Pb ions, by reduction with tetrahydroborate (3% m/v in 0.2% m/v NaOH), enabled their separation from the slurry. With VG sample introduction, As, Cd, Sb and Hg signals were increased by 1-2 orders (except Pb) compared to solution nebulization due to better sample introduction. Quantifications were performed by VG ICP-MS using isotope dilution and standard addition methods as slopes of calibration plots of analytes in the slurries were higher. Using the reported procedure, samples of three nail polishes purchased locally were analyzed for their levels of As, Cd, Sb, Hg, and Pb. The results obtained were in good agreement with those measured using electrothermal vaporization ICP-MS. In the original nail polish sample, the detection limits, calculated as 3σ of blank measurements, for As, Cd, Sb, Hg, and Pb, estimated from standard addition curves, were 0.06, 0.12, 0.14, 0.2, and 12 ng g- 1, respectively.

  16. Experimental study of external fuel vaporization

    Science.gov (United States)

    Szetela, E. J.; Tevelde, J. A.

    1982-01-01

    The fuel properties used in the design of a flash vaporization system for aircraft gas turbine engines were evaluated in experiments using a flowing system to determine critical temperature and pressure, boiling points, dew points, heat transfer coefficients, deposit formation rates, and deposit removal. Three fuels were included in the experiments: Jet-A, an experimental referree broad specification fuel, and a premium No. 2 diesel fuel. Engine conditions representing a NASA Energy Efficient Engine at sea-level take-off, cruise, and idle were simulated in the vaporization system and it was found that single phase flow was maintained in the heat exchanger and downstream of the throttle. Deposits encountered in the heat exchanger represented a thermal resistance as high as 1300 sq M K/watt and a deposit formation rate over 1000 gC/sq cm hr.

  17. Experimental vaporization of the Holbrook chondrite

    Science.gov (United States)

    Gooding, J. L.; Muenow, D. W.

    1977-01-01

    The vapor phase composition obtained by heating samples of the Holbrook L6 chondrite to 1300 C was determined quantitatively by Knudsen cell-quadrupole mass spectrometry. Maximum observed vapor pressures, produced at 1200 C, are reported for Na, K, Fe, and Ni, and the implications of the Na/K ratio are considered. The Fe and Ni data are discussed with attention to their migration in individual equilibrated chondrites. S2 (with minor SO2), H2O, and CO2 were also present in the high-temperature gas phase. Vesicles formed by the release of intrinsically derived volatiles are compared with vesicles in the Ibitira eucrite. Chondrite evolution is briefly discussed.

  18. Determination of inner pressure for fluid inclusions by Raman spectroscopy and its application

    Directory of Open Access Journals (Sweden)

    Haifei Zheng

    2011-07-01

    Full Text Available Using a Diamond Anvil Cell combined with micro Raman spectroscopy, the quantitative relations among Raman shifts, pressure and temperature were obtained for the vibration of O–H in H2O–NaCl, C–O in CO32−, S–O in SO42− and C–H in n-heptane-cyclohexane. Based on the quantitative relationships obtained, it is possible to determine the inner pressure for single fluid inclusions and to further determine the isochore of the systems. It is not only helpful to obtain the forming temperatures and pressures of the enclosing minerals, but also to be able to provide information concerning the chemical compositions of the fluid inclusions.

  19. Experimental determination of solubility parameters of oils as a function of pressure

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Duong, Diep; Andersen, Simon Ivar

    2005-01-01

    In this work, the solubility parameter of dead and live crude oils was measured at 303.15 K and up to 300 bar, using the internal pressure approach. An indirect technique was chosen, using thermal expansivities (determined from microcalorimetric measurements) and isothermal compressibilities...

  20. Boiling point of volatile liquids at various pressures

    Directory of Open Access Journals (Sweden)

    Luisa Maria Valencia

    2017-07-01

    Full Text Available Water, under normal conditions, tends to boil at a “normal boiling temperature” at which the atmospheric pressure fixes the average amount of kinetic energy needed to reach its boiling point. Yet, the normal boiling temperature of different substances varies depending on their nature, for which substances like alcohols, known as volatile, boil faster than water under same conditions. In response to this phenomenon, an investigation on the coexistence of both gas and liquid phases of a volatile substance in a closed system was made, establishing vapor pressure as the determining tendency of a substance to vaporize, which increases exponentially with temperature until a critical point is reached. Since atmospheric pressure is fixed, the internal pressure of the system was varied to determine its relationship with vapor pressure and thus with the boiling point of the substance, concluding that the internal pressure and boiling point of a volatile liquid in a closed system are negatively proportional.

  1. Trace determination of Hg together with As, Sb, Se by miniaturized optical emission spectrometry integrated with chemical vapor generation and capacitively coupled argon microwave miniplasma discharge

    Science.gov (United States)

    Matusiewicz, Henryk; Ślachciński, Mariusz

    2017-07-01

    A miniaturized optical emission spectrometer (OES) with capacitively coupled argon microwave microplasma (μCMP) as and excitation source and chemical vapor generation (CVG) for sample introduction was constructed for the determination of trace Hg, As, Sb and Se. The applied method enabled simultaneous determination of hydride-forming elements (As, Sb, Se) and volatile Hg. Mercury cold vapor and the hydride volatile species of As, Sb and Se were generated when standard or sample solutions were separated from the liquid phase for transport to the capacitively coupled microwave microplasma and detection of their atomic emission. A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. The experimental concentration detection limits (LODs) for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 3.0, 1.4, 1.5 and 3.8 ng mL- 1 for Hg, As, Sb and Se, respectively. The method was validated by the analysis of three Certified Reference Materials (NIST 2711, NRCC DOLT-2, NIST 1643e) of different matrix composition and by the standard addition technique. The method offers relatively good precision (RSD ranged from 5% to 8%) for microsampling (200 μL) analysis. The measured of contents of elements in certified reference materials were in good agreement with the certified values (Hg 1.99-6.25 μg g- 1, As 16.6-105 μg g- 1, Sb 19.4-56.88 μg g- 1, Se 1.52-11.68 μg g- 1), according to the Student t-test, for a confidence level of 95%.

  2. Determination of the internal pressure of fluid inclusions by using Raman spectroscopy.

    Science.gov (United States)

    Yang, Yuping; Zheng, Haifei; Sun, Qiang; Li, Jiankang; Chen, Zhenghui

    2013-07-01

    In situ Raman spectroscopic measurements of H2O-NaCl systems with three different salinities (0, 5.0, and 10.0 wt% NaCl) in the region of O-H stretching vibration were obtained at pressures up to 1800 MPa and temperatures from 298 to 453 K, with a hydrothermal diamond-anvil cell. The peak position was determined by fitting the obtained O-H stretching band with one Gaussian component. At a given temperature, the shift of the band decreased systematically with increasing pressure, and the data show a good linear relationship. For systems of different salinity, the slopes of the isotherms seem to be independent of temperature under the conditions investigated. With increasing salinity, the slope of the isotherm gradually increases. The relationships measured for the shift of the O-H stretching band with temperature, salinity, and pressure can be used to determine the internal pressure and isochore of fluid inclusions as well as the formation temperature and pressure of host minerals.

  3. Vapor-liquid equilibria of trace isobutyraldehyde, ethyl acetate and isoamyl acetate in aqueous ethanol solution under reduced pressure; Ethanol suiyoekichu no biryo no isobutyraldehyde, sakusan ethyl, sakusan isoamyl no gen`atsu kieki heiko

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, A.; Hatate, Y.; Aiko, R. [Kagoshima University, Kagoshima (Japan)

    1997-07-10

    Vapor-liquid equilibria of aqueous ethanol solutions containing a minute amount of acetaldehyde, isobutyraldehyde, ethyl acetate and isoamyl acetate were measured by use of an Othmer-type still at 12.7, 25.3 and 101.3 kPa. The equilibrium ratio curves of the minor components (isobutyraldehyde, ethyl acetate and isoamyl acetate) at each pressure are presented by a function of the concentration of ethanol. However, the equilibrium ratio curves of the minor component (acetaldehyde) could not be obtained, because the data is slightly scatted. 5 refs., 3 figs., 2 tabs.

  4. Using vapor phase tomography to measure the spatial distribution of vapor concentrations and flux for vadose-zone VOC sources.

    Science.gov (United States)

    Mainhagu, J; Morrison, C; Brusseau, M L

    2015-01-01

    A test was conducted at a chlorinated-solvent contaminated site in Tucson, AZ, to evaluate the effectiveness of vapor-phase tomography (VPT) for characterizing the distribution of volatile organic contaminants (VOC) in the vadose zone. A soil vapor extraction (SVE) system has been in operation at the site since 2007. Vapor concentration and vacuum pressure were measured at four different depths in each of the four monitoring wells surrounding the extraction well. The test provided a 3D characterization of local vapor concentrations under induced-gradient conditions. Permeability data obtained from analysis of borehole logs were used along with pressure and the vapor-concentration data to determine VOC mass flux within the test domain. A region of higher mass flux was identified in the deepest interval of the S-SW section of the domain, indicating the possible location of a zone with greater contaminant mass. These results are consistent with the TCE-concentration distribution obtained from sediment coring conducted at the site. In contrast, the results of a standard soil gas survey did not indicate the presence of a zone with greater contaminant mass. These results indicate that the VPT test provided a robust characterization of VOC concentration and flux distribution at the site. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Determination of methylmercury and inorganic mercury by coupling short-column ion chromatographic separation, on-line photocatalyst-assisted vapor generation, and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Chen, Kuan-ju; Hsu, I-hsiang; Sun, Yuh-chang

    2009-12-18

    We have combined short-column ion chromatographic separation and on-line photocatalyst-assisted vapor generation (VG) techniques with inductively coupled plasma mass spectrometry to develop a simple and sensitive hyphenated method for the determination of aqueous Hg(2+) and MeHg(+) species. The separation of Hg(2+) and MeHg(+) was accomplished on a cation-exchange guard column using a glutathione (GSH)-containing eluent. To achieve optimal chromatographic separation and signal intensities, we investigated the influence of several of the operating parameters of the chromatographic and photocatalyst-assisted VG systems. Under the optimized conditions of VG process, the shortcomings of conventional SnCl(2)-based VG techniques for the vaporization of MeHg(+) was overcome; comparing to the concentric nebulizer-ICP-MS system, the analytical sensitivity of ICP-MS toward the detection of Hg(2+) and MeHg(+) were also improved to 25- and 7-fold, respectively. With the use of our established HPLC-UV/nano-TiO(2)-ICP-MS system, the precision for each analyte, based on three replicate injections of 2 ng/mL samples of each species, was better than 15% RSD. This hyphenated method also provided excellent detection limits--0.1 and 0.03 ng/mL for Hg(2+) and MeHg(+), respectively. A series of validation experiments--analysis of the NIST 2672a Standard Urine Reference Material and other urine samples--confirmed further that our proposed method could be applied satisfactorily to the determination of inorganic Hg(2+) and MeHg(+) species in real samples.

  6. Optimization of total vaporization solid-phase microextraction (TV-SPME) for the determination of lipid profiles of Phormia regina, a forensically important blow fly species.

    Science.gov (United States)

    Kranz, William; Carroll, Clinton; Dixon, Darren; Picard, Christine; Goodpaster, John

    2017-11-01

    A new method has been developed for the determination of fatty acids, sterols, and other lipids which naturally occur within pupae of the blow fly Phormia regina. The method relies upon liquid extraction in non-polar solvent, followed by derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) w/ 1% trimethylchlorsilane (TMCS) carried out inside the sample vial. The analysis is facilitated by total vaporization solid-phase microextraction (TV-SPME), with gas chromatography-mass spectrometry (GC-MS) serving as the instrumentation for analysis. The TV-SPME delivery technique is approximately a factor of five more sensitive than traditional liquid injection, which may alleviate the need for rotary evaporation, reconstitution, collection of high performance liquid chromatography fractions, and many of the other pre-concentration steps that are commonplace in the current literature. Furthermore, the ability to derivatize the liquid extract in a single easy step while increasing sensitivity represents an improvement over current derivatization methods. The most common lipids identified in fly pupae were various saturated and unsaturated fatty acids ranging from lauric acid (12:0) to arachinoic acid (20:4), as well as cholesterol. The concentrations of myristic acid (14:0), palmitelaidic acid (16:2), and palmitoleic acid (16:1) were the most reliable indicators of the age of the pupae. Graphical abstract Blow fly pupae were extracted prior to emerging as adults. The extracts were analyzed via total vaporization solid-phase microextraction (TV-SPME), revealing a complex mixture of lipids that could be associated with the age of the insect. This information may assist in determining a post-mortum interval (PMI) in a death investigation.

  7. The Role of Inspiratory Pressures in Determining the Flow Rates Though Dry Powder Inhalers; A Review.

    Science.gov (United States)

    Clark, Andrew R

    2015-01-01

    Dry powder inhalers are one of the most popular devices for delivering medication directly to the lungs of patients. Both for local action and when using the lungs as a portal of entry into the systemic circulation. Dry powder inhalers rely on the patient's inspiratory effort to supply the energy for the device to effectively deliver medication. In this respect they are limited by the airway pressures that a patient can generate with their respiratory muscles. In this review we focus on a simple model outlining the variables influencing respiratory pressure and review the literature on inspiratory flow rates in patients with respiratory disease. The main determinants of the capability to generate the pressure necessary to effectively use a dry powder inhaler are shown to be age and gender, not disease or disease severity.

  8. Determining the Arterial Blood Pressure of People Living in Yesilyurt Local Healthcare Office

    Directory of Open Access Journals (Sweden)

    Feyza Dereli

    2009-02-01

    Full Text Available AIM: Whereas the prevalance of arterial blood pressure which was a chronical health problem was 20%-25% among 30 year-old people, them showing an increase in aging, the percentage went as high as 50% in 60’s and later ages. What was that worrisome was that despite the high prevalance, only half of these received treathment. This is study was descriptively and cross-sectionally planned to determine whether the people asking their tensions to be measured in and around the Yesilyurt local healthcare office region. METHODS: The environment of the research consisted of 1400 people over 35 age and registered Yesilyurt Local healthcare Office and the whole of the environment were included in this sample. The study was conducted over 340 voluntaries. The data was collected by a questionnaire of 14 questions containing socio-demografic features and by measuring the arterial blood pressure, height and weight of the individuals. In the evaluation of the data, chi-square test was used and the level of significantly was accepted as 0.05. RESULTS: In this study, the rate of high sistolic blood pressure was found to be 21.47% and the rate of high diastolic blood pressure to be 8.23%. It was determined that age and body mass index varrieties were effective on sistolic hipertension. It was also found that in their behaviors of the use of hypertensive medicine, of regular arterial pressure controls and of having the hypertesion diagnosis significant differnces varied statistically on both sistolic and diastolic blood pressure people having. CONCLUSION: In order to improve the health, informative information abouth hypertension was provided for the participants for too days consisting of 4 sessions. [TAF Prev Med Bull 2009; 8(1.000: 53-58

  9. Understanding Latent Heat of Vaporization.

    Science.gov (United States)

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  10. Comparative analysis of high pressure sodium vapor lamps and mercury vapor lamp with the solid state (LED) in the public lighting systems; Analise comparativa das lampadas de vapor de sodio a alta pressao e de vapor de mercurio com a lampada a estado solido (LED) em sistemas de iluminacao publica

    Energy Technology Data Exchange (ETDEWEB)

    Damato, J.C.; Bueno, J.E.; Astorga, O.A.M. [Universidade Estadual Paulista (LESIP/UNESP), Guaratingueta, SP (Brazil). Lab. de Eficiencia Energetica em Sistemas de Iluminacao Publica; Ricciulli, D.L.S. [Universidade Estadual Paulista (DEE/UNESP), Guaratingueta, SP (Brazil). Dept. de Engenharia Eletrica

    2009-07-01

    The necessity of energy conservation in Brazilian electric sector, with the intention to diminish the resources of generation investments, has going to use of electric energy conservation programs, being most important PROCEL - a national program of electric conservation energy by ELETROBRAS, and inside this, a national program for public illumination and efficient traffic signaling - named 'Reluz'. This program looks for a more efficient implantation of public lighting systems, that requires the use of lamp technologies that present a greater value in a relation between lumen/watt relation and then beyond providing economy, due to low consumption of electric energy. Besides technologies that are appearing, the inclusion of LED lamps, which offers a great application potential, comes blunting as improvement alternative, being that the next public illumination parks will be able count on these lamps associates to the high-pressure sodium lamps and other types currently used. (author)

  11. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starch – starch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  12. Derivatization coupled to headspace programmed-temperature vaporizer gas chromatography with mass spectrometry for the determination of amino acids: Application to urine samples.

    Science.gov (United States)

    González Paredes, Rosa María; García Pinto, Carmelo; Pérez Pavón, José Luis; Moreno Cordero, Bernardo

    2016-09-01

    A new method based on headspace programmed-temperature vaporizer gas chromatography with mass spectrometry has been developed and validated for the determination of amino acids (alanine, sarcosine, ethylglycine, valine, leucine, and proline) in human urine samples. Derivatization with ethyl chloroformate was employed successfully to determine the amino acids. The derivatization reaction conditions as well as the variables of the headspace sampling were optimized. The existence of a matrix effect was checked and the analytical characteristics of the method were determined. The limits of detection were 0.15-2.89 mg/L, and the limits of quantification were 0.46-8.67 mg/L. The instrumental repeatability was 1.6-11.5%. The quantification of the amino acids in six urine samples from healthy subjects was performed with the method developed with the one-point standard additions protocol, with norleucine as the internal standard. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Tai, Chia-Yi; Jiang, Shiuh-Jen; Sahayam, A C

    2016-02-01

    Analysis of herbs for As, Hg and Pb has been carried out using slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) with flow injection vapor generation. Slurry containing 0.5% m/v herbal powder, 0.1% m/v citric acid and 2% v/v HCl was injected into the VG-ICP-MS system for the determination of As, Hg and Pb that obviate dissolution and mineralization. Standard addition and isotope dilution methods were used for quantifications in selected herbal powders. This method has been validated by the determination of As, Hg and Pb in NIST standard reference materials SRM 1547 Peach Leaves and SRM 1573a Tomato Leaves. The As, Hg and Pb analysis results of the reference materials agreed with the certified values. The precision obtained by the reported procedure was better than 7% for all determinations. The detection limit estimated from standard addition curve was 0.008, 0.003, and 0.007 ng mL(-1) for As, Hg and Pb, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A comparison of CO{sub 2} minimum miscibility pressure determinations for Weyburn crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Dong, M.; Huang, S. [Saskatchewan Research Council, 6 Research Drive, S4S 7J7 Regina, SK (Canada); Dyer, S.B. [PanCanadian Petroleum Limited, 150-9th Avenue S.W., T2P 2S5 Calgary, AB (Canada); Mourits, F.M. [Natural Resources Canada, 580 Booth Street, 10th Floor, K1A 0E4 Ottawa, ON (Canada)

    2001-10-01

    Minimum miscibility pressure (MMP) is often used as a key criterion for screening and selecting suitable solvents for enhanced oil recovery projects. This paper compares the pure and impure CO{sub 2} MMP values determined for a medium oil from Weyburn reservoir located in southeast Saskatchewan, Canada. Three different methods were employed for determining MMP, namely, slim tube experiments, rising bubble apparatus (RBA) tests, and correlations. The contaminants in the impure CO{sub 2} streams considered were nitrogen (from flue gas) and methane (from recycled CO{sub 2}). Results of the study indicated that the MMP values measured by the RBA technique agreed well with those measured using the slim tube tests and those predicted using a published correlation. For the Weyburn oil-CO{sub 2} system, a distinct bubble behaviour-tail formation-was observed when the pressure reached or was higher than MMP. These results provide additional experimental experience of using the RBA as an efficient tool of determining the MMP for some solvent gas-medium oil systems. This study also demonstrated that, for the Weyburn reservoir, promising EOR agents (having an MMP below 80% of the reservoir fracture pressure) are pure CO{sub 2} and blended CO{sub 2} containing up to about 12 mol% CH{sub 4} or 5 mol% N{sub 2}.

  15. Determination of unsteady heat release distribution from acoustic pressure measurements: a reformulation of the inverse problem.

    Science.gov (United States)

    Subrahmanyam, P Bala; Sujith, R I; Ramakrishna, M

    2003-08-01

    An integral method is developed to solve the inverse problem of determining the oscillatory heat release distribution from the knowledge of the acoustic pressure field within a combustor. Unlike earlier approaches, in which the problem is formulated in terms of Fredholm integral equation, the inverse problem is reformulated in terms of Volterra integral equation. This reformulation, valid for low Mach numbers (M2 Volterra integral equation is solved using both direct numerical method and implicit least-squares method. The results show that the implicit least-squares method is superior to the direct numerical method and yields accurate determination of heat release at all frequencies.

  16. Determination of interfacial heat transfer coefficient and its application in high pressure die casting process

    Directory of Open Access Journals (Sweden)

    Cao Yongyou

    2014-07-01

    Full Text Available In this paper, the research progress of the interfacial heat transfer in high pressure die casting (HPDC is reviewed. Results including determination of the interfacial heat transfer coefficient (IHTC, influence of casting thickness, process parameters and casting alloys on the IHTC are summarized and discussed. A thermal boundary condition model was developed based on the two correlations: (a IHTC and casting solid fraction and (b IHTC peak value and initial die surface temperature. The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found.

  17. Determination of total carbonates in soil archaeometry using a new pressure method with temperature compensation

    Science.gov (United States)

    Barouchas, Pantelis; Koulos, Vasilios; Melfos, Vasilios

    2017-04-01

    For the determination of total carbonates in soil archaeometry a new technique was applied using a multi-sensor philosophy, which combines simultaneous measurement of pressure and temperature. This technology is innovative and complies with EN ISO 10693:2013, ASTM D4373-02(2007) and Soil Science Society of America standard test methods for calcium carbonate content in soils and sediments. The total carbonates analysis is based on a pressure method that utilizes the FOGII Digital Soil CalcimeterTM, which is a portable apparatus. The total carbonate content determined by treating a 1.000 g (+/- 0.001 g) dried sample specimens with 6N hydrochloric acid (HCL) reagent grade, in an enclosed reaction vessel. Carbon dioxide gas evolved during the reaction between the acid and carbonate fraction of the specimen, was measured by the resulting pressure generated, taking in account the temperature conditions during the reaction. Prior to analysis the procedure was validated with Sand/Soil mixtures from BIPEA proficiency testing program with soils of different origins. For applying this new method in archaeometry a total number of ten samples were used from various rocks which are related with cultural constructions and implements in Greece. They represent a large range of periods since the Neolithic times, and were selected because there was an uncertainty about their accurate mineralogical composition especially regarding the presence of carbonate minerals. The results were compared to the results from ELTRA CS580 inorganic carbon analyzer using an infrared cell. The determination of total carbonates for 10 samples from different ancient sites indicated a very good correlation (R2 >0.97) between the pressure method with temperature compensation and the infrared method. The proposed method is quickly and accurate in archaeometry and can replace easily other techniques for total carbonates testing. The FOGII Digital Soil CalcimeterTM is portable and easily can be carried for

  18. Validation of Hiriart equation to compute steam production by the lip pressure method; Validacion de la ecuacion de Hiriart para calculo de gasto de vapor por el metodo de presion de labio

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1996-09-01

    Mainly in new geothermal wells, it is necessary to evaluate the production in a very fast, simple and not expensive way, to know the convenience to install surface equipment, such as silencers and separators, to drive the steam to the commercial gathering system. In practice, one of the most known methods is the lip pressure one, which requires a simple set of installations. The objective of this paper is to validate the steam flow rate calculated by the lip pressure method, with respect to the ASME method. The ASME method is known for its accuracy, and is done by measuring the steam and liquid after a high pressure separator, by an orifice plate of known diameter and a triangular weir. Results of the validation show up the feasibility of application of the lip pressure method by using a simple adjustment equation. Percentage of mistake results less than 1%, without any notable influence of the production enthalpy. That equation to be applied in a general case, is as follows: Q{nu} =(20642)(F*P*D{sup 2}/{radical}h-2000). For the particular case of the Los Azufres geothermal field, the equation is: Q{nu}= 810*P*D{sup 2} [Espanol] En los pozos geotermicos, principalmente en los nuevos, es necesario evaluar su produccion de manera rapida, sencilla y economica, para determinar la conveniencia de instalar equipo superficial, como separadores, silenciadores, etc., que permita la integracion del vapor al sistema comercial de generacion electrica. Para fines practicos uno de los metodos mas conocidos es el de presion de labio, que solo requiere un arreglo sencillo de instalaciones superficiales. En este documento se validan y ajustan los calculos de produccion de vapor por ese metodo de presion de labio, con respecto a las mediciones exactas efectuadas con el metodo ASME. Este ultimo es reconocido internacionalmente por su precision, y se lleva a cabo separando la mezcla obtenida en superficie en un recipiente a presion para medir el vapor a traves de una placa de orificio

  19. Vaporization Would Cool Primary Battery

    Science.gov (United States)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  20. Water Vapor Effects on Silica-Forming Ceramics

    Science.gov (United States)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  1. Theoretical and Experimental Approaches of Liquid Entry Pressure Determination in Membrane Distillation Processes

    National Research Council Canada - National Science Library

    Gábor Rácz; Steffen Kerker; Zoltán Kovács; Gyula Vatai; Mehrdad Ebrahimi; Peter Czermak

    2014-01-01

      Membrane distillation (MD) is a thermally driven separation process that employs a hydrophobic membrane as a barrier forthe liquid phase, allowing only vapor phase to pass through the membrane pores...

  2. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10-6 g m-2 day-1 range

    Science.gov (United States)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10-6 g m-2 day-1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  3. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap. The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS. The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically investigated. The factors influencing, the complex formation and extraction of DLLME-SFO method such as type and volume of extraction and disperser solvents, pH, concentration of salt, centrifuging time and concentration of the chelating agent were optimized. The method was successfully applied to the determination of mercury in drinking and natural water and satisfactory relative recoveries (95–105% were achieved. The proposed procedure was based on very low consumption of organic solvents. The other benefits of the system were sensitive, simple, friendly to the environment, rejection of matrix constituent, low cost, the time consuming and high enrichment factor.

  4. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M.; Berton, Paula [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Olsina, Roberto A. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@lab.cricyt.edu.ar [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 {mu}l of 9.0 mol L{sup -1} hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L{sup -1} and the relative standard deviation (RSD) for 10 replicates at 1 {mu}g L{sup -1} Hg{sup 2+} was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  5. Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction

    Science.gov (United States)

    Qin, Deyuan; Gao, Feng; Zhang, Zhaohui; Zhao, Liqian; Liu, Jixin; Ye, Jianping; Li, Junwei; Zheng, Fengxi

    2013-10-01

    A novel method, which coupled an on-line solid phase extraction (SPE) enrichment with ultraviolet vapor generation (UVG) atomic fluorescence spectrometry (AFS), was developed to improve the sensitivity of mercury determination and to remove the interference of some anion and organics to UVG of mercury. A high mercury retention efficiency and maximum exclusion of inorganic and organic matrix in water samples were achieved by using C18 SPE mini cartridge modified with sodium diethyldithiocarbamate (DDTC). Fast and efficient elution from the cartridge was found by using L-cysteine mixing solution. Furthermore, through the investigation of different UV reactor designs, the most important factor was the structure of the reactor (which corresponded roughly to the photon flux) wherein the tubing was sintered into the UV lamp to give the highest UV generation efficiency. The second factor was the materials of the tubing (which roughly corresponded to the working wavelength). Synthetic quartz, characterized by the highest transparency at 185 nm, attained the highest UVG efficiency, suggesting that the most favorable wavelength for UVG was 185 nm. Under optimum conditions, the achievable detection limit (3σ) with sample loadings of 10.0 mL was 0.03 ng L- 1 and 0.08 ng L- 1 with different manifolds, respectively. The method was successfully applied to the determination of Hg in tap water, river water and lake water samples.

  6. Determination of Cu, As, Hg and Pb in vegetable oils by electrothermal vaporization inductively coupled plasma mass spectrometry with palladium nanoparticles as modifier.

    Science.gov (United States)

    Hsu, Wan-Hsuan; Jiang, Shiuh-Jen; Sahayam, A C

    2013-12-15

    The determination of Cu, As, Hg and Pb in vegetable oils by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was investigated. The oils were injected in the form of emulsions containing 5% m/v vegetable oil, 1.5% v/v Triton X-100 and 50 μg mL(-1) ascorbic acid. Palladium nanoparticles (Pd-NPs) were used as modifier. The interference of (40)Ar(35)Cl(+) at arsenic mass m/z 75 was reduced significantly using dynamic reaction cell (DRC). Standard addition and isotope dilution methods were used for the quantifications. The method reported has been applied to the determination of Cu, As, Hg and Pb in selected vegetable oil samples purchased from a local market. The analytical results obtained were in good agreement with those of digested samples analyzed by pneumatic nebulization ICP-MS with 95% confidence according to Student t-test (except for Cu). Precision between sample replicates was better than 10% with the ETV-ICP-MS method. The detection limits obtained from standard addition curves were 0.4, 0.5, 1.1 and 0.4 ng g(-1) for Cu, As, Hg and Pb, respectively, in the original oil samples. © 2013 Elsevier B.V. All rights reserved.

  7. Determination of viscous pressure losssand resistance upstream from the choke point from breathing gases of different physical properties

    DEFF Research Database (Denmark)

    Pedersen, O.F.

    2007-01-01

      Determination of viscous pressure loss and resistance upstream from the choke point from breathing gases of different physical properties Ole F. Pedersen, Institute of Public Health, University of Aarhus, Denmark. AIM. To determine viscous pressure losses and resistances  upstream to CP...

  8. Equilibrium separation in a high pressure helium plasma and its application to the determination of temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rodero, A.; Garcia, M.C.; Gamero, A. [Universidad de Cordoba (Spain)

    1995-12-31

    The spectroscopy method based on the Boltzmann-plot of emission lines has been usually employed for measuring the excitation temperature (T{sub exc}) in high pressure plasmas. In the present work, it is shown that this method can produce great errors in the temperature determination when equilibrium separation exists. In this way, the suitability of this determination is tested comparing with other alternative methods in a high pressure helium plasma and also studying its separation from the equilibrium situation, via the absolute population measurements of atomic levels and the estimation of its atomic state distribution function (ASDF). We have made this study using a new excitation structure, the axial injection torch (Torche A Injection Axiale or T.I.A.), which produces a high power microwave plasma at atmospheric pressure. The measurements were carried out at the beginning of the flame (the highest line intensity zone) for a 300-900 W power range at 2.45 GHz and 71/min. of helium gas flow.

  9. Sub-microsecond vapor plume dynamics under different keyhole penetration regimes in deep penetration laser welding

    Science.gov (United States)

    Chen, Xin; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Zhang, Xiaosi; Jiang, Ping; Xiao, Jianzhong

    2017-05-01

    It is well-known that distinct vapor plume dynamics occur during deep penetration laser welding under different keyhole penetration states. However, there is little knowledge about the physical characteristics of vapor plumes (velocity, pressure, flow patterns, etc) located inside transient keyholes of varying penetration regimes in laser welding. This lack of knowledge is primarily because mesoscale vapor plumes are highly dynamic and generally invisible. Based on a well-tested three-dimensional multiphase laser welding model, we conducted a computational study on vapor plume dynamics inside transient keyholes during the fiber laser welding of 304 austenite stainless steel as a function of keyhole penetration regimes. We observed three keyhole regimes of penetration: full penetration, partial penetration and no penetration. We then physically analyzed the vapor plumes in these regimes. We determined that the vapor plume velocities and pressures in all three regimes were uneven and oscillated following the dynamic keyhole with a characteristic timescale in sub-microseconds. Only when the keyhole approached the full penetration regime did vapor plumes begin to violently eject from the bottom of the keyhole opening, whereas in the partial penetration regime, even when the bottom part of the keyhole was open, most of the vapor plume ejected from the upper keyhole opening. This latter observation was similar to that in the no penetration mode. We studied the physical mechanism of this behavior by analyzing the keyhole temperature and vapor plume velocity distributions. We determined that the upward ejection of the vapor plume from the upper keyhole opening was the result of an uneven micro-meter scale boiling phenomenon of the transient keyhole governed by Fresnel absorptions dependent on the local inclination angle of the keyhole wall. Similarly, we determined that the ejection of the vapor plume from the bottom of the keyhole opening resulted from pressure

  10. Method of Determining the Aerodynamic Characteristics of a Flying Vehicle from the Surface Pressure

    Science.gov (United States)

    Volkov, V. F.; Dyad'kin, A. A.; Zapryagaev, V. I.; Kiselev, N. P.

    2017-11-01

    The paper presents a description of the procedure used for determining the aerodynamic characteristics (forces and moments acting on a model of a flying vehicle) obtained from the results of pressure measurements on the surface of a model of a re-entry vehicle with operating retrofire brake rockets in the regime of hovering over a landing surface is given. The algorithm for constructing the interpolation polynomial over interpolation nodes in the radial and azimuthal directions using the assumption on the symmetry of pressure distribution over the surface is presented. The aerodynamic forces and moments at different tilts of the vehicle are obtained. It is shown that the aerodynamic force components acting on the vehicle in the regime of landing and caused by the action of the vertical velocity deceleration nozzle jets are negligibly small in comparison with the engine thrust.

  11. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  12. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  13. Vapor condensation behind the shock wave in vapor-liquid two-phase media

    Science.gov (United States)

    Syoji, Chiharu; Oshiro, Naoto

    Laser extinction, schlieren photography, and in situ pressure measurements are used to characterize vapor condensation behind a shock wave in a diaphragm shock tube with a low-pressure chamber filled with ethanol, water, or freon-11 vapor. The experimental setup is briefly described, and the results are presented graphically and discussed in detail. Condensation, lasting a few hundred microsec before reevaporation sets in, is found to decrease the intensity of the shock front and lower the pressure behind it.

  14. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shih-Yi [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Jiang, Shiuh-Jen, E-mail: sjjiang@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Sahayam, A.C. [National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad (India)

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min{sup −1} methane (CH{sub 4}) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g{sup −1} for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g{sup −1} (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions. - Highlights: • Determination of Cr, Fe, Cu, Zn and Se in cereal samples • Ultrasonic slurry sampling in combination with DRC-ICP-MS • Better sensitivity with thioacetamide modifier in ETV • Decreased sample preparation time with solid sampling • Validation with NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour.

  15. Determining the efficiency of ZSM-5 zeolite impregnated with nanoparticles of titanium dioxide in the photocatalytic removal of styrene vapors

    Directory of Open Access Journals (Sweden)

    Mojtaba Nakhaei pour

    2017-03-01

    Full Text Available Introduction: Styrene monomer is a volatile organic compound that has many applications particularly in plastic, rubber and paint industries. According to the harmful effects of these compounds on human and environment, reducing and controling of them seem necessary. Therefore, in this study removal of styrene was investigated using photocatalytic process of titanium dioxide nanoparticles stabilized on ZSM-5. Methods: After stabilization of titanium dioxide nanoparticles on ZSM-5 zeolite, BET, SEM and XRD analysis were used to determine the characteristics of nanoparticles. Experiments were conducted at ambient temperature in laboratory scale. Concentration of produced styrene in the experiments was 50 and 300 ppm, and input flow rate was 1 l/min. Results: images and spectra obtained through XRD and SEM-EDAX showed that  nano-catalysts are well- stabilized. The results showed that by increasing of input concentration of styrene from 50 to 300 ppm, photocatalytic removal efficiency are reduced. Also, adsorption capacity of the catalyst bed in concentrations of 50 and 300 ppm was calculated 16.3 and19.4 mg/gr of adsorbent respectively. Conclusion: The results show that the use of hybrid bed can increase the removal efficiency of contaminants. And due to low cost of application of these systems compared to conventional methods, it is recommended that more comprehensive studies to be done regarding the optimization of the parameters affecting the process of photocatalytic removal.

  16. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  17. A Gnotobiotic Pig Model for Determining Human Norovirus Inactivation by High-Pressure Processing.

    Science.gov (United States)

    Lou, Fangfei; Ye, Mu; Ma, Yuanmei; Li, Xinhui; DiCaprio, Erin; Chen, Haiqiang; Krakowka, Steven; Hughes, John; Kingsley, David; Li, Jianrong

    2015-10-01

    Human norovirus (NoV) is responsible for over 90% of outbreaks of acute nonbacterial gastroenteritis worldwide and accounts for 60% of cases of foodborne illness in the United States. Currently, the infectivity of human NoVs is poorly understood due to the lack of a cell culture system. In this study, we determined the survival of a human NoV genogroup II, genotype 4 (GII.4) strain in seeded oyster homogenates after high-pressure processing (HPP) using a novel receptor binding assay and a gnotobiotic pig model. Pressure conditions of 350 MPa at 0°C for 2 min led to a 3.7-log10 reduction in the number of viral RNA copies in oysters, as measured by the porcine gastric mucin-conjugated magnetic bead (PGM-MB) binding assay and real-time RT-PCR, whereas pressure conditions of 350 MPa at 35°C for 2 min achieved only a 1-log10 reduction in the number of RNA copies. Newborn gnotobiotic piglets orally fed oyster homogenate treated at 350 MPa and 0°C for 2 min did not have viral RNA shedding in feces, histologic lesions, or viral replication in the small intestine. In contrast, gnotobiotic piglets fed oysters treated at 350 MPa and 35°C for 2 min had high levels of viral shedding in feces and exhibited significant histologic lesions and viral replication in the small intestine. Collectively, these data demonstrate that (i) human NoV survival estimated by an in vitro PGM-MB virus binding assay is consistent with the infectivity determined by an in vivo gnotobiotic piglet model and (ii) HPP is capable of inactivating a human NoV GII.4 strain at commercially acceptable pressure levels. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  19. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  20. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  1. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  2. Determinants of Mean Blood Pressure and Hypertension among Workers in West Africa.

    Science.gov (United States)

    Bosu, William K

    2016-01-01

    Background. This review was undertaken to estimate the mean blood pressure and evaluate its determinants as well as the determinants of hypertension among workers in West Africa. Methods. In a follow-up to an earlier study, a systematic search for articles published between 1980 and August 2015 was undertaken using major databases. Results. A total of 55 articles involving 34,919 different cadres of workers from six countries were retrieved. The mean systolic blood pressure (BP) ranged from 116.6 ± 1.3 mmHg to 151.7 ± 13.6 mmHg while the mean diastolic BP ranged from 69.6 ± 11.0 mmHg to 97.1 ± 9.1 mmHg. Population-wide prehypertension was common. The major determinants of mean BP and hypertension were similar and included male sex, older age group, higher socioeconomic status, obesity, alcohol consumption, plasma glucose, and sodium excretion. Ethnicity and educational level were inconsistently associated with hypertension. Workers at higher risk of cardiovascular event did not perceive themselves as such. Conclusion. The prevailing mean prehypertensive BP, low perception of risk, and clustering of risk factors call for interventions such as healthy diets, improved physical activity, and a favourable work environment. Successful models for improving the cardiovascular health of sedentary informal sector workers in Africa are urgently needed.

  3. Determinants of Mean Blood Pressure and Hypertension among Workers in West Africa

    Directory of Open Access Journals (Sweden)

    William K. Bosu

    2016-01-01

    Full Text Available Background. This review was undertaken to estimate the mean blood pressure and evaluate its determinants as well as the determinants of hypertension among workers in West Africa. Methods. In a follow-up to an earlier study, a systematic search for articles published between 1980 and August 2015 was undertaken using major databases. Results. A total of 55 articles involving 34,919 different cadres of workers from six countries were retrieved. The mean systolic blood pressure (BP ranged from 116.6±1.3 mmHg to 151.7±13.6 mmHg while the mean diastolic BP ranged from 69.6±11.0 mmHg to 97.1±9.1 mmHg. Population-wide prehypertension was common. The major determinants of mean BP and hypertension were similar and included male sex, older age group, higher socioeconomic status, obesity, alcohol consumption, plasma glucose, and sodium excretion. Ethnicity and educational level were inconsistently associated with hypertension. Workers at higher risk of cardiovascular event did not perceive themselves as such. Conclusion. The prevailing mean prehypertensive BP, low perception of risk, and clustering of risk factors call for interventions such as healthy diets, improved physical activity, and a favourable work environment. Successful models for improving the cardiovascular health of sedentary informal sector workers in Africa are urgently needed.

  4. Near-infrared spectroscopic determination of salinity and internal pressure of fluid inclusions in minerals.

    Science.gov (United States)

    Kagi, Hiroyuki; Kiyasu, Akiko; Akagi, Tasuku; Nara, Masayuki; Sawaki, Takayuki

    2006-04-01

    A near-infrared (NIR) spectroscopic method is proposed to achieve the simultaneous determination of salinity and internal pressure of fluid inclusions in natural minerals. A combination band between the anti-symmetric stretching and bending vibrations of molecular water at approximately 5180 cm-1 was observed for standard salt solutions and natural minerals containing fluid inclusions with known salinities. A curve-fitting procedure was used to analyze the change in the band shape of the combination. Justification of the calibration was confirmed by observation of fluid inclusions in natural minerals whose salinities had already been determined using microthermometry. The detection limit of the present method is 1 NaCl-eq wt. %. The minimum size of fluid inclusions that produced well-resolved spectra was approximately 30 microm. This method was applied to assess micro fluid inclusions in a natural diamond with cubic growth habit (cuboid). The salinity and residual pressure of those fluid inclusions were estimated respectively as 4.4 wt. % NaCl-eq and 0.6-0.8 GPa. The present method is complementary to Raman microscopy and microthermometry for the determination of salinity in fluid inclusions of geological samples.

  5. Determining the shape of a human vocal tract from pressure measurements at the lips

    Science.gov (United States)

    Aktosun, Tuncay; Machuca, Alicia; Sacks, Paul

    2017-11-01

    The inverse problem of determining the cross-sectional area of a human vocal tract during the utterance of a vowel is considered in terms of the data consisting of the absolute value of sound pressure at the lips. If the upper lip is curved downward during the utterance, it is shown that there may be up to an M-fold nonuniqueness in the determination, where M is the maximal number of eligible resonances associated with a related Schrödinger operator. Each of the M such distinct candidates for the vocal-tract area corresponding to the same absolute pressure is uniquely determined. The mathematical theory is presented for the recovery of each candidate for the vocal-tract area, and the admissibility criterion for each of the M candidates to be a vocal-tract radius is specified. On the other hand, if the upper lip is horizontal or curved upward during the utterance, then the inverse problem has a unique solution. The theory developed is illustrated with some examples.

  6. Determination of drug stability in aspirin tablet formulations by high-pressure liquid chromatography.

    Science.gov (United States)

    Taguchi, V Y; Cotton, M L; Yates, C H; Millar, J F

    1981-01-01

    Salicylic acid and aspirin were resolved from the other salicylates in thermally degraded multicomponent tablets and determined quantitatively. The analytical method involved wetting the powdered tablet with acetic acid and diluting with chloroform to extract the drug components. Automated high-pressure liquid chromatographic analyses of filtered extracts were performed on a silica column with a mobile phase of acetic acid in heptane. The method was capable of resolving the major thermally induced transformation products in tablet formulations. It was sensitive to approximately 0.1 mg of salicylic acid/tablet. Good agreement with the compendial method for free salicylic acid was obtained.

  7. A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Li, Zaijun; Wei, Qin; Yuan, Rui; Zhou, Xia; Liu, Huizhen; Shan, Haixia; Song, Qijun

    2007-01-15

    A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate abbreviated as [C(4)tmsim][PF(6)] was synthesized and developed as a novel medium for liquid/liquid extraction of inorganic mercury in this work. Under optimal condition, o-carboxyphenyldiazoamino-p-azobenzene abbreviated as CDAA reacted with inorganic mercury to form a neutral Hg-CDAA complex, the complex was rapidly extracted into ionic liquid phase. After back-extracting into aqueous phase with sulfide sodium solution, the mercury concentration was detected by cold vapor atomic absorption spectrometry. The extraction and back-extraction efficiencies were 99.9 and 100.1% for 5.0microg L(-1) standard mercury in 1000mL of water solution, respectively. The detection limit, calculated using three times the standard error of estimate of the calibration graph, is 0.01ng of mercury per milliliter water sample. The proposed method has been used to the determination of trace inorganic mercury in natural water with satisfactory results. Moreover, Zeta potential and surface tension of [C(4)tmsim][PF(6)] solution were measured and applied to explain the extraction mechanism of [C(4)tmsim][PF(6)] system.

  8. A determinação colorimétrica de vapôres de benzeno no ar The colorimetric determination of benzene vapors in air

    Directory of Open Access Journals (Sweden)

    Herbert M. A. Stettiner

    1970-06-01

    Full Text Available Estudou-se um método simples para a determinação de pequenas quantidades de vapôres de benzeno no ar, aplicável em presença de seus homólogos. A interferência dos homólogos é eliminada destruindo seus nitrocompostos segundo BAERNSTEIN¹ (1943 pela oxidação com ácido crômico. Êste procedimento é combinado com o de DOLIN2,3 (1943, 1947 que isola o m-dinitrobenzeno pela extração com éter etílico, usando o extrato etéreo para a revelação da côr vermelha e para a colorimetria.A simple method is developed for the determination of small amounts of benzene vapor in air in the presence of its homologues. The chromic acid method of BAERNSTEIN¹ (1943 for eliminating the interference of the homologues is combined with the procedure of DOLIN2,3 (1943, 1947 who makes the final colorimetric measurement after separating the colored matter by extraction with ethyl ether.

  9. Determining the number of isomers in X-, XY-, XYZ-, and XYZU-substituted D2 d allenes: Additive schemes for calculating enthalpies of vaporization

    Science.gov (United States)

    Nilov, D. Yu.; Smolyakov, V. M.

    2015-02-01

    Using Pólya's theorem, cycle indices are derived that identify the chiral and achiral substitution isomers of an allene (1,2-propadiene). Equations of symmetry that allow us to determine the number of isomers in a series and arrange the isomers according to families, depending on the number of substitution sites, are obtained. Eight- and nine-constant additive schemes based on the similarity between subgraphs in the molecular graphs (MGs) of a series of 120 molecules of X-, XY-, XYZ-, and XYZU-substituted allenes and the expansion of polygonal numbers (triangular, tetrahedral, and others) of a Pascal triangle are devised. Enthalpies of vaporization L NBP are calculated for 21 XY- and 120 XYZU-substituted allenes, respectively, not yet studied experimentally. It is shown that each coefficient of the scheme (the number of ways for superpositioning subgraphs with lengths i 1, i 2, ⋯ on molecular graphs of allene) is a result of partitioning triangular, tetrahedral, or four-dimensional tetrahedral numbers of a Pascal triangle.

  10. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    Science.gov (United States)

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.

  11. An analytical method for determination of mercury by cold vapor atomic absorption spectroscopy; Determinazione di mercurio. Metodo per spettrometria di assorbimento atomico a vapori freddi (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, L. [Rome Univ. La Sapienza, Rome (Italy); Mastroianni, D.; Capri, S.; Pettine, M. [CNR, Rome (Italy). Ist. di Ricerca sulle Acque; Spezia, S.; Bettinelli, M. [ENEL, Unified Modelling Language, Piacenza (Italy)

    1999-09-01

    An analytical procedure for the determination of total mercury in wastewaters and natural waters is described. Aqueous samples are fast digested with nitric acid by using the microwave-oven technique; the analysis of mercury is then performed by cold vapor atomic absorption spectrometry (CV-AAS) using two possible instrumental apparatus (batch system or flow injection). Sodium borohydride is used as the reducing agent for mercury in solution (Method A). The use of amalgamation traps on gold for the preconcentration of mercury lowers the detection limit of the analyte (Method B). [Italian] Viene descritta una procedura analitica per la determinazione del mercurio totale in acque di scarico e naturali. Il campione acquoso viene sottoposto a mineralizzazione con acido nitrico in forno a microonde e analizzato mediante spettroscopia di assorbimento atomico a vapori freddi (CV-AAS) in due possibili configurazioni strumentali (sistema batch oppure flow injection), utilizzando sodio boro idruro come agente riducente del mercurio (metodo A). L'impiego della trappola di oro per la preconcentrazione del mercurio mediante amalgama consente di determinare l'analita a livelli di pochi ng/L (metodo B).

  12. Determination of Stress Intensity Factors in Low Pressure Turbine Rotor Discs

    Directory of Open Access Journals (Sweden)

    Ivana Vasovic

    2014-01-01

    Full Text Available An attention in this paper is focused on the stress analysis and the determination of fracture mechanics parameters in low pressure (LP turbine rotor discs and on developing analytic expressions for stress intensity factors at the critical location of LP steam turbine disc. Critical locations such as keyway and dovetail area experienced stress concentration leading to crack initiation. Major concerns for the power industry are determining the critical locations with one side and fracture mechanics parameters with the other side. For determination of the critical locations in LP turbine rotor disc conventional finite elements are used here. For this initial crack length and during crack growth it is necessary to determine SIFs. In fatigue crack growth process it is necessary to have analytic formulas for the stress intensity factor. To determine analytic formula for stress intensity factor (SIF of cracked turbine rotor disc special singular finite elements are used. Using discrete values of SIFs which correspond to various crack lengths analytic formula of SIF in polynomial forms is derived here. For determination of SIF in this paper, combined J-integral approach and singular finite elements are used. The interaction of mechanical and thermal effects was correlated in terms of the fracture toughness.

  13. Pulse Pressure Is Useful for Determining the Choice of Antihypertensive Drugs in Postmenopausal Women.

    Science.gov (United States)

    Suzuki, Hiromichi

    2014-05-01

    To assess the efficacy of various classes of antihypertensive drugs in postmenopausal women with hypertension using pulse pressure (PP) as an index. Selected women were required to be naturally menopausal for at least 1 year but not more than 5 years past their menstrual period. Exclusion criteria were a history of preeclampsia or eclampsia, a severe illness such as myocardial infarction or stroke within 6 months, the use of estrogens or progestins within 3 months, proteinuric nephropathy, and surgically induced menopause. There were 114 women who participated in this study after having given informed consent. These women were diagnosed as having hypertension based on an office blood pressure >140/90 mm Hg as well as a self-measured blood pressure at home >130/85 mm Hg. If both levels of blood pressure were not fulfilled, the patients were excluded. All antihypertensive medications were withdrawn 6 weeks before the initiation of the study. The patients were randomly assigned in equal numbers to the following groups: (1) combination therapy with losartan (angiotensin receptor blocker) 50 mg daily + trichlormethiazide (diuretic) 2 mg twice a week, and (2) combination therapy with cilnidipine (calcium channel blocker) 5 mg + arotinolol (αβ-blocker) 10 mg daily. The patients were retrospectively divided into three groups according to their PP at the start of the study: Group I (n = 24), >65 mm Hg; Group II (n = 58), 65-45 mm Hg, and Group III (n = 32), arotinolol resulted in a greater reduction in the systolic blood pressure than the combination therapy with losartan + trichlormethiazide (from 169/88 ± 2/5 to 133/73 ± 2/5 mm Hg vs. from 169/88 ± 2/5 to 149/66 ± 2/5 mm Hg, p < 0.05). On the other hand, in Group III, losartan + trichlormethiazide decreased diastolic as well as systolic blood pressures (from 152/106 ± 2/2 to 123/78 ± 1/1 mm Hg vs. from 149/107 ± 2/2 to 129/84 ± 2/1 mm Hg, p < 0.05). In Group II, there were no differences between the two

  14. Vaporization behavior of non-stoichiometric refractory carbide materials and direct observations of the vapor phase using laser diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Wantuck, P.J.; Rehse, S.J.; Wallace, T.C. Sr.

    1993-09-01

    Transition metal and actinide carbides, such as ZrC or NbC and UC or ThC, exhibit a wide range of stoichiometry, and therefore vaporize incongruently. At long times, steady state vaporization can be achieved where relative concentrations of atomic species on solid surface equals that in the gas phase. The surface composition under these steady state conditions is termed the congruently vaporizing composition, (CVC). Modeling the vaporization or corrosion behavior of this dynamic process is complex and requires an understanding of how the surface composition changes with time and a knowledge of CVC, which is both temperature and atmosphere dependent. This paper describes vaporization and corrosion behavior of non-stoichiometric refractory carbide materials and, as an example, describes a thermokinetic model that characterizes the vaporization behavior of the complex carbide U{sub x}Zr{sub 1-x}C{sub y} in hydrogen at 2500 to 3200 K. This model demonstrates that steady state corrosion of U{sub x}Zr{sub l-x}C{sub y} is rate limited by gaseous transport of Zr where partial pressure of Zr is determined by CVC. This paper also briefly describes efforts to image and characterize the vapor phase above the surface of ZrC in static and flowing gas environments using planar laser induced fluorescence. We have developed the method for monitoring and controlling the corrosion behavior of nuclear fuels in nuclear thermal rockets. However, the techniques described can be used, to image boundary layers, and could be used verifying corrosion models.

  15. Conductimetry and impedance spectroscopy study of low pressure metal organic chemical vapor deposition TiN xO y films as a function of the growth temperature: a percolation approach

    Science.gov (United States)

    Fabreguette, F.; Maglione, M.; Imhoff, L.; Domenichini, B.; Marco de Lucas, M. C.; Sibillot, P.; Bourgeois, S.; Sacilotti, M.

    2001-05-01

    Titanium oxinitride thin films have been grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) using titanium isopropoxide, Ti(OCH(CH 3) 2) 4 (TIP) and NH 3 precursors in a growth temperature range from 450 to 750°C on sapphire substrates. The electrical behaviour of these films was studied between 400 and 173 K, revealing three different behaviours, ranking from a hopping conductivity (450-500°C) to a conducting one (700-750°C), with a dual behaviour for the intermediate growth temperatures. Moreover, at room temperature, both conductimetry and impedance spectroscopy highlighted a percolation behaviour, interpreted in terms of continuum percolation. The effective media theory equations led to the usual percolation parameters ( s, t, Φc) and the difference between the values thus obtained and the expected ones was explained in terms of anisotropic percolation occurring in the columnar film structure.

  16. Determination of occlusal vertical dimension by means of controlled pressure against tissues supporting a complete denture.

    Science.gov (United States)

    Munakata, Y; Kasai, S

    1990-03-01

    In order to establish the vertical dimension (VD) of a complete denture prosthesis, a new method of determining a comfortable mandibular position was tested using a recently designed hydraulic jack (hydraulic vertical displacement meter) in five edentulous patients. The device was designed so as to vary occlusal height by means of an extraoral jig connected to intra-oral hydraulic jacks, and to distribute the bite pressure applied against the denture-supporting tissue in approximately the same pattern as that produced by a denture with a VD preferred by the patient. The most comfortable mandibular position determined by this method coincided remarkably with the preferred VD of each patient in our study, indicating that the new device may be used to establish VD for complete denture construction.

  17. Determination of antioxidants in new and used lubricant oils by headspace-programmed temperature vaporization-gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nogal Sanchez, Miguel del; Perez Pavon, Jose Luis; Garcia Pinto, Carmelo; Moreno Cordero, Bernardo [Universidad de Salamanca, Departamento de Quimica Analitica, Nutricion y Bromatologia, Salamanca (Spain); Glanzer, Paul [University of Vienna, Department of Analytical Chemistry, Vienna (Austria)

    2010-12-15

    A sensitive method is presented to determine antioxidants (2-, 3-, and 4-tert-butylphenol, 2,6-di-tert-butylphenol, 3-tert-butyl-4-hydroxyanisol, 2,6-di-tert-butyl-4-methylphenol, 1-naphthol, and diphenylamine) in new and used lubricant oil samples. Research was carried out on a GC device equipped with a headspace sampler, a programmed temperature vaporizer, and an MS detector unit. The proposed method does not require sample treatment prior to analyses, hence eliminating possible errors occurring in this step. Sample preparation is reduced when placing the oil sample (2.0 g) in the vial and adding propyl acetate (20 {mu}L). Solvent vent injection mode permits a pre-concentration of the compounds of interest in the liner filled with Tenax-TA {sup registered}, while venting other species present in the headspace. Thereby, both the life of the liner and the capillary column is prolonged, and unnecessary contamination of the detector unit is avoided. Calibration was performed by adding different concentrations of analytes to a new oil which did not contain any of the studied compounds. Limits of detection as low as 0.57 {mu}g/L (2-tert-butylphenol) with a precision lower or equal to 5.3% were achieved. Prediction of the antioxidants in new oil samples of different viscosities (5W40, 10W40, and 15W40) was accomplished with the previous calibration, and the results were highly satisfactory. To determine antioxidants in used engine oils, standard addition method was used due to the matrix effect. (orig.)

  18. Determination of benzoylurea insecticides in food by pressurized liquid extraction and LC-MS.

    Science.gov (United States)

    Brutti, Monia; Blasco, Cristina; Picó, Yolanda

    2010-01-01

    A method based on pressurized liquid extraction and LC-MS/MS has been developed for determining nine benzoylureas (BUs) in fruit, vegetable, cereals, and animal products. Samples (5 g) were homogenized with diatomaceous earth and extracted in a 22 mL cell with 22 mL of ethyl acetate at 80 degrees C and 1500 psi. After solvent concentration and exchange to methanol, BUs were analyzed by LC-MS/MS using an IT mass analyzer, which achieved several transitions of precursor ions that increase selectivity providing identification. LOQs were between 0.002 and 0.01 mg/kg, which are equal or lower than maximum residue limits established by the Codex Alimentarius. Excellent linearity was achieved over a range of concentrations from 0.01 to 1 mg/kg with correlation coefficients 0.995-0.999 (n=7). Validation of the total method was performed by analyzing in quintuplicate seven different commodities (milk, eggs, meat, rice, lettuce, avocado, and lemon) at three concentration levels (0.01, 0.1, and 1 mg/kg). The recoveries ranged from 58 to 97% and the RSDs from 5 to 19% depending on the compound and the commodity. The combination of pressurized liquid extraction with LC-MS/MS provides a sensitive and selective method for the determination of BUs in food.

  19. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuebing; Chen, Ting; Qi, Xintong [Department of Geosciences, Stony Brook University, Stony Brook, New York 11794 (United States); Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng [Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794 (United States); Kung, Jennifer [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Tony; Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)

    2015-08-14

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.

  20. Simultaneous determination of gasoline oxygenates and benzene, toluene, ethylbenzene and xylene in water samples using headspace-programmed temperature vaporization-fast gas chromatography-mass spectrometry.

    Science.gov (United States)

    Pérez Pavón, José Luis; del Nogal Sánchez, Miguel; Fernández Laespada, María Esther; Moreno Cordero, Bernardo

    2007-12-14

    A sensitive method is presented for the fast analysis of seven fuel oxygenates (methanol, ethanol, tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME) and diisopropyl ether (DIPE)) and benzene, toluene, ethylbenzene and p-xylene (BTEX) in water samples. The applicability of a headspace (HS) autosampler in combination with a GC device equipped with a programmable temperature vaporizer (PTV) and a MS detector is explored. The proposed method achieves a clear improvement in sensitivity with respect to conventional headspace methods due to the use of the PTV. Two different packed liners with materials of different trapping strengths (glass wool and Tenax-TA) were compared. The benefits of using Tenax-TA instead of glass wool as packed material for the measurement of the 11 compounds emerged as better signal-to-noise ratios and hence better detection limits. The proposed method is extremely sensitive. The limits of detection are of the order of ng/L for six of the compounds studied and of the order of microg/L for the rest, with the exception of the most polar and volatile compound: methanol. Precision (measured as the relative standard deviation for a level with an S/N ratio close to 3) was equal to or lower than 15% in all cases. The method was applied to the determination of the analytes in natural matrixes (tap, river and sea water) and the results obtained can be considered highly satisfactory. The methodology has much lower detection limits than the concentration limits proposed in drinking water by the US Environmental Protection Agency (EPA) and the European Union for compounds under regulation.

  1. A DC electrophoresis method for determining electrophoretic mobility through the pressure driven negation of electro osmosis

    Science.gov (United States)

    Karam, Pascal; Pennathur, Sumita

    2016-11-01

    Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.

  2. Determination of Ti+-flux and Ar+-flux of ionized physical vapor deposition of titanium from multiscale model calibration with test structures

    Science.gov (United States)

    Jacobs, W.; Kersch, A.; Ruf, A.; Urbansky, N.

    2003-07-01

    In this article we determine physical parameters characterizing the ionized physical vapor deposition of titanium in a Hollow Cathode Magnetron by comparing experimental results obtained from suitable submicron test structures with a multiscale model. The model includes the reactor scale, the plasma sheath and presheath scale, and the feature scale. The reactor scale model delivers the energy and angular distribution of the neutral sputtered particles from the reactor geometry and an energy dependent collision model. The sheath and presheath model calculates the energy and angular distribution of the ions from the reactor model and a subsequent scattering model describes collisions in the presence of magnetic fields. The levelset-based feature scale simulator propagates the front according to local growth velocities which are calculated from Monte Carlo particle flux and reaction kinetics (derived from molecular dynamics calculation). The calibration is performed in two steps with help from bottle-shaped test structures as well as technologically relevant structures. First, hi-fill and ultra-hi-fill magnetron sputter processes of titanium are investigated in order to verify the transport model for the neutral particles. Second, a Hollow Cathode Magnetron sputter process of titanium is analyzed in order to verify the transport model for postionized particles. This analysis is performed for a floating substrate process and a process with rf-driven substrate bias. The postionized flux fraction of titanium in this technology is not calculated from a plasma model but treated as a free parameter. The prediction of the model and the comparison with the experimental data allow us to determine this value as 0.7+/-0.1 under a standard condition. The ionized flux of argon relative to the ionized flux of titanium is determined as 2. The results show that the bottom and sidewall coverage of the process depends significantly on the angular dependence of the ionized component

  3. An automated flow calorimeter for the determination of liquid and vapor isobaric heat capacities: Test results for water and n -pentane

    Energy Technology Data Exchange (ETDEWEB)

    Sandarusi, J.A. (National Institute of Science and Technology, Thermophysics Division, Boulder, Colorado 80303 (United States)); Mulia, K.; Yesavage, V.F. (Colorado School of Mines, Chemical Engineering Department, Golden, Colorado 80401 (United States))

    1992-02-01

    An automated flow calorimeter has been developed for the measurement of highly accurate isobaric heat capacities and enthalpies of fluids at elevated temperatures and pressures. The instrument was successfully tested over the range 300--600 K and 0--12 MPa and is readily extensible to 700 K and 30 MPa. The flow calorimeter relied on an adiabatic design with a two-chambered cell design incorporating several concentric shells of active and passive shields designed to minimize heat losses, facilitate easy component replacement, and eliminate any external temperature regulation baths. A pair of miniature standard platinum resistance thermometers were built to determine the differential calorimeter temperatures. A precision metering pump eliminated the need for direct mass flow-rate determinations while a complete automation system supplied all of the required data acquisition, monitoring, and control (except for pressure) resources necessary to operate the calorimeter and make measurements from a single personal computer. Measurements of isobaric heat capacities were performed on water (liq.) and {ital n}-pentane (liq. and vap.) to test the new calorimeter. These experiments compared well with the published values, indicating an overall measurement precision of 0.1% and uncertainty in the range of 0.2%--0.3%. The total calorimeter heat leak was small affecting the experimental uncertainty as much as the combined mass flow-rate and calorimeter temperature difference errors.

  4. Processing of extraterrestrial materials by high temperature vacuum vaporization

    Science.gov (United States)

    Grimley, R. T.; Lipschutz, M. E.

    1983-01-01

    It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.

  5. Reverse phase high pressure liquid chromatographic determination of aflatoxins in foods.

    Science.gov (United States)

    Beebe, R M

    1978-11-01

    A method for determining aflatoxins by high pressure liquid chromatography (HPLC) with fluorescence detection after CB extraction and cleanup has been applied to various foods. Recoveries at 1--15 ppb levels from green coffee and peanut butter was 72--85 and 74--104%, respectively. Precision of the method has been tested for peanut butter. Other products to which the method has been successfully applied include tree nuts, seeds, grains, chocolate-covered peanut butter candy, and roasted, salted-in-shell peanuts. High levels of aflatoxins found in several samples of nuts by this method have been verified by the official thin layer chromatographic (TLC) method. The advantages of this HPLC method are speed, precision, sensitivity, selectivity, and immediate chemical confirmation of aflatoxins B1 and G1. None of the products analyzed required special cleanup procedures. Preparative-scale HPLC was used to isolate purified B1 for toxicity testing.

  6. A demonstration experiment for studying the properties of saturated vapor

    Science.gov (United States)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  7. Phase diagram of the selenium-sulfur system in the pressure range 1 × 10-5-1 × 10-1 MPa

    Science.gov (United States)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.; Ersaiynova, A. A.

    2016-11-01

    The partial pressures of the components in the saturated vapor of the Se-S system were determined and presented as the temperature-concentration dependences. Based on these data, the boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum (1350, 100, and 10 Pa) were calculated. A complete phase diagram was constructed, which included the vapor-liquid equilibrium fields at atmospheric and low pressures, whose boundaries allowed us to determine the behavior of sulfur and selenium during distillation separation.

  8. A methodological approach for determination of maximal inspiratory pressure in patients undergoing invasive mechanical ventilation.

    Science.gov (United States)

    Spadaro, S; Marangoni, E; Ragazzi, R; Mojoli, F; Verri, M; Longo, L; Astolfi, L; Volta, C A

    2015-01-01

    Maximal inspiratory pressure (MIP) can help to evaluate inspiratory muscle strength. However its determination in ventilated patients is cumbersome and needs special equipment. We hypothesized that MIP could be obtained by using the expiratory hold knob of the ventilator. The aim of this study was to verify whether: 1) the end expiratory occlusion technique can be used for MIP determination; and 2) if this technique provides different results compared to those obtained by the traditional method of MIP calculation. We studied 23 consecutive patients undergoing mechanical ventilation for acute respiratory failure. The MIP was determined by two different methods, both based on occluding the airway for 20 seconds. This occlusion was obtained either by pressing the expiratory hold knob of the ventilator; or by detaching the patient from the ventilator circuit and using a noiseless pneumatic shutter placed on the inspiratory line of a two-way valve that allows expiration but prevents inspiration. The average values of MIP obtained by using either the hold knob of the ventilator or the noiseless pneumatic shutter were -46±14 cmH2O and -56±13 cmH2O, respectively. The linear regression analysis showed a significant correlation between MIPVent and MIPOcc (r2=0.95), although the Bland- Altman analysis revealed that they are not clinically comparable. MIP can be easily determined at the bedside by pressing the expiratory hold knob of ventilator. However, MIPVent and MIPOcc are different in terms of absolute value probably because they were determined at diverse lung volume.

  9. Vapor-Phase Stoichiometry and Heat Treatment of CdTe Starting Material for Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Liu, Hao-Chieh; Fang, Rei; Brebrick, R. F.

    1998-01-01

    Six batches of CdTe, having total amounts of material from 99 to 203 g and gross mole fraction of Te, X(sub Te), 0.499954-0.500138, were synthesized from pure Cd and Te elements. The vapor-phase stoichiometry of the assynthesized CdTe batches was determined from the partial pressure of Te2, P(sub Te2) using an optical absorption technique. The measured vapor compositions at 870 C were Te-rich for all of the batches with partial pressure ratios of Cd to Te2, P(sub Cd)/P(sub Te2), ranging from 0.00742 to 1.92. After the heat treatment of baking under dynamic vacuum at 870 C for 8 min, the vapor-phase compositions moved toward that of the congruent sublimation, i.e. P(sub Cd)/P(sub Te2) = 2.0, with the measured P(sub Cd)/P(sub Te2) varying from 1.84 to 3.47. The partial pressure measurements on one of the heat-treated samples also showed that the sample remained close to the congruent sublimation condition over the temperature range 800-880 C.

  10. Supercritical microgravity droplet vaporization

    Science.gov (United States)

    Hartfield, J.; Curtis, E.; Farrell, P.

    1990-01-01

    Supercritical droplet vaporization is an important issue in many combustion systems, such as liquid fueled rockets and compression-ignition (diesel) engines. In order to study the details of droplet behavior at these conditions, an experiment was designed to provide a gas phase environment which is above the critical pressure and critical temperature of a single liquid droplet. In general, the droplet begins as a cold droplet in the hot, high pressure environment. In order to eliminate disruptions to the droplet by convective motion in the gas, forced and natural convection gas motion are required to be small. Implementation of this requirement for forced convection is straightforward, while reduction of natural convection is achieved by reduction in the g-level for the experiment. The resulting experiment consists of a rig which can stably position a droplet without restraint in a high-pressure, high temperature gas field in microgravity. The microgravity field is currently achieved by dropping the device in the NASA Lewis 2.2 second drop tower. The performance of the experimental device and results to date are presented.

  11. Vapor-barrier Vacuum Isolation System

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  12. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury

    NARCIS (Netherlands)

    Aries, M.J.H.; Czosnyka, Marek; Budohoski, Karol P.; Steiner, Luzius A.; Lavinio, Andrea; Kolias, Angelos G.; Hutchinson, Peter J.; Brady, Ken M.; Menon, David K.; Pickard, John D.; Smielewski, Peter

    Objectives: We have sought to develop an automated methodology for the continuous updating of optimal cerebral perfusion pressure (CPPopt) for patients after severe traumatic head injury, using continuous monitoring of cerebrovascular pressure reactivity. We then validated the CPPopt algorithm by

  13. Domestic Preparedness Program: Sarin Vapor Challenge and Corn Oil Protection Factor (PF) Testing of Commercial Air-Purifying Negative Pressure Respirators

    National Research Council Canada - National Science Library

    Campbell, Lee

    2003-01-01

    ...) corn-oil protection factor determinations of NPR systems using human subjects. Results indicate that cartridges provide adequate resistance to GB breakthrough against high-concentration challenges...

  14. A Method to Determine Diastolic Blood Pressure Based on Pressure Pulse Propagation in the Electronic Palpation Method

    National Research Council Canada - National Science Library

    Sorvoja, H

    2001-01-01

    .... Then it discusses two sets of measurements which were carried out to determine the accuracy of the method with cardiac operated patients and healthy young volunteers, The thus obtained accuracies were +0.7 mmHg...

  15. Five-Minute Awake Snoring Test for Determining CPAP Pressures (Five-Minute CPAP Test: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Macario Camacho

    2016-01-01

    Full Text Available Objective. To develop a quick, simple, bedside test for determining continuous positive airway pressures (CPAP for obstructive sleep apnea (OSA patients. Study Design. Prospective case series at a tertiary medical center. Methods. The Five-Minute Awake Snoring Test for Determining CPAP (Five-Minute CPAP Test was developed and tested. Patients wear a soft-gel nasal triangle mask while holding a tongue depressor with the wide section (1.75 cm between the teeth. Fixed pressure nasal CPAP is applied while the patient simulates snoring at 4 centimeters of water pressure. The pressure is incrementally titrated up and then down to determine the lowest pressure at which the patient cannot snore (Quiet Pressure. Results. Overall, thirty-eight patients participated. All could simulate snoring. Correlation coefficients were statistically significant between Quiet Pressures and body mass index (rs=0.60 [strong positive relationship], p=0.0088, apnea-hypopnea index (rs=0.49 [moderate positive relationship], p=0.039, lowest oxygen saturation (rs=-0.47 [moderate negative relationship], p=0.048, and oxygen desaturation index (rs=0.62 [strong positive relationship], p=0.0057. Conclusion. This pilot study introduces a new concept, which is the final product of over one year of exploration, development, and testing. Five-Minute CPAP Test is a quick, inexpensive, and safe bedside test based on supine awake simulated snoring with nasal CPAP.

  16. Determinants of exercise blood pressure response in normotensive and hypertensive women: role of cardiorespiratory fitness.

    Science.gov (United States)

    Kokkinos, Peter F; Andreas, Pittaras E; Coutoulakis, Emmanuel; Colleran, John A; Narayan, Puneet; Dotson, Charles O; Choucair, Wassim; Farmer, Colleen; Fernhall, Bo

    2002-01-01

    Exaggerated blood pressure (BP) response during physical exertion is associated with increased risk for cardiovascular events. Furthermore, it may be the predisposing factor for myocardial infarction triggered by physical exertion. The authors have shown that systolic BP achieved after 6 minutes of exercise is the strongest predictor of left ventricular hypertrophy. Furthermore, a 37 mm Hg increase in systolic BP above resting BP at 6 minutes of exercise was the threshold for left ventricular hypertrophy. The purpose of this study was to determine predictors of exercise BP response in normotensive and hypertensive women. An exercise tolerance test (Bruce) was performed by 1411 normotensive (resting BP or = 140/90 mm Hg) women. These women were faculty, students, and staff at the University of Maryland, College Park, Maryland, and the George Washington University Medical Center, as well as patients undergoing a routine exercise tolerance test at West Coast Cardiology, Pinellas Park, Florida. Two fitness categories (low-fit and high-fit) were established on the basis of treadmill time to exhaustion adjusted for age. Significant associations were observed among the 6-minute exercise BP and age, body mass index, resting systolic and diastolic BP, heart rate, and exercise time to exhaustion. In a stepwise multiple-regression analysis, the determinants of BP after 6 minutes of exercise were resting systolic BP and treadmill time to exhaustion (R2 = 0.36) for normotensive women and treadmill time to exhaustion and resting systolic BP (R2 = 0.30) for hypertensive women. When fitness categories were contrasted, low-fit women in both the normotensive and hypertensive categories had higher BP and rate-pressure product after 6 minutes of exercise than the high-fit women (P fitness are determinants of a submaximal exercise BP response for both hypertensive and normotensive women. Low cardiorespiratory fitness is associated with a higher BP response during submaximal exercise

  17. Impact vaporization: Late time phenomena from experiments

    Science.gov (United States)

    Schultz, P. H.; Gault, D. E.

    1987-01-01

    While simple airflow produced by the outward movement of the ejecta curtain can be scaled to large dimensions, the interaction between an impact-vaporized component and the ejecta curtain is more complicated. The goal of these experiments was to examine such interaction in a real system involving crater growth, ejection of material, two phased mixtures of gas and dust, and strong pressure gradients. The results will be complemented by theoretical studies at laboratory scales in order to separate the various parameters for planetary scale processes. These experiments prompt, however, the following conclusions that may have relevance at broader scales. First, under near vacuum or low atmospheric pressures, an expanding vapor cloud scours the surrounding surface in advance of arriving ejecta. Second, the effect of early-time vaporization is relatively unimportant at late-times. Third, the overpressure created within the crater cavity by significant vaporization results in increased cratering efficiency and larger aspect ratios.

  18. Determinants of prevalence, awareness, treatment and control of high blood pressure

    Directory of Open Access Journals (Sweden)

    Kaan Sözmen

    2015-06-01

    Full Text Available Objective: The aim of the study was to evaluate prevalence, awareness, treatment and control rates of hypertension (HT and associated factors among individuals over 30 years old living in Balcova District of Izmir. Methods: Data from 12,742 individuals who participated the baseline study of Heart of Balcova Project during 2007-2009 was evaluated. HT was defined as mean blood pressure ≥140/90mmHg or being on antihypertensive medication. Multivariate logistic regression analysis was applied to assess the determinants of prevalence, awareness, treatment and control of high blood pressure. Results: The overall prevalence of HT was 39,5% in male, 41.6% in female and 40,9% in total. Among participants with HT, 73.3% were aware of it. Among participants aware of HT 90.9% were treated, 49.6% of those treated were controlled (BP <140/90 mmHg. HT presence was associated with increasing age, female gender, poor self assessed health, physical inactivity, high waist circumference, diagnosis of coronary heart disease(CHD, diabetes or hyperlipidemia, family history of CHD. Awareness of HT was positively associated with increasing age, male gender, CHD, stroke, DM, hyperlipidemia, and history of CHD. Awareness was lower among individuals who added salt without tasting the meal. HT control was significantly higher among men while it decreased with increasing age. Conclusion: In this study awareness, treatment and control rates for HT were higher compared to other studies. While female gender, presence of chronic diseases and family history of CHD increased awareness and control, male gender and obesity had negative impact on control rates. The reasons behind low control rates despite high awareness should be explored in further studies.

  19. Recommended reference materials for realization of physicochemical properties pressure-volume-temperature relationships

    CERN Document Server

    Herington, E F G

    1977-01-01

    Recommended Reference Materials for Realization of Physicochemical Properties presents recommendations of reference materials for use in measurements involving physicochemical properties, namely, vapor pressure; liquid-vapor critical temperature and critical pressure; orthobaric volumes of liquid and vapor; pressure-volume-temperature properties of the unsaturated vapor or gas; and pressure-volume-temperature properties of the compressed liquid. This monograph focuses on reference materials for vapor pressures at temperatures up to 770 K, as well as critical temperatures and critical pressures

  20. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  1. Oxidative vaporization kinetics of Cr2O3 in oxygen from 1000 to 1300 C

    Science.gov (United States)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1974-01-01

    Rates of oxidative vaporization of Cr2O3 on preoxidized resistively heated chromium were determined in flowing oxygen at a pressure of 0.115 Torr for temperatures from 1000 to 1300 C. Reaction controlled rates were obtained from experimental rates by a gold calibration technique, and these rates were shown to agree with those predicted by thermochemical analysis. The activation energy obtained for the oxidative vaporization reaction corresponded numerically with the thermochemical enthalpy of the reaction. A theoretical equation is given for calculating the rate from thermodynamic data using boundary-layer theory.

  2. Isothermal Vapor-Liquid Equilibrium of Methanol + Glycerol and 1-Propanol + Glycerol

    Directory of Open Access Journals (Sweden)

    Annas Wiguno

    2016-03-01

    Full Text Available Isothermal vapor-liquid equilibrium (VLE data for two binary mixtures of methanol + glycerol and 1-propanol + glycerol were determined at the temperature range from (313.15 to 363.15 K using a simple quasi-static ebulliometer. All systems showed that the vapor pressures increased with increasing alcohols (methanol or 1-propanol concentrations at corresponding system. The Wilson, Non-Random Two-Liquid (NRTL and Universal Quasi-Chemical (UNIQUAC activity coefficient models were used to correlate the experimental data. Both systems showed slightly deviations from the ideal liquid phase behavior.

  3. Vapor degreasing system

    Science.gov (United States)

    du Fresne, Eugene R. (Inventor)

    1984-01-01

    A vapor degreasing method and apparatus wherein a second cooling coil is used to prevent escape of solvent or solvent vapor from a degreaser. Gaseous refrigerant from the second coil can be released to the freeboard space above the solvent vapor zone to provide a barrier layer.

  4. [Study on the accuracy of pressure determined by raman spectra of quartz].

    Science.gov (United States)

    Guo, Ning; Zheng, Hai-fei

    2010-08-01

    Quartz as a pressure gauge and its accuracy were studied by Raman spectroscopy at 25 degrees C and ambient pressure. The result shows that even at same temperature and pressure, the Si-O vibrational mode for different grains of quartz varies between 463.59 and 464.65 cm(-1), with (+/- 0.1- +/- 0.3) cm(-1) error. The maximum difference of various grains of quartz is up to 1.06 cm(-1), much higher than the measurement error. The authors believe that the variety is resulted from the stress in the internal grains of quartz, which formed during crushing quartz into small grain. Therefore, Raman spectrum for quartz has to be firstly measured as a reference of zero pressure at ambient pressure and temperature in the experimental study by using diamond anvil cell. In addition, wavenumber drift of the spectrometer and the unstable temperature will also cause remarkable error for measuring pressure.

  5. A direct method for determining complete positive and negative capillary pressure curves for reservoir rock using the centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Spinler, E.A.; Baldwin, B.A. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1997-08-01

    A method is being developed for direct experimental determination of capillary pressure curves from saturation distributions produced during centrifuging fluids in a rock plug. A free water level is positioned along the length of the plugs to enable simultaneous determination of both positive and negative capillary pressures. Octadecane as the oil phase is solidified by temperature reduction while centrifuging to prevent fluid redistribution upon removal from the centrifuge. The water saturation is then measured via magnetic resonance imaging. The saturation profile within the plug and the calculation of pressures for each point of the saturation profile allows for a complete capillary pressure curve to be determined from one experiment. Centrifuging under oil with a free water level into a 100 percent water saturated plug results in the development of a primary drainage capillary pressure curve. Centrifuging similarly at an initial water saturation in the plug results in the development of an imbibition capillary pressure curve. Examples of these measurements are presented for Berea sandstone and chalk rocks.

  6. Water vapor adsorption on goethite.

    Science.gov (United States)

    Song, Xiaowei; Boily, Jean-François

    2013-07-02

    Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.

  7. Sensitive determination of Hg together with Mn, Fe, Cu by combined photochemical vapor generation and pneumatic nebulization in the programmable temperature spray chamber and inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Giersz, Jacek; Bartosiak, Magdalena; Jankowski, Krzysztof

    2017-05-15

    Continuous photo-induced generation of mercury cold vapor has been successfully coupled with conventional pneumatic nebulization in programmable temperature spray chamber (PCVG-PN-PTSC) allowing fast, sensitive and easy multi-element analysis. The applied technique enabled simultaneous determination of non-volatile forming elements (Fe, Cu, Mn) and volatile Hg, while 15%v/v formic acid is present in the sample. PTSC elevated temperature (40°C) causes partial conversion of sample matrix into vapor form, thus improving plasma robustness. The efficiency of Hg vapor generation and its transport to the plasma is close to 100%. Moreover, spray chamber temperature stabilization improved the precision of the measurements (Hg signal RSD below 0.5%). The achieved limit of detection for Hg (90pgmL-1) at 194.23nm with no monochromator purge is better by almost two orders of magnitude than that obtained by conventional PN-ICP-OES. On the other hand, LODs for non-vapor forming elements are comparable to those obtained with pneumatic nebulization. The linear dynamic ranges for all examined elements are at least three orders of magnitude up to 1000ngmL-1. None mutual interference between examined analytes (Hg, Fe, Cu, Mn) has been observed. The method was validated by the analysis of two CRM materials of different matrix composition (waste water ERM CA713 and estuarine sediment ERM CC580) giving satisfactory results. As low as 2 ppb of Hg can he directly determined in waste water. The proposed procedure uses mild reagents and allows for fast multi-element analysis, and matches green chemistry requirements. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Determinants of racial/ethnic differences in blood pressure management among hypertensive patients

    Directory of Open Access Journals (Sweden)

    Shaykevich Shimon

    2005-06-01

    Full Text Available Abstract Background Prior literature has shown that racial/ethnic minorities with hypertension may receive less aggressive treatment for their high blood pressure. However, to date there are few data available regarding the confounders of racial/ethnic disparities in the intensity of hypertension treatment. Methods We reviewed the medical records of 1,205 patients who had a minimum of two hypertension-related outpatient visits to 12 general internal medicine clinics during 7/1/01-6/30/02. Using logistic regression, we determined the odds of having therapy intensified by patient race/ethnicity after adjustment for clinical characteristics. Results Blacks (81.9% and Whites (80.3% were more likely than Latinos (71.5% to have therapy intensified (P = 0.03. After adjustment for racial differences in the number of outpatient visits and presence of diabetes, there were no racial differences in rates of intensification. Conclusion We found that racial/ethnic differences in therapy intensification were largely accounted for by differences in frequency of clinic visits and in the prevalence of diabetes. Given the higher rates of diabetes and hypertension related mortality among Hispanics in the U.S., future interventions to reduce disparities in cardiovascular outcomes should increase physician awareness of the need to intensify drug therapy more agressively in patients without waiting for multiple clinic visits, and should remind providers to treat hypertension more aggressively among diabetic patients.

  9. Determination of Tear Production and Intraocular Pressure With Rebound Tonometry in Wild Humboldt Penguins ( Spheniscus humboldti ).

    Science.gov (United States)

    Sheldon, Julie D; Adkesson, Michael J; Allender, Matthew C; Jankowski, Gwen; Langan, Jennifer; Cardeña, Marco; Cárdenas-Alayza, Susana

    2017-03-01

    Tear production and intraocular pressures (IOPs) were determined in 38 and 102 wild Humboldt penguins (Spheniscus humboldti), respectively, from the Punta San Juan Marine Protected Area in Ica, Peru. Tear production was measured by Schirmer tear test, and IOP was measured with a TonoVet rebound tonometer. Adult (n = 90) and chick (n = 12) penguins were sampled from 2 different beaches (north and south facing) during 2 sampling years (2010 and 2011). Results showed a mean ± SD (range) of 9 ± 4 (2-20) mm/min for tear production and 28 ± 9 (3-49) mm Hg for IOP. Tear production in penguins differed between beach and sex, whereas IOP differed between age, year, and beach. The IOPs were negatively correlated with packed cell volume. Tear production and IOP values had greater variation in this population than it has in other avian species. Previous investigations of IOP and tear production in Spheniscus species were conducted with birds housed under professional care in artificial marine and freshwater environments. This is the first study, to our knowledge, investigating tear production and IOP in wild penguins and establishes valuable reference intervals for this species.

  10. Bulk Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua

    1997-01-01

    The mechanism of physical vapor transport of II-VI semiconducting compounds was studied both theoretically, using a one-dimensional diffusion model, as well as experimentally. It was found that the vapor phase stoichiometry is critical in determining the vapor transport rate. The experimental heat treatment methods to control the vapor composition over the starting materials were investigated and the effectiveness of the heat treatments was confirmed by partial pressure measurements using an optical absorption technique. The effect of residual (foreign) gas on the transport rate was also studies theoretically by the diffusion model and confirmed experimentally by the measurements of total pressure and compositions of the residual gas. An in-situ dynamic technique for the transport rate measurements and a further extension of the technique that simultaneously measured the partial pressures and transport rates were performed and, for the first time, the experimentally determined mass fluxes were compared with those calculated, without any adjustable parameters, from the diffusion model. Using the information obtained from the experimental transport rate measurements as guideline high quality bulk crystal of wide band gap II-VI semiconductor were grown from the source materials which undergone the same heat treatment methods. The grown crystals were then extensively characterized with emphasis on the analysis of the crystalline structural defects.

  11. Isobaric low-pressure vapor-liquid equilibrium data of the system monochloroacetic acid+dichloroacetic acid+diethylene glycol dipentyl ether and the constituent binary systems

    NARCIS (Netherlands)

    Jongmans, Mark; Londono, A.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    In this study, binary and ternary VLE data have been determined at 5, 7.5, and 10 kPa for the system monochloracetic acid (MCA) + dichloroacetic acid (DCA) + diethylene glycol dipentyl ether (DGDP). The extractant DGDP enhances the relative volatility of the MCA/DCA system from 1.2 without

  12. Organo-Chlorinated Thin Films Deposited by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition for Adhesion Enhancement between Rubber and Zinc-Plated Steel Monofilaments.

    Science.gov (United States)

    Vandenabeele, Cédric; Bulou, Simon; Maurau, Rémy; Siffer, Frederic; Belmonte, Thierry; Choquet, Patrick

    2015-07-08

    A continuous-flow plasma process working at atmospheric pressure is developed to enhance the adhesion between a rubber compound and a zinc-plated steel monofilament, with the long-term objective to find a potential alternative to the electrolytic brass plating process, which is currently used in tire industry. For this purpose, a highly efficient tubular dielectric barrier discharge reactor is built to allow the continuous treatment of "endless" cylindrical substrates. The best treatment conditions found regarding adhesion are Ar/O2 plasma pretreatment, followed by the deposition from dichloromethane of a 75 nm-thick organo-chlorinated plasma polymerized thin film. Ar/O2 pretreatment allows the removal of organic residues, coming from drawing lubricants, and induces external growth of zinc oxide. The plasma layer has to be preferably deposited at low power to conserve sufficient hydrocarbon moieties. Surface analyses reveal the complex chemical mechanism behind the establishment of strong adhesion levels, more than five times higher after the plasma treatment. During the vulcanization step, superficial ZnO reacts with the chlorinated species of the thin film and is converted into porous and granular bump-shaped ZnwOxHyClz nanostructures. Together, rubber additives diffuse through the plasma layer and lead to the formation of zinc sulfide on the substrate surface. Hence, two distinct interfaces, rubber/thin film and thin film/substrate, are established. On the basis of these observations, hypotheses explaining the high bonding strength results are formulated.

  13. Shoot water relations of mature black spruce families displaying a genotype × environment interaction in growth rate. III. Diurnal patterns as influenced by vapor pressure deficit and internal water status

    Science.gov (United States)

    John E. Major; Kurt H. Johnsen

    2001-01-01

    Pressure­volume curves were constructed and shoot water potentials measured for +20-year-old black spruce (Picea mariana (Mill.) BSP) trees from four full-sib families growing on a moist site and a dry site at the Petawawa Research Forest, Ontario, to determine whether differences in diurnal water relations traits were related to productivity. To...

  14. Determination of instantaneous pressure in an axisymmetric base flow using time-resolved tomographic PIV

    NARCIS (Netherlands)

    Blinde, P.L.; Gentile, V.; Van Oudheusden, B.W.; Schrijer, F.F.J.

    2015-01-01

    Quantification of mean and fluctuating surface loads is critical for the efficient design of aerospace structures. To measure surface pressure in experiments, wind tunnel models are typically equipped with pressure transducers, which offer high sampling rates and high sensitivity. In order to have a

  15. Combinatorial atmospheric pressure chemical vapor deposition of graded TiO₂-VO₂ mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings.

    Science.gov (United States)

    Wilkinson, Mia; Kafizas, Andreas; Bawaked, Salem M; Obaid, Abdullah Y; Al-Thabaiti, Shaeel A; Basahel, Sulaiman N; Carmalt, Claire J; Parkin, Ivan P

    2013-06-10

    A combinatorial film with a phase gradient from V:TiO₂ (V: Ti ≥ 0.08), through a range of TiO₂-VO₂ composites, to a vanadium-rich composite (V: Ti = 1.81) was grown by combinatorial atmospheric pressure chemical vapor deposition (cAPCVD). The film was grown from the reaction of TiCl₄, VCl₄, ethyl acetate (EtAc), and H₂O at 550 °C on glass. The gradient in gas mixtures across the reactor induced compositional film growth, producing a single film with numerous phases and compositions at different positions. Seventeen unique positions distributed evenly along a central horizontal strip were investigated. The physical properties were characterized by wavelength dispersive X-ray (WDX) analysis, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and UV-visible spectroscopy. The functional properties examined included the degree of photoinduced hydrophilicity (PIH), UVC-photocatalysis, and thermochromism. Superhydrophilic contact angles could be achieved at all positions, even within a highly VO₂-rich composite (V: Ti = 1.81). A maximum level of UVC photocatalysis was observed at a position bordering the solubility limit of V:TiO₂ (V: Ti ≈ 0.21) and fragmentation into a mixed-phase composite. Within the mixed-phase TiO₂: VO₂ composition region (V: Ti = 1.09 to 1.81) a decrease in the semiconductor-to-metal transition temperature of VO₂ from 68 to 51 °C was observed.

  16. Improving Liquid Entry Pressure of Polyvinylidene Fluoride (PVDF Membranes by Exploiting the Role of Fabrication Parameters in Vapor-Induced Phase Separation VIPS and Non-Solvent-Induced Phase Separation (NIPS Processes

    Directory of Open Access Journals (Sweden)

    Faisal Abdulla AlMarzooqi

    2017-02-01

    Full Text Available Polyvinylidene fluoride (PVDF is a popular polymer material for making membranes for several applications, including membrane distillation (MD, via the phase inversion process. Non-solvent-induced phase separation (NIPS and vapor-induced phase separation (VIPS are applied to achieve a porous PVDF membrane with low mass-transfer resistance and high contact angle (hydrophobicity. In this work, firstly, the impacts of several preparation parameters on membrane properties using VIPS and NIPS were studied. Then, the performance of the selected membrane was assessed in a lab-scale direct-contact MD (DCMD unit. The parametric study shows that decreasing PVDF concentration while increasing both relative humidity (RH and exposure time increased the contact angle and bubble-point pore size (BP. Those trends were investigated further by varying the casting thickness. At higher casting thicknesses and longer exposure time (up to 7.5 min, contact angle (CA increased but BP significantly decreased. The latter showed a dominant trend leading to liquid entry pressure (LEP increase with thickness.

  17. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.

    2017-02-17

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  18. Modelling and simulation of the steam line, the high and low pressure turbines and the pressure regulator for the SUN-RAH nucleo electric university simulator; Modelado y simulacion de la linea de vapor, las turbinas de alta y de baja presion y el regulador de presion para el simulador universitario de nucleo electricas SUN RAH

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos, UNAM (Mexico)]. e-mail: andyskamx@yahoo.com.mx

    2003-07-01

    In the following article the development of a simulator that allows to represent the dynamics of the following systems: steam line, nozzle, vapor separator, reheater, high pressure turbine, low pressure turbine, power generator and the pressure regulator of a nucleo electric power station. We start from the supposition that this plant will be modeled from a nuclear reactor type BWR (Boiling Water Reactor), using models of reduced order that represent the more important dynamic variables of the physical processes that happen along the steam line until the one generator. To be able to carry out the simulation in real time the Mat lab mathematical modeling software is used, as well as the specific simulation tool Simulink. It is necessary to point out that the platform on which the one is executed the simulator is the Windows operating system, to allow the intuitive use that only this operating system offers. The above-mentioned obeys to that the objective of the simulator it is to help the user to understand some of the dynamic phenomena that are present in the systems of a nuclear plant, and to provide a tool of analysis and measurement of variables to predict the desirable behavior of the same ones. The model of a pressure controller for the steam lines, the high pressure turbine and the low pressure turbine is also presented that it will be the one in charge of regulating the demand of the system according to the characteristics and critic restrictions of safety and control, assigned according to those wanted parameters of performance of this system inside the nucleo electric plant. This simulator is totally well defined and it is part of the University student nucleo electric simulator with Boiling Water Reactor (SUN-RAH), an integral project and of greater capacity. (Author)

  19. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  20. Prevalence and Determinants of Hypertension and High Normal Blood Pressure Among Young Adult Saudi Females: Insights Into Preventive Strategies.

    Science.gov (United States)

    Al-Mohaissen, Maha A; Al-Obaid, Qumasha Y; AlGhamdi, Wafa A; Al-Alyani, Haneen S; Dahman, Sheima M; Al-Wahhabi, Nora A; Al-Awaji, Noura M; Lee, Terry

    This study aimed to determine the prevalence of hypertension and high normal blood pressure and their risk factors among young adult Saudi females. A prospective cross-sectional study was conducted in a women's university. A questionnaire evaluated the subjects' demographic data and risk factors for hypertension and the blood pressure, height, and weight were recorded. In all, 4.1% of the participants were hypertensive and 6.2% had high normal blood pressure. Significant predictors of hypertension/high normal blood pressure were increased body mass index, increased heart rate, walking fewer days per week, and dietary factors. Attention to these risk factors through educational programs is warranted to reduce disease burden in the community.

  1. Isomekes: A fundamental tool to determine the formation pressure for diamond-inclusion pairs

    Science.gov (United States)

    Alvaro, Matteo; Angel, Ross; Mazzucchelli, Mattia; Nestola, Fabrizio; Domeneghetti, Chiara

    2014-05-01

    Because diamond is almost chemically pure carbon and extremely chemically inert, the structure and chemistry of diamond reveals very little about its conditions of formation. Much of what is believed about the genesis and distribution of diamond in the Earth's mantle has therefore been deduced indirectly from the characterisation of its mineral inclusions. The possible depths of entrapment of an inclusion within a host phase (and hence the depth of growth of the host diamond) can be determined if (1) the final pressure of the inclusion can be measured, (2) the Equations of State (EoS) of the host and inclusion phases are known, and (3) the elastic interaction between the host and inclusion can be calculated without gross assumptions. Given knowledge of all three, an isomeke line in P-T space (from the Greek "equal" and "length", Adams et al. 1975) can be calculated. The isomeke defines the conditions at which the host and inclusion would have had the same P, T and volume, and thus represents possible entrapment conditions. The recent application (Nestola et al. 2011; Howell et al. 2012) of in-situ diffraction techniques to the measurement of entrapped inclusions provides accurate final inclusion pressures. We have reformulated the elasticity problem so that, unlike previous work, these calculations can be performed with any form of equation of state and thermal expansion, and are not restricted to linear elasticity or just invertible EoS. This alone has significant advantages in the precision of the calculated depths of formation. Numerical calculations have been performed with a new module of EoS routines (Angel et al. 2014) that has been added to the publicly-available CrysFML library. The question remains as to what uncertainties in calculated depths of formation arise from uncertainties in experimentally-determined EoS. We will present two geologically-relevant examples, for olivine and garnet in diamond. Our calculations show that there is still a clear need

  2. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry.

    Science.gov (United States)

    Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A

    2017-10-20

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.

  3. Novel, single-beat approach for determining both end-systolic pressure-dimension relationship and preload recruitable stroke work.

    Science.gov (United States)

    Inuzuka, Ryo; Kass, David A; Senzaki, Hideaki

    2016-01-01

    The end-systolic pressure-dimension relationship (ESPDR) and the preload recruitable stroke work (PRSW) relationship are load-insensitive measures of contractility, but their clinical application has been limited by the need to record multiple beats over a wide volume range. In this study, we therefore sought to validate a new method to concomitantly determine the ESPDR and the PRSW relationship from a single beat. Pressure-dimension loops were recorded in 14 conscious dogs under various haemodynamic and pathological conditions. Multiple-beat PRSW relationship was determined for its slope (Mw) and for a dimension-axis intercept (Dw). The ESPDR represented by the formula [Formula: see text], was estimated from a steady-state, single-beat late-systolic pressure-dimension relationship. The single-beat Mw was determined as an end-systolic pressure when the end-systolic dimension was equal to Dw. A strong correlation was observed between multiple-beat and single-beat ESPDRs (zero-stress dimension; r=0.98, pdimension is equal to Dw. By using the non-linear ESPDR, accurate single-beat estimation of the ESPDR and Mw is possible even without information on wall thickness. These results should enhance the applicability of pressure-volume framework to clinical medicine.

  4. Dominance of the forward compression wave in determining pulsatile components of blood pressure: similarities between inotropic stimulation and essential hypertension.

    Science.gov (United States)

    Fok, Henry; Guilcher, Antoine; Brett, Sally; Jiang, Benyu; Li, Ye; Epstein, Sally; Alastruey, Jordi; Clapp, Brian; Chowienczyk, Phil

    2014-11-01

    Pulsatile components of blood pressure may arise from forward (ventricular generated) or backward wave travel in the arterial tree. The objective of this study was to determine the relative contributions of forward and backward waves to pulsatility. We used wave intensity and wave separation analysis to determine pulsatile components of blood pressure during inotropic and vasopressor stimulation by dobutamine and norepinephrine in normotensive subjects and compared pulse pressure components in hypertensive (mean±SD, 48.8±11.3 years; 165±26.6/99±14.2 mm Hg) and normotensive subjects (52.2±12.6 years; 120±14.2/71±8.2 mm Hg). Dobutamine (7.5 μg/kg per minute) increased the forward compression wave generated by the ventricle and increased pulse pressure from 36.8±3.7 to 59.0±3.4 mm Hg (mean±SE) but had no significant effect on mean arterial pressure or the midsystolic backward compression wave. By contrast, norepinephrine (50 ng/kg per minute) had no significant effect on the forward compression wave but increased the midsystolic backward compression wave. Despite this increase in the backward compression wave, and an increase in mean arterial pressure, norepinephrine increased central pulse pressure less than dobutamine (increases of 22.1±3.8 and 7.2±2.8 mm Hg for dobutamine and norepinephrine, respectively; Phypertensive and normotensive subjects, respectively; Phypertensive and normotensive subjects. Increased central pulse pressure during inotropic stimulation and in essential hypertension results primarily from the forward compression wave. © 2014 American Heart Association, Inc.

  5. Energy characteristics of a transverse-discharge copper vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Artem' ev, A.Y.; Babeiko, Y.A.; Bakhtin, O.M.; Borovich, B.L.; Vasil' ev, L.A.; Gerts, V.E.; Nalegach, E.P.; Ratnikov, G.E.; Tatarintsev, L.V.; Ul' yanov, A.N.

    1980-09-01

    A study was made of the basic energy characteristics of a transverse-discharge copper vapor laser. The average laser output power in the yellow and green lasing components was determined as a function of the amplitude and repetition frequency of the excitation pulses, temperature of the discharge tube walls, and buffer gas pressure. The current-voltage characteristics of the discharge were investigated. An average laser output power of 75 W was obtained, at a pulse repetition frequency of 3 kHz.

  6. Mixed-Organic-Cation (FA)x(MA)1-xPbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process.

    Science.gov (United States)

    Chen, Jing; Xu, Jia; Xiao, Li; Zhang, Bing; Dai, Songyuan; Yao, Jianxi

    2017-01-25

    Compared to that of methylammonium lead iodide perovskite (MAPbI3), formamidinium lead iodide perovskite (FAPbI3) has a smaller energy band gap and greater potential efficiency. To prevent the transformation of α-FAPbI3 to δ-FAPbI3, preparation of (FA)x(MA)1-xPbI3 was regarded as an effective route. Usually, the planar (FA)x(MA)1-xPbI3 perovskite solar cells are fabricated by a solution process. Herein, we report a low-pressure vapor-assisted solution process (LP-VASP) for the growth of (FA)x(MA)1-xPbI3 perovskite solar cells that features improved electron transportation, uniform morphology, high power conversion efficiency (PCE), and better crystal stability. In LP-VASP, the (FA)x(MA)1-xPbI3 films were formed by the reaction between the PbI2 film with FAI and MAI vapor in a very simple vacuum oven. LP-VASP is an inexpensive way to batch-process solar cells, avoiding the repeated deposition solution process for PbI2 films, and the device had a low cost. We demonstrate that, with an increase in the MAI content, the (101) peak position of FAPbI3 shifts toward the (110) peak position of MAPbI3, the (FA)x(MA)1-xPbI3 perovskites are stable, and no decomposition or phase transition is observed after 14 days. The photovoltaic performance was effectively improved by the introduction of MA+ with the highest efficiency being 16.48% under conditions of 40 wt % MAI. The carrier lifetime of (FA)x(MA)1-xPbI3 perovskite films is approximately three times longer than that of pure FAPbI3. Using this process, solar cells with a large area of 1.00 cm2 were fabricated with the PCE of 8.0%.

  7. Determination of moisture and volatile content in coal by pressure change and gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, D.R.; Hannifan, M.R.

    1981-04-01

    Calcium carbide/water reaction products and the volatiles produced in a constant temperature/volume reactor are chromatographically separated and quantified. Volatile content is estimated from the pressure change.

  8. Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 4

    Science.gov (United States)

    Stoltzfus, Joel M.; Benz, Frank J.

    1986-01-01

    Results from frictional heating tests to determine the effects of oxygen pressure on the Pv production required for igntion are presented. Materials tested include: Monel K-500 and 1015 carbon steels at pressures varied from 100 to 3000 PSIG).

  9. Changes in Central Aortic Pressure Levels, Wave Components and Determinants Associated with High Peripheral Blood Pressure States in Childhood: Analysis of Hypertensive Phenotype.

    Science.gov (United States)

    García-Espinosa, Victoria; Curcio, Santiago; Marotta, Marco; Castro, Juan M; Arana, Maite; Peluso, Gonzalo; Chiesa, Pedro; Giachetto, Gustavo; Bia, Daniel; Zócalo, Yanina

    2016-10-01

    The aims were to determine whether children's high peripheral blood pressure states (HBP) are associated with increased central aortic blood pressure (BP) and to characterize hemodynamic and vascular changes associated with HBP in terms of changes in cardiac output (stroke volume, SV), arterial stiffness (aortic pulse wave velocity, PWV), peripheral vascular resistances (PVR) and net and relative contributions of reflected waves to the aortic pulse amplitude. We included 154 subjects (mean age 11; range 4-16 years) assigned to one of two groups: normal peripheral BP (NBP, n = 101), defined as systolic and diastolic BP wave-derived parameters (augmentation index, forward and backward wave components' amplitude) were measured using gold-standard techniques, applanation tonometry (SphygmoCor) and oscillometry (Mobil-O-Graph). Independent of the presence of dyslipidemia and/or obesity, aortic systolic and pulse BP were higher in HBP than in NBP children. The increase in central BP could not be explained by an increase in the relative contribution of reflections to the aortic pressure wave, higher PVR or by an augmented peripheral reflection coefficient. Instead, the rise in central BP would be explained by an increase in the amplitude of both incident and reflected wave components.

  10. Water Vapor Sorption Properties of Polyethylene Terephthalate over a Wide Range of Humidity and Temperature.

    Science.gov (United States)

    Dubelley, Florence; Planes, Emilie; Bas, Corine; Pons, Emmanuelle; Yrieix, Bernard; Flandin, Lionel

    2017-03-02

    The dynamic and equilibrium water vapor sorption properties of amorphous polyethylene terephthalate were determined via gravimetric analysis over a wide range of temperatures (23-70 °C) and humidities (0-90% RH). At low temperature and relative humidity, the dynamics of the sorption process was Fickian. Increasing the temperature or relative humidity induced a distinct up-swing effect, which was associated with a plasticization/clustering phenomenon. For high temperatures and relative humidity, a densification of the polymer was evidenced. In addition to the classical Fickian diffusion, a new parameter was introduced to express the structural modifications of PET. Finally, two partial pressures were defined as thresholds that control the transition between these three phases. A simplified state diagram was finally proposed. In addition, the thermal dependence of these sorption modes was also determined and reported. The enthalpy of Henry's water sorption and the activation energy of diffusion were independent of vapor pressure and followed an Arrhenius law.

  11. Processing of subharmonic signals from ultrasound contrast agents to determine ambient pressures.

    Science.gov (United States)

    Dave, Jaydev K; Halldorsdottir, Valgerdur G; Eisenbrey, John R; Forsberg, Flemming

    2012-04-01

    Subharmonic-aided pressure estimation (SHAPE) is a technique that utilizes the subharmonic emissions, occurring at half the insonation frequency, from ultrasound contrast agents to estimate ambient pressures. The purpose of this work was to compare the performance of different processing techniques for the raw radiofrequency (rf) data acquired for SHAPE. A closed loop flow system was implemented circulating reconstituted Sonazoid (GE Healthcare, Oslo, Norway; 0.2 ml for 750 ml diluent) and the beam-formed unprocessed rf data were obtained from a 4 mm diameter lumen of a Doppler flow phantom (ATS Laboratories, Inc., Bridgeport, CT) using a SonixRP scanner (Ultrasonix, Richmond, BC, Canada). The transmit frequency and incident acoustic pressures were set to 2.5 MHz and 0.22 MPa, respectively, in order to elicit Sonazoid subharmonic emissions that are ambient-pressure sensitive. The time-varying ambient pressures within the flow phantom were recorded by a Millar pressure catheter. Four techniques for extracting the subharmonic amplitude from the rf data were tested along with two noise filtering techniques to process this data. Five filter orders were tested for the noise removing filters. The performance was evaluated based on the least root-mean-square errors reported after linear least-square regression analyses of the subharmonic data and the pressure catheter data and compared using a repeated ANOVA. When the subharmonic amplitudes were extracted as the mean value within a 0.2 MHz bandwidth about 1.25 MHz and when the resulting temporally-varying subharmonic signal was median filtered with an order of 500, the filtered subharmonic signal significantly predicted the ambient pressures (r2 = 0.90; p < 0.001) with the least error. The resulting root mean square and mean absolute errors were 8.16 +/- 0.26 mmHg and 6.70 +/- 0.17 mmHg, respectively. Thus, median processing the subharmonic data extracted as the mean value within a 0.2 MHz bandwidth about the theoretical

  12. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11 000 cm2/V·s

    KAUST Repository

    Smith, Casey

    2013-07-23

    Utilization of graphene may help realize innovative low-power replacements for III-V materials based high electron mobility transistors while extending operational frequencies closer to the THz regime for superior wireless communications, imaging, and other novel applications. Device architectures explored to date suffer a fundamental performance roadblock due to lack of compatible deposition techniques for nanometer-scale dielectrics required to efficiently modulate graphene transconductance (gm) while maintaining low gate capacitance-voltage product (CgsVgs). Here we show integration of a scaled (10 nm) high-κ gate dielectric aluminum oxide (Al2O3) with an atmospheric pressure chemical vapor deposition (APCVD)-derived graphene channel composed of multiple 0.25 μm stripes to repeatedly realize room-temperature mobility of 11 000 cm 2/V·s or higher. This high performance is attributed to the APCVD graphene growth quality, excellent interfacial properties of the gate dielectric, conductivity enhancement in the graphene stripes due to low t ox/Wgraphene ratio, and scaled high-κ dielectric gate modulation of carrier density allowing full actuation of the device with only ±1 V applied bias. The superior drive current and conductance at Vdd = 1 V compared to other top-gated devices requiring undesirable seed (such as aluminum and poly vinyl alcohol)-assisted dielectric deposition, bottom gate devices requiring excessive gate voltage for actuation, or monolithic (nonstriped) channels suggest that this facile transistor structure provides critical insight toward future device design and process integration to maximize CVD-based graphene transistor performance. © 2013 American Chemical Society.

  13. Energy characteristics of a transverse-discharge copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Artemev, A.Yu.; Babeiko, Yu.A.; Bakhtin, O.M.; Borovich, B.L.; Vasilev, L.A.; Gerts, V.E.; Nalegach, E.P.; Ratnikov, G.E.; Tatarintsev, L.V.; Ulianov, A.N.

    1980-09-01

    Experimental results on the characteristics of a transverse-discharge copper-vapor laser are presented. The average power of stimulated emission in the yellow and green lines is studied as a function of excitation pulse amplitude and repetition rate, temperature of discharge chamber walls, and buffer gas pressure. The volt-ampere characteristics of the discharge were determined. An average radiation power of 75 W was achieved for a pulse repetition rate of 3 kHz.

  14. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  15. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry

    NARCIS (Netherlands)

    Ragni, D.; Ashok, A.; van Oudheusden, B.W.; Scarano, F.

    2009-01-01

    The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to

  16. 16 CFR 1500.47 - Method for determining the sound pressure level produced by toy caps.

    Science.gov (United States)

    2010-01-01

    ... decibels from 50 hertz to 70 kilohertz or beyond and a dynamic range covering the interval 70 to 160 decibels relative to 20 micronewtons per square meters. Depending on the model, the microphone shall be... accurate to within ±1 decibel. If the calibration is of the pressure type or of the piston-phone plus...

  17. 76 FR 77964 - High Pressure Steel Cylinders From the People's Republic of China: Preliminary Determination of...

    Science.gov (United States)

    2011-12-15

    ... specifications and permanently impressed with ISO or UN symbols. Also excluded from the investigation are... ventures between Chinese and foreign companies, or are wholly Chinese-owned companies, the Department must... Chengyu Co., Ltd.; and Zhuolu High Pressure Vessel Co., Ltd. \\63\\ See, e.g., Prestressed Concrete Steel...

  18. SCI Survey to Determine Pressure Ulcer Vulnerability in the Outpatient Population

    Science.gov (United States)

    2016-03-01

    extraction tool, which included demographics as well as physical, medical, and psycho- social variables documented in the literature to be associ- ated...good_nutrition=1 Athletic participation Minutes per day/days per week Spasticity Yes/no; medicated Contractures Yes/no; mild, moderate, severe Cognitive ...psychiatric Mental status: anxiety, bipolar, depression, personality Conditions Disorder, dementia, schizophrenia /delusional, brain damage Pressure ulcer

  19. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... coat the liquid on glass beads and to pack the holder in the designated place with these beads. (D) At... liquid samples, at the end of the sampling time, the front and backup sorbent sections are analyzed...

  20. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: a new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions.

    Science.gov (United States)

    Lu, W J; Chou, I M; Burruss, R C; Yang, M Z

    2006-02-01

    A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition.

  1. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  2. SCI Survey to Determine Pressure Ulcer Vulnerability in the Outpatient Population

    Science.gov (United States)

    2011-10-01

    30 and 30% have been diagnosed with depression . The data set also identified a number of variables that are not easily extracted from the...HX CURR USE COCAINE HEROIN INHALANTS LSD MARIJUANA/HASH MDMA(ECSTASY) PCP Methamphetimines STEROIDS CRACK HALLUCINOGENS AMPHETIMINES OTHER CAD CHF COPD...HX #Pack Yrs CURR USE #Pack/Days COGNITIVE FUNCTION BIPOLAR BRAIN DMG-SURG ANXIETY PTSD/ADJUST DEPRESSION PERSONALITY DO DEMENTIA SCHIZ/DELUS PRESSURE

  3. Stress determination in active thrust belts: An alternative leak-off pressure interpretation

    Science.gov (United States)

    Couzens-Schultz, Brent A.; Chan, Alvin W.

    2010-08-01

    In thrust belts, fluid flow through critically stressed fractures will occur at pressures less than the overburden stress, which is the minimum stress. We propose that low leak-off pressures obtained in active thrust belts may result from this mechanism, leading workers to infer that apparent minimum stresses are 30-60% less than the overburden stress in some compressional settings. Traditionally, leak-off pressure data have been used to constrain the magnitude of minimum stress, assuming that the rock is dilating against the minimum stress during a leak-off test. In our new interpretation, we constrain the stress state by assuming that the leak-off test causes shear failure along pre-existing weaknesses rather than tensile opening. While this mechanism has been discussed in a small number of borehole stability and hydraulic fracture papers, it has not been directly applied to leak-off tests. We considered this interpretation because we observed that some leak-off tests imply an apparent contradiction between the stress states from the standard interpretation of leak-off tests versus the stress state inferred from geologic and geophysical evidence in tectonically active thrust belts. We present two examples with one in an onshore fold-thrust belt and one in a deepwater fold-thrust belt. Our new interpretation of stresses based on shear failure resolves the contradiction and also provides a constraint on the maximum horizontal stress in the fold-thrust belts.

  4. The Design of a Chemical Virtual Instrument Based on LabVIEW for Determining Temperatures and Pressures

    Science.gov (United States)

    Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun

    2007-01-01

    A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research. PMID:17671611

  5. Experimental and simulation determination of minimum miscibility pressure for a Bakken tight oil and different injection gases

    OpenAIRE

    Li, Sheng; Luo, Peng

    2016-01-01

    The effective development of unconventional tight oil formations, such as Bakken, could include CO2 enhanced oil recovery (EOR) technologies with associated benefits of capturing and storing large quantities of CO2. It is important to conduct the gas injection at miscible condition so as to reach maximum recovery efficiency. Therefore, determination of the minimum miscibility pressure (MMP) of reservoir live oil–injection gas system is critical in a miscible gas flooding project design. In th...

  6. Vaporization response of evaporating drops with finite thermal conductivity

    Science.gov (United States)

    Agosta, V. D.; Hammer, S. S.

    1975-01-01

    A numerical computing procedure was developed for calculating vaporization histories of evaporating drops in a combustor in which travelling transverse oscillations occurred. The liquid drop was assumed to have a finite thermal conductivity. The system of equations was solved by using a finite difference method programmed for solution on a high speed digital computer. Oscillations in the ratio of vaporization of an array of repetitivity injected drops in the combustor were obtained from summation of individual drop histories. A nonlinear in-phase frequency response factor for the entire vaporization process to oscillations in pressure was evaluated. A nonlinear out-of-phase response factor, in-phase and out-of-phase harmonic response factors, and a Princeton type 'n' and 'tau' were determined. The resulting data was correlated and is presented in graphical format. Qualitative agreement with the open literature is obtained in the behavior of the in-phase response factor. Quantitatively the results of the present finite conductivity spray analysis do not correlate with the results of a single drop model.

  7. Determination of effective solar pressure force on the deformed heliogyro solar sail

    Directory of Open Access Journals (Sweden)

    V. N. Zimin

    2016-01-01

    Full Text Available This paper presents a review of the references on solar sails, which implies that this subject is relevant and actively developed by various researchers from around the globe. It points out that an important role is played by various imperfections, which would affect the parameters of real solar sails compared to the ideal model.The differential equilibrium equations of the blades of a heliogyro solar sail considering small deformations are written at the beginning of the article. The blade is loaded by light pressure and centrifugal forces, and is fixed at one end in the rotation axis while the other end is free. The differential equation for the blade deflection is obtained. This equation is solved in a statement that the reflection coefficient is independent on the mechanical stress. The deflection function has a simple analytical formulation. The differential equation for the transverse deflection of the solar sail blade is also solved analytically in the formulation of the linear dependence of the reflection coefficient on the tensile stress. The results obtained in both derivations are compared at the maximum amount of deflection of the blade of heliogyro solar sail. It is proved that the maximum difference in the magnitude of the deflection is achieved at tip section. An analytical expression for the relative change in the maximum deflection of the sail blades is given. The chart of this dependency is given for the blade of perspective solar sail with a length of 1000m and made from PET material, which is considered in the linear-elastic formulation.To calculate the projection of the resultant vector of light pressure on the axis of rotation the hypothesis is introduced that the decrease of the reflection coefficient of the material exactly equals to the increase in the transmittance, and vice versa. Considering this hypothesis for PET material the proportionality factor is found, showing a decrease of the reflection coefficient with

  8. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  9. Scanning Acoustic Microscopy-A Novel Noninvasive Method to Determine Tumor Interstitial Fluid Pressure in a Xenograft Tumor Model.

    Science.gov (United States)

    Hofmann, Matthias; Pflanzer, Ralph; Habib, Anowarul; Shelke, Amit; Bereiter-Hahn, Jürgen; Bernd, August; Kaufmann, Roland; Sader, Robert; Kippenberger, Stefan

    2016-06-01

    Elevated tumor interstitial fluid pressure (TIFP) is a prominent feature of solid tumors and hampers the transmigration of therapeutic macromolecules, for example, large monoclonal antibodies, from tumor-supplying vessels into the tumor interstitium. TIFP values of up to 40 mm Hg have been measured in experimental solid tumors using two conventional invasive techniques: the wick-in-needle and the micropuncture technique. We propose a novel noninvasive method of determining TIFP via ultrasonic investigation with scanning acoustic microscopy at 30-MHz frequency. In our experimental setup, we observed for the impedance fluctuations in the outer tumor hull of A431-vulva carcinoma-derived tumor xenograft mice. The gain dependence of signal strength was quantified, and the relaxation of tissue was calibrated with simultaneous hydrostatic pressure measurements. Signal patterns from the acoustical images were translated into TIFP curves, and a putative saturation effect was found for tumor pressures larger than 3 mm Hg. This is the first noninvasive approach to determine TIFP values in tumors. This technique can provide a potentially promising noninvasive assessment of TIFP and, therefore, can be used to determine the TIFP before treatment approach as well to measure therapeutic efficacy highlighted by lowered TFP values. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Scanning Acoustic Microscopy—A Novel Noninvasive Method to Determine Tumor Interstitial Fluid Pressure in a Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Matthias Hofmann

    2016-06-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a prominent feature of solid tumors and hampers the transmigration of therapeutic macromolecules, for example, large monoclonal antibodies, from tumor-supplying vessels into the tumor interstitium. TIFP values of up to 40 mm Hg have been measured in experimental solid tumors using two conventional invasive techniques: the wick-in-needle and the micropuncture technique. We propose a novel noninvasive method of determining TIFP via ultrasonic investigation with scanning acoustic microscopy at 30-MHz frequency. In our experimental setup, we observed for the impedance fluctuations in the outer tumor hull of A431-vulva carcinoma–derived tumor xenograft mice. The gain dependence of signal strength was quantified, and the relaxation of tissue was calibrated with simultaneous hydrostatic pressure measurements. Signal patterns from the acoustical images were translated into TIFP curves, and a putative saturation effect was found for tumor pressures larger than 3 mm Hg. This is the first noninvasive approach to determine TIFP values in tumors. This technique can provide a potentially promising noninvasive assessment of TIFP and, therefore, can be used to determine the TIFP before treatment approach as well to measure therapeutic efficacy highlighted by lowered TFP values.

  11. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  12. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    Directory of Open Access Journals (Sweden)

    Mirna Daye

    2013-01-01

    Full Text Available 8-Hydroxyquinoline (8-HQ was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II, which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II. The developed method showed quantitative recoveries of Hg(II with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS with a preconcentration factor greater than 250.

  13. The role of high-pressure experiments on determining super-Earth properties

    Science.gov (United States)

    Valencia, Diana; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-08-01

    Super-Earths are the newest class of extra-solar planets with a mass range between about 1-10 M ⊕ . With their large masses, they experience very large internal pressures. The central pressure scales proportionately with mass, reaching values that require us to extend our understanding of rock and H2O behavior to such extreme conditions. Pressure also constrains the power law relationship between mass and radius of solid planets R˜ M β . The value for the exponent is 0.262≤ β≤0.274 as constrained by the different internal structure models for super-Earths, while it is 0.3 for planets between 5-50% the mass of Earth. Despite uncertainties in planetary composition, temperature structure and equation of state, the mass-radius relationship is robust, and thus, useful for inferring the expected signal in transit searches. In the next few years many super-Earths will be discovered and their masses and radii will be known with some uncertainty. Even without errors in both the data and structure models, a large number of compositions can fit the same average density. However, the follow-up observations with space telescopes will yield very precise radius measurements and even probe the atmospheres of super-Earths. This radius uncertainty will then be comparable to the current error derived from the equation of state used by the structure models. Thus, there is a need for accurate equations of state of solid planetary materials. Furthermore, information on the structure, such as the size and state of the core, crucially depends on the exact behavior of super-Earth materials (i.e. silicates, iron, iron alloy and ices) at high pressures and temperatures. In addition, information about the atmospheric composition of these planets may prove useful in constraining their interiors. Ultimately any inference on the structure of super-Earths, including information from atmospheres, depends on the precision of interior models, which in turn require accurate equations of

  14. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  15. The Relation between Vaporization Enthalpies and Viscosities: Eyring's Theory Applied to Selected Ionic Liquids.

    Science.gov (United States)

    Bonsa, Anne-Marie; Paschek, Dietmar; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Verevkin, Sergey P; Ludwig, Ralf

    2017-05-19

    Key properties for the use of ionic liquids as electrolytes in batteries are low viscosities, low vapor pressure and high vaporization enthalpies. Whereas the measurement of transport properties is well established, the determination of vaporization enthalpies of these extremely low volatile compounds is still a challenge. At a first glance both properties seem to describe different thermophysical phenomena. However, eighty years ago Eyring suggested a theory which related viscosities and vaporization enthalpies to each other. The model is based on Eyring's theory of absolute reaction rates. Recent attempts to apply Eyring's theory to ionic liquids failed. The motivation of our study is to show that Eyring's theory works, if the assumptions specific for ionic liquids are fulfilled. For that purpose we measured the viscosities of three well selected protic ionic liquids (PILs) at different temperatures. The temperature dependences of viscosities were approximated by the Vogel-Fulcher-Tamann (VFT) relation and extrapolated to the high-temperature regime up to 600 K. Then the VFT-data could be fitted to the Eyring-model. The values of vaporization enthalpies for the three selected PILs predicted by the Eyring model have been very close to the experimental values measured by well-established techniques. We conclude that the Eyring theory can be successfully applied to the chosen set of PILs, if the assumption that ionic pairs of the viscous flow in the liquid and the ionic pairs in the gas phase are similar is fulfilled. It was also noticed that proper transfer of energies can be only derived if the viscosities and the vaporization energies are known for temperatures close to the liquid-gas transition temperature. The idea to correlate easy measurable viscosities of ionic liquids with their vaporization enthalpies opens a new way for a reliable assessment of these thermodynamic properties for a broad range of ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGa

  16. The development and application of an automatic boundary segmentation methodology to evaluate the vaporizing characteristics of diesel spray under engine-like conditions

    Science.gov (United States)

    Ma, Y. J.; Huang, R. H.; Deng, P.; Huang, S.

    2015-04-01

    Studying the vaporizing characteristics of diesel spray could greatly help to reduce engine emission and improve performance. The high-speed schlieren imaging method is an important optical technique for investigating the macroscopic vaporizing morphological evolution of liquid fuel, and pre-combustion constant volume combustion bombs are often used to simulate the high pressure and high temperature conditions occurring in diesel engines. Complicated background schlieren noises make it difficult to segment the spray region in schlieren spray images. To tackle this problem, this paper develops a vaporizing spray boundary segmentation methodology based on an automatic threshold determination algorithm. The methodology was also used to quantify the macroscopic characteristics of vaporizing sprays including tip penetration, near-field and far-field angles, and projected spray area and spray volume. The spray boundary segmentation methodology was realized in a MATLAB-based program. Comparisons were made between the spray characteristics obtained using the program method and those acquired using a manual method and the Hiroyasu prediction model. It is demonstrated that the methodology can segment and measure vaporizing sprays precisely and efficiently. Furthermore, the experimental results show that the spray angles were slightly affected by the injection pressure at high temperature and high pressure and under inert conditions. A higher injection pressure leads to longer spray tip penetration and a larger projected area and volume, while elevating the temperature of the environment can significantly promote the evaporation of cold fuel.

  17. Determination of Viscosity Versus Pressure by Means of a Clearance Seal

    DEFF Research Database (Denmark)

    Christiansen, Peter; Schmidt Hansen, Niels; Lund, Martin Thomas Overdahl

    2018-01-01

    This paper describes the construction and testing of a simple, experimental tool setup that enables determination of the pressure–viscosity relationship for high viscosity oils. Comparing the determined pressure–viscosity relationship with a reference rheometer measuring the viscosity at ambient ...

  18. Vaporizers for medical marijuana.

    Science.gov (United States)

    Mirken, B

    1999-09-17

    A major concern about the medical use of marijuana is the harmful effects that come from smoking it. Vaporizers are designed to release the active ingredients in marijuana without burning it, and therefore do not release the harmful substances found in the marijuana smoke. The Institute of Medicine recommends against the long-term medical use of smoked marijuana because of carcinogens and other chemicals in the smoke. Several vaporizers are on the market, but they have not been tested in the laboratory yet. A review of two vaporizers is given. Contact information is provided.

  19. Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado

    Science.gov (United States)

    Noone, D.; Risi, C.; Bailey, A.; Berkelhammer, M.; Brown, D. P.; Buenning, N.; Gregory, S.; Nusbaumer, J.; Schneider, D.; Sykes, J.; Vanderwende, B.; Wong, J.; Meillier, Y.; Wolfe, D.

    2013-02-01

    The D/H isotope ratio is used to attribute boundary layer humidity changes to the set of contributing fluxes for a case following a snowstorm in which a snow pack of about 10 cm vanished. Profiles of H2O and CO2 mixing ratio, D/H isotope ratio, and several thermodynamic properties were measured from the surface to 300 m every 15 min during four winter days near Boulder, Colorado. Coeval analysis of the D/H ratios and CO2 concentrations find these two variables to be complementary with the former being sensitive to daytime surface fluxes and the latter particularly indicative of nocturnal surface sources. Together they capture evidence for strong vertical mixing during the day, weaker mixing by turbulent bursts and low level jets within the nocturnal stable boundary layer during the night, and frost formation in the morning. The profiles are generally not well described with a gradient mixing line analysis because D/H ratios of the end members (i.e., surface fluxes and the free troposphere) evolve throughout the day which leads to large uncertainties in the estimate of the D/H ratio of surface water flux. A mass balance model is constructed for the snow pack, and constrained with observations to provide an optimal estimate of the partitioning of the surface water flux into contributions from sublimation, evaporation of melt water in the snow and evaporation from ponds. Results show that while vapor measurements are important in constraining surface fluxes, measurements of the source reservoirs (soil water, snow pack and standing liquid) offer stronger constraint on the surface water balance. Measurements of surface water are therefore essential in developing observational programs that seek to use isotopic data for flux attribution.

  20. Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado

    Directory of Open Access Journals (Sweden)

    D. Noone

    2013-02-01

    Full Text Available The D/H isotope ratio is used to attribute boundary layer humidity changes to the set of contributing fluxes for a case following a snowstorm in which a snow pack of about 10 cm vanished. Profiles of H2O and CO2 mixing ratio, D/H isotope ratio, and several thermodynamic properties were measured from the surface to 300 m every 15 min during four winter days near Boulder, Colorado. Coeval analysis of the D/H ratios and CO2 concentrations find these two variables to be complementary with the former being sensitive to daytime surface fluxes and the latter particularly indicative of nocturnal surface sources. Together they capture evidence for strong vertical mixing during the day, weaker mixing by turbulent bursts and low level jets within the nocturnal stable boundary layer during the night, and frost formation in the morning. The profiles are generally not well described with a gradient mixing line analysis because D/H ratios of the end members (i.e., surface fluxes and the free troposphere evolve throughout the day which leads to large uncertainties in the estimate of the D/H ratio of surface water flux. A mass balance model is constructed for the snow pack, and constrained with observations to provide an optimal estimate of the partitioning of the surface water flux into contributions from sublimation, evaporation of melt water in the snow and evaporation from ponds. Results show that while vapor measurements are important in constraining surface fluxes, measurements of the source reservoirs (soil water, snow pack and standing liquid offer stronger constraint on the surface water balance. Measurements of surface water are therefore essential in developing observational programs that seek to use isotopic data for flux attribution.

  1. Numerical Study of Bubble Area Evolution During Acoustic Droplet Vaporization-Enhanced HIFU Treatment.

    Science.gov (United States)

    Xin, Ying; Zhang, Aili; Xu, Lisa X; Brian Fowlkes, J

    2017-09-01

    Acoustic droplet vaporization has the potential to shorten treatment time of high-intensity focused ultrasound (HIFU) while minimizing the possible effects of microbubbles along the propagation path. Distribution of the bubbles formed from the droplets during the treatment is the major factor shaping the therapeutic region. A numerical model was proposed to simulate the bubble area evolution during this treatment. Using a linear acoustic equation to describe the ultrasound field, a threshold range was defined that determines the amount of bubbles vaporized in the treated area. Acoustic parameters, such as sound speed, acoustic attenuation coefficient, and density, were treated as a function of the bubble size distribution and the gas void fraction, which were related to the vaporized bubbles in the medium. An effective pressure factor was proposed to account for the influence of the existing bubbles on the vaporization of the nearby droplets. The factor was obtained by fitting one experimental result and was then used to calculate bubble clouds in other experimental cases. Comparing the simulation results to these other experiments validated the model. The dynamic change of the pressure and the bubble distribution after exposure to over 20 pulses of HIFU are obtained. It is found that the bubble area grows from a grainlike shape to a "tadpole," with comparable dimensions and shape to those observed in experiments. The process was highly dynamic with the shape of the bubble area changing with successive HIFU pulses and the focal pressure. The model was further used to predict the shape of the bubble region triggered by HIFU when a bubble wall pre-exists. The results showed that the bubble wall helps prevent droplet vaporization on the distal side of the wall and forms a particularly shaped region with bubbles. This simulation model has predictive potential that could be beneficial in applications, such as cancer treatment, by parametrically studying conditions

  2. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    Abstract Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The “open field” soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database. PMID:24170970

  3. Second Vapor-Level Sensor For Vapor Degreaser

    Science.gov (United States)

    Painter, Nance M.; Burley, Richard K.

    1990-01-01

    Second vapor-level sensor installed at lower level in vapor degreaser makes possible to maintain top of vapor at that lower level. Evaporation reduced during idle periods. Provides substantial benefit, without major capital cost of building new vapor degreaser with greater freeboard height.

  4. Steam regulation for 5 MW back-pressure units when a failure occurs in the Los Humeros, Pue., field, Mexico; Regulacion del vapor en caso de falla a unidades a contrapresion de 5 MW en el campo de Los Humeros, Pue., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosales Lopez, Cesar [Comision Federal de Electricidad, Puebla (Mexico)]. E-mail: cesar.rosales@cfe.gob.mx

    2006-07-15

    Four out of the seven back-pressure power units of 5 MW operating in the Los Humeros geothermal field, State of Puebla, Mexico, are fed by one steam pipe gathering the steam produced by nine wells. When a failure occurred in any of the units and the excedence valve had to be open to deviate the steam, a decrease in the steam flow for the remaining units was noted, along with lower electrical generation. The cause for that is analyzed and explained in this paper by comparing the interconnected steam supply system to an electric circuit. A way to maintain a uniform and continuous supply of steam in the Los Humeros field has been found. It was implemented several months ago and the problem has not reoccurred. [Spanish] Cuatro de las siete unidades de 5 MW a contrapresion que operan en el campo geotermico de Los Humeros, Puebla, son alimentadas por un solo vaporducto que reune el vapor de nueve pozos productores. Cuando ocurria una falla en alguna de estas unidades y se abria por completo la valvula de excedencia para desviar el vapor, se observaba una reduccion en el flujo de vapor que llegaba a las otras tres unidades, lo que a su vez ocasionaba que la generacion de electricidad se redujera notoriamente. En este trabajo se analiza y explica la causa de ello, mediante la comparacion de este sistema interconectado de suministro de vapor con un circuito electrico, y se explica la solucion que se encontro e implemento en el campo de Los Humeros para regular el suministro continuo y uniforme de vapor, con resultados satisfactorios a varios meses de su implementacion en las cuatro unidades interconectadas.

  5. Condensers for measuring steam quality at the inlet of back-pressure units of the Los Azufres, Mich., geothermal field; Condensadores para medir la calidad del vapor a la entrada de las turbinas a contrapresion del campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Medina, Fernando; Gonzalez Gonzalez, Rubi; Reyes Delgado, Lisette; Medina Martinez, Moises [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia de Los Azufres (Mexico)]. E-mail: fernando.sandoval@cfe.gob.mx

    2007-01-15

    Electrical conductivity is an indirect measurement of the quality of the steam supplied to power units. In the Los Azufres, Mich., geothermal field, the electrical conductivity once was measured in a discrete and periodic way by condensing steam samples through a water-cooled condenser. In an attempt to continuously measure conductivity, conductivity meters were installed where the units discharged, but the values proved unstable and unrepresentative. Thereafter, taking into account that steam quality should be measured at the steam delivery-reception point, equipment was designed and tested for continuously condensing steam. Finally it was possible to get an air-cooled condenser able to condense 500 milliliters per minute, enough to collect a representative flow of the steam and to measure its electrical conductivity. The equipment was installed in all seven back-pressure units operating in the field and to date has been operating in an optimal manner. [Spanish] La conductividad electrica es una medida indirecta de la calidad del vapor que se suministra a las unidades turbogeneradoras. En el campo geotermico de Los Azufres, Mich., la conductividad electrica se media en forma puntual y periodica, condensando muestras de vapor por medio de un serpentin enfriado con agua. Despues, ante la necesidad de medirla en forma continua, se instalaron conductivimetros en las descargas de las unidades, pero los valores resultaron muy inestables y poco representativos. Considerando, ademas, que la calidad del vapor debe medirse en el punto de entrega-recepcion, se disenaron y probaron equipos para condensar vapor de manera continua, lograndose construir un condensador enfriado por aire que logra condensar un flujo de 500 mililitros por minuto, cantidad suficiente para tener un flujo representativo del vapor que alimenta a las turbinas y medirle su conductividad electrica. Se instalaron estos equipos en las siete unidades turbogeneradoras a contrapresion que funcionan en el campo

  6. Identification of the UBP1 locus as a critical blood pressure determinant using a combination of mouse and human genetics

    DEFF Research Database (Denmark)

    Koutnikova, Hana; Laakso, Markku; Lu, Lu

    2009-01-01

    recombinant BXD strains of mice we identified a quantitative trait locus (QTL) for blood pressure (BP) on distal chromosome 9. The association analysis of markers encompassing the syntenic region on human chromosome 3 gave in an additive genetic model the strongest association for rs17030583 C/T and rs2291897...... G/A, located within the UBP1 locus, with systolic and diastolic BP (rs17030583: 1.3+/-0.4 mmHg p... complementarities of mouse and human genetic approaches, identifies the UBP1 locus as a critical blood pressure determinant. UBP1 plays a role in cholesterol and steroid metabolism via the transcriptional activation of CYP11A, the rate-limiting enzyme in pregnenolone and aldosterone biosynthesis. We suggest...

  7. Determination of the metal/die interfacial heat transfer coefficient of high pressure die cast B390 alloy

    Science.gov (United States)

    Cao, Yongyou; Guo, Zhipeng; Xiong, Shoumei

    2012-07-01

    High-pressure die cast B390 alloy was prepared on a 350 ton cold chamber die casting machine. The metal/die interfacial heat transfer coefficient of the alloy was investigated. Considering the filling process, a "finger"-shaped casting was designed for the experiments. This casting consisted of five plates with different thicknesses (0.05 inch or 1.27 mm to 0.25 inch or 6.35 mm) as well as individual ingates and overflows. Experiments under various operation conditions were conducted, and temperatures were measured at various specific locations inside the die. Based on the results, the interfacial heat transfer coefficient and heat flux were determined by solving the inverse heat transfer problem. The influence of the mold-filling sequence, sensor locations, as well as processing parameters including the casting pressure, die temperature, and fast/slow shot speeds on the heat transfer coefficient were discussed.

  8. Numerical Determination and Experimental Validation of a Technological Specimen Representative of High-Pressure Hydrogen Storage Vessels

    Science.gov (United States)

    Gentilleau, B.; Touchard, F.; Grandidier, J.-C.; Mellier, D.

    2015-09-01

    A technological specimen representative of type IV high-pressure hydrogen storage vessels is developed. An analytical model is used to compute fiber orientations in the specimen in order to be as representative as possible of the stress level reached in a tank during pressurization. A three-dimensional finite-element model is used to determine the best stacking sequence with these fiber orientations. A validation is done by performing tests with digital image correlation in order to measure displacements on the lateral side of the specimen. A comparison between the calculated and experimentally found strain fields is made. The results obtained highlight the influence of stacking sequence on the development of damage and the difficulty arising in designing representative specimens.

  9. Vapor Control Layer Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  10. Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response

    Science.gov (United States)

    Keserü, Benjamin; Barbosa-Sicard, Eduardo; Popp, Rüdiger; Fisslthaler, Beate; Dietrich, Alexander; Gudermann, Thomas; Hammock, Bruce D.; Falck, John R.; Weissmann, Norbert; Busse, Rudi; Fleming, Ingrid

    2008-01-01

    Recent findings have indicated a role for cytochrome P-450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) in acute hypoxic pulmonary vasoconstriction (HPV). Given that the intracellular concentration of EETs is determined by the soluble epoxide hydrolase (sEH), we assessed the influence of the sEH and 11,12-EET on pulmonary artery pressure and HPV in the isolated mouse lung. In lungs from wild-type mice, HPV was significantly increased by sEH inhibition, an effect abolished by pretreatment with CYP epoxygenase inhibitors and the EET antagonist 14,15-EEZE. HPV and EET production were greater in lungs from sEH−/− mice than from wild-type mice and sEH inhibition had no further effect on HPV, while MSPPOH and 14,15-EEZE decreased the response. 11,12-EET increased pulmonary artery pressure in a concentration-dependent manner and enhanced HPV via a Rho-dependent mechanism. Both 11,12-EET and hypoxia elicited the membrane translocation of a transient receptor potential (TRP) C6-V5 fusion protein, the latter effect was sensitive to 14,15-EEZE. Moreover, while acute hypoxia and 11,12-EET increased pulmonary pressure in lungs from TRPC6+/− mice, lungs from TRPC6−/− mice did not respond to either stimuli. These data demonstrate that CYP-derived EETs are involved in HPV and that EET-induced pulmonary contraction under normoxic and hypoxic conditions involves a TRPC6-dependent pathway.—Keserü, B., Barbosa-Sicard, E., Popp, R., Fisslthaler, B., Dietrich, A., Gudermann, T., Hammock, B. D., Falck, J. R., Weissmann, N., Busse, R., Fleming, I. Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. PMID:18725458

  11. Esquema de análisis para el cálculo del equilibrio líquido vapor de sistemas binarios asimétricos que contienen dióxido de carbono a altas presiones = Schematic analysis for the calculation of vapor liquid equilibrium for asymmetric binary systems containing carbon dioxide at high pressures

    OpenAIRE

    Trejos Montoya, Victor Manuel

    2010-01-01

    El presente trabajo establece el desarrollo de un esquema de análisis del equilibrio líquido vapor de sistemas binarios asimétricos que contienen dióxido de carbono a altas presiones. Dicho esquema integra el ajuste de parámetros del equilibrio líquido vapor, análisis de funciones objetivo, reglas de mezclado EOS-Gex y consistencia termodinámica de este tipo de mezclas con el fin de mejorar las etapas de diseño y la puesta en marcha de equipos que operan con fluidos supercríticos / Abstrac...

  12. [Clinical research of using optimal compliance to determine positive end-expiratory pressure].

    Science.gov (United States)

    Xu, Lei; Feng, Quan-sheng; Lian, Fu; Shao, Xin-hua; Li, Zhi-bo; Wang, Zhi-yong; Li, Jun

    2012-07-01

    To observe the availability and security of optimal compliance strategy to titrate the optimal positive end-expiratory pressure (PEEP), compared with quasi-static pressure-volume curve (P-V curve) traced by low-flow method. Fourteen patients received mechanical ventilation with acute respiratory distress syndrome (ARDS) admitted in intensive care unit (ICU) of Tianjin Third Central Hospital from November 2009 to December 2010 were divided into two groups(n = 7). The quasi-static P-V curve method and the optimal compliance titration were used to set the optimal PEEP respectively, repeated 3 times in a row. The optimal PEEP and the consistency of repeated experiments were compared between groups. The hemodynamic parameters, oxygenation index (OI), lung compliance (C), cytokines and pulmonary surfactant-associated protein D (SP-D) concentration in plasma before and 2, 4, and 6 hours after the experiment were observed in each group. (1) There were no significant differences in gender, age and severity of disease between two groups. (2)The optimal PEEP [cm H(2)O, 1 cm H(2)O=0.098 kPa] had no significant difference between quasi-static P-V curve method group and the optimal compliance titration group (11.53 ± 2.07 vs. 10.57 ± 0.87, P>0.05). The consistency of repeated experiments in quasi-static P-V curve method group was poor, the slope of the quasi-static P-V curve in repeated experiments showed downward tendency. The optimal PEEP was increasing in each measure. There was significant difference between the first and the third time (10.00 ± 1.58 vs. 12.80 ± 1.92, P titration method had good reproducibility as the optimal PEEP without significant difference in each measure. (3) After the quasi-static P-V curve traced, the heart rate (HR, bpm), temperature (centigrade), interleukin-6 (IL-6, ng/L), tumor necrosis factor-α (TNF-α, ng/L), SP-D (μg/L) showed a gradually increasing tendency, the mean artery pressure (MAP, mm Hg, 1 mm Hg = 0.133 kPa), continuous cardiac

  13. Média diária do déficit de pressão de saturação do vapor d'água do ar e sua influência na vapotranspiração de referência pelo modelo de penman-monteith (FAO 56 em Piracicaba - SP Daily average of the saturation-vapor-pressure deficit of the air and its influence upon the reference evapotranspiration by penman-monteith model (FAO56 in Piracicaba, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Gustavo B. Lyra

    2004-08-01

    Full Text Available Utilizando-se como padrão as medidas lisimétricas de um gramado, avaliaram-se os resultados de estimativas de ETo obtidas com Dar_méd oriundos de 14 métodos para seu cálculo. Tais comparações permitiram separar os métodos de cálculo de Dar_méd em três grupos, ou seja: um grupo resultou sempre em superestimativa de ETo; em outro, a tendência foi de sempre subestimar, e no último a tendência foi de superestimar valores baixos (The results of the evapotranspiration obtained with the Dair_avg proceeding from 14 methods were evaluated, by using the lysimetric measures of a sward. These comparisons allowed to separate the Dar_avg calculating methods into three groups: a group always resulted into an overestimate ETo; in other one always tended to underestimating the ETo; and in the last tended to overestimating the low values (<4.5 mm day-1, while underestimating the high values of ETo. No significant statistical differences were observed (t test; p <0.05 in ETo as a function of the Dair_avg methods, when using the hourly average of the temperature and/or the air relative humidity in relation to those determined with the average of the maximum and minimum values of these elements. Among the methods proposed by paper FAO56, just the one using the average relative humidity to calculate the actual pressure (e a showed a satisfactory estimate. The best estimates of ETo were obtained with the Dair_avg methods using the average of the air temperature in the determination of the saturation pressure (e s and the average of the relative humidity for the actual pressure (e a. The use of saturation-vapor-pressure deficit of the air at a single time (from 9 or 10 a.m. local as a representative of Dair_avg showed to be a satisfactory alternative in estimating the ETo under the climatic conditions of Piracicaba, SP, Brazil.

  14. Experimental determination of oxygen diffusion in liquid iron at high pressure

    Science.gov (United States)

    Posner, Esther S.; Rubie, David C.; Frost, Daniel J.; Steinle-Neumann, Gerd

    2017-04-01

    Oxygen diffusion experiments in liquid iron have been performed at 3-18 GPa and 1975-2643 K using a multi-anvil apparatus. Diffusion couples consisted of a pure iron rod and a sintered disk of Fe0.85O0.15 placed end-to-end in a vertical orientation. Images and chemical spot analyses were acquired along the full length of the quenched sample on lines perpendicular to the diffusion interface. Exsolution features that formed during quenching consist mostly of spherical oxide blobs of at least two size populations, as well as feathery dendritic textures in more oxygen-rich regions near the top of the samples. Diffusion during heating (i.e. prior to reaching the peak annealing temperature, Tf) is treated numerically to refine Arrhenian parameters from simultaneous least-squares fits to several concentration profiles obtained from experiments at constant pressure and variable Tf. Diffusion coefficients range from ∼ 6 ×10-9 to ∼ 2 ×10-8 m2s-1 over the P-T range of the study, with activation enthalpies of less than 100 kJ mol-1. We find a very weak effect of pressure on oxygen diffusion with an activation volume of 0.1 ± 0.1 cm3mol-1, in agreement with computational studies performed above 100 GPa. Arrhenian extrapolation of diffusion coefficients for oxygen to P-T conditions of the Earth's outer core yields faster average diffusion rates (∼ 3 ×10-8 m2s-1) than for Si or Fe in silicon-rich liquid iron alloys or pure liquid iron (∼ 5 ×10-9 m2s-1) reported previously. Oxygen diffusion data are used to constrain the maximum size of descending liquid metal droplets in a magma ocean that is required for chemical equilibration to be achieved. Our results indicate that if the Earth's core composition is representative of equilibrium chemical exchange with a silicate magma ocean, then it could only have been accomplished by large-scale break-up of impactor cores to liquid iron droplet sizes no larger than a few tens of centimeters.

  15. A graphic-analytical method for determining saturation pressure in oil deposits

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanova, E.E.; Federtsov, V.K.; Ismaylov, K.K.

    1980-01-01

    This article summarizes factual material concerning a large number of oil deposits in the Soviet Union, and selections are made of statistical-probability models for these deposits. A graphic-analytical method is developed for determining involved in a gas saturation of oil.

  16. Orthostatic blood pressure control before and after spaceflight, determined by time-domain baroreflex method

    NARCIS (Netherlands)

    Gisolf, J.; Immink, R. V.; van Lieshout, J. J.; Stok, W. J.; Karemaker, J. M.

    2005-01-01

    Reduction in plasma volume is a major contributor to orthostatic tachycardia and hypotension after spaceflight. We set out to determine time- and frequency-domain baroreflex (BRS) function during preflight baseline and venous occlusion and postflight orthostatic stress, testing the hypothesis that a

  17. Intraocular pressure changes: an important determinant of the biocompatibility of intravitreous implants.

    Directory of Open Access Journals (Sweden)

    Ling Zou

    Full Text Available In recent years, research efforts exploring the possibility of using biomaterial nanoparticles for intravitreous drug delivery has increased significantly. However, little is known about the effect of material properties on intravitreous tissue responses.To find the answer, nanoparticles made of hyaluronic acid (HA, poly (l-lactic acid (PLLA, polystyrene (PS, and Poly N-isopropyl acrylamide (PNIPAM were tested using intravitreous rabbit implantation model. Shortly after implantation, we found that most of the implants accumulated in the trabecular meshwork area followed by clearance from the vitreous. Interestingly, substantial reduction of intraocular pressure (IOP was observed in eyes implanted with particles made of PS, PNIPAM and PLLA, but not HA nanoparticles and buffered salt solution control. On the other hand, based on histology, we found that the particle implantation had no influence on cornea, iris and even retina. Surprisingly, substantial CD11b+ inflammatory cells were found to accumulate in the trabecular meshwork area in some animals. In addition, there was a good relationship between recruited CD11b+ cells and IOP reduction.Overall, the results reveal the potential influence of nanoparticle material properties on IOP reduction and inflammatory responses in trabecular meshwork. Such interactions may be critical for the development of future ocular nanodevices with improved safety and perhaps efficacy.

  18. Determination of miloxacin and metabolites in human serum and urine by high-pressure liquid chromatography.

    Science.gov (United States)

    Yoshitake, A; Kawahara, K; Shono, F; Umeda, I; Izawa, A; Komatsu, T

    1980-01-01

    A sensitive and reliable high-pressure liquid chromatography (HPLC) assay for miloxacin and its two principal metabolites, 5,8-dihydro-8-oxo-2H-1,3-dioxolo[4,5-g]quinoline-7-carboxylic acid (M-1) and 1,4-dihydro-1,6-dimethoxy-7-hydroxy-4-oxoquinoline-3-carboxylic acid (M-2), in human serum and urine was developed. A strong anion-exchange Zipax SAX column using a mobile phase of 0.01 M citric acid solution containing 0.03 M sodium nitrate with pH 5.0 was used to achieve separation of the three compounds. The retention times of miloxacin, M-1, and M-2 were 3.8, 9.3, and 5.9 min, respectively. Serum and urine concentrations of these compounds as low as 10 ng/ml were measured. When results from the HPLC assay were compared with those from the microbiological assay of serum and urine samples from human subjects receiving miloxacin orally, the correlation coefficients were 0.94 for the serum and 0.99 for the urine. The HPLC assay method presents an alternative to the microbiological assay and permits future pharmacokinetic investigations of miloxacin. PMID:7416751

  19. Intraocular Pressure Changes: An Important Determinant of the Biocompatibility of Intravitreous Implants

    Science.gov (United States)

    Zou, Ling; Nair, Ashwin; Weng, Hong; Tsai, Yi-Ting; Hu, Zhibing; Tang, Liping

    2011-01-01

    Background In recent years, research efforts exploring the possibility of using biomaterial nanoparticles for intravitreous drug delivery has increased significantly. However, little is known about the effect of material properties on intravitreous tissue responses. Principal Findings To find the answer, nanoparticles made of hyaluronic acid (HA), poly (l-lactic acid) (PLLA), polystyrene (PS), and Poly N-isopropyl acrylamide (PNIPAM) were tested using intravitreous rabbit implantation model. Shortly after implantation, we found that most of the implants accumulated in the trabecular meshwork area followed by clearance from the vitreous. Interestingly, substantial reduction of intraocular pressure (IOP) was observed in eyes implanted with particles made of PS, PNIPAM and PLLA, but not HA nanoparticles and buffered salt solution control. On the other hand, based on histology, we found that the particle implantation had no influence on cornea, iris and even retina. Surprisingly, substantial CD11b+ inflammatory cells were found to accumulate in the trabecular meshwork area in some animals. In addition, there was a good relationship between recruited CD11b+ cells and IOP reduction. Conclusions Overall, the results reveal the potential influence of nanoparticle material properties on IOP reduction and inflammatory responses in trabecular meshwork. Such interactions may be critical for the development of future ocular nanodevices with improved safety and perhaps efficacy. PMID:22194895

  20. Application of hydrocyanic acid vapor generation via focused microwave radiation to the preparation of industrial effluent samples prior to free and total cyanide determinations by spectrophotometric flow injection analysis.

    Science.gov (United States)

    Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal

    2007-02-01

    A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.