WorldWideScience

Sample records for vapor phase soldering

  1. Strength of joints brazed with two-phase solders

    International Nuclear Information System (INIS)

    Shnyakin, N.S.; Parfenova, L.V.; Ekatova, A.S.; Prilepskaya, I.V.

    1976-01-01

    Dependence of the structure and strength of soldered joints upon a gap size in case of 1Kh18N10T stainless steel soldering with a double-phase solder of Ni-Zn-Cu system is described. Butt and lap joints have been subjected to soldering with gas-flame and induction heating. The optimum conditions of the solder crystallization are determined with wedge-gap samples. The studies show that the character of distribution of a fusible β-phase in metal depends upon a gap size. With gaps up to 0.1 mm the β-phase enriched with a fusible component (zinc) runs as a continuous thin interlayer in the middle of the seam. As a result of zinc evaporation from the β-phase this interlayer becomes internally oxidized. After the sample is broken an oxidized fracture gives one the impression of a poor fusion in the middle part of the joint. The ultimate strength of butt joints is 15-20 kgf/sq.mm. A value of thermal expansion of 1Kh18N10T steel samples, 1-5 mm thick, has been experimentally determined for butt soldering. The elongation of two halves of the sample is measured by an indicator and proved to be 0.89 mm for a 50x50x2 mm sample at a soldering temperature of 1.100 deg C. The paper presents methods for the calculation of an optimal gap value for butt soldering with a local gas-flame and induction heating

  2. Control of microstructure in soldered, brazed, welded, plated, cast or vapor deposited manufactured components

    Science.gov (United States)

    Ripley, Edward B.; Hallman, Russell L.

    2015-11-10

    Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.

  3. Appendix to the report from the low-residue soldering task force: Phase 2 results

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.; Anderson, D.J.; Huffman, D.D. [and others

    1995-12-01

    The LRSTF report for Phase I of its evaluation of low-residue soldering was issued in June 1995. This Appendix summarizes the results of follow-on testing performed in Phase II and compares electrical test results for both phases. Deliberate decisions were made by the LRSTF in Phase I to challenge the design guideline limits in MILSTD-275, Printed Wiring for Electronic Equipment The LRSTF considered this approach to produce a ``worst case`` design and provide useful information about the robustness of LR soldering processes. As such, good design practices were sometimes deliberately violated in designing the LRSTF board. This approach created some anomalies for both LR boards and RMA/cleaned controls. Phase II testing verified that problems that affected both RMA/cleaned and LR boards in Phase I were design related.

  4. Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  5. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  6. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  7. Soldering handbook

    CERN Document Server

    Vianco, Paul T

    1999-01-01

    Contains information related to soldering processes, and solder joint performance and reliability. Covers soldering fundamentals, technology, materials, substrate materials, fluxes, pastes, assembly processes, inspection, and environment. Covers today's advanced joining applications and emphasizes new materials, including higher strength alloys; predictive performance; computer modeling; advanced inspection techniques; new processing concepts, including laser heating; and the resurgence in ultrasonic soldering.

  8. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  9. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  10. The liquid to vapor phase transition in excited nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  11. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.

    2006-01-01

    Electrically and optically active polyaniline films doped with (1)-(-)-10- camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline/ R- camphorsulfonate films were characterized by electrochemical and physical...

  12. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  13. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  14. External fuel vaporization study, phase 2

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  15. Growth kinetics of the intermetallic phase in diffusion-soldered (Cu-5 at.%Ni)/Sn/(Cu-5 at.%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Miernik, K.; Wojewoda-Budka, J.; Szyszkiewicz, K.; Filipek, R.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2013-01-01

    A stereological analysis was carried out in order to obtain the kinetics parameters of the (Cu1-xNix)6Sn5 growth in the diffusion soldered (Cu–5 at.%Ni)/Sn/(Cu–5 at.%Ni) interconnections where previously anomalous fast growth of this phase was described. The n-parameter in the equation x = ktn was

  16. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X = Bi, In) solders with Cu substrate

    International Nuclear Information System (INIS)

    Hodulova, Erika; Palcut, Marian; Lechovic, Emil; Simekova, Beata; Ulrich, Koloman

    2011-01-01

    Highlights: → In substitutes Sn in intermetallic compounds formed at the Cu-solder interface. → Bi and In decrease the parabolic rate constant of Cu 3 Sn layer growth. → In increases the parabolic rate constant of Cu 6 Sn 5 layer growth. → High In concentrations should be avoided since they may lead to a pre-mature solder joint degradation. - Abstract: The effects of Bi and In additions on intermetallic phase formation in lead-free solder joints of Sn-3.7Ag-0.7Cu; Sn-1.0Ag-0.5Cu-1.0Bi and Sn-1.5Ag-0.7Cu-9.5In (composition given in weight %) with copper substrate are studied. Soldering of copper plate was conducted at 250 deg. C for 5 s. The joints were subsequently aged at temperatures of 130-170 deg. C for 2-16 days in a convection oven. The aged interfaces were analyzed by optical microscopy and energy dispersive X-ray spectroscopy (EDX) microanalysis. Two intermetallic layers are observed at the interface - Cu 3 Sn and Cu 6 Sn 5 . Cu 6 Sn 5 is formed during soldering. Cu 3 Sn is formed during solid state ageing. Bi and In decrease the growth rate of Cu 3 Sn since they appear to inhibit tin diffusion through the grain boundaries. Furthermore, indium was found to produce a new phase - Cu 6 (Sn,In) 5 instead of Cu 6 Sn 5 , with a higher rate constant. The mechanism of the Cu 6 (Sn,In) 5 layer growth is discussed and the conclusions for the optimal solder chemical composition are presented.

  17. Toxicity of vapor phase petroleum contaminants to microbial degrader communities

    International Nuclear Information System (INIS)

    Long, S.C.; Davey, C.A.

    1994-01-01

    Petroleum products constitute the largest quantity of synthetic organic chemical products produced in the US. They are comprised of mostly hydrocarbon constituents from many different chemical classes including alkenes, cycloalkanes, aromatic compounds, and polyaromatic hydrocarbons. Many petroleum constituents are classified as volatile organic compounds or VOCs. Petroleum products also constitute a major portion of environmental pollution. One emerging technology, with promise for applications to VOCs in subsurface soil environments, is bioventing coupled with soil vapor extraction. These technologies involve volatilization of contaminants into the soil gas phase by injection and withdrawal of air. This air movement causes enhancement of the aerobic microbial degradation of the mobilized vapors by the indigenous populations. This study investigated the effects of exposure of mixed, subsurface microbial communities to vapor phase petroleum constituents or vapors of petroleum mixtures. Soil slurries were prepared and plated onto mineral salts agar plates and exposed to vapor phase contaminants at equilibrium with pure product. Representative n-alkane, branched alkane, cycloalkane, and aromatic compounds were tested as well as petroleum product mixtures. Vapor exposure altered the numbers and morphologies of the colonies enumerated when compared to controls. However, even at high, equilibrium vapor concentrations, microbial degrader populations were not completely inhibited

  18. Spontaneous soldering

    International Nuclear Information System (INIS)

    Percacci, R.

    1984-01-01

    It is proposed that the soldering form of general relativity be treated as a dynamical variable. This gives rise to the possibility of treating the linear connection on (n-dimensional) spacetime and an internal O(k)-Yang-Mills field as different components of the same O(N) gauge field (N= n+k). The distinction between gravitational and Yang-Mills interactions is due to a kind of Higgs mechanism driven by the vacuum expectation value of the soldering form. (orig.)

  19. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    Science.gov (United States)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  20. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  1. electrocatalytic reduction of oxygen at vapor phase polymerized poly ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. We successfully polymerized poly(3,4-ethylenedioxidethiophene) by vapor phase polymerization technique on rotating glassy carbon disk electrode. The catalytic activity of this electrode towards oxygen reduction reaction was investigated and showed remarkable activity. Rotating disk voltammetry was used to ...

  2. Electrocatalytic reduction of oxygen at vapor phase polymerized ...

    African Journals Online (AJOL)

    We successfully polymerized poly(3,4-ethylenedioxidethiophene) by vapor phase polymerization technique on rotating glassy carbon disk electrode. The catalytic activity of this electrode towards oxygen reduction reaction was investigated and showed remarkable activity. Rotating disk voltammetry was used to study the ...

  3. SMT soldering handbook

    National Research Council Canada - National Science Library

    Strauss, Rudolf

    1998-01-01

    ... 3.2.1 Constituents, melting behaviour and mechanical properties 3.2.2 Composition of solders for use in electronics 3.2.3 Lead-free solders 3.2.4 Solder impurities The soldered joint 3.3.1 Solde...

  4. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Interface between Sn-Sb-Cu solder and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sebo, P., E-mail: Pavel.Sebo@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Svec, P. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janickovic, D.; Illekova, E. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine)

    2011-07-15

    Highlights: {yields} New lead-free solder materials based on Sn-Sb-Cu were designed and prepared. {yields} Melting and solidification temperatures of the solders have been determined. {yields} Cu-substrate/solder interaction has been analyzed and quantified. {yields} Phases formed at the solder-substrate interface have been identified. {yields} Composition and soldering atmospheres were correlated with joint strength. - Abstract: Influence of antimony and copper in Sn-Sb-Cu solder on the melting and solidification temperatures and on the microstructure of the interface between the solder and copper substrate after wetting the substrate at 623 K for 1800 s were studied. Microstructure of the interface between the solder and copper substrates in Cu-solder-Cu joints prepared at the same temperature for 1800 s was observed and shear strength of the joints was measured. Influence of the atmosphere - air with the flux and deoxidising N{sub 2} + 10H{sub 2} gas - was taken into account. Thermal stability and microstructure were studied by differential scanning calorimetry (DSC), light microscopy, scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). Melting and solidification temperatures of the solders were determined. An interfacial transition zone was formed by diffusion reaction between solid copper and liquid solder. At the interface Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} phases arise. Cu{sub 3}Sn is adjacent to the Cu substrate and its thickness decreases with increasing the amount of copper in solder. Scallop Cu{sub 6}Sn{sub 5} phase is formed also inside the solder drop. The solid solution Sn(Sb) and SbSn phase compose the interior of the solder drop. Shear strength of the joints measured by push-off method decreases with increasing Sb concentration. Copper in the solder shows even bigger negative effect on the strength.

  6. Direct Vapor-Phase Bromination of Multiwall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Mazov

    2012-01-01

    Full Text Available We present the simple procedure of the vapor-phase bromination of multiwall carbon nanotubes (MWNTs at moderate temperatures. MWNTs with average diameter 9±3 nm were treated with Br2 vapors at 250°C to produce Br-functionalized product. Transmission electron microscopy analysis was used to prove low damage of MWNT walls during bromination. X-ray photoelectron spectroscopy (XPS and differential thermal analysis (DTA were used to investigate chemical composition of the surface of initial and brominated nanotubes. The experimental results show that the structure of MWNTs is not affected by the bromination process and the total amount of Br-containing surface functions reaches 2.5 wt. %. Electrophysical properties of initial and brominated MWNTs were investigated showing decrease of conductivity for functionalized sample. Possible mechanism of the vapor-phase bromination via surface defects and oxygen-containing functional groups was proposed according to data obtained. Additional experiments with bromination of annealed low-defected MWNTs were performed giving Br content a low as 0.75 wt. % proving this hypothesis.

  7. Vapor-phase biofiltration: Laboratory and field experience

    International Nuclear Information System (INIS)

    Evans, P.J.; Bourbonais, K.A.; Peterson, L.E.; Lee, J.H.; Laakso, G.L.

    1995-01-01

    Application of vapor-phase bioreactors (VPBs) to petroleum hydrocarbons is complicated by the different mass transfer characteristics of aliphatics and aromatics. Laboratory- and pilot-scale VPB studies were conducted to evaluate treatment of soil vapor extraction (SVE) off-gas. A mixture of compost, perlite, and activated carbon was the selected medium based on pressure drop, microbial colonization, and adsorption properties. Two different pilot-scale reactors were built with a difference of 70:1 in scale. The smaller VPB's maximum effective elimination capacity (EC) was determined to be 7.2 g m -3 h -1 ; the larger unit's EC was 70% to 80% of this value. Low EC values may be attributable to a combination of mass-transfer and kinetic limitations

  8. Modelling and numerical simulation of liquid-vapor phase transitions

    International Nuclear Information System (INIS)

    Caro, F.

    2004-11-01

    This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)

  9. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  10. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  11. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  12. Phase transition and luminescence properties from vapor etched silicon

    International Nuclear Information System (INIS)

    Aouida, S.; Saadoun, M.; Ben Saad, K.; Bessais, B.

    2006-01-01

    In this work, we present a study on the structure and photoluminescence (PL) properties of a non-conventional ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 (white powder) obtained from HNO 3 /HF chemical vapor etching (CVE) of silicon wafers. The CVE method leads either to the formation of luminescent Porous Silicon (PS) or SiO x /Si-containing (NH 4 ) 2 SiF 6 depending on the experimental conditions. At specific conditions (i.e., HNO 3 / HF volume ratio > 1 / 4), the CVE technique can generate instead of PS, a (NH 4 ) 2 SiF 6 phase where SiO x /Si particles are embedded. The (NH 4 ) 2 SiF 6 marketed powder is not luminescent, while that obtained from silicon vapor-etching presents a noticeable intense and stable photoluminescence (PL), which was found to have mainly two shoulders at 1.98 and 2.1 eV. Two processes have been proposed to explain this PL property. First, the visible luminescence around 1.98 eV would come from silicon nanoparticles embedded in the powder, having a distribution size that does not allow SiO x species to influence their own PL. Second, the PL shoulder around 2.1 eV would originate from small silicon nanoparticles trapped in SiO x features, leading to oxide related states that may trap electrons or excitons, depending on the silicon nanoparticle size, wherein radiative recombination occurs. The PL shoulder could become broader at low temperatures suggesting the existence of radiative recombination in SiO x related defects

  13. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    Science.gov (United States)

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  14. Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In–48Sn/Cu solder interconnects under current stressing

    International Nuclear Information System (INIS)

    Li, Yi; Lim, Adeline B.Y.; Luo, Kaiming; Chen, Zhong; Wu, Fengshun; Chan, Y.C.

    2016-01-01

    The evolution of microstructure in Cu/In–48Sn/Cu solder bump interconnects at a current density of 0.7 × 10"4 A/cm"2 and ambient temperature of 55 °C has been investigated. During electromigration, tin (Sn) atoms migrated from cathode to anode, while indium (In) atoms migrated from anode to cathode. As a result, the segregation of the Sn-rich phase and the In-rich phase occurred. A Sn-rich layer and an In-rich layer were formed at the anode and the cathode, respectively. The accumulation rate of the Sn-rich layer was 1.98 × 10"−"9 cm/s. The atomic flux of Sn was calculated to be approximately 1.83 × 10"1"3 atoms/cm"2s. The product of the diffusivity and the effective charge number of Sn was determined to be approximately 3.13 × 10"−"1"0 cm"2/s. The In–48Sn/Cu IMC showed a two layer structure of Cu_6(Sn,In)_5, adjacent to the Cu, and Cu(In,Sn)_2, adjacent to the solder. Both the cathode IMC and the anode IMC thickened with increasing electromigration time. The IMC evolution during electromigration was strongly influenced by the migration of Cu atoms from cathode to anode and the accumulation of Sn-rich and In-rich layers. During electromigration, the Cu(In,Sn)_2 at the cathode interface thickened significantly, with a spalling characteristic, due to the accumulation of In-rich layer and the migration of Cu atoms - while the Cu(In,Sn)_2 at the anode interface reduced obviously, due to the accumulation of Sn-rich layer. The mechanism of electromigration-induced failure in Cu/In–48Sn/Cu interconnects was the cathode Cu dissolution-induced solder melt, which led to the rapid consumption of Cu in the cathode pad during liquid-state electromigration and this finally led to the failure. - Highlights: • Sn migrates to the anode, while In migrates to the cathode, during EM in Cu/In–48Sn/Cu. • The atomic flux of Sn has been calculated. • The interfacial IMCs were identified as: Cu_6(Sn,In)_5 + Cu(In,Sn)_2. • The interface evolution is strongly

  15. The nuclear liquid-vapor phase transition: Equilibrium between phases or free decay in vacuum?

    International Nuclear Information System (INIS)

    Phair, L.; Moretto, L.G.; Elliott, J.B.; Wozniak, G.J.

    2002-01-01

    Recent analyses of multifragmentation in terms of Fisher's model and the related construction of a phase diagram brings forth the problem of the true existence of the vapor phase and the meaning of its associated pressure. Our analysis shows that a thermal emission picture is equivalent to a Fisher-like equilibrium description which avoids the problem of the vapor and explains the recently observed Boltzmann-like distribution of the emission times. In this picture a simple Fermi gas thermometric relation is naturally justified. Low energy compound nucleus emission of intermediate mass fragments is shown to scale according to Fisher's formula and can be simultaneously fit with the much higher energy ISiS multifragmentation data

  16. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  17. Semiconductor light sources fabricated by vapor phase epitaxial regrowth

    International Nuclear Information System (INIS)

    Powazinik, W.; Olshansky, R.; Meland, E.; Lauer, R.B.

    1986-01-01

    An extremely versatile technique for the fabrication of semiconductor light sources is described. The technique which is based on the halide vapor phase regrowth (VPR) of InP on channeled and selectively etched InGaAsP/InP double heterostructure material, results in a buried heterostructure (BH) index-guided VPR-BH diode laser structure which can be optimized for a number of different types of semiconductor light sources. The conditions and parameters associated with the halide VPR process are given, and the properties of the regrown InP are reported. The processing and characterization of high-frequency lasers with 18-GHz bandwidths and high-power lasers with cw single-spatial-mode powers of 60 mW are described. Additionally, the fabrication and characterization of superluminescent LEDs based on the this basic VPR-BH structure are described. These LEDs are capable of coupling more than 80 μW of optical power into a single-mode fiber at 100 mA, and can couple as much as 8 μW of optical power into a single-mode fiber at drive currents as low as 20 mA

  18. Thin film solar cells grown by organic vapor phase deposition

    Science.gov (United States)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  19. Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction

    Science.gov (United States)

    Takaku, Yoshikazu; Ohnuma, Ikuo; Kainuma, Ryosuke; Yamada, Yasushi; Yagi, Yuji; Nishibe, Yuji; Ishida, Kiyohito

    2006-11-01

    Bismuth and its alloys are candidates for Pb-free high-temperature solders that can be substituted for conventional Pb-rich Pb-Sn solders (melting point (mp) = 573 583 K). However, inferior properties such as brittleness and weak bonding strength should be improved for practical use. To that end, BiCu-X (X=Sb, Sn, and Zn) Pb-free high-temperature solders are proposed. Miscibility gaps in liquid BiCu-X alloys were surveyed using the thermodynamic database ADAMIS (alloy database for micro-solders), and compositions of the BiCu-X solders were designed on the basis of calculation. In-situ composite solders that consist of a Bi-base matrix with fine intermetallic compound (IMC) particles were produced by gas-atomizing and melt-spinning methods. The interfacial reaction between in-situ composite solders and Cu or Ni substrates was investigated. The IMCs at the interface formed a thin, uniform layer, which is an appropriate morphology for a reliable solder joint.

  20. Characterizing the Soldering Alloy Type In–Ag–Ti and the Study of Direct Soldering of SiC Ceramics and Copper

    Directory of Open Access Journals (Sweden)

    Roman Koleňák

    2018-04-01

    Full Text Available The aim of the research was to characterize the soldering alloy In–Ag–Ti type, and to study the direct soldering of SiC ceramics and copper. The In10Ag4Ti solder has a broad melting interval, which mainly depends on its silver content. The liquid point of the solder is 256.5 °C. The solder microstructure is composed of a matrix with solid solution (In, in which the phases of titanium (Ti3In4 and silver (AgIn2 are mainly segregated. The tensile strength of the solder is approximately 13 MPa. The strength of the solder increased with the addition of Ag and Ti. The solder bonds with SiC ceramics, owing to the interaction between active In metal and silicon infiltrated in the ceramics. XRD analysis has proven the interaction of titanium with ceramic material during the formation of the new minority phases of titanium silicide—SiTi and titanium carbide—C5Ti8. In and Ag also affect bond formation with the copper substrate. Two new phases were also observed in the bond interphase—(CuAg6In5 and (AgCuIn2. The average shear strength of a combined joint of SiC–Cu, fabricated with In10Ag4Ti solder, was 14.5 MPa. The In–Ag–Ti solder type studied possesses excellent solderability with several metallic and ceramic materials.

  1. Flows of a Vapor due to Phase Change Processes at the Condensed Phases with Temperature Fields as their Internal Structures

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Ooshida, Takeshi

    2005-01-01

    Transient to steady motions of a vapor caused by the evaporation and condensation processes occurring at the condensed phases placed in parallel have been studied based on the Boltzmann equation of BGK type...

  2. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  3. Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations

    Science.gov (United States)

    2015-05-01

    vapor bubbles may generate near blades [40]. This is the phenomenon of cavitation and it is still a limiting factor for ship propeller design. Phase...van der Waals theory with hydrodynamics [39]. The fluid equations based on the van der Waals theory are called the Navier-Stokes-Korteweg equations... cavitating flows, the liquid- vapor phase transition induced by pressure variations. A potential challenge for such a simulation is a proper design of open

  4. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    Science.gov (United States)

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  5. Student Understanding of Liquid-Vapor Phase Equilibrium

    Science.gov (United States)

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  6. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  7. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  8. Evidence for extreme partitioning of copper into a magmatic vapor phase

    International Nuclear Information System (INIS)

    Lowenstern, J.B.; Mahood, G.A.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits

  9. Systematics of Structural, Phase Stability, and Cohesive Properties of η'-Cu6(Sn,In)5 Compounds Occurring in In-Sn/Cu Solder Joints

    Science.gov (United States)

    Ramos, S. B.; González Lemus, N. V.; Deluque Toro, C. E.; Cabeza, G. F.; Fernández Guillermet, A.

    2017-07-01

    Motivated by the high solubility of In in ( mC44) η'-Cu6Sn5 compound as well as the occurrence of an In-doped η'-intermetallic in the microstructure of Cu/In-Sn/Cu solder joints, a theoretical study has been carried out to investigate the various physical effects of incorporating In at Sn Wyckoff sites of the binary η'-phase. Systematic ab initio calculations using the projected augmented wave method and Vienna Ab initio Simulation Package were used to determine the composition dependence of the structural and cohesive properties of η'-Cu6(Sn,In)5 compounds, compared with those expected from the binary end-member compounds Cu6Sn5 and Cu6In5. The molar volume shows significant deviations from Vegard's law. The predicted composition dependence of the cohesive properties is discussed using two complementary approaches, viz. a valence-electron density approach as well as a bond-number approach, both accounting for the roughly linear dependence of the cohesive energy on the In content. A microscopic interpretation for this general trend is given in terms of the key contributions to chemical bonding in this class of compounds, namely Cu d-electron overlap and hybridization of Cu d-states with In and Sn p-electron states. Moreover, a crystallographic site approach is developed to accurately establish the phase-stabilizing effect of incorporating In at specific Wyckoff positions of the ( mC44) η'-Cu6Sn5 structure.

  10. Integration of environmentally compatible soldering technologies for waste minimization

    International Nuclear Information System (INIS)

    Hosking, F.M.

    1992-01-01

    There has been a concentrated effort throughout the international microelectronics industry to phase out chlorofluorocarbon (CFC) materials and alleviate the serious problem of ozone depletion created by the release of CFCS. The development of more environmentally compatible manufacturing technologies is the cornerstone of this effort. Alternative materials and processes for cleaning and soldering have received special attention. Electronic. soldering typically utilizes rosin-based fluxes to promote solder wettability. Flux residues must be removed from the soldered parts when high product reliability is essential. Halogenated or CFC solvents have been the principle chemicals used to clean the residues. With the accelerated push to eliminate CFCs in the US by 1995, CFC-free solvents, aqueous-based cleaning, water soluble or ''no clean'' fluxes, and fluxless soldering technologies are being developed and quickly integrated into manufacturing practice. Sandia's Center for Solder Science and Technology has been ch g a variety of fluxless and alternative soldering technologies for DOE's waste minimization program. The work has focused on controlled atmosphere, laser, and ultrasonic fluxless soldering, protective metallic and organic coatings, and fluxes which have water soluble or low solids-based chemistries. With the increasing concern that Pb will also be banned from electronic soldering, Sandia has been characterizing the wetting, aging, and mechanical properties of Pb-fire solder alloys. The progress of these integrated studies will be discussed. Their impact on environmentally compatible manufacturing will be emphasized. Since there is no universal solution to the various environmental, safety, and health issues which currently face industry, the proposed technologies offer several complementary materials and processing options from which one can choose

  11. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  12. Phase relationship, vaporization, and thermodynamic properties of the lanthanum--boron system

    International Nuclear Information System (INIS)

    Storms, E.; Mueller, B.

    1978-01-01

    The La-B system was studied between LaB/sub 4.24/ and LaB/sub 29.2/, and between 1400 and 2100 K to determine the phase relationship, the chemical activity of the components, the vaporization rate, and the vapor composition. A blue colored phase near LaB 9 was found to exist between purple colored LaB 6 and elemental boron. Diffusion is so much slower than vaporization that large composition differences can exist between the surface and the interior which, nevertheless, produce a steady state loss rate from freely vaporizing material. The flux at 1700 K is 6 x 10 -10 g/cm 2 s for LaB 4 +LaB 6 and 7 x 10 -11 g/cm 2 s for LaB 6 + LaB 9 . There is an activation energy which lowers the vaporization rate of boron from LaB 6 . Freely vaporizing material will have a steady state surface composition between LaB/sub 6.04/ and LaB/sub 6.07/, depending on temperature, purity, and interior composition. The free energy of formation of LaB 6 is (0.07lT - 351)kJ/mol between 1700 and 2100 K

  13. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    Energy Technology Data Exchange (ETDEWEB)

    Dugger, Michael Thomas; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  14. Assessment of potential solder candidates for high temperature applications

    DEFF Research Database (Denmark)

    pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...... criterion, phases predicted in the bulk solder and the thermodynamic stability of chlorides. These promising solder candidates were precisely produced using the hot stage microscope and its respective anodic and cathodic polarization curves were investigated using a micro-electrochemical set up...

  15. Irradiation of fish fillets: Relation of vapor phase reactions to storage quality

    Science.gov (United States)

    Spinelli, J.; Dollar, A.M.; Wedemeyer, G.A.; Gallagher, E.C.

    1969-01-01

    Fish fillets irradiated under air, nitrogen, oxygen, or carbon dioxide atmospheres developed rancidlike flavors when they were stored at refrigerated temperatures. Packing and irradiating under vacuum or helium prevented development of off-flavors during storage.Significant quantities of nitrate and oxidizing substances were formed when oxygen, nitrogen, or air were present in the vapor or liquid phases contained in a Pyrex glass model system exposed to ionizing radiation supplied by a 60Co source. It was demonstrated that the delayed flavor changes that occur in stored fish fillets result from the reaction of vapor phase radiolysis products and the fish tissue substrates.

  16. Liquid-vapor phase transition upon pressure decrease in the lead-bismuth system

    Science.gov (United States)

    Volodin, V. N.

    2009-11-01

    The liquid-vapor phase transitions boundaries were calculated on the basis of the values of vapor pressure of the components in the lead-bismuth system during the stepwise pressure decrease by one order of magnitude from 105 down to 1 Pa. The emergence of azeotropic liquid under pressure lower than 19.3 kPa was ascertained. The emergence of azeotropic mixture near the lead edge of the phase diagram was concluded to be the reason for technological difficulties in the distillation separation of the system into the components in a vacuum.

  17. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  18. Printing of small molecular medicines from the vapor phase.

    Science.gov (United States)

    Shalev, Olga; Raghavan, Shreya; Mazzara, J Maxwell; Senabulya, Nancy; Sinko, Patrick D; Fleck, Elyse; Rockwell, Christopher; Simopoulos, Nicholas; Jones, Christina M; Schwendeman, Anna; Mehta, Geeta; Clarke, Roy; Amidon, Gregory E; Shtein, Max

    2017-09-27

    There is growing need to develop efficient methods for early-stage drug discovery, continuous manufacturing of drug delivery vehicles, and ultra-precise dosing of high potency drugs. Here we demonstrate the use of solvent-free organic vapor jet printing to deposit nanostructured films of small molecular pharmaceutical ingredients, including caffeine, paracetamol, ibuprofen, tamoxifen, BAY 11-7082 and fluorescein, with accuracy on the scale of micrograms per square centimeter, onto glass, Tegaderm, Listerine tabs, and stainless steel microneedles. The printed films exhibit similar crystallographic order and chemistry as the original powders; controlled, order-of-magnitude enhancements of dissolution rate are observed relative to powder-form particles. In vitro treatment of breast and ovarian cancer cell cultures in aqueous media by tamoxifen and BAY 11-7082 films shows similar behavior to drugs pre-dissolved in dimethyl sulfoxide. The demonstrated precise printing of medicines as films, without the use of solvents, can accelerate drug screening and enable continuous manufacturing, while enhancing dosage accuracy.Traditional approaches used in the pharmaceutical industry are not precise or versatile enough for customized medicine formulation and manufacture. Here the authors produce a method to form coatings, with accurate dosages, as well as a means of closely controlling dissolution kinetics.

  19. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments

    International Nuclear Information System (INIS)

    Khan, Ali M.; Wick, Lukas Y.; Harms, Hauke; Thullner, Martin

    2016-01-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. - Highlights: • The column setup allows resolving vapor-phase VOC concentration gradients at cm scale resolution. • Vapor-phase and liquid-phase concentrations are measured simultaneously. • Isotopically labelled VOC was used as reference species of low biodegradability. • Biodegradation rates in the unsaturated zone can be very high and act at a cm scale. • Unsaturated material can be an effective bio-barrier avoiding biodegradable VOC emissions. - Microbial degradation activity can be sufficient to remove VOC from unsaturated porous media after a few centimeter of vapor-phase diffusive transport and mayeffectively avoid atmospheric emissions.

  20. Influence of vapor phase turbulent stress to the onset of slugging in a horizontal pipe

    International Nuclear Information System (INIS)

    Park, Jee Won

    1995-01-01

    An influence of the vapor phase turbulent stress(i, e., the two-phase Reynolds stress)to the characteristics of two-phase system in a horizontal pipe has been theoretically investigated. The average two-fluid model has been constituted with closure relations for stratified flow in a horizontal pipe. A vapor phase turbulent stress model for the regular interface geometry has been included. It is found that the second order waves propagate in opposite direction with almost the same speed in the moving frame of reference of the liquid phase velocity. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been found to be a convenient parameter in quantifying the onset of slugging as a function of the global void fraction. The influence of the vapor phase turbulent stress was found to stabilize the flow stratification. 4 figs., 12 refs. (Author)

  1. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  2. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change

    Science.gov (United States)

    Li, Qing; Zhou, P.; Yan, H. J.

    2017-12-01

    In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.

  3. Recent Advances in Atmospheric Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide

    NARCIS (Netherlands)

    Illiberi, A.; Poodt, P.; Roozeboom, F.

    2014-01-01

    The industrial need for high-throughput and low-cost ZnO deposition processes has triggered the development of atmospheric vapor-phase deposition techniques which can be easily applied to continuous, in-line manufacturing. While atmospheric CVD is a mature technology, new processes for the growth of

  4. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn- xAg-0.7Cu

    Science.gov (United States)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-12-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  5. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  6. Liquid-phase and vapor-phase dehydration of organic/water solutions

    Science.gov (United States)

    Huang, Yu [Palo Alto, CA; Ly, Jennifer [San Jose, CA; Aldajani, Tiem [San Jose, CA; Baker, Richard W [Palo Alto, CA

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  7. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.

    2003-01-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  8. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  9. The influence of liquid/vapor phase change onto the Nusselt number

    Science.gov (United States)

    Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien

    2017-11-01

    In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.

  10. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    Science.gov (United States)

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  11. Vapor phase carbonylation of dimethyl ether and methyl acetate with supported transition metal catalysts

    International Nuclear Information System (INIS)

    Shikada, T.; Fujimoto, K.; Tominaga, H.O.

    1986-01-01

    The synthesis of acetic acid (AcOH) from methanol (MeOH) and carbon monoxide has been performed industrially in the liquid phase using a rhodium complex catalyst and an iodide promoter. The selectivity to AcOH is more than 99% under mild conditions (175 0 C, 28 atm). The homogeneous rhodium catalyst has been also effective for the synthesis of acetic anhydride (Ac 2 O) by carbonylation of dimethyl ether (DME) or methyl acetate (AcOMe). However, rhodium is one of the most expensive metals and its proved reserves are quite limited. It is highly desired, therefore, to develop a new catalyst as a substitute for rhodium. The authors have already reported that nickel supported on active carbon exhibits an excellent activity for the vapor phase carbonylation of MeOh in the presence of iodide promoter and under moderately pressurized conditions. In addition, corrosive attack on reactors by iodide compounds is expected to be negligible in the vapor phase system. In the present work, vapor phase carbonylation of DME and AcOMe on nickel-active carbon (Ni/A.C.) and molybdenum-active carbon (Mo/A.C.) catalysts was studied

  12. In situ, subsurface monitoring of vapor-phase TCE using fiber optics

    International Nuclear Information System (INIS)

    Rossabi, J.; Colston, B. Jr.; Brown, S.; Milanovich, F.; Lee, L.T. Jr.

    1993-01-01

    A vapor-phase, reagent-based, fiber optic trichloroethylene (TCE) sensor developed by Lawrence Livermore National Laboratory (LLNL) was demonstrated at the Savannah River Site (SRS) in two configurations. The first incorporated the sensor into a down-well instrument bounded by two inflatable packers capable of sealing an area for discrete depth analysis. The second involved an integration of the sensor into the probe tip of the Army Corps of Engineers Waterways Experiment Station (WES) cone penetrometry system. Discrete depth measurements of vapor-phase concentrations of TCE in the vadose zone were successfully made using both configurations. These measurements demonstrate the first successful in situ sensing (as opposed to sampling) of TCE at a field site

  13. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  14. Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN

    NARCIS (Netherlands)

    Bohnen, T.

    2010-01-01

    Chemical vapor deposition (CVD); hydride vapor phase epitaxy (HVPE); gallium nitride (GaN); indium gallium nitride (InGaN); scandium nitride (ScN); scandium aluminum nitride (ScAlN); semiconductors; thin films; nanowires; III nitrides; crystal growth - We studied the HVPE growth of different III

  15. Corrosion Reliability of Lead-free Solder Systems Used in Electronics

    DEFF Research Database (Denmark)

    Li, Feng; Verdingovas, Vadimas; Medgyes, Balint

    2017-01-01

    humidity/temperature cycling tests on soldered surface insulation resistance (SIR) comb pattern. Complimentary microstructural and phase analysis of solder alloys has been carried out using the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) methods...

  16. Investigation of moisture uptake into printed circuit board laminate and solder mask materials

    DEFF Research Database (Denmark)

    Conseil, Helene; Gudla, Visweswara Chakravarthy; Borgaonkar, Shruti

    2017-01-01

    with different solder mask materials and exposed to saturated water vapour and liquid water. The solder masks are characterised for their microstructure and constituent phases using scanning electron microscopy and X-ray diffraction. The observations are correlated with themoisture absorption characteristic...

  17. High flux diode packaging using passive microscale liquid-vapor phase change

    Science.gov (United States)

    Bandhauer, Todd; Deri, Robert J.; Elmer, John W.; Kotovsky, Jack; Patra, Susant

    2017-09-19

    A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.

  18. Vaporization thermodynamics of Pd-rich intermediate phases in the Pd–Yb system

    Energy Technology Data Exchange (ETDEWEB)

    Ciccioli, A., E-mail: andrea.ciccioli@uniroma1.it [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Balducci, G.; Gigli, G. [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Provino, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Palenzona, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Manfrinetti, P. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy)

    2016-02-20

    Highlights: • Vaporization equilibria of Pd–Yb intermediate phases investigated by effusion techniques. • Heats of formation of Pd–Yb compounds determined from decomposition/atomization enthalpies. • Phase diagram of the Pd–Yb system re-drawn. • Influence of the Yb valence state on the thermodynamic properties observed. - Abstract: The vaporization thermodynamics of several intermediate phases in the Pd–Yb system was investigated by means of vaporization experiments performed under Knudsen conditions (KEML, Knudsen Effusion Mass Loss). The following thermal decomposition processes were studied in the overall temperature range 819–1240 K and their enthalpy changes determined: 4 PdYb(s) = Pd{sub 4}Yb{sub 3}(s) + Yb(g); 5/3 Pd{sub 4}Yb{sub 3}(s) = 4/3 Pd{sub 5}Yb{sub 3}(s) + Yb(g); 21/13 Pd{sub 5}Yb{sub 3}(s) = 5/13 Pd{sub 21}Yb{sub 10}(s) + Yb(g); 1/3 Pd{sub 21}Yb{sub 10}(s) = 21/9 Pd{sub 3}Yb(s) + Yb(g). Additional measurements were performed by KEMS (Knudsen Effusion Mass Spectrometry) on a Pd-rich two-phase sample, which allowed to detect both Yb(g) and Pd(g) in the vapor phase and to determine the atomization enthalpy of the Pd{sub 3}Yb phase (Pd-rich composition boundary, Pd{sub 3.08}Yb{sub 0.92}): Pd{sub 3.08}Yb{sub 0.92}(s) = 0.92 Yb(g) + 3.08 Pd(g). The enthalpy of formation of this compound was thereafter determined as −68 ± 2 kJ/mol at. and, by combining this value with the decomposition enthalpies derived by KEML, the enthalpies of formation of the studied Pd–Yb intermediate phases were evaluated (kJ/mol at.): −75 ± 4 (Pd{sub 21}Yb{sub 10}), −75 ± 3 (Pd{sub 5}Yb{sub 3}), −73 ± 3 (Pd{sub 4}Yb{sub 3}), and −66 ± 3 (PdYb). A modified version of the Pd–Yb phase diagram is also reported, re-drawn on the basis of literature data and of new experimental information recently become available.

  19. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    Science.gov (United States)

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.

  20. Vaporization study on vanadium monoxide and two-phase mixture of vanadium and vanadium monoxide by mass-spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over single phase vanadium monoxide VO 1.022 (s) and the two-phase mixture of vanadium metal (β phase) and vanadium monoxide were measured by mass-spectrometric method in the temperature range of 1,803 ∼ 1,990 and 1,703 ∼ 1,884 K, respectively. The main gas species over both systems were found to be VO(g) and V(g). The vapor pressure of VO(g) over the two-phase mixture of V(s) and VO(s) was a little lower than that over single phase VO(s). The vapor pressure of V(g) over the two-phase mixture was nearly equal to that over single phase. From the vapor pressure data, the enthalpies of vaporization, the enthalpies of formation for VO(g) and V(g) and the dissociation energy of VO(g) were determined. The oxygen partial pressure was calculated as a function of temperature from the vapor pressures of VO(g) and V(g), from which the partial molar enthalpies and entropies of oxygen in both systems were obtained. (author)

  1. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  2. Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis.

    Science.gov (United States)

    Bartlome, Richard; Rey, Julien M; Sigrist, Markus W

    2008-07-15

    Numerous gas-sensing devices are based on infrared laser spectroscopy. In this paper, the technique is further developed and, for the first time, applied to forensic urinalysis. For this purpose, a difference frequency generation laser was coupled to an in-house-built, high-temperature multipass cell (HTMC). The continuous tuning range of the laser was extended to 329 cm(-1) in the fingerprint C-H stretching region between 3 and 4 microm. The HTMC is a long-path absorption cell designed to withstand organic samples in the vapor phase (Bartlome, R.; Baer, M.; Sigrist, M. W. Rev. Sci. Instrum. 2007, 78, 013110). Quantitative measurements were taken on pure ephedrine and pseudoephedrine vapors. Despite featuring similarities, the vapor-phase infrared spectra of these diastereoisomers are clearly distinguishable with respect to a vibrational band centered at 2970.5 and 2980.1 cm(-1), respectively. Ephedrine-positive and pseudoephedrine-positive urine samples were prepared by means of liquid-liquid extraction and directly evaporated in the HTMC without any preliminary chromatographic separation. When 10 or 20 mL of ephedrine-positive human urine is prepared, the detection limit of ephedrine, prohibited in sports as of 10 microg/mL, is 50 or 25 microg/mL, respectively. The laser spectrometer has room for much improvement; its potential is discussed with respect to doping agents detection.

  3. Metalorganic vapor phase epitaxy of AlN on sapphire with low etch pit density

    Science.gov (United States)

    Koleske, D. D.; Figiel, J. J.; Alliman, D. L.; Gunning, B. P.; Kempisty, J. M.; Creighton, J. R.; Mishima, A.; Ikenaga, K.

    2017-06-01

    Using metalorganic vapor phase epitaxy, methods were developed to achieve AlN films on sapphire with low etch pit density (EPD). Key to this achievement was using the same AlN growth recipe and only varying the pre-growth conditioning of the quartz-ware. After AlN growth, the quartz-ware was removed from the growth chamber and either exposed to room air or moved into the N2 purged glove box and exposed to H2O vapor. After the quartz-ware was exposed to room air or H2O, the AlN film growth was found to be more reproducible, resulting in films with (0002) and (10-12) x-ray diffraction (XRD) rocking curve linewidths of 200 and 500 arc sec, respectively, and EPDs < 100 cm-2. The EPD was found to correlate with (0002) linewidths, suggesting that the etch pits are associated with open core screw dislocations similar to GaN films. Once reproducible AlN conditions were established using the H2O pre-treatment, it was found that even small doses of trimethylaluminum (TMAl)/NH3 on the quartz-ware surfaces generated AlN films with higher EPDs. The presence of these residual TMAl/NH3-derived coatings in metalorganic vapor phase epitaxy (MOVPE) systems and their impact on the sapphire surface during heating might explain why reproducible growth of AlN on sapphire is difficult.

  4. Overview: Homogeneous nucleation from the vapor phase-The experimental science.

    Science.gov (United States)

    Wyslouzil, Barbara E; Wölk, Judith

    2016-12-07

    Homogeneous nucleation from the vapor phase has been a well-defined area of research for ∼120 yr. In this paper, we present an overview of the key experimental and theoretical developments that have made it possible to address some of the fundamental questions first delineated and investigated in C. T. R. Wilson's pioneering paper of 1897 [C. T. R. Wilson, Philos. Trans. R. Soc., A 189, 265-307 (1897)]. We review the principles behind the standard experimental techniques currently used to measure isothermal nucleation rates, and discuss the molecular level information that can be extracted from these measurements. We then highlight recent approaches that interrogate the vapor and intermediate clusters leading to particle formation, more directly.

  5. Direct Adsorption and Molecular Self-Assembly of Octylthioacetates on Au(111) in the Vapor Phase

    International Nuclear Information System (INIS)

    Park, Tae Sung; Kang, Hun Gu; Kim, You Young; Lee, Seong Keun; Noh, Jae Geun

    2011-01-01

    We demonstrate that the direct adsorption of OTA on Au(111) in ethanol solution led to the formation of a disordered phase, whereas OTA SAMs grown from the vapor phase have an ordered 5 Χ √3 striped phase. Thus, vapor deposition was found to be a more effective technique, as compared to solution deposition, for improving the structural order of SAMs by direct adsorption of thioacetates on gold. Organic thiols are prone to easily oxidize to disulfides or other oxidized species that can affect the formation and structure of SAMs. The presence of disulfides or oxidized compounds in thiol samples often yields poorly ordered SAMs containing a high defect density and disordered phases. An approach that minimizes undesirable thiol oxidation is the use of a protected thiol that is deprotected in situ before or during SAM formation. The protection of thiol groups can be readily accomplished by acetylation. SAMs derived from acetyl protected thiols (thioacetates) on gold have usually been formed via an in situ deprotection process of the acetyl group in strong acidic or basic solutions. Other deprotection techniques have also been developed that use organic compounds such as triethylamine, tetrabutylammonium cyanide, and 1,8-diazabicyclo[5.4.0]undec-7-ene, and organic SAMs with a high degree of structural order have been successfully constructed in solutions containing these deprotection reagents

  6. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2018-01-19

    Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. On the problem of soldering refractory metals with silver-containing solders

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Andryushchenko, V.I.; Chepelenko, V.N.; Batov, V.M.

    1981-01-01

    The processes of wetting, spreading and interphase interactions of copper-silver liquid alloys alloyed with Ni and Si, with niobium, tantalum, molybdenum, tungsten, 12Kh18N10T steel and nickel are studied. It has been determined that Ni or Si additions into the copper-silver solder improve the wetting and adhesion. When soldering with the alloy containing Ni additions, the strength of a soldered Joint grows with the increase of soldering duration while soldering with the alloy containing Si additions, the strength decreases. That is why Ni-containing solders are preferable for soldering thick-walled structures, and Si-containing solders - for thin-walled structures [ru

  8. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  9. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  10. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  11. Vapor-liquid Phase Equilibria for CO2+Tertpentanol Binary System at Elevated Pressures

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO Jian-cheng; YANG Hao; CHEN Kai-xun

    2011-01-01

    Vapor-liquid phase equilibrium data of tertpentanol in carbon dioxide were measured at temperatures of 313.4,323.4,333.5 and 343.5 K and in the pressure range of 4.56-11.44 MPa.The phase equilibium apparatus used in the work was a variable-volume high-pressure cell.The experimental data were reasonably correlated with Peng-Robinson equation of state(PR-EOS) together with van der Waals-2 two-parameter mixing rules.Henry's Law constants and partial molar volumes of CO2 at infinite dilution were estimated with Krichevsky-Kasarnovsky equation,and Henry's Law constants increase with increasing temperature,however,partial molar volumes of CO2 at infinite dilution are negative whose magnitudes decrease with temperature.Partial molar volumes of CO2 and tertpentanol in liquid phase at equilibrium were calculated.

  12. New mechanism for autocatalytic decomposition of H2CO3 in the vapor phase.

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K

    2014-04-03

    In this article, we present high level ab initio calculations investigating the energetics of a new autocatalytic decomposition mechanism for carbonic acid (H2CO3) in the vapor phase. The calculation have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets as well as at the CCSD(T)/aug-cc-pVTZ level. The present study suggests that this new decomposition mechanism is effectively a near-barrierless process at room temperature and makes vapor phase of H2CO3 unstable even in the absence of water molecules. Our calculation at the MP2/aug-cc-pVTZ level predicts that the effective barrier, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, is nearly zero for the autocatalytic decomposition mechanism. The results at the CCSD(T)/aug-cc-pVTZ level of calculations suggest that the effective barrier, as defined above, is sensitive to some extent to the levels of calculations used, nevertheless, we find that the effective barrier height predicted at the CCSD(T)/aug-cc-pVTZ level is very small or in other words the autocatalytic decomposition mechanism presented in this work is a near-barrierless process as mentioned above. Thus, we suggest that this new autocatalytic decomposition mechanism has to be considered as the primary mechanism for the decomposition of carbonic acid, especially at its source, where the vapor phase concentration of H2CO3 molecules reaches its highest levels.

  13. Organic vapor phase composition of sidestream and environmental tobacco smoke from cigarettes

    International Nuclear Information System (INIS)

    Higgins, C.E.; Jenkins, R.A.; Guerin, M.R.

    1987-01-01

    Environmental tobacco smoke (ETS) has received considerable attention because of its contribution to indoor air pollution. While some studies have attempted to estimate the exposure of humans to ETS constituents by extrapolating from information gleaned from investigations of sidestream smoke (SS), few studies have reported a direct comparison between the composition of SS and that of ETS. In the study reported here, the authors describe the relative compositional similarities and differences between the vapor phase of SS and that of ETS. SS was generated under different conditions. Both a new laminar flow chamber, which prevents significant alteration of the near-cigarette environment, and a modified Neurath chamber were used for SS generation. ETS samples were collected from an office environment. Vapor phase samples were collected on multi-media resin sorbent traps and analyzed using thermal desorption gas/liquid chromatography employing flame ionization, nitrogen-specific, and mass selective detection. Influences on the compositional profiles by the manner in which the SS is generated are described, as well as the differences between SS and ETS composition resulting from phase transition

  14. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  15. Liquid and vapor phase fluids visualization using an exciplex chemical sensor

    International Nuclear Information System (INIS)

    Kim, Jong Uk; Kim, Guang Hoon; Kim, Chang Bum; Suk, Hyyong

    2001-01-01

    Two dimensional slices of the cross-sectional distributions of fuel images in the combustion chamber were visualized quantitatively using a laser-induced exciplex (excited state complex) fluorescence technique. A new exciplex visualization system consisting of 5%DMA (N, N-dimethylaniline) · 5%1, 4,6-TMN (trimethylnaphthalene) in 90% isooctane (2,2,4-trimethylpentane) fuel was employed. In this method, the vapor phase was tagged by the monomer fluorescence while the liquid phase was tracked by the red-shifted exciplex fluorescence with good spectral and spatial resolution. The direct calibration of the fluorescence intensity as a function of the fluorescing dopant concentrations then permitted the determination of quantitative concentration maps of liquid and vapor phases in the fuel. The 308 nm (XeCl) line of the excimer laser was used to excite the doped molecules in the fuel and the resulting fluorescence images were obtained with an ICCD detector as a function time. In this paper, the spectroscopy of the exciplex chemical sensors as well as the optical diagnostic method of the fluid distribution is discussed in detail.

  16. Vapor-phase synthesis and characterization of ZnSe nanoparticles

    Science.gov (United States)

    Sarigiannis, D.; Pawlowski, R. P.; Peck, J. D.; Mountziaris, T. J.; Kioseoglou, G.; Petrou, A.

    2002-06-01

    Compound semiconductor nanoparticles are an exciting class of materials whose unique optical and electronic properties can be exploited in a variety of applications, including optoelectronics, photovoltaics, and biophotonics. The most common route for synthesizing such nanoparticles has been via liquid-phase chemistry in reverse micelles. This paper discusses a flexible vapor-phase technique for synthesis of crystalline compound semiconductor nanoparticles using gas-phase condensation reactions near the stagnation point of a counterflow jet reactor. ZnSe nanoparticles were formed by reacting vapors of dimethylzinc: triethylamine adduct and hydrogen selenide at 120Torr and room temperature (28°C). No attempt was made to passivate the surface of the particles, which were collected as random aggregates on silicon wafers or TEM grids placed downstream of the reaction zone. Particle characterization using TEM, electron diffraction, Raman and EDAX revealed that the aggregates consisted of polycrystalline ZnSe nanoparticles, almost monodisperse in size (with diameters of ~40nm). The polycrystalline nanoparticles appear to have been formed by coagulation of smaller single-crystalline nanoparticles with characteristic size of 3-5 run.

  17. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  18. Nitrogen doping efficiency during vapor phase epitaxy of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, L.B.; Brandt, C.D. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States); Burk, A.A. Jr. [Northrop Grumman Advanced Technology Lab., Baltimore, MD (United States)

    1998-06-01

    This work examines the interrelationships among doping efficiency, mole fraction, and Si/C ratio for intentional doping of 4H-SiC during vapor phase epitaxy using N{sub 2}. For four Si/C ratios, the doping concentration increased linearly as a function of increasing N{sub 2} partial pressure with a slope of 1.0 {+-} 0.03. Variation of propane mole fraction while the SiH{sub 4} and N{sub 2} mole fractions were kept constant revealed two different modes of nitrogen incorporation, corresponding to carbon-rich and silicon-rich conditions. (orig.) 14 refs.

  19. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  20. The influence of temperature on the polymerization of ethyl cyanoacrylate from the vapor phase

    Energy Technology Data Exchange (ETDEWEB)

    Dadmun, Mark D [ORNL; Algaier, Dana [University of Tennessee, Knoxville (UTK); Baskaran, Durairaj [University of Tennessee, Knoxville (UTK)

    2011-01-01

    The polymerization of ethyl cyanoacrylate fumes from surface bound initiators is an important step in many novel and mature technologies. Understanding the effect of temperature on the rate of poly(ethyl cyanoacrylate) (PECA) growth and its molecular weight during its polymerization from the vapor phase from surface bound initiators provides insight into the important mechanistic aspects that impact the polymerizations success. In these studies, it is shown that the amount of PECA formed during the polymerization of ECA from a latent fingerprint increases with decreasing temperature, while the polymer molecular weight varies little. This is interpreted to be the result of the loosening of the ion pair that initiates the polymer chain growth and resides on the end of the growing polymer chain with decreasing temperature. Comparison of temperature effects and counter-ion studies show that in both cases loosening the ion pair results in the formation of more polymer with similar molecular weight, verifying this interpretation. These results further suggest that lowering the temperature may be an effective method to optimize anionic vapor phase polymerizations, including the improvement of the quality of aged latent prints and preliminary results are presented that substantiate this prediction.

  1. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  2. Optimization of the soldering process by the DMAIC methodology

    Directory of Open Access Journals (Sweden)

    Michał Zasadzień

    2016-06-01

    Full Text Available The chapter presents the use of the DMAIC method for the analysis and improvement of the process of soldering pins in a plug connecting a bundle of wires to the board of a controller; a part of the steering system of a car. The main problem in the soldering process, that is an unsatisfactory share of bad soldered connections between the board and the plug and the instability of that number, was identified by means of a five-phase improvement process. Key points and main causes of the defect were pointed out, and process improvement measures were suggested. Due to the analysis conducted and the correct implementation of improvement measures the share of defective connections has been decreased twofold.

  3. Influence of Co and W powders on viscosity of composite solders during soldering of specially shaped diamond-abrasive tools

    Science.gov (United States)

    Sokolov, E. G.; Aref’eva, S. A.; Svistun, L. I.

    2018-03-01

    The influence of Co and W powders on the structure and the viscosity of composite solders Sn-Cu-Co-W used for the manufacture of the specially shaped diamond tools has been studied. The solders were obtained by mixing the metallic powders with an organic binder. The mixtures with and without diamonds were applied to steel rollers and shaped substrates. The sintering was carried out in a vacuum at 820 ° C with time-exposure of 40 minutes. The influence of Co and W powders on the viscosity solders was evaluated on the basis of the study of structures and according to the results of sintering specially shaped diamond tools. It was found that to provide the necessary viscosity and to obtain the uniform diamond-containing layers on the complex shaped surfaces, Sn-Cu-Co-W solder should contain 27–35 vol % of solid phase. This is achieved with a total solder content of 24–32 wt % of cobalt powder and 7 wt % of tungsten powder.

  4. Effects of PCB thickness on adjustable fountain wave soldering

    Indian Academy of Sciences (India)

    hybrid circuit assembly, component lead tinning, and wire tinning. .... The mesh model was built and optimized with 599920 hybrid nodes as shown in figure 9. ... conducted to track the fluid motions of the two phases (i.e., molten solder and air).

  5. Fiber Optic Microcantilever Sensor Coupled with Reactive Polymers for Vapor Phase Detection of Ammonia, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations proposes to adapt its current aqueous-based, fiber-optic microcantilever sensor technology for real-time, monitoring of ammonia in air. Phase I...

  6. Solder joint technology materials, properties, and reliability

    CERN Document Server

    Tu, King-Ning

    2007-01-01

    Solder joints are ubiquitous in electronic consumer products. The European Union has a directive to ban the use of Pb-based solders in these products on July 1st, 2006. There is an urgent need for an increase in the research and development of Pb-free solders in electronic manufacturing. For example, spontaneous Sn whisker growth and electromigration induced failure in solder joints are serious issues. These reliability issues are quite complicated due to the combined effect of electrical, mechanical, chemical, and thermal forces on solder joints. To improve solder joint reliability, the science of solder joint behavior under various driving forces must be understood. In this book, the advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints are emphasized and methods to prevent these reliability problems are discussed.

  7. Penicillium expansum Inhibition on Bread by Lemongrass Essential Oil in Vapor Phase.

    Science.gov (United States)

    Mani López, Emma; Valle Vargas, Georgina P; Palou, Enrique; López Malo, Aurelio

    2018-02-23

    The antimicrobial activity of lemongrass ( Cymbopogon citratus) essential oil (EO) in the vapor phase on the growth of Penicillium expansum inoculated on bread was evaluated, followed by a sensory evaluation of the bread's attributes after EO exposure. The lemongrass EO was extracted from dry leaves of lemongrass by microwave-assisted steam distillation. The chemical composition of the lemongrass EO was determined using a gas chromatograph coupled to a mass spectrometer. The refractive index and specific gravity of the EO were also determined. Bread was prepared and baked to reach two water activity levels, 0.86 or 0.94, and then 10 μL of P. expansum spore (10 6 spores per mL) suspension was inoculated on the bread surface. Concentrations of lemongrass EO were tested from 125 to 4,000 μL/L air , whereas mold radial growth was measured for 21 days. For sensory evaluation, breads were treated with lemongrass EO vapor at 0, 500, or 1,000 μL/L air for 48 h and tested by 25 untrained panelists. The EO yield was 1.8%, with similar physical properties to those reported previously. Thirteen compounds were the main components in the EO, with citral being the major compound. P. expansum was inhibited for 21 days at 20°C with 750 μL of EO/L air , and its inhibition increased with increasing concentrations of EO. Sensory acceptance of bread exposed to vapor concentrations of 500 or 1,000 μL of EO/L air or without EO was favorable; similar and no significant differences ( P > 0.05) were observed among them.

  8. Triple sorbent thermal desorption/gas chromatography/mass spectrometry determination of vapor phase organic contaminants

    International Nuclear Information System (INIS)

    Ma, C.Y.; Skeen, J.T.; Dindal, A.B.; Higgins, C.E.; Jenkins, R.A.

    1994-05-01

    A thermal desorption/ps chromatography/mass spectrometry (TD/GC/MS) has been evaluated for the determination of volatile organic compounds (VOCS) in vapor phase samples using Carbosieve S-III/Carbotrap/Carotrap C triple sorbent traps (TST) similar to those available from a commercial source. The analysis was carried out with a Hewlett-Packard 5985A or 5995 GC/MS system with a modified injector to adapt an inhouse manufactured short-path desorber for transferring desorbate directly onto a cryofocusing loop for subsequent GC/MS analysis. Vapor phase standards generated from twenty six compounds were used for method validation, including alkanes, alkyl alcohols, alkyl ketones, and alkyl nitrites, a group of representative compounds that have previously been identified in a target airborne matrix. The method was validated based on the satisfactory results in terms of reproducibility, recovery rate, stability, and linearity. A relative, standard deviation of 0.55 to 24.3 % was obtained for the entire TD process (generation of gas phase standards, spiking the standards on and desorbing from TST) over a concentration range of 20 to 500 ng/trap. Linear correlation coefficients for the calibration curves as determined ranged from 0.81 to 0.99 and limits of detection ranged from 3 to 76 ng. For a majority of standards, recoveries of greater than 90% were observed. For three selected standards spiked on TSTS, minimal loss (10 to 22%) was observed after storing the spiked in, a 4 degree C refrigerator for 29 days. The only chromatographable artifact observed was a 5% conversion of isopropanol to acetone. The validated method been successfully applied, to the determination of VOCs collected from various emission sources in a diversified concentration range

  9. Vapor-deposited non-crystalline phase vs ordinary glasses and supercooled liquids: Subtle thermodynamic and kinetic differences

    International Nuclear Information System (INIS)

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2015-01-01

    Vapor deposition of molecules on a substrate often results in glassy materials of high kinetic stability and low enthalpy. The extraordinary properties of such glasses are attributed to high rates of surface diffusion during sample deposition, which makes it possible for constituents to find a configuration of much lower energy on a typical laboratory time scale. However, the exact nature of the resulting phase and the mechanism of its formation are not completely understood. Using fast scanning calorimetry technique, we show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited films of toluene and ethylbenzene, archetypical fragile glass formers, are distinct from those of ordinary supercooled phase even when the deposition takes place at temperatures above the ordinary glass softening transition temperatures. These observations along with the absolute enthalpy dependences on deposition temperatures support the conjecture that the vapor-deposition may result in formation of non-crystalline phase of unique structural, thermodynamic, and kinetic properties

  10. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  11. Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace

    Science.gov (United States)

    Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao

    1983-02-01

    A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.

  12. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    Science.gov (United States)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  13. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  14. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  15. An Assessment of the Technical Readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR) Technology

    Science.gov (United States)

    Flynn, Michael

    2000-01-01

    This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.

  16. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    International Nuclear Information System (INIS)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-01-01

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10 17  cm −3 to (2–5) × 10 14  cm −3 . The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10 13  cm −3 versus 2.9 × 10 16  cm −3 in the standard samples, with a similar decrease in the electron traps concentration

  17. A quantitative infrared spectral library of vapor phase chemicals: applications to environmental monitoring and homeland defense

    Science.gov (United States)

    Sharpe, Steven W.; Johnson, Timothy J.; Sams, Robert L.

    2004-12-01

    The utility of infrared spectroscopy for monitoring and early warning of accidental or deliberate chemical releases to the atmosphere is well documented. Regardless of the monitoring technique (open-path or extractive) or weather the spectrometer is passive or active (Fourier transform or lidar) a high quality, quantitative reference library is essential for meaningful interpretation of the data. Pacific Northwest National Laboratory through the support of the Department of Energy has been building a library of pure, vapor phase chemical species for the last 4 years. This infrared spectral library currently contains over 300 chemicals and is expected to grow to over 400 chemicals before completion. The library spectra are based on a statistical fit to many spectra at different concentrations, allowing for rigorous error analysis. The contents of the library are focused on atmospheric pollutants, naturally occurring chemicals, toxic industrial chemicals and chemicals specifically designed to do damage. Applications, limitations and technical details of the spectral library will be discussed.

  18. Study of near-critical states of liquid-vapor phase transition of magnesium

    International Nuclear Information System (INIS)

    Emelyanov, A N; Shakhray, D V; Golyshev, A A

    2015-01-01

    Study of thermodynamic parameters of magnesium in the near-critical point region of the liquid-vapor phase transition and in the region of metal-nonmetal transition was carried out. Measurements of the electrical resistance of magnesium after shock compression and expansion into gas (helium) environment in the process of isobaric heating was carried out. Heating of the magnesium surface by heat transfer with hot helium was performed. The registered electrical resistance of expanded magnesium was about 10 4 -10 5 times lower than the electrical resistance of the magnesium under normal condition at the density less than the density of the critical point. Thus, metal-nonmetal transition was found in magnesium. (paper)

  19. InAs film grown on Si(111) by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Caroff, P; Jeppsson, M; Mandl, B; Wernersson, L-E; Wheeler, D; Seabaugh, A; Keplinger, M; Stangl, J; Bauer, G

    2008-01-01

    We report the successful growth of high quality InAs films directly on Si(111) by Metal Organic Vapor Phase Epitaxy. A nearly mirror-like and uniform InAs film is obtained at 580 0 C for a thickness of 2 μm. We measured a high value of the electron mobility of 5100 cm 2 /Vs at room temperature. The growth is performed using a standard two-step procedure. The influence of the nucleation layer, group V flow rate, and layer thickness on the electrical and morphological properties of the InAs film have been investigated. We present results of our studies by Atomic Force Microscopy, Scanning Electron Microscopy, electrical Hall/van der Pauw and structural X-Ray Diffraction characterization

  20. Thermodynamic analysis of trimethylgallium decomposition during GaN metal organic vapor phase epitaxy

    Science.gov (United States)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2018-04-01

    We analyzed the decomposition of Ga(CH3)3 (TMG) during the metal organic vapor phase epitaxy (MOVPE) of GaN on the basis of first-principles calculations and thermodynamic analysis. We performed activation energy calculations of TMG decomposition and determined the main reaction processes of TMG during GaN MOVPE. We found that TMG reacts with the H2 carrier gas and that (CH3)2GaH is generated after the desorption of the methyl group. Next, (CH3)2GaH decomposes into (CH3)GaH2 and this decomposes into GaH3. Finally, GaH3 becomes GaH. In the MOVPE growth of GaN, TMG decomposes into GaH by the successive desorption of its methyl groups. The results presented here concur with recent high-resolution mass spectroscopy results.

  1. Aluminum Gallium Nitride Alloys Grown via Metalorganic Vapor-Phase Epitaxy Using a Digital Growth Technique

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-04-01

    This work investigates the use of a digital growth technique as a viable method for achieving high-quality aluminum gallium nitride (Al x Ga1- x N) films via metalorganic vapor-phase epitaxy. Digital alloys are superlattice structures with period thicknesses of a few monolayers. Alloys with an AlN mole fraction ranging from 0.1 to 0.9 were grown by adjusting the thickness of the AlN layer in the superlattice. High-resolution x-ray diffraction was used to determine the superlattice period and c-lattice parameter of the structure, while reciprocal-space mapping was used to determine the a-lattice parameter and evaluate growth coherency. A comparison of the measured lattice parameter with both the nominal value and also the underlying buffer layer is discussed.

  2. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    Science.gov (United States)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  3. Managing amalgam phase down: An evaluation of mercury vapor levels in a dental center in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Adolphous Odofin Loto

    2017-01-01

    Full Text Available Background: Occupational exposure to elemental mercury vapor in a dental setting is mainly through inhalation exposure during preparation, insertion, polishing, and removal of amalgam fillings including storage of amalgam waste before disposal. This study aims to determine the indoor air levels of elemental mercury vapor in the dental operatories and ancillary sites at the Lagos State University Teaching Hospital (LASUTH. Materials and Methods: Samples of the ambient air were taken at seven locations the Dental Center of LASUTH by a trained technician between 9:00 and 11:00 a.m. This was done at a predetermined height (41/2feet above the floor for mercury vapor concentration using Lumex 915 light data logger mercury vapor analyzer manufactured by Ohio Lumex Company Incorporation, USA®. Results: The highest level of 1434 ng/m3 of mercury vapor in the air was found in the restorative clinic while the lowest of 23 ng Hg/m3 was found in the ambient air at the entrance of the dental Center. The Oral Surgery clinic had mercury vapor level of 318 ng/m3 which was slightly higher than Environmental Protection Agency recommended value of 0.3 μg/m3. Conclusion: An unacceptably high level of mercury vapor was detected, especially in the restorative clinic. Every dental clinic should have its ambient air evaluated for mercury vapor level for the purpose of forming a baseline data for monitoring purposes during the period of phase down of amalgam use. Best practices should also be instituted to reduce the level of exposure of patients and dental care workers to mercury vapor.

  4. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-01-01

    Full Text Available Abstract The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%.

  5. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-03-11

    This report summarizes work of this project from October 2003 through March 2004. The major focus of the research was to further investigate BTEX removal from produced water, to quantify metal ion removal from produced water, and to evaluate a lab-scale vapor phase bioreactor (VPB) for BTEX destruction in off-gases produced during SMZ regeneration. Batch equilibrium sorption studies were conducted to evaluate the effect of semi-volatile organic compounds commonly found in produced water on the sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) onto surfactant-modified zeolite (SMZ) and to examine selected metal ion sorption onto SMZ. The sorption of polar semi-volatile organic compounds and metals commonly found in produced water onto SMZ was also investigated. Batch experiments were performed in a synthetic saline solution that mimicked water from a produced water collection facility in Wyoming. Results indicated that increasing concentrations of semi-volatile organic compounds increased BTEX sorption. The sorption of phenol compounds could be described by linear isotherms, but the linear partitioning coefficients decreased with increasing pH, especially above the pKa's of the compounds. Linear correlations relating partitioning coefficients of phenol compounds with their respective solubilities and octanol-water partitioning coefficients were developed for data collected at pH 7.2. The sorption of chromate, selenate, and barium in synthetic produced water were also described by Langmuir isotherms. Experiments conducted with a lab-scale vapor phase bioreactor (VPB) packed with foam indicated that this system could achieve high BTEX removal efficiencies once the nutrient delivery system was optimized. The xylene isomers and benzene were found to require the greatest biofilter bed depth for removal. This result suggested that these VOCs would ultimately control the size of the biofilter required for the produced water application. The biofilter

  6. Waste retrieval sluicing system vapor sampling and analysis plan for evaluation of organic emissions, process test phase III

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    1999-01-01

    This sampling and analysis plan identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained to address vapor issues related to the sluicing of tank 241-C-106. Sampling will be performed in accordance with Waste Retrieval Sluicing System Emissions Collection Phase III (Jones 1999) and Process Test Plan Phase III, Waste Retrieval Sluicing System Emissions Collection (Powers 1999). Analytical requirements include those specified in Request for Ecology Concurrence on Draft Strategy/Path Forward to Address Concerns Regarding Organic Emissions from C-106 Sluicing Activities (Peterson 1998). The Waste Retrieval Sluicing System was installed to retrieve and transfer high-heat sludge from tank 241-C-106 to tank 241-AY-102, which is designed for high-heat waste storage. During initial sluicing of tank 241-C-106 in November 1998, operations were halted due to detection of unexpected high volatile organic compounds in emissions that exceeded regulatory permit limits. Several workers also reported smelling sharp odors and throat irritation. Vapor grab samples from the 296-C-006 ventilation system were taken as soon as possible after detection; the analyses indicated that volatile and semi-volatile organic compounds were present. In December 1998, a process test (phase I) was conducted in which the pumps in tanks 241-C-106 and 241-AY-102 were operated and vapor samples obtained to determine constituents that may be present during active sluicing of tank 241-C-106. The process test was suspended when a jumper leak was detected. On March 7, 1999, phase I1 of the process test was performed; the sluicing system was operated for approximately 7 hours and was ended using the controlled shutdown method when the allowable amount of solids were transferred to 241-AY-102. The phase II test was successful, however, further testing is required to obtain vapor samples at higher emission levels

  7. The effect of fuel and chlorinated hydrocarbons on a vapor phase carbon adsorption system

    International Nuclear Information System (INIS)

    Crawford, W.J.; Cheney, J.L.; Taggart, D.B.

    1995-01-01

    A soil vapor extraction (SVE) system installed at the South Tacoma Well 12A Superfund Site was designed to recover 1,2-dichloroethylene (DCE), trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,2,2-tetrachloroethane (1,1,2,2-TCA) from the vadose zone. The basic system consisted of twenty-two extraction wells, three centrifugal blowers, and three carbon adsorbers. The carbon adsorbers were regenerated on site by steam stripping. The mixture of steam and stripped organics was condensed and then decanted to separate the water from the organic phase. The recovered water was air stripped to remove the dissolved organics prior to discharge to the city storm sewer. The recovered organic phase was then shipped off site for thermal destruction. Previous reports described operating difficulties with the decanter, and air strippers. Sampling and analyses were performed which identified the problem as the simultaneous recovery of unexpected fuel hydrocarbons in addition to the solvents. Recovery of fuels resulted in a light phase in the decanter in addition to the water and heavy solvent phases. This required redesign of the decanter to handle the third phase. The effectiveness of desorption of the carbon beds by steam stripping gradually decreased as the remediation progressed into the second year of operation. Samples were collected from the carbon beds to evaluate the effect of the fuel and chlorinated hydrocarbons on the activated carbon. This report describes the results of these analyses. The data indicated that both 1,1,2,2-TCA and fuel hydrocarbons in the C-9 to C-24 range remained in the carbon beds after steam regeneration in sufficient quantities to require replacing the carbon

  8. Handbook of machine soldering SMT and TH

    CERN Document Server

    Woodgate, Ralph W

    1996-01-01

    A shop-floor guide to the machine soldering of electronics Sound electrical connections are the operational backbone of every piece of electronic equipment-and the key to success in electronics manufacturing. The Handbook of Machine Soldering is dedicated to excellence in the machine soldering of electrical connections. Self-contained, comprehensive, and down-to-earth, it cuts through jargon, peels away outdated notions, and presents all the information needed to select, install, and operate machine soldering equipment. This fully updated and revised volume covers all of the new technologies and processes that have emerged in recent years, most notably the use of surface mount technology (SMT). Supplemented with 200 illustrations, this thoroughly accessible text Describes reflow and wave soldering in detail, including reflow soldering of SMT boards and the use of nitrogen blankets * Explains the setup, operation, and maintenance of a variety of soldering machines * Discusses theory, selection, and control met...

  9. Thermomechanical behavior of tin-rich (lead-free) solders

    Science.gov (United States)

    Sidhu, Rajen Singh

    In order to adequately characterize the behavior of ball-grid-array (BGA) Pb-free solder spheres in electronic devices, the microstructure and thermomechanical behavior need to be studied. Microstructure characterization of pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-3.9Ag-0.7Cu alloys was conducted using optical microscopy, scanning electron microscopy, transmission electron microscopy, image analysis, and a novel serial sectioning 3D reconstruction process. Microstructure-based finite-element method (FEM) modeling of deformation in Sn-3.5Ag alloy was conducted, and it will be shown that this technique is more accurate when compared to traditional unit cell models for simulating and understanding material behavior. The effect of cooling rate on microstructure and creep behavior of bulk Sn-rich solders was studied. The creep behavior was evaluated at 25, 95, and 120°C. Faster cooling rates were found to increase the creep strength of the solders due to refinement of the solder microstructure. The creep behavior of Sn-rich single solder spheres reflowed on Cu substrates was studied at 25, 60, 95, and 130°C. Testing was conducted using a microforce testing system, with lap-shear geometry samples. The solder joints displayed two distinct creep behaviors: (a) precipitation-strengthening (Sn-3.5Ag and Sn-3.9Ag-0.7Cu) and (b) power law creep accommodated by grain boundary sliding (GBS) (Sn and Sn-0.7Cu). The relationship between microstructural features (i.e. intermetallic particle size and spacing), stress exponents, threshold stress, and activation energies are discussed. The relationship between small-length scale creep behavior and bulk behavior is also addressed. To better understand the damage evolution in Sn-rich solder joints during thermal fatigue, the local damage will be correlated to the cyclic hysteresis behavior and crystal orientations present in the Sn phase of solder joints. FEM modeling will also be utilized to better understand the macroscopic and local

  10. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    Science.gov (United States)

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  11. Effect of growth conditions on the biodegradation kinetics of toluene by P. putida 54G in a vapor phase bioreactor

    International Nuclear Information System (INIS)

    Mirpuri, R.; Jones, W.; Krieger, E.; McFeters, G.

    1994-01-01

    Biodegradation of volatile organic compounds such as petroleum hydrocarbons and xenobiotic agents in the vapor phase is a promising new concept in well-head and end-of-pipe treatment which may have wide application where in-situ approaches are not feasible. The microbial degradation of the volatile organics can be carried out in vapor phase bioreactors which contain inert packing materials. Scale-up of these reactors from a bench scale to a pilot plant can best be achieved by the use of a predictive model, the success of which depends on accurate estimates of parameters defined in the model such as biodegradation kinetic and stoichiometric coefficients. The phenomena of hydrocarbon stress and injury may also affect performance of a vapor phase bioreactor. Batch kinetic studies on the biodegradation of toluene by P. Putida 54G will be compared to those obtained from continuous culture studies for both suspended and biofilm cultures of the same microorganism. These results will be compared to the activity of the P. putida 54G biofilm in a vapor phase bioreactor to evaluate the impact of hydrocarbon stress and injury on biodegradative processes

  12. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...

  13. Thermomechanical fatigue of Sn-37 wt.% Pb model solder joints

    International Nuclear Information System (INIS)

    Liu, X.W.; Plumbridge, W.J.

    2003-01-01

    The fatigue of Sn-37 wt.% Pb model solder joints has been investigated under thermomechanical and thermal cycling. Based upon an analysis of displacements during thermomechancial cycling, a model solder joint has been designed to simulate actual joints in electronic packages. The strain-stress relationship, characterised by hysteresis loops, was determined during cycling from 30 to 125 deg. C, and the stress-range monitored throughout. The number of cycles to failure, as defined by the fall in stress range, was correlated to strain range and strain energy. The strain hardening exponent, k, varied with the definition of failure and, when a stress-range drop of 50% was used, it was 0.46. Cracks were produced during pure thermal cycling without external strains applied. These arose due to the local strains caused by thermal expansion mismatches between the solder and Cu 6 Sn 5 intermetallic layer, between the phases of solder, and due to the anisotropy of the materials. The fatigue life under thermomechanical cycling was significantly inferior to that obtained in isothermal mechanical cycling. A factor contributing to this inferiority is the internal damage produced during temperature cycling

  14. Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [Department; Son, Jae Sung [Department; School; Dolzhnikov, Dmitriy S. [Department; Filatov, Alexander S. [Department; Hazarika, Abhijit [Department; Wang, Yuanyuan [Department; Hudson, Margaret H. [Department; Sun, Cheng-Jun [Advanced; Chattopadhyay, Soma [Physical; Talapin, Dmitri V. [Department; Center

    2017-07-27

    Here we report the syntheses of largely unexplored lead and bismuth chalcogenidometallates in the solution phase. Using N2H4 as the solvent, new compounds such as K6Pb3Te6·7N2H4 were obtained. These soluble molecular compounds underwent cation exchange processes using resin chemistry, replacing Na+ or K+ by decomposable N2H5+ or tetraethylammonium cations. They also transformed into stoichiometric lead and bismuth chalcogenide nanomaterials with the addition of metal salts. Such a versatile chemistry led to a variety of composition-matched solders to join lead and bismuth chalcogenides and tune their charge transport properties at the grain boundaries. Solution-processed thin films composed of Bi0.5Sb1.5Te3 microparticles soldered by (N2H5)6Bi0.5Sb1.5Te6 exhibited thermoelectric power factors (~28 μW/cm K2) comparable to those in vacuum-deposited Bi0.5Sb1.5Te3 films. The soldering effect can also be integrated with attractive fabrication techniques for thermoelectric modules, such as screen printing, suggesting the potential of these solders in the rational design of printable and moldable thermoelectrics.

  15. Electrical, optical, and structural properties of GaN films prepared by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Polyakov, A.Y.; Smirnov, N.B.; Yakimov, E.B.; Usikov, A.S.; Helava, H.; Shcherbachev, K.D.; Govorkov, A.V.; Makarov, Yu N.; Lee, In-Hwan

    2014-01-01

    Highlights: • GaN films are prepared by hydride vapor phase epitaxy (HVPE). • Residual donors and deep traps show a minimum density versus growth temperature. • This minimum is located close to the HVPE growth temperature of 950 °C. • Good crystalline GaN with residual donor density < 10 16 cm −3 can be grown at 950 °C. - Abstract: Two sets of undoped GaN films with the thickness of 10–20 μm were prepared by hydride vapor phase epitaxy (HVPE) and characterized by capacitance–voltage (C–V) profiling, microcathodoluminescence (MCL) spectra measurements, MCL imaging, electron beam induced current (EBIC) imaging, EBIC dependence on accelerating voltage, deep levels transient spectroscopy, high resolution X-ray diffraction measurements. The difference in growth conditions was mainly related to the lower (850 °C, group 1) or higher (950 °C, group 2) growth temperature. Both groups of samples showed similar crystalline quality with the dislocation density close to 10 8 cm −2 , but very different electrical and optical properties. In group 1 samples the residual donors concentration was ∼10 17 cm −3 or higher, the MCL spectra were dominated by the band-edge luminescence, and the diffusion length of charge carriers was close to 0.1 μm. Group 2 samples had a 2–4.5 μm thick highly resistive layer on top, for which MCL spectra were determined by green, yellow and red defect bands, and the diffusion length was 1.5 times higher than in group 1. We also present brief results of growth at the “standard” HVPE growth temperature of 1050 °C that show the presence of a minimum in the net donor concentration and deep traps density as a function of the growth temperature. Possible reasons for the observed results are discussed in terms of the electrical compensation of residual donors by deep traps

  16. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    Science.gov (United States)

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  17. Spectroscopic investigation of oxidized solder surfaces

    International Nuclear Information System (INIS)

    Song, Jenn-Ming; Chang-Chien, Yu-Chien; Huang, Bo-Chang; Chen, Wei-Ting; Shie, Chi-Rung; Hsu, Chuang-Yao

    2011-01-01

    Highlights: → UV-visible spectroscopy is successfully used to evaluate the degree of discoloring of solders. → The surface oxides of solders can also be identified by UV-visible absorption spectra. → The discoloration of solder surface can be correlated with optical characterization of oxides. → A strategy against discoloring by alloying was also suggested. - Abstract: For further understanding of the discoloration of solder surfaces due to oxidation during the assembly and operation of electronic devices, UV-vis and X-ray photoelectron spectroscopic analyses were applied to evaluate the degree of discoloring and identify the surface oxides. The decrease in reflectance of the oxidized solder surface is related to SnO whose absorption band is located within the visible region. A trace of P can effectively depress the discoloration of solders under both solid and semi-solid states through the suppression of SnO.

  18. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    Science.gov (United States)

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  19. Soldering of Mg Joints Using Zn-Al Solders

    Science.gov (United States)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-04-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  20. The influence of silver content on structure and properties of Sn–Bi–Ag solder and Cu/solder/Cu joints

    Energy Technology Data Exchange (ETDEWEB)

    Šebo, P. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava 3 (Slovakia); Švec, P. Sr., E-mail: Peter.Svec@savba.sk [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janičkovič, D.; Illeková, E. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia); Zemánková, M. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava 3 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine); Sidorov, V. [Ural State Pedagogical University, Cosmonavtov 26, 620017 Ekaterinburg (Russian Federation); Švec, P. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia)

    2013-06-01

    The effect of silver content on structure and properties of Sn{sub 100−x}Bi{sub 10}Ag{sub x} (x=3–10 at%) lead-free solder and Cu–solder–Cu joints was investigated. The microstructure of the solder in both bulk and rapidly solidified ribbon forms was analyzed by scanning electron microscopy (SEM) and X-ray diffraction. The peculiarities in melting kinetic, studied by differential scanning calorimetry (DSC), and silver influence on it are described and discussed. The wetting of a copper substrate was examined by the sessile drop method in the temperature range of 553–673 K in air and deoxidizing gas (N{sub 2}+10%H{sub 2}) at atmospheric pressure. Cu–solder–Cu joints were also prepared in both atmospheres, and their shear strength was measured by the push-off method. The produced solders consisted of tin, bismuth and Ag{sub 3}Sn phases. The product of the interaction between the solder and the copper substrate consists of two phases: Cu{sub 3}Sn, which is adjacent to the substrate, and a Cu{sub 6}Sn{sub 5} phase. The wetting angle in air increased slightly as the silver concentration in the solder increased. Wetting of the copper substrate in N{sub 2}+10H{sub 2} gas shows the opposite tendency: the wetting angle slightly decreased as the silver content in the solder increased. The shear strength of the joints prepared in air (using flux) tends to decrease with increasing production temperature and increasing silver content in the solder. The equivalent decrease in the shear strength of the joints prepared in N{sub 2}+10H{sub 2} is more apparent.

  1. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  2. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  3. Vapor phase reactions in polymerization plasma for divinylsiloxane-bis-benzocyclobutene film deposition

    International Nuclear Information System (INIS)

    Kinoshita, Keizo; Nakano, Akinori; Kawahara, Jun; Kunimi, Nobutaka; Hayashi, Yoshihiro; Kiso, Osamu; Saito, Naoaki; Nakamura, Keiji; Kikkawa, Takamaro

    2006-01-01

    Vapor phase reactions in plasma polymerization of divinylsiloxane-bis-benzocyclobutene (DVS-BCB) low-k film depositions on 300 mm wafers were studied using mass spectrometry, in situ Fourier transform infrared, and a surface wave probe. Polymerization via Diels-Alder cycloaddition reaction was identified by the detection of the benzocyclohexene group. Hydrogen addition and methyl group desorption were also detected in DVS-BCB monomer and related large molecules. The dielectric constant k of plasma polymerized DVS-BCB with a plasma source power range up to 250 W was close to ∼2.7 of thermally polymerized DVS-BCB, and increased gradually over 250 W. The electron density at 250 W was about 1.5x10 10 cm -3 . The increase of the k value at higher power was explained by the decrease of both large molecular species via multistep dissociation and incorporation of silica components into the polymer. It was found that the reduction of electron density as well as precursor residence time is important for the plasma polymerization process to prevent the excess dissociation of the precursor

  4. High quality long-wavelength lasers grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine

    International Nuclear Information System (INIS)

    Miller, B.I.; Young, M.G.; Oron, M.; Koren, U.; Kisker, D.

    1990-01-01

    High quality long-wavelength InGaAsP/InP lasers were grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine (TBA) as a substitute for AsH 3 . Electrical and photoluminescence measurements on InGaAs and InGaAsP showed that TBA-grown material was at least as good as AsH 3 material in terms of suitability for lasers. From two wafers grown by TBA, current thresholds I th as low as 11 mA were obtained for a 2-μm-wide semi-insulating blocking planar buried heterostructure laser lasing near 1.3 μm wavelength. The differential quantum efficiencies η D were as high as 21%/facet with a low internal loss α=21 cm -1 . In addition I th as low as 18 mA and η D as high as 18% have been obtained for multiplequantum well lasers at 1.54 μm wavelength. These results show that TBA might be used to replace AsH 3 without compromising on laser performance

  5. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Edith [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; University of Fribourg, Department of Physics and Fribourg Center for Nanomaterials, Chemin du Musée 3, CH-1700 Fribourg, Switzerland; Xu, Dongwei [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Highland, M. J. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Stephenson, G. B. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Zapol, P. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Fuoss, P. H. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Munkholm, A. [Munkholm Consulting, Mountain View, California 94043, USA; Thompson, Carol [Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

    2017-12-04

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (1010) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1210] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. The island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F-n, with an exponent n = 0:25 + 0.02. The results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.

  6. Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers.

    Science.gov (United States)

    Xing, Jun; Liu, Xin Feng; Zhang, Qing; Ha, Son Tung; Yuan, Yan Wen; Shen, Chao; Sum, Tze Chien; Xiong, Qihua

    2015-07-08

    Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic-inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3(-x) perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm(2), and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires.

  7. Vapor Phase Polymerization Deposition Conducting Polymer Nanocomposites on Porous Dielectric Surface as High Performance Electrode Materials

    Institute of Scientific and Technical Information of China (English)

    Ya jie Yang; Luning Zhang; Shibin Li; Zhiming Wang; Jianhua Xu; Wenyao Yang; Yadong Jiang

    2013-01-01

    We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta2O5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta2O5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta2O5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.

  8. Vapor phase polymerization deposition of conducting polymer/graphene nanocomposites as high performance electrode materials.

    Science.gov (United States)

    Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong

    2013-05-22

    In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.

  9. Vapor pressure, heat capacities, and phase transitions of tetrakis(tert-butoxy)hafnium

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.

    2011-01-01

    Roč. 311, Dec. (2011), s. 25-29 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : tetrakis(tert-butoxy)hafnium * MO precursor * vapor pressure * heat capacity * vaporization enthalpy * enthalpy of fusion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  10. Field tests of a chemiresistor sensor for in-situ monitoring of vapor-phase contaminants

    Science.gov (United States)

    Ho, C.; McGrath, L.; Wright, J.

    2003-04-01

    An in-situ chemiresistor sensor has been developed that can detect volatile organic compounds in subsurface environmental applications. Several field tests were conducted in 2001 and 2002 to test the reliability, operation, and performance of the in-situ chemiresistor sensor system. The chemiresistor consists of a carbon-loaded polymer deposited onto a microfabricated circuit. The polymer swells reversibly in the presence of volatile organic compounds as vapor-phase molecules absorb into the polymer, causing a change in the electrical resistance of the circuit. The change in resistance can be calibrated to known concentrations of analytes, and arrays of chemiresistors can be used on a single chip to aid in discrimination. A waterproof housing was constructed to allow the chemiresistor to be used in a variety of media including air, soil, and water. The integrated unit, which can be buried in soils or emplaced in wells, is connected via cable to a surface-based solar-powered data logger. A cell-phone modem is used to automatically download the data from the data logger on a periodic basis. The field tests were performed at three locations: (1) Edwards Air Force Base, CA; (2) Nevada Test Site; and (3) Sandia's Chemical Waste Landfill near Albuquerque, NM. The objectives of the tests were to evaluate the ruggedness, longevity, operation, performance, and engineering requirements of these sensors in actual field settings. Results showed that the sensors could be operated continuously for long periods of time (greater than a year) using remote solar-powered data-logging stations with wireless telemetry. The sensor housing, which was constructed of 304 stainless steel, showed some signs of corrosion when placed in contaminated water for several months, but the overall integrity was maintained. The detection limits of the chemiresistors were generally found to be near 0.1% of the saturated vapor pressure of the target analyte in controlled laboratory conditions (e

  11. Lead free solder mechanics and reliability

    CERN Document Server

    Pang, John Hock Lye

    2012-01-01

    Lead-free solders are used extensively as interconnection materials in electronic assemblies and play a critical role in the global semiconductor packaging and electronics manufacturing industry. Electronic products such as smart phones, notebooks and high performance computers rely on lead-free solder joints to connect IC chip components to printed circuit boards. Lead Free Solder: Mechanics and Reliability provides in-depth design knowledge on lead-free solder elastic-plastic-creep and strain-rate dependent deformation behavior and its application in failure assessment of solder joint reliability. It includes coverage of advanced mechanics of materials theory and experiments, mechanical properties of solder and solder joint specimens, constitutive models for solder deformation behavior; numerical modeling and simulation of solder joint failure subject to thermal cycling, mechanical bending fatigue, vibration fatigue and board-level drop impact tests. This book also: Discusses the mechanical prope...

  12. Phase diagram of interfacial growth modes by vapor deposition and its application for ZnO nanostructures

    Science.gov (United States)

    Shu, Da-Jun; Xiong, Xiang; Liu, Ming; Wang, Mu

    2017-09-01

    Interfacial growth from vapor has been extensively studied. However, a straightforward picture of the growth mode under different growth conditions is still lacking. In this paper, we develop a comprehensive interfacial growth theory based on the stochastic approach. Using a critical interisland separation, we construct a general phase diagram of the growth modes. It has been revealed that if the Ehrlich-Schwoebel barrier EES is smaller than a critical value, the interfacial growth proceeds in a layer-by-layer (LBL) mode at any deposition rate. However, if EES is larger than the critical value, LBL growth occurs only at very small or very large deposition rates relative to the intralayer hopping rate, and multilayer (ML) growth occurs at a moderate deposition rate. Experiments with zinc oxide growth by chemical vapor deposition have been designed to qualitatively demonstrate the theoretical model. By changing the flux of the carrier gas (nitrogen gas) in chemical vapor deposition, we realize LBL, ML, and then reentrance of LBL homoepitaxial growth of ZnO successively. Moreover, we find that surface kinetics of ZnO is suppressed by decreasing oxygen partial pressure by comparing the experimental observations and theoretical models, which is supported by our recent first-principles calculations. Since the influence of the substrate and the growth species on growth can approximately be represented by binding energy and surface kinetics, we suggest that the phase diagram is essential for interfacial growth of different materials by vapor deposition.

  13. Investigation on solder joint strength of nickel tin-plated and CRS tabs with PCB

    International Nuclear Information System (INIS)

    Luay Hussain

    2002-01-01

    Failure analysis on easily peels off Nickel and CRS steel tabs from PCB was carried out. Nickel Tin plated tabs, CRS steel tabs and tube were joined to the PCB using reflow/ convection soldering, in an oven. The solder paste composition is Sn36/Pb35/Ag2. Peel test was conducted and it was found that many tabs could be easily peeled off with low force. Porosities which varies from 0.4 mm to < 0.01mm in diameter, developed during soldering process and solidification was noted. It was found, the number, size and position of these porosities inside the solder layer on both parts of the tabs affect the peel strength. Scanning Electron Microscopy study and EDX analysis were carried out. It was found that the low peel strength values were due to the combination of generation and development of porosities during soldering process which act as stress concentrators and the evolution (growth) of eutectic Sn/Pb and Sn/Ni/Cu brittle grainy phase. Large eutectic microstructure with brittle Sn-Ni-Cu grainy phase enhances the failure with low peeling forces. Sample showing no feature of Sn/Ni/Cu grain gave high peeling strength value. Solder reflow, an important process, can result in strength enhancement (if it was controlled for example in a furnace). (Author)

  14. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  15. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-01

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a ''press'' contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load.Previous research with single wires on a 1-5 kA pulser has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator have shown that improving the contact improved the x-ray yield.Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera.In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation ablation

  16. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    Science.gov (United States)

    2016-09-15

    AFRL-AFOSR-VA-TR-2016-0319 Chirality -Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and...TELEPHONE NUMBER (Include area code) DISTRIBUTION A: Distribution approved for public release. 15-06-2016 final Jun 2014 - Jun 2016 Chirality ...for Public Release; Distribution is Unlimited. In this report, we present our efforts in establishing a novel and effective approach for chirality

  17. Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase

    OpenAIRE

    Ishiyama, Tatsuya; Yano, Takeru; Fujikawa, Shigeo

    2004-01-01

    The kinetic boundary condition for the Boltzmann equation at an interface between a polyatomic vapor and its liquid phase is investigated by the numerical method of molecular dynamics, with particular emphasis on the functional form of the evaporation part of the boundary condition, including the evaporation coefficient. The present study is an extension of a previous one for argon [Ishiyama, Yano, and Fujikawa, Phys. Fluids 16, 2899 (2004)] to water and methanol, typical examples of polyatom...

  18. Dynamic scaling and kinetic roughening of poly(ethylene) islands grown by vapor phase deposition

    Czech Academy of Sciences Publication Activity Database

    Choukourov, A.; Melnichuk, I.; Gordeev, I.; Kylián, O.; Hanuš, J.; Kousal, J.; Solař, P.; Hanyková, L.; Brus, Jiří; Slavínská, D.; Biederman, H.

    2014-01-01

    Roč. 565, 28 August (2014), s. 249-260 ISSN 0040-6090 Institutional support: RVO:61389013 Keywords : poly(ethylene) * physical vapor deposition * island growth Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.759, year: 2014

  19. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a common architecture for laser transmitters that address requirements for water vapor as well as ground and airborne ozone lidar systems. Our...

  20. Correlation of vapor phase infrared spectra and regioisomeric structure in synthetic cannabinoids

    Science.gov (United States)

    Smith, Lewis W.; Thaxton-Weissenfluh, Amber; Abiedalla, Younis; DeRuiter, Jack; Smith, Forrest; Clark, C. Randall

    2018-05-01

    The twelve 1-n-pentyl-2-, 3-, 4-, 5-, 6- and 7-(1- and 2-naphthoyl)-indoles each have the same substituents attached to the indole ring, identical elemental composition (C24H23NO) yielding identical nominal and accurate masses. These twelve isomers cover all possible positions of carbonyl bridge substitution for both indole (positons 2-7) and naphthalene rings (positions 1 and 2). Regioisomeric compounds can represent significant challenges for mass based analytical methods however, infrared spectroscopy is a powerful tool for the identification of positional isomers in organic compounds. The vapor phase infrared spectra of these twelve uniquely similar compounds were evaluated in GC-IR experiments. These spectra show the bridge position on the indole ring is a dominating influence over the carbonyl absorption frequency observed for these compounds. Substitution on the pyrrole moiety of the indole ring yields the lowest Cdbnd O frequency values for position 2 and 3 giving a narrow range from 1656 to 1654 cm-1. Carbonyl absorption frequencies are higher when the naphthoyl group is attached to the benzene portion of the indole ring yielding absorption values from 1674 to 1671 cm-1. The aliphatic stretching bands in the 2900 cm-1 region yield a consistent triplet pattern because the N-alkyl substituent tail group remains unchanged for all twelve regioisomers. The asymmetric CH2 stretch is the most intense of these three bands. Changes in positional bonding for both the indole and naphthalene ring systems results in unique patterns within the 700 wavenumber out-of-plane region and these absorption bands are different for all 12 regioisomers.

  1. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  2. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  3. Availability of MCNP and MATLAB for reconstructing the water-vapor two-phase flow pattern in neutron radiography

    International Nuclear Information System (INIS)

    Feng Qixi; Feng Quanke; Takeshi, K.

    2008-01-01

    The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008. In this paper, we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the tube were obtained using the MCNP code without influence of γ-ray and electronic-noise. The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated. The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI. The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques. And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI. (authors)

  4. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    Science.gov (United States)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  5. Vapor phase coatings of metals and organics for laser fusion target applications

    International Nuclear Information System (INIS)

    Simonsic, G.A.; Powell, B.W.

    Techniques for applying a variety of metal and organic coatings to 50- to 500 μm diameter glass micro-balloons are discussed. Coating thicknesses vary from 1- to 10 μm. Physical vapor deposition (PVD), chemical vapor deposition (CVD), and electrolytic and electroless plating are some of the techniques being evaluated for metal deposition. PVD and glow discharge polymerization are being used for the application of organic coatings. (U.S.)

  6. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates

    International Nuclear Information System (INIS)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-01-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  7. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  8. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems.

    Science.gov (United States)

    Mishra, Rupesh K; Martín, Aida; Nakagawa, Tatsuo; Barfidokht, Abbas; Lu, Xialong; Sempionatto, Juliane R; Lyu, Kay Mengjia; Karajic, Aleksandar; Musameh, Mustafa M; Kyratzis, Ilias L; Wang, Joseph

    2018-03-15

    Flexible epidermal tattoo and textile-based electrochemical biosensors have been developed for vapor-phase detection of organophosphorus (OP) nerve agents. These new wearable sensors, based on stretchable organophosphorus hydrolase (OPH) enzyme electrodes, are coupled with a fully integrated conformal flexible electronic interface that offers rapid and selective square-wave voltammetric detection of OP vapor threats and wireless data transmission to a mobile device. The epidermal tattoo and textile sensors display a good reproducibility (with RSD of 2.5% and 4.2%, respectively), along with good discrimination against potential interferences and linearity over the 90-300mg/L range, with a sensitivity of 10.7µA∙cm 3 ∙mg -1 (R 2 = 0.983) and detection limit of 12mg/L in terms of OP air density. Stress-enduring inks, used for printing the electrode transducers, ensure resilience against mechanical deformations associated with textile and skin-based on-body sensing operations. Theoretical simulations are used to estimate the OP air density over the sensor surface. These fully integrated wearable wireless tattoo and textile-based nerve-agent vapor biosensor systems offer considerable promise for rapid warning regarding personal exposure to OP nerve-agent vapors in variety of decentralized security applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nano-soldering to single atomic layer

    Science.gov (United States)

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  10. Safer Soldering Guidelines and Instructional Resources

    Science.gov (United States)

    Love, Tyler S.; Tomlinson, Joel

    2018-01-01

    Soldering is a useful and necessary process for many classroom, makerspace, Fab Lab, technology and engineering lab, and science lab activities. As described in this article, soldering can pose many safety risks without proper engineering controls, standard operating procedures, and direct instructor supervision. There are many safety hazards…

  11. Characterization of the microstructure of tin-silver lead free solder

    Energy Technology Data Exchange (ETDEWEB)

    Hurtony, Tamás, E-mail: hurtony@ett.bme.hu [Department of Electronics Technology, Budapest University of Technology and Economics, Egry József utca 18, Budapest, H-1111 (Hungary); Szakál, Alex; Almásy, László [Neutron Spectroscopy Department, Wigner Research Centre for Physics, Budapest (Hungary); Len, Adél [Neutron Spectroscopy Department, Wigner Research Centre for Physics, Budapest (Hungary); Faculty of Engineering and Information Technology, University of Pécs (Hungary); Kugler, Sándor [Department of Theoretical Physics, Budapest University of Technology and Economics (Hungary); Bonyár, Attila; Gordon, Péter [Department of Electronics Technology, Budapest University of Technology and Economics, Egry József utca 18, Budapest, H-1111 (Hungary)

    2016-07-05

    Reliability and lifetime are the two most relevant design considerations in the production of safety critical assemblies. For example in a modern automobile dozens of electronic assemblies are integrated in which thousands of solder joints are mounting the electronic components to the printed circuit boards. There exists no standardised and universal observation method for characterising the fine microstructure of such solder joints. Previously we have developed a new method for the quantitative characterization of lead-free solder alloys and in present study the validity of the proposed method is demonstrated. Microstructure of Sn-3.5Ag lead free solder alloy was investigated by electrochemical impedance spectroscopy. Solder samples were solidified with different cooling rates in order to induce differences in the microstructure. Microstructure of the ingots was revealed by selective electrochemical etching. Electrochemical impedance spectra (EIS) were measured before and after the selective etching process. The complex impedance spectra contain information about microstructure of the solder alloys. Comparison and modelling of two EIS spectra allowed obtaining a characteristic parameter of surface structure of the etched specimens. The EIS measurements were complemented with small angle neutron scattering measurements and scanning electron microscopy, in order to correlate the EIS parameter with the magnitude of the interface of the β-Sn and Ag{sub 3}Sn phases.

  12. Rheological characterisation and printing performance of Sn/Ag/Cu solder pastes

    International Nuclear Information System (INIS)

    Durairaj, R.; Ramesh, S.; Mallik, S.; Seman, A.; Ekere, N.

    2009-01-01

    Lead-free solder paste printing process accounts for majority of the assembly defects in the electronic manufacturing industry. The study investigates rheological behaviour and stencil printing performance of the lead-free solder pastes (Sn/Ag/Cu). Oscillatory stress sweep test was carried out to study the visco-elastic behaviour of the lead-free solder pastes. The visco-elastic behaviour of the paste encompasses solid and liquid characteristic of the paste, which could be used to study the flow behaviour experienced by the pastes during the stencil printing process. From this study, it was found that the solid characteristics (G') is higher than the liquid characteristic (G'') for the pastes material. In addition, the results from the study showed that the solder paste with a large G' = G'' has a higher cohesiveness resulting in poor withdrawal of the paste during the stencil printing process. The phase angles (δ) was used to correlate the quality of the dense suspensions to the formulation of solder paste materials. This study has revealed the value of having a rheological measurement for explaining and characterising solder pastes for stencil printing. As the demand for lead free pastes increases rheological measurements can assist with the formulation or development of new pastes.

  13. Study on interfacial reaction between lead-free solders and alternative surface finishes

    International Nuclear Information System (INIS)

    Siti Rabiatul Aisha; Ourdjini, A.; Saliza Osman

    2007-01-01

    This study investigates the interfacial reactions occurring during reflow soldering between Sn-Ag-Cu lead-free solder and two surface finishes: electroless nickel/ immersion gold (ENIG) and immersion silver (IAg). The study focuses on interfacial reactions evolution and growth kinetics of intermetallic compounds (IMC) formed during soldering and isothermal ageing at 150 degree Celsius for up to 2000 hours. Optical and scanning electron microscopy were used to measure IMC thickness and examine the morphology of IMC respectively, whereas the IMC phases were identified by energy dispersive X-ray analysis (EDX). The results showed that the IMC formed on ENIG finish is thinner compared to that formed on IAg finish. For IAg surface finish, Cu 6 Sn 5 IMCs with scallop morphology are formed at the solder/ surface finish interface after reflow while a second IMC, Cu 3 Sn was formed between the copper and Cu 6 Sn 5 IMC after the isothermal ageing treatment. For ENIG surface finish both (Cu,Ni) 6 Sn 5 and (Ni,Cu) 3 Sn 4 are formed after soldering. Isothermal aging of the solder joints formed on ENIG finish was found to have a significant effect on the morphology of the intermetallics by transforming to more spherical and denser morphology in addition to increase i their thickness with increased ageing time. (author)

  14. Comparative shear tests of some low temperature lead-free solder pastes

    Science.gov (United States)

    Branzei, Mihai; Plotog, Ioan; Varzaru, Gaudentiu; Cucu, Traian C.

    2016-12-01

    The range of electronic components and as a consequence, all parts of automotive electronic equipment operating temperatures in a vehicle is given by the location of that equipment, so the maximum temperature can vary between 358K and 478K1. The solder joints could be defined as passive parts of the interconnection structure of automotive electronic equipment, at a different level, from boards of electronic modules to systems. The manufacturing costs reduction necessity and the RoHS EU Directive3, 7 consequences generate the trend to create new Low-Temperature Lead-Free (LTLF) solder pastes family9. In the paper, the mechanical strength of solder joints and samples having the same transversal section as resistor 1206 case type made using the same LTLF alloys into Vapour Phase Soldering (VPS) process characterized by different cooling rates (slow and rapid) and two types of test PCBs pads finish, were benchmarked at room temperature. The presented work extends the theoretical studies and experiments upon heat transfer in VPSP in order to optimize the technology for soldering process (SP) of automotive electronic modules and could be extended for home and modern agriculture appliances industry. The shear forces (SF) values of the LTLF alloy samples having the same transversal section as resistor 1206 case type will be considered as references values of a database useful in the new solder alloy creation processes and their qualification for automotive electronics domain.

  15. Growth of Cd0.96Zn0.04Te single crystals by vapor phase gas transport method

    Directory of Open Access Journals (Sweden)

    S. H. Tabatabai Yazdi

    2006-03-01

    Full Text Available   Cd0.96Zn0.04Te crystals were grown using vapor phase gas transport method (VPGT. The results show that dendritic crystals with grain size up to 3.5 mm can be grown with this technique. X-ray diffraction and Laue back-reflection patterns show that dendritic crystals are single-phase, whose single crystal grains are randomly oriented with respect to the gas-transport axis. Electrical measurements, carried out using Van der Pauw method, show that the as-grown crystals have resistivity of about 104 Ω cm and n-type conductivity.

  16. Features of soldering of molybdenum a lols

    International Nuclear Information System (INIS)

    Grishin, V.L.; Rybkin, B.V.; Cherkasov, A.F.

    1980-01-01

    Soldering features of complex-alloy molybdenum alloys were investigated in comparison with alloys based on solid solutions. Soldering features of heterogeneous molybdenum base alloys were investigated using samples of 0.5-1.O mm sheets with the strain of about 95% made of ingots which had been smelted in arc vacuum furnaces. The soldering of samples was carried out in 5x1O -5 mm Hg vacuum using different sources of heating: radiation, electron-ray and contact. It was shown that heat-resisting soldered joints of heterogeneous molybdenum alloys could be produced using zirconium and niobium base solders containing the most effective hardeners of the parent material (titanum, vanadium, tantalum, molybdenum, tungsten). To preserve high mechanical properties of heterogeneous alloys it was expedient to use for welding local heating sources which permitted to decrease considerably temperature- time conditions of the process

  17. New approaches to the study of lanthanide/actinide chloride: aluminum chloride vapor phase complexes

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Carnall, W.T.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    The spectrophotometric technique for vapor density measurements of complexed metal ions has been reformulated to account for temperature dependent effects and multi-species systems. Analysis of vapor pressure information indicates that the NdCl 3 --AlCl 3 and HoCl 3 --AlCl 3 systems are adequately explained by the existence of three vapor species. The two higher molecular weight complexes LnAl 4 Cl 15 and LnAl 3 Cl 12 were first proposed by Oeye and Gruen. The newly identified higher temperature species, HoAl 2 Cl 9 , contributes significantly to the vapor density above 750 0 K and below 3 atm of dimer pressure. In view of the consistency of the Nd +3 and Ho +3 chemistry the data for the Sm +3 system should be viewed with reservation. A new method for vapor density measurements involving use of radioactive tracers has been discussed in terms of its applicability to the study of (Ln,An)Cl 3 (AlCl 3 )/sub x/ systems

  18. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  19. Thermochemistry of methoxythiophenes: Measurement of their enthalpies of vaporization and estimation of their enthalpies of formation in the condensed phase

    International Nuclear Information System (INIS)

    Temprado, Manuel; Notario, Rafael; Roux, María Victoria; Verevkin, Sergey P.

    2014-01-01

    Highlights: • The enthalpies of vaporization of 2- and 3-methoxythiophenes have been measured by the transpiration method. • We have estimated the enthalpies of formation of methoxythiophenes in liquid phase. • The optimized geometries of methoxythiophenes have been tabulated and compared with the experimental crystal structures. - Abstract: Enthalpies of vaporization of 2- and 3-methoxythiophenes (48.32 ± 0.30 and 48.54 ± 0.22 kJ · mol −1 , respectively) have been measured by the transpiration method using nitrogen as the carrying and protecting stream. Combustion experiments leading to enthalpies of formation in the liquid phase, Δ f H 0 m (l), for both isomers failed due to rapid darkening of freshly distilled samples even under a protecting atmosphere. However, combination of experimental vaporization enthalpies with values of the gaseous enthalpies of formation, Δ f H 0 m (g), obtained by quantum-chemical calculations from our previous work Notario et al. (2012) [24] permits establishing estimated Δ f H 0 m (l) values of −(68.3 ± 4.2) and −(80.1 ± 4.2) kJ · mol −1 , for 2- and 3-methoxythiophene, respectively

  20. Modeling of gas-phase chemistry in the chemical vapor deposition of polysilicon in a cold wall system

    Energy Technology Data Exchange (ETDEWEB)

    Toprac, A.J.; Edgar, T.F.; Trachtenberg, I. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1993-06-01

    The relative contribution of gas-phase chemistry to deposition processes is an important issue both from the standpoint of operation and modeling of these processes. In polysilicon deposition from thermally activated silane in a cold wall rapid thermal chemical vapor deposition (RTCVD) system, the relative contribution of gas-phase chemistry to the overall deposition rate was examined by a mass-balance model. Evaluating the process at conditions examined experimentally, the model indicated that gas-phase reactions may be neglected to good accuracy in predicting polysilicon deposition rate. The model also provided estimates of the level of gas-phase generated SiH[sub 2] associated with deposition on the cold-process chamber walls.

  1. Tunnel currents produced by defects in p-n junctions of GaAs grown on vapor phase

    International Nuclear Information System (INIS)

    Barrales Guadarrama, V R; Rodríguez Rodriguez, E M; Barrales Guadarrama, R; Reyes Ayala, N

    2017-01-01

    With the purpose of assessing if the epitaxy on vapor phase technique “Close Space Vapor Deposition (CSVT)” is capable of produce thin films with adequate properties in order to manufacture p-n junctions, a study of invert and direct current was developed, in a temperature range of 94K to 293K, to junctions p-n of GaAs grown through the technique CSVT. It is shown that the dominant current, within the range 10 -7 to 10 -2 A, is consistent with a currents model of the type of internal emission form field, which shows these currents are due to the presence of localized states in the band gap. (paper)

  2. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during

  3. Mw Spectroscopy Coupled with Ultrafast UV Laser Vaporization: {RIBOSE} Found in the Gas Phase

    Science.gov (United States)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe

    2012-06-01

    Sugars are aldoses or ketoses with multiple hydroxy groups which have been elusive to spectroscopic studies. Here we report a rotational study of the aldopentose ribose. According to any standard textbook aldopentoses can exhibit either linear forms, cyclic five-membered (furanose) structures or six-membered (pyranose) rings, occurring either as α- or β- anomers depending on the orientation of the hydroxy group at C-1 (anomeric carbon). β-Furanose is predominant in ribonucleosides, RNA, ATP and other biochemically relevant derivatives, but is β-furanose the native form also of free ribose? Recent condensed-phase X-ray and older NMR studies delivered conflicting results. In order to solve this question we conducted a microwave study on D-ribose that, owing to ultrafast UV laser vaporization, has become the first C-5 sugar observed with rotational resolution. The spectrum revealed six conformations of free ribose, preferentially adopting β-pyranose chairs as well as higher-energy α-pyranose forms. The method also allowed for unambiguous distinction between different orientations of the hydroxy groups, which stabilize the structures by cooperative hydrogen-bond networks. No evidence was observed of the α-/β-furanoses or linear forms found in the biochemical derivatives. i) D. Šišak, L. B. McCusker, G. Zandomeneghi, B. H. Meier, D. Bläser, R. Boese, W. B. Schweizer, R. Gylmour and J. D. Dunitz Angew. Chem. Int. Ed. 49, 4503, 2010. ii) W. Saenger Angew. Chem. Int. Ed. 49, 6487, 2010. i) M. Rudrum, and D. F. Shaw, J. Chem. Soc. 52, 1965. ii) R. U. Lemieux and J. D. Stevens Can. J. Chem. 44, 249, 1966. iii) E. Breitmaier and U. Hollstein Org. Magn. Reson. 8, 573, 1976. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. in press: DOI: 10.1002/anie.201107973, 2012.

  4. Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    McNally, K.M.; Sorg, B.S.; Welch, A.J.; Dawes, J.M.; Owen, E.R.

    1999-01-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5mgml -1 to 0.25mgml -1 was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4Wcm -2 using a solid protein solder composed of 60% BSA and 0.25mgml -1 ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85±5 deg. C with a

  5. Comparison of the layer structure of vapor phase and leached SRL glass by use of AEM [analytical electron microscopy

    International Nuclear Information System (INIS)

    Biwer, B.M.; Bates, J.K.; Abrajano, T.A. Jr.; Bradley, J.P.

    1989-01-01

    Test samples of 131 type glass that have been reacted for extended time periods in water vapor atmospheres of different relative humidities and in static leaching solution have been examined to characterize the reaction products. Analytical electron microscopy (AEM) was used to characterize the leached samples, and a complicated layer structure was revealed, consisting of phases that precipitate from solution and also form within the residual glass layer. The precipitated phases include birnes-site, saponite, and an iron species, while the intralayer phases include the U-Ti containing phase brannerite distributed within a matrix consisting of bands of an Fe rich montmorillonite clay. Comparison is made between samples leached at 40 degrees C for 4 years with those leached at 90 degrees C for 3-1/2 years. The samples reacted in water vapor were examined with scanning electron microscopy and show increasing reaction as both the relative humidity and time of reaction increases. These samples also contain a layered structure with reaction products on the glass surface. 15 refs., 5 figs

  6. VLE measurements using a static cell vapor phase manual sampling method accompanied with an empirical data consistency test

    International Nuclear Information System (INIS)

    Freitag, Joerg; Kosuge, Hitoshi; Schmelzer, Juergen P.; Kato, Satoru

    2015-01-01

    Highlights: • We use a new, simple static cell vapor phase manual sampling method (SCVMS) for VLE (x, y, T) measurement. • The method is applied to non-azeotropic, asymmetric and two-liquid phase forming azeotropic binaries. • The method is approved by a data consistency test, i.e., a plot of the polarity exclusion factor vs. pressure. • The consistency test reveals that with the new SCVMS method accurate VLE near ambient temperature can be measured. • Moreover, the consistency test approves that the effect of air in the SCVMS system is negligible. - Abstract: A new static cell vapor phase manual sampling (SCVMS) method is used for the simple measurement of constant temperature x, y (vapor + liquid) equilibria (VLE). The method was applied to the VLE measurements of the (methanol + water) binary at T/K = (283.2, 298.2, 308.2 and 322.9), asymmetric (acetone + 1-butanol) binary at T/K = (283.2, 295.2, 308.2 and 324.2) and two-liquid phase forming azeotropic (water + 1-butanol) binary at T/K = (283.2 and 298.2). The accuracy of the experimental data was approved by a data consistency test, that is, an empirical plot of the polarity exclusion factor, β, vs. the system pressure, P. The SCVMS data are accurate, because the VLE data converge to the same lnβ vs. lnP straight line determined from conventional distillation-still method and a headspace gas chromatography method

  7. Solderability study of RABiTS-based YBCO coated conductors

    International Nuclear Information System (INIS)

    Zhang Yifei; Duckworth, Robert C.; Ha, Tam T.; Gouge, Michael J.

    2011-01-01

    Study examines the implication of solder and flux selection in YBCO splice joints. Focus is on commercially available RABiTS-based YBCO coated conductors. Solderability varied with solder and flux for three different stabilizations tested. Resistivity of stabilizer was dominant factor in splice joint resistance. Solder materials affected splice joint resistance when solderability was poor. The solderability of commercially available YBa 2 Cu 3 O 7-x (YBCO) coated conductors that were made from Rolling Assisted Biaxially Textured Substrates (RABiTS)-based templates was studied. The coated conductors, also known as second-generation (2G) high temperature superconductor (HTS) wires (in the geometry of flat tapes about 4 mm wide), were laminated with copper, brass, or stainless steel strips as stabilizers. To understand the factors that influence their solderability, surface profilometry and scanning electron microscopy were used to characterize the wire surfaces. The solderability of three solders, 52In48Sn, 67Bi33In, and 100In (wt.%), was evaluated using a standard test (IPC/ECA J-STD-002) and with two different commercial fluxes. It was found that the solderability varied with the solder and flux but the three different wires showed similar solderability for a fixed combination of solder and flux. Solder joints of the 2G wires were fabricated using the tools and the procedures recommended by the HTS wire manufacturer. The solder joints were made in a lap-joint geometry and with the superconducting sides of the two wires face-to-face. The electrical resistances of the solder joints were measured at 77 K, and the results were analyzed to qualify the soldering materials and evaluate the soldering process. It was concluded that although the selection of soldering materials affected the resistance of a solder joint, the resistivity of the stabilizer was the dominant factor.

  8. The constitutive response of three solder materials

    International Nuclear Information System (INIS)

    Perez-Bergquist, Alejandro G.; Cao Fang; Perez-Bergquist, Sara J.; Lopez, Mike F.; Trujillo, Carl P.; Cerreta, Ellen K.; Gray, George T.

    2012-01-01

    Highlights: ► The full constitutive response of three solder materials. ► Test temperatures from −196 °C to 60 °C and strain rates from 10 −3 to >10 3 s −1 . ► Substitutes for leaded solders from a mechanical/microstructural properties view. - Abstract: As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196 °C to 60 °C) and strain rate (10 −3 to >10 3 s −1 ). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.

  9. The constitutive response of three solder materials

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bergquist, Alejandro G., E-mail: alexpb@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, NM 87545 (United States); Cao Fang [Exxon Mobil Research and Engineering Company, Annadale, NJ 08801 (United States); Perez-Bergquist, Sara J.; Lopez, Mike F.; Trujillo, Carl P.; Cerreta, Ellen K.; Gray, George T. [Materials Science and Technology Division, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, NM 87545 (United States)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer The full constitutive response of three solder materials. Black-Right-Pointing-Pointer Test temperatures from -196 Degree-Sign C to 60 Degree-Sign C and strain rates from 10{sup -3} to >10{sup 3} s{sup -1}. Black-Right-Pointing-Pointer Substitutes for leaded solders from a mechanical/microstructural properties view. - Abstract: As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (-196 Degree-Sign C to 60 Degree-Sign C) and strain rate (10{sup -3} to >10{sup 3} s{sup -1}). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.

  10. Optimal parameters for laser tissue soldering

    Science.gov (United States)

    McNally-Heintzelman, Karen M.; Sorg, Brian S.; Chan, Eric K.; Welch, Ashley J.; Dawes, Judith M.; Owen, Earl R.

    1998-07-01

    Variations in laser irradiance, exposure time, solder composition, chromophore type and concentration have led to inconsistencies in published results of laser-solder repair of tissue. To determine optimal parameters for laser tissue soldering, an in vitro study was performed using an 808-nm diode laser in conjunction with an indocyanine green (ICG)- doped albumin protein solder to weld bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The effects of laser irradiance and exposure time on tensile strength of the weld and temperature rise as well as the effect of hydration on bond stability were investigated. Optimum irradiance and exposure times were identified for each solder type. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the weld. A reduction in dye concentration from 2.5 mg/ml to 0.25 mg/ml was also found to result in an increase in tensile strength. The strongest welds were produced with an irradiance of 6.4 W/cm2 for 50 s using a solid protein solder composed of 60% BSA and 0.25 mg/ml ICG. Steady-state solder surface temperatures were observed to reach 85 plus or minus 5 degrees Celsius with a temperature gradient across the solid protein solder strips of between 15 and 20 degrees Celsius. Finally, tensile strength was observed to decrease significantly (20 to 25%) after the first hour of hydration in phosphate-buffered saline. No appreciable change was observed in the strength of the tissue bonds with further hydration.

  11. Substrate-induced phase of a [1]benzothieno[3,2-b]benzothiophene derivative and phase evolution by aging and solvent vapor annealing.

    Science.gov (United States)

    Jones, Andrew O F; Geerts, Yves H; Karpinska, Jolanta; Kennedy, Alan R; Resel, Roland; Röthel, Christian; Ruzié, Christian; Werzer, Oliver; Sferrazza, Michele

    2015-01-28

    Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking. Over time, the structure of the film is found to slowly convert to the single crystal structure. Solvent vapor annealing initiates the same structural evolution process but at a greatly increased rate, and near complete conversion can be achieved in a short period of time. As properties such as charge transport capability are determined by the molecular structure, this work highlights the importance of understanding and controlling the structure of organic semiconductor films and presents a simple method to control the film structure by solvent vapor annealing.

  12. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    Science.gov (United States)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  13. Thermomechanical Behavior of Monolithic SN-AG-CU Solder and Copper Fiber Reinforced Solders

    National Research Council Canada - National Science Library

    Reuse, Rolando

    2005-01-01

    .... The thermomechanical cycling in the solder causes numerous reliability challenges, mostly because of the mismatch of the coefficient of thermal expansion between the silicon chip and the substrate...

  14. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity

    KAUST Repository

    Huang, Wei

    2016-04-11

    Herein, we report a novel trifluoromethanesulfonic acid vapor-assisted solid phase synthetic method to construct nanoporous covalent triazine frameworks with highly ordered hollow interconnected pores under mild reaction conditions. This unique solid state synthetic route allows not only the avoidance of undesired side reactions caused by traditional high temperature synthesis, but also the maintaining of defined and precise optical and electronic properties of the nonporous triazine frameworks. Promising photocatalytic activity of the polytriazine networks was demonstrated in the photoreduction reaction of 4-nitrophenol into 4-aminophenol under visible light irradiation.

  15. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-01-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  16. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  17. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity

    KAUST Repository

    Huang, Wei; Wang, Zi Jun; Ma, Beatriz Chiyin; Ghasimi, Saman; Gehrig, Dominik; Laquai, Fré dé ric; Landfester, Katharina; Zhang, Kai A. I.

    2016-01-01

    Herein, we report a novel trifluoromethanesulfonic acid vapor-assisted solid phase synthetic method to construct nanoporous covalent triazine frameworks with highly ordered hollow interconnected pores under mild reaction conditions. This unique solid state synthetic route allows not only the avoidance of undesired side reactions caused by traditional high temperature synthesis, but also the maintaining of defined and precise optical and electronic properties of the nonporous triazine frameworks. Promising photocatalytic activity of the polytriazine networks was demonstrated in the photoreduction reaction of 4-nitrophenol into 4-aminophenol under visible light irradiation.

  18. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  19. Modelling and numerical simulation of liquid-vapor phase transitions; Modelisation et simulation numerique des transitions de phase liquide-vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Caro, F

    2004-11-15

    This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)

  20. Theoretical approaches and experimental evidence for liquid-vapor phase transitions in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Elliott, J.B.; Phair, L.; Wozniak, G.J.; Mader, C.M.; Chappars, A.

    2001-01-01

    The leptodermous approximation is applied to nuclear systems for T > 0. The introduction of surface corrections leads to anomalous caloric curves and to negative heat capacities in the liquid-gas coexistence region. Clusterization in the vapor is described by associating surface energy to clusters according to Fisher's formula. The three-dimensional Ising model, a leptodermous system par excellence, does obey rigorously Fisher's scaling up to the critical point. Multifragmentation data from several experiments including the ISiS and EOS Collaborations, as well as compound nucleus fragment emission at much lower energy follow the same scaling, thus providing the strongest evidence yet of liquid-vapor coexistence.

  1. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    Science.gov (United States)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  2. Vapor phase modification of sol-gel derived titania (TiO{sub 2}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)]. E-mail: irek@uni.lodz.pl; Ilik, Aneta [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)

    2006-12-30

    Chemical vapor deposition (CVD) method was used in titania surface modification. Titania layers were obtained in sol-gel process and prepared as thin films on silicon wafers in dip-coating method. In order to define the influence of modification on titania surface properties (e.g., friction), various types of fluoroalkylsilanes were used. The effectiveness of the modification was monitored by FT-IR spectroscopy. The topography and frictional measurements were investigated with the use of atomic force microscopy (AFM)

  3. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M

    2004-10-20

    Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.

  4. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  5. Pollution level and distribution of PCDD/PCDF congeners between vapor phase and particulate phase in winter air of Dalian, China.

    Science.gov (United States)

    Wang, Wei; Qin, Songtao; Song, Yu; Xu, Qian; Ni, Yuwen; Chen, Jiping; Zhang, Xueping; Mu, Jim; Zhu, Xiuhua

    2011-06-01

    In December 2009, ambient air was sampled with active high-volume air samplers at two sites: on the roof of the No. l building of Dalian Jiaotong University and on the roof of the building of Dalian Meteorological Observatory. The concentrations and the congeners between vapor phase and particulate phase of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the air were measured. Sample analysis results showed that the concentrations of PCDD/Fs in particulate phase was higher than that in gaseous phase. The ratio of PCDD to PCDF in gaseous phase and particulate phase was lower than 0.4 in all samples. The total I-TEQ value in gaseous phase and particulate phase was 5.5 and 453.8 fg/m(3) at Dalian Jiaotong University, 16.6 and 462.1 fg/m(3) at Dalian Meteorological Observatory, respectively. The I-TEQ value of Dalian atmosphere was 5.5-462.1 fg/m(3) which was lower than international standard, the atmospheric quality in Dalian is better. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Suppression of metastable-phase inclusion in N-polar (0001¯) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Shojiki, Kanako; Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-01-01

    The metastable zincblende (ZB) phase in N-polar (0001 ¯ ) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated

  7. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhibo [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Liu, Ning [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chen, Biaohua [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Li, Jianwei [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2018-01-25

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology and exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further

  8. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors

    Science.gov (United States)

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-01

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  9. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    Science.gov (United States)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  10. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  11. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets.

    Science.gov (United States)

    Liu, Porun; Wang, Yun; Zhang, Haimin; An, Taicheng; Yang, Huagui; Tang, Zhiyong; Cai, Weiping; Zhao, Huijun

    2012-12-07

    For the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage. The findings reveal that the HF-VPH reaction environment is unique and differs remarkably from that of liquid-phase hydrothermal processes. The uniqueness of the HF-VPH conditions can be readily used to effectively control the nanostructure growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  13. Thermal ionization and plasma state of high temperature vapor of UO2, Cs, and Na: Effect on the heat and radiation transport properties of the vapor phase

    International Nuclear Information System (INIS)

    Karow, H.U.

    1979-01-01

    The paper deals with the question how far the thermophysical state and the convective and radiative heat transport properties of vaporized reactor core materials are affected by the thermal ionization existing in the actual vapor state. The materials under consideration here are: nuclear oxide fuel (UO 2 ), Na (as the LMFBR coolant material), and Cs (alkaline fission product, partly retained in the fuel of the core zone). (orig./RW) [de

  14. Thermomechanical fatigue life prediction for several solders

    Science.gov (United States)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for

  15. Effect of trace elements on the interface reactions between two lead-free solders and copper or nickel substrates

    Directory of Open Access Journals (Sweden)

    Soares D.

    2007-01-01

    Full Text Available Traditional Sn-Pb solder alloys are being replaced, because of environmental and health concerns about lead toxicity. Among some alternative alloy systems, the Sn-Zn and Sn-Cu base alloy systems have been studied and reveal promising properties. The reliability of a solder joint is affected by the solder/substrate interaction and the nature of the layers formed at the interface. The solder/substrate reactions, for Sn-Zn and Sn-Cu base solder alloys, were evaluated in what concerns the morphology and chemical composition of the interface layers. The effect of the addition of P, at low levels, on the chemical composition of the layers present at the interface was studied. The phases formed at the interface between the Cu or Ni substrate and a molten lead-free solder at 250ºC, were studied for different stage times and alloy compositions. The melting temperatures, of the studied alloys, were determined by Differential Scanning Calorimetry (DSC. Identification of equilibrium phases formed at the interface layer, and the evaluation of their chemical composition were performed by Scanning Electron Microscopy (SEM/EDS. Different interface characteristics were obtained, namely for the alloys containing Zn. The obtained IML layer thickness was compared, for both types of alloy systems.

  16. Corrosion Behaviour of Sn-based Lead-Free Solders in Acidic Solution

    Science.gov (United States)

    Nordarina, J.; Mohd, H. Z.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    The corrosion properties of Sn-9(5Al-Zn), Sn-Cu and SAC305 were studied via potentiodynamic polarization method in an acidic solution of 1 M hydrochloric acid (HCl). Sn-9(5Al-Zn) produced different polarization profile compared with Sn-Cu and SAC305. The morphological analysis showed that small, deep grooves shaped of corrosion product formed on top of Sn-9(5Al-Zn) solder while two distinctive structures of closely packed and loosely packed corrosion product formed on top of Sn-Cu and SAC305 solder alloys. Phase analysis revealed the formations of various corrosion products such as SnO and SnO2 mainly dominant on surface of solder alloys after potentiodynamic polarization in 1 M hydrochloric acid (HCl).

  17. Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure%Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    王琳; 曹丰璞; 刘珊珊; 杨浩

    2011-01-01

    High-pressure vapor-liquid phase equilibrium data for carbon dioxide+ isopentanol were measured at tempera- tures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable-volume high-pressure visual cell. The experimental data were well correlated with Peng-Robinson equation of state (PR-EOS) together with van der Waals-2 two-parameter mixing rule, and the binary interaction parameters were obtained. Henry coefficients and partial molar volumes of CO2 at infinite dilution were estimated based on Krichevsky-Kasarnovsky equation, and Henry coefficients increase with increasing temperature, however, partial molar volumes of CO2 at infinite dilution are negative and the magnitudes decrease with temperature.

  18. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  19. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    Science.gov (United States)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  20. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    François, B.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l' Epitaphe, 25030 Besançon (France); Calosso, C. E. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Danet, J. M. [LNE-SYRTE, Observatoire de Paris, CNRS-UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  1. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III, sampled March 28, 1999

    International Nuclear Information System (INIS)

    LOCKREM, L.L.

    1999-01-01

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999

  2. The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification

    Science.gov (United States)

    Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.

  3. Measurement of vapor-liquid-liquid phase equilibrium-Equipment and results

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; von Solms, Nicolas; Richon, Dominique

    2015-01-01

    There exists a need for new accurate and reliable experimental data, preferably with full characterization of all the phases present in equilibrium. The need for high-quality experimental phase equilibrium data is the case for the chemical industry in general. All areas deal with processes whose ...

  4. Vapor Chamber with Phase Change Material-Based Wick Structure for Thermal Control of Manned Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During a NASA Phase I SBIR program, ACT addressed the need for light-weight, non-venting PCM heat storage devices by successfully demonstrating proof-of-concept of a...

  5. Vapor Chamber with Phase Change Material-based Wick Structure for Thermal Control of Manned Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR solicitation H3.01 "Thermal Control for Future Human Exploration", Advanced Cooling Technologies, Inc. (ACT) is proposing a novel Phase...

  6. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  7. Vapor-phase etching of InP using anhydrous HCl and PH/sub 3/ gas

    International Nuclear Information System (INIS)

    Pak, K.; Koide, Y.; Imai, K.; Yoshida, A.; Nakamura, T.; Yasuda, Y.; Nishinaga, T.

    1986-01-01

    In situ etching of the substrate surface for vapor-phase epitaxy is a useful technique for obtaining a smooth and damage-free surface prior to the growth. Previous work showed that the incorporation of in situ etching of InP substrate with anhydrous HCl gas resulted in a significant improvement in the surface morphologies for MOVPE-grown InGaAs/InP and InP epitaxial layers. However, the experiment on the HCl etching of the InP substrate for a wide temperature range has not been performed as yet. In this note, the authors describe the effect of the substrate temperature on the etching morphology of InP substrate by using the anhydrous HCl and PH/sub 3/ gases. In the experiment, they used a standard MOVPE horizontal system. A quartz reactor tube in a 60 mm ID, 60 cm long, was employed

  8. Photoluminescence investigation of thick GaN films grown on Si substrates by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Yang, M.; Ahn, H. S.; Chang, J. H.; Yi, S. N.; Kim, K. H.; Kim, H.; Kim, S. W.

    2003-01-01

    The optical properties of thick GaN films grown by hydried vapor phase epitaxy (HVPE) using a low-temperature intermediate GaN buffer layer grown on a (111) Si substrate with a ZnO thin film were investigated by using photoluminescence (PL) measurement at 300 K and 77 K. The strong donor bound exciton (DBE) at 357 nm with a full width at half maximum (FWHM) of 15 meV was observed at 77 K. The value of 15 meV is extremely narrow for GaN grown on Si substrate by HVPE. An impurity-related peak was also observed at 367 nm. The origin of impurity was investigated using Auger spectroscopy.

  9. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    International Nuclear Information System (INIS)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin; Bae, Joonwon

    2013-01-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol–gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  10. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Shinlimdong 56-1, Seoul, 151-742 (Korea, Republic of); Bae, Joonwon [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of)

    2013-06-28

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  11. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Science.gov (United States)

    Min, Sa Hoon; Bae, Joonwon; Jang, Jyongsik; Lee, Kyung Jin

    2013-06-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant.

  12. Preparation of 2-in.-diameter (001) β-Ga2O3 homoepitaxial wafers by halide vapor phase epitaxy

    Science.gov (United States)

    Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Sasaki, Kohei; Goto, Ken; Konishi, Keita; Murakami, Hisashi; Kuramata, Akito; Kumagai, Yoshinao; Yamakoshi, Shigenobu

    2017-11-01

    The homoepitaxial growth of thick β-Ga2O3 layers on 2-in.-diameter (001) wafers was demonstrated by halide vapor phase epitaxy. Growth rates of 3 to 4 µm/h were confirmed for growing intentionally Si-doped n-type layers. A homoepitaxial layer with an average thickness and carrier concentration of 10.9 µm and 2.7 × 1016 cm-3 showed standard deviations of 1.8 µm (16.5%) and 0.5 × 1016 cm-3 (19.7%), respectively. Ni Schottky barrier diodes fabricated directly on a 5.3-µm-thick homoepitaxial layer with a carrier concentration of 3.4 × 1016 cm-3 showed reasonable reverse and forward characteristics, i.e., breakdown voltages above 200 V and on-resistances of 3.8-7.7 mΩ cm2 at room temperature.

  13. Temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Kumagai, Yoshinao; Adachi, Hirokazu; Otake, Aya; Higashikawa, Yoshihiro; Togashi, Rie; Murakami, Hisashi; Koukitu, Akinori

    2010-01-01

    The temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy (HVPE) was investigated. N-polarity single-crystal InN layers were successfully grown at temperatures ranging from 400 to 500 C. The a and c lattice constants of InN layers grown at 450 C or below were slightly larger than those of InN layers grown above 450 C due to oxygen incorporation that also increased the carrier concentration. The optical absorption edge of the InN layer decreased from above 2.0 to 0.76 eV when the growth temperature was increased from 450 to 500 C. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. A facile way to control phase of tin selenide flakes by chemical vapor deposition

    Science.gov (United States)

    Wang, Zhigang; Pang, Fei

    2018-06-01

    Although two-dimensional (2D) tin selenides are attracting intense attentions, studies on its phase transition are still relatively few. Here we report a facile way to control the phase growth of tin selenide flakes on mica and SiO2/Si by only adjusting nominal Sn:Se ratio, which refers to the amount of loaded SnO2 and Se precursors. High normal Sn:Se ratio induced SnSe flakes, conversely SnSe2 flakes formed. It could be used as a practical guide to selectively synthesize pure phase of single crystalline 2D layered chalcogenide materials similar to tin selenides.

  15. Microstructure evolution and thermomechanical fatigue of solder materials

    NARCIS (Netherlands)

    Matin, M.A.

    2005-01-01

    The microelectronics industry is confronted with the new challenge to produce joints with lead-free solder materials replacing classical tin-lead solders in devices used in many fields (e.g. consumer electronics, road transport, aviation, space-crafts, telecommunication). In service, solder

  16. Efforts to Develop a 300°C Solder

    Energy Technology Data Exchange (ETDEWEB)

    Norann, Randy A [Perma Works LLC

    2015-01-25

    This paper covers the efforts made to find a 300°C electrical solder solution for geothermal well monitoring and logging tools by Perma Works LLC. This paper covers: why a high temperature solder is needed, what makes for a good solder, testing flux, testing conductive epoxy and testing intermetallic bonds. Future areas of research are suggested.

  17. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  18. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Zúñiga, C. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Vargas-García, J.R., E-mail: rvargasga@ipn.mx [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Hernández-Pérez, M.A. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Figueroa-Torres, M.Z. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico); Cervantes-Sodi, F. [Depto. Fisica y Matematicas, Univ. Iberoamericana, Mexico 01209 D.F. (Mexico); Torres-Martínez, L.M. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico)

    2014-12-05

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO{sub 3}/H{sub 2}SO{sub 4} solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm.

  19. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    International Nuclear Information System (INIS)

    Mercado-Zúñiga, C.; Vargas-García, J.R.; Hernández-Pérez, M.A.; Figueroa-Torres, M.Z.; Cervantes-Sodi, F.; Torres-Martínez, L.M.

    2014-01-01

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO 3 /H 2 SO 4 solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm

  20. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-01-01

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W_2CoB_2. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W_2CoB_2 with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  1. Indium tin oxide thin-films prepared by vapor phase pyrolysis for efficient silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Simashkevich, Alexei, E-mail: alexeisimashkevich@hotmail.com [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Serban, Dormidont; Bruc, Leonid; Curmei, Nicolai [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Hinrichs, Volker [Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rusu, Marin [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-07-01

    The vapor phase pyrolysis deposition method was developed for the preparation of indium tin oxide (ITO) thin films with thicknesses ranging between 300 and 400 nm with the sheet resistance of 10–15 Ω/sq. and the transparency in the visible region of the spectrum over 80%. The layers were deposited on the (100) surface of the n-type silicon wafers with the charge carriers concentration of ~ 10{sup 15} cm{sup −3}. The morphology of the ITO layers deposited on Si wafers with different surface morphologies, e.g., smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) was investigated. The as-deposited ITO thin films consist of crystalline columns with the height of 300–400 nm and the width of 50–100 nm. Photovoltaic parameters of mono- and bifacial solar cells of Cu/ITO/SiO{sub 2}/n–n{sup +} Si/Cu prepared on Si (100) wafers with different surface structures were studied and compared. A maximum efficiency of 15.8% was achieved on monofacial solar cell devices with the textured Si surface. Bifacial photovoltaic devices from 100 μm thick Si wafers with the smooth surface have demonstrated efficiencies of 13.0% at frontal illumination and 10% at rear illumination. - Highlights: • ITO thin films prepared by vapor phase pyrolysis on Si (100) wafers with a smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) surface. • Monofacial ITO/SiO2/n-n+Si solar cells with an efficiency of 15.8% prepared and bifacial PV devices with front- and rear-side efficiencies up to 13% demonstrated. • Comparative studies of photovoltaic properties of solar cells with different morphologies of the Si wafer surface presented.

  2. A novel method for direct solder bump pull testing using lead-free solders

    Science.gov (United States)

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  3. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  4. A Hodge dual for soldered bundles

    International Nuclear Information System (INIS)

    Lucas, Tiago Gribl; Pereira, J G

    2009-01-01

    In order to account for all possible contractions allowed by the presence of the solder form, a generalized Hodge dual is defined for the case of soldered bundles. Although for curvature the generalized dual coincides with the usual one, for torsion it gives a completely new dual definition. Starting from the standard form of a gauge Lagrangian for the translation group, the generalized Hodge dual yields precisely the Lagrangian of the teleparallel equivalent of general relativity, and consequently also the Einstein-Hilbert Lagrangian of general relativity

  5. Visual detection of defects in solder joints

    Science.gov (United States)

    Blaignan, V. B.; Bourbakis, Nikolaos G.; Moghaddamzadeh, Ali; Yfantis, Evangelos A.

    1995-03-01

    The automatic, real-time visual acquisition and inspection of VLSI boards requires the use of machine vision and artificial intelligence methodologies in a new `frame' for the achievement of better results regarding efficiency, products quality and automated service. In this paper the visual detection and classification of different types of defects on solder joints in PC boards is presented by combining several image processing methods, such as smoothing, segmentation, edge detection, contour extraction and shape analysis. The results of this paper are based on simulated solder defects and a real one.

  6. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase

    Czech Academy of Sciences Publication Activity Database

    Klouček, P.; Šmíd, J.; Franková, A.; Kokoska, L.; Valterová, Irena; Pavela, R.

    2012-01-01

    Roč. 47, č. 2 (2012), s. 161-165 ISSN 0963-9969 Grant - others:GA ČR(CZ) GP525/09/P503 Institutional research plan: CEZ:AV0Z40550506 Keywords : antibacterial * gas phase * antifungal * fumigation Subject RIV: CC - Organic Chemistry Impact factor: 3.005, year: 2012

  7. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2010-01-01

    using the TIP4P/ice potential and a united-atom Lennard-Jones potential. respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials. (ii) calculation of the chemical...

  8. Metal organic vapor phase epitaxy growth of (Al)GaN heterostructures on SiC/Si(111) templates synthesized by topochemical method of atoms substitution

    DEFF Research Database (Denmark)

    Rozhavskaya, Mariia M.; Kukushkin, Sergey A.; Osipov, Andrey V.

    2017-01-01

    We report a novel approach for metal organic vapor phase epitaxy of (Al)GaN heterostructures on Si substrates. An approximately 90–100 nm thick SiC buffer layer is synthesized using the reaction between Si substrate and CO gas. Highresolution transmission electron microscopy reveals sharp...

  9. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-09-11

    This report summarizes work performed on this project from April 2004 through September 2004. Our previous work demonstrated that a polyurethane foam biofilter could successfully biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, establishing the biomass on the polyurethane foam packing was relatively time consuming and daily recirculation of a concentrated nutrient solution was required for efficient operation of the foam biofilter. To simplify the start up and operating requirements of the biofilter system, a simple, compost-based biofilter was investigated for its ability to treat the BTEX contaminants generated during the SMZ regeneration process. The investigation of the compost biofilter was divided into three experimental phases that spanned 180 days of biofilter operation. During Phase 1, the biofilter was continuously supplied a BTEX-contaminated waste gas stream. During Phase 2, a series of periodic shutdown tests were conducted to assess how the biofilter responded when the BTEX feed was discontinued for periods ranging from 1 day to 2.8 days. The Phase 3 experiments focused on determining how the biofilter would handle periodic spikes in inlet BTEX concentration as would be expected when it is coupled with an SMZ column. Results from the continuous feed (Phase 1) experiments demonstrated that the compost biofilter could maintain BTEX removals of greater than 98% within two weeks of startup. Results of the shutdown experiments indicated that benzene removal was the most sensitive to interruptions in the BTEX feed. Nevertheless, the BTEX removal efficiency exceeded 95% within 6 hours of reestablishing the BTEX feed to the biofilter. When the biofilter was subjected to periodic spikes in BTEX concentration (Phase 3), it was found that the total BTEX removal efficiency stabilized at approximately 75% despite the fact that the biofilter was only fed BTEX contaminants 8 hours per day. Finally, the effects of nutrient

  10. Secondary phase formation and the microstructural evolution of surface layers during vapor phase alteration of the French SON 68 nuclear waste glass at 200 degrees C

    International Nuclear Information System (INIS)

    Gong, W.L.; Ewing, R.C.; Wang, L.M.

    1995-01-01

    The SON 68 inactive open-quotes R7T7close quotes composition is the French reference glass for the LWR nuclear waste glass. Vapor phase alteration was used to accelerate the reaction progress of glass corrosion and to develop the characteristic suite of secondary, alteration phases. Extensive solid-state characterization (AEM/SEM/HRTEM) was completed on six inactive R7T7 waste glasses which were altered in the presence of saturated water vapor (200 degrees C) for 91, 241, 908, 1000, 1013, and 1021 days. The AEM samples were examined in cross-section (lattice-fringe imaging, micro-diffraction, and quantitative thin-film EDS analysis). The glass monoliths were invariably covered with a thin altered rind. The layer became thicker with time: 0.5 μm for 22 days; 4 μm for 91 days; 6 μm for 241 days; 10 μm for 908 days; 26 μm for 1013 days; and 2 TeO 3 and (Ca,Sr)Mo 3 O 9 (OH) 2 , were found within the inner zones of surface layers, and they must have nucleated in situ, indicating that Ag, Te, Sr, and Mo can be retained within the surface layer. The majority of the surface layer volume is composed of two morphologically and chemically different structures: one consists of well-crystallized fibrous smectite aggregates occurring along with cavities, the A-domain; and the other consists of poorly-crystallized regions containing needle-like smectite (montmorillonite) crystallites, a silica-rich amorphous matrix, and possibly ZrO 2 particles, the B-domain

  11. Organic-inorganic field effect transistor with SnI-based perovskite channel layer using vapor phase deposition technique

    Science.gov (United States)

    Matsushima, Toshinori; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2003-11-01

    High field-effect hole mobility of (formula available in paper)and threshold voltage is -3.2 V) in organic-inorganic layered perovskite film (formula available in paper)prepared by a vapor phase deposition technique have been demonstrated through the octadecyltrichlorosilane treatment of substrate. Previously, the (formula available in paper)films prepared on the octadecyltrichlorosilane-covered substrates using a vapor evaporation showed not only intense exciton absorption and photoluminescence in the optical spectroscopy but also excellent crystallinity and large grain structure in X-ray and atomic force microscopic studies. Especially, the (formula available in paper)structure in the region below few nm closed to the surface of octadecyltrichlorosilane monolayer was drastically improved in comparison with that on the non-covered substrate. Though our initial (formula available in paper)films via a same sequence of preparation of (formula available in paper)and octadecyltrichlorosilane monolayer did not show the field-effect properties because of a lack of spectral, structural, and morphological features. The unformation of favorable (formula available in paper)structure in the very thin region, that is very important for the field-effect transistors to transport electrons or holes, closed to the surface of non-covered (formula available in paper)dielectric layer was also one of the problems for no observation of them. By adding further optimization and development, such as deposition rate of perovskite, substrate heating during deposition, and tuning device architecture, with hydrophobic treatment, the vacuum-deposited (formula available in paper)have achieved above-described high performance in organic-inorganic hybrid transistors.

  12. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Chang, Kuo-Jen [Chung-Shan Institute of Science and Technology, No.15, Shi Qi Zi, Gaoping Village, Longtan Township, Taoyuan County, Taiwan (China)

    2013-09-02

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H{sub 2}Se) with the flow ratio of [H{sub 2}Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH{sub 3}) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported.

  13. Laser assisted soldering: microdroplet accumulation with a microjet device.

    Science.gov (United States)

    Chan, E K; Lu, Q; Bell, B; Motamedi, M; Frederickson, C; Brown, D T; Kovach, I S; Welch, A J

    1998-01-01

    We investigated the feasibility of a microjet to dispense protein solder for laser assisted soldering. Successive micro solder droplets were deposited on rat dermis and bovine intima specimens. Fixed laser exposure was synchronized with the jetting of each droplet. After photocoagulation, each specimen was cut into two halves at the center of solder coagulum. One half was fixed immediately, while the other half was soaked in phosphate-buffered saline for a designated hydration period before fixation (1 hour, 1, 2, and 7 days). After each hydration period, all tissue specimens were prepared for scanning electron microscopy (SEM). Stable solder coagulum was created by successive photocoagulation of microdroplets even after the soldered tissue exposed to 1 week of hydration. This preliminary study suggested that tissue soldering with successive microdroplets is feasible even with fixed laser parameters without active feedback control.

  14. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    Science.gov (United States)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  15. Development of Pb-Free Nanocomposite Solder Alloys

    Directory of Open Access Journals (Sweden)

    Animesh K. Basak

    2018-04-01

    Full Text Available As an alternative to conventional Pb-containing solder material, Sn–Ag–Cu (SAC based alloys are at the forefront despite limitations associated with relatively poor strength and coarsening of grains/intermetallic compounds (IMCs during aging/reflow. Accordingly, this study examines the improvement of properties of SAC alloys by incorporating nanoparticles in it. Two different types of nanoparticles were added in monolithic SAC alloy: (1 Al2O3 or (2 Fe and their effect on microstructure and thermal properties were investigated. Addition of Fe nanoparticles leads to the formation of FeSn2 IMCs alongside Ag3Sn and Cu6Sn5 from monolithic SAC alloy. Addition of Al2O3 nano-particles do not contribute to phase formation, however, remains dispersed along primary β-Sn grain boundaries and act as a grain refiner. As the addition of either Fe or Al2O3 nano-particles do not make any significant effect on thermal behavior, these reinforced nanocomposites are foreseen to provide better mechanical characteristics with respect to conventional monolithic SAC solder alloys.

  16. A model for arsenic anti-site incorporation in GaAs grown by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, K. L.; Kuech, T. F. [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-12-28

    GaAs growth by hydride vapor phase epitaxy (HVPE) has regained interest as a potential route to low cost, high efficiency thin film photovoltaics. In order to attain the highest efficiencies, deep level defect incorporation in these materials must be understood and controlled. The arsenic anti-site defect, As{sub Ga} or EL2, is the predominant deep level defect in HVPE-grown GaAs. In the present study, the relationships between HVPE growth conditions and incorporation of EL2 in GaAs epilayers were determined. Epitaxial n-GaAs layers were grown under a wide range of deposition temperatures (T{sub D}) and gallium chloride partial pressures (P{sub GaCl}), and the EL2 concentration, [EL2], was determined by deep level transient spectroscopy. [EL2] agreed with equilibrium thermodynamic predictions in layers grown under conditions in which the growth rate, R{sub G}, was controlled by conditions near thermodynamic equilibrium. [EL2] fell below equilibrium levels when R{sub G} was controlled by surface kinetic processes, with the disparity increasing as R{sub G} decreased. The surface chemical composition during growth was determined to have a strong influence on EL2 incorporation. Under thermodynamically limited growth conditions, e.g., high T{sub D} and/or low P{sub GaCl}, the surface vacancy concentration was high and the bulk crystal was close to equilibrium with the vapor phase. Under kinetically limited growth conditions, e.g., low T{sub D} and/or high P{sub GaCl}, the surface attained a high GaCl coverage, blocking As adsorption. This competitive adsorption process reduced the growth rate and also limited the amount of arsenic that incorporated as As{sub Ga}. A defect incorporation model which accounted for the surface concentration of arsenic as a function of the growth conditions, was developed. This model was used to identify optimal growth parameters for the growth of thin films for photovoltaics, conditions in which a high growth rate and low [EL2] could be

  17. Wave-mixing-induced transparency with zero phase shift in atomic vapors

    Science.gov (United States)

    Zhou, F.; Zhu, C. J.; Li, Y.

    2017-12-01

    We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.

  18. Study of the Vapor Phase Over Fusarium Fungi Cultured on Various Substrates.

    Science.gov (United States)

    Savelieva, Elena I; Gustyleva, Liudmila K; Kessenikh, Elizaveta D; Khlebnikova, Natalya S; Leffingwell, John; Gavrilova, Olga P; Gagkaeva, Tatiana Yu

    2016-07-01

    The compositions of volatile organic compounds (VOCs) emitted by Fusarium fungi (F. langsethiae, F. sibiricum, F. poae, and F. sporotrichioides) grown on two nutritive substrates: potato sucrose agar (PSA) and autoclaved wheat kernels (WK) were investigated. The culturing of fungi and study of their VOC emissions were performed in chromatographic vials at room temperature (23 - 24 °C) and the VOCs were sampled by a solid-phase microextraction on a 85 μm carboxen/polydimethylsiloxane fiber. GC/MS was performed using a 60-m HP-5 capillary column. Components of the VOC mixture were identified by electron impact mass spectra and chromatographic retention indices (RIs). The most abundant components of the VOC mixture emitted by Fusarium fungi are EtOH, AcOH, (i) BuOH, 3-methylbutan-1-ol, 2-methylbutan-1-ol, ethyl 3-methylbutanoate, terpenes with M 136, sesquiterpenes with M 204 (a total of about 25), and trichodiene. It was found that the strains grown on PSA emit a wider spectrum and larger amount of VOCs compared with those grown on wheat kernels. F. langsethiae strain is the most active VOC producer on both substrates. The use of SPME and GC/MS also offers the potential for differentiation of fungal species and strains. © 2016 Wiley-VHCA AG, Zürich.

  19. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11-C192

    Science.gov (United States)

    Acree, William; Chickos, James S.

    2017-03-01

    The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.

  20. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Science.gov (United States)

    Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien

    2018-01-01

    Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  1. Evaluation of cinnamon essential oil microemulsion and its vapor phase for controlling postharvest gray mold of pears (Pyrus pyrifolia).

    Science.gov (United States)

    Wang, Yifei; Zhao, Ruipeng; Yu, Ling; Zhang, Yunbin; He, Yan; Yao, Jie

    2014-03-30

    Essential oil of cinnamon (CM) is a potential alternative to chemical fungicides. Thus this work aimed to investigate the possible effects of CM microemulsions on decay developments and qualitative properties of pears. The decay incidence of samples treated with 500 µg L⁻¹ microemulsion was significantly reduced by 18.7% in comparison to that of 500 µg L⁻¹ non-microemulsion after 4 days' storage at 20 °C. In the vapor phase, the CM microemulsion with the lowest concentration had the best control for decay incidence and lesion diameter. The interval between inoculations also influenced decay development. Pears treated with Botrytis cinerea and immediately followed by CM microemulsion showed the lowest decay incidence. Moreover, in the natural decay experiment, the percentage of rotted pears was 3.8% in the CM microemulsion treatment and 5.8% in the control. CM microemulsion delayed the loss of ascorbic acid, yet it had no significant influence on pear qualities such as firmness and color. CM microemulsion may be an alternative way to control the gray mold of pears without a negative influence on its qualities. © 2013 Society of Chemical Industry.

  2. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    International Nuclear Information System (INIS)

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-01-01

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10 16 cm −3 to 6 × 10 17 cm −3 . Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10 17 cm −3 is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission

  3. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    Science.gov (United States)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  4. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    Science.gov (United States)

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  5. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Directory of Open Access Journals (Sweden)

    Wei-Fu Wang

    2018-01-01

    Full Text Available Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3 along with diffused germanium donors whose concentration (>>1018/cm3 determined by electro-chemical capacitance-voltage (ECV profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  6. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    Science.gov (United States)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  7. Effect of gas flow on the selective area growth of gallium nitride via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Kasarla, K. R.; Korakakis, D.

    2007-08-01

    The effect of gas flow on the selective area growth (SAG) of gallium nitride (GaN) grown via metal organic vapor phase epitaxy (MOVPE) has been investigated. In this study, the SAG of GaN was carried out on a silicon dioxide striped pattern along the GaN direction. SAG was initiated with the striped pattern oriented parallel and normal to the incoming gas flow in a horizontal reactor. The orientation of the pattern did not impact cross section of the structure after re-growth as both orientations resulted in similar trapezoidal structures bounded by the (0 0 0 1) and {1 1 2¯ n} facets ( n≈1.7-2.2). However, the growth rates were shown to depend on the orientation of the pattern as the normally oriented samples exhibited enhanced vertical and cross-sectional growth rates compared to the parallel oriented samples. All growths occurred under identical conditions and therefore the difference in growth rates must be attributed to a difference in mass transport of species.

  8. Vapor phase epitaxy of silicon on meso porous silicon for deposition on economical substrate and low cost photovoltaic application

    International Nuclear Information System (INIS)

    Quoizola, S.

    2003-01-01

    The silicon is more and more used in the industry. Meanwhile the production cost is a problem to solve to develop the photovoltaic cells production. This thesis presents a new technology based on the use of a meso-porous silicon upper layer,to grow the active silicon layer of 50 μm width. The photovoltaic cell is then realized, the device is removed and placed on a low cost substrate. The silicon substrate of beginning can be used again after cleaning. The first chapter presents the operating and the characteristics of the silicon photovoltaic cell. The second chapter is devoted to the growth technique, the vapor phase epitaxy, and the third chapter to the epitaxy layer. The chapter four deals with the porous silicon and the structure chosen in this study. The chapter five is devoted to the characterization of the epitaxy layer on porous silicon. The photovoltaic cells realized on these layers are presented in the last chapter. (A.L.B.)

  9. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking

    International Nuclear Information System (INIS)

    Norinaga, Koyo; Yang, Huamei; Tanaka, Ryota; Appari, Srinivas; Iwanaga, Keita; Takashima, Yuka; Kudo, Shinji; Shoji, Tetsuya; Hayashi, Jun-ichiro

    2014-01-01

    The reaction pathways leading to aromatic hydrocarbons such as benzene and naphthalene in gas-phase reactions of multi-component mixtures derived from cellulose fast pyrolysis were studied both experimentally and numerically. A two-stage tubular reactor was used for evaluating the reaction kinetics of secondary vapor phase cracking of the nascent pyrolysates at temperature ranging from 400 to 900 °C, residence time from 0.2 to 4.3 s, and at 241 kPa. The products of alkyne and diene were identified from the primary pyrolysis of cellulose even at low temperature range 500–600 °C. These products include acetylene, propyne, propadiene, vinylacetylene, and cyclopentadiene. Experiments were also numerically validated by a detailed chemical kinetic model consisting of more than 8000 elementary step-like reactions with over 500 chemical species. Acceptable capabilities of the kinetic model in predicting concentration profiles of the products enabled us to assess reaction pathways leading to benzene and naphthalene via the alkyne and diene from primary pyrolysates of cellulose. C 3 alkyne and diene are primary precursors of benzene at 650 °C, while combination of ethylene and vinylacetylene produces benzene dominantly at 850 °C. Cyclopentadiene is a prominent precursor of naphthalene. Combination of acetylene with propyne or allyl radical leads to the formation of cyclopentadiene. Furan and acrolein are likely important alkyne precursors in cellulose pyrolysis at low temperature, whereas dehydrogenations of olefins are major route to alkyne at high temperatures. - Highlights: • Analytical pyrolysis experiments provided data for kinetic modeling. • Detailed chemical kinetic model was used and evaluated. • Alkyne and diene were important intermediates for aromatic hydrocarbon formation. • Reaction pathways leading to aromatic hydrocarbons were proposed

  10. Controlling the physical parameters of crystalline CIGS nanowires for use in superstrate configuration using vapor phase epitaxy

    Science.gov (United States)

    Lee, Dongjin; Jeon, H. C.; Kang, T. W.; Kumar, Sunil

    2018-03-01

    Indium tin oxide (ITO) is a suitable candidate for smart windows and bifacial semi-transparent solar cell applications. In this study, highly crystalline CuInGaSe2 (CIGS) nanowires were successfully grown by horizontal-type vapor phase epitaxy on an ITO substrate. Length, diameter, and density of the nanowires were studied by varying the growth temperature (500, 520, and 560 °C), time (3.5, 6.5, and 9.5 h), and type of catalyst (In, Au, and Ga). Length, diameter, and density of the nanowires were found to be highly dependent on the growth conditions. At an optimized growth period and temperature of 3.5 h and 520 °C, respectively, the length and diameter of the nanowires were found to increase when grown in a catalyst-free environment. However, the density of the nanowires was found to be higher while using a catalyst during growth. Even in a catalyst-free environment, an Indium cluster formed at the bottom of the nanowires. The source of these nanowires is believed to be Indium from the ITO substrate which was observed in the EDS measurement. TEM-based EDS and line EDS indicated that the nanowires are made up of CIGS material with a very low Gallium content. XRD measurements also show the appearance of wurtzite CIS nanowires grown on ITO in addition to the chalcopyrite phase. PL spectroscopy was done to see the near-band-edge emission for finding band-to-band optical transition in this material. Optical response of the CIGS nanowire network was also studied to see the photovoltaic effect. This work creates opportunities for making real solar cell devices in superstrate configuration.

  11. Processing and Characterization of NiTi Shape Memory Alloy Particle Reinforced Sn-In Solders

    National Research Council Canada - National Science Library

    Chung, Kohn C

    2006-01-01

    .... In previous work, it was proposed that reinforcement of solder by NiTi shape memory alloy particles to form smart composite solder reduces the inelastic strain of the solder and hence, may enhance...

  12. Effect of Solder Flux Residues on Corrosion of Electronics

    DEFF Research Database (Denmark)

    Hansen, Kirsten Stentoft; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Flux from ‘No Clean’ solder processes can cause reliability problems in the field due to aggressive residues, which may be electrical conducting or corrosive in humid environments. The solder temperature during a wave solder process is of great importance to the amount of residues left on a PCBA...... testing and use in the field, consequences and recommendations are given. Failures, caused by harsh[1] customer environments, are not covered in this paper....

  13. Mechanical properties of soldered joints of niobium base alloys

    International Nuclear Information System (INIS)

    Grishin, V.L.

    1980-01-01

    Mechanical properties of soldered joints of niobium alloys widely distributed in industry: VN3, VN4, VN5A, VN5AE, VN5AEP etc., 0.6-1.2 mm thick are investigated. It is found out that the usage of zirconium-vanadium, titanium-tantalum solders for welding niobium base alloys permits to obtain soldered joints with satisfactory mechanical properties at elevated temperatures

  14. Fluxless flip-chip bonding using a lead-free solder bumping technique

    Science.gov (United States)

    Hansen, K.; Kousar, S.; Pitzl, D.; Arab, S.

    2017-09-01

    With the LHC exceeding the nominal instantaneous luminosity, the current barrel pixel detector (BPIX) of the CMS experiment at CERN will reach its performance limits and undergo significant radiation damage. In order to improve detector performance in high luminosity conditions, the entire BPIX is replaced with an upgraded version containing an additional detection layer. Half of the modules comprising this additional layer are produced at DESY using fluxless and lead-free bumping and bonding techniques. Sequential solder-jetting technique is utilized to wet 40-μm SAC305 solder spheres on the silicon-sensor pads with electroless Ni, Pd and immersion Au (ENEPIG) under-bump metallization (UBM). The bumped sensors are flip-chip assembled with readout chips (ROCs) and then reflowed using a flux-less bonding facility. The challenges for jetting low solder volume have been analyzed and will be presented in this paper. An average speed of 3.4 balls per second is obtained to jet about 67 thousand solder balls on a single chip. On average, 7 modules have been produced per week. The bump-bond quality is evaluated in terms of electrical and mechanical properties. The peak-bump resistance is about 17.5 mΩ. The cross-section study revealed different types of intermetallic compounds (IMC) as a result of interfacial reactions between UBM and solder material. The effect of crystalline phases on the mechanical properties of the joint is discussed. The mean shear strength per bump after the final module reflow is about 16 cN. The results and sources of yield loss of module production are reported. The achieved yield is 95%.

  15. Li vaporization property of two-phase material of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} for tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Masuko, Yuki; Kato, Hirokazu; Yuyama, Hayato; Sakai, Yutaro [Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Mukai, Keisuke [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656 (Japan); Hosino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Course of Mechanical Engineering and Aeronautics and Astronautics, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2015-10-15

    Highlights: • We synthesized two phase materials based on Li{sub 2}SiO{sub 3} and Li{sub 2}TiO{sub 3}. • We investigated the Li vaporization property of the two-phase materials. • Li vaporization occurs significantly from only Li{sub 2}SiO{sub 3} grains in the vicinity of the surface of the pellets. • The Li vaporization is remarkable only for an early short time for the vaporization from Li{sub 2}SiO{sub 3} grains at the vicinity of the surface. • The second stable phase added functions effectively for inhibition of the Li vaporization. - Abstract: Li vaporization property of two-phase materials of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} in a working condition for the solid tritium breeder used in the demonstration power plant of fusion reactor was investigated, and the suppression mechanism of the vaporization was considered. The Li vaporization rate from the specimen pellet was measured by gravimetric method, and the change of Li concentration distribution in the pellet was analyzed by time-of-flight secondary ion mass spectrometer. Li was vaporized only from the Li{sub 2}SiO{sub 3} at the vicinity of the surface of the pellet. The remarkable vaporization of Li arose only in an early short time. The inhibition of the vaporization from the Li{sub 2}SiO{sub 3} was successful by adding the small amount of the stable secondary phase of Li{sub 2}TiO{sub 3}.

  16. Evaluation on the characteristics of tin-silver-bismuth solder

    Science.gov (United States)

    Xia, Z.; Shi, Y.; Chen, Z.

    2002-02-01

    Tin-silver-bismuth solder is characterized by its lower melting point, good wetting behavior, and good mechanical property for which it is expected to be a new lead-free solder to replace tin-lead solder. In this article, Sn-3.33Ag-4.83Bi solder was investigated concerning its physical, spreading, and mechanical properties under specific conditions. Cooling curves and DSC results showed that it was close to eutectic composition (m.p. 210° 212 °C). Coefficiency of thermal expansion (CTE) of this solder, between that of PCBs and copper substrates, was beneficial to alleviate the thermal mismatch of the substrates. It was also a good electrical and thermal conductor. Using a rosin-based, mildly activated (RMA) flux, a spreading test indicated that SnAgBi solder paste had good solderability. Meanwhile, the solder had high tensile strength and fracture energy. Its fracture mechanism was a mixture of ductile and brittle fracture morphology. The metallographic and EDAX analyses indicated that it was composed of a tin-based solid solution and some intermetallic compound (IMC) that could strengthen the substrate. However, these large needle-like IMCs would cut the substrate and this resulted in the decreasing of the toughness of the solder.

  17. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn) Assisted by Vapor Phase Transport of Methanol

    OpenAIRE

    Tamil Many K. Thandavan; Siti Meriam Abdul Gani; Chiow San Wong; Roslan Md Nor

    2014-01-01

    Zinc oxide (ZnO) nanowires (NWs) were synthesized using vapor phase transport (VPT) and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM) images as well as from the X-ray diffraction (XRD) profile. The photoluminescence (PL) profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defec...

  18. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    Science.gov (United States)

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Vapor phase treatment–total reflection X-ray fluorescence for trace elemental analysis of silicon wafer surface

    International Nuclear Information System (INIS)

    Takahara, Hikari; Mori, Yoshihiro; Shibata, Harumi; Shimazaki, Ayako; Shabani, Mohammad B.; Yamagami, Motoyuki; Yabumoto, Norikuni; Nishihagi, Kazuo; Gohshi, Yohichi

    2013-01-01

    Vapor phase treatment (VPT) was under investigation by the International Organization for Standardization/Technical Committee 201/Working Group 2 (ISO/TC201/WG2) to improve the detection limit of total reflection X-ray fluorescence spectroscopy (TXRF) for trace metal analysis of silicon wafers. Round robin test results have confirmed that TXRF intensity increased by VPT for intentional contamination with 5 × 10 9 and 5 × 10 10 atoms/cm 2 Fe and Ni. The magnification of intensity enhancement varied greatly (1.2–4.7 in VPT factor) among the participating laboratories, though reproducible results could be obtained for average of mapping measurement. SEM observation results showed that various features, sizes, and surface densities of particles formed on the wafer after VPT. The particle morphology seems to have some impact on the VPT efficiency. High resolution SEM observation revealed that a certain number of dots with SiO 2 , silicate and/or carbon gathered to form a particle and heavy metals, Ni and Fe in this study were segregated on it. The amount and shape of the residue should be important to control VPT factor. - Highlights: • This paper presents a summary of study results of VPT–TXRF using ISO/TC201/WG2. • Our goal is to analyze the trace metallic contamination on silicon wafer with concentrations below 1 × 10 10 atoms/cm 2 . • The efficiency and mechanism of VPT are discussed under several round robin tests and systematic studies

  20. Effect of Gold Dispersion on the Photocatalytic Activity of Mesoporous Titania for the Vapor-Phase Oxidation of Acetone

    Directory of Open Access Journals (Sweden)

    S. V. Awate

    2008-01-01

    Full Text Available Mesostructured titanium dioxide photocatalyst, having uniform crystallite size (6–12 nm and average pore diameter of ∼4.2 nm, was synthesized by using a low-temperature nonsurfactant hydrothermal route, employing tartaric acid as a templating agent. Gold additions from 0.5 to 2 wt% were incorporated, either during the hydrothermal process or by postsynthesis wet impregnation. Compared to the impregnation-prepared samples, the samples synthesized hydrothermally contained smaller-size (≤1 nm gold clusters occluded in the pores of the host matrix. Whereas CO2 and H2O were the main reaction products in UV-assisted vapor-phase oxidation of acetone using these catalysts, C2H6 and HCO2CH3 were also produced for higher acetone concentrations in air. The conversion of acetone was found to increase with decrease in the size of both TiO2 and gold particles. In situ IR spectroscopy revealed that titania and gold particles serve as independent adsorption and reaction sites for acetone and oxygen molecules. Acetone molecules adsorb exclusively at TiO2 surface, giving rise to a strongly adsorbed (condensed state as well as to the formation of formate- and methyl formate-type surface species. Hydroxyl groups at titania surface participate directly in these adsorption steps. Nanosize gold particles, on the other hand, were primarily responsible for the adsorption and activation of oxygen molecules. Mechanistic aspects of the photochemical processes are discussed on the basis of these observations.

  1. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Yao [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hon, Min-Hsiung [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2014-01-05

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag{sub 3}Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn{sub 3}. No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging.

  2. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    International Nuclear Information System (INIS)

    Liu, Chih-Yao; Hon, Min-Hsiung; Wang, Moo-Chin; Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long

    2014-01-01

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag 3 Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn 3 . No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging

  3. Reliability Study of Solder Paste Alloy for the Improvement of Solder Joint at Surface Mount Fine-Pitch Components

    Directory of Open Access Journals (Sweden)

    Mohd Nizam Ab. Rahman

    2014-12-01

    Full Text Available The significant increase in metal costs has forced the electronics industry to provide new materials and methods to reduce costs, while maintaining customers’ high-quality expectations. This paper considers the problem of most electronic industries in reducing costly materials, by introducing a solder paste with alloy composition tin 98.3%, silver 0.3%, and copper 0.7%, used for the construction of the surface mount fine-pitch component on a Printing Wiring Board (PWB. The reliability of the solder joint between electronic components and PWB is evaluated through the dynamic characteristic test, thermal shock test, and Taguchi method after the printing process. After experimenting with the dynamic characteristic test and thermal shock test with 20 boards, the solder paste was still able to provide a high-quality solder joint. In particular, the Taguchi method is used to determine the optimal control parameters and noise factors of the Solder Printer (SP machine, that affects solder volume and solder height. The control parameters include table separation distance, squeegee speed, squeegee pressure, and table speed of the SP machine. The result shows that the most significant parameter for the solder volume is squeegee pressure (2.0 mm, and the solder height is the table speed of the SP machine (2.5 mm/s.

  4. Two-phase flow modelling of a solar concentrator applied as ammonia vapor generator in an absorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, N. [Posgrado en Ingenieria (Energia), Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico); Garcia-Valladares, O.; Best, R.; Gomez, V.H. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2008-09-15

    A detailed one-dimensional numerical model describing the heat and fluid-dynamic behavior inside a compound parabolic concentrator (CPC) used as an ammonia vapor generator has been developed. The governing equations (continuity, momentum, and energy) inside the CPC absorber tube, together with the energy equation in the tube wall and the thermal analysis in the solar concentrator were solved. The computational method developed is useful for the solar vapor generator design applied to absorption cooling systems. The effect on the outlet temperature and vapor quality of a range of CPC design parameters was analyzed. These parameters were the acceptance half-angle and CPC length, the diameter and coating of the absorber tube, and the manufacture materials of the cover, the reflector, and the absorber tube. It was found that the most important design parameters in order to obtain a higher ammonia-water vapor production are, in order of priority: the reflector material, the absorber tube diameter, the selective surface, and the acceptance half-angle. The direct ammonia-water vapor generation resulting from a 35 m long CPC was coupled to an absorption refrigeration system model in order to determine the solar fraction, cooling capacity, coefficient of performance, and overall efficiency during a typical day of operation. The results show that approximately 3.8 kW of cooling at -10{sup o}C could be produced with solar and overall efficiencies up to 46.3% and 21.2%, respectively. (author)

  5. Flow Characterization of Vapor Phase of Geothermal Fluid in Pipe Using Isotope 85Kr and Residence Time Distribution Modeling

    Directory of Open Access Journals (Sweden)

    S. Sugiharto

    2014-08-01

    Full Text Available Measurement of vapor flow in geothermal pipe faces great challenges due to fast fluids flow in high-temperature and high-pressure environment. In present study the flow rate measurement has been performed to characterization the geothermal vapor flow in a pipe. The experiment was carried out in a pipe which is connected to a geothermal production well, KMJ-14. The pipe has a 10” outside diameter and contains dry vapor at a pressure of 8 kg/cm2 and a temperature of 170 oC. Krypton-85 gas isotope (85Kr has been injected into the pipe. Three collimated radiation detectors positioned respectively at 127, 177 and 227m from injection point were used to obtain experimental data which represent radiotracer residence time distribution (RTD in the pipe. The last detector at the position of 227 m did not respond, which might be due to problems in cable connections. Flow properties calculated using mean residence time (MRT shows that the flow rate of the vapor in pipe is 10.98 m/s, much faster than fluid flow commonly found in various industrial process plants. Best fitting evaluated using dedicated software developed by IAEA expert obtained the Péclet number Pe as 223. This means that the flow of vapor of geothermal fluids in pipe is plug flow in character. The molecular diffusion coefficient is 0.45 m2/s, calculated from the axial dispersion model.

  6. Laser-activated protein solder for peripheral nerve repair

    Science.gov (United States)

    Trickett, Rodney I.; Lauto, Antonio; Dawes, Judith M.; Owen, Earl R.

    1995-05-01

    A 100 micrometers core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the albumin based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 +/- 5 min. (n equals 20) compared to 23 +/- 9 min. (n equals 10) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 +/- 5 g, while microsutured nerves had a tensile strength of 40 +/- 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study is under way comparing laser solder repaired tibial nerves to conventional microsuture repair. At the time of submission 15 laser soldered nerves and 7 sutured nerves were characterized at 3 months and showed successful regeneration with compound muscle action potentials of 27 +/- 8 mV and 29 +/- 8 mW respectively. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  7. Soldering of copper-clad niobium--titanium superconductor composite

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Woodhouse, J.J.; Easton, D.S.

    1977-04-01

    When superconductivity is applied to various electrical devices, the joining of the superconducting material and the performance of the joints are generally crucial to the successful operation of the system. Although many techniques are being considered for joining composite superconductors, soldering is the most common. We determined the wetting and flow behavior of various solder and flux combinations on a copper-clad Nb-Ti composite, developed equipment and techniques for soldering and inspection of lap joints, and determined the shear strength of joints at temperatures down to -269 0 C (4 0 K). We studied 15 solders and 17 commercial and experimental fluxes in the wettability and flow tests. A resistance unit was built for soldering test specimens. A series of samples soldered with 80 Pb-20 Sn, 83 Pb-15 Sn-2 Sb, 97.5 Pb-1.5 Ag-1 Sn, 80 In-15 Pb-5 Ag, or 25 In-37.5 Pb-37.5 Sn (wt percent) was inspected by three nondestructive techniques. Through-transmission ultrasound gave the best correlation with nonbond areas revealed in peel tests. Single-lap shear specimens soldered with 97.5 Pb-1.5 Ag-1 Sn had the highest strength (10.44 ksi, 72 MPa) and total elongation (0.074 in., 1.88 mm) at -269 0 C (4 0 K) of four solders tested

  8. Response of Aspergillus niger Inoculated on Tomatoes Exposed to Vapor Phase Mustard Essential Oil for Short or Long Periods and Sensory Evaluation of Treated Tomatoes

    Directory of Open Access Journals (Sweden)

    Ana Elena Aguilar-González

    2017-01-01

    Full Text Available The inhibitory effect of mustard essential oil (EO in vapor phase against Aspergillus niger was evaluated in vitro and in vivo (in tomatoes. Mold response in tomatoes exposed for short or long periods to selected concentrations of mustard EO was also evaluated. Furthermore, a sensory evaluation was also performed among treated tomatoes and compared with nontreated ones. Minimum inhibitory concentration (MIC for the studied EO was determined by the inverted Petri dish method. MIC for the in vitro and in vivo tests for mustard EO was of 3.08 μL/Lair. In vitro and in vivo results demonstrate the effectiveness of vapors of mustard EO against A. niger. The studied EO contains highly volatile organic compounds with strong inhibitory effects, even when applied for short periods, and can consequently be considered a good alternative to traditional synthetic antimicrobials without detriment of selected sensory attributes.

  9. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  10. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-01-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

  11. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-04-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

  12. Effect of surface oxide on the melting behavior of lead-free solder nanowires and nanorods

    International Nuclear Information System (INIS)

    Gao Fan; Rajathurai, Karunaharan; Cui, Qingzhou; Zhou, Guangwen; NkengforAcha, Irene; Gu Zhiyong

    2012-01-01

    Lead-free nanosolders have shown promise in nanowire and nanoelectronics assembly. Among various important parameters, melting is the most fundamental property affecting the assembly process. Here we report that the melting behavior of tin and tin/silver nanowires and nanorods can be significantly affected by the surface oxide of nanosolders. By controlling the nanosolder reflow atmosphere using a flux, the surface oxide of the nanowires/nanorods can be effectively removed and complete nanosolder melting can be achieved. The complete melting of the nanosolders leads to the formation of nanoscale to microscale spherical solder balls, followed by Ostwald ripening phenomenon. The contact angle of the microscale solder balls formed on Si substrate was measured by direct electron microscopic imaging. These results provide new insights into micro- and nanoscale phase transition and liquid droplet coalescence from nanowires/nanorods to spheroids, and are relevant to nanoscale assembly and smaller ball grid array formation.

  13. Intense generation of respirable metal nanoparticles from a low-power soldering unit

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Virginia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Irusta, Silvia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Balas, Francisco [Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Instituto de Carboquímica – Consejo Superior de Investigaciones Científicas (ICB-CSIC), 50018 Zaragoza (Spain); Santamaria, Jesus, E-mail: Jesus.Santamaria@unizar.es [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain)

    2013-07-15

    Highlights: • Intense generation of nanoparticles in the breathing range from a flux-soldering unit is detected. • Coagulation in the aerosol phase leads to 200-nm respirable nanoparticles up to 30 min after operation. • Nanoparticle concentration in the working environment depends on the presence of ambient air. • Metal-containing nanoparticles are collected in TEM grids and filters in the hundreds of nanometer range. -- Abstract: Evidence of intense nanoparticle generation from a low power (45 W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10{sup 6} particles/cm{sup 3}) within the breathing range of the operator, with initial size distributions centered at 35–60 nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals.

  14. Intense generation of respirable metal nanoparticles from a low-power soldering unit

    International Nuclear Information System (INIS)

    Gómez, Virginia; Irusta, Silvia; Balas, Francisco; Santamaria, Jesus

    2013-01-01

    Highlights: • Intense generation of nanoparticles in the breathing range from a flux-soldering unit is detected. • Coagulation in the aerosol phase leads to 200-nm respirable nanoparticles up to 30 min after operation. • Nanoparticle concentration in the working environment depends on the presence of ambient air. • Metal-containing nanoparticles are collected in TEM grids and filters in the hundreds of nanometer range. -- Abstract: Evidence of intense nanoparticle generation from a low power (45 W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10 6 particles/cm 3 ) within the breathing range of the operator, with initial size distributions centered at 35–60 nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals

  15. Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint

    Science.gov (United States)

    Mokhtari, Omid; Nishikawa, Hiroshi

    2014-11-01

    In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.

  16. Multi-layer SiC ceramics/Mo joints brazed using high-temperature solders

    International Nuclear Information System (INIS)

    Olesinska, W.; Kesik, J.

    2003-01-01

    The paper presents the results of studies on joining SiC ceramics with molybdenum, with the ceramic surface being activated by titanium, chromium or copper. Titanium or chromium were deposited by the sputtering technique, and copper - by the electro-chemical method. The microstructures of the SiC/Mo joints brazed with the CuMn13Ni3 solder and copper in a nitrogen atmosphere were examined and the results discussed. The joints, in which the ceramic surface was activated in addition with chromium, do not contain mechanical defects caused by the joining process, and the ceramic surface is covered with a continuous layer of the solder. A phase analysis of the interface surface identified an MeSiC phase. The mechanical strength of the joints in which the ceramic surface was modified by the Ti, Cr and Cu layers was markedly greater than that of the joints brazed directly to the uncoated ceramics with the use of active solders. (author)

  17. Microstructurally Adaptive Constitutive Relations and Reliability Assessment Protocols for Lead Free Solder

    Science.gov (United States)

    2015-05-05

    under bump metallurgy and solder joint geometry on Sn grain morphology in Pb free solder joints were examined. SnAgCu solder joints were examined for...free solder interconnects”, Sci. Technol. Weld . Join. 13, 732 (2008). [3.25] Terashima, S., Takahama, K., Nozaki, M., and Tanaka, M. Recrystallization

  18. A critical review of vapor generation laws used for the analysis of two-phase flows in pipes

    International Nuclear Information System (INIS)

    Berne, P.

    1983-05-01

    Some vapor generation laws are reviewed and discussed. They are divided into empirical and analytical laws. Analytical laws are first examined. These laws result from analytical solutions of the local instantaneous equations applied to elementary cases. Empirical laws, i.e. laws that are determined by correlations with experimental data, are then discussed [fr

  19. Characterization of lead-free solders for electronic packaging

    Science.gov (United States)

    Ma, Hongtao

    The characterization of lead-free solders, especially after isothermal aging, is very important in order to accurately predict the reliability of solder joints. However, due to lack of experimental testing standards and the high homologous temperature of solder alloys (Th > 0.5T m even at room temperature), there are very large discrepancies in both the tensile and creep properties provided in current databases for both lead-free and Sn-Pb solder alloys. In this research, mechanical measurements of isothermal aging effects and the resulting changes in the materials behavior of lead-free solders were performed. A novel specimen preparation procedure was developed where the solder uniaxial test specimens are formed in high precision rectangular cross-section glass tubes using a vacuum suction process. Using specimens fabricated with the developed procedure, isothermal aging effects and viscoplastic material behavior evolution have been characterized for 95.5Sn-4.0Ag-0.5Cu (SAC405) and 96.5Sn-3.0Ag-0.5Cu (SAC305) lead-free solders, which are commonly used as the solder ball alloy in lead-free BGAs and other components. Analogous tests were performed with 63Sn-37Pb eutectic solder samples for comparison purposes. Up to 40% reduction in tensile strength was observed for water quenched specimens after two months of aging at room temperature. Creep deformation also increased dramatically with increasing aging durations. Microstructural changes during room temperature aging were also observed and recorded for the solder alloys and correlated with the observed mechanical behavior changes. Aging effects at elevated temperatures for up to 6 months were also investigated. Thermal aging caused significant tensile strength loss and deterioration of creep deformation. The thermal aging results also showed that after an initial tensile strength drop, the Sn-Pb eutectic solder reached a relatively stable stage after 200 hours of aging. However, for SAC alloy, both the tensile and

  20. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  1. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1 - C10

    Science.gov (United States)

    Acree, William; Chickos, James S.

    2016-09-01

    A compendium of phase change enthalpies published in 2010 is updated to include the period 1880-2015. Phase change enthalpies including fusion, vaporization, and sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. Part 1 of this compendium includes organic compounds from C1 to C10. Part 2 of this compendium, to be published separately, will include organic and organometallic compounds from C11 to C192. Sufficient data are presently available to permit thermodynamic cycles to be constructed as an independent means of evaluating the reliability of the data. Temperature adjustments of phase change enthalpies from the temperature of measurement to the standard reference temperature, T = 298.15 K, and a protocol for doing so are briefly discussed.

  2. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kappera, Rajesh; Voiry, Damien; Jen, Wesley; Acerce, Muharrem; Torrel, Sol; Chhowalla, Manish, E-mail: manish1@rci.rutgers.edu [Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854 (United States); Yalcin, Sibel Ebru; Branch, Brittany; Gupta, Gautam; Mohite, Aditya D. [MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lei, Sidong; Chen, Weibing; Najmaei, Sina; Lou, Jun; Ajayan, Pulickel M. [Mechanical Engineering and Materials Science Department, Rice University, Houston, Texas 77005 (United States)

    2014-09-01

    Two dimensional transition metal dichalcogenides (2D TMDs) offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS{sub 2}. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS{sub 2} on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

  3. Effect of solder bump size on interfacial reactions during soldering between Pb-free solder and Cu and Ni/ Pd/ Au surface finishes

    International Nuclear Information System (INIS)

    NorAkmal, F.; Ourdjini, A.; Azmah Hanim, M.A.; Siti Aisha, I.; Chin, Y.T.

    2007-01-01

    Flip chip technology provides the ultimate in high I/ O-density and count with superior electrical performance for interconnecting electronic components. Therefore, the study of the intermetallic compounds was conducted to investigate the effect of solder bumps sizes on several surface finishes which are copper and Electroless Nickel/ Electroless Palladium/ Immersion Gold (ENEPIG) which is widely used in electronics packaging as surface finish for flip-chip application nowadays. In this research, field emission scanning electron microscopy (FESEM) analysis was conducted to analyze the morphology and composition of intermetallic compounds (IMCs) formed at the interface between the solder and UBM. The IMCs between the SAC lead-free solder with Cu surface finish after reflow were mainly (Cu, Ni) 6 Sn 5 and Cu 6 Sn 5 . While the main IMCs formed between lead-free solder on ENEPIG surface finish are (Ni, Cu) 3 Sn 4 and Ni 3 Sn 4 . The results from FESEM with energy dispersive x-ray (EDX) have revealed that isothermal aging at 150 degree Celsius has caused the thickening and coarsening of IMCs as well as changing them into more spherical shape. The thickness of the intermetallic compounds in both finishes investigated was found to be higher in solders with smaller bump size. From the experimental results, it also appears that the growth rate of IMCs is higher when soldering on copper compared to ENEPIG finish. Besides that, the results also showed that the thickness of intermetallic compounds was found to be proportional to isothermal aging duration. (author)

  4. Pb sub(1-x) Sn sub(x) Te monocrystal growth by vapor phase transport, with formation of a liquid/solid growth interphase

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1983-01-01

    Due to segregation effects single-crystals of Pb sub(1-x) Sn sub(x) Te growth by Bridgman techniques have an inhomogenous composition profile. A vapor phase transport growth process has been developed in order to reduce convective flows. This is due to the very thin melt layer in front of the crystal, that makes convective flows small and solute mixing in the melt very low. By this process single-crystals with 60 mm lenght by 15 mm diameter and a high degree of homogeneity have been grown. (Author) [pt

  5. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy

    Science.gov (United States)

    Sasaki, Kohei; Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Kuramata, Akito; Yamakoshi, Shigenobu

    2017-12-01

    We developed depletion-mode vertical Ga2O3 trench metal-oxide-semiconductor field-effect transistors by using n+ contact and n- drift layers. These epilayers were grown on an n+ (001) Ga2O3 single-crystal substrate by halide vapor phase epitaxy. Cu and HfO2 were used for the gate metal and dielectric film, respectively. The mesa width and gate length were approximately 2 and 1 µm, respectively. The devices showed good DC characteristics, with a specific on-resistance of 3.7 mΩ cm2 and clear current modulation. An on-off ratio of approximately 103 was obtained.

  6. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.

    Science.gov (United States)

    Bauer, Brad A; Warren, G Lee; Patel, Sandeep

    2009-02-10

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.(1) that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å(3) and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm(3) at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  7. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface

    Science.gov (United States)

    Bauer, Brad A.; Warren, G. Lee; Patel, Sandeep

    2012-01-01

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.1 that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å3 and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm3 at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  8. Soldering formalism in noncommutative field theory: a brief note

    International Nuclear Information System (INIS)

    Ghosh, Subir

    2004-01-01

    In this Letter, I develop the soldering formalism in a new domain--the noncommutative planar field theories. The soldering mechanism fuses two distinct theories showing opposite or complimentary properties of some symmetry, taking into account the interference effects. The above mentioned symmetry is hidden in the composite (or soldered) theory. In the present work it is shown that a pair of noncommutative Maxwell-Chern-Simons theories, having opposite signs in their respective topological terms, can be consistently soldered to yield the Proca model (Maxwell theory with a mass term) with corrections that are at least quadratic in the noncommutativity parameter. We further argue that this model can be thought of as the noncommutative generalization of the Proca theory of ordinary spacetime. It is well known that abelian noncommutative gauge theory bears a close structural similarity with non-abelian gauge theory. This fact is manifested in a non-trivial way if the present Letter is compared with existing literature, where soldering of non-abelian models are discussed. Thus the present work further establishes the robustness of the soldering programme. The subtle role played by gauge invariance (or the lack of it), in the above soldering process, is revealed in an interesting way

  9. Utilization of Pb-free solders in MEMS packaging

    Science.gov (United States)

    Selvaduray, Guna S.

    2003-01-01

    Soldering of components within a package plays an important role in providing electrical interconnection, mechanical integrity and thermal dissipation. MEMS packages present challenges that are more complex than microelectronic packages because they are far more sensitive to shock and vibration and also require precision alignment. Soldering is used at two major levels within a MEMS package: at the die attach level and at the component attach level. Emerging environmental regulations worldwide, notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the inherent toxicity of Pb. This has provided the driving force for development and deployment of Pb-free solder alloys. A relatively large number of Pb-free solder alloys have been proposed by various researchers and companies. Some of these alloys have also been patented. After several years of research, the solder alloy system that has emerged is based on Sn as a major component. The electronics industry has identified different compositions for different specific uses, such as wave soldering, surface mount reflow, etc. The factors that affect choice of an appropriate Pb-free solder can be divided into two major categories, those related to manufacturing, and those related to long term reliability and performance.

  10. Vapor-Phase Infrared Spectral Study of Weapons-Grade O-Ethyl S-2(diisopropylamino)ethyl methylphosphonothiolate (VX)

    Science.gov (United States)

    2012-05-01

    tank, across an alumina Soxhlet -shaped wick positioned in a glass holder filled with the analyte. This technique yields a saturated vapor-liquid...solutions with only two components, particularly when the two compounds are chemically similar, the use of Raoult’s law can yield predicted pressures...approaches 1, na in the lower part of the fraction in eq 2 can be ignored, and the equation can then be rearranged and combined with eq 1 to yield n

  11. Molecular Simulation of the Vapor-Liquid Phase Behavior of Lennard-Jones Mixtures in Porous Solids

    Science.gov (United States)

    2006-09-01

    sur la Catalyse, Centre National de la Recherche Scientifique, Group de Chimie Theorique, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France...and Group de Chimie Theorique, Ecole Normale Superieure de Lyon, 46 Allee d’Italie, 69364 Lyon, Cedex 07, France 14. ABSTRACT We present vapor...Scientifique, Group de Chimie Theorique, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France and Group de Chimie Theorique, Ecole Normale

  12. Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants

    Science.gov (United States)

    Zhao, Xingke; Xie, Feiming; Fan, Jinsheng; Liu, Dayong; Huang, Jihua; Chen, Shuhai

    2018-06-01

    With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn-3Ag-0.5Cu-xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m-1 and 6.30 mN·m-1 for SnAgCu and SnAgCu-P, respectively. The surface tension of SnAgCu-xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.

  13. Life cycle assessment (LCA of lead-free solders from the environmental protection aspect

    Directory of Open Access Journals (Sweden)

    Mitovski Aleksandra M.

    2009-01-01

    Full Text Available Life-cycle assessment (LCA presents a relatively new approach, which allows comprehensive environmental consequences analysis of a product system over its entire life. This analysis is increasingly being used in the industry, as a tool for investigation of the influence of the product system on the environment, and serves as a protection and prevention tool in ecological management. This method is used to predict possible influences of a certain material to the environment through different development stages of the material. In LCA, the product systems are evaluated on a functionally equivalent basis, which, in this case, was 1000 cubic centimeters of an alloy. Two of the LCA phases, life-cycle inventory (LCA and life-cycle impact assessment (LCIA, are needed to calculate the environmental impacts. Methodology of LCIA applied in this analysis aligns every input and output influence into 16 different categories, divided in two subcategories. The life-cycle assessment reaserch review of the leadfree solders Sn-Cu, SAC (Sn-Ag-Cu, BSA (Bi-Sb-Ag and SABC (Sn-Ag-Bi-Cu respectively, is given in this paper, from the environmental protection aspect starting from production, through application process and finally, reclamation at the end-of-life, i.e. recycling. There are several opportunities for reducing the overall environmental and human health impacts of solder used in electronics manufacturing based on the results of the LCA, such as: using secondary metals reclaimed through post-industrial recycling; power consumption reducing by replacing older, less efficient reflow assembly equipment, or by optimizing the current equipment to perform at the elevated temperatures required for lead-free soldering, etc. The LCA analysis was done comparatively in relation to widely used Sn-Pb solder material. Additionally, the impact factors of material consumption, energy use, water and air reserves, human health and ecotoxicity have been ALSO considered including

  14. Manipulation and soldering of carbon nanotubes using atomic force microscope

    International Nuclear Information System (INIS)

    Kashiwase, Yuta; Ikeda, Takayuki; Oya, Takahide; Ogino, Toshio

    2008-01-01

    Manipulation of carbon nanotubes (CNTs) by an atomic force microscope (AFM) and soldering of CNTs using Fe oxide nanoparticles are described. We succeeded to separate a CNT bundle into two CNTs or CNT bundles, to move the separated CNT to a desirable position, and to bind it to another bundle. For the accurate manipulation, load of the AFM cantilever and frequency of the scan were carefully selected. We soldered two CNTs using an Fe oxide nanoparticle prepared from a ferritin molecule. The adhesion forces between the soldered CNTs were examined by an AFM and it was found that the CNTs were bound, though the binding force was not strong

  15. Effect of soldering techniques and gap distance on tensile strength of soldered Ni-Cr alloy joint.

    Science.gov (United States)

    Lee, Sang-Yeob; Lee, Jong-Hyuk

    2010-12-01

    The present study was intended to evaluate the effect of soldering techniques with infrared ray and gas torch under different gap distances (0.3 mm and 0.5 mm) on the tensile strength and surface porosity formation in Ni-Cr base metal alloy. Thirty five dumbbell shaped Ni-Cr alloy specimens were prepared and assigned to 5 groups according to the soldering method and the gap distance. For the soldering methods, gas torch (G group) and infrared ray (IR group) were compared and each group was subdivided by corresponding gap distance (0.3 mm: G3 and IR3, 0.5 mm: G5, IR5). Specimens of the experimental groups were sectioned in the middle with a diamond disk and embedded in solder blocks according to the predetermined distance. As a control group, 7 specimens were prepared without sectioning or soldering. After the soldering procedure, a tensile strength test was performed using universal testing machine at a crosshead speed 1 mm/min. The proportions of porosity on the fractured surface were calculated on the images acquired through the scanning electronic microscope. Every specimen of G3, G5, IR3 and IR5 was fractured on the solder joint area. However, there was no significant difference between the test groups (P > .05). There was a negative correlation between porosity formation and tensile strength in all the specimens in the test groups (P tensile strength of joints and porosity formations between the gas-oxygen torch soldering and infrared ray soldering technique or between the gap distance of 0.3 mm and 0.5 mm.

  16. Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach

    Science.gov (United States)

    Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.

    2018-02-01

    We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.

  17. Evaluation of corrosivity of the vapor-phase environments to sterilized water with chlorine; Enso kei mekkin shorisui no kisho kankyo no fushokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Michio. [Nippon Steel Corp. Yamaguchi (Japan). Technical Development Bureau

    1999-08-15

    Corrosivity of vapor-phase aenvironments in indoor pool, water thank, and water purification plants was investigated. Sodium hypochlorite (NaClO) was used as a sterilizing agent in indoor pool, while chlorine gas was used in water tank and water purification plants. It was found that Cl{sup -} ion were concentrated in the dew formed in the indoor pool. H{sup +} ions as well as Cl{sup -} ions were accumulated in the dew dormed in the water tank ans water purification plants. Thus, the corrosion condition was varied with the type of sterilizing agents used. Through the investigation of water tanl, the relationship between pH and Cl{sup -} ion concentration was given as follow; pH=-1.09-2.19 log [Cl{sup -}] (mol/L). Corrosivity of vapor-phase enviroments in sterilizing water systems would be characterized by the exstence of oxidizing chemical agents such as ClO{sup -} and HClO, the shift of corrosion potenrial of the thin water film, and the accumulation of H{sup +} and/or Cl{sup -} ions in the dew. (author)

  18. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  19. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  20. Research Update: Hybrid organic-inorganic perovskite (HOIP thin films and solar cells by vapor phase reaction

    Directory of Open Access Journals (Sweden)

    Po-Shen Shen

    2016-09-01

    Full Text Available With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP thin films, this new class of photovoltaic (PV technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  1. Development of a soft-soldering system for aluminum

    Science.gov (United States)

    Falke, W. L.; Lee, A. Y.; Neumeier, L. A.

    1983-03-01

    The method employs application of a thin nickel copper alloy coating to the substrate, which enables the tin lead solders to wet readily and spread over the areas to be joined. The aluminum substrate is mechanically or chemically cleaned to facilitate bonding to a minute layer of zinc that is subsequently applied, with an electroless zincate solution. The nickel copper alloy (30 to 70 pct Ni) coating is then applied electrolytically over the zinc, using immersion cell or brush coating techniques. Development of acetate electrolytes has permitted deposition of the proper alloys coatings. The coated areas can then be readily joined with conventional tin lead solders and fluxs. The joints so formed are ductile, strong, and relatively corrosion resistant, and exhibit strengths equivalent to those formed on copper and brass when the same solders and fluxes are used. The method has also been employed to soft solder magnesium alloys.

  2. Development of gold based solder candidates for flip chip assembly

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders...

  3. Characteristics of solder joints under fatigue loads using piezomechanical actuation

    Science.gov (United States)

    Shim, Dong-Jin; Spearing, S. Mark

    2003-07-01

    Crack initiation and growth characteristics of solder joints under fatigue loads are investigated using piezomechanical actuation. Cracks in solder joints, which can cause failure in microelectronics components, are induced via piezoelectricity in piezo-ceramic bonded joints. Lead-zirconate-titanate ceramic plates and eutectic Sn-Pb solder bonded in a double-lap shear configuration are used in the investigation. Electric field across each piezo-ceramic plate is applied such that shear stresses/strains are induced in the solder joints. The experiments show that cracks initiate in the solder joints around defects such as voids and grow in length until they coalesce with other cracks from adjacent voids. These observations are compared with the similar thermal cycling tests from the literature to show feasibility and validity of the current method in investigating the fatigue characteristics of solder joints. In some specimens, cracks in the piezo-ceramic plates are observed, and failure in the specimens generally occurred due to piezo-ceramic plate fracture. The issues encountered in implementing this methodology such as low actuation and high processing temperatures are further discussed.

  4. Laser Soldering of Rat Skin Using a Controlled Feedback System

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Nourbakhsh

    2009-03-01

    Full Text Available Introduction: Laser tissue soldering using albumin and indocyanine green dye (ICG is an effective technique utilized in various surgical procedures. The purpose of this study was to perform laser soldering of rat skin under a feedback control system and compare the results with those obtained using standard sutures. Material and Methods: Skin incisions were made over eight rats’ dorsa, which were subsequently closed using different wound closure interventions in two groups: (a using a temperature controlled infrared detector or (b by suture. Tensile strengths were measured at 2, 5, 7 and 10 days post-incision. Histological examination was performed at the time of sacrifice. Results: Tensile strength results showed that during the initial days following the incisions, the tensile strengths of the sutured samples were greater than the laser samples. However, 10 days after the incisions, the tensile strengths of the laser soldered incisions were higher than the sutured cuts. Histopathological examination showed a preferred wound healing response in the soldered skin compared with the control samples. The healing indices of the laser soldered repairs (426 were significantly better than the control samples (340.5. Conclusion: Tissue feedback control of temperature and optical changes in laser soldering of skin leads to a higher tensile strength and better histological results and hence this method may be considered as an alternative to standard suturing.

  5. Tensile strength of two soldered alloys (Minalux and Verabond2

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Rezaee S

    2002-07-01

    Full Text Available Recently. Minalux alloy, a base metal free from Be, has been presented on the market while no special soldering has been recommended for it. On the other hand, based on the manufacturer's claim, this alloy is similar to Verabond2. The aim of this study was to investigate the tensile strength of Minalux and Verabond2, soldered by Verasolder. Twelve standard dambble shape samples, with the length of 18 mm and the diameter of 3mm, were prepared from each alloy. Six samples of each alloy were divided into two pieces with carboradom disk. Soldering gap distance was 0.3mm, measured by a special jig and they were soldered by Verasolder alloy. Six other samples, of both Iranian and foreign unsoldered alloys were considered as control group. Then samples were examined under tensile force and their tensile strength was recorded. Two- way variance analysis showed that the tensile strength of Minalux alloy and Verabond2 were not statistically significant (Verasoler 686, Minalux 723, but after soldering, such difference became significant (Minalux 308, Verabond2 432. Verabond2 showed higher tensile strength after soldering.

  6. Features of Pd-Ni-Fe solder system for vacuum brazing of low alloy steels

    International Nuclear Information System (INIS)

    Radzievskij, V.N.; Kurochko, R.S.; Lotsmanov, S.N.; Rymar', V.I.

    1975-01-01

    The brazing solder of the Pd-Ni-Fe alloyed with copper and lithium, in order to decrease the melting point and provide for a better spreading, when soldered in vacuum ensures a uniform strength of soldered joints with the base metal of low-alloyed steels of 34KHNIM-type. The properties of low-alloyed steel joints brazed with the Pd-Ni-Fe-system solder little depend on the changes in the soldering parameters. The soldered joint keeps a homogeneous structure after all the stages of heat treatment (annealing, quenching and tempering)

  7. Lead-free solder technology transfer from ASE Americas

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    1999-10-19

    To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a

  8. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  9. Catalyst-Free Vapor-Phase Method for Direct Integration of Gas Sensing Nanostructures with Polymeric Transducing Platforms

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2014-01-01

    Full Text Available Tungsten oxide nanoneedles (NNs are grown and integrated directly with polymeric transducing platforms for gas sensors via aerosol-assisted chemical vapor deposition (AACVD method. Material analysis shows the feasibility to grow highly crystalline nanomaterials in the form of NNs with aspect ratios between 80 and 200 and with high concentration of oxygen vacancies at the surface, whereas gas testing demonstrates moderate sensing responses to hydrogen at concentrations between 10 ppm and 50 ppm, which are comparable with results for tungsten oxide NNs grown on silicon transducing platforms. This method is demonstrated to be an attractive route to fabricate next generation of gas sensors devices, provided with flexibility and functionality, with great potential in a cost effective production for large-scale applications.

  10. Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3.0Ag0.5Cu solder

    Science.gov (United States)

    Zhang, Xudong; Hu, Xiaowu; Jiang, Xiongxin; Li, Yulong

    2018-04-01

    The formation and growth of intermetallic compound (IMC) layer at the interface between Sn3.0Ag0.5Cu (SAC305) solder and Cu- xNi ( x = 0, 0.5, 1.5, 5, 10 wt%) substrate during reflowing and aging were investigated. The soldering was conducted at 270 °C using reflowing method, following by aging treatment at 150 °C for up to 360 h. The experimental results indicated that the total thickness of IMC increased with increasing aging time. The scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were observed between SAC305 solder and purely Cu substrate. As the content of Ni element in Cu substrate was 0.5% or 1.5%, the scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were still found between solder and Cu-Ni substrate and the total thickness of IMC layer decreased with the increasing Ni content. Besides, when the Ni content was up to 5%, the long prismatic (Cu,Ni)6Sn5 phase was the only product between solder and substrate and the total thickness of IMC layer increased significantly. Interestingly, the total thickness of IMC decreased slightly as the Ni addition was up to 10%. In the end, the grains of interfacial IMC layer became coarser with aging time increasing while the addition of Ni in Cu substrate could refine IMC grains.

  11. Aging effects on fracture behavior of 63Sn37Pb eutectic solder during tensile tests under the SEM

    International Nuclear Information System (INIS)

    Ding Ying; Wang Chunqing; Li Mingyu; Bang Hansur

    2004-01-01

    This study investigates the influence of aging treatment on fracture behavior of Sn-Pb eutectic solder alloys at different loading rate regime during tensile tests under the scanning electron microscope. In high homologous temperature, the solder exhibit the creep behavior that could be confirmed through the phenomena of grain boundary sliding (GBS) to both as-cast and aged specimens. Owing to the large grain scale after high temperature storage, boundary behavior was limited to some extent for the difficulty in grain rotation and boundary migration. Instead, drastic intragranular deformation occurred. Also, the phase coarsening weakened the combination between lead-rich phase and tin matrix. Consequently, surface fragmentation was detected for the aged specimens. Furthermore, the fracture mechanism changed from intergranular dominated to transgranular dominated with increasing loading rate to both specimens during early stage

  12. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    Science.gov (United States)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  13. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.; Alves, E.; Roqan, Iman S.; O’ Donnell, K. P.; Nishikawa, A.; Fujiwara, Y.; Boćkowski, M.

    2010-01-01

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  14. Improvement of electrical property of Si-doped GaN grown on r-plane sapphire by metalorganic vapor-phase epitaxy

    International Nuclear Information System (INIS)

    Kusakabe, K.; Furuzuki, T.; Ohkawa, K.

    2006-01-01

    Electrical property of Si-doped GaN layers grown on r-plane sapphire substrates by atmospheric metalorganic vapor-phase epitaxy was investigated. The electron mobility was drastically improved when GaN was grown by means of optimized combinations of growth temperature and low-temperature GaN buffer thickness. The highest room-temperature mobility of 220cm 2 /Vs was recorded at the carrier density of 1.1x10 18 cm -3 . Temperature dependence of electrical property revealed that the peak mobility of 234cm 2 /Vs was obtained at 249K. From the slope of carrier density as a function of inverse temperature, the activation energy of Si-donors was evaluated to be 11meV

  15. Development of a selection support expert system of mathematical models for dynamic simulation of liquid-vapor two-phase flow

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Morimoto, Takashi; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1992-01-01

    This paper deals with computerized supporting techniques of a numerical simulation of complex and large-scale engineering systems like nuclear power plants. As an example of the intelligent support systems of dynamic simulation, a prototype expert system is developed on an expert system development tool to support the selection of mathematical model which is a first step of numerical simulation and is required both wide expert knowledge and high-level decision making. The expert system supports the selection of liquid-vapor two phase flow models (fluid model and constitutive equations) consistent with simulation purpose and condition in the case of thermal-hydraulic simulation of nuclear power plants. The possibility of the expert system is examined for various selection support cases by both investigation of the appropriateness of the selection support logic and comparison between support results and decision results of several experts. (author)

  16. Vapor phase epitaxial growth of FeS sub 2 pyrite and evaluation of the carrier collection in liquid-junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Schlichthoerl, G.; Fiechter, S.; Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1992-01-01

    Photoactive epitaxial layers of FeS{sub 2} were grown using bromine as a transport agent and a simple closed ampoule technique. The substrates used were (100)-oriented slices of natural pyrite 1 mm thick. A vapor-liquid-solid (VLS) growth mechanism was elucidated by means of optical microscopy. Macrosteps, terrace surfaces and protuberances are often accompanied with the presence of liquid FeBr{sub 3} droplets. In the absence of a liquid phase growth hillocks are found. Localized photovoltaic response for the evaluation of carrier collection using a scanning laser spot system has been used to effectively locate and characterize non-uniformities present in the epitaxial thin films. (orig.).

  17. Growth of cubic GaN on a nitrided AlGaAs (001) substrate by using hydried vapor phase epitaxy

    International Nuclear Information System (INIS)

    Lee, H. J.; Yang, M.; Ahn, H. S.; Kim, K. H.; Yi, J. Y.; Jang, K. S.; Chang, J. H.; Kim, H. S.; Cho, C. R.; Kim, S. W.

    2006-01-01

    GaN layers were grown on AlGaAs (001) substrates by using hydride vapor phase epitaxy (HVPE). Growth parameters such as the nitridation temperature of the AlGaAs substrate and the growth rate of the GaN layer were found to be critical determinants for the growth of cubic GaN layer. Nitridation of the AlGaAs surface was performed in a NH 3 atmosphere at a temperature range of 550 - 700 .deg. C. GaN layers were grown at different growth rates on the nitrided AlGaAs substrates. The surface morphologies and the chemical constituents of the nitrided AlGaAs layers were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). For the optical and the crystalline characterization of the GaN films, cathodoluminescence (CL) and X-ray diffraction (XRD) were carried out.

  18. Growth of single - crystals of Pb1-x Snx Te by vapor phase transport with the formation of a liquid/solid growth interface

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1985-01-01

    Due to segregation effects single-crystals of Pb 1-x Sn x Te growth by Bridgman techniques have an inhomogeneous composition profile. A vapor phase transport growth process has been developed in order to reduce convective flows. This is due to the very thin melt layer in front of the crystal, that makes convective flows small and solute mixing in the melt very low. By this process single-crystals with 60mm length by 15 mm diameter and a high degree of homogeneity have been grown. A process for determination of the exact composition profile by measurements of the crystal density, for isomorphous alloys of the type A 1-x B x , is also shown. (Author) [pt

  19. Structural and electrical properties of InAs/GaSb superlattices grown by metalorganic vapor phase epitaxy for midwavelength infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arikata, Suguru; Kyono, Takashi [Semiconductor Technologies Laboratory, Sumitomo Electric Industries, LTD., Hyogo (Japan); Miura, Kouhei; Balasekaran, Sundararajan; Inada, Hiroshi; Iguchi, Yasuhiro [Transmission Devices Laboratory, Sumitomo Electric Industries, LTD., Yokohama (Japan); Sakai, Michito [Sensor System Research Group, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Katayama, Haruyoshi [Space Technology Directorate I, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, Shiga (Japan); Akita, Katsushi [Sumiden Semiconductor Materials, LTD., Hyogo (Japan)

    2017-03-15

    InAs/GaSb superlattice (SL) structures were fabricated on GaSb substrates by metalorganic vapor phase epitaxy (MOVPE) toward midwavelength infrared (MWIR) photodiodes. Almost defect-free 200-period SLs with a strain-compensation interfacial layer were successfully fabricated and demonstrate an intense photoluminescence peak centered at 6.1 μm at 4 K and an external quantum efficiency of 31% at 3.5 μm at 20 K. These results indicate that the high-performance MWIR detectors can be fabricated in application with the InAs/GaSb SLs grown by MOVPE as an attractive method for production. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.

    2010-09-16

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  1. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn Assisted by Vapor Phase Transport of Methanol

    Directory of Open Access Journals (Sweden)

    Tamil Many K. Thandavan

    2014-01-01

    Full Text Available Zinc oxide (ZnO nanowires (NWs were synthesized using vapor phase transport (VPT and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM images as well as from the X-ray diffraction (XRD profile. The photoluminescence (PL profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defects in the ZnO NWs. Raman scattering results show a significant peak at 143 cm−1 and possible functionalization on the wall of ZnO NWs. Growth of ZnO NWs in (0002 with an estimated distance between adjacent lattice planes 0.26 nm was determined from transmission electron microscopy (TEM analysis.

  2. Influence of the interface on growth rates in AlN/GaN short period superlattices via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-11-01

    AlN/GaN short period superlattices are well suited for a number of applications including, but not limited to, digital alloys, intersubband devices, and emitters. In this work, AlN/GaN superlattices with periodicities ranging from 10 to 20 Å have been grown via metal organic vapor phase epitaxy in order to investigate the influence of the interface on the binary alloy growth rates. The GaN growth rate at the interface was observed to decrease with increasing GaN thickness while the AlN growth rate remained constant. This has been attributed to a decrease in the decomposition rate of GaN at the hetero-interface as seen in other III-V hetero-structures.

  3. Surfactant effects of indium on cracking in AlN/GaN distributed Bragg reflectors grown via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Miller, C. M.; Korakakis, D.

    2011-01-01

    Aluminum Nitride (AlN) and Gallium Nitride (GaN) superlattice structures are often characterized by a network of cracks resulting from the large lattice mismatch and difference in thermal expansion coefficients, especially as the thickness of the layers increases. This work investigates the influence of indium as a surfactant on strain and cracking in AlN/GaN DBRs grown via Metal Organic Vapor Phase Epitaxy (MOVPE). DBRs with peak reflectivities ranging from 465 nm to 540 nm were grown and indium was introduced during the growth of the AlN layer. Image processing techniques were used to quantify the crack length per square millimeter and it was observed that indium has a significant effect on the crack formation and reduced the total crack length in these structures by a factor of two.

  4. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  5. Thermal decomposition of solder flux activators under simulated wave soldering conditions

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    /methodology/approach: Changes in the chemical structure of the activators were studied using Fourier transform infrared spectroscopy technique and were correlated to the exposure temperatures within the range of wave soldering process. The amount of residue left on the surface was estimated using standardized acid-base...... titration method as a function of temperature, time of exposure and the substrate material used. Findings: The study shows that there is a possibility of anhydride-like species formation during the thermal treatment of fluxes containing weak organic acids (WOAs) as activators (succinic and DL...

  6. Optimization of total vaporization solid-phase microextraction (TV-SPME) for the determination of lipid profiles of Phormia regina, a forensically important blow fly species.

    Science.gov (United States)

    Kranz, William; Carroll, Clinton; Dixon, Darren; Picard, Christine; Goodpaster, John

    2017-11-01

    A new method has been developed for the determination of fatty acids, sterols, and other lipids which naturally occur within pupae of the blow fly Phormia regina. The method relies upon liquid extraction in non-polar solvent, followed by derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) w/ 1% trimethylchlorsilane (TMCS) carried out inside the sample vial. The analysis is facilitated by total vaporization solid-phase microextraction (TV-SPME), with gas chromatography-mass spectrometry (GC-MS) serving as the instrumentation for analysis. The TV-SPME delivery technique is approximately a factor of five more sensitive than traditional liquid injection, which may alleviate the need for rotary evaporation, reconstitution, collection of high performance liquid chromatography fractions, and many of the other pre-concentration steps that are commonplace in the current literature. Furthermore, the ability to derivatize the liquid extract in a single easy step while increasing sensitivity represents an improvement over current derivatization methods. The most common lipids identified in fly pupae were various saturated and unsaturated fatty acids ranging from lauric acid (12:0) to arachinoic acid (20:4), as well as cholesterol. The concentrations of myristic acid (14:0), palmitelaidic acid (16:2), and palmitoleic acid (16:1) were the most reliable indicators of the age of the pupae. Graphical abstract Blow fly pupae were extracted prior to emerging as adults. The extracts were analyzed via total vaporization solid-phase microextraction (TV-SPME), revealing a complex mixture of lipids that could be associated with the age of the insect. This information may assist in determining a post-mortum interval (PMI) in a death investigation.

  7. Mechanical properties of Bi-In-Zn/ Cu solder joint system

    International Nuclear Information System (INIS)

    Ervina Efzan Mohd Noor; Mohammed Noori Ridha; Ahmad Badri Ismail; Nurulakmal Mohd Sharif; Kuan Yew Cheong; Tadashi Ariga; Zuhailawati Hussain

    2009-01-01

    Full text: In recent years, the pollution of environment from lead (Pb) and Pb-containing compounds in microelectronic devices attracts more and more attentions in academia and industry; the lead-free solder alloys begin to replace the lead-based solders in packaging process of some devices and components. In this works, microstructure and mechanical properties of different reflow temperature (80, 100, 120 and 140 degree Celsius) for solder joints on shear strength of Bi-In-Zn lead free solder with low melting temperature of 60 degree Celsius on Cu solder joint has been investigated. This paper will compared the mechanical properties of the Bi-In-Zn lead-free solder alloys with current lead-free solder, Sn-Ag-Cu solder alloy. The fracture surface analyses have been observed by Optical Microscope and were investigated by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) and proved it by X-ray diffraction (XRD). (author)

  8. Correlation Between Pin Misalignment and Crack Length in THT Solder Joints

    Directory of Open Access Journals (Sweden)

    Molnar A.

    2017-06-01

    Full Text Available In this manuscript, correlations were searched for between pin misalignments relative to PCB bores and crack propagation after cyclic thermal shock tests in THT solder joints produced from lead-free solder alloys. In total, 7 compositions were examined including SAC solders with varying Ag, Cu and Ni contents. The crack propagation was initiated by cyclic thermal shock tests with 40°C / +125°C temperature profiles. Pin misalignments relative to the bores were characterized with three attributes obtained from one section of the examined solder joints. Cracks typically originated at the solder/pin or solder/bore interfaces and propagated within the solder. It was shown that pin misalignments did not have an effect on crack propagation, thus, the solder joints’ lifetime.

  9. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  10. Photoluminescence and surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs quantum well structures grown by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Chan, C.H.; Wu, J.D.; Huang, Y.S.; Hsu, H.P.; Tiong, K.K.; Su, Y.K.

    2010-01-01

    Photoluminescence (PL) and surface photovoltage spectroscopy (SPS) are used to characterize a series of highly strained In x Ga 1-x As/GaAs quantum well (QW) structures grown by metal organic vapor phase epitaxy with different indium compositions (0.395 ≤ x ≤ 0.44) in the temperature range of 20 K ≤ T ≤ 300 K. The PL features show redshift in peak positions and broadened lineshape with increasing indium composition. The S-shaped temperature dependent PL spectra have been attributed to carrier localization effect resulting from the presence of indium clusters at QW interfaces. A lineshape fit of features in the differential surface photovoltage (SPV) spectra has been used to determine the transition energies accurately. At temperature below 100 K, the light-hole (LH) related feature shows a significant phase difference as compared to that of heavy-hole (HH) related features. The phase change of the LH feature can be explained by the existence of type-II configuration for the LH valence band and the process of separation of carriers within the QWs together with possible capture by the interface defect traps. A detailed analysis of the observed phenomena enables the identification of spectral features and to evaluate the band lineup of the QWs. The results demonstrate the usefulness of PL and SPS for the contactless and nondestructive characterization of highly strained InGaAs/GaAs QW structures.

  11. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  12. In situ investigation of SnAgCu solder alloy microstructure

    International Nuclear Information System (INIS)

    Pietrikova, Alena; Bednarcik, Jozef; Durisin, Juraj

    2011-01-01

    Research highlights: → In situ X-ray diffraction investigation enabled detailed analysis of the melting and solidification process of the SAC305 alloy. → It was found that the SAC305 solder melts at 230 deg. C. When cooling from 240 deg. C the SAC305 alloy solidifies at the temperature of 214 deg. C. During solidification β-Sn and Cu 6 Sn 5 is also formed. Formation of Ag 3 Sn occurs at 206 deg. C and the remaining amount of alloy crystallizes approximately at 160 deg. C. → Furthermore, observation of the thermal expansion behaviour of the β-Sn tetragonal unit cell revealed linear dependence of the unit cell volume on temperature. The unit cell parameters a and c also increase linearly with the temperature. Despite the fact that the c parameter is substantially smaller than parameter a, it exhibits a significantly higher linear thermal expansion coefficient. Comparison between data obtained during heating and cooling indicates that the thermal expansion coefficient is slightly greater in the case of cooling. - Abstract: In situ X-ray diffraction experiments, using synchrotron radiation, were employed to analyze microstructure evolution of the 96.5Sn3Ag0.5Cu (wt.%)-SAC305 lead-free solder alloy during heating (30-240 deg. C), isothermal dwell (240 deg. C) and cooling (240-30 deg. C). The special emphasis was placed on the study of the melting and solidification processes, explaining formation, distribution and the order of crystallization of the crystal phases (β-Sn, intermetallic compounds) in the solder alloy. Furthermore, thermal expansion behaviour of the main constituent phase β-Sn was analyzed prior to melting and after the consequent solidification.

  13. Fast vaporization solid phase microextraction and ion mobility spectrometry: A new approach for determination of creatinine in biological fluids.

    Science.gov (United States)

    Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohamma Hossein

    2015-11-01

    In this work a rapid and simple method for creatinine determination in urine and plasma samples based on aqueous derivatization of creatinine and complete vaporization of sample (as low as 10 µL), followed by ion mobility spectrometry analysis has been proposed. The effect of four important parameters (extraction temperature, total volume of solution, desorption temperature and extraction time) on ion mobility signal has been studied. Under the optimized conditions, the quantitative response of ion mobility spectrometry for creatinine was linear in the range of 0-500 mg L(-1) with a detection limit of 0.6 mg L(-1) in urine and 0-250 mg L(-1) with a detection limit of 2.6 mg L(-1) in plasma sample. The limit of quantitation of creatinine was 2.1 mg L(-1) and 8.7 mg L(-1) in urine and plasma samples, respectively. The relative standard deviation of the method was found to be 13%. The method was successfully applied to the analysis of creatinine in biological samples, showing recoveries from 92% to 104% in urine and 101-110% in plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer.

    Science.gov (United States)

    Akamatsu, Masaaki; Mori, Taizo; Okamoto, Ken; Komatsu, Hirokazu; Kumagai, Ken; Shiratori, Seimei; Yamamura, Masaki; Nabeshima, Tatsuya; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko

    2015-03-25

    An alcohol sensor was developed using the solid-state fluorescence emission of terphenyl-ol (TPhOH) derivatives. Admixtures of TPhOH and sodium carbonate exhibited bright sky-blue fluorescence in the solid state upon addition of small quantities of ethanol. A series of terphenol derivatives was synthesized, and the effects of solvent polarities and the structures of these π-conjugated systems on their fluorescence were systematically investigated by using fluorescence spectroscopy. In particular, π-extended TPhOHs and TPhOHs containing electron-withdrawing groups exhibited significant solvatochromism, and fluorescence colors varied from blue to red. Detection of ethanol contents in alcohol beverages (detection limit ∼ 5 v/v %) was demonstrated using different TPhOHs revealing the effect of molecular structure on sensing properties. Ethanol contents in alcoholic beverages could be estimated from the intensity of the fluorescence elicited from the TPhOHs. Moreover, when terphenol and Na2CO3 were combined with a water-absorbent polymer, ethanol could be detected at lower concentrations. Detection of ethanol vapor (8 v/v % in air) was also accomplished using a nanofibrous polymer scaffold as the immobilized sensing film.

  15. Influence of intermetallic growth on the mechanical properties of Zn–Sn–Cu–Bi/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Fei; Yao, Jia; Liang, Jingwei; Qiu, Xiaoming, E-mail: qiuxm13@163.com

    2015-11-15

    The formation of intermetallic reaction layers and their influence on shear strength and fractography was investigated between the Zn–Sn–Cu–Bi (ZSCB) and Cu substrate during the liquid state reaction at 450 °C after 10–90 s. Results showed that reliable solder joints could be obtained at 450 °C after 15–30 s of wetting, accompanied by the creation of scallop ε-CuZn{sub 5}, flat γ-Cu{sub 5}Zn{sub 8} and β-CuZn intermetallic layers in ZSCB/Cu interface. However, with excess increase of soldering time, a transient intermetallic ε-CuZn{sub 4} phase was nuclear and grew at ε-CuZn{sub 5}/γ-Cu{sub 5}Zn{sub 8} interface, which apparently deteriorated the shear strength of solder joints from 76.5 MPa to 51.6 MPa. The sensitivity of the fracture proportion was gradually transformed from monotonic ε-CuZn{sub 5} to the mixture of ε-CuZn{sub 4} and ε-CuZn{sub 5} intermetallic cleavage. Furthermore, the growth mechanism of ε-CuZn{sub 4} intermetallic phase at the ZSCB/Cu interface was discussed. - Highlights: • There are four interfacial intermetallic layers formed at the Zn–Sn–Cu–Bi/Cu interface. • The growth mechanism of ε-CuZn{sub 4} intermetallic phase was discussed. • The wetting time of Zn–Sn–Cu–Bi solder in contact with Cu substrate is a key parameter.

  16. Commentary: Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    Menovsky, T.; Beek, J.F.; Gemert, M.J.C. van

    1999-01-01

    Full text: Laser tissue welding is the process of using laser energy to join tissues without sutures or with a reduced number of sutures. Recently, diode lasers have been added to the list of fusion lasers (Lewis and Uribe 1993, Reali et al 1993). Typically, for tissue welding, deep penetrating diode lasers emitting at 800-810 nm are used, in combination with a strong absorbing protein solder containing the dye indocyanine green. Indocyanine green has a maximum absorption coefficient at 805 nm and binds preferentially with proteins (Sauda et al 1986). The greatest advantage of diode lasers is their compact size, easy use and low cost. In this issue of Physics in Medicine and Biology (pp 983-1002, 'Photothermal effects of laser tissue soldering'), in an in vitro study, McNally et al investigate the optimal laser settings and welding temperatures in relation to the tensile strength and thermal damage of bovine aorta specimens. An interesting statement in their introduction is that the low strength of laser produced anastomoses can lead to aneurysm formation. The increased chance of aneurysm formation may merely be due to the thermal effect of the laser on the vascular wall, especially on the adventitia and media layers, which become necrotic after thermal injury. Subsequent haemodynamic stress exerted on a damaged vascular wall is a significant contributing factor for aneurysmal initiation. Also interesting is the remark that 'by the application of wavelength-specific chromophores in tissue welding ... the requirement for precise focusing and aiming of the laser beam may be removed'. Though perhaps not yet fully justified, this statement, if true, would facilitate surgical procedures. While the experiments are conducted in a proper manner, the use of bovine aorta specimens, which were stored at -70 deg. C and subsequently thawed for the tissue welding experiments, may not be the most appropriate for studying tissue effects or tensile strength measurements, as the

  17. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near combustible...

  18. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  19. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering with...

  20. A Corrosion Investigation of Solder Candidates for High-Temperature Applications

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Ambat, Rajan

    2009-01-01

    The step soldering approach is being employed in the Multi-Chip module (MCM) technology. High lead containing alloys is one of the solders currently being used in this approach. Au-Sn and Au-Ge based candidate alloys have been proposed as alternative solders for this application. In this work...

  1. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  2. Non-contact estimation of the bond quality in soldered thin laminate by laser generated lamb waves; Laser reiki ramuha ni yoru handazuke sekisohaku no setsugo seijo no hisesshoku hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, H.; Futatsugi, T.; Cho, H.; Takemoto, M. [Aoyama-Gakuin University, Tokyo (Japan). Faculty of Science and Engineering

    1998-03-20

    The bond quality of a solder-bonded copper laminated plate was modeled into rigid contact (rc) and slip contact (sc) to calculate the velocity dispersion of lamb waves. The velocity dispersion of laser generated lamb waves was measured, and the bond quality or the thickness of a solder layer was evaluated by non-contact. In the model whose bond surface is rc, the velocity dispersion of lamb waves can be calculated under conditions where the stress and displacement in an interface are continuous. In the model whose bond surface is sc, it can be calculated under conditions where an interface slips freely. Weak bond indicates the velocity dispersion between rc and sc. In this model, the velocity dispersion can also be calculated by a change in the thickness of a solder layer and used for quantitative evaluation of a bond interface. A three-layer solder bond manufactured for trial could be evaluated from the velocity dispersion of laser lamb waves. At the room temperature, the change in bond quality near the solder melting point of bond laminate that was judged as rc was investigated. When the solidus temperature is exceeded, the amplitude of lamb waves and the velocity dispersion changed largely. The amplitude of lamb waves increases as the liquid phase ratio increases. The bond quality near the solder melting point can be evaluated using lamb waves. 9 refs., 10 figs., 2 tabs.

  3. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-12-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5–95% at 298 K. The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions:

    (1 Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids.

    (2 Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts.

    (3 In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks and undergo transitions between swollen and collapsed network structures.

    (4 Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. Moreover, (semi-solid amorphous phases may influence the uptake of gaseous photo

  4. An Overview of Surface Finishes and Their Role in Printed Circuit Board Solderability and Solder Joint Performance

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.

    1998-10-15

    A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.

  5. Automation of experimental research of waveguide paths induction soldering

    Science.gov (United States)

    Tynchenko, V. S.; Petrenko, V. E.; Kukartsev, V. V.; Tynchenko, V. V.; Antamoshkin, O. A.

    2018-05-01

    The article presents an automated system of experimental studies of the waveguide paths induction soldering process. The system is a part of additional software for a complex of automated control of the technological process of induction soldering of thin-walled waveguide paths from aluminum alloys, expanding its capabilities. The structure of the software product, the general appearance of the controls and the potential application possibilities are presented. The utility of the developed application by approbation in a series of field experiments was considered and justified. The application of the experimental research system makes it possible to improve the process under consideration, providing the possibility of fine-tuning the control regulators, as well as keeping the statistics of the soldering process in a convenient form for analysis.

  6. Paraffin/expanded graphite phase change composites with enhanced thermal conductivity prepared by implanted β-SiC nanowires with chemical vapor deposition method

    Science.gov (United States)

    Yin, Zhaoyu; Zhang, Xiaoguang; Huang, Zhaohui; Liu, Silin; Zhang, Weiyi; Liu, Yan'gai; Wu, Xiaowen; Fang, Minghao; Min, Xin

    2018-02-01

    Expanded graphite/β-SiC nanowires composites (ESNC) were prepared through chemical vapor deposition, and paraffin/expanded graphite/β-SiC nanowires composites (PESNC) were made through vacuum impregnation to overcome liquid leakage during phase transition and enhance the thermal conductivity of paraffin. Fourier transform infrared spectroscopy showed no chemical interactions between the paraffin and ESNC. Differential scanning calorimetry estimated the temperature and latent heat of PESNC during melting to 45.73 °C and 124.31 J g-1, respectively. The respective values of these quantities during freezing were recorded as 48.93 °C and 124.14 J g-1. The thermal conductivity of PESNC was estimated to 0.75 W mK-1, which was 3.26-folds that of pure paraffin (0.23 W mK-1). PESNC perfectly maintained its phase transition after 200 melting-freezing cycles. The resulting ideal thermal conductivity, good chemical stability, thermal properties and thermal reliability of PESNC are promising for use in energy efficient buildings and solar energy systems.

  7. The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation

    Science.gov (United States)

    Peng, Yuelian; Fan, Hongwei; Ge, Ju; Wang, Shaobin; Chen, Ping; Jiang, Qi

    2012-12-01

    The present investigation reveals how the surface morphology and the hydrophobicity of polyvinylidene fluoride (PVDF) membranes, which were prepared via a vapor-induced phase separation method, were affected by the initial PVDF content in the casting solution and the air temperature. The surface morphology was characterized with scanning electron microscopy. A ternary phase diagram of PVDF/N, N-dimethylacetamide/water was constructed to explain the formation mechanism of the different morphologies. The results show that different membrane morphologies and hydrophobicities can be obtained by changing the processing conditions. Low air temperature and high PVDF contents facilitate the crystallization process, resulting in the formation of a porous skin and particle morphology, which increases the hydrophobicity of the surface. High air temperature and low PVDF contents are favorable for the formation of a net-like surface morphology via spinodal decomposition and lead to a superhydrophobic surface. Theoretical calculations were performed to testify that the net-like surface was more favorable for superhydrophobicity than the particle-based surface.

  8. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shengwang, E-mail: bkdysw@yahoo.cn; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-11-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH{sub 3}){sub 4}) diluted in H{sub 2} as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co{sub 2}Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  9. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    International Nuclear Information System (INIS)

    Yu Shengwang; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-01-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH 3 ) 4 ) diluted in H 2 as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co 2 Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  10. Dual-Phase CsPbBr3 -CsPb2 Br5 Perovskite Thin Films via Vapor Deposition for High-Performance Rigid and Flexible Photodetectors.

    Science.gov (United States)

    Tong, Guoqing; Li, Huan; Li, Danting; Zhu, Zhifeng; Xu, Enze; Li, Guopeng; Yu, Linwei; Xu, Jun; Jiang, Yang

    2018-02-01

    Inorganic perovskites with special semiconducting properties and structures have attracted great attention and are regarded as next generation candidates for optoelectronic devices. Herein, using a physical vapor deposition process with a controlled excess of PbBr 2 , dual-phase all-inorganic perovskite composite CsPbBr 3 -CsPb 2 Br 5 thin films are prepared as light-harvesting layers and incorporated in a photodetector (PD). The PD has a high responsivity and detectivity of 0.375 A W -1 and 10 11 Jones, respectively, and a fast response time (from 10% to 90% of the maximum photocurrent) of ≈280 µs/640 µs. The device also shows an excellent stability in air for more than 65 d without encapsulation. Tetragonal CsPb 2 Br 5 provides satisfactory passivation to reduce the recombination of the charge carriers, and with its lower free energy, it enhances the stability of the inorganic perovskite devices. Remarkably, the same inorganic perovskite photodetector is also highly flexible and exhibits an exceptional bending performance (>1000 cycles). These results highlight the great potential of dual-phase inorganic perovskite films in the development of optoelectronic devices, especially for flexible device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles

    Science.gov (United States)

    Kenmoe, Stephane; Biedermann, P. Ulrich

    2018-02-01

    ZnO nanoparticles are used as catalysts and have potential applications in gas-sensing and solar energy conversion. A fundamental understanding of the exposed crystal facets, their surface chemistry, and stability as a function of environmental conditions is essential for rational design and improvement of synthesis and properties. We study the stability of water adsorbate phases on the non-polar low-index (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces from low coverage to multilayers using ab initio thermodynamics. We show that phonon contributions and the entropies due to a 2D lattice gas at low coverage and multiple adsorbate configurations at higher coverage have an important impact on the stability range of water adsorbate phases in the (T,p) phase diagram. Based on this insight, we compute and analyze the possible growth mode of water films for pressures ranging from UHV via ambient conditions to high pressures and the impact of water adsorption on the equilibrium shape of nanoparticles in a humid environment. A 2D variant of the Wulff construction shows that the (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces coexist on 12-faceted prismatic ZnO nanoparticles in dry conditions, while in humid environment, the (10 1 ¯ 0 ) surface is selectively stabilized by water adsorption resulting in hexagonal prisms.

  12. Interactions of Cu-substrates with titanium-alloyed Sn-Zn solders

    Directory of Open Access Journals (Sweden)

    Soares D.

    2006-01-01

    Full Text Available The interactions of copper substrate with titanium-alloyed Sn-Zn eutectic solders have been studied. Two series of experiments have been performed. The first one consisted in differential thermal analyses of Sn-Zn nearly eutectic alloys containing from 1.3 to 2.2 wt. % Ti. Diffusion couples consisted of Cu-wires and Sn-Zn-Ti liquid solders, produced at 250 and 275 OC have been prepared in the second series,. The contact times were up to 3600 s. The contact zones have been characterized by optical and scanning electron microscope. Two layers have been found along the interfaces solid/liquid. The first and the second layers are identical, respectively, with γ and ε phases of the Cu-Zn system. No changes of the chemical compositions were detected for the tested temperatures and reaction times. Continuous parabolic growth of the total diffusion zone thickness with the time of diffusion is observed. The growth is due mainly to one the formed layers (γ while the thickness of the ε-phase layer, stays almost constant for all tested diffusion times and temperatures.

  13. Economical surface treatment of die casting dies to prevent soldering in high pressure casting

    International Nuclear Information System (INIS)

    Fraser, D.T.; Jahedi, M.Z.

    2001-01-01

    This paper describes the use of a gas oxidation treatment of H13 tool steel to develop a compact iron oxide layer at the surface of core pins to prevent soldering in high pressure die casting. The performance of oxide layers in the protection of die steel against soldering during high pressure die casting was tested in a specially designed die using removable core pins and Al-11 Si-3 Cu casting alloy. The gas oxidation treatment can be applied at low temperatures and to large areas of the die surface. In addition this process is very cost effective compared to other coating processes such as physical vapour deposition (PVD), or thermo-reactive diffusion (TRD) coatings. This work demonstrated that surface treatment producing pure magnetite (Fe 3 O 4 ) layers are more protective than oxide layers containing a combination of Fe 3 O 4 (magnetite) and Fe 3 O 3 (haematite). The magnetite layer acts as a barrier between the die steel/casting alloy interface and prevents the formation of inter-metallic phases. Optical microscopy and scanning electron microscope were used to determine the thickness of the oxide layer, while X-ray diffraction was performed to determine the oxide phase structure

  14. Drinking Water Contamination Due To Lead-based Solder

    Science.gov (United States)

    Garcia, N.; Bartelt, E.; Cuff, K. E.

    2004-12-01

    The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.

  15. Bottom-up nanoarchitecture of semiconductor nano-building blocks by controllable in situ SEM-FIB thermal soldering method

    KAUST Repository

    Zhang, Xuan

    2017-08-10

    Here we demonstrate that the building blocks of semiconductor WO3 nanowires can be controllably soldered together by a novel nano-soldering technique of in situ SEM-FIB thermal soldering, in which the soldering temperature can precisely remain in an optimal range to avoid a strong thermal diffusion.

  16. Bottom-up nanoarchitecture of semiconductor nano-building blocks by controllable in situ SEM-FIB thermal soldering method

    KAUST Repository

    Zhang, Xuan; Zheng, Xiujun; Zhang, Hong; Zhang, Junli; Fu, Jiecai; Zhang, Qiang; Peng, Chaoyi; Bai, Feiming; Zhang, Xixiang; Peng, Yong

    2017-01-01

    Here we demonstrate that the building blocks of semiconductor WO3 nanowires can be controllably soldered together by a novel nano-soldering technique of in situ SEM-FIB thermal soldering, in which the soldering temperature can precisely remain in an optimal range to avoid a strong thermal diffusion.

  17. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  18. Influence of solder joint length to the mechanical aspect during the thermal stress analysis

    Science.gov (United States)

    Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che

    2017-09-01

    Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.

  19. High-Temperature Lead-Free Solder Alternatives: Possibilities and Properties

    DEFF Research Database (Denmark)

    High-temperature solders have been widely used as joining materials to provide stable interconnections that resist a severe thermal environment and also to facilitate the drive for miniaturization. High-lead containing solders have been commonly used as high-temperature solders. The development...... of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health and environmental concerns associated with lead usage. Unfortunately, limited choices are available as high-temperature lead-free solders. This work outlines...... the criteria for the evaluation of a new high-temperature lead-free solder material. A list of potential ternary high-temperature lead-free solder alternatives based on the Au-Sn and Au-Ge systems is proposed. Furthermore, a comprehensive comparison of the high-temperature stability of microstructures...

  20. Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yanghua [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xia_yanghua@hotmail.com; Xie Xiaoming [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2008-04-24

    The reliability of lead-free electronic assemblies under thermal cycling was investigated. Thin small outline package (TSOP) devices with FeNi leads were reflow soldered on FR4 PCB (printed circuit board) with Sn3.0Ag0.5Cu (wt%) solder. The effects of different PCB finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) were studied. The results show that OSP finish reveals better performance than its ENIG counterparts. The crack originates at the fringe of heel fillet in both cases. The propagation of crack in the ENIG case is along the device/solder interface, while in the case of OSP, the crack extends parallel to the solder/PCB interface. When the OSP finishes are employed, many Cu6Sn5 precipitates form inside the bulk solder and have a strengthening effect on the solder joint, resulting in better reliability performance as compared to those with ENIG finishes.

  1. Experimental study of arsenic speciation in vapor phase to 500°C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases.

    OpenAIRE

    Pokrovski , Gleb S.; Zakirov , Ildar V.; Roux , Jacques; Testemale , Denis; Hazemann , Jean-Louis; Y. U. Bychkov , Andrew; V. Golikova , Galina

    2002-01-01

    The stoichiometry and stability of arsenic gaseous complexes were determined in the system As-H2O ± NaCl ± HCl ± H2S at temperatures up to 500°C and pressures up to 600 bar, from both measurements of As(III) and As(V) vapor-liquid and vapor-solid partitioning, and X-ray absorption fine structure (XAFS) spectroscopic study of As(III)-bearing aqueous fluids. Vapor-aqueous solution partitioning for As(III) was measured from 250 to 450°C at the saturated vapor pressure of the system (Psat) with a...

  2. Soldering and brazing safety guide: A handbook on space practice for those involved in soldering and brazing

    Science.gov (United States)

    This manual provides those involved in welding and brazing with effective safety procedures for use in performance of their jobs. Hazards exist in four types of general soldering and brazing processes: (1) cleaning; (2) application of flux; (3) application of heat and filler metal; and (4) residue cleaning. Most hazards during those operations can be avoided by using care, proper ventilation, protective clothing and equipment. Specific process hazards for various methods of brazing and soldering are treated. Methods to check ventilation are presented as well as a check of personal hygiene and good maintenance practices are stressed. Several emergency first aid treatments are described.

  3. Effect of nano Co reinforcements on the structure of the Sn-3.0Ag-0.5Cu solder in liquid and after reflow solid states

    Energy Technology Data Exchange (ETDEWEB)

    Yakymovych, Andriy, E-mail: yakymovych@univie.ac.at [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria); Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Mudry, Stepan; Shtablavyi, Ihor [Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Ipser, Herbert [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria)

    2016-09-15

    Sn-Ag-Cu (SAC) alloys are commonly recognized as lead-free solders employed in the electronics industry. However, some disadvantages in mechanical properties and their higher melting temperatures compared to Pb-Sn solders prompt new research relating to reinforcement of existing SAC solders. One of the ways to reinforce these solder materials is the formation of composites with nanoparticles as filler materials. Accordingly, this study presents structural features of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} solders with up to 0.8 wt% nano Co. The effect of nano-sized Co particles was investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD) in both liquid and solid states, and scanning electron microscopy (SEM). The experimental data of DTA are compared with available literature data for bulk Sn-3.0Ag-0.5Cu alloy to check the capability of minor nano-inclusions to decrease the melting temperature of the SAC solder. The combination of structural data in liquid and solid states provides important information about the structural transformations of liquid Sn-3.0Ag-0.5Cu alloys caused by minor Co additions and the phase formation during crystallization. Furthermore, scanning electron microscopy has shown the mutual substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases, respectively. - Highlights: • Differential thermal analysis of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} alloys. • Structural transformations of liquid Sn-3.0Ag-0.5Cu solder by minor Co additions. • Structure data of the solid quaternary (Sn-3.0Ag-0.5Cu){sub 100−x}(Co){sub x} alloys. • Substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases.

  4. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  5. Horizon shells and BMS-like soldering transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); O’Loughlin, Martin [University of Nova Gorica,Vipavska 13, 5000 Nova Gorica (Slovenia)

    2016-03-07

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  6. Organically bound deuterium in soybean exposed to atmospheric D2O vapor as a substitute for HTO under different growth phase

    International Nuclear Information System (INIS)

    Ichimasa, Michiko; Maejima, Takuya; Seino, Nami; Ara, Tetsuki; Masukura, Akari; Nishihiro, Sayaka; Tauchi, Hiroshi; Ichimasa, Yusuke

    2003-01-01

    Heavy water vapor release experiments were carried out in a greenhouse using deuterium as a substitute for tritium and uptake and loss kinetics of D 2 O in leaves and formation, translocation and retention of organically bound deuterium (OBD) in bean soybean exposed to D 2 O under different growth phase were investigated. Rate constants of D 2 O uptake in leaves of soybean in the daytime release were 0.6 - 6.1 hr -1 and several times higher than those in the nighttime release. Rate constants of D 2 O loss in leaves after daytime release were almost the same as those after the nighttime release. No significant difference in the half time of D 2 O loss was observed between daytime and nighttime releases. After D 2 O release, OBD concentration in bean in daytime experiments increased with time until 3 - 4 days of the experiments and then decreased with time. The OBD concentrations in bean in daytime release were several times higher than those in nighttime release while the extents of decrease of OBD concentration were somewhat lower than those in the daytime experiment. (author)

  7. Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors

    Science.gov (United States)

    Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.

    2015-11-01

    Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.

  8. Controlling the size of InAs quantum dots on Si1-xGex/Si(0 0 1) by metalorganic vapor-phase epitaxy

    International Nuclear Information System (INIS)

    Kawaguchi, Kenichi; Ebe, Hiroji; Ekawa, Mitsuru; Sugama, Akio; Arakawa, Yasuhiko

    2009-01-01

    The formation of III-V InAs quantum dots (QDs) on group-IV Si 1-x Ge x /Si(0 0 1) was investigated by metalorganic vapor-phase epitaxy. Two types of QDs, round-shaped QDs and giant QDs elongated in the [1 1 0] or [1,-1,0] direction, were observed in a growth condition of low V/III ratios. An increase in the V/III ratio and AsH 3 preflow during the cooling process was found to suppress the formation of giant QDs. It was considered that replacing the H-stabilized SiGe surface with the As-stabilized surface was necessary for increasing the QD nucleation. The size and density of InAs QDs on SiGe were controllable as well as that on III-V semiconductor buffer layers, and InAs QDs with a density as high as 5 x 10 10 cm -2 were obtained.

  9. In Vivo Assessment of the Potential for Renal Bio-Effects from the Vaporization of Perfluorocarbon Phase-Change Contrast Agents.

    Science.gov (United States)

    Nyankima, A Gloria; Rojas, Juan D; Cianciolo, Rachel; Johnson, Kennita A; Dayton, Paul A

    2018-02-01

    Low-boiling-point perfluorocarbon phase-change contrast agents (PCCAs) provide an alternative to microbubble contrast agents. Although parameter ranges related to in vivo bio-effects of microbubbles are fairly well characterized, few studies have been done to evaluate the potential of bio-effects related to PCCAs. To bridge this gap, we present an assessment of biological effects (e.g., hemorrhage) related to acoustically excited PCCAs in the rodent kidney. The presence or absence of bio-effects was observed after sonication with various perfluorocarbon core PCCAs (decafluorobutane, octafluoropropane or a 1:1 mixture) and as a function of activation pulse mechanical index (MI; minimum activation threshold, which was a moderate MI of 0.81-1.35 vs. a clinical maximum of 1.9). Bio-effects on renal tissue were assessed through hematology and histology including measurement of blood creatinine levels and the quantity of red blood cell (RBC) casts present in hematoxylin and eosin-stained kidney tissue sections after sonication. Short-term (24 h) and long-term (2 and 4 wk) analyses were performed after treatment. Results indicated that bio-effects from PCCA vaporization were not observed at lower mechanical indices. At higher mechanical indices, bio-effects were observed at 24 h, although these were not observable 2 wk after treatment. Copyright © 2018. Published by Elsevier Inc.

  10. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    Science.gov (United States)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Suda, Jun

    2017-03-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 130 to 450 K. For the lightly doped p-GaN, the acceptor concentration of 7.0 × 1016 cm-3 and the donor concentration of 3.2 × 1016 cm-3 were obtained, where the compensation ratio was 46%. We also obtained the depth of the Mg acceptor level to be 220 meV. The hole mobilities of 86, 31, 14 cm2 V-1 s-1 at 200, 300, 400 K, respectively, were observed in the lightly doped p-GaN.

  11. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    International Nuclear Information System (INIS)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah; Patriarche, Gilles; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Heer, Walt A. de; Berger, Claire

    2016-01-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  12. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    Energy Technology Data Exchange (ETDEWEB)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Patriarche, Gilles [CNRS, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Sundaram, Suresh; El Gmili, Youssef [CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Salvestrini, Jean-Paul [Université de Lorraine, CentraleSupélec, LMOPS, EA4423, 57070 Metz (France); Heer, Walt A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Berger, Claire [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS, Institut Néel, BP166, 38042 Grenoble Cedex 9 (France)

    2016-03-07

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  13. Oxygen and minority carrier lifetimes in N-and P-type AL0.2GA0.8AS grown by metal organics vapor phase epitaxy

    International Nuclear Information System (INIS)

    Zahraman, Khaled; Leroux, M.; Gibart, P.; Zaidi, M.A.; Bremond, G.; Guillot, G.

    2000-01-01

    author.The minority carrier lifetimes in Al x Ga 1-x As grown by Metal-Organics Vapor Phase Epitaxy (MOVPE) is generally lower than in GaAs. This is believed to be due to oxygen incorporation in the layers. We describe a study of radiative and non radiative minority carriers lifetimes in n-and p-type Al 0.2 Ga 0.8 As as a function of growth parameters, in correlation with oxygen concentration measurements and deep level transient spectroscopy (DLTS) studies. Long non radiative lifetimes and low oxygen contents are achieved using temperature growth. A main minority hole lifetime killer appears to be 0.4 eV deep O related electron trap detected by DLTS at concentrations three orders of magnitude lower than the atomic oxygen one. Record lifetimes in MOVPE grown n-and p-type Al 0.2 Ga 0.8 As are obtained. An Al 0.85 Ga 0.15 As/Al 0.2 Ga 0.8 As surface recombination velocity lower than 4.5x10 3 cm.s -1 is measured

  14. Hydride vapor phase epitaxy of high structural perfection thick AlN layers on off-axis 6H-SiC

    Science.gov (United States)

    Volkova, Anna; Ivantsov, Vladimir; Leung, Larry

    2011-01-01

    The employment of more than 10 μm thick AlN epilayers on SiC substrates for AlGaN/GaN high-electron-mobility transistors (HEMTs) substantially raises their performance in high-power energy-efficient amplifiers for 4G wireless mobile stations. In this paper, structural properties and surface morphology of thick AlN epilayers deposited by hydride vapor phase epitaxy (HVPE) on off-axis conductive 6H-SiC substrates are reported. The epilayers were examined in detail by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Nomarski differential interference contrast (DIC), scanning electron microscopy (SEM), and selective wet chemical etching. At optimal substrate preparation and growth conditions, a full width at half-maximum (FWHM) of the XRD rocking curve (RC) for the symmetric (00.2) reflex was very close to that of the substrate (less than 40 arcsec) suggesting low screw dislocation density in the epilayer (˜10 6 cm -2) and small in-plane tilt misorientation. Reciprocal space mapping around asymmetric reflexes and measured lattice parameters indicated a fully relaxed state of the epilayers. The unit-cell-high stepped areas of the epilayers with 0.5 nm root mean square (RMS) roughness over 1×1 μm 2 scan were alternated with step-bunching instabilities up to 350 nm in height. Low warp of the substrates makes them suitable for precise epitaxy of HEMT structures.

  15. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  16. High growth rate GaN on 200 mm silicon by metal-organic vapor phase epitaxy for high electron mobility transistors

    Science.gov (United States)

    Charles, M.; Baines, Y.; Bavard, A.; Bouveyron, R.

    2018-02-01

    It is increasingly important to reduce the cycle time of epitaxial growth, in order to reduce the costs of device fabrication, especially for GaN based structures which typically have growth cycles of several hours. We have performed a comprehensive study using metal-organic vapor phase epitaxy (MOVPE) investigating the effects of changing GaN growth rates from 0.9 to 14.5 μm/h. Although there is no significant effect on the strain incorporated in the layers, we have seen changes in the surface morphology which can be related to the change in dislocation behaviour and surface diffusion effects. At the small scale, as seen by AFM, increased dislocation density for higher growth rates leads to increased pinning of growth terraces, resulting in more closely spaced terraces. At a larger scale of hundreds of μm observed by optical profiling, we have related the formation of grains to the rate of surface diffusion of adatoms using a random walk model, implying diffusion distances from 30 μm for the highest growth rates up to 100 μm for the lowest. The increased growth rate also increases the intrinsic carbon incorporation which can increase the breakdown voltage of GaN films. Despite an increased threading dislocation density, these very high growth rates of 14.5 μm/hr by MOVPE have been shown to be appealing for reducing epitaxial growth cycle times and therefore costs in High Electron Mobility Transistor (HEMT) structures.

  17. Addition of Sb as a surfactant for the growth of nonpolar a-plane GaN by using mixed-source hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Ok, Jin Eun; Jo, Dong Wan; Yun, Wy Il; Han, Young Hun; Jeon, Hun Soo; Lee, Gang Suok; Jung, Se Gyo; Bae, Seon Min; Ahn, Hyung Soo; Yang, Min

    2011-01-01

    The influence of Sb as a surfactant on the morphology and on the structural and the optical characteristics of a-plane GaN grown on r-plane sapphire by using mixed-source hydride vapor phase epitaxy was investigated. The a-plane GaN:Sb layers were grown at various temperatures ranging from 1000 .deg. C to 1100 .deg. C, and the reactor pressure was maintained at 1 atm. The atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD) and photoluminescence(PL) results indicated that the surface morphologies and the structural and the optical characteristics of a-plane GaN were markedly improved, compared to the a-plane GaN layers grown without Sb, by using Sb as a surfactant. The addition of Sb was found to alter epitaxial lateral overgrowth (ELO) facet formation. The Sb was not detected from the a-plane-GaN epilayers within the detection limit of the energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) measurements, suggesting that Sb act as a surfactant during the growth of a-plane GaN by using mixed-source HVPE method.

  18. Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells.

    Science.gov (United States)

    Sibbernsen, Erik; Mott, Keith A

    2010-07-01

    Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO(2). These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K(+) in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light.

  19. Stomatal Responses to Flooding of the Intercellular Air Spaces Suggest a Vapor-Phase Signal Between the Mesophyll and the Guard Cells1[OA

    Science.gov (United States)

    Sibbernsen, Erik; Mott, Keith A.

    2010-01-01

    Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO2. These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K+ in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light. PMID:20472750

  20. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.D., E-mail: Duy.Nguyen@imec.b [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Rosseel, E. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Takeuchi, S. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Physics and Astronomy, KU Leuven, B-3001 Leuven (Belgium); Everaert, J.-L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Yang, L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Chemistry and INPAC Institute, KU Leuven, B-3001 Leuven (Belgium); Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Zaima, S. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya, 464-8603 (Japan); Sakai, A. [Department of System Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Loo, R. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Lin, J.C. [TSMC, R and D, 8, Li-Hsin 6th Rd., Hsinchu Science-Based Park, Hsinchu, Taiwan (China); TSMC assignee at IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Vandervorst, W. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Instituut voor Kern- en Stralingsfysika - IKS, KU Leuven, B-3001 Leuven (Belgium); Caymax, M. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 {sup o}C, we measured an active dopant concentration of about 2.1 x 10{sup 20} cm{sup -} {sup 3} and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10{sup 13} cm{sup -} {sup 2}) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  1. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    International Nuclear Information System (INIS)

    Nguyen, N.D.; Rosseel, E.; Takeuchi, S.; Everaert, J.-L.; Yang, L.; Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H.; Zaima, S.; Sakai, A.; Loo, R.; Lin, J.C.; Vandervorst, W.; Caymax, M.

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 o C, we measured an active dopant concentration of about 2.1 x 10 20 cm - 3 and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10 13 cm - 2 ) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  2. Improving Liquid Entry Pressure of Polyvinylidene Fluoride (PVDF Membranes by Exploiting the Role of Fabrication Parameters in Vapor-Induced Phase Separation VIPS and Non-Solvent-Induced Phase Separation (NIPS Processes

    Directory of Open Access Journals (Sweden)

    Faisal Abdulla AlMarzooqi

    2017-02-01

    Full Text Available Polyvinylidene fluoride (PVDF is a popular polymer material for making membranes for several applications, including membrane distillation (MD, via the phase inversion process. Non-solvent-induced phase separation (NIPS and vapor-induced phase separation (VIPS are applied to achieve a porous PVDF membrane with low mass-transfer resistance and high contact angle (hydrophobicity. In this work, firstly, the impacts of several preparation parameters on membrane properties using VIPS and NIPS were studied. Then, the performance of the selected membrane was assessed in a lab-scale direct-contact MD (DCMD unit. The parametric study shows that decreasing PVDF concentration while increasing both relative humidity (RH and exposure time increased the contact angle and bubble-point pore size (BP. Those trends were investigated further by varying the casting thickness. At higher casting thicknesses and longer exposure time (up to 7.5 min, contact angle (CA increased but BP significantly decreased. The latter showed a dominant trend leading to liquid entry pressure (LEP increase with thickness.

  3. Synthesis of 4-tert-Butyltoluene by Vapor Phase tert-Butylation of Toluene with tert-Butylalcohol over USY Zeolite

    Directory of Open Access Journals (Sweden)

    Yan Ming Shen

    2015-03-01

    Full Text Available Vapour phase tert-butylation of toluene with tert-butylalcohol was studied over ultra-stable Y zeolite (USY catalyst. The effects of reaction temperature, toluene/TBA molar ratio and liquid space velocity on conversion of toluene and selectivity for 4-tert-butyltoluene were studied. The deactivation and regeneration of the catalyst was also investigated. The results showed that the USY zeolite catalyst offered better toluene conversion of about 30 % and 4-tert-butyltoluene selectivity of about 89 % at the suitable reaction condition as follows: reaction temperature of 120 oC, toluene/TBA ratio of 2:1 and liquid space velocity of 2 ml/g·h. The clogging of mocropores by the formed carbon or oligomers was the main reason for the deactivation of the catalyst. By combustion at 550 oC, the catalyst just lost about 5 % in toluene conversion and about 2 % in PTBT selectivity. © 2015 BCREC UNDIP. All rights reservedReceived: 17th July 2014; Revised: 31st August 2014; Accepted: 3rd September 2014How to Cite: Shen, Y.M., Yuan, S., Fan, L., Liu, D.B., Li, S.F. (2015. Synthesis of 4-tert-Butyltoluene by Vapor Phase tert-Butylation of Toluene with tert-Butylalcohol over USY Zeolite. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 1-7. (doi:10.9767/bcrec.10.1.7140.1-7Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7140.1-7

  4. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    Science.gov (United States)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  5. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  6. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Directory of Open Access Journals (Sweden)

    Yee Mei Leong

    2016-06-01

    Full Text Available Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag content solder SAC105 (Sn-1.0Ag-0.5Cu because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al addition (0.1–0.5 wt.% to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.

  7. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Science.gov (United States)

    Leong, Yee Mei; Haseeb, A.S.M.A.

    2016-01-01

    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1–0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface. PMID:28773645

  8. The Effects of Antimony Addition on the Microstructural, Mechanical, and Thermal Properties of Sn-3.0Ag-0.5Cu Solder Alloy

    Science.gov (United States)

    Sungkhaphaitoon, Phairote; Plookphol, Thawatchai

    2018-02-01

    In this study, we investigated the effects produced by the addition of antimony (Sb) to Sn-3.0Ag-0.5Cu-based solder alloys. Our focus was the alloys' microstructural, mechanical, and thermal properties. We evaluated the effects by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), and a universal testing machine (UTM). The results showed that a part of the Sb was dissolved in the Sn matrix phase, and the remaining one participated in the formation of intermetallic compounds (IMCs) of Ag3(Sn,Sb) and Cu6(Sn,Sb)5. In the alloy containing the highest wt pct Sb, the added component resulted in the formation of SnSb compound and small particle pinning of Ag3(Sn,Sb) along the grain boundary of the IMCs. Our tests of the Sn-3.0Ag-0.5Cu solder alloys' mechanical properties showed that the effects produced by the addition of Sb varied as a function of the wt pct Sb content. The ultimate tensile strength (UTS) increased from 29.21 to a maximum value of 40.44 MPa, but the pct elongation (pct EL) decreased from 48.0 to a minimum 25.43 pct. Principally, the alloys containing Sb had higher UTS and lower pct EL than Sb-free solder alloys due to the strengthening effects of solid solution and second-phase dispersion. Thermal analysis showed that the alloys containing Sb had a slightly higher melting point and that the addition amount ranging from 0.5 to 3.0 wt pct Sb did not significantly change the solidus and liquidus temperatures compared with the Sb-free solder alloys. Thus, the optimal concentration of Sb in the alloys was 3.0 wt pct because the microstructure and the ultimate tensile strength of the SAC305 solder alloys were improved.

  9. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  10. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Peng, Jianke [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Wang, Xincheng [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Xie, Yan [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-04-15

    Graphical abstract: - Highlights: • The wetting angle of lead free solder on Cu was reduced by surface microstructure. • The wetting form of Sn-Ag-Cu solder on Cu was “non-composite surface”. • The experimental results had a sound fit with the theoretical calculation. - Abstract: In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  11. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    Science.gov (United States)

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; Ptensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    Science.gov (United States)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  13. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  14. Vapor Phase Hydrogen Peroxide Sanitization of an Isolator for Aseptic Filling of Monoclonal Antibody Drug Product - Hydrogen Peroxide Uptake and Impact on Protein Quality.

    Science.gov (United States)

    Hubbard, Aaron; Reodl, Thomas; Hui, Ada; Knueppel, Stephanie; Eppler, Kirk; Lehnert, Siegfried; Maa, Yuh-Fun

    2018-03-15

    A monoclonal antibody drug product (DP) manufacturing process was transferred to a different production site, where aseptic filling took place within an isolator that was sanitized using vapor phase hydrogen peroxide (VPHP). A quality-by-design approach was applied for study design to understand the impact of VPHP uptake in the isolator on DP quality. A combination of small-scale and manufacturing-scale studies was performed to evaluate the sensitivity of the monoclonal antibody to hydrogen peroxide (H2O2) as well as VPHP uptake mechanisms during the filling process. The acceptable H2O2 level was determined to be 100 ng/mL for the antibody in the H2O2 spiking study; protein oxidation was observed above this threshold. The most prominent sources of VPHP uptake were identified to be via the silicone tubing assembly (associated with the peristaltic pumps) and open, filled vials. Silicone tubing, an effective depot to H2O2, could absorb VPHP during different stages of the filling process and discharge H2O2 into the DP solution during filling interruptions. A small-scale isolator model, established to simulate manufacturing-scale conditions, was a useful tool in understanding H2O2 uptake in relation to tubing dimensions and VPHP concentration in the isolator air (or atmosphere). Although the tubing assembly had absorbed a substantial amount of VPHP during the decontamination phase, the majority of H2O2 could be removed during tubing cleaning and sterilization in the subsequent isolator aeration phase, demonstrating that H2O2 in the DP solution is taken up primarily via atmospheric VPHP residues in the isolator during filling. Picarro sensor monitoring suggested that the validated VPHP aeration process generates reproducible residual VPHP profiles in isolator air, thus allowing small-scale studies to provide more relevant recommendations on tubing size and interruption time limits for commercial manufacturing. The recommended process parameters were demonstrated to be

  15. Improving the mechanical performance of Sn57.6Bi0.4Ag solder joints on Au/Ni/Cu pads during aging and electromigration through the addition of tungsten (W) nanoparticle reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi, E-mail: yili64-c@my.cityu.edu.hk [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Luo, Kaiming; Lim, Adeline B.Y.; Chen, Zhong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wu, Fengshun [School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan (China); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2016-07-04

    Sn57.6Bi0.4Ag solder has been reinforced successfully through the addition of tungsten (W) nanoparticles at a concentration of 0.5 wt%. With the addition of W nanoparticles, the solder matrix lamellar interphase spacing was reduced by 31.0%. Due to the dispersion of W nanoparticles and the consequently refined microstructure, the mechanical properties of the solder alloy were enhanced, as indicated by a 6.2% improvement in the microhardness. During the reflow of solder on Au/Ni/Cu pads, the entire Au layer dissolved into the molten solder rapidly and a large number of (Au,Ni)(Sn,Bi){sub 4} particles were formed. The fracture path of the as-reflowed joint was within the solder region, showing ductile characteristic, and the shear strength was reinforced by 8.2%, due to the enhanced mechanical properties of the solder. During the subsequent aging process, the Au migrated back towards the interface and a thick layer of interfacial (Au,Ni)(Sn,Bi){sub 4} IMC was formed, leading to the shift of the fracture path to the interfacial IMC region, the transformation to brittle fracture and the deterioration of the strength of the joint, due to Au embrittlement. By adding W nanoparticles, the migration of Au was mitigated and the thickness of the (Au,Ni)(Sn,Bi){sub 4} layer was reduced significantly, which reduced the Au embrittlement-induced deterioration of the strength of the joint. During electromigration, the segregation of the Bi-rich and Sn-rich phases and the accumulation of the (Au,Ni)(Sn,Bi){sub 4} layer at cathode interface were mitigated by the addition of W nanoparticles, which improved the electromigration resistance.

  16. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    Science.gov (United States)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases

  17. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  18. Domestic Preparedness: Phase 2 Sarin Vapor Challenge and Corn Oil Protection Factor (PF) Testing of Commercial Powered Air Purifying Respirator (PAPR) Systems and Cartridges

    National Research Council Canada - National Science Library

    Campbell, Lee E; Lins, Ray; Pappas, Alex G

    2002-01-01

    .... Results indicate that cartridges provide complete penetration resistance against 200 mg/m3 GB challenge concentrations for 60 minutes, but that unacceptably high levels of GB vapor and corn oil...

  19. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    Science.gov (United States)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  20. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br.

    Science.gov (United States)

    Sun, Guangyi; Sommar, Jonas; Feng, Xinbin; Lin, Che-Jen; Ge, Maofa; Wang, Weigang; Yin, Runsheng; Fu, Xuewu; Shang, Lihai

    2016-09-06

    This study presents the first measurement of Hg stable isotope fractionation during gas-phase oxidation of Hg(0) vapor by halogen atoms (Cl(•), Br(•)) in the laboratory at 750 ± 1 Torr and 298 ± 3 K. Using a relative rate technique, the rate coefficients for Hg(0)+Cl(•) and Hg(0)+Br(•) reactions are determined to be (1.8 ± 0.5) × 10(-11) and (1.6 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1), respectively. Results show that heavier isotopes are preferentially enriched in the remaining Hg(0) during Cl(•) initiated oxidation, whereas being enriched in the product during oxidation by Br(•). The fractionation factors for (202)Hg/(198)Hg during the Cl(•) and Br(•) initiated oxidations are α(202/198) = 0.99941 ± 0.00006 (2σ) and 1.00074 ± 0.00014 (2σ), respectively. A Δ(199)Hg/Δ(201)Hg ratio of 1.64 ± 0.30 (2σ) during oxidation of Hg(0) by Br atoms suggests that Hg-MIF is introduced by the nuclear volume effect (NVE). In contrast, the Hg(0) + Cl(•) reaction produces a Δ(199)Hg/Δ(201)Hg-slope of 1.89 ± 0.18 (2σ), which in addition to a high degree of odd-mass-number isotope MIF suggests impacts from MIF effects other than NVE. This reaction also exhibits significant MIF of (200)Hg (Δ(200)Hg, up to -0.17‰ in the reactant) and is the first physicochemical process identified to trigger (200)Hg anomalies that are frequently detected in atmospheric samples.

  1. Photoreflectance study of strained GaAsN/GaAs T-junction quantum wires grown by metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Klangtakai, Pawinee; Sanorpim, Sakuntam; Onabe, Kentaro

    2011-12-01

    Strained GaAsN T-junction quantum wires (T-QWRs) with different N contents grown on GaAs by two steps metal-organic vapor phase epitaxy in [001] and [110] directions, namely QW1 and QW2 respectively, have been investigated by photoreflectance (PR) spectroscopy. Two GaAsN T-QWRs with different N contents were formed by T-intersection of (i) a 6.4-nm-thick GaAs0.89N0.011 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2 and (ii) a 5.0-nm-thick GaAs0.985N0.015 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2. An evidence of a one-dimensional structure at T-intersection of the two QWs on the (001) and (110) surfaces was established by PR resonances associated with extended states in all the QW and T-QWR samples. It is found that larger lateral confinement energy than 100 meV in both of [001] and [110] directions were achieved for GaAsN T-QWRs. With increasing temperature, the transition energy of GaAsN T-QWRs decreases with a faster shrinking rate compared to that of bulk GaAs. Optical quality of GaAsN T-QWRs is found to be affected by the N-induced band edge fluctuation, which is the unique characteristic of dilute III-V-nitrides.

  2. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Collaborative Innovation Center for Ecological Building, Materials and Environmental Protection Equipments, Jiangsu, 224051 (China); Laboratory for Advanced Technology in Environmental Protection, Jiangsu, 224051 (China); School of Textile and Clothing, Nantong University, Jiangsu, 226019 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu, 226019 (China); Lv, J.C.; Zhou, Q.Q.; Ma, Z.P.; Qi, Z.M.; Chen, J.Y.; Liu, G.L.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Lu, Z.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Collaborative Innovation Center for Ecological Building, Materials and Environmental Protection Equipments, Jiangsu, 224051 (China); Laboratory for Advanced Technology in Environmental Protection, Jiangsu, 224051 (China); Zhang, W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 (China)

    2017-02-28

    Highlights: • A new means for multifunctional cotton fabrics by PIVPGP of AA and AgNPs synthesis. • Surface modification by PIVPGP of AA had a positive effect on AgNPs loading. • Antibacterial, self-cleaning and thermal stability were greatly improved. • AgNP loaded cotton fabric exhibited excellent laundering durability. • Mechanism of AgNPs in situ synthesis on cotton fabrics by PIVPGP of AA was proposed. - Abstract: A practical and ecological method for preparing the multifunctional cotton fabrics with excellent laundering durability was explored. Cotton fabrics were modified by plasma induced vapor phase graft polymerization (PIVPGP) of acrylic acid (AA) and subsequently silver nanoparticles (AgNPs) were in situ synthesized on the treated cotton fabrics. The AgNP loaded cotton fabrics were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), antibacterial activity, self-cleaning activity, thermal stability and laundering durability, respectively. SEM observation and EDX, XPS and XRD analysis demonstrated the much more AgNPs deposition on the cotton fabrics modified by PIVPGP of AA. The AgNP loaded cotton fabrics also exhibited better antibacterial activity, self-cleaning activity, thermal stability and laundering durability. It was concluded that the surface modification of the cotton fabrics by PIVPGP of AA could increase the loading efficiency and binding fastness of AgNPs on the treated cotton fabrics, which could fabricate the cotton fabrics with durable multifunction. In addition, the mechanism of in situ synthesis of AgNPs on the cotton fabrics modified by PIVPGP of AA was proposed.

  3. The metallurgical approach on the solder voids behaviour in surface mount devices

    International Nuclear Information System (INIS)

    Mohabattul Zaman Bukhari

    1996-01-01

    Solder voids are believed to cause poor heat dissiption in the Surface Mount devices and reduce the reliability of the devices at higher operating services. There are a lot of factors involved in creating voids such as gas/flux entrapment, wettability, outgasseous, air bubbles in the solder paste, inconsistency of solder coverage and improper metal scheme selection. This study was done to observe the behaviour of the solder voids in term of flux entrapmentt and wettability. It is believed that flux entrapment and wettability are verify this hypothesis. Two types of metal scheme were chosen which are Nickel (Ni) plated and Tin (Sn) plated heatsink. X-ray techniques such as Radiographic Inspection Analysis and EDAX were used to detect the minute solder voids. The solder voids observed on the heatsinks and Copper shims after the reflow process are believed to be a non contact voids that resulted from some portion of the surface not wetting properly

  4. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    Science.gov (United States)

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  5. Study of interfacial reactions in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate

    International Nuclear Information System (INIS)

    Sun, Peng; Andersson, Cristina; Wei, Xicheng; Cheng, Zhaonian; Shangguan, Dongkai; Liu, Johan

    2007-01-01

    In this paper, the coupling effect in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi solder joint with sandwich structure by long time reflow soldering was studied. It was found that the interfacial compound at the Cu substrate was binary Cu-Sn compound in Sn-Ag-Bi solder joint and Cu 5 Zn 8 phase in Sn-Zn-Bi solder joint. The thickness of the Cu-Zn compound layer formed at the Cu substrate was greater than or equal to that of Cu-Sn compound layer, although the reflow soldering temperature of Sn-Zn-Bi (240 o C) was lower than that of Sn-Ag-Bi (250 o C). The stable Cu-Zn compound was the absolute preferential phase in the interfacial layer between Sn-Zn-Bi and the Cu substrate. The ternary (Cu, Ni) 6 Sn 5 compound was formed at the Sn-Ag-Bi/Ni(P)-Cu metallization interface, and a complex alloy Sn-Ni-Cu-Zn was formed at the Sn-Zn-Bi/Ni(P)-Cu metallization interface. It was noted that Cu atoms could diffuse from the Cu substrate through the solder matrix to the Ni(P)-Cu metallization within 1 min reflow soldering time for both solder systems, indicating that just 30 s was long enough for Cu to go through 250 μm diffusion length in the Sn-Ag-Bi solder joint at 250 o C. The coupling effect between Ni(P)/Cu metallization and Cu substrate was confirmed as the type of IMCs at Ni(P) layer had been changed from Ni-Sn system to Cu-Sn system apparently by the diffusion effect of Cu atoms. The (Cu, Ni) 6 Sn 5 layer at the Ni(P)/Cu metallization grew significantly and its thickness was even greater than that of the Cu-Sn compound on the opposite side, however the growth of the complex alloy including Sn, Ni, Cu and Zn on the Ni(P)/Cu metallization was suppressed

  6. Separation of the components of the binary mixture ethanol-water by steam flux in solid phase column; Separacao dos componentes da mistura binaria etanol-agua por passagem do vapor em coluna de fase solida

    Energy Technology Data Exchange (ETDEWEB)

    Terrones, M G.H.; Brune, W; Souza Barcellos, E de; Almeida, P G.V. de [Vicosa Univ., MG (Brazil). Dept. de Quimica; Fabris, J D [EMBRAPA, Sete Lagoas, MG (Brazil)

    1988-12-31

    This paper deals with the energy required to separate ethanol from an aqueous solution in a distillation column containing a solid phase. The solid phases evaluated consisted of either an amylatious (ground corn) or a cellulose (sugar cane bagasse) absorber whit particle sizes smaller than 4 mm. The water-retention capacity of each solid phase was measured by passing vapors or ethanol-water mixtures through the solid phase. When starting with initial concentrations bellow the azeotropic point, ethanol concentrations up to 99,5% (on corn) and 97,2% (on sugar cane) were achieved. The water content was evaluated potentiometrically (Karl`Fischer). Regarding the 2-4 mm ground corn solid phase column, the energy consumed was estimated to be reduced by 15,6% and 60% (by weight) ethanol-water mixture respectively. (author) 11 refs., 2 figs., 2 tabs

  7. Interfacial reaction of Sn-based solder joint in the package system

    Science.gov (United States)

    Gu, Huandi

    In this thesis, I report a study on the effect of the solder size on intermetallic layer formation by comparing the morphology change and growth rate of two different size solder joint aged at a same temperature for different aging time. The layer thickness and microstructure were analyzed using scanning electron microscopy (SEM). Photoshop was used to measure the thickness of intermetallic compound. Two different size of solder joints with composition of Sn-Ag-Cu (305) were used.

  8. A new method for soldering particle-reinforced aluminum metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinbin; Mu, Yunchao [Zhongyuan University of Technology, Zhengzhou 450007 (China); Luo, Xiangwei [Zhengzhou University, Zhengzhou 450002 (China); Niu, Jitai, E-mail: niujitai@163.com [Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. Black-Right-Pointing-Pointer The nickel plating is required on the surface of the composites before soldering. Black-Right-Pointing-Pointer Low welding temperature is set to avoid overheating of the matrix. Black-Right-Pointing-Pointer Chemical and metallurgical bonding of composites and Kovar is carried out. Black-Right-Pointing-Pointer High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al-SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe-Ni-Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn-Cd-Ag-Cu) with a melting point of about 400 Degree-Sign C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)-Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al-SiC composite.

  9. A new method for soldering particle-reinforced aluminum metal matrix composites

    International Nuclear Information System (INIS)

    Lu, Jinbin; Mu, Yunchao; Luo, Xiangwei; Niu, Jitai

    2012-01-01

    Highlights: ► Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. ► The nickel plating is required on the surface of the composites before soldering. ► Low welding temperature is set to avoid overheating of the matrix. ► Chemical and metallurgical bonding of composites and Kovar is carried out. ► High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al–SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe–Ni–Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn–Cd–Ag–Cu) with a melting point of about 400 °C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)–Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al–SiC composite.

  10. Synthesis and characterization of a liquid Eu precursor (EuCp{sup pm}{sub 2}) allowing for valence control of Eu ions doped into GaN by organometallic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Brandon, E-mail: bmitchell@wcupa.edu [Department of Physics, West Chester University, West Chester, PA, 19383 (United States); Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Koizumi, Atsushi; Nunokawa, Takumi; Wakamatsu, Ryuta; Lee, Dong-gun; Saitoh, Yasuhisa; Timmerman, Dolf [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Kuboshima, Yoshinori; Mogi, Takayuki; Higashi, Shintaro; Kikukawa, Kaoru [Kojundo Chemical Laboratory Co., Ltd., 5-1-28 Chiyoda, Sakado, Saitama, 350-0284 (Japan); Ofuchi, Hironori; Honma, Tetsuo [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 (Japan); Fujiwara, Yasufumi, E-mail: fujiwara@mat.eng.osaka-u.ac.jp [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2017-06-01

    A liquid Eu precursor, bis(normal-propyl-tetramethylcyclopentadienyl)europium has been synthesized. This precursor exists as a liquid at temperatures higher than 49 °C, has a moderately high vapor pressure, contains no oxygen in its molecular structure, and can be distilled to high purity. These properties make it ideal for doping using a chemical vapor or atomic layer deposition method, and provide a degree of control previously unavailable. As a precursor the Eu exists in the divalent valance state, however, once doped into GaN by organometallic vapor phase epitaxy, the room-temperature photoluminescence of the Eu-doped GaN exhibited the typical red emission due to the intra-4f shell transition of trivalent Eu. After variation of the growth temperature, it was found that divalent Eu could be stabilized in the GaN matrix. By tuning the Fermi level through donor doping, the ratio of Eu{sup 2+} to Eu{sup 3+} could be controlled. The change in valence state of the Eu ions was confirmed using X-ray absorption near-edge structure. - Highlights: • A liquid Eu precursor was synthesized and its properties were characterized. • Precursor has a low melting point and a moderately high vapor pressure. • Does not contain oxygen in its molecular structure. • Eu can changed its valance state when incorporated into GaN. • Valence state of Eu in GaN can be controlled by donor doping.

  11. Synthesis and characterization of a liquid Eu precursor (EuCppm2) allowing for valence control of Eu ions doped into GaN by organometallic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Mitchell, Brandon; Koizumi, Atsushi; Nunokawa, Takumi; Wakamatsu, Ryuta; Lee, Dong-gun; Saitoh, Yasuhisa; Timmerman, Dolf; Kuboshima, Yoshinori; Mogi, Takayuki; Higashi, Shintaro; Kikukawa, Kaoru; Ofuchi, Hironori; Honma, Tetsuo; Fujiwara, Yasufumi

    2017-01-01

    A liquid Eu precursor, bis(normal-propyl-tetramethylcyclopentadienyl)europium has been synthesized. This precursor exists as a liquid at temperatures higher than 49 °C, has a moderately high vapor pressure, contains no oxygen in its molecular structure, and can be distilled to high purity. These properties make it ideal for doping using a chemical vapor or atomic layer deposition method, and provide a degree of control previously unavailable. As a precursor the Eu exists in the divalent valance state, however, once doped into GaN by organometallic vapor phase epitaxy, the room-temperature photoluminescence of the Eu-doped GaN exhibited the typical red emission due to the intra-4f shell transition of trivalent Eu. After variation of the growth temperature, it was found that divalent Eu could be stabilized in the GaN matrix. By tuning the Fermi level through donor doping, the ratio of Eu 2+ to Eu 3+ could be controlled. The change in valence state of the Eu ions was confirmed using X-ray absorption near-edge structure. - Highlights: • A liquid Eu precursor was synthesized and its properties were characterized. • Precursor has a low melting point and a moderately high vapor pressure. • Does not contain oxygen in its molecular structure. • Eu can changed its valance state when incorporated into GaN. • Valence state of Eu in GaN can be controlled by donor doping.

  12. Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages

    Energy Technology Data Exchange (ETDEWEB)

    Gain, Asit Kumar [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: eeycchan@cityu.edu.hk; Yung, Winco K.C. [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2009-05-25

    The effect of nano Ni additions in Sn-9Zn and Sn-8Zn-3Bi solders on their interfacial microstructures and shear loads with Au/Ni/Cu pad metallization in ball grid array (BGA) applications were investigated. After the addition of nano Ni powder in Sn-based lead-free solders, there were no significant changes in the interfacial microstructure. But, in the solder region a very fine Zn-rich phase was observed. Also on the fracture surfaces a fine Zn-Ni compound was found. After the addition of nano Ni powder in Sn-based solders, the shear loads were increased due to a refinement of the microstructure and in addition, ductile fracture surfaces were clearly observed. The shear loads of the plain Sn-9Zn and Sn-8Zn-3Bi solders after one reflow cycle were about 1798 g and 2059 g, respectively. After the addition of nano Ni powder, their loads were about 2172 g and 2212 g, respectively, after one reflow cycle and their shear loads after eight reflow cycles were about 2099 g and 2081 g, respectively.

  13. Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages

    International Nuclear Information System (INIS)

    Gain, Asit Kumar; Chan, Y.C.; Yung, Winco K.C.

    2009-01-01

    The effect of nano Ni additions in Sn-9Zn and Sn-8Zn-3Bi solders on their interfacial microstructures and shear loads with Au/Ni/Cu pad metallization in ball grid array (BGA) applications were investigated. After the addition of nano Ni powder in Sn-based lead-free solders, there were no significant changes in the interfacial microstructure. But, in the solder region a very fine Zn-rich phase was observed. Also on the fracture surfaces a fine Zn-Ni compound was found. After the addition of nano Ni powder in Sn-based solders, the shear loads were increased due to a refinement of the microstructure and in addition, ductile fracture surfaces were clearly observed. The shear loads of the plain Sn-9Zn and Sn-8Zn-3Bi solders after one reflow cycle were about 1798 g and 2059 g, respectively. After the addition of nano Ni powder, their loads were about 2172 g and 2212 g, respectively, after one reflow cycle and their shear loads after eight reflow cycles were about 2099 g and 2081 g, respectively.

  14. Laser tissue welding mediated with a protein solder

    Science.gov (United States)

    Small, Ward, IV; Heredia, Nicholas J.; Celliers, Peter M.; Da Silva, Luiz B.; Eder, David C.; Glinsky, Michael E.; London, Richard A.; Maitland, Duncan J.; Matthews, Dennis L.; Soltz, Barbara A.

    1996-05-01

    A study of laser tissue welding mediated with an indocyanine green dye-enhanced protein solder was performed. Freshly obtained sections of porcine artery were used for the experiments. Sample arterial wall thickness ranged from two to three millimeters. Incisions approximately four millimeters in length were treated using an 805 nanometer continuous- wave diode laser coupled to a one millimeter diameter fiber. Controlled parameters included the power delivered by the laser, the duration of the welding process, and the concentration of dye in the solder. A two-color infrared detection system was constructed to monitor the surface temperatures achieved at the weld site. Burst pressure measurements were made to quantify the strengths of the welds immediately following completion of the welding procedure.

  15. Quality Analysis of Welded and Soldered Joints of Cu-Nb Microcomposite Wires

    Directory of Open Access Journals (Sweden)

    Nikolaj VIŠNIAKOV

    2011-03-01

    Full Text Available Quality analysis of welded and soldered joints of Cu-Nb microcomposite wires has been performed. Quality and mechanical characteristics of joints as ultimate tensile stress limit and elongation at break were measured with an universal testing machine and controlled visually using an optical microscope. Two wires joints were soldered with silver and copper solders and put into steel and copper sleeve respectively. Another two wires joints were soldered with silver solder and welded without any reinforcement. Joints soldered with the silver solder and steel sleeve have demonstrated the best mechanical characteristics: ultimate tensile stress limit of 650 MPa and elongation at break of 0.85 %. Joints soldered with the copper sleeve have no advantages comparing with the soldered butt joint. Ultimate tensile stress limit and elongation at break were in 300 MPa - 350 MPa and in 0.35 % - 0.45 % ranges respectively. Two welded joints had ultimate tensile stress limit of 470 MPa and elongation at break of 0.71 %. In all joints the microstructure of Nb filaments was destroyed and mechanical properties have been specified by mechanical strength of copper and sleeve materials only.http://dx.doi.org/10.5755/j01.ms.17.1.242

  16. Reliability of soldered joints for automotive electronic devices; Denso buhin ni okeru handa setsugo no shinraisei

    Energy Technology Data Exchange (ETDEWEB)

    Kita, T; Mukaibo, N; Ando, K; Moriyama, M [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    Concerning the tin and lead eutectic solder, we have evaluated the reliability of three factors of intermetallic compound layer, creep and vibration which cause solder degradation. First, the stress factor was extracted from investigating the mechanism of degradation, and the best acceleration test method was fixed. Next, the acceleration test was executed to find the stress dependency and the tendency of solder degradation was modeled numerically. While the environmental stress frequency was obtained and they were put together by using a minor method, which enabled us to predict the life span of solder on the market with precision. 5 refs., 13 figs.

  17. Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy

    DEFF Research Database (Denmark)

    Sopousek, J.; Palcut, Marián; Hodúlová, Erika

    2010-01-01

    The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching...... to room temperature. The samples were analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDS) and electron backscatter diffraction. The solidified melt consisted of four different phases. Solidification behavior was monitored by heat-flux differential scanning calorimetry...

  18. The effect of graphene on the intermetallic and joint strength of Sn-3.5Ag lead-free solder

    Science.gov (United States)

    Mayappan, R.; Salleh, A.; Andas, J.

    2017-09-01

    Solder has been widely used in electronic industry as interconnection for electronic packaging. European Union and Japan have restricted the use of Sn-Pb solder as it contains lead which can harmful to human health and environment. Due to this, many researches have been done in order to find a suitable replacement for the lead solder. Although many lead-free solders are available, the Sn-3.5Ag solder with the addition of graphene seem to be a suitable candidate. In this study, a 0.07 wt% graphene nanosheet was added into the Sn-3.5Ag solder and this composite solder was prepared under powder metallurgy method. The solder was reacted with copper substrate at 250 °C for one minute. For joint strength analysis, two copper strips were soldered together. The solder joint was aged at temperature 100 °C for 500 hours. Scanning Electron Microscope (SEM) was used to observe the interfacial reaction and Instron machine was used to determine the joint strength. Cu6Sn5 intermetallic layer was formed at the interface between the Cu substrate and the solders. Composite solder showed the retardation of the intermetallic growth compared to the plain solder. The thickness value of the intermetallic was used to calculate the growth rate the IMC. The graphene nanosheets added solder has lower growth rate which is 3.86 × 10-15 cm2/s compared to the plain solder 7.15 × 10-15 cm2/s. Shear strength analysis show that the composite solder has higher joint compared to the plain solder.

  19. Influence of Difference Solders Volume on Intermetallic Growth of Sn-4.0Ag-0.5Cu/ENEPIG

    Directory of Open Access Journals (Sweden)

    Saliza Azlina O.

    2016-01-01

    Full Text Available In recent years, portable electronic packaging products such as smart phones, tablets, notebooks and other gadgets have been developed with reduced size of component packaging, light weight, high speed and with enhanced performance. Thus, flip chip technology with smaller solder sphere sizes that would produce fine solder joint interconnections have become essential in order to fulfill these miniaturization requirements. This study investigates the interfacial reactions and intermetallics formation during reflow soldering and isothermal aging between Sn-4.0Ag-0.5Cu (SAC405 and electroless nickel/immersion palladium/immersion gold (EN(PEPIG. Solder diameters of 300 μm and 700 μm were used to compare the effect of solder volume on the solder joint microstructure. The solid state isothermal aging was performed at 125°C starting from 250 hours until 2000 hours. The results revealed that only (Cu,Ni6Sn5 IMC was found at the interface during reflow soldering while both (Cu,Ni6Sn5 and (Ni,Cu3Sn4 IMC have been observed after aging process. Smaller solder sizes produced thinner IMC than larger solder joints investigated after reflow soldering, whereas the larger solders produced thinner IMC than the smaller solders after isothermal aging. Aging duration of solder joints has been found to be increase the IMC’s thickness and changed the IMC morphologies to spherical-shaped, compacted and larger grain size.

  20. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  1. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2010-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The changes in microstructure and microhardness associated with the addition of low melting point metals namely In, Sb and Sn to the Au......-Ge-In and Au-Ge-Sn combinations was determined to be the classic solid solution strengthening. The Au-Ge-Sb combination was primarily strengthened by the refined (Ge) dispersed phase. The aging temperature had a significant influence on the microhardness in the case of the Au-Ge-Sn candidate alloy...

  2. Laser beam soldering of micro-optical components

    Science.gov (United States)

    Eberhardt, R.

    2003-05-01

    MOTIVATION Ongoing miniaturisation and higher requirements within optical assemblies and the processing of temperature sensitive components demands for innovative selective joining techniques. So far adhesive bonding has primarily been used to assemble and adjust hybrid micro optical systems. However, the properties of the organic polymers used for the adhesives limit the application of these systems. In fields of telecommunication and lithography, an enhancement of existing joining techniques is necessary to improve properties like humidity resistance, laserstability, UV-stability, thermal cycle reliability and life time reliability. Against this background laser beam soldering of optical components is a reasonable joining technology alternative. Properties like: - time and area restricted energy input - energy input can be controlled by the process temperature - direct and indirect heating of the components is possible - no mechanical contact between joining tool and components give good conditions to meet the requirements on a joining technology for sensitive optical components. Additionally to the laser soldering head, for the assembly of optical components it is necessary to include positioning units to adjust the position of the components with high accuracy before joining. Furthermore, suitable measurement methods to characterize the soldered assemblies (for instance in terms of position tolerances) need to be developed.

  3. Scalable Manufacturing of Solderable and Stretchable Physiologic Sensing Systems.

    Science.gov (United States)

    Kim, Yun-Soung; Lu, Jesse; Shih, Benjamin; Gharibans, Armen; Zou, Zhanan; Matsuno, Kristen; Aguilera, Roman; Han, Yoonjae; Meek, Ann; Xiao, Jianliang; Tolley, Michael T; Coleman, Todd P

    2017-10-01

    Methods for microfabrication of solderable and stretchable sensing systems (S4s) and a scaled production of adhesive-integrated active S4s for health monitoring are presented. S4s' excellent solderability is achieved by the sputter-deposited nickel-vanadium and gold pad metal layers and copper interconnection. The donor substrate, which is modified with "PI islands" to become selectively adhesive for the S4s, allows the heterogeneous devices to be integrated with large-area adhesives for packaging. The feasibility for S4-based health monitoring is demonstrated by developing an S4 integrated with a strain gauge and an onboard optical indication circuit. Owing to S4s' compatibility with the standard printed circuit board assembly processes, a variety of commercially available surface mount chip components, such as the wafer level chip scale packages, chip resistors, and light-emitting diodes, can be reflow-soldered onto S4s without modifications, demonstrating the versatile and modular nature of S4s. Tegaderm-integrated S4 respiration sensors are tested for robustness for cyclic deformation, maximum stretchability, durability, and biocompatibility for multiday wear time. The results of the tests and demonstration of the respiration sensing indicate that the adhesive-integrated S4s can provide end users a way for unobtrusive health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thermodynamic assessment of the Sn-Co lead-free solder system

    Science.gov (United States)

    Liu, Libin; Andersson, Cristina; Liu, Johan

    2004-09-01

    The Sn-Co-Cu eutectic alloy can be a less expensive alternative for the Sn-Ag-Cu alloy. In order to find the eutectic solder composition of the Sn-Co-Cu system, the Sn-Co binary system has been thoroughly assessed with the calculation of phase diagram (CALPHAD) method. The liquid phase, the FCC and HCP Co-rich solid solution, and the BCT Sn-rich solid solution have been described by the Redlich-Kister model. The Hillert-Jarl-Inden model has been used to describe the magnetic contributions to Gibbs energy in FCC and HCP. The CoSn2, CoSn, Co3Sn2_β, and Co3Sn2_α phases have been treated as stoichiometric phases. A series of thermodynamic parameters have been obtained. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data. The obtained thermodynamic data was used to extrapolate the ternary Sn-Co-Cu phase diagram. The composition of the Sn-rich eutectic point of the Sn-Co-Cu system was found to be 224°C, 0.4% Co, and 0.7% Cu.

  5. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b

  6. Multi-scale modeling of elasto-plastic response of SnAgCu lead-free solder alloys at different ageing conditions: Effect of microstructure evolution, particle size effects and interfacial failure

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, Milad; Cugnoni, Joel, E-mail: joel.cugnoni@epfl.ch; Botsis, John

    2016-04-20

    In microelectronics applications, SnAgCu lead-free solder joints play the important role of ensuring both the mechanical and electrical integrity of the components. In such applications, the SnAgCu joints are subjected to elevated homologous temperatures for an extended period of time causing significant microstructural changes and leading to reliability issues. In this study, the link between the change in microstructures and deformation behavior of SnAgCu solder during ageing is explained by developing a hybrid multi-scale microstructure-based modeling approach. Herein, the SnAgCu solder alloy is seen as a three phase metal matrix composite in which Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5} hard intermetallics play the role of reinforcements and Sn the role of a ductile matrix. The hardening of the Sn matrix due to fine intermetallics in the eutectic mixture is modeled by incorporating the mean field effects of geometrically necessary dislocations. Subsequently, a two level homogenization procedure based on micromechanical finite element (FE) models is used to capture the interactions between the different phases. For this purpose, tomographic images of microstructures obtained by Focused Ion Beam (FIB) and synchrotron X-Ray in different ageing conditions are directly used to generate statistically representative volume elements (RVE) using 3D FE models. The constitutive behavior of the solder is determined by sequentially performing two scales of numerical homogenization at the eutectic level and then at the dendrite level. For simplification, the anisotropy of Sn as well as the potential recovery processes have been neglected in the modeling. The observed decrease in the yield strength of solder due to ageing is well captured by the adopted modeling strategy and allows explaining the different ageing mechanisms. Finally, the effects of potential debonding at the intermetallic particle-matrix interface as well as particle fracture on the overall strength of solder are

  7. Growth of gallium nitride based devices on silicon(001) substrates by metalorganic vapor phase epitaxy; Wachstum von Galliumnitrid-basierten Bauelementen auf Silizium(001)-Substraten mittels metallorganischer Gasphasenepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Reiher, Fabian

    2009-02-25

    The main topic of this thesis is to investigate GaN-based layer systems grown by metalorganic vapor phase epitaxy on Si(001) substrates. A temperature shift up to 45 K is measured for a complete device structure on a 2-inch silicon substrate. By using a 40 nm thin LT-AlN-seed layer (680 C), the GaN crystallites on Si(001) substrates are almost oriented with their GaN(10 anti 12)-planes parallel to the Si(001)-plane. A four-fold azimuthal symmetry occurs for these layers, with the GaN[10 anti 11]-direction is aligned parallel to one of the four equivalent left angle 110 right angle -directions, respectively. However, a mono-crystalline and fully coalesced GaN-layer with this crystallographic orientation could not yet been obtained. If a deposition temperature of more than 1100 C is used for the AlN-seed layer, solely the GaN[0001]- growth direction of crystallites occurs in the main GaN layer on Si(001) substrates. These c-axis oriented GaN columns feature two opposite azimuthal alignments that are rotated by 90 with respect to each other and with GaN[11 anti 20] parallel Si[110] and GaN[10 anti 10] parallel Si[110], respectively. By using 4 off-oriented substrates towards the Si[110]-direction, one certain azimuthal texture component can be selected. The critical value of the miscut angle corresponds to theoretical calculations predicting the occurrence of atomic double steps on the Si(001) surface. The achieved crystallographic quality of the GaN layers on Si(001) is characterized by having a tilt of FWHM=0.27 and a twist of FWHM=0.8 of the crystallites, determined by X-ray diffraction. A completely crack-free, up to 2.5 {mu}m thick, and mono-crystalline GaN-template can be realized on Si(001), integrating 4 or 5 LT-AlN-interlayers in the GaN buffer structure. Based on this structure, the first successful implementation of an (InGaN/GaN)-LED on Si(001) is achieved. Furthermore, the possible fabrication of GaN-based FET-structures is demonstrated with a fully

  8. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Balaji, M.; Claudel, A.; Fellmann, V.; Gélard, I.; Blanquet, E.; Boichot, R.; Pierret, A.

    2012-01-01

    Highlights: ► Growth of AlN Nucleation layers and its effect on high temperature AlN films quality were investigated. ► AlN nucleation layers stabilizes the epitaxial growth of AlN and improves the surface morphology of AlN films. ► Increasing growth temperature of AlN NLs as well as AlN films improves the structural quality and limits the formation of cracks. - Abstract: AlN layers were grown on c-plane sapphire substrates with AlN nucleation layers (NLs) using high temperature hydride vapor phase epitaxy (HT-HVPE). Insertion of low temperature NLs, as those typically used in MOVPE process, prior to the high temperature AlN (HT-AlN) layers has been investigated. The NLs surface morphology was studied by atomic force microscopy (AFM) and NLs thickness was measured by X-ray reflectivity. Increasing nucleation layer deposition temperature from 650 to 850 °C has been found to promote the growth of c-oriented epitaxial HT-AlN layers instead of polycrystalline layers. The growth of polycrystalline layers has been related to the formation of dis-oriented crystallites. The density of such disoriented crystallites has been found to decrease while increasing NLs deposition temperature. The HT-AlN layers have been characterized by X-ray diffraction θ − 2θ scan and (0 0 0 2) rocking curve measurement, Raman and photoluminescence spectroscopies, AFM and field emission scanning electron microscopy. Increasing the growth temperature of HT-AlN layers from 1200 to 1400 °C using a NL grown at 850 °C improves the structural quality as well as the surface morphology. As a matter of fact, full-width at half-maximum (FWHM) of 0 0 0 2 reflections was improved from 1900 to 864 arcsec for 1200 °C and 1400 °C, respectively. Related RMS roughness also found to decrease from 10 to 5.6 nm.

  9. Formation of gallium nitride templates and freestanding substrates by hydride vapor phase epitaxy for homoepitaxial growth of III-nitride devices

    Science.gov (United States)

    Williams, Adrian Daniel

    Gallium nitride (GaN) is a direct wide band gap semiconductor currently under heavy development worldwide due to interest in its applications in ultra-violet optoelectronics, power electronics, devices operating in harsh environments (high temperature or corrorsive), etc. While a number of devices have been demonstrated with this material and its related alloys, the unavailability of GaN substrates is seen as one of the current major bottlenecks to both material quality and device performance. This dissertation is concerned with the synthesis of high quality GaN substrates by the hydride vapor phase epitaxy method (HVPE). In this work, the flow of growth precursors in a home-built HVPE reactor was modeled by the Navier-Stokes equation and solved by finite element analysis to promote uniformity of GaN on 2'' sapphire substrates. Kinetics of growth was studied and various regimes of growth were identified to establish a methodology for HVPE GaN growth, independent of reactor geometry. GaN templates as well as bulk substrates were fabricated in this work. Realization of freestanding GaN substrates was achieved through discovery of a natural stress-induced method of separating bulk GaN from sapphire via mechanical failure of a low-temperature GaN buffer layer. Such a process eliminates the need for pre- or post-processing of sapphire substrates, as is currently the standard. Stress in GaN-on-sapphire is discussed, with the dominant contributor identified as thermal stress due to thermal expansion coefficient mismatch between the two materials. This thermal stress is analyzed using Stoney's equation and conditions for crack-free growth of thick GaN substrates were identified. An etch-back process for planarizing GaN templates was also developed and successfully applied to rough GaN templates. The planarization of GaN has been mainly addressed by chemo-mechanical polishing (CMP) methods in the literature, with notable shortcomings including the inability to effectively

  10. Design and characterization of thick InxGa1-xAs metamorphic buffer layers grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.

    2014-03-01

    Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.

  11. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  12. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H., E-mail: xiaohui2013@yahoo.com.cn; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-11-25

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R{sub 0}/R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints.

  13. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    International Nuclear Information System (INIS)

    Xiao, H.; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-01-01

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R 0 /R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints

  14. Séparations par changement de phase. Etude et représentation des équilibres liquide-vapeur Separation by Phase Hange. Study and Computing Liquid-Vapor Equilibria

    Directory of Open Access Journals (Sweden)

    Asselineau L.

    2006-11-01

    Full Text Available Pour concevoir et optimiser les principales opérations de séparation (particulièrement les distillations avec ou sans solvant et l'extraction liquide-liquide on doit disposer de méthodes de corrélation ou, mieux, de prédiction des équilibres entre phases. A basse pression, et pour les mélanges d'hydrocarbures, les résultats présentés permettent la prévision des coefficients d'équilibre, même pour les séparations les plus délicates. En présence de constituants polaires, les données expérimentales d'équilibre liquide-liquide et liquide-vapeur de mélanges binaires et ternaires peuvent être simultanément corrélées dans le but de simuler et d'optimiser les distillations azéotropiques ou extractives. Sous haute pression, et particulièrement aux abords immédiats du point critique, le choix d'une équation d'état conduit à un traitement unitaire des phases en présence et permet, en particulier, la prédiction du lieu des points critiques des mélanges d'hydrocarbures et la corrélation de ce lieu en présence de solvants polaires. To determine and optimize the main separation operations (in particular distillations with or without a solvent, and liquid-liquid extraction correlation methods must be available or, better yet, methods of predicting phase equilibria. At low pressure and for hydrocarbon mixtures, the results described make the prediction of equilibrium coefficients possible, even for the most delicate separation. In the presence of polar constituents, the experimental data for the liquid-liquid and liquid-vapor equilibrium of binary and ternary mixtures can be simultaneously correlaten so as to simulate and optimize azeotropic or extractive distillations. Under high pressure and especially in the immediate vicinityof the critical point, the choice of an equation of state leads ta a unit treatment of the phases present and, in particular, makes it possible to predict the location of critical points in hydrocarbon

  15. Feasibility of using of the second gradient theory for the direct numerical simulation of liquid-vapor flows with phase-change; Etude des potentialites de la theorie du second gradient pour la simulation numerique directe des ecoulements liquide-vapeur avec changement de phase

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, D. [CEA Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique]|[Ecole Centrale de Paris, 75 (France)

    1998-12-31

    One on the main difficulties encountered in the direct numerical simulation of two-phase flows in general and of liquid-vapor flows with phase-change in particular, is the interface tracking. The idea developed in this work consists in modeling a liquid-vapor interface as a volumetric zone across which physical properties vary continuously instead of a discontinuous surface. The second gradient theory allows to establish the evolution equations of the fluid in the whole system: bulk phases and interfaces. That means that the resolution of a unique system of partial differential equations is necessary to determine the whole two-phase flow, the interfaces and their evolution in time being a part of the solution of this unique system. We show in this work that it is possible to artificially enlarge an interface without changing its surface tension and the latent heat of vaporization. That means than it is possible to track all the interfaces of a liquid-vapor two-phase flow with phase-change on a mesh the size of which is imposed by the smallest Kolmogorov scale of the bulk phases for example. The artificial enlargement of an interfacial zone is obtained by modifying the thermodynamic behavior of the fluid within the binodal. We show that this modification does not change the dynamics of an interface. However, although the thickness of an interface and its surface tension vary with the mass and heat fluxes that go though it, the thermodynamic modification necessary to the artificial enlargement of an interface drastically increases these variations. Consequently, the artificial enlargement of an interface must be made carefully to avoid a too much important variation of its surface tension during dynamic situations. (author) 60 refs.

  16. Physical property, phase equilibrium, distillation. Measurement and prediction of vapor-liquid and liquid-liquid equilibria; Bussei / heiko / joryu. Kieki, ekieki heiko no sokutei to suisan

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K. [Nihon Univ., Tokyo (Japan)

    1998-08-05

    The data on vapor-liquid equilibrium are basic data indispensable to the designing of a distillation process. The stage required for separation depends greatly upon the x-y curve, and the existence/nonexistence of an azeotropic point is also an important item to be checked. This paper describes the measurement of vapor-liquid equilibrium and liquid-liquid equilibrium, and then introduces reliable data on vapor-liquid equilibrium and parameters of an activity coefficient formula. For the prediction of vapor-liquid equilibrium, the ASOG, UNIFAC, and modified NIFAC, all being group contributive methods are utilized. The differences between these group contributive methods are based on the differences between the contributive items based on the differences in size of molecules influencing the activity coefficients and the expression of the group activity coefficient formula. The applicable number of groups of the ASOG is 43, while that of groups of the UNIFAC is 50. The modified UNIFAC covers 43 groups. The prediction of liquid-liquid equilibrium by using a group contributive method has little progressed since the of the results of the study of Magnussen et al. using the UNIFAC. 12 refs., 8 figs., 1 tab.

  17. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting, or...

  18. Tissue soldering with biodegradable polymer films: in-vitro investigation of hydration effects on weld strength

    Science.gov (United States)

    Sorg, Brian S.; Welch, Ashley J.

    2001-05-01

    Previous work demonstrated increased breaking strengths of tissue repaired with liquid albumin solder reinforced with a biodegradable polymer film compared to unreinforced control specimens. It was hypothesized that the breaking strength increase was due to reinforcement of the liquid solder cohesive strength. Immersion in a moist environment can decrease the adhesion of solder to tissue and negate any strength benefits gained from reinforcement. The purpose of this study was to determine if hydrated specimens repaired with reinforced solder would still be stronger than unreinforced controls. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with 806-nm diode laser light. A poly(DL-lactic- co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). The repaired tissues were immersed in phosphate buffered saline for time periods of 1 and 2 days. The breaking strengths of all of the hydrated specimens decreased compared to the acute breaking strengths. However, the reinforced specimens still had larger breaking strengths than the unreinforced controls. These results indicate that reinforcement of a liquid albumin solder may have the potential to improve the breaking strength in a clinical setting.

  19. Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš; Andersson, D.; Hoo, N.; Pearce, J.; Watson, A.; Dinsdale, A.; Mucklejohn, S.

    2012-01-01

    Roč. 21, č. 5 (2012), s. 629-637 ISSN 1059-9495 Institutional support: RVO:68081723 Keywords : lead-free soldering, * materials for high-temperature LF * new technologies for HT lead-free soldering Subject RIV: BJ - Thermodynamics Impact factor: 0.915, year: 2012

  20. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    Science.gov (United States)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  1. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  2. Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling

    Science.gov (United States)

    Gao, Li-Yin; Liu, Zhi-Quan; Li, Cai-Fu

    2017-08-01

    Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe- xNi ( x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 μm, 1.7 μm, and 1.4 μm thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.

  3. Reliability and microstructure of lead-free solder joints in industrial electronics after accelerated thermal aging

    NARCIS (Netherlands)

    Scaltro, F.; Biglari, M.H.; Kodentsov, A.; Yakovleva, O.; Brom, E.

    2009-01-01

    The reliability of lead-free (LF) solder joints in surface-mounted device components (SMD) has been investigated after thermo-cycle testing. Kirkendall voids have been observed at the interface component/solder together with the formation of fractures. The evolution, the morphology and the elemental

  4. Beta-Tin Grain Formation in Aluminum-Modified Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Handwerker, Carol A.

    2018-01-01

    The limited number of independent β-Sn grain orientations that typically form during solidification of Sn-based solders and the resulting large β-Sn grain size have major effects on overall solder performance and reliability. This study analyzes whether additions of Al to Sn-Cu and Sn-Cu-Ag alloys can be used to change the grain size, morphology, and twinning structures of atomized (as-solidified) and re-melted (reflowed) β-Sn dendrites as determined using scanning electron microscopy and electron backscatter diffraction for as-solidified and reflow cycled (20-250°C, 1-5 cycles) Sn-Cu-Al and Sn-Ag-Cu-Al drip atomized spheres (260 μm diameter). The resulting microstructures were compared to as-solidified and reflow cycled Sn-Ag-Cu spheres (450 μm diameter) as well as as-solidified Sn-Ag-Cu, Sn-Cu, and Sn-Ag microstructures from the literature. Previous literature observations reporting reductions in undercooling and β-Sn grain size with Al micro-alloying additions could not be correlated to the presence of the Cu9Al4 phase or Al solute. The as-solidified spheres displayed no change in β-Sn dendrite structure or grain size when compared to non-Al-modified alloys, and the reflow cycled spheres produced high undercoolings (22-64°C), indicating a lack of potent nucleation sites. The current findings highlighted the role of Ag in the formation of the interlaced twinning structure and demonstrated that with deliberate compositional choices, formation of the alloy's β-Sn grain structure (cyclical twinning versus interlaced twinning) could be influenced, in both the as-solidified and reflow cycled states, though still not producing the fine-grain sizes and multiple orientations desired for improved thermomechanical properties.

  5. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  6. Properties and Microstructures of Sn-Bi-X Lead-Free Solders

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2016-01-01

    Full Text Available The Sn-Bi base lead-free solders are proposed as one of the most popular alloys due to the low melting temperature (eutectic point: 139°C and low cost. However, they are not widely used because of the lower wettability, fatigue resistance, and elongation compared to traditional Sn-Pb solders. So the alloying is considered as an effective way to improve the properties of Sn-Bi solders with the addition of elements (Al, Cu, Zn, Ga, Ag, In, Sb, and rare earth and nanoparticles. In this paper, the development of Sn-Bi lead-free solders bearing elements and nanoparticles was reviewed. The variation of wettability, melting characteristic, electromigration, mechanical properties, microstructures, intermetallic compounds reaction, and creep behaviors was analyzed systematically, which can provide a reference for investigation of Sn-Bi base solders.

  7. Prediction of activities of all components in the lead-free solder systems Bi-In-Sn and Bi-In-Sn-Zn

    International Nuclear Information System (INIS)

    Tao Dongping

    2008-01-01

    The activities of components of the ternary lead-free solder systems Al-Sn-Zn at 973 K, Zn-Cu-Sn at 1023 K and Bi-In-Sn at 1000 and 1050 K have been predicted by a novel molecular interaction volume model-MIVM and the results are in good agreement with experimental data. Then the activities of all components of the Bi-In-Sn at 550 K and the Bi-In-Sn-Zn quaternary system at 700 K have been further predicted and the results are reasonable and reliable. This shows that the model may be a superior alternative for describing interfacial chemical reactions between lead-free solder alloys and common base materials and for the calculation of their phase diagrams because MIVM has certain physical meaning from the viewpoint of statistical thermodynamics and requires only two infinite dilute activity coefficients for each sub-binary system

  8. Influence of aging treatment on deformation behavior of 96.5Sn3.5Ag lead-free solder alloy during in situ tensile tests

    International Nuclear Information System (INIS)

    Ding, Ying; Wang, Chunqing; Tian, Yanhong; Li, Mingyu

    2007-01-01

    This study investigates the influence of aging treatment on deformation behavior of 96.5Sn3.5Ag eutectic solder alloys with lower strain rate ( -3 s -1 ) during tensile tests under the scanning electron microscope. Results showed that because of the existence of Ag 3 Sn intermetallic particles and the special microstructure of β-Sn phases in Sn3.5Ag solder, grain boundary sliding was not the dominant mechanism any longer for this Pb-free solder. While the interaction of dislocations with the relatively rigid Ag 3 Sn particles began to dominate. For the as-cast specimen, accompanied by partial intragranular cracks, intergranular fracture along the grain boundaries in Sn-Ag eutectic structure or the interphase boundaries between Sn-rich dendrites and Sn-Ag eutectic phases occurred primarily in early tensile stage. However, the boundary behavior was limited by the large Ag 3 Sn particles presented along the Sn-rich dendrites boundaries after aging. Plastic flow was observed in large area, and cracks propagated in a transgranular manner across the Sn-dendrites and Sn-Ag eutectic structure

  9. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder

    International Nuclear Information System (INIS)

    Li Guangdong; Shi Yaowu; Hao Hu; Xia Zhidong; Lei Yongping; Guo Fu

    2010-01-01

    In the present work, the effect of phosphorus on the creep fatigue properties of Sn-Cu eutectic lead-free solder was carried out. The experimental results show that the melting temperature was almost not changed with adding small amount of P element. However, the addition of trace P element led to the decrease in the property of creep fatigue. The fractography analysis by a scanning electron microscopy (SEM) shows that ductile fracture was the dominant failure behavior in the process of creep fatigue test of Sn0.7Cu and Sn0.7Cu0.005P specimens. It should be pointed out that there is significant difference in the fractographs between the joints of Sn0.7Cu solder and Sn0.7Cu0.005P solder. In the fractograph of Sn0.7Cu solder joint, the microstructure is prolonged along testing direction, and the dimples were more than the fractograph of Sn0.7Cu0.005P solder joint. In addition, the voids could be found on the Sn0.7Cu0.005P solder joint, and trace P addition may increase the rate of forming void of Sn0.7Cu solder joint. The voids can potentially lead to crack initiation or propagation sites in the solder joint. As a result, the creep fatigue of solder joint containing P such as Sn0.7Cu0.005P offers worse property compared to Sn0.7Cu solder joint.

  10. Physical properties of lead free solders in liquid and solid state

    Energy Technology Data Exchange (ETDEWEB)

    Mhiaoui, Souad

    2007-04-17

    The European legislation prohibits the use of lead containing solders in Europe. However, lead free solders have a higher melting point (typical 20%) and their mechanical characteristics are worse. Additional problems are aging and adhesion of the solder on the electronic circuits. Thus, research activities must focus on the optimization of the properties of Sn-Ag-Cu based lead free solders chosen by the industry. Two main objectives are treated in this work. In the center of the first one is the study of curious hysteresis effects of metallic cadmium-antimony alloys after thermal cycles by measuring electronic transport phenomena (thermoelectric power and electrical resistivity). The second objective, within the framework of ''cotutelle'' between the universities of Metz and of Chemnitz and supported by COST531, is to study more specifically lead free solders. A welding must well conduct electricity and well conduct and dissipate heat. In Metz, we determined the electrical conductivity, the thermoelectric power and the thermal conductivity of various lead free solders (Sn-Ag-Cu, Sn-Cu, Sn-Ag, Sn-Sb) as well in the liquid as well in the solid state. The results have been compared to classical lead-tin (Pb-Sn) solders. In Chemnitz we measured the surface tension, the interfacial tension and the density of lead free solders. We also measured the viscosity of these solders without and with additives, in particular nickel. These properties were related to the industrial problems of wettability and spreadability. Lastly, we solidified alloys under various conditions. We observed undercooling. We developed a technique of mixture of nanocrystalline powder with lead free solders ''to sow'' the liquid bath in order to obtain ''different'' solids which were examined using optical and electron microscopy. (orig.)

  11. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder

    Energy Technology Data Exchange (ETDEWEB)

    Li Guangdong, E-mail: liguangdong@emails.bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China); Shi Yaowu; Hao Hu; Xia Zhidong; Lei Yongping; Guo Fu [College of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2010-02-18

    In the present work, the effect of phosphorus on the creep fatigue properties of Sn-Cu eutectic lead-free solder was carried out. The experimental results show that the melting temperature was almost not changed with adding small amount of P element. However, the addition of trace P element led to the decrease in the property of creep fatigue. The fractography analysis by a scanning electron microscopy (SEM) shows that ductile fracture was the dominant failure behavior in the process of creep fatigue test of Sn0.7Cu and Sn0.7Cu0.005P specimens. It should be pointed out that there is significant difference in the fractographs between the joints of Sn0.7Cu solder and Sn0.7Cu0.005P solder. In the fractograph of Sn0.7Cu solder joint, the microstructure is prolonged along testing direction, and the dimples were more than the fractograph of Sn0.7Cu0.005P solder joint. In addition, the voids could be found on the Sn0.7Cu0.005P solder joint, and trace P addition may increase the rate of forming void of Sn0.7Cu solder joint. The voids can potentially lead to crack initiation or propagation sites in the solder joint. As a result, the creep fatigue of solder joint containing P such as Sn0.7Cu0.005P offers worse property compared to Sn0.7Cu solder joint.

  12. An Approach for Impression Creep of Lead Free Microelectronic Solders

    Science.gov (United States)

    Anastasio, Onofrio A.

    2002-06-01

    Currently, the microelectronics industry is transitioning from lead-containing to lead-free solders in response to legislation in the EU and Japan. Before an alternative alloy can be designated as a replacement for current Pb-Sn extensive testing must be accomplished. One major characteristic of the alloy that must be considered is creep. Traditionally, creep testing requires numerous samples and a long tin, which thwarts the generation of comprehensive creep databases for difficult to prepare samples such as microelectronic solder joints. However, a relatively new technique, impression creep enables us to rapidly generate creep data. This test uses a cylindrical punch with a flat end to make an impression on the surface of a specimen under constant load. The steady state velocity of the indenter is found to have the same stress and temperature dependence as the conventional unidirectional creep test using bulk specimens. This thesis examines impression creep tests of eutectic Sn-Ag. A testing program and apparatus was developed constructed based on a servo hydraulic test frame. The apparatus is capable of a load resolution of 0.01N with a stability of plus/minus 0.1N, and a displacement resolution of 0.05 microns with a stability of plus/minus 0.1 microns. Samples of eutectic Sn-Ag solder were reflowed to develop the microstructure used in microelectronic packaging. Creep tests were conducted at various stresses and temperatures and showed that coarse microstructures creep more rapidly than the microstructures in the tested regime.

  13. Transected sciatic nerve repair by diode laser protein soldering.

    Science.gov (United States)

    Fekrazad, Reza; Mortezai, Omid; Pedram, MirSepehr; Kalhori, Katayoun Am; Joharchi, Khojasteh; Mansoori, Korosh; Ebrahimi, Roja; Mashhadiabbas, Fatemeh

    2017-08-01

    Despite advances in microsurgical techniques, repair of peripheral nerve injuries (PNI) is still a major challenge in regenerative medicine. The standard treatment for PNI includes suturing and anasthomosis of the transected nerve. The objective of this study was to compare neurorraphy (nerve repair) using standard suturingto diode laser protein soldering on the functional recovery of transected sciatic nerves. Thirty adult male Fischer-344 Wistar rats were randomly assigned to 3 groups: 1. The control group, no repair, 2. the standard of care suture group, and 3. The laser/protein solder group. For all three groups, the sciatic nerve was transected and the repair was done immediately. For the suture repair group, 10.0 prolene suture was used and for the laser/protein solder group a diode laser (500mW output power) in combination with bovine serum albumen and indocyanine green dye was used. Behavioral assessment by sciatic functional index was done on all rats biweekly. At 12weeks post-surgery, EMG recordings were done on all the rats and the rats were euthanized for histological evaluation of the sciatic nerves. The one-way ANOVA test was used for statistical analysis. The average time required to perform the surgery was significantly shorter for the laser-assisted nerve repair group compared to the suture group. The EMG evaluation revealed no difference between the two groups. Based on the sciatic function index the laser group was significantly better than the suture group after 12weeks (pneurorraphy using standard suturing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition

    Science.gov (United States)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Gang

    2017-10-01

    Gallium oxide thin films of β and ε phase were grown on c-plane sapphire using metal-organic chemical vapor deposition and the phase compositions were analyzed using X-ray diffraction. The epitaxial phase diagram was constructed as a function of the growth temperature and VI/III ratio. A low growth temperature and low VI/III ratio were beneficial for the formation of hexagonal-type ε-Ga2O3. Further structure analysis revealed that the epitaxial relationship between ε-Ga2O3 and c-plane sapphire is ε-Ga2O3 (0001) || Al2O3 (0001) and ε-Ga2O3 || Al2O3 . The structural evolution of the mixed-phase sample during film thickening was investigated. By reducing the growth rate, the film evolved from a mixed phase to the energetically favored ε phase. Based on these results, a Ga2O3 thin film with a phase-pure ε-Ga2O3 upper layer was successfully obtained.

  15. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  16. Pressure brazing of ceramics to metals with copper solder

    International Nuclear Information System (INIS)

    Pavlova, M.A.; Metelkin, I.I.

    1986-01-01

    The effect on the quality of joints brazed with copper of different non metallized aluminooxide dielectrics with metals and alloys of a series of technological parameters (temperature, pressure, holding, and medium) in the course of pressure brazing is investigated. It is shown that in case of brazing with kovar and nickel the character of dependences is identical, however in all cases the joints with nickel are more durable. For the ceramics - molybdenum system characterized by weak interaction with copper solder kinetic dependences have no maximum and only under holding of more than 20 min the constant strength of 150-190 MPa is attained

  17. Technique for controllable vapor-phase deposition of 1-nitro(14C)pyrene and other polycyclic aromatic hydrocarbons onto environmental particulate matter

    International Nuclear Information System (INIS)

    Lucas, S.V.; Lee, K.W.; Melton, C.W.; Lewtas, J.; Ball, L.M.

    1991-01-01

    To produce environmental particles fortified with a polycyclic aromatic hydrocarbon (PAH) for toxicology studies, an experimental apparatus was devised for deposition of the desired chemical species onto particles in a controlled and reproducible manner. The technique utilized consists of dispersion of the particles on a gaseous stream at a controlled rate, thermal vaporization of a solution of PAH, delivery of the vaporized PAH into the aerosol of particles at a controlled rate, subsequent condensation of the PAH onto the particles, and final recovery of the coated particles. The effectiveness of this approach was demonstrated by vapor-coating a 14 C-labeled PAH (1-nitro( 14 C)-pyrene) onto diesel engine exhaust particles that had previously been collected by tunnel dilution sampling techniques. Using the 14 C label as a tracer, the coated particles were characterized with respect to degree of coating, integrity of particle structure and absence of chemical decomposition of the coating substrate. The study demonstrates that the described method provides a controllable means for depositing a substance uniformly and with a high coating efficiency onto aerosolized particles. The technique was also used to vapor-coat benzo(a)pyrene onto diesel engine exhaust and urban ambient air particulate matter, and 2-nitrofluoranthene onto urban ambient air particulate matter. Coating efficiencies of about 400 micrograms/g particulate matter were routinely obtained on a single coating run, and up to 1200 micrograms/g (1200 ppm) were achieved after a second pass through the process. The coated particles were subsequently utilized in biological fate, distribution and metabolism studies

  18. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  19. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    2013-04-03

    agricultural crops. To meet the requirements for these and other demanding applications, new sensing approaches with improved sensor selectivity are required...of these vapors with key side- chain amino acids. DNT-binding peptide receptors were further conjugated to an oligo(ethylene glycol) hydrogel for vapor...coefficient for DNT over TNT vapor. Vapor-phase binding performance was attributed to the ability of the oligo(ethylene glycol) hydrogel to maintain the

  20. Albumin solder covalently bound to a polymer membrane: New approach to improve binding strength in laser tissue soldering in-vitro.

    Science.gov (United States)

    Hiebl, B; Ascher, L; Luetzow, K; Kratz, K; Gruber, C; Mrowietz, C; Nehring, M E; Lendlein, A; Franke, R-P; Jung, F

    2018-01-01

    Laser tissue soldering (LTS) based on indocyanine green (ICG)-mediated heat-denaturation of proteins might be a promising alternative technique for micro-suturing, but up to now the problem of too weak shear strength of the solder welds in comparison to sutures is not solved. Earlier reports gave promising results showing that solder supported by carrier materials can enhance the cohesive strength of the liquid solder. In these studies, the solder was applied to the carriers by dip coating. Higher reliability of the connection between the solder and the carrier material is expected when the solder is bound covalently to the carrier material. In the present study a poly(ether imide) (PEI) membrane served as carrier material and ICG-supplemented albumin as solder substrate. The latter was covalently coupled to the carrier membrane under physiological conditions to prevent structural protein changes. As laser source a diode continuous-wave laser emitting at 808 nm with intensities between 250 mW and 1500 mW was utilized. The albumin functionalized carrier membrane was placed onto the tunica media of explanted pig thoracic aortae forming an overlapping area of approximately 0.5×0.5 cm2. All tests were performed in a dry state to prevent laser light absorption by water. Infrared spectroscopy, spectro-photometrical determination of the secondary and primary amine groups after acid orange II staining, contact angle measurements, and atomic force microscopy proved the successful functionalization of the PEI membrane with albumin. A laser power of 450 mW LTS could generate a membrane-blood vessel connection which was characterized by a shear strength of 0.08±0.002 MPa, corresponding to 15% of the tensile strength of the native blood vessel. Theoretically, an overlapping zone of 4.1 mm around the entire circumference of the blood vessel could have provided shear strength of the PEI membrane-blood vessel compound identical to the tensile strength of the native

  1. Impurity Effects in Electroplated-Copper Solder Joints

    Directory of Open Access Journals (Sweden)

    Hsuan Lee

    2018-05-01

    Full Text Available Copper (Cu electroplating is a mature technology, and has been extensively applied in microelectronic industry. With the development of advanced microelectronic packaging, Cu electroplating encounters new challenges for atomic deposition on a non-planar substrate and to deliver good throwing power and uniform deposit properties in a high-aspect-ratio trench. The use of organic additives plays an important role in modulating the atomic deposition to achieve successful metallic coverage and filling, which strongly relies on the adsorptive and chemical interactions among additives on the surface of growing film. However, the adsorptive characteristic of organic additives inevitably results in an incorporation of additive-derived impurities in the electroplated Cu film. The incorporation of high-level impurities originating from the use of polyethylene glycol (PEG and chlorine ions significantly affects the microstructural evolution of the electroplated Cu film, and the electroplated-Cu solder joints, leading to the formation of undesired voids at the joint interface. However, the addition of bis(3-sulfopropyl disulfide (SPS with a critical concentration suppresses the impurity incorporation and the void formation. In this article, relevant studies were reviewed, and the focus was placed on the effects of additive formula and plating parameters on the impurity incorporation in the electroplated Cu film, and the void formation in the solder joints.

  2. A flip chip process based on electroplated solder bumps

    Science.gov (United States)

    Salonen, J.; Salmi, J.

    1994-01-01

    Compared to wire bonding and TAB, flip chip technology using solder joints offers the highest pin count and packaging density and superior electrical performance. The chips are mounted upside down on the substrate, which can be made of silicon, ceramic, glass or - in some cases - even PCB. The extra processing steps required for chips are the deposition of a suitable thin film metal layer(s) on the standard Al pad and the formation of bumps. Also, the development of new fine line substrate technologies is required to utilize the full potential of the technology. In our bumping process, bump deposition is done by electroplating, which was chosen for its simplicity and economy. Sputter deposited molybdenum and copper are used as thin film layers between the aluminum pads and the solder bumps. A reason for this choice is that the metals can be selectively etched after bumping using the bumps as a mask, thus circumventing the need for a separate mask for etching the thin film metals. The bumps are electroplated from a binary Pb-Sn bath using a thick liquid photoresist. An extensively modified commercial flip chip bonder is used for alignment and bonding. Heat assisted tack bonding is used to attach the chips to the substrate, and final reflow joining is done without flux in a vacuum furnace.

  3. Temperature-controlled laser-soldering system and its clinical application for bonding skin incisions

    Science.gov (United States)

    Simhon, David; Gabay, Ilan; Shpolyansky, Gregory; Vasilyev, Tamar; Nur, Israel; Meidler, Roberto; Hatoum, Ossama Abu; Katzir, Abraham; Hashmonai, Moshe; Kopelman, Doron

    2015-12-01

    Laser tissue soldering is a method of repairing incisions. It involves the application of a biological solder to the approximated edges of the incision and heating it with a laser beam. A pilot clinical study was carried out on 10 patients who underwent laparoscopic cholecystectomy. Of the four abdominal incisions in each patient, two were sutured and two were laser soldered. Cicatrization, esthetical appearance, degree of pain, and pruritus in the incisions were examined on postoperative days 1, 7, and 30. The soldered wounds were watertight and healed well, with no discharge from these wounds or infection. The total closure time was equal in both methods, but the net soldering time was much shorter than suturing. There was no difference between the two types of wound closure with respect to the pain and pruritus on a follow-up of one month. Esthetically, the soldered incisions were estimated as good as the sutured ones. The present study confirmed that temperature-controlled laser soldering of human skin incisions is clinically feasible, and the results obtained were at least equivalent to those of standard suturing.

  4. Solid phase extraction of cadmium on 2-mercaptobenzothiazole loaded on sulfur powder in the medium of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and cold vapor generation-atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Pourreza, N.; Ghanemi, K.

    2010-01-01

    A novel solid phase extractor for preconcentration of cadmium at ng L -1 levels has been developed. Cadmium ions were retained on a column packed with sulfur powder modified with 2-mercaptobenzothiazole (2-MBT) in the medium of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] + PF 6 - ) ionic liquid. The presence of ionic liquid during modification of sulfur enhanced the retention of cadmium ions on the column. The retained cadmium ions were eluted with 2 mol L -1 solution of HCl and measured by cold vapor generation-atomic absorption spectrometry (CVG-AAS). By using reaction cell-gas liquid separator (RC-GLS), gaseous cadmium vapors were produced and reached the atomic absorption spectrometer, instantaneously. The influence of different variables on both processes of solid phase extraction and CVG-AAS determination of cadmium ions was investigated. The calibration curve was linear in the range of 10-200 ng L -1 of cadmium in the initial solution with r = 0.9992 (n = 8) under optimum conditions. The limit of detection based on three times the standard deviation of the blank (3S b , n = 10) was 4.6 ng L -1 . The relative standard deviation (R.S.D.) of 25 and 150 ng L -1 of cadmium was 4.1 and 2.2% (n = 8), respectively. The procedure was validated by the analysis of a certified reference material (DORM-3), water and fish samples.

  5. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects.

    Science.gov (United States)

    Sorg, B S; Welch, A J

    2001-01-01

    Previous research introduced the concept of using biodegradable polymer film reinforcement of a liquid albumin solder for improvement of the tensile strength of repaired incisions in vitro. In this study, the effect of creating small pores in the PLGA films on the weld breaking strength is studied. Additionally, the effect of hydration on the strength of the reinforced welds is investigated. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with an 806-nm CW diode laser. A poly(DL-lactic-co-glycolic acid) (PLGA) film was used to reinforce the solder (the controls had solder but no reinforcement). Breaking strengths were measured acutely and after hydration in saline for 1 and 2 days. The data were analyzed by ANOVA (P < 0.05) and multiple comparisons of means were performed using the Newman-Keuls test. The creation of pores in the PLGA films qualitatively improved the film flexibility without having an apparent adverse effect on the breaking strength, while the actual technique of applying the film and solder had more of an effect. The acute maximum average breaking strengths of some of the film reinforced specimens (114.7 g-134.4 g) were significantly higher (P < 0.05) than the acute maximum average breaking strength of the unreinforced control specimens (68.3 g). Film reinforced specimens were shown to have a statistically significantly higher breaking strength than unreinforced controls after 1- and 2-day hydration. Reinforcement of liquid albumin solders in laser-assisted incision repair appears to have advantages over conventional methods that do not reinforce the cohesive strength of the solder in terms of acute breaking strength and after immersion in moist environments for short periods of time. Using a film with the solder applied to one surface only may be advantageous over other techniques.

  6. Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions

    International Nuclear Information System (INIS)

    Park, M.S.; Stephenson, M.K.; Shannon, C.; Cáceres Díaz, L.A.; Hudspeth, K.A.; Gibbons, S.L.; Muñoz-Saldaña, J.; Arróyave, R.

    2012-01-01

    Cu/Sn soldering alloys have emerged as a viable alternative to Pb-based solders, and thus have been extensively explored in the past decade, although the fine-scale behavior of the resulting intermetallic compounds (IMCs), particularly during the early stages of interface formation, is still a source of debate. In this work, the microstructural evolution of Cu 6 Sn 5 , in a Cu/Sn soldering reaction at 523 K, was experimentally investigated by dipping a single Cu sample into molten Sn at a near-constant speed, yielding a continuous set of time evolution samples. The thickness, coarsening and morphology evolution of the Cu 6 Sn 5 layer is investigated through the use of scanning electron microscopy. The experimental results are also compared to phase-field simulations of the microstructural evolution of the Cu 6 Sn 5 layer. The influence of model parameters on the kinetics and morphological evolution of the IMC layer was examined. In general, good qualitative agreement is found between experiments and simulations and for a limited parameter set there appears to be good quantitative agreement between the growth kinetics of the Cu 6 Sn 5 layer, the grain boundary (GB) effect on grain coarsening, and the substrate/IMC interface roughness evolution. Furthermore, the parametric investigations of the model suggests that good agreement between experiments and simulations is achieved when the dominant transport mechanism for the reacting elements (Cu and Sn) is GB diffusion.

  7. Empirical model for calculating vapor-liquid equilibrium and associated phase enthalpy for the CO2--O2--Kr--Xe system for application to the KALC process

    International Nuclear Information System (INIS)

    Glass, R.W.; Gilliam, T.M.; Fowler, V.L.

    1976-01-01

    An empirical model is presented for vapor-liquid equilibria and enthalpy for the CO 2 -O 2 system. In the model, krypton and xenon in very low concentrations are combined with the CO 2 -O 2 system, thereby representing the total system of primary interest in the High-Temperature Gas-Cooled Reactor program for removing krypton from off-gas generated during the reprocessing of spent fuel. Selected properties of the individual and combined components being considered are presented in the form of tables and empirical equations

  8. Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography

    Directory of Open Access Journals (Sweden)

    Xiuyun Zhou

    2015-10-01

    Full Text Available In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT. Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  9. Contamination profile on typical printed circuit board assemblies vs soldering process

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Purpose – The purpose of this paper was to analyse typical printed circuit board assemblies (PCBAs) processed by reflow, wave or selective wave soldering for typical levels of process-related residues, resulting from a specific or combination of soldering processes. Typical solder flux residue...... structure was identified by Fourier transform infrared spectroscopy, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode set-up. Localized extraction of residue was carried...

  10. Contamination profile of Printed Circuit Board Assemblies in relation to soldering types and conformal coating

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Typical printed circuit board assemblies (PCBAs) processed by reflow, wave, or selective wave soldering were analysed for typical levels of process related residues, resulting from a specific or combination of soldering process. Typical solder flux residue distribution pattern, composition......, and concentration are profiled and reported. Presence of localized flux residues were visualized using a commercial Residue RAT gel test and chemical structure was identified by FT-IR, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined...

  11. Modeling of high temperature- and diffusion-controlled die soldering in aluminum high pressure die casting

    DEFF Research Database (Denmark)

    Domkin, Konstantin; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    of the die lifetime based on a quantitative analysis of die soldering in the framework of the numerical simulations of the die-casting process. Full 3D simulations of the process, including the filling. solidification, and the die cooling, are carried out using the casting simulation software MAGMAsoft....... The resulting transient temperature fields on the die surface and in the casting are then post-processed to estimate the die soldering. The present work deals only with the metallurgical/chemical kind of soldering which occurs at high temperatures and involves formation and growth of intermetallic layers...

  12. Eddy current quality control of soldered current-carrying busbar splices of superconducting magnets

    CERN Document Server

    Kogan, L; Savary, F; Principe, R; Datskov, V; Rozenfel'd, E; Khudjakov, B

    2015-01-01

    The eddy current technique associated with a U-shaped transducer is studied for the quality control of soldered joints between superconducting busbars ('splices'). Two other quality control techniques, based on X-rays and direct measurement of the electrical resistance, are also studied for comparison. A comparative analysis of the advantages and disadvantages of these three methods in relation to the quality control of soldered superconducting busbar cables enclosed in copper shells is used for benchmarking. The results of inspections with the U-shaped eddy current transducer carried out on several sample joints presenting different types of soldering defects show the potential of this type of nondestructive (ND) quality control technique.

  13. Processing and characterization of device solder interconnection and module attachment for power electronics modules

    Science.gov (United States)

    Haque, Shatil

    This research is focused on the processing of an innovative three-dimensional packaging architecture for power electronics building blocks with soldered device interconnections and subsequent characterization of the module's critical interfaces. A low-cost approach termed metal posts interconnected parallel plate structure (MPIPPS) was developed for packaging high-performance modules of power electronics building blocks (PEBB). The new concept implemented direct bonding of copper posts, not wire bonding of fine aluminum wires, to interconnect power devices as well as joining the different circuit planes together. We have demonstrated the feasibility of this packaging approach by constructing PEBB modules (consisting of Insulated Gate Bipolar Transistors (IGBTs), diodes, and a few gate driver elements and passive components). In the 1st phase of module fabrication with IGBTs with Si3N 4 passivation, we had successfully fabricated packaged devices and modules using the MPIPPS technique. These modules were tested electrically and thermally, and they operated at pulse-switch and high power stages up to 6kW. However, in the 2nd phase of module fabrication with polyimide passivated devices, we experienced significant yield problems due to metallization difficulties of these devices. The under-bump metallurgy scheme for the development of a solderable interface involved sputtering of Ti-Ni-Cu and Cr-Cu, and an electroless deposition of Zn-Ni-Au metallization. The metallization process produced excellent yield in the case of Si3N4 passivated devices. However, under the same metallization schemes, devices with a polyimide passivation exhibited inconsistent electrical contact resistance. We found that organic contaminants such as hydrocarbons remain in the form of thin monolayers on the surface, even in the case of as-received devices from the manufacturer. Moreover, in the case of polyimide passivated devices, plasma cleaning introduced a few carbon constituents on the

  14. Calculation of vapor pressure of fission product fluorides and oxyfluorides

    International Nuclear Information System (INIS)

    Roux, J.P.

    1976-03-01

    The equilibrium diagrams of the condensed phases - solid and liquid - and vapor phase are collected for the principal fluorides and oxyfluorides of fission product elements (atomic number from 30 to 66). These diagrams are used more particularly in fuel reprocessing by fluoride volatility process. Calculations and curves (vapor pressure in function of temperature) are processed using a computer program given in this report [fr

  15. A review on solder reflow and flux application for flip chip

    Science.gov (United States)

    Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Visvanathan, Susthitha Menon; Retnasamy, Vithyacharan

    2017-09-01

    This paper encompassed of the evolution and key findings, critical technical challenges, solutions and bonding equipment of solder reflow in flip chip bonding. Upon scrutinizing researches done by others, it can be deduced that peak temperature, time above liquidus, soak temperature, soak time, cooling rate and reflow environment played a vital role in achieving the desired bonding profile. In addition, flux is also needed with the purpose of removing oxides/contaminations on bump surface as well as to promote wetting of solder balls. Electromigration and warpage are the two main challenges faced by solder reflow process which can be overcome by the advancement in under bump metallization (UBM) and substrate technology. The review is ended with a brief description of the current equipment used in solder reflow process.

  16. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.

    2008-01-01

    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  17. Laser welding of vas deferens in rodents: initial experience with fluid solders.

    Science.gov (United States)

    Trickett, R I; Wang, D; Maitz, P; Lanzetta, M; Owen, E R

    1998-01-01

    This study evaluates the use of sutureless laser welding for vasovasostomy. In 14 rodents, the left vas deferens underwent vasovasostomy using an albumin-based solder applied to the adventitia of the vas deferens. The solder contained the dye, indocyanine green, to allow selective absorption and denaturation by a fiber-coupled 800-nm diode laser. The right vas deferens served as a control, receiving conventional layered microsurgical repair. We used a removable 4/0 nylon stent and microclamps to appose the vas deferens during repair, with no need for stay sutures. The mean time to perform laser solder repair (23.5 min) and conventional repair (23.3 min) were not significantly different (P=0.91). However, examination after 8 weeks showed that granuloma formation (G) and patency (P) rates for the conventional suture technique (G, 14%; P, 93%) were significantly better than observed for the laser solder technique (G, 57%; P, 50%).

  18. Effects of rework on adhesion of Pb-In soldered gold thick films

    International Nuclear Information System (INIS)

    Gehman, R.W.; Becka, G.A.; Losure, J.A.

    1982-02-01

    The feasibility of repeatedly reworking Pb-In soldered joints on gold thick films was evaluated. Nailhead adhesion tests on soldered thick films typically resulted in failure within the bulk solder (50 In-50 Pb). Average strengths increased with each rework, and the failure mode changed. An increase in metalization lift-off occurred with successive reworks. An investigation was initiated to determine why these changes occurred. Based on this work, the thick film adhesion to the substrate appeared to be lowered by indium reduction of cadmium oxide and by formation of a weak, brittle intermetallic compound, Au 9 In 4 . It was concluded that two solder reworks could be conducted without significant amounts of metallization lift-off during nailhead testing

  19. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  20. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.