WorldWideScience

Sample records for vapor flow rate

  1. Vapor generation rate model for dispersed drop flow

    International Nuclear Information System (INIS)

    Unal, C.; Tuzla, K.; Cokmez-Tuzla, A.F.; Chen, J.C.

    1991-01-01

    A comparison of predictions of existing nonequilibrium post-CHF heat transfer models with the recently obtained rod bundle data has been performed. The models used the experimental conditions and wall temperatures to predict the heat flux and vapor temperatures at the location of interest. No existing model was able to reasonably predict the vapor superheat and the wall heat flux simultaneously. Most of the models, except Chen-Sundaram-Ozkaynak, failed to predict the wall heat flux, while all of the models could not predict the vapor superheat data or trends. A recently developed two-region heat transfer model, the Webb-Chen two-region model, did not give a reasonable prediction of the vapor generation rate in the far field of the CHF point. A new correlation was formulated to predict the vapor generation rate in convective dispersed droplet flow in terms of thermal-hydraulic parameters and thermodynamic properties. A comparison of predictions of the two-region heat transfer model, with the use of a presently developed correlation, with all the existing post-CHF data, including single-tube and rod bundle, showed significant improvements in predicting the vapor superheat and tube wall heat flux trends. (orig.)

  2. An experimental study on critical flow rates in a water-vapor mixture, with low quality

    International Nuclear Information System (INIS)

    Seynhaeve, J.-M.

    1976-01-01

    The numerous existing studies about critical two-phase flows have shown the difficulty of getting a precise value of the critical flow rate, especially for low qualities. The comparison of results obtained on two different tests sections emphasizes the influence on the critical flow rate of such factors as geometry, channel types and laws governing the phenomena associated with vaporization. One suggests to evaluate the outlet conditions of the test channel from the inlet conditions. The first step is related to the single phase flow up to the section where the water is saturated. The second part takes the boiling delay into account; it is a function of the expansion's velocity. Finally, the last step leads to the determination of the outlet quality from the measured pressure losses [fr

  3. Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Sung-Ryong; Choudhury, Moinul Haque; Kim, Won-Ho; Kim, Gon-Ho

    2010-01-01

    Plasma polymer coatings were deposited from hexamethyldisiloxane on polyethylene terephthalate (PET) substrates while varying the operating conditions, such as the Ar and O 2 flow rates, at a fixed radio frequency power of 300 W. The water vapor transmission rate (WVTR) of the untreated PET was 54.56 g/m 2 /day and was decreased after depositing the silicon oxide (SiO x ) coatings. The minimum WVTR, 0.47 g/m 2 /day, was observed at Ar and O 2 flow rates of 4 and 20 sccm, respectively, with a coating thickness of 415.44 nm. The intensity of the peaks for the Si-O-Si bending at 800-820 cm -1 and Si-O-Si stretching at 1000-1150 cm -1 varied depending on the Ar and O 2 flow rates. The contact angle of the SiO x coated PET increased as the Ar flow rate was increased from 2 to 8 sccm at a fixed O 2 flow rate of 20 sccm. It decreased gradually as the oxygen flow rate increased from 12 to 28 sccm at a fixed Ar carrier gas flow rate. The examination by atomic force microscopy revealed a correlation of the SiO x morphology and the water vapor barrier performance with the Ar and O 2 flow rates. The roughness of the deposited coatings increased when either the O 2 or Ar flow rate was increased.

  4. The influence of carrier gas flow rate in inverse gas chromatography on the estimation of water vapor adsorption on Nylon-6 micro fiber

    OpenAIRE

    丸井, 正樹; 山本, 直子; 牛腸, ヒロミ; マルイ, マサキ; ヤマモト, ナオコ; ゴチョウ, ヒロミ; MASAKI, MARUI; NAOKO, YAMAMOTO; HIROMI, GOCHO

    2002-01-01

    The adsorption behaviors of water vapor on Nylon-6 micro fiber are measured at 90℃ with inverse gas chromatography, of which the carrier gas flow rates are 10~40ml/min. The values of retention volume decrease when the peak area is on the increase. lt indicates that Nylon-6 micro fiber has strong adsorption of water vapor at low vapor pressure. The adsorption isotherm as a whole is found to be of BET II type with certain number of adsorption sites. The gas flow rate has no effect on the estima...

  5. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  6. Analysis of the transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  7. Analysis of the transient compressible vapor flow in heat pipe

    International Nuclear Information System (INIS)

    Jang, J.H.; Faghri, A.; Chang, W.S.

    1989-07-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

  8. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-01-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

  9. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-04-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

  10. Analysis of the transient compressible vapor flow in heat pipe

    Science.gov (United States)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  11. Ga N nano wires and nano tubes growth by chemical vapor deposition method at different NH{sub 3} flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Li, P.; Liu, Y.; Meng, X. [Wuhan University, School of Physics and Technology, Key Laboratory of Artificial Micro and Nanostructures of Ministry of Education, Wuhan 430072 (China)

    2016-11-01

    Ga N nano wires and nano tubes have been successfully synthesized via the simple chemical vapor deposition method. NH{sub 3} flow rate was found to be a crucial factor in the synthesis of different type of Ga N which affects the shape and the diameter of generated Ga N nano structures. X-ray diffraction confirms that Ga N nano wires grown on Si(111) substrate under 900 degrees Celsius and with NH{sub 3} flow rate of 50 sc cm presents the preferred orientation growth in the (002) direction. It is beneficial to the growth of nano structure through catalyst annealing. Transmission electron microscopy and scanning electron microscopy were used to measure the size and structures of the samples. (Author)

  12. Depicting mass flow rate of R134a /LPG refrigerant through straight and helical coiled adiabatic capillary tubes of vapor compression refrigeration system using artificial neural network approach

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2018-07-01

    In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.

  13. Effect of the hydrogen flow rate on the structural and optical properties of hydrogenated amorphous silicon thin films prepared by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Sana; Dimassi, Wissem; Ali Tebai, Mohamed; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-10-15

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by plasma enhanced chemical vapor deposition (PECVD) method at low temperature (400 C) using high rf power (60 W). The structural and optical properties of these films are systematically investigated as a function of the flow rate of hydrogen (F{sub H2}).The surface morphology is analyzed by atomic force microscopy (AFM). The characterization of these films with low angle X-ray diffraction revealed that the crystallite size in the films tends to decrease with increase in (F{sub H2}). The Fourier transform infrared (FTIR) spectroscopic analysis showed that at low values of (F{sub H2}),the hydrogen bonding in Si:H films shifts from di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2})n complexes to the mono-hydrogen (Si-H) bonding configuration. Finally, for these optimized conditions, the deposition rate decreases with increasing (F{sub H2}). (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  15. Factors Affecting the Improvement of the Initial Peak Urinary Flow Rate after Transurethral Resection of the Prostate or Photoselective Vaporization of the Prostate for Treating Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Hwa Sub Choi

    2011-03-01

    Full Text Available Purpose We evaluated the factors that affect the improvement of the initial peak flow rate after transurethral resection of the prostate (TURP or photoselective vaporization of the prostate (PVP for benign prostatic hyperplasia (BPH patients by using noninvasive tools. Methods One hundred and twenty seven BPH patients who had undergone TURP or PVP between January 2005 and May 2009 were evaluated. They were divided into 2 groups: the postoperative initial peak urinary flow rate (Qmax was less than 10 mL/sec (Group 1; n=37, TURP=11, PVP=26 and more than 10 mL/sec (Group 2; n=90, TURP=41, PVP=49. We confirmed the patients' preoperative check lists. The check list were the international prostate symptom score (IPSS, the quality of life score, a past history of acute urinary retention (AUR, body mass index and/or pyuria, the serum prostate-specific antigen (PSA level and the prostate volume, the prostate transitional zone volume and prostatic calcification. The initial Qmax was measured at the outpatient clinic one week after discharge. Results The improvement rate was not significant difference between the TURP group (78.8% and the PVP group (65.3%. The efficacy parameters were the IPSS-storage symptom score, the prostate volume, the PSA level and a past history of AUR. The IPSS-storage symptom scores of Group 1 (12.3±3.3 was higher than those of Group 2 (10.5±1.7. The prostate volume of Group 2 (42.3±16.6 g was bigger than that of Group 1 (36.6±7.8 g. The PSA level of Group 2 (3.8±2.6 ng/mL was higher than that of Group 1 (2.6±2.6 ng/mL. A past history of AUR in Group 1 (35.1% was more prevalent than that of Group 2 (15.6%. Conclusions The non-invasive factors affecting the initial Qmax after TURP or PVP were the IPSS-storage symptom score, the prostate volume and a past history of AUR. Accordingly, in patients who have a higher IPSS-storage symptom score, a smaller prostate volume and a history of AUR, there might be a detrimental effect on

  16. Analysis of the one-dimensional transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, Jong H.; Faghri, Amir; Chang, Won S.

    1991-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.

  17. The Influences of Water Vapor/Hydrogen Ratio, Gas-Flow Rate and Antimony on the Surface Oxidation of Trip Steels

    International Nuclear Information System (INIS)

    Kwon, You Jong; Zhu, Jing Xi; Sridhar, Seetharaman; Sohn, Il Ryong

    2011-01-01

    In the current paper, we are reporting the results from an investigation of the surface and sub-surface oxidation of a TRIP steel containing 2 wt.% Mn and 0.5 wt.% Al with and without 0.03 wt.% Sb. The oxidizing conditions in the gas were successively varied in terms of the linear gas flow-rate and dew-point, from conditions were gas-phase mass transport limited conditions prevailed, to those were solid state processes became the rate determining conditions. It was found, that at sufficient low oxidizing conditions (defined as flow-rate/dew-point), the metal surfaces were clear of any external oxides, and as the oxidizing conditions were increased, Mn- and Si- oxide nodules formed along with magnetite. As the oxidizing conditions were increased further, a dense magnetite layer was present. The limits of the various regions were experimentally quantified and a proposed hypothesis for their occurrences is presented. No obvious effect of Sb was noted in this micro-structural research of the oxides that results from the various conditions investigated in this study

  18. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  19. Epitaxial growth of GaN by radical-enhanced metalorganic chemical vapor deposition (REMOCVD) in the downflow of a very high frequency (VHF) N2/H2 excited plasma - effect of TMG flow rate and VHF power

    Science.gov (United States)

    Lu, Yi; Kondo, Hiroki; Ishikawa, Kenji; Oda, Osamu; Takeda, Keigo; Sekine, Makoto; Amano, Hiroshi; Hori, Masaru

    2014-04-01

    Gallium nitride (GaN) films have been grown by using our newly developed Radical-Enhanced Metalorganic Chemical Vapor Deposition (REMOCVD) system. This system has three features: (1) application of very high frequency (60 MHz) power in order to increase the plasma density, (2) introduction of H2 gas together with N2 gas in the plasma discharge region to generate not only nitrogen radicals but also active NHx molecules, and (3) radical supply under remote plasma arrangement with suppression of charged ions and photons by employing a Faraday cage. Using this new system, we have studied the effect of the trimethylgallium (TMG) source flow rate and of the plasma generation power on the GaN crystal quality by using scanning electron microscopy (SEM) and double crystal X-ray diffraction (XRD). We found that this REMOCVD allowed the growth of epitaxial GaN films of the wurtzite structure of (0001) orientation on sapphire substrates with a high growth rate of 0.42 μm/h at a low temperature of 800 °C. The present REMOCVD is a promising method for GaN growth at relatively low temperature and without using costly ammonia gas.

  20. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    Science.gov (United States)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  1. Reaction rate constant for uranium in water and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    TRIMBLE, D.J.

    1998-11-09

    The literature on uranium oxidation in water and oxygen free water vapor was reviewed. Arrhenius rate equations were developed from the review data. These data and equations will be used as a baseline from which to compare reaction rates measured for K Basin fuel.

  2. Wall relaxation rates for an optically pumped NA vapor

    International Nuclear Information System (INIS)

    Swenson, D.R.; Anderson, L.W.

    1986-01-01

    The wall relaxation rates for an optically pumped Na vapor have been measured for a variety of wall surfaces. We find that fluorocarbon rubber (Fluorel, Viton) and organosilicones (silicone rubber, dry film) at a temperature of 250 C have respectively relaxation rates that correspond on the average to 10 to 15 and 200 to 500 bounces before depolarization occurs. 7 refs., 3 figs

  3. Vaporizing Flow in Hot Fractures: Observations from Laboratory Experiments

    International Nuclear Information System (INIS)

    Kneafsey, T.; Pruess, K.

    1998-01-01

    Understanding water seepage in hot fractured rock is important in a number of fields including geothermal energy recovery and nuclear waste disposal. Heat-generating high-level nuclear waste packages which will be emplaced in the partially saturated fractured tuffs at the potential high-level nuclear waste repository at Yucca Mountain, Nevada, if it becomes a high-level nuclear waste repository, will cause significant impacts on moisture distribution and migration. Liquid water, which occupies anywhere from 30 to 100% of the porespace, will be vaporized as the temperature reaches the boiling temperature. Flowing primarily in fractures, the vapor will condense where it encounters cooler rock, generating mobile water. This water will flow under gravitational and capillary forces and may flow back to the vicinity of the emplaced waste where it may partially escape vaporization. Water flowing down (sub-) vertical fractures may migrate considerable distances through fractured rock that is at above-boiling temperatures; thus, flowing condensate may contact waste packages, and provide a pathway for the transport of water-soluble radionuclides downward to the saturated zone. Thermally-driven flow processes induced by repository heat may be as important or even more important for repository performance than natural infiltration. For a nominal thermal loading of 57 kW/acre, vaporization may generate an average equivalent percolation flux from condensate of 23.1 mm/yr over 1,000 years, and 5.2 mm/yr over 10,000 years. These numbers are comparable to or larger than current estimates of net infiltration at Yucca Mountain. This condensate, which is generated in the immediate vicinity (meters) of the waste packages, will likely have a larger impact on waste package and repository performance than a similar amount of water introduced at the land surface

  4. Framework for simulating droplet vaporization in turbulent flows

    Science.gov (United States)

    Palmore, John; Desjardins, Olivier

    2017-11-01

    A framework for performing direct numerical simulations of droplet vaporization is presented. The work is motivated by spray combustion in engines wherein fuel droplets vaporize in a turbulent gas flow. The framework is built into a conservative finite volume code for simulating low Mach number turbulent multiphase flows. Phase tracking is performed using a discretely conservative geometric volume of fluid method, while the transport of mass fraction and temperature is performed using the BQUICK scheme. Special attention is given to the implementation of transport equations near the interface to ensure the consistency between fluxes of mass, momentum, and scalars. The effect of evaporation on the flow appears as a system of coupled source terms which depend on the local thermodynamic equilibrium between the phases. The sources are implemented implicitly using an unconditionally stable, monotone scheme. Two methodologies for resolving the system's thermodynamic equilibrium are compared for their accuracy, robustness, and computational expense. Verification is performed by comparing results to known solutions in one and three dimensions. Finally, simulations of droplets vaporizing in turbulence are demonstrated, and trends for mass fraction and temperature fields are discussed.

  5. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    OpenAIRE

    M.A. Chowdhury; D.M. Nuruzzaman

    2012-01-01

    Solid thin films have been deposited on stainless steel 202 (SS 202) substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD) reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in g...

  6. The self-similar turbulent flow of low-pressure water vapor

    Science.gov (United States)

    Konyukhov, V. K.; Stepanov, E. V.; Borisov, S. K.

    2018-05-01

    We studied turbulent flows of water vapor in a pipe connecting two closed vessels of equal volume. The vessel that served as a source of water vapor was filled with adsorbent in the form of corundum ceramic balls. These ceramic balls were used to obtain specific conditions to lower the vapor pressure in the source vessel that had been observed earlier. A second vessel, which served as a receiver, was empty of either air or vapor before each vapor sampling. The rate of the pressure increase in the receiver vessel was measured in a series of six samplings performed with high precision. The pressure reduction rate in the source vessel was found to be three times lower than the pressure growth rate in the receiver vessel. We found that the pressure growth rates in all of the adjacent pairs of samples could be arranged in a combination that appeared to be identical for all pairs, and this revealed the existence of a rather interesting and peculiar self-similarity law for the sampling processes under consideration.

  7. Flow Characterization of Vapor Phase of Geothermal Fluid in Pipe Using Isotope 85Kr and Residence Time Distribution Modeling

    Directory of Open Access Journals (Sweden)

    S. Sugiharto

    2014-08-01

    Full Text Available Measurement of vapor flow in geothermal pipe faces great challenges due to fast fluids flow in high-temperature and high-pressure environment. In present study the flow rate measurement has been performed to characterization the geothermal vapor flow in a pipe. The experiment was carried out in a pipe which is connected to a geothermal production well, KMJ-14. The pipe has a 10” outside diameter and contains dry vapor at a pressure of 8 kg/cm2 and a temperature of 170 oC. Krypton-85 gas isotope (85Kr has been injected into the pipe. Three collimated radiation detectors positioned respectively at 127, 177 and 227m from injection point were used to obtain experimental data which represent radiotracer residence time distribution (RTD in the pipe. The last detector at the position of 227 m did not respond, which might be due to problems in cable connections. Flow properties calculated using mean residence time (MRT shows that the flow rate of the vapor in pipe is 10.98 m/s, much faster than fluid flow commonly found in various industrial process plants. Best fitting evaluated using dedicated software developed by IAEA expert obtained the Péclet number Pe as 223. This means that the flow of vapor of geothermal fluids in pipe is plug flow in character. The molecular diffusion coefficient is 0.45 m2/s, calculated from the axial dispersion model.

  8. Preliminary characterization of an expanding flow of siloxane vapor MDM

    Science.gov (United States)

    Spinelli, A.; Cozzi, F.; Cammi, G.; Zocca, M.; Gaetani, P.; Dossena, V.; Guardone, A.

    2017-03-01

    The early experimental results on the characterization of expanding flows of siloxane vapor MDM (C8H24O2Si3, octamethyltrisiloxane) are presented. The measurements were performed on the Test Rig for Organic VApors (TROVA) at the CREA Laboratory of Politecnico di Milano. The TROVA test-rig was built in order to investigate the non-ideal compressible-fluid behavior of typical expanding flows occurring within organic Rankine cycles (ORC) turbine passages. The test rig implements a batch Rankine cycle where a planar converging-diverging nozzle replaces the turbine and represents a test section. Investigations related to both fields of non-ideal compressible-fluid dynamics fundamentals and turbomachinery are allowed. The nozzle can be operated with different working fluids and operating conditions aiming at measuring independently the pressure, the temperature and the velocity field and thus providing data to verify the thermo-fluid dynamic models adopted to predict the behavior of these flows. The limiting values of pressure and temperature are 50 bar and 400 °C respectively. The early measurements are performed along the nozzle axis, where an isentropic process is expected to occur. In particular, the results reported here refer to the nozzle operated in adapted conditions using the siloxane vapor MDM as working fluid in thermodynamic regions where mild to medium non-ideal compressible-fluid effects are present. Both total temperature and total pressure of the nozzle are measured upstream of the test section, while static pressure are measured along the nozzle axis. Schlieren visualizations are also carried out in order to complement the pressure measurement with information about the 2D density gradient field. The Laser Doppler Velocimetry technique is planned to be used in the future for velocity measurements. The measured flow field has also been interpreted by resorting to the quasi-one-dimensional theory and two dimensional CFD viscous calculation. In both cases

  9. Measurement of droplet vaporization rate enhancement caused by acoustic disturbances

    Science.gov (United States)

    Anderson, T. J.; Winter, M.

    1992-10-01

    Advanced laser diagnostics are being applied to quantify droplet vaporization enhancement in the presence of acoustic fields which can lead to instability in liquid-fueled rockets. While models have been developed to describe the interactions between subcritical droplet vaporization and acoustic fields in the surrounding gases, they have not been verified experimentally. In the super critical environment of a rocket engine combustor, little is understood about how the injected fluid is distributed. Experiments in these areas have been limited because of the lack of diagnostic techniques capable of providing quantitative results. Recently, however, extremely accurate vaporization rate measurements have been performed on droplets in a subcritical environment using morphology-dependent resonances (MDR's) in which fluorescence from an individual droplet provides information about its diameter. Initial measurements on methanol droplets behind a pressure pulse with a pressure ratio of 1.2 indicated that the evaporation rate in the first few microsec after wave passage was extremely high. Subsequent measurements have been made to validate these results using MDR's acquired from similarly-sized droplets using a pulse with a 1.1 pressure ratio. A baseline measurement was also made using a non evaporative fluid under similar Weber and Reynolds number conditions. The MDR technique employed for these measurements is explained and the facilities are described. The evaporation measurement results are shown and the rates observed from different droplet materials and different wave strengths are compared.

  10. Maximum discharge rate of liquid-vapor mixtures from vessels

    International Nuclear Information System (INIS)

    Moody, F.J.

    1975-09-01

    A discrepancy exists in theoretical predictions of the two-phase equilibrium discharge rate from pipes attached to vessels. Theory which predicts critical flow data in terms of pipe exit pressure and quality severely overpredicts flow rates in terms of vessel fluid properties. This study shows that the discrepancy is explained by the flow pattern. Due to decompression and flashing as fluid accelerates into the pipe entrance, the maximum discharge rate from a vessel is limited by choking of a homogeneous bubbly mixture. The mixture tends toward a slip flow pattern as it travels through the pipe, finally reaching a different choked condition at the pipe exit

  11. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    International Nuclear Information System (INIS)

    Mohr, D.H.; Merz, P.H.

    1995-01-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature

  12. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    Science.gov (United States)

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  13. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  14. Engine flow visualization using a copper vapor laser

    Science.gov (United States)

    Regan, Carolyn A.; Chun, Kue S.; Schock, Harold J., Jr.

    1987-01-01

    A flow visualization system has been developed to determine the air flow within the combustion chamber of a motored, axisymmetric engine. The engine has been equipped with a transparent quartz cylinder, allowing complete optical access to the chamber. A 40-Watt copper vapor laser is used as the light source. Its beam is focused down to a sheet approximately 1 mm thick. The light plane is passed through the combustion chamber, and illuminates oil particles which were entrained in the intake air. The light scattered off of the particles is recorded by a high speed rotating prism movie camera. A movie is then made showing the air flow within the combustion chamber for an entire four-stroke engine cycle. The system is synchronized so that a pulse generated by the camera triggers the laser's thyratron. The camera is run at 5,000 frames per second; the trigger drives one laser pulse per frame. This paper describes the optics used in the flow visualization system, the synchronization circuit, and presents results obtained from the movie. This is believed to be the first published study showing a planar observation of airflow in a four-stroke piston-cylinder assembly. These flow visualization results have been used to interpret flow velocity measurements previously obtained with a laser Doppler velocimetry system.

  15. Effect of melt surface depression on the vaporization rate of a metal heated by an electron beam

    International Nuclear Information System (INIS)

    Guilbaud, D.

    1995-01-01

    In order to produce high density vapor, a metal confined in a water cooled crucible is heated by an electron beam (eb). The energy transfer to the metal causes partial melting, forming a pool where the flow is driven by temperature induced buoyancy and capillary forces. Furthermore, when the vaporization rate is high, the free surface is depressed by the thrust of the vapor. The main objective of this paper is to analyse the combined effects of liquid flow and vapor condensation back on the liquid surface. This is done with TRIO-EF, a general purpose fluid mechanics finite element code. A suitable iterative scheme is used to calculate the free surface flow and the temperature field. The numerical simulation gives an insight about the influence of the free surface in heat transfer. The depression of the free surface induces strong effects on both liquid and vapor. As liquid is concerned, buoyancy convection in the pool is enhanced, the energy flux from electron beam is spread and constriction of heat flux under the eb spot is weakened. It results that heat transfer towards the crucible is reinforced. As vapor is concerned, its fraction that condenses back on the liquid surface is increased. These phenomena lead to a saturation of the net vaporization rate as the eb spot radius is reduced, at constant eb power. (author). 8 refs., 13 figs., 2 tabs

  16. Method and apparatus for controlling the flow rate of mercury in a flow system

    Science.gov (United States)

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  17. Bypass flow rate control method

    International Nuclear Information System (INIS)

    Kiyama, Yoichi.

    1997-01-01

    In a PWR type reactor, bypass flow rate is controlled by exchanging existent jetting hole plugs of a plurality of nozzles disposed to the upper end of incore structures in order to flow a portion of primary coolants as a bypass flow to the upper portion of the pressure vessel. Two kinds of exchange plugs, namely, a first plug and a second plug each having a jetting out hole of different diameter are used as exchange plugs. The first plug has the diameter as that of an existent plug and the second plug has a jetting out hole having larger diameter than that of the existent plug. Remained extent plugs are exchanged to a combination of the first and the second plugs without exchanging existent plugs having seizing with the nozzles, in which the number and the diameter of the jetting out holes of the second plugs are previously determined based on predetermined total bypass flow rate to be jetted from the entire plugs after exchange of plugs. (N.H.)

  18. Flow Vaporization of CO{sub 2} in Microchannel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Jostein

    2002-07-01

    Carbon dioxide is receiving renewed interest as an efficient and environmentally safe refrigerant in a number of applications, including mobile air conditioning and heat pump systems, and hot water heat pumps. Compact heat exchangers for CO{sub 2} systems are designed with small-diameter tubing. The purpose of this study is therefore to provide a better basis for understanding and predicting heat transfer and pressure drop during flow vaporization of CO{sub 2} in microchannels. The ''unusual'' properties of carbon dioxide give heat transfer and two-phase flow characteristics that are very different from those of conventional refrigerants. Examples of these differences are the much higher pressure, the resulting high vapour density, a very low surface tension, and a low liquid viscosity. High pressure and low surface tension has a major effect on nucleate boiling characteristics, and earlier test data have shown a clear dominance of nucleate boiling even at very high mass flux. Heat transfer tests were conducted in a rig using a flat, extruded aluminium microchannel tube of 540 mm length with 25 channels of 0.81 mm diameter. The horizontal test tube was heated by a water jacket in order to get representative boundary conditions for air-to-refrigerant heat transfer (''fluid heating''). Constant heat flux conditions do not simulate these boundary conditions well, and may give unrealistic behaviour especially in relation to dryout and post-dryout heat transfer. Systematic tests at constant heat flux with single-phase CO{sub 2} flow on the inside generated data that were used in the derivation of a model for water-side beat transfer coefficient. A regression based on these data gave a calibrated equation for water-side heat transfer on the form NuNu(Re,Pr). This equation was then used in later experiments to subtract water-side thermal resistance from the measured overall resistance (1/UA), thereby finding the internal heat

  19. Correlation of chemical evaporation rate with vapor pressure.

    Science.gov (United States)

    Mackay, Donald; van Wesenbeeck, Ian

    2014-09-02

    A new one-parameter correlation is developed for the evaporation rate (ER) of chemicals as a function of molar mass (M) and vapor pressure (P) that is simpler than existing correlations. It applies only to liquid surfaces that are unaffected by the underlying solid substrate as occurs in the standard ASTM evaporation rate test and to quiescent liquid pools. The relationship has a sounder theoretical basis than previous correlations because ER is correctly correlated with PM rather than P alone. The inclusion of M increases the slope of previous log ER versus log P regressions to a value close to 1.0 and yields a simpler one-parameter correlation, namely, ER (μg m(-1) h(-1)) = 1464P (Pa) × M (g mol(-1)). Applications are discussed for the screening level assessment and ranking of chemicals for evaporation rate, such as pesticides, fumigants, and hydrocarbon carrier fluids used in pesticide formulations, liquid consumer products used indoors, and accidental spills of liquids. The mechanistic significance of the single parameter as a mass-transfer coefficient or velocity is discussed.

  20. Prediction model for initial point of net vapor generation for low-flow boiling

    International Nuclear Information System (INIS)

    Sun Qi; Zhao Hua; Yang Ruichang

    2003-01-01

    The prediction of the initial point of net vapor generation is significant for the calculation of phase distribution in sub-cooled boiling. However, most of the investigations were developed in high-flow boiling, and there is no common model that could be successfully applied for the low-flow boiling. A predictive model for the initial point of net vapor generation for low-flow forced convection and natural circulation is established here, by the analysis of evaporation and condensation heat transfer. The comparison between experimental data and calculated results shows that this model can predict the net vapor generation point successfully in low-flow sub-cooled boiling

  1. Thermosyphon analysis of a repository: A simplified model for vapor flow and heat transfer

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Powell, M.W.

    1994-01-01

    A simplified model is developed for thermally-driven buoyant gas flow in an unsaturated repository such as that anticipated at Yucca Mountain. Based on a simplified thermosyphon model, the strength of buoyant gas flow is related to key thermal-hydraulic parameters (e.g., bulk permeability and maximum repository temperature). The effects of buoyant gas flow on vapor flow and heat transport near the repository horizon are assessed, namely: (i) the strength of buoyant flow through the repository, (ii) the effect of buoyant flow on vapor transfer, and (iii) the effect of buoyant flow on heat transfer

  2. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2012-12-01

    Full Text Available Solid thin films have been deposited on stainless steel 202 (SS 202 substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in gas flow rate within the observed range. It is also found that deposition rate increases with the decrease in gap between activation heater and substrate. In addition, friction coefficient and wear rate of SS 202 sliding against SS 304 under different sliding velocities are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate is obtained after deposition than that of before deposition.

  3. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  4. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  5. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeongkeun; Park, Young Chul; Chun, Kyoung-Yong; Kim, Young-Jin; Choi, Jae-Boong [School of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Kim, Keun Soo; Kang, Junmo; Hong, Byung Hee [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Boo, Jin-Hyo, E-mail: byunghee@skku.edu, E-mail: boong33@skku.edu [Department of Chemistry, RIAN and Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2011-03-04

    We demonstrated that the structural formation of vertically aligned carbon nanotube (CNT) forests is primarily affected by the geometry-related gas flow, leading to the change of growth directions during the chemical vapor deposition (CVD) process. By varying the growing time, flow rate, and direction of the carrier gas, the structures and the formation mechanisms of the vertically aligned CNT forests were carefully investigated. The growth directions of CNTs are found to be highly dependent on the nonlinear local gas flows induced by microchannels. The angle of growth significantly changes with increasing gas flows perpendicular to the microchannel, while the parallel gas flow shows almost no effect. A computational fluid dynamics (CFD) model was employed to explain the flow-dependent growth of CNT forests, revealing that the variation of the local pressure induced by microchannels is an important parameter determining the directionality of the CNT growth. We expect that the present method and analyses would provide useful information to control the micro- and macrostructures of vertically aligned CNTs for various structural/electrical applications.

  6. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Hyeongkeun; Park, Young Chul; Chun, Kyoung-Yong; Kim, Young-Jin; Choi, Jae-Boong; Kim, Keun Soo; Kang, Junmo; Hong, Byung Hee; Boo, Jin-Hyo

    2011-01-01

    We demonstrated that the structural formation of vertically aligned carbon nanotube (CNT) forests is primarily affected by the geometry-related gas flow, leading to the change of growth directions during the chemical vapor deposition (CVD) process. By varying the growing time, flow rate, and direction of the carrier gas, the structures and the formation mechanisms of the vertically aligned CNT forests were carefully investigated. The growth directions of CNTs are found to be highly dependent on the nonlinear local gas flows induced by microchannels. The angle of growth significantly changes with increasing gas flows perpendicular to the microchannel, while the parallel gas flow shows almost no effect. A computational fluid dynamics (CFD) model was employed to explain the flow-dependent growth of CNT forests, revealing that the variation of the local pressure induced by microchannels is an important parameter determining the directionality of the CNT growth. We expect that the present method and analyses would provide useful information to control the micro- and macrostructures of vertically aligned CNTs for various structural/electrical applications.

  7. Multiphase flow modeling of molten material-vapor-liquid mixtures in thermal nonequilibrium

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Park, Goon Cherl; Bang, Kwang Hyun

    2000-01-01

    This paper presents a numerical model of multiphase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multiphase flow conditions

  8. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  9. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  10. Optimum solar collector fluid flow rates

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1996-01-01

    Experiments showed that by means of a standard electronically controlled pump, type UPE 2000 from Grundfos it is possible to control the flow rate in a solar collector loop in such a way that the flow rate is strongly influenced by the temperature of the solar collector fluid passing the pump....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...... the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...

  11. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  12. Flow Rate Measurement in Multiphase Flow Rig: Radiotracer and Conventional

    International Nuclear Information System (INIS)

    Nazrul Hizam Yusoff; Noraishah Othman; Nurliyana Abdullah; Amirul Syafiq Mohd Yunos; Rasif Mohd Zain; Roslan Yahya

    2015-01-01

    Applications of radiotracer technology are prevalent throughout oil refineries worldwide, and this industry is one of the main users and beneficiaries of the technology. Radioactive tracers have been used to a great extent in many applications i.e. flow rate measurement, RTD, plant integrity evaluation and enhancing oil production in oil fields. Chemical and petrochemical plants are generally continuously operating and technically complex where the radiotracer techniques are very competitive and largely applied for troubleshooting inspection and process analysis. Flow rate measurement is a typical application of radiotracers. For flow measurements, tracer data are important, rather than the RTD models. Research is going on in refining the existing methods for single phase flow measurement, and in developing new methods for multiphase flow without sampling. The tracer techniques for single phase flow measurements are recognized as ISO standards. This paper presents technical aspect of laboratory experiments, which have been carried out using Molybdenum-99 - Mo99 (radiotracer) to study and determine the flow rate of liquid in multiphase flow rig. The multiphase flow rig consists of 58.7 m long and 20 cm diameter pipeline that can accommodate about 0.296 m 3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. The flow rate results; radiotracer and conventional flow meter were compared. The total count method was applied for radiotracer technique and showed the comparable results with conventional flow meter. (author)

  13. Critical flow rate in a single phase flow. Blocking concept

    International Nuclear Information System (INIS)

    Giot, Michel

    1978-01-01

    After referring to the phenomena accompanying the appearance of a critical flow rate in a nozzle and presenting equations governing single phase flows, the critical condition is defined. Several particular cases are then examined; the horizontal and vertical isentropic flow, Fanno's flow and Raleigh's and the isothermal flow. The entropy deviation is calculated on either side of a normal impact. To conclude, the link existing between the concepts of critical flow and the propagation rate of small perturbations is demonstrated. To do so, the method of perturbations, that of Prandtl and that of characteristic directions are applied in turn [fr

  14. A study of vapor bubble departure in subcooled flow boiling at low pressure

    International Nuclear Information System (INIS)

    Donevski, Bozin; Saga, Tetsuo; Kobayashi, Toshio; Segawa, Shigeki

    1999-01-01

    An experimental study of vapor bubble dynamics in sub-cooled flow boiling was conducted using the flow visualization and digital image processing methods. Vapor bubble departure departure in subcooled flow boiling have been experimentally investigated over a range of mass flux G=0.384 (kg/m 2 s), and heat flux q w = 27.2 x 10 4 (W/m 2 ), for the subcooled flow boiling region. It has been observed that once a vapor bubble departs from a nucleation site, it typically slides along the heating surface at sonic finite distance down-stream of nucleation site. The image processing method proposed in this study is based on the detachment and tracing of the edges of the bubbles and their background. The proposed method can be used in various fields of engineering applications. (Original)

  15. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic flows using the nucleation and droplet growth...... theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  16. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    Science.gov (United States)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  17. The determination of the initial point of net vapor generation in flow subcooled boiling

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2000-01-01

    The experimental results for the initial point of net vapor generation in up-flow subcooled boiling in an internally-heated annulus are given. The characteristics of the initial point of net vapor generation and the problem on gamma ray attenuation measurement are discussed. The comparison between the data and a calculation model is given, it is showed that the data agree well with the model

  18. Dust mobilization by high-speed vapor flow under LOVA

    International Nuclear Information System (INIS)

    Matsuki, K.; Suzuki, S.; Ebara, S.; Yokomine, T.; Shimizu, A.

    2006-01-01

    In the safety analysis on the International Thermonuclear Experimental Reactor (ITER), the ingress of coolant (ICE) event and the loss of vacuum (LOVA) event are considered as one of the most serious accident. On the assumption of LOVA occurring after ICE, it is inferable that activated dusts are under the wet condition. Transport behavior of in-vessel activated dusts under the wet condition is not well understood in comparison with the dry case. In this study, we experimentally investigated the entrainment behavior of dust under LOVA after ICE. We measured dust entrainment by high-speed humid airflow with phase change. Graphite dusts and glass beads are used as substitutions for mobile inventory. The relations among the relative humidity, the entrainment of particles in the exhaust gas flow and the adhesion rate of dust particles on the pipe wall have been made clear, as has the distribution profile of dust deposition on the pipe wall. The entrainment ratio decreased as the relative humidity increased and increased as the initial pressure difference increased

  19. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2008-10-01

    Full Text Available Recent studies with closed-path eddy covariance (EC systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies of EC-related tube attenuation effects have either not considered this issue at all or have only examined it superficially. Nonetheless, the attenuation of water vapor fluctuations is clearly much greater than might be expected from a passive tracer in turbulent tube flow. This study reexamines the turbulent tube flow issue for both passive and sorbing tracers with the intent of developing a physically-based semi-empirical model that describes the attenuation associated with water vapor fluctuations. Toward this end, we develop a new model of tube flow dynamics (radial profiles of the turbulent diffusivity and tube airstream velocity. We compare our new passive-tracer formulation with previous formulations in a systematic and unified way in order to assess how sensitive the passive-tracer results depend on fundamental modeling assumptions. We extend the passive tracer model to the vapor sorption/desorption case by formulating the model's wall boundary condition in terms of a physically-based semi-empirical model of the sorption/desorption vapor fluxes. Finally we synthesize all modeling and observational results into a single analytical expression that captures the effects of the mean ambient humidity and tube flow (Reynolds number on tube attenuation.

  20. Simulation and modeling of turbulent non isothermal vapor-droplet dispersed flow

    International Nuclear Information System (INIS)

    Baalbaki, Daoud

    2011-01-01

    One of the reference accident that may occur in PWR (Pressurized Water Reactor) is LOCA (Loss of Coolant Accident). The LOCA is studied to design some emergency systems implemented in the basic nuclear installations. The LOCA corresponds to the break of a pipe in the primary loop. This accident is associated with a loss of pressure which leads to the vaporization of the water in the reactor core and then to the rise of the temperature of the assemblies. In this study, we focus on the area of vapor-droplet flow, where the cooling effectiveness of such a mixture is a major concern. The droplets act as heat sinks for the vapor and control the vapor temperature profile which, in turn, determines the wall heat transfer rate. Our general objective is to ameliorate the modeling of the vapor-droplet flow (i.e. at CFD scale). Particularly the estimation of the radial distribution of the droplets. The volume fraction distribution of the two phases depends on the size and dispersion of the droplets in the flow. The size of the droplets is controlled by the rupture and coalescence mechanisms and the interfacial mass transfer (evaporation/condensation). The distribution of the droplets is controlled by the transfer of momentum between the two phases. Our study focuses particularly on the latter point. We are restricted to flows where the liquid water flows under the form of non-deformable spherical droplets that do not interact with each other. Both phases are treated by a two-fluid approach Euler-Euler. In chapter 2, a description of two-phase flow model is presented, using separate mass, momentum, and energy equations for the two phases. These separate balance equations are obtained in an averaging process starting from the local instantaneous conservation equations of the individual phases. During the averaging process, important information on local flow processes are lost and, consequently, additional correlations are needed in order to close the system of equations. The

  1. Coriolis mass flow rate meters for low flows

    NARCIS (Netherlands)

    Mehendale, A.

    2008-01-01

    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an “enabling technology��? in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do

  2. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Leal, L.O.; Elsholz, O.; Forteza, R.; Cerda, V.

    2006-01-01

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl 2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L -1 . The detection limit (3σ b /S) achieved is 5 ng L -1 . The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L -1 Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples

  3. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles......The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low...... volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...

  4. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  5. Linkages Among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    1999-12-01

    Full Text Available Global freshwater assessments have not addressed the linkages among water vapor flows, agricultural food production, and terrestrial ecosystem services. We perform the first bottom-up estimate of continental water vapor flows, subdivided into the major terrestrial biomes, and arrive at a total continental water vapor flow of 70,000 km3/yr (ranging from 56,000 to 84,000 km3/yr. Of this flow, 90% is attributed to forests, including woodlands (40,000 km3/yr, wetlands (1400 km3/yr, grasslands (15,100 km3/yr, and croplands (6800 km3/yr. These terrestrial biomes sustain society with essential welfare-supporting ecosystem services, including food production. By analyzing the freshwater requirements of an increasing demand for food in the year 2025, we discover a critical trade-off between flows of water vapor for food production and for other welfare-supporting ecosystem services. To reduce the risk of unintentional welfare losses, this trade-off must become embedded in intentional ecohydrological landscape management.

  6. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  7. DETERMINATION OF SATURATION VAPOR PRESSURE OF LOW VOLATILE SUBSTANCES THROUGH THE STUDY OF EVAPORATION RATE BY THERMOGRAVIMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. V. Ralys

    2015-11-01

    Full Text Available Subject of Study.Research of vapor pressure of low volatile substances is a complicated problem due to both direct experimental implementation complexity and, most significantly, the issues faced correctness of the analysis and processing of experimental data. That is why it is usually required engaging the reference substances (with vapor pressures well studied. The latter drastically reduces the effectiveness of the experimental methods used and narrows their applicability. The paper deals with an approach to the evaporation process description (sublimation of low volatile substances based on molecular kinetic description in view of diffusive and convection processes. The proposed approach relies on experimental thermogravimetricfindingsina wide range of temperatures, flow rates ofthe purge gas and time. Method. A new approach is based on the calculation of the vapor pressure and uses the data about the speed of evaporation by thermogravimetric analysis depending on the temperature, the flow rate of the purge gas, and the evaporation time. The basis for calculation is the diffusion-kinetic description of the process of evaporation (mass loss of the substance from the exposed surface. The method is applicable to determine the thermodynamic characteristics for both the evaporation (the equilibrium liquid - vapor and sublimation (the equilibrium solid - vapor. We proposed the appropriate method of the experiment and analysis of its data in order to find the saturated vapor pressure of individual substances of low volatility. Main Results. The method has been tested on substances with insufficiently reliable and complete study of the thermodynamic characteristics but, despite this, are often used (because of the other data limitations as reference ones. The vaporization process (liquid-vapor has been studied for di-n-butyl phthalate C16H22O4 at 323,15–443,15 К, and sublimation for benzoic acid C7H6O2at 303,15–183,15 К. Both processes have

  8. Analysis of Petrol and Diesel Vapor Using Selective Ion Flow Tube/Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Ping, CH.; Weijun, Z.; Yaman, CH.; Španěl, Patrik; Smith, D.

    2003-01-01

    Roč. 5, - (2003), s. 548-551 ISSN 0253-3820 Institutional research plan: CEZ:AV0Z4040901 Keywords : selected ion flow tube/mass spectrometry * fuel vapor Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.224, year: 2003

  9. Flow, diffusion, and rate processes

    International Nuclear Information System (INIS)

    Sieniutycz, S.; Salamon, P.

    1992-01-01

    This volume contains recent results obtained for the nonequilibrium thermodynamics of transport and rate processes are reviewed. Kinetic equations, conservation laws, and transport coefficients are obtained for multicomponent mixtures. Thermodynamic principles are used in the design of experiments predicting heat and mass transport coefficients. Highly nonstationary conditions are analyzed in the context of transient heat transfer, nonlocal diffusion in stress fields and thermohydrodynamic oscillatory instabilities. Unification of the dynamics of chemical systems with other sorts of processes (e.g. mechanical) is given. Thermodynamics of reacting surfaces is developed. Admissible reaction paths are studied and a consistency of chemical kinetics with thermodynamics is shown. Oscillatory reactions are analyzed in a unifying approach showing explosive, conservation or damped behavior. A comprehensive review of transport processes in electrolytes and membranes is given. Applications of thermodynamics to thermoelectric systems and ionized gas (plasma) systems are reviewed

  10. Electromagnetic application device for flow rate/flow speed control

    International Nuclear Information System (INIS)

    Yoshioka, Senji.

    1994-01-01

    Electric current and magnetic field are at first generated in a direction perpendicular to a flow channel of a fluid, and forces generated by electromagnetic interaction of the current and the magnetic field are combined and exerted on the fluid, to control the flow rate and the flow speed thereby decreasing flowing pressure loss. In addition, an electric current generation means and a magnetic field generation means integrated together are disposed to a structural component constituting the flow channel, and they are combined to attain the aimed effect. The current generating means forms a potential difference by supplying electric power to a pair of electrodes as a cathode and an anode by using structures disposed along the channel, to generate an electric field or electric current in a direction perpendicular to the flow channel. The magnetic field generating means forms a counter current (reciprocal current) by using structures disposed along the flow channel, to generate synthesized or emphasized magnetic field. The fluid can be applied with a force in the direction of the flowing direction by the electromagnetic interaction of the electric current and the magnetic field, thereby capable of propelling the fluid. Accordingly, the flowrate/flowing speed can be controlled inside of the flow channel and flowing pressure loss can be decreased. (N.H.)

  11. The use of laser diodes for control of uranium vaporization rates

    International Nuclear Information System (INIS)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements

  12. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow

    Science.gov (United States)

    Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang

    2017-07-01

    Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.

  13. Cavitating flow during water hammer using a generalized interface vaporous cavitation model

    Science.gov (United States)

    Sadafi, Mohamadhosein; Riasi, Alireza; Nourbakhsh, Seyed Ahmad

    2012-10-01

    In a transient flow simulation, column separation may occur when the calculated pressure head decreases to the saturated vapor pressure head in a computational grid. Abrupt valve closure or pump failure can result in a fast transient flow with column separation, potentially causing problems such as pipe failure, hydraulic equipment damage, cavitation or corrosion. This paper reports a numerical study of water hammer with column separation in a simple reservoir-pipeline-valve system and pumping station. The governing equations for two-phase transient flow in pipes are solved based on the method of characteristics (MOC) using a generalized interface vaporous cavitating model (GIVCM). The numerical results were compared with the experimental data for validation purposes, and the comparison indicated that the GIVCM describes the experimental results more accurately than the discrete vapor cavity model (DVCM). In particular, the GIVCM correlated better with the experimental data than the DVCM in terms of timing and pressure magnitude. The effects of geometric and hydraulic parameters on flow behavior in a pumping station with column separation were also investigated in this study.

  14. Eddy-current flow rate meter for measuring sodium flow rates

    International Nuclear Information System (INIS)

    Knaak, J.

    1976-01-01

    For safety reasons flow rate meters for monitoring coolant flow rates are inserted in the core of sodium-cooled fast breeder reactors. These are so-called eddy-current flow rate meters which can be mounted directly above the fuel elements. In the present contribution the principle of measurement, the mechanical construction and the circuit design of the flow rate measuring device are described. Special problems and their solution on developing the measuring system are pointed out. Finally, results of measurement and experience with the apparatus in several experiments are reported, where also further possibilities of application were tested. (orig./TK) [de

  15. Determining Permissible Oxygen and Water Vapor Transmission Rate for Non-Retort Military Ration Packaging

    Science.gov (United States)

    2011-11-01

    OXYGEN AND WATER VAPOR TRANSMISSION RATE FOR NON- RETORT MILITARY RATION PACKAGING by Danielle Froio Alan Wright Nicole Favreau and Sarah...ANSI Std. Z39.18 RETORT STORAGE SHELF LIFE RETORT POUCHES SENSORY ANALYSIS OXYGEN CRACKERS PACKAGING SENSORY... Packaging for MRE. (a) MRE Retort Pouch Quad-Laminate Structure; (b) MRE Non- retort Pouch Tri-Laminate Structure

  16. NASA Glenn Research Center, Propulsion Systems Laboratory: Plan to Measure Engine Core Flow Water Vapor Content

    Science.gov (United States)

    Oliver, Michael

    2014-01-01

    This presentation will be made at the 92nd AIAA Turbine Engine Testing Working Group (TETWoG), a semi-annual technical meeting of turbine engine testing professionals. The objective is to describe an effort by NASA to measure the water vapor content on the core airflow in a full scale turbine engine ice crystal icing test and to open a discussion with colleagues how to accurately conduct the measurement based on any previous collective experience with the procedure, instruments and nature of engine icing testing within the group. The presentation lays out the schematics of the location in the flow path from which the sample will be drawn, the plumbing to get it from the engine flow path to the sensor and several different water vapor measurement technologies that will be used: Tunable diode laser and infrared spectroscopy.

  17. Relationship between the evaporation rate and vapor pressure of moderately and highly volatile chemicals.

    Science.gov (United States)

    van Wesenbeeck, Ian; Driver, Jeffrey; Ross, John

    2008-04-01

    Volatilization of chemicals can be an important form of dissipation in the environment. Rates of evaporative losses from plant and soil surfaces are useful for estimating the potential for food-related dietary residues and operator and bystander exposure, and can be used as source functions for screening models that predict off-site movement of volatile materials. A regression of evaporation on vapor pressure from three datasets containing 82 pesticidal active ingredients and co-formulants, ranging in vapor pressure from 0.0001 to >30,000 Pa was developed for this purpose with a regression correlation coefficient of 0.98.

  18. Low flow velocity, fine-screen heat exchangers and vapor-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Steyert, W.A.; Stone, N.J.

    1978-09-01

    The design, construction, and testing of three compact, low temperature heat exchangers are reported. A method is given for the construction of a small (approximately = 20-cm 3 volume) exchanger that can handle 6 g/s helium flow with low pressure drops (ΔP/P = 10 percent) and adequate heat transfer (N/sub tu/ = 3). The use of screen for simple, vapor-cooled current leads into cryogenic systems is also discussed

  19. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  20. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  1. Reactor core flow rate control system

    International Nuclear Information System (INIS)

    Sakuma, Hitoshi; Tanikawa, Naoshi; Takahashi, Toshiyuki; Miyakawa, Tetsuya.

    1996-01-01

    When an internal pump is started by a variable frequency power source device, if magnetic fields of an AC generator are introduced after the rated speed is reached, neutron flux high scram occurs by abrupt increase of a reactor core flow rate. Then, in the present invention, magnetic fields for the AC generator are introduced at a speed previously set at which the fluctuation range of the reactor core flow rate (neutron flux) by the start up of the internal pump is within an allowable value. Since increase of the speed of the internal pump upon its start up is suppressed to determine the change of the reactor core flow rate within an allowable range, increase of neutron fluxes is suppressed to enable stable start up. Then, since transition boiling of fuels caused by abrupt decrease of the reactor core flow rate upon occurrence of abnormality in an external electric power system is prevented, and the magnetic fields for the AC generator are introduced in such a manner to put the speed increase fluctuation range of the internal pump upon start up within an allowable value, neutron flux high scram is not caused to enable stable start-up. (N.H.)

  2. Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    B. Zahed

    2013-01-01

    Full Text Available The growth rate and uniformity of Carbon Nano Tubes (CNTs based on Chemical Vapor Deposition (CVD technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon atoms are grown as CNTs on the iron catalysts at the reactor hot walls. The effect of inlet gas-mixture flow rate, on CNTs growth rate and its uniformity is discussed. In addition the velocity and temperature profile and also species concentrations throughout the reactor are presented.

  3. Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium

    International Nuclear Information System (INIS)

    Koeppel, B.J.; Subhash, G.

    1999-01-01

    The plastic response of two kinds of rhenium processed via powder metallurgy (PM) and chemical vapor deposition (CVD) were investigated under uniaxial compression over a range of strain rates. The PM rhenium, further cold rolled to 50 and 80 pct of the original thickness, was also investigated to assess the influence of cold work on the plastic behavior. A strong basal texture was detected in all the preceding materials as a result of processing and cold work. Both CVD and PM rhenium exhibited an increase in yield strength and flow stress with increasing strain rate. In PM rhenium, cold work resulted in an increase in hardness and yield strength and a decrease in the work hardening rate. The deformed microstructures revealed extensive twinning in CVD rhenium. At large strains, inhomogeneous deformation mode in the form of classical cup and cone fracture was noticed

  4. Liquid metal coolant flow rate regulation

    International Nuclear Information System (INIS)

    Vitkovskij, I.V.; Glukhikh, V.A.; Kirillov, I.R.; Smirnov, A.M.

    1981-01-01

    Some aspects of fast reactor and experimental bench operation related to liquid metal flow rate regulation are considered. Requirements to the devices for the flow rate regulation are formulated. A new type of these devices namely magnetohydrodynamic (MHD) throttles is described. Structural peculiarities of MHD throttles of different types are described as well. It is noted that the MHD throttles with a screw channel have the best energy mass indices. On the basis of the comparison of the MHD throttles with mechanical valves it is concluded that the MHD throttles described are useful for regulating the flow rates of any working media. Smoothness and accuracy of the flow rate regulation by the throttles are determined by the electric control circuit and may be practically anyone. The total coefficient of hydraulic losses in the throttle channel in the absence of a magnetic field is ten and more times lesser than in completely open mechanical valve. Electromagnetic time constant of the MHD throttles does not exceed several tenths of a second [ru

  5. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  6. Numerical simulation of vapor flow and pressure drop across the demister of MSF desalination plant

    International Nuclear Information System (INIS)

    Janajreh, I.; Hasania, A.; Fath, H.

    2013-01-01

    Highlights: ► Porous media was used to simulate the pressure drop across desalination demister. ► Simulation results plausibly compared with experimental results. ► FC inlet Velocity distribution has no effect on the demister pressure drop. ► Demister inertial resistance affects pressure drop more than viscous resistance. - Abstract: This paper presents a numerical simulation of the water vapor flow in an MSF flash chamber along with the pressure drop across the demister. The demister is a simple porous blanket of metal wires mesh (usually made of stainless steel wires) which retains liquid droplets entrained by the vapor momentum to enhance the quality of the product water. Two main areas of concern in wire mesh mist eliminators are; (i) the pressure drop and (ii) the mist removal efficiency. The present simulation focuses only on the pressure drop across the demister. The simulation is carried out considering a full scale flashing chamber of a typical operational MSF desalination plant and of a real industrial demister dimensions. The study simulates the demister as porous media flow. It takes into account the vapor velocity, the dimension of the demister, its porosity and wire thickness. The obtained pressure drop was found to be within a reasonable agreement with the published literature data and it follows a trend compatible with Ergun’s equation as well as the empirical correlation of Svendsen.

  7. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  8. Numerical modelling of multiphase liquid-vapor-gas flows with interfaces and cavitation

    Science.gov (United States)

    Pelanti, Marica

    2017-11-01

    We are interested in the simulation of multiphase flows where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable gaseous phase. We describe these flows by a single-velocity three-phase compressible flow model composed of the phasic mass and total energy equations, the volume fraction equations, and the mixture momentum equation. The model includes stiff mechanical and thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass transfer between the liquid and vapor phases of the species that may undergo transition. The flow equations are solved by a mixture-energy-consistent finite volume wave propagation scheme, combined with simple and robust procedures for the treatment of the stiff relaxation terms. An analytical study of the characteristic wave speeds of the hierarchy of relaxed models associated to the parent model system is also presented. We show several numerical experiments, including two-dimensional simulations of underwater explosive phenomena where highly pressurized gases trigger cavitation processes close to a rigid surface or to a free surface. This work was supported by the French Government Grant DGA N. 2012.60.0011.00.470.75.01, and partially by the Norwegian Grant RCN N. 234126/E30.

  9. The Effusive-Flow Properties of Target/Vapor-Transport Systems for Radioactive Ion Beam Applications

    CERN Document Server

    Kawai, Yoko; Liu, Yuan

    2005-01-01

    Radioactive atoms produced by the ISOL technique must diffuse from a target, effusively flow to an ion source, be ionized, be extracted, and be accelerated to research energies in a time commensurate with the lifetime of the species of interest. We have developed a fast valve system (closing time ~100 us) that can be used to accurately measure the effusion times of chemically active or inactive species through arbitrary geometry and size vapor transport systems with and without target material in the reservoir. The effusive flow times are characteristic of the system and thus serve as figures of merit for assessing the quality of a given vapor transport system as well as for assessing the permeability properties of a given target design. This article presents effusive flow data for noble gases flowing through a target reservoir and ion source system routinely used to generate radioactive species at the HRIBF with and without disks of 6 times and 10 times compressed Reticulated Vitreous Carbon Foam (RVCF) with...

  10. Study on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2002-01-01

    The onset of nucleate boiling (ONB) and the point of net vapor generation on subcooled flow boiling, focusing on liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film (35μm) and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa. The liquid subcoolings were 20, 30 and 40K, respectively. Temperatures at the onset of nucleate boiling obtained in the experiments increased with the liquid subcoolings and the liquid velocities. The increases in the temperature of ONB were represented with the classical stability theory of preexisting nuclei. The measured results of the net vapor generation agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. (J.P.N.)

  11. Flow rate measurement in a volume

    Energy Technology Data Exchange (ETDEWEB)

    Galvez, Cristhian

    2018-04-17

    A system for measuring flow rate within a volume includes one or more transmission devices that transmit one or more signals through fluid contained within the volume. The volume may be bounded, at least in part, by an outer structure and by an object at least partially contained within the outer structure. A transmission device located at a first location of the outer structure transmits a first signal to a second location of the outer structure. A second signal is transmitted through the fluid from the second location to a third location of the outer structure. The flow rate of the fluid within the volume may be determined based, at least in part, on the time of flight of both the first signal and the second signal.

  12. Vacuum evaporation of KCl-NaCl salts. Part 2: Vaporization-rate model and experimental results

    International Nuclear Information System (INIS)

    Wang, L.L.; Wallace, T.C. Sr.; Hampel, F.G.; Steele, J.H.

    1996-01-01

    Separation of chloride salts from the actinide residue by vacuum evaporation is a promising method of treating wastes from the pyrochemical plutonium processes. A model based on the Hertz-Langmuir relation is used to describe how evaporation rates of the binary KCl-NaCl system change with time. The effective evaporation coefficient (α), which is a ratio of the actual evaporation rate to the theoretical maximum, was obtained for the KCl-NaCl system using this model. In the temperature range of 640 C to 760 C, the effective evaporation coefficient ranges from ∼0.4 to 0.1 for evaporation experiments conducted at 0.13 Pa. At temperatures below the melting point, the lower evaporation coefficients are suggested to result from the more complex path that a molecule needs to follow before escaping to the gas phase. At the higher liquid temperatures, the decreasing evaporation coefficients result from a combination of the increasing vapor-flow resistances and the heat-transfer effects at the evaporation surface and the condensate layer. The microanalysis of the condensate verified that composition of the condensate changes with time, consistent with the model calculation. The microstructural examination revealed that the vaporate may have condensed as a single solution phase, which upon cooling forms fine lamellar structures of the equilibrium KCl and NaCl phases. In conclusion, the optimum design of the evaporation process and equipment must take the mass and heat transfer factors and equipment materials issues into consideration

  13. Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer

    International Nuclear Information System (INIS)

    Han, Chang-Liang; Ren, Jing-Jie; Wang, Yan-Qing; Dong, Wen-Ping; Bi, Ming-Shu

    2017-01-01

    Highlights: • Thermal performance analysis of submerged combustion vaporizer (SCV) was performed experimentally. • Visualization study of shell-side flow field for SCV was carried out. • The effects of various operational parameters on the overall system performance were discussed. • Two new non-dimensional Nusselt correlations were proposed to predict the heat transfer performance of SCV. - Abstract: Submerged combustion vaporizer (SCV) occupies a decisive position in liquefied natural gas (LNG) industrial chain. In this paper, a visual experimental apparatus was established to have a comprehensive knowledge about fluid flow and heat transfer performance of SCV. Trans-critical liquid nitrogen (LN_2) was selected as alternative fluid to substitute LNG because of safety reason. Some unique experimental phenomena inside the SCV (local water bath freezes on the external surface of tube bundle) were revealed. Meanwhile the influences of static water height, superficial flue gas velocity, heat load, tube-side inlet pressure and tube-side mass flux on the system performance were systematically discussed. Finally, based on the obtained experimental results, two new empirical Nusselt number correlations were regressed to predict the shell-side and tube-side heat transfer characteristics of SCV. The maximum errors between predicted results and experimental data were respectively ±25% and ±20%. The outcomes of this paper were critical to the optimum design and economical operation of SCV.

  14. Effect of gas flow on the selective area growth of gallium nitride via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Kasarla, K. R.; Korakakis, D.

    2007-08-01

    The effect of gas flow on the selective area growth (SAG) of gallium nitride (GaN) grown via metal organic vapor phase epitaxy (MOVPE) has been investigated. In this study, the SAG of GaN was carried out on a silicon dioxide striped pattern along the GaN direction. SAG was initiated with the striped pattern oriented parallel and normal to the incoming gas flow in a horizontal reactor. The orientation of the pattern did not impact cross section of the structure after re-growth as both orientations resulted in similar trapezoidal structures bounded by the (0 0 0 1) and {1 1 2¯ n} facets ( n≈1.7-2.2). However, the growth rates were shown to depend on the orientation of the pattern as the normally oriented samples exhibited enhanced vertical and cross-sectional growth rates compared to the parallel oriented samples. All growths occurred under identical conditions and therefore the difference in growth rates must be attributed to a difference in mass transport of species.

  15. The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells

    Science.gov (United States)

    Hauch, Jens A.; Schilinsky, Pavel; Choulis, Stelios A.; Rajoelson, Sambatra; Brabec, Christoph J.

    2008-09-01

    In this paper we perform accelerated lifetime testing on high efficiency flexible poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) solar cells encapsulated with food package quality barrier films with a water vapor transmission rate of 0.2 g/(m2 day) at 65 °C/85% relative humidity. We show that lifetimes exceeding 1250 h, even at high temperature/high humidity conditions, may be reached, proving that organic solar cells are significantly less sensitive against the environmental effects of water and oxygen than previously expected.

  16. Taguchi Method for Development of Mass Flow Rate Correlation Using Hydrocarbon Refrigerant Mixture in Capillary Tube

    OpenAIRE

    Sulaimon, Shodiya; Nasution, Henry; Aziz, Azhar Abdul; Abdul-Rahman, Abdul-Halim; Darus, Amer N

    2014-01-01

    The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM). The Taguchi method, a statistical experimental design approach, was employed. This approach e...

  17. CVB: the Constrained Vapor Bubble Capillary Experiment on the International Space Station MARANGONI FLOW REGION

    Science.gov (United States)

    Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel

    2014-01-01

    The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful

  18. Wheeling rates evaluation using optimal power flows

    International Nuclear Information System (INIS)

    Muchayi, M.; El-Hawary, M. E.

    1998-01-01

    Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs

  19. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    Science.gov (United States)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  20. A Smart Soft Sensor Predicting Feedwater Flow Rate

    International Nuclear Information System (INIS)

    Yang, Heon Young; Na, Man Gyun

    2009-01-01

    Since we evaluate thermal nuclear reactor power with secondary system calorimetric calculations based on feedwater flow rate measurements, we need to measure the feedwater flow rate accurately. The Venturi flow meters that are being used to measure the feedwater flow rate in most pressurized water reactors (PWRs) measure the flow rate by developing a differential pressure across a physical flow restriction. The differential pressure is then multiplied by a calibration factor that depends on various flow conditions in order to calculate the feedwater flow rate. The calibration factor is determined by the feedwater temperature and pressure. However, Venturi meters cause a buildup of corrosion products near the orifice of the meter. This fouling increases the measured pressure drop across the meter, thereby causing an overestimation of the feedwater flow rate

  1. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  2. Hypersonic Air Flow with Finite Rate Chemistry

    National Research Council Canada - National Science Library

    Boyd, Ian

    1997-01-01

    ... describe the effects of non-equilibrium flow chemistry, shock interaction, and turbulent mixing and combustion on the performance of vehicles and air breathing engines designed to fly in the hypersonic flow...

  3. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    Science.gov (United States)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2018-01-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  4. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  5. Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD

    CSIR Research Space (South Africa)

    Malgas, GF

    2008-02-01

    Full Text Available This paper reports on the growth of carbon nanotubes (CNTs) by thermal Chemical Vapour Deposition (CVD) and investigates the effects of nitrogen carrier gas flow rates and mixture ratios on the morphology of CNTs on a silicon substrate by vaporizing...

  6. Milk Flow Rates from bottle nipples used after hospital discharge.

    Science.gov (United States)

    Pados, Britt Frisk; Park, Jinhee; Thoyre, Suzanne M; Estrem, Hayley; Nix, W Brant

    To test the milk flow rates and variability in flow rates of bottle nipples used after hospital discharge. Twenty-six nipple types that represented 15 common brands as well as variety in price per nipple and store location sold (e.g., Babies R' Us, Walmart, Dollar Store) were chosen for testing. Ten of each nipple type (n = 260 total) were tested by measuring the amount of infant formula expressed in 1 minute using a breast pump. Mean milk flow rate (mL/min) and coefficient of variation (CV) were calculated. Flow rates of nipples within brand were compared statistically. Milk flow rates varied from 1.68 mL/min for the Avent Natural Newborn Flow to 85.34 mL/min for the Dr. Brown's Standard Y-cut. Variability between nipple types also varied widely, from .03 for the Dr. Brown's Standard Level 3 to .37 for MAM Nipple 1 Slow Flow. The extreme range of milk flow rates found may be significant for medically fragile infants being discharged home who are continuing to develop oral feeding skills. The name of the nipple does not provide clear information about the flow rate to guide parents in decision making. Variability in flow rates within nipples of the same type may complicate oral feeding for the medically fragile infant who may not be able to adapt easily to change in flow rates. Both flow rate and variability should be considered when guiding parents to a nipple choice.

  7. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...

  8. Influence of the Flow Direction on the Mass Transport of Vapors through Membranes Consisting of Several Layers

    Czech Academy of Sciences Publication Activity Database

    Loimer, T.; Uchytil, Petr

    2015-01-01

    Roč. 67, OCT 2015 (2015), s. 2-5 ISSN 0894-1777 R&D Projects: GA MŠk 7AMB12AT010; GA MŠk(CZ) 7AMB14AT011 Institutional support: RVO:67985858 Keywords : porous media * phase change * vapor flow Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.128, year: 2015

  9. Vapor bubble behavior in subcooled flow boiling in annuli heated by water

    International Nuclear Information System (INIS)

    Licheng Sun; Zhongning Sun; Changqi Yan

    2005-01-01

    Full text of publication follows: This paper describes experimental and theoretical work conducted on vapor bubble behavior in subcooled flow boiling at atmospheric pressure. The test section is mainly consisted of two concentrically installed circular tubes, the outside tube is made of quartz and therefore all test courses can be visualized. Water is forced to flow through annuli with gap sizes of 3 mm and 5 mm, and is heated by high temperature water in the inner tube. The main objective is to visually study the bubble behavior of subcooled flow boiling water in the condition of surface heated by water. The results show that bubbles depart from wall directly or slide a certain distance before departure, this is same as that heated by electricity. There exists a bubble layer near the wall, most bubbles move and disappear in the layer after departure, the bubble sliding behavior is not very obvious in 5 mm annulus, however, we found that most bubbles in 3 mm annulus will slide a long distance before departure and their growth courses are different from usual experimental results. The bubbles are not always growing, but shrinking a little quickly after growing for some time, and then the course will repeat for some times till they depart from wall or disappeared, the collision and coalescence of bubbles is very common and makes the bubbles depart from wall more easily in 3 mm annulus. At last, the forces on bubbles growing and detaching in flow along the wall are analyzed to comprehend these phenomena more accurately. (authors)

  10. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  11. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    International Nuclear Information System (INIS)

    Yuann, R.Y.; Schrock, V.E.; Chen, Xiang, M.

    1995-01-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation κ-ε model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena

  12. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, R Y [Taiwan Power Company, Taipei (Taiwan, Province of China); Schrock, V E [Univ. of California, Berkeley, CA (United States); Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  13. ISS modeling strategy for the numerical simulation of turbulent sub-channel liquid-vapor flows

    International Nuclear Information System (INIS)

    Olivier Lebaigue; Benoit Mathieu; Didier Jamet

    2005-01-01

    Full text of publication follows: The general objective is to perform numerical simulation of the liquid-vapor turbulent two-phase flows that occur in sub-channels of a nuclear plant assembly under nominal or incidental situations. Additional features concern nucleate boiling at the surface of fuel rods and the sliding of vapor bubbles on this surface with possible dynamic contact lines. The Interfaces and Sub-grid Scales (ISS) modeling strategy for numerical simulations is one of the possible two-phase equivalents for the one-phase LES concept. It consists in solving the two-phase flows features at the scales that are resolved by the grid of the numerical method, and to take into account the unresolved scales with sub-grid models. Interfaces are tracked in a DNS-like approach while specific features of the behavior of interfaces such as contact line physics, coalescence and fragmentation, and the smallest scales of turbulence within each phase have an unresolved scale part that is modeled. The problem of the modeling of the smallest scales of turbulence is rather simple even if the classical situation is altered by the presence of the interfaces. In a typical sub-channel situation (e.g., 15 MPa and 3.5 m.s -1 water flow in a PWR sub-channel), the Kolmogorov scale is ca. 1 μm whereas typical bubble size are supposed to be close to 150 μm. Therefore, the use of a simple sub-grid model between, e.g., 1 and 20 μm allows a drastic reduction of the number of nodes in the space discretization while it remains possible to validate by comparison to true DNS results. Other sub-grid models have been considered to recover physical phenomena that cannot be captured with a realistic discretization: they rely on physical scales from molecular size to 1 μm. In these cases, the use of sub-grid model is no longer a matter of CPU-time and memory saving only, but also a corner stone to recover physical behavior. From this point of view at least we are no longer performing true

  14. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    Science.gov (United States)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  15. Device accurately measures and records low gas-flow rates

    Science.gov (United States)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  16. Estimation of flow rates through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Collier, R.P.; Norris, D.M.

    1984-01-01

    Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flow rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate

  17. He flow rate measurements on the engineering model for the Astro-H Soft X-ray Spectrometer dewar

    Science.gov (United States)

    Mitsuishi, I.; Ezoe, Y.; Ishikawa, K.; Ohashi, T.; Fujimoto, R.; Mitsuda, K.; Tsunematsu, S.; Yoshida, S.; Kanao, K.; Murakami, M.; DiPirro, M.; Shirron, P.

    2014-11-01

    The sixth X-ray Japanese astronomy satellite, namely Astro-H, will be launched in 2015. The Soft X-ray Spectrometer onboard the Astro-H is a 6 × 6 X-ray microcalorimeter array and provides us with both a high energy resolution of 3 years, which consequently requires that the vapor flow rate out of the helium tank should be very small knife edge devices to retain the liquid helium under zero gravity and safely vent the small amount of the helium vapor. We measured helium mass flow rates from the helium tank equipped in the engineering model dewar. We tilted the dewar at an angle of 75° so that one side of the porous plug located at the top of the helium tank attaches the liquid helium and the porous plug separates the liquid and vapor helium by thermomechanical effect. Helium mass flow rates were measured at helium tank temperatures of 1.3, 1.5 and 1.9 K. We confirmed that resultant mass flow rates are in good agreement within the systematic error or low compared to component test results and achieve all the requirements. The film flow suppression also worked normally. Therefore, we concluded that the SXS helium vent system satisfactorily performs integrated into the dewar.

  18. A novel concept of measuring mass flow rates using flow induced ...

    Indian Academy of Sciences (India)

    Measurement of mass flow rate is important for automatic control of the mass flow rate in .... mass flow rate. The details are as follows. ... Assuming a symmetry plane passing through the thickness of the plate, at the symmetry plane δu∗n,B = 0.

  19. Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors

    Science.gov (United States)

    Liu, Zheng; Zeng, Ying; Tang, Qunli; Hu, Aiping; Xiao, Kuikui; Zhang, Shiying; Deng, Weina; Fan, Binbin; Zhu, Yanfei; Chen, Xiaohua

    2017-09-01

    Ultrahigh graphitized carbon microspheres with rich hierarchical pores (AGHPCM-1) have been successfully synthesized through the one-step activation-carbonization strategy (OACS) with porous sulfonated poly-divinylbenzene as the carbon precursor, iron as the hard template and catalyst, and potassium hydroxide (KOH) as activation agent. Through the XRD, TEM, Raman and BET analysis, AGHPCM-1 shows very high graphitization degree and rich micro-, meso- and macro-pores. More importantly, the mechanism for KOH to improve the graphitization degree of carbon materials in OACS has been illustrated by the thermodynamical theory. The tremendous heat releasing from the reaction between the catalyst precursor of Fe2O3 and potassium vapor plays a key role in the formation of graphitized carbon. It may provide a general direction to prepare highly graphitized porous carbon at a moderate temperature. Integrating the advantages of high graphitization degree and rich hierarchical porous structure, the AGHPCM-1 exhibits an excellent rate performance with a response to up to the high current density of 150 A g-1 and high scan rate of 2000 mV s-1. No obvious capacitance decay can be observed after 10000 charge/discharge cycles even at the high current density of 20 A g-1.

  20. Availability of MCNP and MATLAB for reconstructing the water-vapor two-phase flow pattern in neutron radiography

    International Nuclear Information System (INIS)

    Feng Qixi; Feng Quanke; Takeshi, K.

    2008-01-01

    The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008. In this paper, we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the tube were obtained using the MCNP code without influence of γ-ray and electronic-noise. The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated. The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI. The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques. And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI. (authors)

  1. Universal method for effusive-flow characterization target ion source/vapor transport systems for radioactive ion beam generation (abstract)

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, J.-C.; Liu, Y.; Cole, J. A.; Williams, C.

    2004-01-01

    Worldwide interest in the use of accelerated radioactive ion beams (RIBs) for exploring reactions important in understanding the structure of the nucleus and nuclear astrophysical phenomena has motivated the construction of facilities dedicated to their production and acceleration. Many facilities utilize the isotope-separator-on-line (ISOL) method in which species of interest are generated within a solid or liquid target matrix. Experimentally useful RIBs are often difficult to generate by this technique because of the times required for diffusion from the interior of the target material, and to effusively transport the species of interest to the ion source following diffusion release in relation to its lifetime. Therefore, these delay times must be minimized. We have developed an experimental method that can be used to determine effusive-flow times of arbitrary geometry target/vapor transport systems. The technique utilizes a fast valve to measure effusive-flow times as short as 0.1 ms for any chemically active or inactive species through any target system, independent of size, geometry and materials of construction. In this report, we provide a theoretical basis for effusive flow through arbitrary geometry vapor transport systems, describe a universal experimental apparatus for measuring effusive-flow times, and provide time spectra for noble gases through prototype RIB target/vapor-transport systems

  2. Wall Shear Rates in Taylor Vortex Flow

    Czech Academy of Sciences Publication Activity Database

    Sobolík, V.; Jirout, T.; Havlica, Jaromír; Kristiawan, M.

    2011-01-01

    Roč. 4, č. 3 (2011), s. 25-31 ISSN 1735-3572 Grant - others:ANR:(FR) ANR-08-BLAN-0184-01 Institutional research plan: CEZ:AV0Z40720504 Keywords : taylor-couette flow * electrodiffusion diagnostics * membrane reactors Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jafmonline.net/modules/journal/journal_browse.php?EJjid=13

  3. Development of Y-BA-CU-O Coated Conductor Using Metal Organic Chemical Vapor Deposition

    National Research Council Canada - National Science Library

    Selvamanickam, V

    2003-01-01

    .... The program includes a study of the a) influence of MOCVD processing conditions such as the flow rate of precursor vapors, precursor vaporization temperatures, oxygen partial pressure, reactor pressure, and the deposition temperature...

  4. A Flow Rate Control Approach on Off-Design Analysis of an Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Ben-Ran Fu

    2016-09-01

    Full Text Available This study explored effects of off-design heat source temperature (TW,in or flow rate (mW on heat transfer characteristics and performance of an organic Rankine cycle system by controlling the flow rate of working fluid R245fa (i.e., the operation flow rate of R245fa was controlled to ensure that R245fa reached saturation liquid and vapor states at the outlets of the preheater and evaporator, respectively. The results showed that the operation flow rate of R245fa increased with TW,in or mW; higher TW,in or mW yielded better heat transfer performance of the designed preheater and required higher heat capacity of the evaporator; heat transfer characteristics of preheater and evaporator differed for off-design TW,in and mW; and net power output increased with TW,in or mW. The results further indicated that the control strategy should be different for various off-design conditions. Regarding maximum net power output, the flow rate control approach is optimal when TW,in or mW exceeds the design point, but the pressure control approach is better when TW,in or mW is lower than the design point.

  5. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    Science.gov (United States)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  6. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  7. Acute effects of hemodialysis on salivary flow rate and composition

    NARCIS (Netherlands)

    Bots, C. P.; Brand, H. S.; Veerman, E. C. I.; Valentijn-Benz, M.; Henskens, Y. M. C.; Valentijn, R. M.; Vos, P. F.; Bijlsma, J. A.; ter Wee, P. M.; van Amerongen, B. M.; Nieuw Amerongen, A. V.

    2007-01-01

    To evaluate acute effects of hemodialysis (HD) on the salivary flow rate, pH and biochemical composition before, during and after completion of a dialysis session. Unstimulated whole saliva (UWS) and chewing-stimulated whole saliva (CH-SWS) were collected in 94 HD patients. Salivary flow rate, pH,

  8. Peak Expiratory Flow Rate In Cigarette Smokers | Ukoli | Highland ...

    African Journals Online (AJOL)

    Objective: To compare lung function between smokers and non-smokers using Peak Expiratory Flow Rate (PEFR). Methods: This study examines the peak expiratory flow rate (PEFR) of three hundred and forty cigarette smokers, age and sex-matched with PEFR of equal number of non-smokers. Results: The mean PEFR of ...

  9. Are international fund flows related to exchange rate dynamics?

    NARCIS (Netherlands)

    Li, Suxiao; de Haan, Jakob; Scholtens, Bert

    2018-01-01

    Employing monthly data for 53 countries between 1996 and 2015, we investigate the relationship between international fund flows and exchange rate dynamics. We find strong co-movement between funds flows (as measured with the EPFR Global data base) and bilateral real exchange rates vis-à-vis the USD.

  10. GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  11. Cutaneous blood flow rate in areas with and without arteriovenous anastomoses during exercise

    DEFF Research Database (Denmark)

    Midttun, M.; Sejrsen, Per

    1998-01-01

    Arteriovenous anastomoses, capillaries, cutaneous bllod flow rate, exercise, finger blood flow, skin blood flow......Arteriovenous anastomoses, capillaries, cutaneous bllod flow rate, exercise, finger blood flow, skin blood flow...

  12. A comparison of diamond growth rate using in-liquid and conventional plasma chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Takahashi, Yoshiyuki; Toyota, Hiromichi; Nomura, Shinfuku; Mukasa, Shinobu; Inoue, Toru

    2009-01-01

    In order to make high-speed deposition of diamond effective, diamond growth rates for gas-phase microwave plasma chemical vapor deposition and in-liquid microwave plasma chemical vapor deposition are compared. A mixed gas of methane and hydrogen is used as the source gas for the gas-phase deposition, and a methanol solution of ethanol is used as the source liquid for the in-liquid deposition. The experimental system pressure is in the range of 60-150 kPa. While the growth rate of diamond increases as the pressure increases, the amount of input microwave energy per unit volume of diamond is 1 kW h/mm 3 regardless of the method used. Since the in-liquid deposition method provides a superior cooling effect through the evaporation of the liquid itself, a higher electric input power can be applied to the electrodes under higher pressure environments. The growth rate of in-liquid microwave plasma chemical vapor deposition process is found to be greater than conventional gas-phase microwave plasma chemical vapor deposition process under the same pressure conditions.

  13. A comparison of diamond growth rate using in-liquid and conventional plasma chemical vapor deposition methods

    Science.gov (United States)

    Takahashi, Yoshiyuki; Toyota, Hiromichi; Nomura, Shinfuku; Mukasa, Shinobu; Inoue, Toru

    2009-06-01

    In order to make high-speed deposition of diamond effective, diamond growth rates for gas-phase microwave plasma chemical vapor deposition and in-liquid microwave plasma chemical vapor deposition are compared. A mixed gas of methane and hydrogen is used as the source gas for the gas-phase deposition, and a methanol solution of ethanol is used as the source liquid for the in-liquid deposition. The experimental system pressure is in the range of 60-150 kPa. While the growth rate of diamond increases as the pressure increases, the amount of input microwave energy per unit volume of diamond is 1 kW h/mm3 regardless of the method used. Since the in-liquid deposition method provides a superior cooling effect through the evaporation of the liquid itself, a higher electric input power can be applied to the electrodes under higher pressure environments. The growth rate of in-liquid microwave plasma chemical vapor deposition process is found to be greater than conventional gas-phase microwave plasma chemical vapor deposition process under the same pressure conditions.

  14. Sodium flow rate measurement method of annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  15. Determination of water vapor transmission rate (WVTR) of HDPE bottles for pharmaceutical products.

    Science.gov (United States)

    Chen, Yisheng; Li, Yanxia

    2008-06-24

    The objective of this study was to investigate the effects of experimental conditions for measuring the water vapor transmission rate (WVTR) of high-density polyethylene (HDPE) bottles using a steady-state sorption method. Bottles were filled with desiccant, closed with caps and heat induction sealed, and then stored in stability chambers at controlled temperature and relative humidity. Weight gain of the bottles was determined every 1 or 2 weeks until a linear weight gain profile was obtained. WVTR of the bottles was determined from the slope of the linear portion of the weight gain versus time profile. The effects of desiccants and temperature/humidity were studied. Results show that, with a sufficient amount of anhydrous calcium chloride in bottles, a negligibly low and sufficiently constant headspace humidity is maintained, and a steady-state permeation rate is achieved. For all 8 sizes of bottles used in this study, steady-state was achieved in 1 or 2 weeks after the experiment was started. This method provided reproducible WVTR data for HDPE bottles. Apparent moisture permeability of all 8 sizes of bottles was (2.3+/-0.3)x10(-7), (2.6+/-0.2)x10(-7), and (3.4+/-0.2)x10(-7)cm(2)/s at 25 degrees C, 30 degrees C, 40 degrees C, respectively. Moisture permeability determined from the current study was similar to data reported in the literature, indicating that the steady-state weight gain method can be used to obtain reliable WVTR of containers for pharmaceutical products.

  16. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    Science.gov (United States)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  17. Low-gravity sensing of liquid/vapor interface and transient liquid flow

    Science.gov (United States)

    Jacobson, Saul A.; Korba, James M.; Lynnworth, Lawrence C.; Nguyen, Toan H.; Orton, George F.

    1987-03-01

    The work reported here deals mainly with tests on internally vaned cylindrical shell acrylic containers capped by hemispherical acrylic or aluminum end domes. Three different ultrasonic sensor techniques and one nucleonic technique presently are evaluated as possible solutions to the low-gravity liquid gauging problem. The ultrasonic techniques are as follows: use of a torsional wave sensor in which transit time is proportional to the integral of wetted distance x liquid density; integration of the flow rate output signal of a fast-response ultrasonic flowmeter; and use of multiplexed externally mounted 'point-sensor' transducers that sense transit times to liquid-gas interfaces. Using two commercial flowmeters and a thickness gauge modified for this particular project, bench tests were conducted at 1 g on liquids such as water, freon, and solvent 140, including both steady flow and pulsating flow with 40, 80, and 120 ms flow pulses. Subsequently, flight tests were conducted in the NASA KC-135 aircraft in which nearly 0-g conditions are obtainable for up to about 5 s in each of a number of repetitive parabolic flight trajectories. In some of these brief low-gravity flight tests freon was replaced with a higher-viscosity fuel to reduce sloshing and thereby obtain settled surfaces more quickly.

  18. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    Science.gov (United States)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  19. Gas flow rate and powder flow rate effect on properties of laser metal deposited Ti6Al4V

    CSIR Research Space (South Africa)

    Pityana, S

    2013-03-01

    Full Text Available . The powder flow rate and the gas flow rate were varied to study their effect on the physical, metallurgical and mechanical properties of the deposits. The physical properties studied are: the track width, the track height and the deposit weight...

  20. Measurements of flow-rate transients in one-phase liquid flow

    International Nuclear Information System (INIS)

    Mueller-Roos, J.

    1975-01-01

    A report is given on a method to determine flow-rate transients in a one-phase flow. Periodic temperature signals are superposed on the flow, from which flow times are calculated through correlation each over a half period. The evaluation is carried out according to the digitalization 'off-line' on a large computer. Rate peaks of over 100% within 1.9 s were qualitatively and quantitatively well represented. (orig./LH) [de

  1. Effect of gas temperature on flow rate characteristics of an averaging pitot tube type flow meter

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Seung Hwa; Lee, Su Ryong; Lee, Choong Hoon [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2015-01-15

    The flow rate characteristics passing through an averaging Pitot tube (APT) while constantly controlling the flow temperature were studied through experiments and CFD simulations. At controlled temperatures of 25, 50, 75, and 100 .deg .C, the flow characteristics, in this case the upstream, downstream and static pressure at the APT flow meter probe, were measured as the flow rate was increased. The flow rate through the APT flow meter was represented using the H-parameter (hydraulic height) obtained by a combination of the differential pressure and the air density measured at the APT flow meter probe. Four types of H-parameters were defined depending on the specific combination. The flow rate and the upstream, downstream and static pressures measured at the APT flow meter while changing the H-parameters were simulated by means of CFD. The flow rate curves showed different features depending on which type of H-parameter was used. When using the constant air density value in a standard state to calculate the H-parameters, the flow rate increased linearly with the H-parameter and the slope of the flow rate curve according to the H-parameter increased as the controlled target air temperature was increased. When using different air density levels corresponding to each target air temperature to calculate the H-parameter, the slope of the flow rate curve according to the H-parameter was constant and the flow rate curve could be represented by a single line. The CFD simulation results were in good agreement with the experimental results. The CFD simulations were performed while increasing the air temperature to 1200 K. The CFD simulation results for high air temperatures were similar to those at the low temperature ranging from 25 to 100 .deg. C.

  2. Effect of gas temperature on flow rate characteristics of an averaging pitot tube type flow meter

    International Nuclear Information System (INIS)

    Yeo, Seung Hwa; Lee, Su Ryong; Lee, Choong Hoon

    2015-01-01

    The flow rate characteristics passing through an averaging Pitot tube (APT) while constantly controlling the flow temperature were studied through experiments and CFD simulations. At controlled temperatures of 25, 50, 75, and 100 .deg .C, the flow characteristics, in this case the upstream, downstream and static pressure at the APT flow meter probe, were measured as the flow rate was increased. The flow rate through the APT flow meter was represented using the H-parameter (hydraulic height) obtained by a combination of the differential pressure and the air density measured at the APT flow meter probe. Four types of H-parameters were defined depending on the specific combination. The flow rate and the upstream, downstream and static pressures measured at the APT flow meter while changing the H-parameters were simulated by means of CFD. The flow rate curves showed different features depending on which type of H-parameter was used. When using the constant air density value in a standard state to calculate the H-parameters, the flow rate increased linearly with the H-parameter and the slope of the flow rate curve according to the H-parameter increased as the controlled target air temperature was increased. When using different air density levels corresponding to each target air temperature to calculate the H-parameter, the slope of the flow rate curve according to the H-parameter was constant and the flow rate curve could be represented by a single line. The CFD simulation results were in good agreement with the experimental results. The CFD simulations were performed while increasing the air temperature to 1200 K. The CFD simulation results for high air temperatures were similar to those at the low temperature ranging from 25 to 100 .deg. C.

  3. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  4. Investigation of the mixture flow rates of oil-water two-phase flow using the turbine flow meter

    International Nuclear Information System (INIS)

    Li Donghui; Feng Feifei; Wu Yingxiang; Xu Jingyu

    2009-01-01

    In this work, the mixture flow rate of oil-water flows was studied using the turbine flow-meter. The research emphasis focuses on the effect of oil viscosity and input fluids flow rates on the precision of the meter. Experiments were conducted to measure the in-situ mixture flow rate in a horizontal pipe with 0.05m diameter using seven different viscosities of white oil and tap water as liquid phases. Results showed that both oil viscosity and input oil fraction exert a remarkable effect on measured results, especially when the viscosity of oil phase remained in the area of high value. In addition, for metering mixture flow rate using turbine flow-meter, the results are not sensitive to two-phase flow pattern according to the experimental data.

  5. Heat flow in vapor dominated areas of the Yellowstone Plateau volcanic field: implications for the thermal budget of the Yellowstone Caldera

    Science.gov (United States)

    Hurwitz, Shaul; Harris, Robert; Werner, Cynthia Anne; Murphy, Fred

    2012-01-01

    Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid-sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ~35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).

  6. Measurement of flow rate in the third loop of PWR

    International Nuclear Information System (INIS)

    Gao Shufan.

    1986-01-01

    The range of flow rate was 14000-50000 m 3 /h. The diameter of main tube was 2.6 m. A special made pitot set was placed on the main tube in order to accurately measure the flow rate. A cross slideway and a guide devicc were used to prevent the pitot vibration. Method of equal annular area was used in the measurement. The error was less than 4.2%. A pitot cylinder flowmeter was set also on the main tube to supervise the total flow rate of the third loop

  7. Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate

    Directory of Open Access Journals (Sweden)

    Abulon DJK

    2015-02-01

    Full Text Available Dina Joy K Abulon Medical Affairs, Alcon Research, Ltd, Lake Forest, CA, USA Purpose: We aimed to investigate effects of instrument settings on porcine vitreous flow rates through dual pneumatic high-speed vitrectomy probes. Methods: The CONSTELLATION® Vision System was tested with 250, 450, and 650 mmHg of vacuum using six ULTRAVIT® vitrectomy probes of each diameter (25+®, 25, 23, and 20 gauge operated from 500 cuts per minute (cpm up to 5,000 cpm. Duty cycle modes tested included biased open, 50/50, and biased closed. Flow rates were calculated by assessing the change in weight of porcine eyes during vitreous aspiration. Volumetric flow rate was measured with a computer-connected electronic scale. Results: At lower cut rates, the biased open mode produced higher flow than did the 50/50 mode, which produced higher flow than did the biased closed mode. In the biased closed and 50/50 modes, vitreous flow rates tended to increase with increasing cut rate. Vitreous flow rates in the biased open duty cycle mode remained relatively constant across cut rates. Conclusion: Vitreous flow rates through dual pneumatic vitrectomy probes could be manipulated by changing the duty cycle modes on the vitrectomy system. Differences in duty cycle behavior suggest that high-speed cut rates of 5,000 cpm may optimize vitreous aspiration. Keywords: enhanced 25-gauge vitrectomy, 25-gauge vitrectomy, 20-gauge vitrectomy, 23-gauge vitrectomy, aspiration, Constellation Vision System

  8. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    , current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI...

  9. Condensation heat transfer correlation for water-ethanol vapor mixture flowing through a plate heat exchanger

    Science.gov (United States)

    Zhou, Weiqing; Hu, Shenhua; Ma, Xiangrong; Zhou, Feng

    2018-04-01

    Condensation heat transfer coefficient (HTC) as a function of outlet vapor quality was investigated using water-ethanol vapor mixture of different ethanol vapor concentrations (0%, 1%, 2%, 5%, 10%, 20%) under three different system pressures (31 kPa, 47 kPa, 83 kPa). A heat transfer coefficient was developed by applying multiple linear regression method to experimental data, taking into account the dimensionless numbers which represents the Marangoni condensation effects, such as Re, Pr, Ja, Ma and Sh. The developed correlation can predict the condensation performance within a deviation range from -22% to 32%. Taking PHE's characteristic into consideration and bringing in Ma number and Sh number, a new correlation was developed, which showed a much more accurate prediction, within a deviation from -3.2% to 7.9%.

  10. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    Science.gov (United States)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  11. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2015-01-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell. (paper)

  12. Natural stream flow-rates measurements by tracer techniques

    International Nuclear Information System (INIS)

    Cuellar Mansilla, J.

    1982-01-01

    This paper presents the study of the precision obtained measuring the natural stream flow rates by tracer techniques, especially when the system presents a great slope and a bed constituted by large and extended particle size. The experiences were realized in laboratory pilot channels with flow-rates between 15 and 130 [1/s]; and in natural streams with flow-rates from 1 to 25 m 3 /s. Tracer used were In-133m and Br-82 for laboratory and field measurements respectively. In both cases the tracer was injected as a pulse and its dilution measured collecting samples in the measured section, at constant flow-rates, of 5[1] in laboratory experiences and 60[1] of water in field experiences. Precisions obtained at a 95% confidence level were about 2% for laboratory and 3% for field. (I.V.)

  13. Evaluation of IOM personal sampler at different flow rates.

    Science.gov (United States)

    Zhou, Yue; Cheng, Yung-Sung

    2010-02-01

    The Institute of Occupational Medicine (IOM) personal sampler is usually operated at a flow rate of 2.0 L/min, the rate at which it was designed and calibrated, for sampling the inhalable mass fraction of airborne particles in occupational environments. In an environment of low aerosol concentrations only small amounts of material are collected, and that may not be sufficient for analysis. Recently, a new sampling pump with a flow rate up to 15 L/min became available for personal samplers, with the potential of operating at higher flow rates. The flow rate of a Leland Legacy sampling pump, which operates at high flow rates, was evaluated and calibrated, and its maximum flow was found to be 10.6 L/min. IOM samplers were placed on a mannequin, and sampling was conducted in a large aerosol wind tunnel at wind speeds of 0.56 and 2.22 m/s. Monodisperse aerosols of oleic acid tagged with sodium fluorescein in the size range of 2 to 100 microm were used in the test. The IOM samplers were operated at flow rates of 2.0 and 10.6 L/min. Results showed that the IOM samplers mounted in the front of the mannequin had a higher sampling efficiency than those mounted at the side and back, regardless of the wind speed and flow rate. For the wind speed of 0.56 m/s, the direction-averaged (the average value of all orientations facing the wind direction) sampling efficiency of the samplers operated at 2.0 L/min was slightly higher than that of 10.6 L/min. For the wind speed of 2.22 m/s, the sampling efficiencies at both flow rates were similar for particles < 60 microm. The results also show that the IOM's sampling efficiency at these two different flow rates follows the inhalable mass curve for particles in the size range of 2 to 20 microm. The test results indicate that the IOM sampler can be used at higher flow rates.

  14. Blood flow rate measurements with indicator techniques revisited

    DEFF Research Database (Denmark)

    Sejrsen, Per; Bülow, Jens

    2009-01-01

    In view of the emerging role, disturbances in regional blood flow rate seem to play in the pathogenesis of the metabolic syndrome; we review the concepts of the classical indicator dilution and washout techniques used for determinations of regional blood flow rate. Prerequisites, assumptions......, necessary precautions for the application of these experimental techniques are emphasized. Special attention has been carried out to elucidate the consequence of a choice of indicators having a large distribution volume in the tissues....

  15. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.

    Science.gov (United States)

    Onischuk, A A; Purtov, P A; Baklanov, A M; Karasev, V V; Vosel, S V

    2006-01-07

    Zinc and silver vapor homogeneous nucleations are studied experimentally at the temperature from 600 to 725 and 870 K, respectively, in a laminar flow diffusion chamber with Ar as a carrier gas at atmospheric pressure. The size, shape, and concentration of aerosol particles outcoming the diffusion chamber are analyzed by a transmission electron microscope and an automatic diffusion battery. The wall deposit is studied by a scanning electron microscope (SEM). Using SEM data the nucleation rate for both Zn and Ag is estimated as 10(10) cm(-3) s(-1). The dependence of critical supersaturation on temperature for Zn and Ag measured in this paper as well as Li, Na, Cs, Ag, Mg, and Hg measured elsewhere is analyzed. To this aim the classical nucleation theory is extended by the dependence of surface tension on the nucleus radius. The preexponent in the formula for the vapor nucleation rate is derived using the formula for the work of formation of noncritical embryo [obtained by Nishioka and Kusaka [J. Chem. Phys. 96, 5370 (1992)] and later by Debenedetti and Reiss [J. Chem. Phys. 108, 5498 (1998)

  16. Fluid Flow Behaviour under Different Gases and Flow Rate during Gas Metal Arc Welding

    OpenAIRE

    Jaison Peter

    2013-01-01

    Gas metal arc welding (GMAW) is a highly efficient and fast process for fabricating high quality weld. High quality welds are fabricated by proper selection of consumable includes gas and filler metals. The optimum flow rate of gas will ensure the proper quality of weld. In this project, a fluid flow behavior of different flow rate is modeled and the change quality will be studied.

  17. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  18. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    Science.gov (United States)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  19. Supraorbital cutaneous blood flow rate during carotid endarterectomy

    DEFF Research Database (Denmark)

    Hove, Jens D; Rosenberg, Iben; Sejrsen, Per

    2006-01-01

    : The supraorbital cutaneous blood flow rate was measured by the application of heat to the skin and following the subsequent dissipation of the heat in seven patients undergoing carotid endarterectomy. At the same time, the oxygenation in the right and left frontal region was monitored by near-infrared spectroscopy......BACKGROUND: The supraorbital skin region is supplied by the supraorbital artery, which is a branch of the internal carotid artery. The supraorbital cutaneous blood flow rate may therefore be influenced by changes in the internal carotid artery flow during carotid endarterectomy. METHODS...... (NIRS). RESULTS: During cross-clamping of the carotid artery, the ipsilateral NIRS-determined frontal oxygenation tended to decrease [67 +/- 13% to 61 +/- 11% (P = 0.06); contralateral 68 +/- 11% to 66 +/- 8%] as did the supraorbital cutaneous blood flow rate from 56 +/- 23 to 44 +/- 7 ml 100 g(-1) min...

  20. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  1. The effect of mixing rates on the formation and growth of condensation aerosols in a model stagnation flow

    KAUST Repository

    Alshaarawi, Amjad; Bisetti, Fabrizio

    2015-01-01

    A steady, laminar stagnation flow configuration is adopted to investigate numerically the interaction between condensing aerosol particles and gas-phase transport across a canonical mixing layer. The mixing rates are varied by adjusting the velocity and length scales of the stagnation flow parametrically. The effect of mixing rates on particle concentration, polydispersity, and mean droplet diameter is explored and discussed. This numerical study reveals a complex response of the aerosol to varying flow times. Depending on the flow time, the variation of the particle concentration in response to varying mixing rates falls into one of the two regimes. For fast mixing rates, the number density and volume fraction of the condensing particles increase with residence time (nucleation regime). On the contrary, for low mixing rates, number density decreases with residence time and volume fraction reaches a plateau (condensation regime). It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes. The results reported here are general and illustrate genuine features of the evolution of aerosols forming by condensation of supersaturated vapor from heat and mass transport across mixing layers.

  2. The effect of mixing rates on the formation and growth of condensation aerosols in a model stagnation flow

    KAUST Repository

    Alshaarawi, Amjad

    2015-03-01

    A steady, laminar stagnation flow configuration is adopted to investigate numerically the interaction between condensing aerosol particles and gas-phase transport across a canonical mixing layer. The mixing rates are varied by adjusting the velocity and length scales of the stagnation flow parametrically. The effect of mixing rates on particle concentration, polydispersity, and mean droplet diameter is explored and discussed. This numerical study reveals a complex response of the aerosol to varying flow times. Depending on the flow time, the variation of the particle concentration in response to varying mixing rates falls into one of the two regimes. For fast mixing rates, the number density and volume fraction of the condensing particles increase with residence time (nucleation regime). On the contrary, for low mixing rates, number density decreases with residence time and volume fraction reaches a plateau (condensation regime). It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes. The results reported here are general and illustrate genuine features of the evolution of aerosols forming by condensation of supersaturated vapor from heat and mass transport across mixing layers.

  3. Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation

    DEFF Research Database (Denmark)

    Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed

    2017-01-01

    Current clinical ultrasound (US) systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the transverse oscillation method, a 32×32 element matrix array, and the experimental US scanner SARUS is presented...... is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom ( ∅=8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow-rig compared...

  4. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

    Science.gov (United States)

    SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro

    2016-11-01

    Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

  5. Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seonuk; Jeong, Yong Jin; Baek, Yonghwa; Kim, Lae Ho; Jang, Jin Hyuk; Kim, Yebyeol [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); An, Tae Kyu [Department of Polymer Science & Engineering, Korea National University of Transportation, 50 Daehak-Ro, Chungju (Korea, Republic of); Nam, Sooji, E-mail: sjnam15@etri.re.kr [Information Control Device Section, Electronics and Telecommunications Research Institute, Daejeon, 305-700 (Korea, Republic of); Kim, Se Hyun, E-mail: shkim97@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 712-749 (Korea, Republic of); Jang, Jaeyoung, E-mail: jyjang15@hanyang.ac.kr [Department of Energy Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Chan Eon, E-mail: cep@postech.ac.kr [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2017-08-31

    Highlights: • Sol-gel-derived aluminum oxide thin films were prepared using ultraviolet (UV) annealing. • UV irradiation dramatically promoted the densification of AlO{sub x} during the annealing stage, thereby forming a close-packed AlO{sub x} film. • The resulting AlO{sub x} films deposited on polymer substrates exhibited good water vapor blocking properties with low water vapor transmission rates (WVTRs). - Abstract: Here, we report the fabrication of low-temperature sol-gel-derived aluminum oxide (AlO{sub x}) films via ultraviolet (UV) annealing and the investigation of their water vapor blocking properties by measuring the water vapor transmission rates (WVTRs). The UV annealing process induced the formation of a dense metal-oxygen-metal bond (Al-O-Al structure) at low temperatures (<200 °C) that are compatible with commercial plastic substrates. The density of the UV-annealed AlO{sub x} thin film at 180 °C was comparable to that of AlO{sub x} thin films that have been thermally annealed at 350 °C. Furthermore, the UV-annealed AlO{sub x} thin films exhibited a high optical transparency in the visible region (>99%) and good electrical insulating properties (∼10{sup −7} A/cm{sup 2} at 2 MV/cm). Finally, we confirmed that a dense AlO{sub x} thin film was successfully deposited onto the plastic substrate via UV annealing at low temperatures, leading to a substantial reduction in the WVTRs. The Ca corrosion test was used to measure the WVTRs of AlO{sub x} thin films deposited onto polyethylene naphthalate or polyimide substrates, determined to be 0.0095 g m{sup −2} day{sup −1} (25 °C, 50% relative humidity) and 0.26 g m{sup −2} day{sup −1}, respectively.

  6. Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow

    International Nuclear Information System (INIS)

    Olczyk, Aleksander

    2009-01-01

    A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate φ m = ρv, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.

  7. Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow

    Energy Technology Data Exchange (ETDEWEB)

    Olczyk, Aleksander [Institute of Turbomachinery, Technical University of Lodz, Wolczanska 219/223, 90-924 Lodz (Poland)], E-mail: aolczyk@p.lodz.pl

    2009-08-15

    A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate {phi}{sub m} = {rho}v, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.

  8. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    Science.gov (United States)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  9. Evaluation of Xerostomia and salivary flow rate in Hashimoto's Thyroiditis.

    Science.gov (United States)

    Agha-Hosseini, Farzaneh; Shirzad, Nooshin; Moosavi, Mahdieh-Sadat

    2016-01-01

    One of the most common causes of hypothyroidism is Hashimoto's Thyroiditis (HT). Early detection of dry mouth is critical in preserving and promoting systemic and oral health. In this study we have assessed, for the first time, salivary function and xerostomia in HT patients who have not been involved with Sjögren's syndrome. HT was diagnosed in 40 patients based on clinical findings and positive anti-thyroid peroxidase antibodies (anti-TPO). Controls, matched by sex, age and body mass index (BMI), and with no history of thyroid disease, were selected. A questionnaire was used for diagnosis of xerostomia. Saliva samples were taken between 8 a.m. and 9 a.m., and at least 2 hours after the last intake of food or drink. The flow rate was calculated in milliliters per minute. Xerostomia was significantly higher in patients with HT. Unstimulated salivary flow rate was significantly lower in the HT group. Stimulated salivary flow rate was lower in HT group, but the difference was not significant. The patients with HT experienced xerostomia, and their salivary flow rate was diminished. Spitting the saliva then assessing salivary flow rate based on milliliter per minute is non-invasive, fast, and simple for chair-side diagnosis of dry mouth. Autoimmune diseases can be accompanied by salivary gland dysfunction. This may be due to the effect of cytokines in the autoimmune process or because of thyroid hormone dysfunctions.

  10. Sodium flow rate measurement method of annular linear induction pumps

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  11. Surface roughness effects on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2003-01-01

    The ability to predict void formation and void fraction in subcooled flow boiling is of importance to the nuclear reactor technology because the presence of voids affects the steady state and transient response of a reactor. The onset of nucleate boiling and the point of net vapor generation on subcooled flow boiling, focusing on surface roughness, liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa; the liquid subcoolings were 20, 30 and 40K, respectively. The surface roughness on the test heater was observed by SEM. Experimental results showed that temperatures at the onset nucleate boiling increased with increasing the liquid subcoolings or the liquid velocities. The trend of increase in the temperature at the ONB was in good agreement with the present analytical result based on the stability theory of preexisting nuclei. The measured results for the net vapor generation point agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. The temperature at the ONB decreased with an increasing size of surface roughness, while the NVG-point was independent on the surface roughness. The dependence on the ONB temperature of the roughness size was also represented well by the present analytical model

  12. Polluted soil leaching: unsaturated conditions and flow rate effects

    Directory of Open Access Journals (Sweden)

    Chourouk Mathlouthi

    2017-04-01

    Full Text Available In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

  13. Relationship between salivary flow rates and Candida albicans counts.

    Science.gov (United States)

    Navazesh, M; Wood, G J; Brightman, V J

    1995-09-01

    Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p Candida counts. Unstimulated whole saliva significantly (p Candida counts of 0 versus or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.

  14. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    Directory of Open Access Journals (Sweden)

    Jafari Mohammad Javad

    2012-12-01

    Full Text Available Abstract The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p 3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

  15. Development of a flow controller for long-term sampling of gases and vapors using evacuated canisters.

    Science.gov (United States)

    Rossner, Alan; Farant, Jean Pierre; Simon, Philippe; Wick, David P

    2002-11-15

    Anthropogenic activities contribute to the release of a wide variety of volatile organic compounds (VOC) into microenvironments. Developing and implementing new air sampling technologies that allow for the characterization of exposures to VOC can be useful for evaluating environmental and health concerns arising from such occurrences. A novel air sampler based on the use of a capillary flow controller connected to evacuated canisters (300 mL, 1 and 6 L) was designed and tested. The capillary tube, used to control the flow of air, is a variation on a sharp-edge orifice flow controller. It essentially controls the velocity of the fluid (air) as a function of the properties of the fluid, tube diameter and length. A model to predict flow rate in this dynamic system was developed. The mathematical model presented here was developed using the Hagen-Poiseuille equation and the ideal gas law to predict flow into the canisters used to sample for long periods of time. The Hagen-Poiseuille equation shows the relationship between flow rate, pressure gradient, capillary resistance, fluid viscosity, capillary length and diameter. The flow rates evaluated were extremely low, ranging from 0.05 to 1 mL min(-1). The model was compared with experimental results and was shown to overestimate the flow rate. Empirical equations were developed to more accurately predict flow for the 300 mL, 1 and 6 L canisters used for sampling periods ranging from several hours to one month. The theoretical and observed flow rates for different capillary geometries were evaluated. Each capillary flow controller geometry that was tested was found to generate very reproducible results, RSD gas chromatograph. The capillary flow controller was found to exceed the performance of the sorbent samplers in this comparison.

  16. Vaporization of Samarium trichloride studied by thermogravimetry

    International Nuclear Information System (INIS)

    Esquivel, Marcelo R.; Pasquevich, Daniel M.

    2003-01-01

    In the present work, the vaporization reaction of SmCl 3 (l) obtained from the 'in situ' reaction of Sm 2 O 3 (s) and Cl 2 (g)-C(s) was studied by thermogravimetry under controlled atmosphere. The effects of both the temperature between 825 C degrees and 950 C degrees and the total flow gas on the vaporization rate of the following reaction: SmCl 3 (l) = SmCl 3 (g) were analyzed. The vaporization rate of the process was found to be independent of then total gas flow rate and highly dependent on the temperature. E ap calculation led to a value of 240 ± 10 kJ.mol -1 . A comparison between this value and that of the molar enthalpy of vaporization allow to the conclusion that the reaction occur in conditions near to equilibrium. The SmCl 3 identity was determined by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). (author)

  17. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...

  18. Correlation measurements of sodium flow rate with magnetic sensors

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Krasnoyarov, N.V.; Adamovskij, L.A.; Golushko, V.V.; Sroelov, V.S.

    1978-01-01

    The results of bench-mark experiments and those carried out at the BOR-60 reactor to measure the sodium coolant flow rate by a correlation method are presented. The method is based on detecting the eddy type flow hydraulic nonuniformities using magnetic flowmeters. The measurements were fulfilled in a broad range of flow rates (G=10-10 4 m 3 /h, Re=2x10 5 -2x10 7 ). The measured and calculated mutual correlation functions are presented with parallel and perpendicular orientations of the flowmeters magnetic fields. A good accord is stated. Prerequirements to the arrangement of the measuring systems are formulated. As an important advantage of the correlation method a possibility of the flowmeter calibration in situ is hydhlighted

  19. A model for reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  20. Type 1 diabetes mellitus, xerostomia, and salivary flow rates.

    Science.gov (United States)

    Moore, P A; Guggenheimer, J; Etzel, K R; Weyant, R J; Orchard, T

    2001-09-01

    The Oral Health Science Institute at the University of Pittsburgh has completed a cross-sectional epidemiologic study of 406 subjects with type 1 diabetes and 268 control subjects without diabetes that assessed the associations between oral health and diabetes. This report describes the prevalence of dry-mouth symptoms (xerostomia), the prevalence of hyposalivation in this population, and the possible interrelationships between salivary dysfunction and diabetic complications. The subjects with diabetes were participants in the Pittsburgh Epidemiology of Diabetes Complications study who were enrolled in an oral health substudy. Control subjects were spouses or best friends of participants or persons recruited from the community through advertisements in local newspapers. Assessments of salivary function included self-reported xerostomia measures and quantification of resting and stimulated whole saliva flow rates. Subjects with diabetes reported symptoms of dry mouth more frequently than did control subjects. Salivary flow rates were also impaired in the subjects with diabetes. Regression models of potential predictor variables were created for the 3 self-reported xerostomia measures and 4 salivary flow rate variables. Of the medical diabetic complications studied (ie, retinopathy, peripheral and autonomic neuropathy, nephropathy, and peripheral vascular disease), only neuropathy was found to be associated with xerostomia and decreased salivary flow measures. A report of dry-mouth symptoms was associated with current use of cigarettes, dysgeusia (report of a bad taste), and more frequent snacking behavior. Xerogenic medications and elevated fasting blood glucose concentrations were significantly associated with decreased salivary flow. Resting salivary flow rates less than 0.01 mL/min were associated with a slightly higher prevalence of dental caries. Subjects who reported higher levels of alcohol consumption were less likely to have lower rates of stimulated

  1. variations of peak expiratory flow rate with anthropometric

    African Journals Online (AJOL)

    admin

    Decreased bronchomotor tone would lead to a fall in airway resistance, and hence increased flow rate of air along it. Tests of. PEFR reflect changes in airway calibers. (Hughes and Empey, 1981). There have been reports on the variations of various ventilatory parameters with anthropometric determinants in. Nigerians.

  2. Assessment of salivary flow rate: biologic variation and measure error.

    NARCIS (Netherlands)

    Jongerius, P.H.; Limbeek, J. van; Rotteveel, J.J.

    2004-01-01

    OBJECTIVE: To investigate the applicability of the swab method in the measurement of salivary flow rate in multiple-handicap drooling children. To quantify the measurement error of the procedure and the biologic variation in the population. STUDY DESIGN: Cohort study. METHODS: In a repeated

  3. A computational model of a PEM fuel cell with finite vapor absorption rate

    Energy Technology Data Exchange (ETDEWEB)

    Vorobev, A.; Zikanov, O.; Shamim, T. [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Dearborn, MI (United States)

    2007-03-30

    The paper presents a new computational model of non-steady operation of a PEM fuel cell. The model is based on the macroscopic hydrodynamic approach and assumptions of low humidity operation and one-dimensionality of transport processes. Its novelty and advantage in comparison with similar existing models is that it takes into account the finite-time equilibration between vapor and membrane-phase liquid water within the catalyst layers. The phenomenon is described using an additional parameter with the physical meaning of the typical reciprocal time of the equilibration. A computational parametric study is conducted to identify the effect of the finite-time equilibration on steady-state and transient operation of a PEM fuel cell. (author)

  4. Monitoring the Inhalation Flow Rate of Nebulized Aerosols Using an Ultrasonic Flow Meter: In Vitro Assessment.

    Science.gov (United States)

    Yang, Michael Y; Chan, Hak-Kim

    2017-06-01

    The measurement of aerosol flow rates without obscuration of the flow is of particular concern with in vivo lung deposition studies, where precise knowledge of aerosol particle size distributions is a necessary requirement for the development of predictive correlations. This study examines the utility of an ultrasonic flow meter for such measurements and determines if a valved system can be attached to the flow meter for sampling exhaled aerosols. The flow rate across a D-30 flow meter was compared with and without nebulization of 0.9% saline aerosols from a PARI LC Sprint nebulizer. Particle size distributions of the nebulized aerosol before and after adding the D-30 flow meter and duckbill valve were measured using a Spraytec laser diffraction system. Finally, the ability of the Thor D-30 to capture a realistic breathing profile was assessed. The mean ± standard error flow rates measured by the D-30 flow meter with and without nebulization were 10.4 ± 0.1 versus 10.4 ± 0.1 L/min, 66.4 ± 0.1 versus 67.2 ± 0.1 L/min, and 89.9 ± 0.1 versus 91.4 ± 0.1 L/min. The D-30 flow meter did not considerably affect the volumetric median diameter (VMD) of the aerosols, while the VMD reduced slightly by 0.65 μm at 10 L/min and 0.69 μm at 72 L/min upon the inclusion of a duckbill valve. Time-weighted average inhalation flow rates measured by D-30 flow meters placed upstream and downstream of the one-way valve agreed well, 31.9 versus 32.6 L/min, respectively. The D-30 flow meter can be used to accurately measure inhalation flow rates of nebulized aerosols without significantly impacting particle size distributions, and one-way duckbill valves can be used to isolate the inhalation portion of a breathing pattern to facilitate collection of exhaled doses.

  5. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.

    2009-01-01

    In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...

  6. The Relationship between High Flow Nasal Cannula Flow Rate and Effort of Breathing in Children.

    Science.gov (United States)

    Weiler, Thomas; Kamerkar, Asavari; Hotz, Justin; Ross, Patrick A; Newth, Christopher J L; Khemani, Robinder G

    2017-10-01

    To use an objective metric of effort of breathing to determine optimal high flow nasal cannula (HFNC) flow rates in children flow rates of 0.5, 1.0, 1.5, and 2.0 L/kg/minute. For a subgroup of patients, 2 different HFNC delivery systems (Fisher & Paykel [Auckland, New Zealand] and Vapotherm [Exeter, New Hampshire]) were compared. Twenty-one patients (49 titration episodes) were studied. The most common diagnoses were bronchiolitis and pneumonia. Overall, there was a significant difference in the percent change in PRP from baseline (of 0.5 L/kg/minute) with increasing flow rates for the entire cohort (P flow rates were increased (P = .001) than patients >8 kg. The optimal HFNC flow rate to reduce effort of breathing in infants and young children is approximately 1.5-2.0 L/kg/minute with more benefit seen in children ≤8 kg. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Process Measurement Deviation Analysis for Flow Rate due to Miscalibration

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eunsuk; Kim, Byung Rae; Jeong, Seog Hwan; Choi, Ji Hye; Shin, Yong Chul; Yun, Jae Hee [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)

    2016-10-15

    An analysis was initiated to identify the root cause, and the exemption of high static line pressure correction to differential pressure (DP) transmitters was one of the major deviation factors. Also the miscalibrated DP transmitter range was identified as another major deviation factor. This paper presents considerations to be incorporated in the process flow measurement instrumentation calibration and the analysis results identified that the DP flow transmitter electrical output decreased by 3%. Thereafter, flow rate indication decreased by 1.9% resulting from the high static line pressure correction exemption and measurement range miscalibration. After re-calibration, the flow rate indication increased by 1.9%, which is consistent with the analysis result. This paper presents the brief calibration procedures for Rosemount DP flow transmitter, and analyzes possible three cases of measurement deviation including error and cause. Generally, the DP transmitter is required to be calibrated with precise process input range according to the calibration procedure provided for specific DP transmitter. Especially, in case of the DP transmitter installed in high static line pressure, it is important to correct the high static line pressure effect to avoid the inherent systematic error for Rosemount DP transmitter. Otherwise, failure to notice the correction may lead to indicating deviation from actual value.

  8. Identification of 3-phase flow patterns of heavy oil from pressure drop and flow rate data

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, F.; Bannwart, A.C.; Mendes, J.R.P. [Campinas State Univ., Sao Paulo (Brazil); Serapiao, A.B.S. [Sao Paulo State Univ., Sao Paulo (Brazil)

    2008-07-01

    Pipe flow of oil-gas-water mixtures poses a complex thermo-fluid dynamical problem. This paper examined the relationship between phase flow rates, flow pattern identification, and pressure drop in 3-phase water-assisted heavy oil in the presence of a gaseous phase. An artificial intelligence program called a support vector machine (SVM) was used to determine relevant parameters for flow pattern classification. Data from a 3-phase flow of heavy oil with gas and water in a vertical pipe was used in the study. The data were used to train the machine, which then predicted the flow pattern of the remaining data. Tests with different parameters and training data were then performed. The study showed that the proposed SVM flow pattern identification process accurately predicted flow patterns. It was concluded that the SVM took a relatively short amount of time to train. Future research is needed to apply the tool to larger flow datasets. 5 refs., 1 tab., 2 figs.

  9. Measurement of blowdown flow rates using load cells

    International Nuclear Information System (INIS)

    Dolas, P.K.; Venkat Raj, V.; Ghosh, A.K.; Murty, L.G.K.; Muralidhar Rao, S.

    1980-01-01

    To establish a reliable method for measuring two-phase flow, experiments were planned for measurement of transient single phase flow rates from vessels using load cells. Suitability of lead-zirconate-titanate piezoelectric ceramic discs was examined. Discharge time constant of the disc used was low, leading to large measurement errors. Subsequently, experiments were carried out using strain gauge load cells and these were found satisfactory. The unsteady flow equation has been derived for the system under investigation. The equation has been solved numerically using the fourth order Runge-Kutta method and also by integrating it analytically. The experimental results are compared with the theoretical results and presented in this report. (auth.)

  10. Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

    Directory of Open Access Journals (Sweden)

    Wen Chuang

    2015-11-01

    Full Text Available The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas models reaches over 10 %. The difference increases with the lower of the inlet temperature regardless of the inlet pressure. A higher back pressure results in an earlier location of the shock wave. The pressure ratio of 0.72 is the first threshold to get the separator work normally. The second threshold is 0.95, in which case the whole flow is subsonic and cannot reach the choked state. The shock position moves upstream with the real gas model compared to the ideal gas law in the cyclonic separation section.

  11. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  12. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    International Nuclear Information System (INIS)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo

    2007-01-01

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm 2 at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode

  13. Innovative model-based flow rate optimization for vanadium redox flow batteries

    Science.gov (United States)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2016-11-01

    In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.

  14. On the relation between the ratio of energy of vaporization to activation energy for flow and physical properties of liquid metals

    International Nuclear Information System (INIS)

    Dutt, N.V.K.; Ravikumar, Y.V.L.; Prasad, D.H.L.

    1993-01-01

    A relation between the ratio of energy of vaporization (Esub(vap) to the activation energy for flow (Esub(vis)) and the ratio of melting point (T m ) to the critical temperature (T c ) has been developed for liquid metals, and is shown to be superior to the examinations from Eyring theory. (author). 12 refs

  15. On The Validity of the Assumed PDF Method for Modeling Binary Mixing/Reaction of Evaporated Vapor in GAS/Liquid-Droplet Turbulent Shear Flow

    Science.gov (United States)

    Miller, R. S.; Bellan, J.

    1997-01-01

    An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.

  16. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  17. Mixed convection between horizontal plates and consequences for chemical vapor deposition flows

    International Nuclear Information System (INIS)

    Chiu, K.C.

    1986-01-01

    To simulate the fluid dynamics of VD systems, mixed convection between horizontal plates (AR = width/height = 10) heated from below was studied by laser Doppler anemometry in a range 1368 < Ra < 8300 and 15 < R3 < 170. The entrance effects were characterized by two lengths: one for the onset of bouyancy-driven instability, and one for the full development of longitudinal convection rolls. Explicit expressions for both entrance lengths are given in terms of Ra and Re. In addition, unsteady longitudinal convection rolls were observed. These are discussed in terms of the admixture of transverse convection rolls and/or contributions from upstream turbulence. For the fully developed region it is shown analytically that the transverse velocities of the longitudinal convection rolls, v and w, are independent of the forced flow and are identical to those of the two-dimensional Rayleigh-Benard convection rolls. These fundamental results serve as a base for the discussion of horizontal CVD flows. The entrance and sidewall effects are found to have pronounced influences on the flow patterns observed in CVD (AR = 2) reactors

  18. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan [Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, 100084 (China); Yan Yong, E-mail: lihuipeng@tsinghua.edu.c [University of Kent, Canterbury, Kent CT2 7NT (United Kingdom)

    2009-02-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  19. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    International Nuclear Information System (INIS)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan; Yan Yong

    2009-01-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  20. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  1. A methodology for the parametric modelling of the flow coefficients and flow rate in hydraulic valves

    International Nuclear Information System (INIS)

    Valdés, José R.; Rodríguez, José M.; Saumell, Javier; Pütz, Thomas

    2014-01-01

    Highlights: • We develop a methodology for the parametric modelling of flow in hydraulic valves. • We characterize the flow coefficients with a generic function with two parameters. • The parameters are derived from CFD simulations of the generic geometry. • We apply the methodology to two cases from the automotive brake industry. • We validate by comparing with CFD results varying the original dimensions. - Abstract: The main objective of this work is to develop a methodology for the parametric modelling of the flow rate in hydraulic valve systems. This methodology is based on the derivation, from CFD simulations, of the flow coefficient of the critical restrictions as a function of the Reynolds number, using a generalized square root function with two parameters. The methodology is then demonstrated by applying it to two completely different hydraulic systems: a brake master cylinder and an ABS valve. This type of parametric valve models facilitates their implementation in dynamic simulation models of complex hydraulic systems

  2. Determination of forces induced by steam flow in turbines; Determinacion de fuerzas inducidas por flujo de vapor en turbinas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Castrejon, Juan Carlos

    2008-09-15

    The steam flow induced vibrations in turbines is a common problem during the operation of 300 MW turbines and it is one of the problems that requires solution to develop 1 GW steam turbines. The flow induced vibration is caused because there is an interaction between blades and the flow field. Blades are subjected to the forces caused by the flow field, but also the flow field is affected by the blades and its movement. The nozzle wakes cause uneven pressure field downstream and produces alternating forces on blades which lead to blade vibrations. Some of the vibrations originated in this way may damage the blades and affect the turbine performance. The forces acting on blades (and causing forced vibrations) as a result of the variations in the flow field in the axial rotor-stator clearance are studied in this project. These forces were determined applying computer fluid dynamics (CFD) in two turbine stages. The CFD analysis was carried out in the Curtis stage and in the last stage, using 2D and 3D models. An important part of the analysis is focused on discussing the pressure field variation, because this variation caused the forces acting on blades. The flow field was resolved using CFD and the computed pressure field was integrated around the blades to get the forces acting on blades. These computed dynamical forces were analyzed using a FFT analysis and the results were used in the blade useful life estimation and in the investigation of the failure causes of these blades. In every turbine stage the RNG - turbulence model and the sliding mesh method was used to deal with the blade motion. The 3D models were resolved using parallel computation in a cluster of 6 AMD 64 Opteron processors of 2412.36 MHz and 8 Gb of RAM. The results of the simulation in both stages get the pressure field behavior in the axial rotor-stator clearance and determine the force acting on the blades. These results showed that both, the pressure field and the force magnitude acting on

  3. Analyses of Decrease in Reactor Coolant Flow Rate in SMART

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Kyoo Hwan; Choi, Suhn

    2011-01-01

    SMART is a small integral reactor, which is under development at KAERI to get the standard design approval by the end of 2011. SMART works like a pressurized light-water reactor in principle though it is more compact than large commercial reactors. SMART houses major components such as steam generators, a pressurizer, and reactor coolant pumps inside the reactor pressure vessel. Due to its compact design, SMART adopts a canned-motor type reactor coolant pump which has much smaller rotational inertia than the ones used in commercial reactors. As a consequence, the reactor coolant pump has very short coastdown time and reactor coolant flow rate decreases more severely compared to commercial reactors. The transients initiated by reduction of reactor coolant flow rate have been analyzed to ensure that SMART can be safely shutdown on such transients. The design basis events in this category are complete loss of flow, single pump locked rotor with loss of offsite power, and single pump shaft break with loss of offsite power

  4. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    DEFF Research Database (Denmark)

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas

    2015-01-01

    BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect...

  5. Model for determining vapor equilibrium rates in the hanging drop method for protein crystal growth

    Science.gov (United States)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented. Results are applied to 18 drop and well arrangements commonly encountered in the laboratory. The chemical nature of the salt, drop size and shape, drop concentration, well size, well concentration, and temperature are taken into account. The rate of evaporation increases with temperature, drop size, and the salt concentration difference between the drop and the well. The evaporation in this model possesses no unique half-life. Once the salt in the drop achieves 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  6. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications

    International Nuclear Information System (INIS)

    Kottapalli, A G P; Tan, C W; Olfatnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M

    2011-01-01

    The paper reports the design, fabrication and experimental results of a liquid crystal polymer (LCP) membrane-based pressure sensor for flow rate and flow direction sensing applications. Elaborate experimental testing results demonstrating the sensors' performance as an airflow sensor have been illustrated and validated with theory. MEMS sensors using LCP as a membrane structural material show higher sensitivity and reliability over silicon counterparts. The developed device is highly robust for harsh environment applications such as atmospheric wind flow monitoring and underwater flow sensing. A simple, low-cost and repeatable fabrication scheme has been developed employing low temperatures. The main features of the sensor developed in this work are a LCP membrane with integrated thin film gold piezoresistors deposited on it. The sensor developed demonstrates a good sensitivity of 3.695 mV (ms −1 ) −1 , large operating range (0.1 to >10 ms −1 ) and good accuracy in measuring airflow with an average error of only 3.6% full-scale in comparison with theory. Various feasible applications of the developed sensor have been demonstrated with experimental results. The sensor was tested for two other applications—in clinical diagnosis for breath rate, breath velocity monitoring, and in underwater applications for object detection by sensing near-field spatial flow pressure

  7. Regulation of liquid metal coolant flow rate in experimental loops

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Laptev, G.I.

    1987-01-01

    The possibility to use the VRT-2, RPA-T and R 133 analog temperature regulators for the automated regulation of liquid metal flow rate in the experimental loops for investigations on sodium and sodium-potassium alloy technology is considered. The RPA-T device is shown to be the most convenient one; it is characterized by the following parameters: measuring modulus transfer coefficient is 500; the range of regulating modulus proportionality factor variation - 0.3 - 50; the range of the regulating modulus intergrating time constant variation - 5 - 500 s

  8. Investigation of the liquid film flow rate in an annular two phase flow

    International Nuclear Information System (INIS)

    Chandraker, D.K.; Dasgupta, A.; Vijayan, P.K.; Aritomi, M.

    2011-01-01

    An accurate knowledge of the liquid film flow is essential in most thermal-hydraulic predictions, including the onset of dryout in boiling channels and post-dryout heat transfer during transient and accident scenarios. The determination of the film flow is an important aspect of the dryout analysis in the boiling channel. Dryout is caused due to the disappearance of the liquid film on the heated surface. Mechanistic prediction of dryout involves the modeling of the physical phenomenon of the processes like entrainment and deposition rate of droplets. In the nuclear reactor systems analytical prediction of the thermal hydraulic parameters is always desirable to avoid generation of exhaustive and expensive experimental data for optimizing the design parameters. Good constitutive models for entrainment and deposition are vital for an accurate prediction of the film flow rate and hence dryout in a fuel bundle. This paper attempts a comprehensive review of the dryout analysis involving application of the constitutive models for the film flow rate. Validation of these models against various experimental data has also been presented in this paper. (author)

  9. THE IMPACT OF THE EXCHANGE RATE ON THE COMMERCIALS FLOWS

    Directory of Open Access Journals (Sweden)

    Mihaela IAVORSCHI

    2015-04-01

    Full Text Available The liberalization of capital movements between states and of the trade of goods and services, are one of the most important phenomena in the current world economy. The purpose of the present study, in the case of Romania, is to answer the question whether the interventions by means of the exchange rate of the national currency contributes to the fluidization and improvement of the commercial trades. The study demonstrates that the leu devaluation does not lead to a substantial increase of the exports. As a mechanism of influence of the commercials flows, the exchange rate has a short-term influence and the economy requires structural reforms, meant to stimulate the growth of the economic competitiveness.

  10. Unsteady Flows Control Hydrologic Turnover Rates in Antarctic Hyporheic Zones

    Science.gov (United States)

    Wlostowski, A. N.; Gooseff, M. N.; McKnight, D. M.; Lyons, W. B.; Saelens, E.

    2016-12-01

    Hydrologic turnover of the hyporheic zone (HZ) is the process of HZ flowpaths receiving water and solutes from the stream channel while simultaneously contributing water and solutes from the HZ back to the stream channel. The influence of hydrologic turnover on HZ solute storage depends on the relative magnitude of hyporheic exchange rates (i.e. physical transport) and biogeochemical reaction rates. Because both exchange rates and reaction rates are unsteady in natural systems, the availability of solutes in the HZ is controlled by the legacy of hydraulic and biological conditions. In this study, we quantify the influence of unsteady flows on hydrologic turnover of the HZ. We study a glacial melt stream in the McMurdo Dry Valleys of Antarctica (MDVs). The MDVs provide an ideal setting for investigating hydrologic and chemical storage characteristics of HZs, because nearly all streamflow is generated from glacier melt and the HZ is vertically bounded by continuous permafrost. A dense network of shallow groundwater wells and piezometers was installed along a 60-meter reach of Von Guerard Stream. 12 days of continuous water level data in each well was used to compute the magnitude and direction of 2D hydraulic gradients between the stream channel and lateral hyporheic aquifer. Piezometers were sampled daily for stable isotope abundances. The direction and magnitude of the cross-valley (CV), perpendicular to the thalweg, component of hydraulic gradients is sensitive to daily flood events and exhibits significant spatial heterogeneity. CV gradients are consistently oriented from the hyporheic aquifer towards the stream channel on 2 sections of the study reach, whereas CV gradients are consistently oriented from the stream channel towards the hyporheic aquifer on 1 section. Three sections show diel changes in orientation of CV gradients, coincident with the passage of daily flood events. During a 4-day period of low flows, the HZ is isotopically distinct from the stream

  11. Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques

    International Nuclear Information System (INIS)

    Yang, Xufei; Xu, Jinliang; Miao, Zheng; Zou, Jinghuang; Yu, Chao

    2015-01-01

    An ORC (organic Rankine cycle) was developed with R123 as the working fluid. The heat capacity is in ∼100 kW. The match between pump and expander is investigated. Lower pump frequencies (f 10 Hz) adapt low expander torques only, and cause unstable flow and pump cavitation for larger expander torques. Ultra-low expander torques generate sufficiently high vapor superheatings to decrease expander efficiencies. Ultra-high expander torques achieve saturation vapor at the expander inlet, causing liquid droplets induced shock wave to worsen expander performance. An optimal range of expander torques exists to have better expander performance. A liquid subcooling of 20 °C is necessary to avoid pump cavitation. Expander powers and efficiencies show parabola shapes versus expander torques, or vapor superheatings at the expander inlet. The optimal vapor superheating is 13 °C. The cavitation mechanisms and measures to avoid cavitation are analyzed. This paper notes the overestimation of ORC performance by equilibrium thermodynamic analysis. Assumptions should be dependent on experiments. Future studies are suggested on organic fluid flow, heat transfer and energy conversion in various components. - Highlights: • The match between pump and expander is investigated. • A liquid subcooling of 20 °C is needed at pump inlet. • A vapor superheating of 13 °C is necessary at expander inlet. • Cavitation in pumps and expanders are analyzed. • The equilibrium thermodynamics overestimate ORC performances.

  12. The effect of electrostatic field on the rate of metal vaporization

    International Nuclear Information System (INIS)

    Tsirlin, M.S.; Lyubimov, V.D.; Krasovskij, A.I.

    1982-01-01

    Evaporation kinetics of molybdenum and tungsten filaments 30 and 80 μm in diameter, when vacuum constitutes 1.3x10 -1 -1.3x10 -3 Pa, the temperature is 1470 K for tungsten and 1270-1670 K for Mo and intensity is E=10 7 -10 8 V/m, has been measured. In supposition of evaporation of oxide mole-- cules from metal surface the density of molecule current of (MoO 3 ) 3 and (WO 3 ) 3 over solid (MoO 3 ) 3 and (WO 3 ) 3 is determined. It is established that the rate of molecule removal from the filament under the effect of heterogeneous electric field increases with the increase of dipole momentum of (WO 3 ) 3 and (MoO 3 ) 3 , the value of field intensity and with metal temperature decrease

  13. Correlation of flow accelerated corrosion rate with iron solubility

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.; Ohira, T.; Hisamune, K.; Takiguchi, H.

    2009-01-01

    Flow Accelerated Corrosion (FAC) of carbon steel is one of the most important subjects in coolant systems of power plants. FAC is influenced by material, flow condition, temperature, and water chemistry. It is considered that solubility is the most important factor to determine the effect of water chemistry on FAC. In the present study, effect of specific oxide on FAC rate was studied from the thermodynamic solubility of iron. The effects of temperature and pH on the iron solubility were evaluated by taking into consideration hydrolysis reactions of ferrous iron, dissolution equilibria of Fe 3 O 4 , FeO, and Fe(OH) 2 , and charge balance. The correlation between the iron solubility and FAC behavior was evaluated by using the normalized mass transfer coefficient. It is clarified that the product of iron solubility equilibrated with Fe 3 O 4 and normalized mass transfer coefficient can explain the temperature and pH dependence of FAC. These results indicate presence of magnetite on the surface of carbon steel. Diffusion of iron from the saturated layer determines the FAC rate from water chemistry aspect. (author)

  14. Device for measuring flow rate in a nuclear reactor core

    International Nuclear Information System (INIS)

    Hamano, Jiro.

    1980-01-01

    Purpose: To always calculate core flow rate automatically and accurately in BWR type nuclear power plants. Constitution: Jet pumps are provided to the recycling pump and to the inside of the pressure vessel of a nuclear reactor. The jet pumps comprise a plurality of calibrated jet pumps for forcively convecting the coolants and a plurality of not calibrated jet pumps in order to cool the heat generated in the reactor core. The difference in the pressures between the upper and the lower portions in both of the jet pumps is measured by difference pressure transducers. Further, a thermo-sensitive element is provided to measure the temperature of recycling water at the inlet of the recycling pump. The output signal from the difference pressure transducer is inputted to a process computer, calculated periodically based on predetermined calculation equations, compensated for the temperature by a recycling water temperature signal and outputted as a core flow rate signal to a recoder. The signal is also used for the power distribution calculation in the process computer and the minimum limit power ratio as the thermal limit value for the fuels is outputted. (Furukawa, Y.)

  15. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    Science.gov (United States)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  16. Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD

    Directory of Open Access Journals (Sweden)

    T. S. Santra

    2012-06-01

    Full Text Available Diamond-like nanocomposite (DLN thin films were deposited on pyrex glass substrate using different flow rate of haxamethyldisiloxane (HMDSO based liquid precursor with nitrogen gas as a glow discharged decomposition by plasma enhanced chemical vapor deposition (PECVD technique. The significant influence of different precursor flow rates on refractive index and thickness of the DLN films was measured by using spectroscopic filmatrics and DEKTAK profilometer. Optical transparency of the DLN thin films was analyzed by UV-VIS-NIR spectrometer. FTIR spectroscopy, provides the information about shifted bonds like SiC2, Si-C, Si-O, C-C, Si-H, C-H, N-H, and O-H with different precursor flow rate. We have estimated the hardness of the DLN films from Raman spectroscopy using Gaussian deconvolution method and tried to investigate the correlation between hardness, refractive index and thickness of the films with different precursor flow rates. The composition and surface morphology of the DLN films were investigated by X-ray photo electron spectroscopy (XPS and atomic force microscopy (AFM respectively. We have analyzed the hardness by intensity ratio (ID/IG of D and G peaks and correlates with hardness measurement by nanoindentation test where hardness increases from 27.8 μl/min to 80.6μl/min and then decreases with increase of flow rate from 80.6μl/min to 149.5μl/min. Finally, we correlates different parameters of structural, optical and tribological properties like film-thickness, refractive index, light transmission, hardness, surface roughness, modulus of elasticity, contact angle etc. with different precursor flow rates of DLN films.

  17. Study of the distributions of flow rate and enthalpy in the sub-channels of a bundle geometry of nuclear reactors in one and two-phase flow

    International Nuclear Information System (INIS)

    Bayoumi, M.A.A.

    1976-10-01

    A bibliographic study shows that the experimental studies examined, have been developed to understand the phenomenon acting on the mixing between the sub-channels of which geometries are such these of rod bundles used in some nuclear reactors. Experimental devices and tests have been developed to study the influence of the following parameters, operating conditions, pressure, flow rate, power brought to the bundle and inlet temperature on the distribution of flow rates and vapor content among the different sub-channels. By means of non isokinetic sampling, one has determined the enthalpy of the fluid participating to the mixing between the communicating sub-channels and it has been shown that the value of this enthalpy depends strongly on the type of fluid flow and that this enthalpy cannot be either the enthalpy of one of the two sub-channels, nor (always) an average of these two enthalpies. The experimental results have been compared with calculations developed with the code FLICA, concerning the mass velocity distribution, the exchange term of linear momentum, and the variation of the transversal enthalpy with regard to the type of fluid flow. A study of local void ratio measurement, by means of optical probes, has been proposed. The present study has been carried out with a smooth geometry [fr

  18. Study on characteristics of vapor-liquid two-phase flow in mini-channels

    International Nuclear Information System (INIS)

    Guo Lei; Zhang Shusheng; Cheng Lin

    2011-01-01

    Highlights: → I- and Z-shaped mini-channels are studied with water and ethanol respectively. → The smaller the wall contact angles are, the less time the bubbles take to depart. → Bubble bottom micro-layer can enhance heat transfer. → Z-shaped channels show a higher heat transfer coefficient but a larger pressure drop. → Water reflects a higher heat transfer coefficient than ethanol in the same channels. - Abstract: To explore the mechanism of boiling bubble dynamics in narrow channels, two types of channels are investigated which have I- and Z-shaped with width of 2 mm. Using VOF model and self-programming, the whole flow field is simulated with two different kinds of media, namely, water and ethanol. The influence of wall contact angle on the process of bubble generating and growth is studied, and the relationship between different channel shapes and the pressure drop is also investigated taking into account the effects of gravity, viscosity, surface tension and wall adhesion. The bubble generation, growth and departure processes are analyzed through numerical simulation and self-programming, and the influence of interface movements and changes on internal pressure difference and average surface heat transfer coefficient is investigated by using geometry reconstruction and interface tracking. It is found that wall contact angle has a great influence on the morphology of bubble. The smaller the wall contact angles are, the more round the bubbles are, and the less time the bubbles take to depart from the wall. The variation of contact angle also has effect upon the heat transfer coefficient. The greater the wall contact angle is, the larger the bubble-covered area is, thus the wall thermal resistance gets higher, and bubble nucleation is suppressed, and the heat transfer coefficient becomes lower. The role of surface tension in the process of boiling heat transfer is much more important than the gravity in narrow channels. The generation of bubbles

  19. The dynamic interaction of order flows and the CAD/USD exchange rate

    OpenAIRE

    Nikola Gradojevic; Christopher J. Neely

    2008-01-01

    We explore the relationship between disaggregated order flow, the Canada/U.S. dollar (CAD/USD) market and U.S. macroeconomic announcements. Three types of CAD order flow and the CAD/USD are cointegrated. Financial order flow appears to contemporaneously drive the CAD/USD while commercial order flow seems to contemporaneously respond to exchange rate movements. Past order flow and lagged exchange rates strongly explain most types of order flow. Despite this predictability and the contemporaneo...

  20. Correlation of flow accelerated corrosion rate with iron solubility

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.; Ohira, T.; Hisamune, K.

    2011-01-01

    Flow accelerated corrosion (FAC) of the carbon steel is one of the most important subjects in the coolant systems of the power plants. FAC is influenced by the composition of the material, the flow condition, temperature, and the water chemistry conditions. It is considered that the solubility of iron (Fe) is the most important factor in the water chemistry parameters affecting FAC. In the present study, the effects of temperature and pH on the Fe solubility were evaluated in consideration of the hydrolysis reactions of the ferrous iron, the dissolution equilibria of Fe 3 O 4 , FeO, and Fe(OH) 2 , and the charge balance. The correlation between the Fe solubility and the FAC behavior was discussed. It has been suggested that the product of the Fe solubility equilibrated with Fe 3 O 4 and the mass transfer coefficient can explain the temperature and pH dependence of FAC. These results indicate the presence of the magnetite on the surface of the carbon steel. Diffusion of the Fe from the saturated layer to the bulk solution determines the FAC rate from the water chemistry aspect.

  1. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mombrú, Dominique [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Romero, Mariano, E-mail: mromero@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Castiglioni, Jorge [Laboratorio de Fisicoquímica de Superficies – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Mombrú, Alvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay)

    2017-06-15

    In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.

  2. Advancements in solar stills for enhanced flow rate

    Science.gov (United States)

    Mishra, Sourav; Dubey, Maneesh; Raghuwanshi, Jitendra; Sharma, Vipin

    2018-05-01

    All over the world there is a scarcity of water and it is difficult to access potable water. Due to this most of the people are affected by diseases that are caused due to drinking of polluted water. There are technologies through which we can purify polluted water but the only problem is these technologies uses electrical energy. Since solar energy is abundant in nature therefore we can use solar as an energy source in solar stills for water distillation. Solar stills can be used in village areas where there is no electricity. It is simple and also economic in construction. This article addresses advancement in solar distillation and usage of nanofluids for enhancement in flow rate.

  3. Copepod feeding currents : flow patterns, filtration rates and energetics

    NARCIS (Netherlands)

    van Duren, L.A; Stamhuis, E.J; Videler, J.J

    Particle image velocimetry was used to construct a quasi 3-dimensional image of the flow generated by the feeding appendages of the calanoid copepod Temora longicornis. By scanning layers of flow, detailed information was obtained on flow velocity and velocity gradients. The flow around feeding T.

  4. Uncertainty Evaluation of the New Setup for Measurement of Water-Vapor Permeation Rate by a Dew-Point Sensor

    Science.gov (United States)

    Hudoklin, D.; Šetina, J.; Drnovšek, J.

    2012-09-01

    The measurement of the water-vapor permeation rate (WVPR) through materials is very important in many industrial applications such as the development of new fabrics and construction materials, in the semiconductor industry, packaging, vacuum techniques, etc. The demand for this kind of measurement grows considerably and thus many different methods for measuring the WVPR are developed and standardized within numerous national and international standards. However, comparison of existing methods shows a low level of mutual agreement. The objective of this paper is to demonstrate the necessary uncertainty evaluation for WVPR measurements, so as to provide a basis for development of a corresponding reference measurement standard. This paper presents a specially developed measurement setup, which employs a precision dew-point sensor for WVPR measurements on specimens of different shapes. The paper also presents a physical model, which tries to account for both dynamic and quasi-static methods, the common types of WVPR measurements referred to in standards and scientific publications. An uncertainty evaluation carried out according to the ISO/IEC guide to the expression of uncertainty in measurement (GUM) shows the relative expanded ( k = 2) uncertainty to be 3.0 % for WVPR of 6.71 mg . h-1 (corresponding to permeance of 30.4 mg . m-2. day-1 . hPa-1).

  5. Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide

    Science.gov (United States)

    Dang, Liem X.; Schenter, Gregory K.

    2018-06-01

    Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.

  6. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper.

    Science.gov (United States)

    Song, Zhaoping; Xiao, Huining; Zhao, Yi

    2014-10-13

    New biodegradable nanocomposites have been successfully prepared by incorporating modified nano-cellulose fibers (NCF) in a biodegradable polylactic acid (PLA) matrix in this work. The hydrophobic-modified NCF was obtained by grafting hydrophobic monomers on NCF to improve the compatibility between NCF and PLA during blending. The resulting NCF/PLA composites were then applied on paper surface via a cast-coating process in an attempt to reduce the water vapor transmission rate (WVTR) of paper. The WVTR tests, conducted under various testing conditions and with different coating weights, demonstrated that the modified NCF/PLA composites coating played a critical role in lowering WVTR of paper. The lowest WVTR value was 34 g/m(2)/d, which was obtained with an addition of 1% of modified NCF to PLA and the composites coating weight at 40 g/m(2) and substantially lower than the control value at 1315 g/m(2)/d. The paper coated with the modified biodegradable composite is promising as green-based packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Design and construction of a novel Coriolis mass flow rate meter

    NARCIS (Netherlands)

    Mehendale, A.; Zwikker, Rini; Jouwsma, Wybren

    2009-01-01

    The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente

  8. Effect of cooling rate on the survival of cryopreserved rooster sperm: Comparison of different distances in the vapor above the surface of the liquid nitrogen.

    Science.gov (United States)

    Madeddu, M; Mosca, F; Abdel Sayed, A; Zaniboni, L; Mangiagalli, M G; Colombo, E; Cerolini, S

    2016-08-01

    The aim of the present trial was to study the effect of different freezing rates on the survival of cryopreserved rooster semen packaged in straws. Slow and fast freezing rates were obtained keeping straws at different distances in the vapor above the surface of the nitrogen during freezing. Adult Lohmann roosters (n=27) were used. Two experiments were conducted. In Experiment 1, semen was packaged in straws and frozen comparing the distances of 1, 3 and 5cm in nitrogen vapor above the surface of the liquid nitrogen. In Experiment 2, the distances of 3, 7 and 10cm above the surfaces of the liquid nitrogen were compared. Sperm viability, motility and progressive motility and the kinetic variables were assessed in fresh and cryopreserved semen samples. The recovery rates after freezing/thawing were also calculated. In Experiment 1, there were no significant differences among treatments for all semen quality variables. In Experiment 2, the percentage of viable (46%) and motile (22%) sperm in cryopreserved semen was greater when semen was placed 3cm compared with 7 and 10cm in the vapor above the surface of the liquid nitrogen. The recovery rate of progressive motile sperm after thawing was also greater when semen was stored 3cm in the vapor above the surface of the liquid nitrogen. More rapid freezing rates are required to improve the survival of rooster sperm after cryopreservation and a range of distances from 1 to 5cm in nitrogen vapor above the surface of the liquid nitrogen is recommended for optimal sperm viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Flow rate measurement of buoyancy-driven exchange flow by laser Doppler velocimeter

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1993-01-01

    An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vented cylinder concerning the air ingress process during a standing pipe rupture in a high-temperature gas-cooled reactor. In the present study, the evaluation method of exchange flow was developed by measuring the velocity distribution in the cylinder using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh numbers ranged from 2.0x10 4 to 2.1x10 5 . The exchange flow fluctuated irregularly with time and space in the cylinder. It was found that the exchange velocity distribution along the horizontal axis changed from one-hump to two-hump distribution with increasing Rayleigh number. In the case that the hemisphere wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the hemisphere wall and the heated disk were at the same temperature. (author)

  10. GROWTH RATE DISPERSION (GRD OF THE (010 FACE OF BORAX CRYSTALS IN FLOWING SOLUTION

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax crystals from aqueous solutions in the (010 direction at various flow rates were measured. The observed variations of the growth rate can be represented by a normal distribution.  It was found that there is no correlation between growth rate distribution and solution flow under these experimental conditions.   Keywords: Growth rate dispersion (GRD, borax, flow rate

  11. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    International Nuclear Information System (INIS)

    Compton, J.A.

    1994-01-01

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another's estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended

  12. Suggestion of an average bidirectional flow tube for the measurement of single and two phase flow rate

    International Nuclear Information System (INIS)

    Yun, B.J.; Kang, K.H.; Euh, D.J.; Song, C.H.; Baek, W.P.

    2005-01-01

    Full text of publication follows: A new type instrumentation, average bidirectional flow tube, was suggested to apply to the single and two phase flow condition. Its working principle is similar to that of the Pitot tube. The pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than static pressure of flow field due to the suction effect at the downstream. It gives an amplification effect of measured pressure difference at the flow tube. The proposed instrumentation has the characteristics that it could be applicable to low flow condition and measure bidirectional flow. It was tested in the air-water vertical and horizontal test sections which have 0.08 m inner diameter. The pressure difference across the average bidirectional flow tube, system pressure, average void fraction and injection phasic mass flow rates were measured on the measuring plane. Test was performed primarily in the single phase water and air flow condition to get the amplification factor k of the flow tube. The test was also performed in the air-water two phase flow condition and the covered flow regimes were bubbly, slug, churn turbulent flow in the vertical pipe and stratified flow in the horizontal pipe. In order to calculate the phasic and total mass flow rates from the measured differential pressure, Chexal drift-flux correlation and momentum exchange factor between the two phases were introduced. The test result shows that the suggested instrumentation with the measured void fraction, Chexal drift-flux correlation and Bosio and Malnes' momentum exchange model can predict the phasic mass flow rates within 15% error compared to the true values. A new momentum exchange model was also suggested and it gives up to 5% improvement of the measured mass flow rate compared to combination of Bosio and Malnes' momentum exchange model. (authors)

  13. Flows of a Vapor due to Phase Change Processes at the Condensed Phases with Temperature Fields as their Internal Structures

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Ooshida, Takeshi

    2005-01-01

    Transient to steady motions of a vapor caused by the evaporation and condensation processes occurring at the condensed phases placed in parallel have been studied based on the Boltzmann equation of BGK type...

  14. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  15. Cash Flow and Discount Rate Risk in Up and Down Markets: What is actually priced?

    NARCIS (Netherlands)

    Botshekan, M.; Kraeussl, R.G.W.; Lucas, A.

    2012-01-01

    We test whether asymmetric preferences for losses versus gains affect the prices of cash flow versus discount rate risk. We construct a return decomposition distinguishing cash flow and discount rate betas in up and down markets. Using U.S. data, we find that downside cash flow and discount rate

  16. Taguchi Method for Development of Mass Flow Rate Correlation using Hydrocarbon Refrigerant Mixture in Capillary Tube

    Directory of Open Access Journals (Sweden)

    Shodiya Sulaimon

    2014-07-01

    Full Text Available The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM. The Taguchi method, a statistical experimental design approach, was employed. This approach explores the economic benefit that lies in studies of this nature, where only a small number of experiments are required and yet valid results are obtained. Considering the effects of the capillary tube geometry and the inlet condition of the tube, dimensionless parameters were chosen. The new correlation was also based on the Buckingham Pi theorem. This correlation predicts 86.67% of the present experimental data within a relative deviation of -10% to +10%. The predictions by this correlation were also compared with results in published literature.

  17. Mass flow rate correlation for two-phase flow of R218 through a capillary tube

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Vacek, V.

    2009-01-01

    Roč. 29, 14-15 (2009), s. 2816-2823 ISSN 1359-4311 Institutional research plan: CEZ:AV0Z20760514 Keywords : artificial neural network * capillary tube * mass flow rate correlation * R218 Subject RIV: BK - Fluid Dynamics Impact factor: 1.922, year: 2009 http://www.sciencedirect.com/science?_ob=PublicationURL&_cdi=5687&_pubType=J&_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=fc314a471a010545ee185394a6c8f5f7&jchunk=29#29

  18. Correlation of volumetric flow rate and skin blood flow with cold intolerance in digital replantation.

    Science.gov (United States)

    Zhao, Gang; Mi, Jingyi; Rui, Yongjun; Pan, Xiaoyun; Yao, Qun; Qiu, Yang

    2017-12-01

    Cold intolerance is a common complication of digital replantation. The exact etiology is unclear, but it is considered to be multifactorial, including nonsurgical characteristics, vascular, and neurologic conditions. Blood flow may play a significant role in cold intolerance. This study was designed to evaluate the correlation of digital blood flow, including volumetric flow rate (VFR) and skin blood flow (SkBF), with cold intolerance in replanted fingers.A retrospective study was conducted among patients who underwent digital replantation between 2010 and 2013. Patients were selected into study cohort based on the inclusion criteria. Surgical data was collected on each patient, including age, sex, injury mechanism, amputation level, ischemia time, number of arteries repaired, and whether or not vascular crisis occurred. Patients were included as study cohort with both nerves repaired and without chronic disease. Cold intolerance was defined as a Cold Intolerance Symptom Severity (CISS) score over 30. The arterial flow velocity and caliber were measured by Color Doppler Ultrasound and the digital VFR was calculated. The SkBF was measured by Laser Speckle Imager. Both VFR and SkBF were calculated as a percentage of the contralateral fingers. Comparative study of surgical data and blood flow was performed between the patient with and without cold intolerance. Correlation between VFR and SkBF was also analyzed.A total of 93 patients met inclusion criteria for the study. Approximately, 42 patients were identified as having cold intolerance. Fingers that survived vascular crisis had a higher incidence of cold intolerance with a lower VFR and SkBF. The VFR was higher in 2-artery replantation, but the SkBF and incidence of cold intolerance did not differ significantly. No differences were found in age, sex, injury mechanism, amputation level, or ischemia time. Furthermore, no correlation was found between VFR and SkBF.Cold intolerance of digital replantation is associated

  19. Computation of hypersonic flows with finite rate condensation and evaporation of water

    Science.gov (United States)

    Perrell, Eric R.; Candler, Graham V.; Erickson, Wayne D.; Wieting, Alan R.

    1993-01-01

    A computer program for modelling 2D hypersonic flows of gases containing water vapor and liquid water droplets is presented. The effects of interphase mass, momentum and energy transfer are studied. Computations are compared with existing quasi-1D calculations on the nozzle of the NASA Langley Eight Foot High Temperature Tunnel, a hypersonic wind tunnel driven by combustion of natural gas in oxygen enriched air.

  20. Fluid-flow-rate metrology: laboratory uncertainties and traceabilities

    Science.gov (United States)

    Mattingly, G. E.

    1991-03-01

    Increased concerns for improved fluid flowrate measurement are driving the fluid metering community-meter manufacturers and users alike-to search for better verification and documentation for their fluid measurements. These concerns affect both our domestic and international market places they permeate our technologies - aerospace chemical processes automotive bioengineering etc. They involve public health and safety and they impact our national defense. These concerns are based upon the rising value of fluid resources and products and the importance of critical material accountability. These values directly impact the accuracy needs of fluid buyers and sellers in custody transfers. These concerns impact the designers and operators of chemical process systems where control and productivity optimization depend critically upon measurement precision. Public health and safety depend upon the quality of numerous pollutant measurements - both liquid and gaseous. The performance testing of engines - both automotive and aircraft are critically based upon accurate fuel measurements - both liquid and oxidizer streams. Fluid flowrate measurements are established differently from counterparts in length and mass measurement systems because these have the benefits of " identity" standards. For rate measurement systems the metrology is based upon " derived standards" . These use facilities and transfer standards which are designed built characterized and used to constitute basic measurement capabilities and quantify performance - accuracy and precision. Because " identity standards" do not exist for flow measurements facsimiles or equivalents must

  1. Recycling flow rate control device in BWR type reactor

    International Nuclear Information System (INIS)

    Fujiwara, Tadashi; Koda, Yasushi

    1988-01-01

    Purpose: To reduce the recycling pump speed if the pressure variation width and the variation ratio in the nuclear reactor exceed predetermined values, to thereby avoid the shutdown of the plant. Constitution: There has been proposed a method of monitoring the neutron flux increase thereby avoiding unnecessary plant shutdown, but it involves a problems of reactor scram depending on the state of the plant and the set values. In view of the above, in the plant using internal pumps put under the thyristor control and having high response to recycling flow rate, the reactor pressure is monitored and the speed of the internal pump is rapidly reduced when the pressure variation width and variation ratio exceed predetermined values to reduce the reactor power and avoid the plant shutdown. This can reduce the possibility of unnecessary power reduction due to neutron flux noises or the possibility of plant shutdown under low power conditions. Further, since the reactor operation can be continued without stopping the recycling pump, the operation upon recovery can be made rapid. (Horiuchi, T.)

  2. Performance assessment of mass flow rate measurement capability in a large scale transient two-phase flow test system

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.

    1979-01-01

    Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT

  3. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  4. Two-phase flow modelling of a solar concentrator applied as ammonia vapor generator in an absorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, N. [Posgrado en Ingenieria (Energia), Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico); Garcia-Valladares, O.; Best, R.; Gomez, V.H. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2008-09-15

    A detailed one-dimensional numerical model describing the heat and fluid-dynamic behavior inside a compound parabolic concentrator (CPC) used as an ammonia vapor generator has been developed. The governing equations (continuity, momentum, and energy) inside the CPC absorber tube, together with the energy equation in the tube wall and the thermal analysis in the solar concentrator were solved. The computational method developed is useful for the solar vapor generator design applied to absorption cooling systems. The effect on the outlet temperature and vapor quality of a range of CPC design parameters was analyzed. These parameters were the acceptance half-angle and CPC length, the diameter and coating of the absorber tube, and the manufacture materials of the cover, the reflector, and the absorber tube. It was found that the most important design parameters in order to obtain a higher ammonia-water vapor production are, in order of priority: the reflector material, the absorber tube diameter, the selective surface, and the acceptance half-angle. The direct ammonia-water vapor generation resulting from a 35 m long CPC was coupled to an absorption refrigeration system model in order to determine the solar fraction, cooling capacity, coefficient of performance, and overall efficiency during a typical day of operation. The results show that approximately 3.8 kW of cooling at -10{sup o}C could be produced with solar and overall efficiencies up to 46.3% and 21.2%, respectively. (author)

  5. Evaluation of exhaled nitric oxide in schoolchildren at different exhalation flow rates.

    Science.gov (United States)

    Pedroletti, Christophe; Zetterquist, Wilhelm; Nordvall, Lennart; Alving, Kjell

    2002-09-01

    Nitric oxide (NO) in exhaled air is believed to reflect allergic inflammation in the airways. Measured levels of exhaled NO vary with the exhaled flow rate, which therefore must be standardized. The aim of this study was to estimate the optimal exhalation flow rate when measuring NO in exhaled air. We studied 15 asthmatic children (8-18 y) with elevated NO levels and 15 age-matched controls and focused on how the quality of the NO curve profile, the discriminatory power, and the reproducibility were influenced by the exhalation flow rate. We used an on-line system for NO measurements at six different exhalation flow rates in the interval of 11-382 mL/s. The fraction of exhaled nitric oxide (FENO) was highly flow-dependent as was expected. Intermediate flow rates yielded a flat and stable NO plateau and were considerably easier to interpret than those obtained at the highest and lowest flow rates. The ratio of FENO between asthmatics and controls was lower at higher flow rates and a considerable overlap in NO values was demonstrated at all flow rates except 50 mL/s. The reproducibility was much lower at more extreme flow rates and was best at 50 mL/s. We conclude that a target exhalation flow rate of approximately 50 mL/s is to be preferred using the single-breath method for on-line NO measurements in schoolchildren.

  6. A COMPREHENSIVE STUDY OF HOURLY AND DAILY SEWAGE FLOW RATES IN FLORIDA PUBLIC SCHOOLS.

    Science.gov (United States)

    FOGARTY, WILLIAM J.; REEDER, MILTON E.

    A DETERMINATION OF THE HOURLY AND DAILY SEWAGE FLOW RATES IN FLORIDA PUBLIC SCHOOLS WAS MADE TO IDENTIFY THE FLOW CHARACTERISTICS AND TO PROVIDE A MORE PRECISE BASIS FOR THE ESTABLISHMENT OF DESIGN CRITERIA FOR SEWAGE DISPOSAL FACILITIES IN SCHOOLS. WATER FLOW DATA WAS COLLECTED FOR 158 SCHOOLS AND SEWAGE FLOW DATA FROM 42 SCHOOLS. THE FINDINGS…

  7. Liquid flow rate effects during partial evaporation in a falling film micro contactor

    NARCIS (Netherlands)

    Moschou, P.; Croon, de M.H.J.M.; Schaaf, van der J.; Schouten, J.C.

    2013-01-01

    The focus of this study is the investigation of the effect of liquid flow rate on partial evaporation, enhanced by convective nitrogen flow, in a falling film micro contactor. Experiments are performed at different flow rates and for a certain heating liquid temperature. The temperatures of the gas

  8. Homogeneous and Light-Induced Nucleation of Sulfur Vapor-Diffusion Cloud Chamber Investigation of Constant Rate Supersaturation

    Czech Academy of Sciences Publication Activity Database

    Uchtmann, H.; Kazitsyna, S. Yu.; Hensel, F.; Ždímal, Vladimír; Tříska, B.; Smolík, Jiří

    2001-01-01

    Roč. 105, č. 47 (2001), s. 11754-11762 ISSN 1089-5647 R&D Projects: GA ČR GA104/97/1198 Institutional research plan: CEZ:AV0Z4072921 Keywords : Cesium vapor * growth Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.379, year: 2001

  9. Unstimulated salivary flow rate, pH and buffer capacity of saliva in healthy volunteers.

    Science.gov (United States)

    Fenoll-Palomares, C; Muñoz Montagud, J V; Sanchiz, V; Herreros, B; Hernández, V; Mínguez, M; Benages, A

    2004-11-01

    To assess the salivary flow rate, pH, and buffer capacity of healthy volunteers, and their relationships with age, gender, obesity, smoking, and alcohol consumption, and to establish the lower-end value of normal salivary flow (oligosialia). A prospective study was conducted in 159 healthy volunteers (age > 18 years, absence of medical conditions that could decrease salivary flow). Unstimulated whole saliva was collected during ten minutes, and salivary flow rate (ml/min), pH, and bicarbonate concentration (mmol/l) were measured using a Radiometer ABL 520. The 5 percentile of salivary flow rate and bicarbonate concentration was considered the lower limit of normality. Median salivary flow rate was 0.48 ml/min (range: 0.1-2 ml/min). Age younger than 44 years was associated with higher flow rates (OR 2.10). Compared with women, men presented a higher flow rate (OR 3.19) and buffer capacity (OR 2.81). Bicarbonate concentration correlated with salivary flow rate. The lower-end values of normal flow rate and bicarbonate concentration were 0.15 ml/min and 1.800 mmol/l, respectively. The presence of obesity, smoking, and alcohol consumption did not influence salivary parameters. In healthy volunteers, salivary flow rate depends on age and gender, and correlates with buffer capacity. Obesity, smoking, and alcohol use do not influence salivary secretion.

  10. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    Science.gov (United States)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  11. Cryogenic flow rate measurement with a laser Doppler velocimetry standard

    Science.gov (United States)

    Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.

    2018-03-01

    A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).

  12. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  13. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  14. A critical review of vapor generation laws used for the analysis of two-phase flows in pipes

    International Nuclear Information System (INIS)

    Berne, P.

    1983-05-01

    Some vapor generation laws are reviewed and discussed. They are divided into empirical and analytical laws. Analytical laws are first examined. These laws result from analytical solutions of the local instantaneous equations applied to elementary cases. Empirical laws, i.e. laws that are determined by correlations with experimental data, are then discussed [fr

  15. Investigation of the Flow Rate Effect Upstream of the Constant-Geometry Throttle on the Gas Mass Flow

    Directory of Open Access Journals (Sweden)

    Yu. M. Timofeev

    2016-01-01

    Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the

  16. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    International Nuclear Information System (INIS)

    Li, R N; Wang, H Y; Han, W; Shen, Z J; Ma, W

    2013-01-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance

  17. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  18. Dividend growth, cash flow, and discount rate news

    OpenAIRE

    Garrett, Ian; Priestley, Richard

    2012-01-01

    This is the authors’ accepted and refereed manuscript to the article. Publishers web site http://journals.cambridge.org/ Using a new variable based on a model of dividend smoothing, we find that dividend growth is highly predictable and that cash flow news contributes importantly to return variability. Cash flow betas derived from this predictability are central to explaining the size effect in the cross section of returns. However, they do not explain the value effect; this is explained b...

  19. Respirator Filter Efficiency Testing Against Particulate and Biological Aerosols Under Moderate to High Flow Rates

    Science.gov (United States)

    2006-08-01

    flow rate through the test filter. The flow rate was measured using a mass flow meter (Series 4000, TSI, Shoreview, MN). Several modifications were made...operating conditions. This included assessing the effect of non- isokinetic sampling, flow calibrations, and characterization of the challenge...sampling bias on the measured penetrations due to the non- isokinetic sampling downstream. 3.3.2.2 System Characterization. Shakedown tests were

  20. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    Science.gov (United States)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  1. Experimental study on effects of double pumps switching on water supply flow rate

    International Nuclear Information System (INIS)

    Wang Xin; Han Weishi

    2012-01-01

    Flow characteristics in the process of switching one centrifugal pump to the other was investigated experimentally using a closed loop with two centrifugal pumps and two check valves. Characteristics of the check valves responding and the flow rate changing during the process of switching was studied by experimental data analysis. The results show that in the switching process with high and low original flow rate, the restoring time is 26 s and 21 s respectively; the lowest flow rates are 59.4% and 87.2% out of that in normal water supply, and the average deficit of feed water is 20.8% and 7.5% respectively. Compared to double-pump switching with low flow rate, a longer transition time. more intense flow fluctuations and increased water loss are observed with high flow rate, which has significantly effects on the stability of water supply. (authors)

  2. Measurement and numerical simulation of a small centrifugal compressor characteristics at small or negative flow rate

    Science.gov (United States)

    Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2017-04-01

    For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.

  3. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  4. A new method for the measurement of two-phase mass flow rate using average bi-directional flow tube

    International Nuclear Information System (INIS)

    Yoon, B. J.; Uh, D. J.; Kang, K. H.; Song, C. H.; Paek, W. P.

    2004-01-01

    Average bi-directional flow tube was suggested to apply in the air/steam-water flow condition. Its working principle is similar with Pitot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of pitot tube when it is used in the depressurization condition. The suggested flow tube was tested in the air-water vertical test section which has 80mm inner diameter and 10m length. The flow tube was installed at 120 of L/D from inlet of test section. In the test, the pressure drop across the average bi-directional flow tube, system pressure and average void fraction were measured on the measuring plane. In the test, fluid temperature and injected mass flow rates of air and water phases were also measured by a RTD and two coriolis flow meters, respectively. To calculate the phasic mass flow rates : from the measured differential pressure and void fraction, Chexal drift-flux correlation was used. In the test a new correlation of momentum exchange factor was suggested. The test result shows that the suggested instrumentation using the measured void fraction and Chexal drift-flux correlation can predict the mass flow rates within 10% error of measured data

  5. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    OpenAIRE

    Qing-Hui WANG; Fang MU; Li-Feng WEI

    2014-01-01

    This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or conce...

  6. Optimization of mass flow rate in RGTT200K coolant purification for Carbon Monoxide conversion process

    International Nuclear Information System (INIS)

    Sumijanto; Sriyono

    2016-01-01

    Carbon monoxide is a species that is difficult to be separated from the reactor coolant helium because it has a relatively small molecular size. So it needs a process of conversion from carbon monoxide to carbondioxide. The rate of conversion of carbon monoxide in the purification system is influenced by several parameters including concentration, temperature and mass flow rate. In this research, optimization of the mass flow rate in coolant purification of RGTT200K for carbon monoxide conversion process was done. Optimization is carried out by using software Super Pro Designer. The rate of reduction of reactant species, the growth rate between the species and the species products in the conversion reactions equilibrium were analyzed to derive the mass flow rate optimization of purification for carbon monoxide conversion process. The purpose of this study is to find the mass flow rate of purification for the preparation of the basic design of the RGTT200K coolant helium purification system. The analysis showed that the helium mass flow rate of 0.6 kg/second resulted in an un optimal conversion process. The optimal conversion process was reached at a mass flow rate of 1.2 kg/second. A flow rate of 3.6 kg/second – 12 kg/second resulted in an ineffective process. For supporting the basic design of the RGTT200K helium purification system, the mass flow rate for carbon monoxide conversion process is suggested to be 1.2 kg/second. (author)

  7. Effects of germane flow rate in electrical properties of a-SiGe:H films for ambipolar thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Miguel, E-mail: madominguezj@gmail.com [Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla (BUAP), Puebla 72570 (Mexico); Rosales, Pedro, E-mail: prosales@inaoep.mx [National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla 72840 (Mexico); Torres, Alfonso [National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla 72840 (Mexico); Flores, Francisco [Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla (BUAP), Puebla 72570 (Mexico); Molina, Joel; Moreno, Mario [National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla 72840 (Mexico); Luna, Jose [Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla (BUAP), Puebla 72570 (Mexico); Orduña, Abdu [Centro de Investigación en Biotecnología Aplicada (CIBA), IPN, Tlaxcala, Tlaxcala 72197 (Mexico)

    2014-07-01

    In this work, the study of germane flow rate in electrical properties of a-SiGe:H films is presented. The a-SiGe:H films deposited by low frequency plasma-enhanced chemical vapor deposition at 300 °C were characterized by Fourier transform infrared spectroscopy, measurements of temperature dependence of conductivity and UV–visible spectroscopic ellipsometry. After finding the optimum germane flow rate conditions, a-SiGe:H films were deposited at 200 °C and analyzed. The use of a-SiGe:H films at 200 °C as active layer of low-temperature ambipolar thin-film transistors (TFTs) was demonstrated. The inverted staggered a-SiGe:H TFTs with Spin-On Glass as gate insulator were fabricated. These results suggest that there is an optimal Ge content in the a-SiGe:H films that improves its electrical properties. - Highlights: • As the GeH{sub 4} flow rate increases the content of oxygen decreases. • Ge-H bonds show the highest value in a-SiGe:H films with GeH{sub 4} flow of 105 sccm. • Films with GeH{sub 4} flow of 105 sccm show the highest activation energy. • An optimum incorporation of germanium is obtained with GeH{sub 4} flow rate of 105 sccm. • At 200 °C the optimum condition of the a-SiGe:H films remain with no changes.

  8. On-line validation of feedwater flow rate in nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1994-01-01

    On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%

  9. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    Directory of Open Access Journals (Sweden)

    Qing-Hui WANG

    2014-02-01

    Full Text Available This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or concentration, the proposed detection system with lower cost and higher accuracy can be applied in the occasion which needs simultaneous monitoring of gas concentration and flow rate.

  10. To the kinetics of moisture formation in disturbed flows

    International Nuclear Information System (INIS)

    Bazarov, S.M.; Shpenzer, G.G.

    1979-01-01

    A peculiar feature of disperse multiphase flows is the existence of pronounced fluctuations of parameters of state. An effect of fluctuations of parameters of vapor flows state on a degree of vapor flow supersaturation, a critical dimension of condensation nuclei, nucleation rate and droplet growth rate in disturbed flows has been analytically investigated. The analysis of obtained correlations is shown that state parameter pulsations and relaxation phenomena hardly effect on initial moisture formation and determine disperce composition of a suspended phase

  11. Gravity influence on heat transfer rate in flow boiling

    NARCIS (Netherlands)

    Baltis, C.H.M.; Celata, G.P.; Cumo, M.; Saraceno, L.; Zummo, G.

    2012-01-01

    The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed with parabolic flights. The paper will show the

  12. Flow Rate Measurement Using 99mTc Radiotracer Method in a Pipe Installation

    International Nuclear Information System (INIS)

    Sipaun, S. M.; Bakar, A. Q. Abu; Othman, N.; Shaari, M. R.; Adnan, M. A. K.; Yusof, J. Mohd; Demanah, R.

    2010-01-01

    Flow rate is a significant parameter for managing processes in chemical processing plants and water processing facility. Accurate measurement of the flow rate allows engineers to monitor the delivery of process material, which in turn impacts a plant's capacity to produce their products. One of the available methods for determining the flow rate of a process material is by introducing a radiotracer to the system that mimics the material's flow pattern. In this study, a low activity Technetium-99m radioisotope was injected into a water piping setup and the 2'' x 2'' NaI (Tl) detectors were calibrated to detect spectrum peaks at specific points of the pipe installation. Using pulse velocity method, water flow rate was determined to be 11.3 litres per minute. For the sampling method, at different pump capacity, the flow rate was 15.0 litres per minute.

  13. A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves

    International Nuclear Information System (INIS)

    Il, Doh; Cho, Young-Ho

    2009-01-01

    We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of 6.09±0.32 μl/s over the inlet pressure range of 20∼50 kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems

  14. Heat transfer in a counterflow heat exchanger at low flow rates

    International Nuclear Information System (INIS)

    Hashimoto, A.; Hattori, N.; Naruke, K.

    1995-01-01

    A study was made of heat transfer in a double-tube heat exchanger at low flow rates of water. The temperatures of fluid and tube walls in the axial direction of tube were measured precisely at flow rate ratios of annulus to inner tube (or flow rate ratios of inner tube to annulus W i /W a , Re i approx. = 80 - 4000), W a /W i =0.1 - 1.1. In parallel with experiment, numerical calculation for forced-convection heat transfer was also carried out for laminar flows in the same tube configuration as experiment. Average over-all coefficients of heat transfer, obtained by experiments, indicate the same characteristics as numerical calculation in the examined range of flow rate ratio. Their experimental values, however, are somewhat larger than those of calculation at small values of flow rate ratio. (author)

  15. Released air during vapor and air cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz [VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Hydromechanics and Hydraulic Equipment, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2016-06-30

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  16. Microstructure evolution, thermal stability and fractal behavior of water vapor flow assisted in situ growth poly(vinylcarbazole)-titania quantum dots nanocomposites

    Science.gov (United States)

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Mombrú, Alvaro W.

    2017-12-01

    Here, we report a novel strategy for the preparation of TiO2 quantum dots fillers prepared from alkoxide precursor via in situ water vapor flow diffusion into poly(N-vinylcarbazole) host. A detailed characterization by means of infrared and Raman spectroscopy, X-ray powder diffraction, small angle X-ray scattering and differential scanning calorimetry is reported. The growth mechanism of both crystallites and particles was mostly governed by the classical coarsening reaction limited growth and the polymer host showed no detectable chemical modifications at the interface or active participation in the growing process. The main relevance of our strategy respect to the typical sol-gel growth in solution is the possibility of the interruption of the reaction by simple stopping the water vapor flow diffusion into the polymer host thus achieving good control in the nanoparticles size. The thermal stability and fractal behavior of our nanocomposites were also studied by differential scanning calorimetry and in situ small angle X-ray scattering versus temperature. Strong correlations between modifications in the fractal behavior and glass transition or fusion processes were observed for these nanocomposites.

  17. Mass flow rate measurements in two-phase mixtrues with stagnation probes

    International Nuclear Information System (INIS)

    Fincke, J.R.; Deason, V.A.

    1979-01-01

    Applications of stagnation probes to the measurement of mass flow rate in two-phase flows are discussed. Descriptions of several stagnation devices, which have been evaluated at the Idaho National Engineering Laboratory, are presented along with modeling techniques and two-phase flow data

  18. An Experimental study on a Method of Computing Minimum flow rate

    International Nuclear Information System (INIS)

    Cho, Yeon Sik; Kim, Tae Hyun; Kim, Chang Hyun

    2009-01-01

    Many pump reliability problems in the Nuclear Power Plants (NPPs) are being attributed to the operation of the pump at flow rates well below its best efficiency point(BEP). Generally, the manufacturer and the user try to avert such problems by specifying a minimum flow, below which the pump should not be operated. Pump minimum flow usually involves two considerations. The first consideration is normally termed the 'thermal minimum flow', which is that flow required to prevent the fluid inside the pump from reaching saturation conditions. The other consideration is often referred to as 'mechanical minimum flow', which is that flow required to prevent mechanical damage. However, the criteria for specifying such a minimum flow are not clearly understood by all parties concerned. Also various factor and information for computing minimum flow are not easily available as considering for the pump manufacturer' proprietary. The objective of this study is to obtain experimental data for computing minimum flow rate and to understand the pump performances due to low flow operation. A test loop consisted of the pump to be used in NPPs, water tank, flow rate measurements and piping system with flow control devices was established for this study

  19. Application of neural networks to validation of feedwater flow rate in a nuclear power plant

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1993-01-01

    Feedwater flow rate measurement in nuclear power plants requires periodic calibration. This is due to the fact that the venturi surface condition of the feedwater flow rate sensor changes because of a chemical reaction between the surface coating material and the feedwater. Fouling of the venturi surface, due to this chemical reaction and the deposits of foreign materials, has been observed shortly after a clean venturi is put in operation. A fouled venturi causes an incorrect measurement of feedwater flow rate, which in turn results in an inaccurate calculation of the generated power. This paper presents two methods for verifying incipient and continuing fouling of the venturi of the feedwater flow rate sensors. Both methods are based on the use of a set of dissimilar process variables dynamically related to the feedwater flow rate variable. The first method uses a neural network to generate estimates of the feedwater flow rate readings. Agreement, within a given tolerance, of the feedwater flow rate instrument reading, and the corresponding neural network output establishes that the feedwater flow rate instrument is operating properly. The second method is similar to the first method except that the neural network predicts the core power which is calculated from measurements on the primary loop, rather than the feedwater flow rates. This core power is referred to the primary core power in this paper. A comparison of the power calculated from the feedwater flow measurements in the secondary loop, with the calculated and neural network predicted primary core power provides information from which it can be determined whether fouling is beginning to occur. The two methods were tested using data from the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant

  20. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    Science.gov (United States)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  1. Influence of the interface on growth rates in AlN/GaN short period superlattices via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-11-01

    AlN/GaN short period superlattices are well suited for a number of applications including, but not limited to, digital alloys, intersubband devices, and emitters. In this work, AlN/GaN superlattices with periodicities ranging from 10 to 20 Å have been grown via metal organic vapor phase epitaxy in order to investigate the influence of the interface on the binary alloy growth rates. The GaN growth rate at the interface was observed to decrease with increasing GaN thickness while the AlN growth rate remained constant. This has been attributed to a decrease in the decomposition rate of GaN at the hetero-interface as seen in other III-V hetero-structures.

  2. Flow rates through earthen, geomembrane ampersand composite cut-off walls

    International Nuclear Information System (INIS)

    Tachavises, C.; Benson, C.H.

    1997-01-01

    Flow rates through soil-bentonite (SIB), geomembrane (GM), and composite geomembrane-soil (CGS) cut-off walls were determined using a numerical model of ground water flow. Various geological and wall conditions were simulated. Results of the simulations show that flow rates past all wall types are affected by hydraulic conductivities of the aquifer and underlying confining layer. Flow rates past GM walls with perfect joints are very low, provided the confining layer has low hydraulic conductivity. However, if a small fraction of the joints are defective, GM walls can be ineffective in blocking flow. CGS walls with a low hydraulic conductivity shell are less sensitive to joint defects. CGS walls with good shells typically have lower flow rates than SB and GM walls, even if the CGS wall contains defective joints

  3. Measurement of the rate of droplet deposition in vertical upward and downward annular flows

    International Nuclear Information System (INIS)

    Murakami, Toshihiro; Okawa, Tomio; Takei, Rei

    2008-01-01

    The deposition rate of droplets was measured for vertical annular two-phase flows in a small diameter tube by means of the double film extraction technique. The test section was a round tube of 5 mm in inside diameter, air and water were used as test fluids, and the flow direction was set to upward and downward; the system pressure and the flow rates of gas and liquid phases were changed parametrically. If the droplet velocity relative to the continuous gas phase is in the equilibrium state, the shear induced lift force acting on droplets is directed toward the tube centerline in upflow while toward the tube wall in downflow. Particular attention was therefore paid to the effect of flow direction. It was shown experimentally that the deposition rate of droplets in downward flow is greater than that in upward flow. The difference in the measured deposition rate may be attributed to the direction of lift force acting on droplets. (author)

  4. A review on measuring methods of gas-liquid flow rates

    International Nuclear Information System (INIS)

    Minemura, Kiyoshi; Yamashita, Masato

    2000-01-01

    This paper presents a review on the state of current measuring techniques for gas-liquid multiphase flow rates. After briefly discussing the basic idea on measuring methods for single-phase and two-phase flows, existing methods for the two-phase flow rates are classified into several types, that is, with or without a homogenizing device, single or combined method of several techniques, with intrusive or non-intrusive sensors, and physical or software method. Each methods are comparatively reviewed in view of measuring accuracy and manageability. Its scope also contains the techniques developed for petroleum-gas-water flow rates. (author)

  5. Flow Rates in Liquid Chromatography, Gas Chromatography and Supercritical Fluid Chromatography: A Tool for Optimization

    Directory of Open Access Journals (Sweden)

    Joris Meurs

    2016-08-01

    Full Text Available This paper aimed to develop a standalone application for optimizing flow rates in liquid chromatography (LC, gas chromatography (GC and supercritical fluid chromatography (SFC. To do so, Van Deemter’s equation, Knox’ equation and Golay’s equation were implemented in a MATLAB script and subsequently a graphical user interface (GUI was created. The application will show the optimal flow rate or linear velocity and the corresponding plate height for the set input parameters. Furthermore, a plot will be shown in which the plate height is plotted against the linear flow velocity. Hence, this application will give optimized flow rates for any set conditions with minimal effort.

  6. Electronic circuit SG-6 type for electric differential manometer in the flow rate measuring system

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W; Pytel, K; Beldzikowski, W

    1978-01-01

    A system measuring the flow rate of a liquid or gas employing a ruft and a differential manometer needs the square rooting circuit providing the linearity of the output signal to the measured flow rate ratio. The paper describes the electronic circuit developed for this purpose.

  7. Effect of Retarding Force on Mass Flow Rates of Fluid at Different ...

    African Journals Online (AJOL)

    ... mathematical model and software visualization to view the effect of retarding forces on the mass flow rate in term of visualization. C-sharp (C#) is the chosen program and this enable compares and us to determine the mass flow rates patterns in relation to retarding force in form of graphical tables at different temperature.

  8. [Xerostomia, hyposialia, sicca syndrome--quantitative disturbances of the salivary flow rate].

    Science.gov (United States)

    Slezák, R; Berglová, I; Krejsek, J

    2011-04-01

    Diseases of salivary glands may be associated with salivary flow rate disturbances. Production of the saliva is evaluated by sialometric tests. The stress is putted on salivary flow rate disturbances in Sjögren's syndrome, drug-induced and postirradiative sialopathy, and diabetes mellitus. The possibility of the stimulation and substitution of the saliva is discussed.

  9. Natural-Scale Lava Flow Experiments on Video: Variations with Temperature, Slope, and Effusion Rate

    Science.gov (United States)

    Karson, J. A.; Wysocki, R.; Edwards, B. R.; Lev, E.

    2013-12-01

    Investigations of active basaltic lava flows and analog materials show that flow dynamics and final flow morphology are strongly determined by the rapidly evolving rheology of the lava crust which constrains the downslope advance of the lava flow. The non-dimensional factor Ψ (ratio of the time scale of crust formation to advective heat loss) provides a useful means of comparing different flows. The key parameters that control Ψ include the melt viscosity, temperature, effusion rate, and slope. Experimental lava flows, up to several meters long created in the Syracuse University Lava Project permit these variables to be investigated independently and in combination in volume-limited flows (Pele), that provide additional information on lava crust development. New, continuous flow (cooling-limited) experiments show downslope variations under constant flow conditions.

  10. International portfolio flows and exchange rate volatility for emerging markets

    OpenAIRE

    Caporale, Guglielmo Maria; Ali, Faek Menla; Spagnolo, Fabio; Spagnolo, Nicola

    2015-01-01

    This paper investigates the effects of equity and bond portfolio inflows on exchange rate volatility, using monthly bilateral data for the US vis-a-vis eight Asian developing and emerging countries (India, Indonesia, South Korea, Pakistan, Hong Kong, Thailand, the Philippines, and Taiwan) over the period 1993:01-2012:11, and estimating a time-varying transition probability Markov-switching model. We find that net equity (bond) inflows drive the exchange rate to a high (low) volatility state. ...

  11. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10-6 g m-2 day-1 range

    Science.gov (United States)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10-6 g m-2 day-1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  12. Aerosol-assisted chemical vapor deposition of V2O5 cathodes with high rate capabilities for magnesium-ion batteries

    Science.gov (United States)

    Drosos, Charalampos; Jia, Chenglin; Mathew, Shiny; Palgrave, Robert G.; Moss, Benjamin; Kafizas, Andreas; Vernardou, Dimitra

    2018-04-01

    The growth of orthorhombic vanadium pentoxide nanostructures was accomplished using an aerosol-assisted chemical vapor deposition process. These materials showed excellent electrochemical performance for magnesium-ion storage in an aqueous electrolyte; showing specific discharge capacities of up to 427 mAh g-1 with a capacity retention of 82% after 2000 scans under a high specific current of 5.9 A g-1. The high rate capability suggested good structural stability and high reversibility. We believe the development of low-cost and large-area coating methods, such as the technique used herein, will be essential for the upscalable fabrication of next-generation rechargeable battery technologies.

  13. Quantification of the transient mass flow rate in a simplex swirl injector

    International Nuclear Information System (INIS)

    Khil, Taeock; Kim, Sunghyuk; Cho, Seongho; Yoon, Youngbin

    2009-01-01

    When a heat release and acoustic pressure fluctuations are generated in a combustor by irregular and local combustions, these fluctuations affect the mass flow rate of the propellants injected through the injectors. In addition, variations of the mass flow rate caused by these fluctuations bring about irregular combustion, which is associated with combustion instability, so it is very important to identify a mass variation through the pressure fluctuation on the injector and to investigate its transfer function. Therefore, quantification of the variation of the mass flow rate generated in a simplex swirl injector via the injection pressure fluctuation was the subject of an initial study. To acquire the transient mass flow rate in the orifice with time, the axial velocity of flows and the liquid film thickness in the orifice were measured. The axial velocity was acquired through a theoretical approach after measuring the pressure in the orifice. In an effort to understand the flow area in the orifice, the liquid film thickness was measured by an electric conductance method. In the results, the mass flow rate calculated from the axial velocity and the liquid film thickness measured by the electric conductance method in the orifice was in good agreement with the mass flow rate acquired by the direct measuring method in a small error range within 1% in the steady state and within 4% for the average mass flow rate in a pulsated state. Also, the amplitude (gain) of the mass flow rate acquired by the proposed direct measuring method was confirmed using the PLLIF technique in the low pressure fluctuation frequency ranges with an error under 6%. This study shows that our proposed method can be used to measure the mass flow rate not only in the steady state but also in the unsteady state (or the pulsated state). Moreover, this method shows very high accuracy based on the experimental results

  14. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    Science.gov (United States)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  15. Incorporating a Time Horizon in Rate-of-Return Estimations: Discounted Cash Flow Model in Electric Transmission Rate Cases

    International Nuclear Information System (INIS)

    Chatterjee, Bishu; Sharp, Peter A.

    2006-01-01

    Electric transmission and other rate cases use a form of the discounted cash flow model with a single long-term growth rate to estimate rates of return on equity. It cannot incorporate information about the appropriate time horizon for which analysts' estimates of earnings growth have predictive powers. Only a non-constant growth model can explicitly recognize the importance of the time horizon in an ROE calculation. (author)

  16. Improved cell for water-vapor electrolysis

    Science.gov (United States)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  17. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    Science.gov (United States)

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  18. Determination of total flow rate and flow rate of every operating branch in commissioning of heavy water loop for ARR-2

    International Nuclear Information System (INIS)

    Han Yan

    1997-01-01

    The heavy water loop (i,e, RCS) for ARR-2 in Algeria is a complex loop. Flow regulating means are not provided by the design in order to operate the reactor safely and simplify operating processes. How to determine precisely the orifice diameters of resistance parts for the loop is a key point for decreasing deviation between practical and design flow rates. Commissioning tests shall ensure that under every one of combined operating modes for the pumps, total coolant flow rate is about the same (the number of pumps operating in parallel is the same) and is consistent with design requirement, as well as the distribution of coolant flow rate to every branch is uniform. The flow Determination is divided into two steps. First and foremost, corresponding resistance part at each pump outlet is determined in commissioning test of shorted heavy water loop with light water, so that the problem about uniform distribution of the flow rate to each branch is solved, Secondly, resistance part at the reactor inlet is determined in commissioning test of heavy water loop connected with the vessel, so that the problem about that total heavy water flow rate is within optimal range is solved. According to practical requirements of the project, a computer program of hydraulic calculation and analysis for heavy water loop has been developed, and hydraulic characteristics test for a part of loop has been conducted in order to correct calculation error. By means of program calculation combining with tests in site, orifice diameters of 9 resistance parts has been determined rapidly and precisely and requirements of design and operation has been met adequately

  19. Numerical Analysis of Fully Developed Laminar Flow in Trapezoidal and Sinusoidal Grooves with Shear Stress at the Liquid-Vapor Interface

    National Research Council Canada - National Science Library

    Thomas, Scott

    2000-01-01

    .... A computer model was developed using a finite difference solution which finds the mean velocity, Poiseuille number, and volumetric flow rate in terms of the groove geometry, meniscus contact angle...

  20. Study on flow rate measurement and visualization of helium-air exchange flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1992-01-01

    This paper deals with an experimental investigation on buoyancy-driven exchange flows through horizontal and inclined openings. The method of the mass increment was developed to measure the flow rate in helium-air system and a displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the flow. As the result, the followings were obtained: Flow visualization results indicate that the upward and downward plumes of helium and air break through the opening intermittently, and they swing in the lateral direction through the horizontal opening. It is clearly visualized that the exchange flows through the inclined openings take place smoothly and stably in the separated passages. The inclination angle for the maximum Froude number decreases with increasing length-to-diameter ratio in the helium-air system, on the contrary to Mercer's experimental results in the water-brine system indicating that the angle remains almost constant. (author)

  1. Post Analysis of Two Phase Natural Circulation Mass Flow Rate for CE-PECS

    Energy Technology Data Exchange (ETDEWEB)

    Park, R. J.; Ha, K. S.; Rhee, B. W.; Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. To maintain the integrity of the ex-vessel core catcher, however, it is required that the coolant be circulated at a rate along the inclined cooling channel sufficient to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. In this study, post simulations of two phase natural circulation in the CEPECS have been performed to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. Post simulations of two phase natural circulation in the CE-PECS have been conducted to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that the water circulation mass flow rate is approximately 8.7 kg/s in the base case.

  2. Post Analysis of Two Phase Natural Circulation Mass Flow Rate for CE-PECS

    International Nuclear Information System (INIS)

    Park, R. J.; Ha, K. S.; Rhee, B. W.; Kim, H. Y.

    2015-01-01

    The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. To maintain the integrity of the ex-vessel core catcher, however, it is required that the coolant be circulated at a rate along the inclined cooling channel sufficient to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. In this study, post simulations of two phase natural circulation in the CEPECS have been performed to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. Post simulations of two phase natural circulation in the CE-PECS have been conducted to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that the water circulation mass flow rate is approximately 8.7 kg/s in the base case

  3. Video-rate optical flow corrected intraoperative functional fluorescence imaging

    NARCIS (Netherlands)

    Koch, Maximilian; Glatz, Juergen; Ermolayev, Vladimir; de Vries, Elisabeth G. E.; van Dam, Gooitzen M.; Englmeier, Karl-Hans; Ntziachristos, Vasilis

    Intraoperative fluorescence molecular imaging based on targeted fluorescence agents is an emerging approach to improve surgical and endoscopic imaging and guidance. Short exposure times per frame and implementation at video rates are necessary to provide continuous feedback to the physician and

  4. Flow rates in the head and neck lymphatics after food stimulation in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Thommesen, P.; Buhl, J.; Jansen, K.; Funch-Jensen, P.

    1981-02-01

    In 22 healthy subjects lymph transport flow rates was studied in the head lymphatics after food stimulation, mastication (chewing) and taste. After food stimulation there was a significantly higher transport rate (0.67 meter/hour) than after taste (0.57 meter/hour) and mastication (0.55 meter/hour). The calculation of transport flow rate was independent of quantitative distribution of radioactivity in the head and neck lymphatics, and it could therefore perhaps be of clinical value.

  5. Engineering analysis of mass flow rate for turbine system control and design

    International Nuclear Information System (INIS)

    Yoo, Yong H.; Suh, Kune Y.

    2011-01-01

    Highlights: → A computer code is written to predict the steam mass flow rate through valves. → A test device is built to study the steam flow characteristics in the control valve. → Mass flow based methodology eases the programming and experimental procedures. → The methodology helps express the characteristics of each device of a turbine system. → The results can commercially be used for design and operation of the turbine system. - Abstract: The mass flow rate is determined in the steam turbine system by the area formed between the stem disk and the seat of the control valve. For precise control the steam mass flow rate should be known given the stem lift. However, since the thermal hydraulic characteristics of steam coming from the generator or boiler are changed going through each device, it is hard to accurately predict the steam mass flow rate. Thus, to precisely determine the steam mass flow rate, a methodology and theory are developed in designing the turbine system manufactured for the nuclear and fossil power plants. From the steam generator or boiler to the first bunch of turbine blades, the steam passes by a stop valve, a control valve and the first nozzle, each of which is connected with piping. The corresponding steam mass flow rate can ultimately be computed if the thermal and hydraulic conditions are defined at the stop valve, control valve and pipes. The steam properties at the inlet of each device are changed at its outlet due to geometry. The Compressed Adiabatic Massflow Analysis (CAMA) computer code is written to predict the steam mass flow rate through valves. The Valve Engineered Layout Operation (VELO) test device is built to experimentally study the flow characteristics of steam flowing inside the control valve with the CAMA input data. The Widows' Creek type control valve was selected as reference. CAMA is expected to be commercially utilized to accurately design and operate the turbine system for fossil as well as nuclear power

  6. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    Science.gov (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  7. On the vapor-liquid equilibrium in hydroprocessing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Munteanu, M.; Farooqi, H. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2009-07-01

    When petroleum distillates undergo hydrotreating and hydrocracking, the feedstock and hydrogen pass through trickle-bed catalytic reactors at high temperatures and pressures with large hydrogen flow. As such, the oil is partially vaporized and the hydrogen is partially dissolved in liquid to form a vapor-liquid equilibrium (VLE) system with both vapor and liquid phases containing oil and hydrogen. This may result in considerable changes in flow rates, physical properties and chemical compositions of both phases. Flow dynamics, mass transfer, heat transfer and reaction kinetics may also be modified. Experimental observations of VLE behaviours in distillates with different feedstocks under a range of operating conditions were presented. In addition, VLE was predicted along with its effects on distillates in pilot and commercial scale plants. tabs., figs.

  8. Improvement in high-voltage and high rate cycling performance of nickel-rich layered cathode materials via facile chemical vapor deposition with methane

    International Nuclear Information System (INIS)

    Hyuk Son, In; Park, Kwangjin; Hwan Park, Jong

    2017-01-01

    Nickel-rich layered-oxide materials are considered promising candidates for application as cathode material in high-energy lithium ion batteries. However, their cycling performance at high voltages and rate conditions require further improvement for the purpose of commercialization. Here, we report on the facile surface modification of nickel-rich layered oxide by chemical vapor deposition with methane which yields a conductive and protective artificial solid electrolyte interphase layer consisting of amorphous carbon, alkyl lithium carbonate, and lithium carbonate. We examine the mechanism of the protective layer formation and structural deformation of the nickel-rich layered oxide during chemical vapor deposition with methane. Via optimizing the reaction conditions, we improve the electrical conductivity as well as the interfacial stability of the nickel-rich layered oxide without inducing structural deformation. The surface-modified nickel-rich layered oxide exhibits an improved performance due to the resulting enhanced rate capability, high initial efficiency, and long cycle life at high voltage (>4.5 V).

  9. Development of a selection support expert system of mathematical models for dynamic simulation of liquid-vapor two-phase flow

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Morimoto, Takashi; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1992-01-01

    This paper deals with computerized supporting techniques of a numerical simulation of complex and large-scale engineering systems like nuclear power plants. As an example of the intelligent support systems of dynamic simulation, a prototype expert system is developed on an expert system development tool to support the selection of mathematical model which is a first step of numerical simulation and is required both wide expert knowledge and high-level decision making. The expert system supports the selection of liquid-vapor two phase flow models (fluid model and constitutive equations) consistent with simulation purpose and condition in the case of thermal-hydraulic simulation of nuclear power plants. The possibility of the expert system is examined for various selection support cases by both investigation of the appropriateness of the selection support logic and comparison between support results and decision results of several experts. (author)

  10. A multiphase flow meter for the on-line determination of the flow rates of oil, water and gas

    International Nuclear Information System (INIS)

    Roach, G.J.; Watt, J.S.

    1997-01-01

    Multiphase mixtures of crude oil, formation water and gas are carried in pipelines from oil wells to production facilities. Multiphase flow meters (MFMs) are being developed to determine the flow rates of each component of the heterogeneous mixture in the pipeline. CSIRO Minerals has developed and field tested a gamma-ray MFM for the on-line determination of the flow rates of heterogeneous mixtures of oil, water and gas in pipelines. It consists of two specialised gamma-ray transmission gauges, and pressure and temperature sensors, mounted on the pipeline carrying the full flow of the production stream. The MFM separately measures liquids and gas flow rates, and the volume ratio of water and liquids (water cut). The MFM has been trialled at three offshore production facilities in Australia. In each, the MFM was mounted on the pipeline between the test manifold and the test separator. The multiphase streams from the various wells feeding to the platform were sequentially routed past the MFM. The MFM and test separator outputs were compared using regression analysis. The flow rates of oil, water and gas were each determined to relative errors in the range of 5-10% . The MFM has been in routine use on the West Kingfish platform in the Bass Strait since November 1994. The MFM was recently tested over a wide range of flow conditions at a Texaco flow facility near Houston. Water cut, based on pre-trial calibration, was determined to 2% rms over the range 0-100% water cut. The liquids and gas flow results were interpreted based on slip correlations obtained from comparison of the MFM and Texaco flows. Using these, the relative errors were respectively 6.6% for liquid flow, 6.2% for gas, 8% for oil and 8% for water. The MFM is licensed to Kvaerner FSSL of Aberdeen. Kvaerner will supply the gamma-ray MFM for both platform and subsea use. Technology transfer commenced in December 1996, and Kvaerner completed the manufacture of the first MFM in August 1997

  11. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-01-01

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  12. Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow

    International Nuclear Information System (INIS)

    Wu, L. N.; Ma, Z. W.

    2014-01-01

    The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvén resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β  s , but decreases if β > β s . The existence of the specific value β s can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β s increases with increase of the streaming flow strength

  13. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    Science.gov (United States)

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.

  14. Tangential stretching rate (TSR) analysis of non premixed reactive flows

    KAUST Repository

    Valorani, Mauro

    2016-10-16

    We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.

  15. Measurement of water flow rate in unsaturated soil by thermistor type sensor

    International Nuclear Information System (INIS)

    Takebe, Shinichi; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1981-09-01

    As a part of radiological safety studies for ground disposal of radioactive wastes, a measuring apparatus of water flow rate with thermistor type sensor was made as preliminary one and the measurement of water flow rate in the soil was carried out, in order to evalute by comparison of the migration rate of water with that of radionuclide in an unsaturated soil. The water flow rate can be determined by measuring the change of the thermal conductivity (temperature) of soil around the several thermistor type sensors set in a soil. Particularly at the region of low water content in the soil, the water flow rate was able to measure successfully by this apparatus. (author)

  16. Mercury flow experiments. 4th report Measurements of erosion rate caused by mercury flow

    CERN Document Server

    Kinoshita, H; Hino, R; Kaminaga, M

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be we...

  17. SEASONAL VARIATIONS IN HUMAN PAROTID FLUID FLOW RATE IN A SUBTROPICAL CLIMATE.

    Science.gov (United States)

    Parotid fluid was collected under conditions of very minimal stimulation from 3,868 systemically healthy young adult males over a period of two...calendar years. The study was carried out in a subtropical climate in which the only thermal discomfort resulted from the summer heat. Parotid flow rate...fall. During the summer months the mean rate of parotid flow was 0.031 ml./minute; during the winter the flow rate mean increased by 35% to 0.042 ml

  18. Influence of air flow rate on structural and electrical properties of undoped indium oxide thin films

    International Nuclear Information System (INIS)

    Mirzapour, S.; Rozati, S.M.; Takwale, M.G.; Marathe, B.R.; Bhide, V.G.

    1993-01-01

    Using the spray pyrolysis technique thin films of indium oxide were prepared on Corning glass (7059) at a substrate temperature of 425 C at different flow rates. The electrical and structural properties of these films were studied. The Hall measurements at room temperature showed that the films prepared in an air flow rate of 7 litre min -1 have the highest mobility of 47 cm 2 V -1 s -1 and a minimum resistivity of 1.125 x 10 -3 Ω cm. The X-ray diffraction patterns showed that the films have a preferred orientation of [400] which peaks at the air flow rate of 7 litre min -1 . (orig.)

  19. 3ON PAK RUPEE EXCHANGE RATES: WHETHER STOCK OR FLOW MATTERS?

    Directory of Open Access Journals (Sweden)

    Razzaque H Bhatti

    2011-01-01

    Full Text Available This paper examines whether the monetary model or the flow model of exchange rate explains the long-run movements in Pak rupee exchange rates vis-à-vis the four major currencies – the US dollar, British pound, Swiss franc and Japanese yen – over the period 1983q1-2009q4. Results obtained by employing the Johansen and Juselius (1990 technique of cointegration are supportive of the monetary model in two Pak rupee exchange rates vis-à-vis the US dollar and the Swiss franc when both short- and long-run interest rates are used and of the flow model in three exchange rates vis-à-vis the British pound, Swiss franc and Japanese yen when the short-run interest rate is used. These results show that both stock equilibrium in capital markets and flow equilibrium in foreign exchange markets determine Pak rupee exchange rates.

  20. Influence of Nitrogen Flow Rate on Friction Coefficient and Surface Roughness of TiN Coatings Deposited on Tool Steel Using Arc Method

    Science.gov (United States)

    Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor

    In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.

  1. The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Boogar, Rahman Sadeghi; Gheshlaghi, Reza; Mahdavi, Mahmood Akhavan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2013-01-15

    A microchannel was fabricated with glass tubes to investigate the effect of viscosity, surface tension, and flow rate on the liquid-liquid two-phase flow regime. Water and gasoil were selected as aqueous and organic working fluids, respectively. The two fluids were injected into the microchannel and created either slug or parallel profile depending on the applied conditions. The range of Reynolds and capillary numbers was chosen in such a way that neither inertia nor interfacial tension forces were negligible. Xanthan gum was used to increase viscosity and Triton X-100 (TX-100) and Sodium Dodecyl Sulfate (SDS) were used to reduce the interfacial tension. The results demonstrated that higher value of viscosity and flow rate increased interfacial area, but slug flow regime remained unchanged. The two surfactants showed different effects on the flow regime and interfacial area. Addition of TX-100 did not change the slug flow but decreased the interfacial area. In contrast, addition of SDS increased interfacial area by decreasing the slug’s length in the low concentrations and by switching from slug to parallel regime at high concentrations.

  2. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  3. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some......-scale outdoor test facility with a naturally ventilated double skin façade. Although both methods are difficult to use under such dynamic air flow conditions, they show reasonable agreement and can be used for experimental validation of numerical models of natural ventilation air flow in DSF. Simulations...

  4. Financial modeling in medicine: cash flow, basic metrics, the time value of money, discount rates, and internal rate of return.

    Science.gov (United States)

    Lexa, Frank James; Berlin, Jonathan W

    2005-03-01

    In this article, the authors cover tools for financial modeling. Commonly used time lines and cash flow diagrams are discussed. Commonly used but limited terms such as payback and breakeven are introduced. The important topics of the time value of money and discount rates are introduced to lay the foundation for their use in modeling and in more advanced metrics such as the internal rate of return. Finally, the authors broach the more sophisticated topic of net present value.

  5. Power flow controller with a fractionally rated back-to-back converter

    Science.gov (United States)

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  6. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  7. Monitoring catalyst flow rate in a FCC cold pilot unity by gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Brito, Marcio F.P.; Netto, Wilson F.S.; Miranda, Marcia V.F.E.S.; Junior, Isacc A.S.; Dantas, Carlos C.; Melo, Silvio B.; Lima, Emerson A.O.

    2013-01-01

    A model for monitoring catalyst mass flow in riser of Fluid Catalytic Cracking - FCC, pilot unity as a function of air flow and solid injection is proposed. The fluidized FCC- catalyst bed system is investigated in an experimental setup the Cold Pilot Unity - CPU by means of gamma ray transmission measurements. Riser in CPU simulates the reactor in FCC process. By automation control air flow is instrumentally measured in riser and the solid injection is manually controlled by valve adjusting. Keeping a constant solid injection, catalyst level at the return column was measured by gamma transmission for several air flow values in riser. The operational condition reached a steady state regime before given to setup a new air flow value. A calibration of catalyst level as a function of air flow in riser is calculated, therefore, a model for solid feed rate is derived. Recent published work evaluates solid concentration in riser of the CPU by means of gamma ray transmission, and a correlation with air velocity is obtained. In this work, the model for solid feed rate was further investigated by carrying out experiments to measure catalyst concentration at the same air flow values. These experiments lead to a model for monitoring catalyst flow in riser as function of solid feed rate and air flow. Simulation with random numbers produced with Matlab software allows to define validation criteria for the model parameters. (author)

  8. Low reproducibility of maximum urinary flow rate determined by portable flowmetry

    NARCIS (Netherlands)

    Sonke, G. S.; Kiemeney, L. A.; Verbeek, A. L.; Kortmann, B. B.; Debruyne, F. M.; de la Rosette, J. J.

    1999-01-01

    To evaluate the reproducibility in maximum urinary flow rate (Qmax) in men with lower urinary tract symptoms (LUTSs) and to determine the number of flows needed to obtain a specified reliability in mean Qmax, 212 patients with LUTSs (mean age, 62 years) referred to the University Hospital Nijmegen,

  9. Hydrodynamics of vapor-liquid annular dispersed flows in channels with heated rod clusters under unsteady conditions

    International Nuclear Information System (INIS)

    Kroshilin, A.E.; Kroshilin, V.E.; Nigmatulin, B.I.

    1984-01-01

    A one-dimensional unsteady hydrodynamic model of vapour-liquid disperse-annular flows in channels with heated fuel rod clusters has been constructed. Regularities in the appearance of critical heat transfer due to the dryout of a near-wall liquid film on rod surfaces in such channels are investigated. The model developed takes into account the main flow regularities in the channels with heated rod clusters. The calculations made have shown that the time before crisis appearance agrees satisfactorily with the experimental data

  10. High growth rate GaN on 200 mm silicon by metal-organic vapor phase epitaxy for high electron mobility transistors

    Science.gov (United States)

    Charles, M.; Baines, Y.; Bavard, A.; Bouveyron, R.

    2018-02-01

    It is increasingly important to reduce the cycle time of epitaxial growth, in order to reduce the costs of device fabrication, especially for GaN based structures which typically have growth cycles of several hours. We have performed a comprehensive study using metal-organic vapor phase epitaxy (MOVPE) investigating the effects of changing GaN growth rates from 0.9 to 14.5 μm/h. Although there is no significant effect on the strain incorporated in the layers, we have seen changes in the surface morphology which can be related to the change in dislocation behaviour and surface diffusion effects. At the small scale, as seen by AFM, increased dislocation density for higher growth rates leads to increased pinning of growth terraces, resulting in more closely spaced terraces. At a larger scale of hundreds of μm observed by optical profiling, we have related the formation of grains to the rate of surface diffusion of adatoms using a random walk model, implying diffusion distances from 30 μm for the highest growth rates up to 100 μm for the lowest. The increased growth rate also increases the intrinsic carbon incorporation which can increase the breakdown voltage of GaN films. Despite an increased threading dislocation density, these very high growth rates of 14.5 μm/hr by MOVPE have been shown to be appealing for reducing epitaxial growth cycle times and therefore costs in High Electron Mobility Transistor (HEMT) structures.

  11. Evaluation of Peak Expiratory Flow Rates (PEFR) of Workers in a ...

    African Journals Online (AJOL)

    DATONYE ALASIA

    and knowledge of occupational health associated with the ... the respiratory system with significant. 5 ... Peak Expiratory Flow Rates (PEFR) of workers in a cement factory — Douglas K. E, Alasia D. D. ... history of cigarette smoking and chronic.

  12. In-core flow rate distribution measurement test of the JOYO irradiation core

    International Nuclear Information System (INIS)

    Suzuki, Toshihiro; Isozaki, Kazunori; Suzuki, Soju

    1996-01-01

    A flow rate distribution measurement test was carried out for the JOYO irradiation core (the MK-II core) after the 29th duty cycle operation. The main object of the test is to confirm the proper flow rate distribution at the final phase of the MK-II core. The each flow rate at the outlet of subassemblies was measured by the permanent magnetic flowmeter inserted avail of fuel exchange hole in the rotating plug. This is third test in the MK-II core, after 10 years absence from the final test (1985). Total of 550 subassemblies were exchanged and accumulated reactor operation time reached up to 38,000 hours from the previous test. As a conclusion, it confirmed that the flow rate distribution has been kept suitable in the final phase of the MK-II core. (author)

  13. The relationship between sap-flow rate and sap volume in dormant sugar maples

    Science.gov (United States)

    William J. Gabriel; Russell S. Walters; Donald W. Seegrist

    1972-01-01

    Sap-flow rate is closely correlated with the sap volume produced by dormant sugar maple trees (Acer saccharum Marsh.) and could be used in making phenotypic selections of trees for superior sap production.

  14. The efficacy of centralized flow rate control in 802.11-based wireless mesh networks

    KAUST Repository

    Jamshaid, K.; Ward, P.; Karsten, M.; Shihada, Basem

    2013-01-01

    predictably to congestion notification, can we enforce a desired rate allocation through a single centralized controller? The answer is not obvious because flows experience varying contention levels, and transmissions are scheduled by a node using imperfect

  15. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping

    KAUST Repository

    Lim, Seungjae

    2015-04-01

    The effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.

  16. Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Xia, Shaojun; Sun, Fengrui

    2016-01-01

    A sulphuric acid decomposition process in a tubular plug-flow reactor with fixed inlet flow rate and completely controllable exterior wall temperature profile and reactants pressure profile is studied in this paper by using finite-time thermodynamics. The maximum production rate of the aimed product SO 2 and the optimal exterior wall temperature profile and reactants pressure profile are obtained by using nonlinear programming method. Then the optimal reactor with the maximum production rate is compared with the reference reactor with linear exterior wall temperature profile and the optimal reactor with minimum entropy generation rate. The result shows that the production rate of SO 2 of optimal reactor with the maximum production rate has an increase of more than 7%. The optimization of temperature profile has little influence on the production rate while the optimization of reactants pressure profile can significantly increase the production rate. The results obtained may provide some guidelines for the design of real tubular reactors. - Highlights: • Sulphuric acid decomposition process in tubular plug-flow reactor is studied. • Fixed inlet flow rate and controllable temperature and pressure profiles are set. • Maximum production rate of aimed product SO 2 is obtained. • Corresponding optimal temperature and pressure profiles are derived. • Production rate of SO 2 of optimal reactor increases by 7%.

  17. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  18. A Distributed Flow Rate Control Algorithm for Networked Agent System with Multiple Coding Rates to Optimize Multimedia Data Transmission

    Directory of Open Access Journals (Sweden)

    Shuai Zeng

    2013-01-01

    Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.

  19. Simulation of corrosion product activity in pressurized water reactors under flow rate transients

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Mirza, Nasir M.; Mir, Imran

    1998-01-01

    Simulation of coolant activation due to corrosion products and impurities in a typical pressurized water reactor has been done under flow rate transients. Employing time dependent production and losses of corrosion products in the primary coolant path an approach has been developed to calculate the coolant specific activity. Results for 24 Na, 56 Mn, 59 Fe, 60 Co and 99Mo show that the specific activity in primary loop approaches equilibrium value under normal operating conditions fairly rapidly. Predominant corrosion product activity is due to Mn-56. Parametric studies at full power for various ramp decreases in flow rate show initial decline in the activity and then a gradual rise to relatively higher saturation values. The minimum value and the time taken to reach the minima are strong functions of the slope of linear decrease in flow rate. In the second part flow rate coastdown was allowed to occur at different flow half-times. The reactor scram was initiated at 90% of the normal flow rate. The results show that the specific activity decreases and the rate of decrease depends on pump half time and the reactor scram conditions

  20. Relationship between xerostomia and salivary flow rates in HIV-infected individuals.

    Science.gov (United States)

    Nittayananta, Wipawee; Chanowanna, Nilnara; Pruphetkaew, Nannapat; Nauntofte, Birgitte

    2013-08-01

    The aim of the present study was to determine the relationship between self-reported xerostomia and salivary flow rates among HIV-infected individuals. A cross-sectional study was performed on 173 individuals (81 HIV-infected individuals, mean age: 32 years, and 92 non-HIV controls, mean age: 30 years). Subjective complaints of dry mouth, based on a self-report of xerostomia questions, and dry mouth, based on a visual analogue scale (VAS), were recorded along with measurements of salivary flow rate of both unstimulated and wax-stimulated whole saliva. The relationship between subjective responses to the xerostomia questions, the VAS of dry mouth, and objective measurements of salivary flow rates were analyzed. Responses to the questions--Do you carry water or a saliva substitute? and Have you had taste disturbance?--were significantly different between HIV-infected and non-HIV individuals (P flow rate. A significant correlation between the VAS of dry mouth and salivary flow rates was observed (P = 0.023). Responses to self-reported xerostomia questions reflects low unstimulated salivary flow rates. Thus, questions concerning dry mouth might be useful tools to identify HIV-infected individuals with hyposalivation, especially at a resting stage. © 2013 Wiley Publishing Asia Pty Ltd.

  1. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows

    Science.gov (United States)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan

    2017-11-01

    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  2. A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference

    Science.gov (United States)

    Wang, Yunong; Cheng, Rongjun; Ge, Hongxia

    2017-08-01

    In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.

  3. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Varmora, P., E-mail: pvamora@ipr.res.in; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-11-15

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  4. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Varmora, P.; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-01-01

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  5. Prediction of critical flow rates through power-operated relief valves

    International Nuclear Information System (INIS)

    Abdollahian, D.; Singh, A.

    1983-01-01

    Existing single-phase and two-phase critical flow models are used to predict the flow rates through the power-operated relief valves tested in the EPRI Safety and Relief Valve test program. For liquid upstream conditions, Homogeneous Equilibrium Model, Moody, Henry-Fauske and Burnell two-phase critical flow models are used for comparison with data. Under steam upstream conditions, the flow rates are predicted either by the single-phase isentropic equations or the Homogeneous Equilibrium Model, depending on the thermodynamic condition of the fluid at the choking plane. The results of the comparisons are used to specify discharge coefficients for different valves under steam and liquid upstream conditions and evaluate the existing approximate critical flow relations for a wide range of subcooled water and steam conditions

  6. Fluid queues driven by a birth and death process with alternating flow rates

    OpenAIRE

    P. R. Parthasarathy; K. V. Vijayashree; R. B. Lenin

    2004-01-01

    Fluid queue driven by a birth and death process (BDP) with only one negative effective input rate has been considered in the literature. As an alternative, here we consider a fluid queue in which the input is characterized by a BDP with alternating positive and negative flow rates on a finite state space. Also, the BDP has two alternating arrival rates and two alternating service rates. Explicit expression for the distribution function of the buffer occupancy is obtained. The case where the s...

  7. Physical and mathematical modeling of diesel fuel liquid and vapor movement in porous media

    International Nuclear Information System (INIS)

    Johnson, T.E.; Kreamer, D.K.

    1994-01-01

    Two-dimensional physical modeling of diesel fuel leaks was conducted in sand tanks to determine liquid and vapor migration characteristics. Mathematical modeling provided estimation of vapor concentrations at discrete times and distances from the vapor source and was compared to the physical experiment. The mathematical gaseous diffusion model was analogous to the Theis equation for ground-water flow, accounted for sorptive effects of the media, and was calibrated using measured concentrations from the sand tank. Mathematically different positions of the vapor source were tested to better relate observed liquid flow rates and media configuration to gaseous concentrations. The calculated diffusion parameters were then used to estimate theoretical, three-dimensional vapor transport from a hypothetical liquid leak of 2.0 1/hr for 30 days. The associated three-dimensional vapor plume, which would be reasonably detectable by commercially available vadose zone monitors, was estimated to have a diameter of 8 m with a vapor concentration of 50 ppm at the outside edge of the vapor plume. A careful application of the method and values can be used to give a first approximation to the number of vapor monitors required at a field site as well as the optimal locations for the monitors

  8. Further development of drag bodies for the measurement of mass flow rates during blowdown experiments

    International Nuclear Information System (INIS)

    Brockmann, E.; John, H.; Reimann, J.

    1983-01-01

    Drag bodies have already been used for sometime for the measurement of mass flow rates in blowdown experiments. Former research concerning the drag body behaviour in non-homogeneous two-phase flows frequently dealt with special effects by means of theoretical models only. For pipe flows most investigations were conducted for ratios of drag plate area to pipe cross section smaller 0.02. The present paper gives the results of experiments with drag bodies in a horizontal, non-homogeneous two-phase pipe flow with slip, which were carried through under the sponsorship of the German Ministry for Research and Technology (BMFT). Special interest was layed on the behaviour of the drag coefficient in stationary flows and at various cross sectional ratios. Both design and response of various drag bodies, which were developed at the Battelle-Institut, were tested in stationary and instationary two-phase flows. The influences of density and velocity profiles as well as the drag body position were studied. The results demonstrate, that the drag body is capable of measuring mass flow rates in connection with a gamma densitometer also in non-homogeneous two-phase flows. Satisfying results could be obtained, using simply the drag coefficient which was determined from single-phase flow calibrations

  9. Flow Injection Photochemical Vapor Generation Coupled with Miniaturized Solution-Cathode Glow Discharge Atomic Emission Spectrometry for Determination and Speciation Analysis of Mercury.

    Science.gov (United States)

    Mo, Jiamei; Li, Qing; Guo, Xiaohong; Zhang, Guoxia; Wang, Zheng

    2017-10-03

    A novel, compact, and green method was developed for the determination and speciation analysis of mercury, based on flow injection photochemical vapor generation (PVG) coupled with miniaturized solution cathode glow discharge-atomic emission spectroscopy (SCGD-AES). The SCGD was generated between a miniature hollow titanium tube and a solution emerging from a glass capillary. Cold mercury vapor (Hg(0)) was generated by PVG and subsequently delivered to the SCGD for excitation, and finally the emission signals were recorded by a miniaturized spectrograph. The detection limits (DLs) of Hg(II) and methylmercury (MeHg) were both determined to be 0.2 μg L -1 . Moreover, mercury speciation analysis could also be performed by using different wavelengths and powers from the UV lamp and irradiation times. Both Hg(II) and MeHg can be converted to Hg(0) for the determination of total mercury (T-Hg) with 8 W/254 nm UV lamp and 60 s irradiation time; while only Hg(II) can be reduced to Hg(0) and determined selectively with 4 W/365 nm UV lamp and 20 s irradiation time. Then, the concentration of MeHg can be calculated by subtracting the Hg(II) from the T-Hg. Because of its similar sensitivity and DL at 8 W/254 nm, the simpler and less toxic Hg(II) was used successfully as a primary standard for the quantification of T-Hg. The novel PVG-SCGD-AES system provides not only a 365-fold improvement in the DL for Hg(II) but also a nonchromatographic method for the speciation analysis of mercury. After validating its accuracy, this method was successfully used for mercury speciation analysis of water and biological samples.

  10. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ni [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Jiang, Shiuh-Jen, E-mail: sjjiang@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chen, Yen-Ling [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Sahayam, A.C. [National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad (India)

    2015-02-20

    Highlights: • Determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions in a single run. • Accurate analysis using isotope dilution and standard addition methods. • Vapor generation ICP-MS yielded superior detection limits compared to ETV-ICP-MS. • No sample dissolution increased sample through put. • Analysis of GBW09305 Cosmetic (Cream) reference material for accuracy. - Abstract: A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL{sup −1} Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g{sup −1} for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.

  11. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions

    International Nuclear Information System (INIS)

    Chen, Wei-Ni; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A.C.

    2015-01-01

    Highlights: • Determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions in a single run. • Accurate analysis using isotope dilution and standard addition methods. • Vapor generation ICP-MS yielded superior detection limits compared to ETV-ICP-MS. • No sample dissolution increased sample through put. • Analysis of GBW09305 Cosmetic (Cream) reference material for accuracy. - Abstract: A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL −1 Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g −1 for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample

  12. Fabrication of microfluidic architectures for optimal flow rate and concentration measurement for lab on chip application

    Science.gov (United States)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.

  13. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    Science.gov (United States)

    Terblanche, John S; Chown, Steven L

    2010-05-01

    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (prate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Diurnal variations in lower leg subcutaneous blood flow rate in patients with chronic venous leg ulcers

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Kristensen, J K

    1991-01-01

    The blood flow rate in subcutaneous adipose tissue was measured on the lower legs of 11 patients with chronic lower-leg venous insufficiency and ulceration and in eight age-matched control subjects for 12-20 h, under ambulatory conditions, using the 133Xe wash-out technique with portable Cadmium...... telluride (CdTe(Cl)) detectors. In both groups, the change from an upright to a supine position at the beginning of the night period elicited an instantaneous increment in the blood flow rate of 30-40% with a decrease in the central and local postural sympathetic vasoconstrictor activity. After...... approximately 1 h of sleep, a considerable increase in blood flow rate was seen in both patient and control groups which persisted for nearly 100 min. In the patient group, the mean increase was 137% compared to a mean increase of 68% in the control group (P less than 0.01). The blood flow then returned...

  15. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  16. A frequency conversion mode for dispenser in the service station based on flow rate signal

    International Nuclear Information System (INIS)

    Liu, Y J; Tang, D; Huang, J B; Liu, J; Jia, P F

    2012-01-01

    Dispenser is an integrated fuel transport and measurement system at the service station. In this paper, we developed a frequency conversion mode for the dispenser, based on the flow rate signal which is obtained from the converter measuring flow capacity. After introducing the frequency conversion mode to dispenser, we obtained that pump rotates at a high speed when fuelled with high flow rate, and it rotates at a low speed when fuelled with low flow rate. This makes the fuel dispenser more energy-efficient and controllable. We also did some valve optimizations on the dispenser and developed a new control mode for preset refuelling based on the frequency conversion mode, Experimental and theoretical studies have shown that the new dispenser not only can meet the national standards, but also performs better than the ordinary one especially in preset refuelling.

  17. Effect of carbon dioxide on the rate of iodine vapor absorption by aqueous solution of sodium hydroxide

    International Nuclear Information System (INIS)

    Eguchi, Wataru; Adachi, Motonari; Miyake, Yoshikazu

    1978-01-01

    There is always carbon dioxide in the atmosphere as an impurity. Since this is an acid gas similar to iodine, each absorption rate seems to be affected by the other due to the coexistence of these two. Experiments have been conducted to clarify the absorption rate and absorption mechanism of iodine in the simultaneous absorption of iodine and carbon dioxide. Carbon dioxide coexisting with gas phases as an impurity decreases the absorption rate of iodine in the removal by washing with water of iodine mixed in the air. The first cause of this is that the diffusion coefficient of iodine in gas phase decreases with the carbon dioxide content in the gas phase. The second cause is that coexistent carbon dioxide is an acid gas, dissociates by dissolving into the absorbing solution, increases hydrogen ion concentration together with the formation of negative ions of bicarbonate and carbonate, and reduces hydroxyl ion concentration as a result. It is more important that existence of iodine has a catalytic effect to the rate of basic catalytic hydrolysis of carbon dioxide simultaneously dissolved in water phase, and accelerates this reaction rate. The mechanism of catalytic effect of iodine for the hydrolysis of carbon dioxide can not be clarified in detail only by this experiment, but the simultaneous absorption rate of iodine and carbon dioxide can be explained satisfactorily. (Wakatsuki, Y

  18. Determination of pump flow rate during cardiopulmonary bypass in obese patients avoiding hemodilution.

    Science.gov (United States)

    Santambrogio, Luisa; Leva, Cristian; Musazzi, Giorgio; Bruno, Piergiorgio; Vailati, Andrea; Zecchillo, Franco; Di Credico, Germano

    2009-01-01

    During cardiopulmonary bypass the pump flow is usually set on 2.4 L/min/m(2) of body surface area (BSA) to guarantee adequate tissue perfusion without differences for patient constitutional type. The present study attempts to evaluate the adequacy of pump flow rate in obese patients, considering the ideal weight instead of the real one, avoiding the overflow side effects and hemodilution. Obese patients with body mass index (BMI) > 30 presented for cardiac surgery were randomized in two groups: in one the cardiopulmonary bypass was led traditionally, in the other, pump flow rate was calculated on ideal BMI of 25. Demographics, preoperative tests, and monitoring data were registered. Mortality at hospital discharge and 30 days after were analyzed. The pump flow rate between the groups was different (4.46 vs. 4.87; p = 0.004); there were no differences in organ perfusion (SvO(2); diuresis) and mortality, but the study group presented fewer complications and blood transfusions. The BSA is widely used as the biometric unit to normalize physiologic parameters included pump flow rate, but it is disputable if this practice is correct also in obese patients. The study group, in which pump flow rate was set on ideal BSA, presented no difference in diuresis and mixed venous saturation but fewer complications and fewer perioperative blood transfusions.

  19. Caries prevalence in chronic alcoholics and the relationship to salivary flow rate and pH.

    Science.gov (United States)

    Dukić, Walter; Dobrijević, Tanja Trivanović; Katunarić, Marina; Lesić, Stjepanka

    2013-03-01

    The aim of this study was to investigate the dental status of alcoholics; to evaluate the relationship of unstimulated and stimulated saliva pH on their decayed/missing/filled teeth (DMFT); and to evaluate the relationship of unstimulated and stimulated salivary flow rate on their DMFT. A cross-sectional study was conducted in patients treated for alcohol dependency (n = 70; mean age 41.7 years) and a control group of non-alcoholics (n = 70; mean age 39.1 years). Examinations for dental caries were conducted using the World Health Organization (WHO) criteria and questionnaires. The correlation between nominal variables was determined using chi2 test (alpha = 0.05). The correlation between interval variables was determined using Pearson's correlation coefficient. The mean DMFT was similar in alcoholics (14.40) and the control group (13.44) (p > 0.05). There was a statistically significant correlation between alcoholism and unstimulated salivary flow rate (p salivary flow rate (p > 0.05) or stimulated salivary flow on DMFT (p > 0.05). There was a statistically significant correlation between alcoholism and the pH value of stimulated saliva (p 0.05). No major differences were found with respect to overall DMFT in alcoholics compared to the control group. Alcoholism and stimulated salivary flow rate showed no correlation. Unstimulated salivary flow rate as well as the pH values of both unstimulated and stimulated saliva, were lower in the alcoholic group.

  20. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    International Nuclear Information System (INIS)

    Hamel, W.R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flow rate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flow rate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flow rate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flow rate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow

  1. Improvements of a COMS Land Surface Temperature Retrieval Algorithm Based on the Temperature Lapse Rate and Water Vapor/Aerosol Effect

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2015-02-01

    Full Text Available The National Meteorological Satellite Center in Korea retrieves land surface temperature (LST by applying the split-window LST algorithm (CSW_v1.0 to Communication, Ocean, and Meteorological Satellite (COMS data. Considerable errors were detected under conditions of high water vapor content or temperature lapse rates during validation with Moderate Resolution Imaging Spectroradiometer (MODIS LST because of the too simplified LST algorithm. In this study, six types of LST retrieval equations (CSW_v2.0 were developed to upgrade the CSW_v1.0. These methods were developed by classifying “dry,” “normal,” and “wet” cases for day and night and considering the relative sizes of brightness temperature difference (BTD values. Similar to CSW_v1.0, the LST retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and a slightly larger bias of −0.03 K from 0.00K; the root mean square error (RMSE improved from 1.41 K to 1.39 K. In general, CSW_v2.0 improved the retrieval accuracy compared to CSW_v1.0, especially when the lapse rate was high (mid-day and dawn and the water vapor content was high. The spatial distributions of LST retrieved by CSW_v2.0 were found to be similar to the MODIS LST independently of the season, day/night, and geographic locations. The validation using one year’s MODIS LST data showed that CSW_v2.0 improved the retrieval accuracy of LST in terms of correlations (from 0.988 to 0.989, bias (from −1.009 K to 0.292 K, and RMSEs (from 2.613 K to 2.237 K.

  2. Mercury flow experiments. 4th report: Measurements of erosion rate caused by mercury flow

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2002-06-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be weak by thickness decreasing. This report presents experimental results of wall thickness change by erosion using a mercury experimental loop. In the experiments, an erosion test section and coupons were installed in the mercury experimental loop, and their wall thickness was measured with an ultra sonic thickness gage after every 1000 hours. As a result, under 0.7 m/s of mercury velocity condition which is slightly higher than the practical velocity in mercury pipelines, the erosion is about 3 μm in 1000 hours. The wall thickness decrease during facility lifetime of 30 years is estimated to be less than 0.5 mm. According to the experimental result, it is confirmed that the effect of erosion on component strength is extremely small. Moreover, a measurement of residual mercury on the piping surface was carried out. As a result, 19 g/m 2 was obtained as the residual mercury for the piping surface. According to this result, estimated amount of residual mercury for

  3. The role of unsteady effusion rates on inflation in long-lived lava flow fields

    Science.gov (United States)

    Rader, E.; Vanderkluysen, L.; Clarke, A.

    2017-11-01

    The emission of volcanic gases and particles can have global and lasting environmental effects, but their timing, tempo, and duration can be problematic to quantify for ancient eruptions where real-time measurements are absent. Lava flows, for example, may be long-lasting, and their impact is controlled by the rate, tempo, and vigor of effusion. These factors are currently difficult to derive from the geologic record but can have large implications for the atmospheric impact of an eruption. We conducted a set of analogue experiments on lava flow inflation aiming at connecting lava morphologies preserved in the rock record to eruption tempo and dynamics through pulsating effusion rates. Inflation, a process where molten material is injected beneath the crust of an active lava flow and lifts it upwards, is a common phenomenon in basaltic volcanic systems. This mechanism requires three components: a) a coherent, insulating crust; b) a wide-spread molten core; and c) pressure built up beneath the crust from a sustained supply of molten material. Inflation can result in a lava flow growing tens of meters thick, even in flow fields that expand hundreds of square kilometers. It has been documented that rapid effusion rates tend to create channels and tubes, isolating the active part of the flow from the stagnant part, while slow effusion rates may cause crust to form quickly and seize up, forcing lava to overtop the crust. However, the conditions that allow for inflation of large flow fields have not previously been evaluated in terms of effusion rate. By using PEG 600 wax and a programmable pump, we observe how, by pulsating effusion rate, inflation occurs even in very low viscosity basaltic eruptions. We show that observations from inflating Hawaiian lava flows correlate well with experimental data and indicate that instantaneous effusion rates may have been 3 times higher than average effusion rates during the emplacement of the 23 January 1988 flow at Kīlauea (Hawai

  4. A Computational Framework to Optimize Subject-Specific Hemodialysis Blood Flow Rate to Prevent Intimal Hyperplasia

    Science.gov (United States)

    Mahmoudzadeh, Javid; Wlodarczyk, Marta; Cassel, Kevin

    2017-11-01

    Development of excessive intimal hyperplasia (IH) in the cephalic vein of renal failure patients who receive chronic hemodialysis treatment results in vascular access failure and multiple treatment complications. Specifically, cephalic arch stenosis (CAS) is known to exacerbate hypertensive blood pressure, thrombosis, and subsequent cardiovascular incidents that would necessitate costly interventional procedures with low success rates. It has been hypothesized that excessive blood flow rate post access maturation which strongly violates the venous homeostasis is the main hemodynamic factor that orchestrates the onset and development of CAS. In this article, a computational framework based on a strong coupling of computational fluid dynamics (CFD) and shape optimization is proposed that aims to identify the effective blood flow rate on a patient-specific basis that avoids the onset of CAS while providing the adequate blood flow rate required to facilitate hemodialysis. This effective flow rate can be achieved through implementation of Miller's surgical banding method after the maturation of the arteriovenous fistula and is rooted in the relaxation of wall stresses back to a homeostatic target value. The results are indicative that this optimized hemodialysis blood flow rate is, in fact, a subject-specific value that can be assessed post vascular access maturation and prior to the initiation of chronic hemodialysis treatment as a mitigative action against CAS-related access failure. This computational technology can be employed for individualized dialysis treatment.

  5. Engineering Mathematical Analysis Method for Productivity Rate in Linear Arrangement Serial Structure Automated Flow Assembly Line

    Directory of Open Access Journals (Sweden)

    Tan Chan Sin

    2015-01-01

    Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.

  6. Influence of chemistry on steam generator primary-to-secondary stabilized low leak flow rate

    International Nuclear Information System (INIS)

    Hervouet, C.; Pages, D.; Fauchon, C.; Bretelle, J.L.; Bus, F.

    2002-01-01

    The comparison of the leak flow rate behavior between the previous and the new boron/lithium coordination, the second one corresponding to an higher pH during the cycle than the first one, leads to the following conclusions, confirmed by the experimental and theoretical studies: Low leak flow rate is extremely sensitive to pH in the zone of pH of primary water because the behavior of metallic oxide is changing drastically in that range of pH (from precipitation to dissolution); Leak flow rate is often maintained lower with low pH. Let's recall however that pH can not reach a too low value which could enhance corrosion product deposition, increase dose rates along the primary circuit, and lead to reactor outages due to problems on fuel assemblies. The understanding of the governing phenomena led to adapt in 2000 the reactor cooling system chemical conditioning for the French Pressurized Water reactors facing problems with the management of the stabilized leak flow rate fluctuations, once no degradation of tube bundle integrity is proved. Each part of the cycle and operating conditions lead to an advised operating action. In general, the new recommendations for the reactors facing problems with the management of low leak flow rate are based on the principle of helping the precipitation of metallic oxide within the crack and preventing their dissolution. (authors)

  7. Effect of water flow rate and feed training on "pacamã" (Siluriforme: Pseudopimelodidae juvenile production

    Directory of Open Access Journals (Sweden)

    R.K. Luz

    2011-08-01

    Full Text Available The effects of different water flow rates and feed training on the production of "pacamã" Lophiosilurus alexandri juveniles were evaluated. In the first experiment, nine day post-hatch larvae (n= 2,400 were stocked at a density of 5 larvae/L. Different water flow (F rates were tested: F1 = 180; F2 = 600; F3 = 1,300; and F4 = 2,600mL/min. Artemia nauplii were offered as food during the first 15 days of active feeding. In the second experiment for feed training, 720 juveniles (total length of 22.2mm were stocked at a density of 1.5 juveniles/L. A water flow rate similar to F1 was used. The use of extruded dry diet was tested, and feed training was done with and without other enhanced flavors (Artemia nauplii or Scott emulsion. The water flow rates did not influence the survival or growth of L. alexandri. Cannibalism occurred during feed training. The worst survival, specific growth rate and high mortality were found with the use of extruded dry diet, while similar values were registered with the different feed training diets used. Reduced water flow rate can be used to lower water consumption during larviculture and feed training of L. alexandri.

  8. Flow rate and temperature characteristics in steady state condition on FASSIP-01 loop during commissioning

    Science.gov (United States)

    Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.

    2018-02-01

    The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.

  9. Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.

    Science.gov (United States)

    Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-08-01

    Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Computer aided approximation of flow rate through systemic-pulmonary arterial shunts (SPAS).

    Science.gov (United States)

    Vennemann, Peter; Montag, Michael; Peters, Franz; Merzkirch, Wolfgang

    2012-02-22

    The discrimination of flow rates through bronchial arteries that are affected by pathological SPAS today still happens solely qualitatively. A reproducible quantification of flow rates, however, would enable the comprehension of phenomena like the intensified shunt perfusion seen in cases of chronic inflammations or the characterization of SPAS that may cause cardiovascular problems. A computational program is developed, that allows the modeling of individual bronchial arteries on the basis of the information provided by angiography. Angiographic images are available from the standard clinical assessment of SPAS. The flow through continuous and geometrically measurable vessel segments and SPAS is given by the law of Hagen-Poiseuille. The discharge through healthy branches is calculated by means of allometric scaling laws. The simulation results are verified by flow experiments in artificial vessel networks made of glass and PE tubing. The experimental set-up mimics realistic, pulsating pressure and flow conditions. When applied to the artificial vessel networks, the model described herein provides results for the volumetric flow rate that differ from values measured in laboratory experiments by volumetric flow through individual SPAS fairly independently from his experience and without the need of measurements additional to the mandatory angiography.

  11. Contraction rate, flow modification and bed layering impact on scour at the elliptical guide banks

    Science.gov (United States)

    Gjunsburgs, B.; Jaudzems, G.; Bizane, M.; Bulankina, V.

    2017-10-01

    Flow contraction by the bridge crossing structures, intakes, embankments, piers, abutments and guide banks leads to general scour and the local scour in the vicinity of the structures. Local scour is depending on flow, river bed and structures parameters and correct understanding of the impact of each parameter can reduce failure possibility of the structures. The paper explores hydraulic contraction, the discharge redistribution between channel and floodplain during the flood, local flow modification and river bed layering on depth, width and volume of scour hole near the elliptical guide banks on low-land rivers. Experiments in a flume, our method for scour calculation and computer modelling results confirm a considerable impact of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater and river bed layering on the depth, width, and volume of scour hole in steady and unsteady flow, under clear water condition. With increase of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater values, the scour depth increases. At the same contraction rate, but at a different Fr number, the scour depth is different: with increase in the Fr number, the local velocity, backwater, scour depth, width, and volume is increasing. Acceptance of the geometrical contraction of the flow, approach velocity and top sand layer of the river bed for scour depth calculation as accepted now, may be the reason of the structures failure and human life losses.

  12. Calibration of the Dodewaard downcomer thermocouple cross-correlation flow-rate measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stekelenburg, A J.C. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Hagen, T.H.J.J. van der [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Akker, H.E.A. van den [Technische Univ. Delft (Netherlands). Lab. voor Fysische Technologie

    1992-12-01

    The cross-correlation flow measurement technique, applied for measuring the coolant flow rate in a nuclear reactor, was calibrated with the use of numerical simulations of turbulent flow. The three-dimensional domain was collapsed into two dimensions. With a two-dimensional calculation of steady-state flow with transient thermal characteristics the response of thermocouples to a temperature variation was calculated. By cross-correlating the calculated thermocouple responses, the link between total flow rate and measured transit times was made. Three calibration points were taken in the range of 579 kg/s to 1477 kg/s. In this range, the product of the calculated transit time and the mass flow-rate is constant up to +3.5% and -2.4%. The reliability of the calibration was estimated at {+-}4.6%. The influence of the inlet boundary conditions, and the modelling of the flow in the upper part of the downcomer channel on the calibration result is shown to be small. A measured velocity profile effect was successfully predicted. (orig.).

  13. Flow rates in the head and neck lymphatics after food stimulation in healthy subjects

    International Nuclear Information System (INIS)

    Thommesen, P.; Buhl, J.; Jansen, K.; Funch-Jensen, P.; Central Hospital Randers; Municipal Hospital Aarhus

    1981-01-01

    In 22 healthy subjects lymph transport flow rates was studied in the head lymphatics after food stimulation, mastication (chewing) and taste. After food stimulation there was a significantly higher transport rate (0.67 meter/hour) than after taste (0.57 meter/hour) and mastication (0.55 meter/hour). The calculation of transport flow rate was independent of quantitative distribution of radioactivity in the head and neck lymphatics, and it could therefore perhaps be of clinical value. (orig.) [de

  14. Review of flow rate estimates of the Deepwater Horizon oil spill

    OpenAIRE

    McNutt, Marcia K.; Camilli, Rich; Crone, Timothy J.; Guthrie, George D.; Hsieh, Paul A.; Ryerson, Thomas B.; Savas, Omer; Shaffer, Frank

    2011-01-01

    The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ ...

  15. Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate

    International Nuclear Information System (INIS)

    Reeve, J.; Arlot, M.; Wootton, R.; Edouard, C.; Tellez, M.; Hesp, R.; Green, J.R.; Meunier, P.J.

    1988-01-01

    In 20 untreated patients with idiopathic or postmenopausal osteoporosis, kinetic studies of skeletal blood flow (using 18 F) and bone turnover (using 85 Sr) were combined with dynamic histomorphometry performed on transiliac biopsies taken within 6 weeks of each other. In 8 patients the combined studies were repeated after treatment. A further 5 patients were studied only while receiving treatment. As expected, skeletal blood flow measured by 18 F correlated with an index of 85 Sr uptake into the exchangeable pools of bone. Additionally and independently, skeletal blood flow correlated with an index of the work rate of the osteoblasts in each multicellular unit of bone (the corrected apposition rate of Parfitt). These correlations were statistically significant in both the untreated patients (P less than 0.05) and the whole group (P less than 0.001). Further indices related to bone turnover at the level of the skeleton as a whole were significantly associated with skeletal blood flow only in the combined group

  16. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  17. Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone

    Science.gov (United States)

    Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian

    2017-09-01

    We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.

  18. Effects of neuropeptide Y on regulation of blood flow rate in canine myocardium

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Sheikh, S P; Jørgensen, J

    1990-01-01

    The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY-like immunoreac......The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY......+. In contrast, intracoronary NPY (0.01-10 micrograms) induced a considerable degree of vasoconstriction; the reduction of blood flow rate was dose related, with a maximum reduction to 52% of control values. The effect of intracoronary NPY (1 microgram) on maximally relaxed arterioles elicited by 30 s...... of ischemia was studied in separate experiments during reactive hyperemia. NPY induced a decrease in maximum blood flow during reactive hyperemia (166.6 vs. 214.6% of preocclusive blood flow rate, mean values; P = 0.05), an increase in the cumulative excess blood flow (61.0 vs. 35.3 ml/100 g; P = 0...

  19. Particle deposition from aqueous suspensions in turbulent pipe flow - a comparison of observed deposition rates and predicted arrival rates

    International Nuclear Information System (INIS)

    Rodliffe, R.S.

    1979-11-01

    At the present time, there appear to be only four adequately controlled and characterised experimental studies of particle deposition from single phase water in turbulent pipe flow. These are used to illustrate the ranges of applicability of methods for predicting particle arrival rates at tube walls. Arrival rates are predicted from mass transfer correlations and the theory of Reeks and Skyrme (1976) when transport is limited by Brownian diffusion and inertial behaviour, respectively. The regimes in which finite particle size limits the application of these methods are defined and preliminary consideration is given to the conditions under which gravitational settling may make a contribution to deposition in vertically mounted tubes. (author)

  20. Effect of Various Sugary Beverages on Salivary pH, Flow Rate, and Oral Clearance Rate amongst Adults

    Directory of Open Access Journals (Sweden)

    Rinki Hans

    2016-01-01

    Full Text Available Introduction. Diet is a major aetiological factor for dental caries and enamel erosion. This study was undertaken with the aim of assessing the effect of selected locally available beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Materials and Method. This clinical trial comprised 120 subjects. Test beverages undertaken were pepsi, fruit drink, coffee, and sweetened milk. Statistical analysis was carried out using SPSS version 17. Descriptive statistics, one-way ANOVA, and post hoc Tukey’s test were applied in the statistical tests. Results. It was found that salivary pH decreased for all the beverages immediately after consumption and the salivary flow rate increased after their consumption. The oral clearance rate of sweetened milk was found to be the least at 6.5 minutes and that of pepsi was found to be 13 minutes. However, the oral clearance rates of fruit drink and coffee were found to be equal at 15 minutes. Conclusion. Although it was found out that liquids cleared rapidly from the oral cavity, they had a significant cariogenic and erosive potential. Hence, it is always advised to minimise the consumption of beverages, especially amongst children and young adults to maintain a good oral health.

  1. Effect of Various Sugary Beverages on Salivary pH, Flow Rate, and Oral Clearance Rate amongst Adults.

    Science.gov (United States)

    Hans, Rinki; Thomas, Susan; Garla, Bharat; Dagli, Rushabh J; Hans, Manoj Kumar

    2016-01-01

    Introduction. Diet is a major aetiological factor for dental caries and enamel erosion. This study was undertaken with the aim of assessing the effect of selected locally available beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Materials and Method. This clinical trial comprised 120 subjects. Test beverages undertaken were pepsi, fruit drink, coffee, and sweetened milk. Statistical analysis was carried out using SPSS version 17. Descriptive statistics, one-way ANOVA, and post hoc Tukey's test were applied in the statistical tests. Results. It was found that salivary pH decreased for all the beverages immediately after consumption and the salivary flow rate increased after their consumption. The oral clearance rate of sweetened milk was found to be the least at 6.5 minutes and that of pepsi was found to be 13 minutes. However, the oral clearance rates of fruit drink and coffee were found to be equal at 15 minutes. Conclusion. Although it was found out that liquids cleared rapidly from the oral cavity, they had a significant cariogenic and erosive potential. Hence, it is always advised to minimise the consumption of beverages, especially amongst children and young adults to maintain a good oral health.

  2. Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kakiuchi, H.; Nakahama, Y.; Ohmi, H.; Yasutake, K.; Yoshii, K.; Mori, Y.

    2005-01-01

    Silicon nitride (SiN x ) films have been prepared at extremely high deposition rates by the atmospheric pressure plasma chemical vapor deposition (AP-PCVD) technique on Si(001) wafers from gas mixtures containing He, H 2 , SiH 4 and N 2 or NH 3 . A 150 MHz very high frequency (VHF) power supply was used to generate high-density radicals in the atmospheric pressure plasma. Deposition rate, composition and morphology of the SiN x films prepared with various deposition parameters were studied by scanning electron microscopy and Auger electron spectroscopy. Fourier transformation infrared (FTIR) absorption spectroscopy was also used to characterize the structure and the chemical bonding configurations of the films. Furthermore, etching rate with buffered hydrofluoric acid (BHF) solution, refractive index and capacitance-voltage (C-V) characteristics were measured to evaluate the dielectric properties of the films. It was found that effective passivation of dangling bonds and elimination of excessive hydrogen atoms at the film-growing surface seemed to be the most important factor to form SiN x film with a dense Si-N network. The C-V curve of the optimized film showed good interface properties, although further improvement was necessary for use in the industrial metal-insulator-semiconductor (MIS) applications

  3. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Directory of Open Access Journals (Sweden)

    M. Benghanem

    2018-03-01

    Full Text Available This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia. The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed. Keywords: Photovoltaic water pumping system, Solar radiation data, Simulation, Flow rate

  4. Steady flow rate to a partially penetrating well with seepage face in an unconfined aquifer

    Science.gov (United States)

    Behrooz-Koohenjani, Siavash; Samani, Nozar; Kompani-Zare, Mazda

    2011-06-01

    The flow rate to fully screened, partially penetrating wells in an unconfined aquifer is numerically simulated using MODFLOW 2000, taking into account the flow from the seepage face and decrease in saturated thickness of the aquifer towards the well. A simple three-step method is developed to find the top of the seepage face and hence the seepage-face length. The method is verified by comparing it with the results of previous predictive methods. The results show that the component of flow through the seepage face can supply a major portion of the total pumping rate. Variations in flow rate as a function of the penetration degree, elevation of the water level in the well and the distance to the far constant head boundary are investigated and expressed in terms of dimensionless curves and equations. These curves and equations can be used to design the degree of penetration for which the allowable steady pumping rate is attained for a given elevation of water level in the well. The designed degree of penetration or flow rate will assure the sustainability of the aquifer storage, and can be used as a management criterion for issuing drilling well permits by groundwater protection authorities.

  5. An in vivo assessment of the influence of needle gauges on endodontic irrigation flow rate.

    Science.gov (United States)

    Gopikrishna, Velayutham; Sibi, Swamy; Archana, Durvasulu; Pradeep Kumar, Angabakkam Rajasekaran; Narayanan, Lakshmi

    2016-01-01

    The aim of this clinical study was to assess the influence of irrigation needle gauge on endodontic irrigation flow rates. In vivo assessment. Five specialist endodontists performed intracanal irrigation procedures on 50 mesiobuccal canal of mandibular first molars using three different irrigation needle gauges. Data of time taken for irrigation was recorded by an irrigation testing system and analyzed using independent sample "T" test and one-way analysis of variance (ANOVA) test. The level of significance was set at P < 0.05. The following tests were used for the statistical analysis: Independent sample "T" test, one-way ANOVA test, and post hoc multiple comparison was carried out using Tukey's honest significant difference (HSD) test using Statistical Package for the Social Sciences (SPSS) version 16 for Windows. The average flow rate of 26 gauge was 0.27 mLs(-1), of 27 gauge was 0.19 mLs(-1), and of 30 gauge was 0.09 mls(-1). There was statistical significance among the gauges (P < 0.001). 26 gauge had highest flow rate when compared with other groups followed by 27 gauge and 30 gauge respectively. The operator variability for flow rate of three endodontic irrigation needle gauges (26 gauge, 27 gauge, and 30 gauge) was found to be not significant. Needle gauge has significant influence on endodontic irrigation flow rate.

  6. ChargeOut! : discounted cash flow compared with traditional machine-rate analysis

    Science.gov (United States)

    Ted Bilek

    2008-01-01

    ChargeOut!, a discounted cash-flow methodology in spreadsheet format for analyzing machine costs, is compared with traditional machine-rate methodologies. Four machine-rate models are compared and a common data set representative of logging skidders’ costs is used to illustrate the differences between ChargeOut! and the machine-rate methods. The study found that the...

  7. Estimation of groundwater flow rate using the decay of 222Rn in a well

    International Nuclear Information System (INIS)

    Hamada, Hiromasa

    1999-01-01

    A method of estimating groundwater flow rate using the decay of 222 Rn in a well was investigated. Field application revealed that infiltrated water (i.e., precipitation, pond water and irrigation water) accelerated groundwater flow. In addition, the depth at which groundwater was influenced by surface water was determined. The velocity of groundwater in a test well was estimated to be of the order of 10 -6 cm s -1 , based on the ratio of 222 Rn concentration in groundwater before and after it flowed into the well. This method is applicable for monitoring of groundwater flow rate where the velocity in a well is from 10 -5 to 10 -6 cm s -1

  8. Calibrationless rotating Lorentz-force flowmeters for low flow rate applications

    Science.gov (United States)

    Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.

    2018-07-01

    A ‘weighted magnetic bearing’ has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under ‘frictionless’ conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. This paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.

  9. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    Science.gov (United States)

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  10. The use of tracer techniques to measure water flow rates in steam turbines

    International Nuclear Information System (INIS)

    Whitfield, O.J.; Blaylock, G.; Gale, R.W.

    1979-01-01

    Radioactive and chemical tracers offer some unique advantages in detailed flow measurement on steam turbine plant. A series of experiments on a nuclear power station are reported where tracers successfully measured water flow rates and the initial steam moisture with an accuracy suitable for performance and commissioning tests. Both radioactive and chemical tracer methods produced identical results. Straightforward practical procedures were evolved that ensured repeatable accuracy and in addition a quantitative method of detecting heater leaks on load was established. (author)

  11. Influence of Cutting Fluid Flow Rate and Cutting Parameters on the Surface Roughness and Flank Wear of TiAlN Coated Tool In Turning AISI 1015 Steel Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Moganapriya C.

    2017-09-01

    Full Text Available This paper presents the influence of cutting parameters (Depth of cut, feed rate, spindle speed and cutting fluid flow rate on the surface roughness and flank wear of physical vapor deposition (PVD Cathodic arc evaporation coated TiAlN tungsten carbide cutting tool insert during CNC turning of AISI 1015 mild steel. Analysis of Variance has been applied to determine the critical influence of cutting parameters. Taguchi orthogonal test design has been employed to optimize the process parameters affecting surface roughness and tool wear. Depth of cut was found to be the most dominant factor contributing to high surface roughness (67.5% of the inserts. However, cutting speed, feed rate and flow rate of cutting fluid showed minimal contribution to surface roughness. On the other hand, cutting speed (45.6% and flow rate of cutting fluid (23% were the dominant factors influencing tool wear. The optimum cutting conditions for desired surface roughness constitutes the following parameters such as medium cutting speed, low feed rate, low depth of cut and high cutting fluid flow rate. Minimal tool wear was achieved for the following process parameters such as low cutting speed, low feed rate, medium depth of cut and high cutting fluid flow rate.

  12. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  13. Determination of fan flow and water rate adjustment for off-design cooling tower tests

    International Nuclear Information System (INIS)

    Vance, J.M.

    1984-02-01

    The determination of the performance of a mechanical draft cooling tower requires that the air mass flow through the tower be known. Since this flow is not measured, it has been customary to use the manufacturer's design air flow and adjust it by the one-third power of the ratio of the design to test fan horsepower. The most nearly correct approximation of air flow through a tower can be obtained by incrementally moving through the tower from air inlet to outlet while calculating mass flows, energy balances, and pressure drops for each increment and then utilizing fan curves to determine volumetric and mass flows. This procedure would account for changes in air humidity and density through the tower, evaporation of water, effect of water rate on air pressure drop, and changes in fan characteristics. These type calculations may be within the capabilities of all in the near future, but for the interim, it is recommended that a more elementary approach be used which can be handled with a good calculator and without any proprietary data. This approach depends on certain assumptions which are acceptable if the tower test is conducted within CTI code requirements. The fan must be considered a constant suction volume blower for a given blade pitch. The total pressure at the fan, a function of volumetric flow and wet air density, must be assumed to be unaffected by other considerations, and the fan horsepower must be assumed to change only as volumetric flow and wet air density changes. Given these assumptions, along with design information normally provided with a tower, the determination of air flow through a tower in a test can be made from CTI test data. The air flow, and consequently the water rate adjustment and corrected water to air ratio, are derived and found to be direct functions of horsepower and density and an inverse function of wet air humidities

  14. Influence of fluid properties, flow rate and aspect ratios on stratification in a cylindrical cavity

    International Nuclear Information System (INIS)

    Bouhdjar, A.; Benyoucef, B.; Harhad, A.

    2005-01-01

    Fluid flow and temperature field in a cavity are numerically simulated using finite volume techniques. The fluid flow in the vertical cylindrical cavity is assumed to be two-dimensional. Inflow occurs at the top through a ring like entrance and outflow takes place at the bottom through an exit of the same shape. The study considers a transient mixed convection flow. The governing equations are the conservation equations for laminar natural convection flow based on the Boussinesq approximation. Forced convection flow is superimposed through the appropriate boundary conditions (inflow and outflow conditions). The influence of the mass flow rate and of the fluid is made through the Reynolds number and the Prandtl number. Stratification analysis is made qualitatively through temperature distribution. In a previous study, consideration was given to low Reynolds numbers i.e. Re +4 ) in considering water (Pr=3.01) as the working fluid for the thermal energy storage. Correlations for the storage efficiency are deduced with respect to the Reynolds number and cavity aspect ratios of 1/0.5, 1/1 and 1/2. So the objective of the work is to get more information on the influence of flow rate on the storage efficiency as well as on the medium mean temperature. (author)

  15. Influence of fluid properties, flow rate and aspect ratios on stratification in a cylindrical cavity

    International Nuclear Information System (INIS)

    Bouhdjar, A.; Harhad, A.; Guerri, O.

    2003-01-01

    The fluid flow and temperature field in a cavity are numerically simulated using finite volume techniques. The fluid flow in the vertical cylindrical cavity is assumed to be two-dimensional. Inflow occurs at the top through a ring like entrance and outflow takes place at the bottom through an exit of the same shape. The study considers a transient mixed convection flow. The governing equations are the conservation equations for laminar natural convection flow based on the Boussinesq approximation. Forced convection flow is superimposed through the appropriate boundary conditions (inflow and outflow conditions). The influence of the mass flow rate and of the fluid is made through the Reynolds number and the Prandtl number. Stratification analysis is made qualitatively through temperature distribution. The study considers two fluids i.e. water (Pr=4.5) and ethylene glycol (Pr=51) and cavity aspect ratios of 1/0.5 and 1 /2. So the objective of the work is to get more information on the influence of flow rate on the performance of the thermal energy storage. Correlations for the storage efficiency are deduced with respect to the Reynolds number. (author)

  16. Securing a robust electrical discharge drilling process by means of flow rate control

    Science.gov (United States)

    Risto, Matthias; Munz, Markus; Haas, Ruediger; Abdolahi, Ali

    2017-10-01

    This paper deals with the increase of the process robustness while drilling cemented carbide using electrical discharge machining (EDM). A demand for high efficiency in the resulting diameter is equivalent with a high robustness of the EDM drilling process. Analysis were done to investigate the process robustness (standard deviation of the borehole diameter) when drilling cemented carbide. The investigation has shown that the dielectric flow rate changes over the drilling process. In this case the flow rate decreased with a shorter tool electrode due to an uneven wear of the tool electrode's cross section. Using a controlled flow rate during the drilling process has led to a reduced standard deviation of the borehole diameter, thus to a higher process robustness when drilling cemented carbide.

  17. Fixation of waste materials in grouts: Part 3, Equation for critical flow rate

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Spence, R.D.; Godsey, T.T.; Dodson, K.E.

    1986-12-01

    Critical flow rate data for grouts prepared from three distinctly different nuclear waste materials have been correlated. The wastes include Oak Ridge National Laboratory (ORNL) low-level waste (LLW) solution, Hanford Facility waste (HFW) solution, and cladding removal waste (CRW) slurry. Data for the three wastes have been correlated with a 0.96 coefficient of correlation by the following equation: log V/sub E/ = 0.289 + 0.707 log μ/sub E/, where V/sub E/ and μ/sub E/ denote critical flow rate in m 3 /min and apparent viscosity in Pa.s, respectively. The equation may be used to estimate critical flow rate for grouts prepared within the compositional range of the investigation. 5 refs., 4 figs., 7 tabs

  18. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  19. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  20. Research and realization of ultrasonic gas flow rate measurement based on ultrasonic exponential model.

    Science.gov (United States)

    Zheng, Dandan; Hou, Huirang; Zhang, Tao

    2016-04-01

    For ultrasonic gas flow rate measurement based on ultrasonic exponential model, when the noise frequency is close to that of the desired signals (called similar-frequency noise) or the received signal amplitude is small and unstable at big flow rate, local convergence of the algorithm genetic-ant colony optimization-3cycles may appear, and measurement accuracy may be affected. Therefore, an improved method energy genetic-ant colony optimization-3cycles (EGACO-3cycles) is proposed to solve this problem. By judging the maximum energy position of signal, the initial parameter range of exponential model can be narrowed and then the local convergence can be avoided. Moreover, a DN100 flow rate measurement system with EGACO-3cycles method is established based on NI PCI-6110 and personal computer. A series of experiments are carried out for testing the new method and the measurement system. It is shown that local convergence doesn't appear with EGACO-3cycles method when similar-frequency noises exist and flow rate is big. Then correct time of flight can be obtained. Furthermore, through flow calibration on this system, the measurement range ratio is achieved 500:1, and the measurement accuracy is 0.5% with a low transition velocity 0.3 m/s. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    Science.gov (United States)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  2. Estimation of Leak Flow Rate during Post-LOCA Using Cascaded Fuzzy Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    In this study, important parameters such as the break position, size, and leak flow rate of loss of coolant accidents (LOCAs), provide operators with essential information for recovering the cooling capability of the nuclear reactor core, for preventing the reactor core from melting down, and for managing severe accidents effectively. Leak flow rate should consist of break size, differential pressure, temperature, and so on (where differential pressure means difference between internal and external reactor vessel pressure). The leak flow rate is strongly dependent on the break size and the differential pressure, but the break size is not measured and the integrity of pressure sensors is not assured in severe circumstances. In this paper, a cascaded fuzzy neural network (CFNN) model is appropriately proposed to estimate the leak flow rate out of break, which has a direct impact on the important times (time approaching the core exit temperature that exceeds 1200 .deg. F, core uncover time, reactor vessel failure time, etc.). The CFNN is a data-based model, it requires data to develop and verify itself. Because few actual severe accident data exist, it is essential to obtain the data required in the proposed model using numerical simulations. In this study, a CFNN model was developed to predict the leak flow rate before proceeding to severe LOCAs. The simulations showed that the developed CFNN model accurately predicted the leak flow rate with less error than 0.5%. The CFNN model is much better than FNN model under the same conditions, such as the same fuzzy rules. At the result of comparison, the RMS errors of the CFNN model were reduced by approximately 82 ~ 97% of those of the FNN model.

  3. Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates.

    Science.gov (United States)

    Longest, P Worth; Tian, Geng; Khajeh-Hosseini-Dalasm, Navvab; Hindle, Michael

    2016-12-01

    The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro-in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate.

  4. Investigation of relationship between mental workload and information flow rate of accident diagnosis tasks in NPPs

    International Nuclear Information System (INIS)

    Ha, Chang Hoon

    2005-02-01

    The objective of this study is to investigate experimentally the relationship between an operator's mental workload and the information flow rate of accident diagnosis tasks and further to propose the information flow rate as an analytic method for measuring the mental workload. There are two types of mental workload in the advanced MCR of NPPs: the information processing workload, which is the processing that the human operator must actually perform in order to complete the diagnosis task, and emotional stress workload experienced by the operator. In this study, the focus is on the former. Three kinds of methods are used to measure the operator's workload: information flow rate, subjective methods, and physiological measures. Information flows for eight accident diagnosis tasks are modeled qualitatively using a stage model and are quantified using Conant's model. The eight accident cases are considered here are: Loss Of Coolant Accident (LOCA), Steam Generator Tube Rupture (SGTR), Steam Line Break (SLB), Feedwater Line Break (FLB), Pressurizer (PZR) spray and heater failure, Reactor Coolant Pump (RCP) trip, Main Steam Isolation Valve (MSIV) failure, and PZR spray failure. The information flow rate is obtained for each diagnosis task by imposing time limit restrictions for the tasks. Subjective methods require the operators to respond to questionnaires to rate their level of mental effort. NASA-TLX and MCH scale are selected as subjective methods. NASA-TLX is a subjective method used in the various fields including the aviation, automobile, and nuclear industries. It has a multi-dimensional rating technique and provides an overall workload score based on a weighted average on six subscales using pair-wise comparison tests. MCH, on the other hand, is one-dimensional and uses a 10- point rating technique. As with NASA-TLX, the higher the score is, the higher the subjective workload is. For the physiological measurements, an eye tracking system analyzes eye movements

  5. Investigation of relationship between mental workload and information flow rate of accident diagnosis tasks in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Chang Hoon

    2005-02-15

    The objective of this study is to investigate experimentally the relationship between an operator's mental workload and the information flow rate of accident diagnosis tasks and further to propose the information flow rate as an analytic method for measuring the mental workload. There are two types of mental workload in the advanced MCR of NPPs: the information processing workload, which is the processing that the human operator must actually perform in order to complete the diagnosis task, and emotional stress workload experienced by the operator. In this study, the focus is on the former. Three kinds of methods are used to measure the operator's workload: information flow rate, subjective methods, and physiological measures. Information flows for eight accident diagnosis tasks are modeled qualitatively using a stage model and are quantified using Conant's model. The eight accident cases are considered here are: Loss Of Coolant Accident (LOCA), Steam Generator Tube Rupture (SGTR), Steam Line Break (SLB), Feedwater Line Break (FLB), Pressurizer (PZR) spray and heater failure, Reactor Coolant Pump (RCP) trip, Main Steam Isolation Valve (MSIV) failure, and PZR spray failure. The information flow rate is obtained for each diagnosis task by imposing time limit restrictions for the tasks. Subjective methods require the operators to respond to questionnaires to rate their level of mental effort. NASA-TLX and MCH scale are selected as subjective methods. NASA-TLX is a subjective method used in the various fields including the aviation, automobile, and nuclear industries. It has a multi-dimensional rating technique and provides an overall workload score based on a weighted average on six subscales using pair-wise comparison tests. MCH, on the other hand, is one-dimensional and uses a 10- point rating technique. As with NASA-TLX, the higher the score is, the higher the subjective workload is. For the physiological measurements, an eye tracking system analyzes

  6. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  7. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  8. Study the effect of nitrogen flow rate on tribological properties of tantalum nitride based coatings

    Science.gov (United States)

    Chauhan, Dharmesh B.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Makwana, Nishant S.; Dave, Divyeshkumar P.; Rawal, Sushant K.

    2018-05-01

    Tantalum Nitride (TaN) based coatings are well-known for their high temperature stability and chemical inertness. We have studied the effect of nitrogen flow rate variation on the structural and tribological properties of TaN based coating deposited by RF magnetron sputtering process. The nitrogen flow rate was varied from 5 to 30 sccm. X-ray diffractometer (XRD) and Atomic Force Microscopy (AFM) were used to determine structure and surface topography of coating. Pin on disc tribometer was used to determine tribological properties of coating. TaN coated brass and mild steel substrates shows higher wear resistance compared to uncoated substrates of brass and mild steel.

  9. On mill flow rate and fineness control in cement grinding circuits: instability and delayed measurements

    International Nuclear Information System (INIS)

    Lepore, R.; Boulvin, M.; Renotte, C.; Remy, M.

    1999-01-01

    A control structure for the mill flow rate and the product fineness is designed, with the feed flow rate and the classifier characteristic as the manipulated variables. Experimental results from a plant highlight the instability of the grinding circuit. A model previously developed by the authors stresses the major influence of the classifier nonlinearities onto this instability. A cascade control structure has been designed and implemented on site. The measurements of the product fineness, sensitive to material grindability fluctuations, are randomly time-delayed. The control structure uses a fineness estimator based on an adaptive scheme and a time delay compensator. (author)

  10. Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis

    International Nuclear Information System (INIS)

    Spino, M.; Chai, R.P.; Isles, A.F.; Balfe, J.W.; Brown, R.G.; Thiessen, J.J.; MacLeod, S.M.

    1985-01-01

    A study was conducted to examine renal function in 10 healthy control subjects and eight patients with cystic fibrosis in stable condition. Sequential bolus injections of /sup 99m/Tc-DTPA and 125 I-OIH were administered to assess glomerular filtration rate and effective renal plasma flow, respectively. Blood was subsequently collected for 3 hours, and urine for 24 hours. Renal clearances of both radioisotope markers were virtually identical in patients and controls. Inasmuch as neither glomerular filtration rate nor effective renal plasma flow was enhanced in patients with cystic fibrosis, increased clearance of drugs in these patients is unlikely to be the result of enhanced glomerular filtration or tubular secretion

  11. SCEPTIC, Pressure Drop, Flow Rate, Heat Transfer, Temperature in Reactor Heat Exchanger

    International Nuclear Information System (INIS)

    Kattchee, N.; Reynolds, W.C.

    1975-01-01

    1 - Nature of physical problem solved: SCEPTIC is a program for calculating pressure drop, flow rates, heat transfer rates, and temperature in heat exchangers such as fuel elements of typical gas or liquid cooled nuclear reactors. The effects of turbulent and heat interchange between flow passages are considered. 2 - Method of solution: The computation procedure amounts to a nodal of lumped parameter type of calculation. The axial mesh size is automatically selected to assure that a prescribed accuracy of results is obtained. 3 - Restrictions on the complexity of the problem: Maximum number of subchannels is 25, maximum number of heated surfaces is 46

  12. Development of linear flow rate control system for eccentric butter-fly valve

    International Nuclear Information System (INIS)

    Kwak, K. K.; Cho, S. W.; Park, J. S.; Cho, J. H.; Song, I. T.; Kim, J. G.; Kwon, S. J.; Kim, I. J.; Park, W. K.

    1999-12-01

    Butter-fly valves are advantageous over gate, globe, plug, and ball valves in a variety of installations, particularly in the large sizes. The purpose of this project development of linear flow rate control system for eccentric butter-fly valve (intelligent butter-fly valve system). The intelligent butter-fly valve system consist of a valve body, micro controller. The micro controller consist of torque control system, pressure censor, worm and worm gear and communication line etc. The characteristics of intelligent butter-fly valve system as follows: Linear flow rate control function. Digital remote control function. guard function. Self-checking function. (author)

  13. Device for measuring the flow rate of a fluid moving through a pipe

    International Nuclear Information System (INIS)

    Barge, Gilles; Bouchard, Patrick; Chaix, J.E.; Rigaud, J.L.; Vivaldi, Andre.

    1981-01-01

    A device is described for measuring the flow rate, in particular through large section pipes, such as those found in water type nuclear reactors, thermal power stations and gas loops. This device includes a plate drilled with holes crossed by a fluid and held in the pipe by deformable components on which are secured strain gauges forming the detecting element of an electronic device for processing the signal emitted by the gauges. This device can be employed, for instance, for measuring the flow rate of a coolant in the primary system of a nuclear reactor [fr

  14. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    International Nuclear Information System (INIS)

    Cochran, H.D. Jr.

    1978-01-01

    An improved method of monitoring the mass flow rate of a substance entering a coherent fluid stream is described. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance

  15. On the design criteria for the evaporated water flow rate in a wet air cooler

    International Nuclear Information System (INIS)

    Bourillot, C.

    1982-01-01

    The author discusses Poppe's formulation used for the modelling of heat exchangers between air and water, in Electricite de France's TEFERI numerical wet atmospheric cooler model: heat transfer laws in unsaturated and saturated air, Bosnjakivic's formula, evaporation coefficient. The theorical results show good agreement with the measurements taken on Neurath's cooler C in West Germany, whatever the ambient temperature (evaporated water flow rate, condensate content of warm air). The author then demonstrates the inadequacy of Merkel's method for calculating evaporated water flow rates, and estimates the influence of the assumptions made on the total error [fr

  16. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  17. Robust and Optimal Control of Magnetic Microparticles inside Fluidic Channels with Time-Varying Flow Rates

    Directory of Open Access Journals (Sweden)

    Islam S.M. Khalil

    2016-06-01

    Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.

  18. Oxidative vaporization kinetics of Cr2O3 in oxygen from 1000 to 1300 C

    Science.gov (United States)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1974-01-01

    Rates of oxidative vaporization of Cr2O3 on preoxidized resistively heated chromium were determined in flowing oxygen at a pressure of 0.115 Torr for temperatures from 1000 to 1300 C. Reaction controlled rates were obtained from experimental rates by a gold calibration technique, and these rates were shown to agree with those predicted by thermochemical analysis. The activation energy obtained for the oxidative vaporization reaction corresponded numerically with the thermochemical enthalpy of the reaction. A theoretical equation is given for calculating the rate from thermodynamic data using boundary-layer theory.

  19. Oxidative vaporization kinetics of chromium (III) oxide in oxygen from 1270 to 1570 K

    Science.gov (United States)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1974-01-01

    Rates of oxidative vaporization of Cr2O3 on preoxidized resistively heated chromium were determined in flowing oxygen at 0.115 torr for temperatures from 1270 to 1570 K. Reaction controlled rates were obtained from experimental rates by a gold calibration technique. These rates were shown to agree with those predicted by thermochemical analysis. The activation energy obtained for the oxidative vaporation reaction corresponded numerically with the thermochemical enthalpy of the reaction. A theoretical equation is given for calculating the rate from thermodynamic data by using boundary layer theory.

  20. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    Science.gov (United States)

    Villagómez-Hoyos, Carlos A.; Stuart, Matthias B.; Bechsgaard, Thor; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter vessel at a depth of 100 mm in a tissue-mimicking phantom. A flow pump produced a 2 ml/s constant flow with a peak velocity of 0.2 m/s. The average estimated flow angle in the ROI was 86.22° +/- 6.66° with a true flow angle of 90°. A relative velocity bias of -39% with a standard deviation of 13% was found. In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle cavity through the mitral valve and splitting in two ways when approximating the left ventricle wall. The work presents 2-D velocity estimates on the heart from a non-invasive transthoracic scan. The ability of the method detecting flow regardless of the beam angle could potentially reveal a more complete view of the flow patterns presented on the heart.

  1. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  2. An Experimental investigation of critical flow rates of subcooled water through short pipes with small diameters

    International Nuclear Information System (INIS)

    Park, Choon Kyung

    1997-02-01

    The primary objective of this study is to improve our understanding on critical flow phenomena in a small size leak and to develop a model which can be used to estimate the critical mass flow rates through reactor vessel or primary coolant pipe wall. For this purpose, critical two-phase flow phenomena of subcooled water through short pipes (100 ≤ L ≤ 400 mm) with small diameters (3.4 ≤ D ≤ 7.15 mm) have been experimentally investigated for wide ranges of subcooling (0∼199 .deg. C) and pressure (0.5∼2.0MPa). To examine the effects of various parameters (i.e., the location of flashing inception, the degree of subcooling, the stagnation temperature and pressure, and the pipe size) on the critical two-phase flow rates of subcooled water, a total of 135 runs were made for various combinations of test parameters using four different L/D test sections. Experimental results that show effects of various parameters on subcooled critical two-phase flow rates are presented. The measured static pressure profiles along the discharge pipe show that the critical flow rate can be strongly influenced by the flashing location. The locations of saturation pressure for different values of the stagnation subcooling have been consistently determined from the pressure profiles. Based upon the test results, two important parameters have been identified. These are cold state discharge coefficient and dimensionless subcooling, which are found to efficiently take into account the test section geometry and the stagnation conditions, respectively. A semi-empirical model has been developed to predict subcooled two-phase flow rates through small size openings. This model provides a simple and direct calculation of the critical mass flow rates with information on the initial condition and on the test section geometry. Comparisons between the mass fluxes calculated by present model and a total of 755 selected experimental data from 9 different investigators show that the agreement is

  3. The Effect of Trimethylaluminum Flow Rate on the Structure and Optical Properties of AlInGaN Quaternary Epilayers

    Directory of Open Access Journals (Sweden)

    Dongbo Wang

    2017-03-01

    Full Text Available In this work, a series of quaternary AlxInyGa1−x−yN thin films have been successfully achieved using metal organic chemical vapor deposition (MOCVD method with adjustable trimethylaluminum (TMA flows. Surface morphology and optical properties of AlxInyGa1−x−yN films have been evaluated. The indium segregation effect on the enhancement of UV luminescence emission in AlxInyGa1-x-yN films with increasing TMA flows was investigated. Our results shed some lights on future optical materials design and LED/LD applications.

  4. Plastic Flow Characteristics of Uranium-Niobium as a Function of Strain Rate and Temperature

    International Nuclear Information System (INIS)

    Cady, C.M.; Gray, G.T. III; Hecker, S.S; Thoma, D.J.; Korzekwa, D.R.; Patterson, R.A.; Dunn, P.S.; Bingert, J.F.

    1999-01-01

    The stress-strain response of uranium-niobium alloys as a function of temperature, strain-rate and stress-state was investigated. The yield and flow stresses of the U-Nb alloys were found to exhibit a pronounced strain rate sensitivity, while the hardening rates were found to be insensitive to strain rate and temperature. The overall stress-strain response of the U-6Nb exhibits a sinusoidal hardening response, which is consistent with multiple deformation modes and is thought to be related to shape-memory behavior

  5. Determination of flow rates of oil, water and gas in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Roach, G J; Watt, J S; Zastawny, H W [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lucas Heights, NSW (Australia). Div. of Mineral Physics

    1994-12-31

    This paper describes a multiphase flow meter developed by CSIRO for determining of the flow rates of oil, water and gas in high pressure pipelines, and the results of a trial of this flow meter on an offshore oil platform. Two gamma-ray transmission gauges are mounted about a pipeline carrying the full flow of oil, water and gas. The flow rates are determined by combining single energy gamma-ray transmission measurements which determine the mass per unit area of fluids in the gamma-ray beam as a function of time, dual energy gamma-ray transmission (DUET) which determine the approximate mass fraction of oil in the liquids, cross-correlation of gamma-ray transmission measurements, with one gauge upstream of the other, which determines flow velocity, pressure and temperature measurements, and knowledge of the specific gravities of oil and (salt) water, and solubility of the gas in the liquids, all as a function of pressure and temperature. 3 figs.

  6. Determination of flow rates of oil, water and gas in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Roach, G.J.; Watt, J.S.; Zastawny, H.W. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lucas Heights, NSW (Australia). Div. of Mineral Physics

    1993-12-31

    This paper describes a multiphase flow meter developed by CSIRO for determining of the flow rates of oil, water and gas in high pressure pipelines, and the results of a trial of this flow meter on an offshore oil platform. Two gamma-ray transmission gauges are mounted about a pipeline carrying the full flow of oil, water and gas. The flow rates are determined by combining single energy gamma-ray transmission measurements which determine the mass per unit area of fluids in the gamma-ray beam as a function of time, dual energy gamma-ray transmission (DUET) which determine the approximate mass fraction of oil in the liquids, cross-correlation of gamma-ray transmission measurements, with one gauge upstream of the other, which determines flow velocity, pressure and temperature measurements, and knowledge of the specific gravities of oil and (salt) water, and solubility of the gas in the liquids, all as a function of pressure and temperature. 3 figs.

  7. Determination of flow rates of oil, water and gas in pipelines

    International Nuclear Information System (INIS)

    Roach, G.J.; Watt, J.S.; Zastawny, H.W.

    1993-01-01

    This paper describes a multiphase flow meter developed by CSIRO for determining of the flow rates of oil, water and gas in high pressure pipelines, and the results of a trial of this flow meter on an offshore oil platform. Two gamma-ray transmission gauges are mounted about a pipeline carrying the full flow of oil, water and gas. The flow rates are determined by combining single energy gamma-ray transmission measurements which determine the mass per unit area of fluids in the gamma-ray beam as a function of time, dual energy gamma-ray transmission (DUET) which determine the approximate mass fraction of oil in the liquids, cross-correlation of gamma-ray transmission measurements, with one gauge upstream of the other, which determines flow velocity, pressure and temperature measurements, and knowledge of the specific gravities of oil and (salt) water, and solubility of the gas in the liquids, all as a function of pressure and temperature. 3 figs

  8. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    , impurities in the reformate gas produced from methanol steam reforming can affect the performance and durability of fuel cells. In this paper different vapor delivery systems, intended to assist in the study of the effects of some of the impurities, are described and compared with each other. A system based...... on a pump and electrically heated evaporator was found to be more suitable for the typical flow rates involved in the anode feed of an H3PO4/PBI based HT-PEMFC unit cell assembly. Test stations composed of vapor delivery systems and mass flow controllers for testing the effects of methanol slip, water vapor...

  9. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    International Nuclear Information System (INIS)

    Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2017-01-01

    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO 2 -FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10 −2  M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  10. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Prédélus, Dieuseul; Lassabatere, Laurent, E-mail: laurent.lassabatere@entpe.fr [Université de Lyon, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, LEHNA (France); Louis, Cédric; Gehan, Hélène [Nano-H S.A.S., 2 place de l’Europe, Bâtiment A, Parc d’activité VALAD (France); Brichart, Thomas [Université Lyon 1-CNRS, Institut Lumière Matière, UMR 5306 CNRS (France); Winiarski, Thierry; Angulo-Jaramillo, Rafael [Université de Lyon, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, LEHNA (France)

    2017-03-15

    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO{sub 2}-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10{sup −2} M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  11. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Christensen, H

    1991-01-01

    Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage uni.......0001). The synchronism of the nocturnal subcutaneous hyperemia and the decrease in systemic mean arterial blood pressure point to a common, possibly central nervous or humoral, eliciting mechanism.......Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...

  12. The Effect of the Volume Flow rate on the Efficiency of a Solar Collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...... transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...

  13. Review of flow rate estimates of the Deepwater Horizon oil spill

    Science.gov (United States)

    McNutt, Marcia K.; Camilli, Rich; Crone, Timothy J.; Guthrie, George D.; Hsieh, Paul A.; Ryerson, Thomas B.; Savas, Omer; Shaffer, Frank

    2012-01-01

    The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ observations of the leaking well with a time-dependent flow rate model derived from pressure readings taken after the Macondo well was shut in for the well integrity test. Model simulations also proved valuable for predicting the effect of partial deployment of the blowout preventer rams on flow rate. Taken together, the scientific analyses support flow rates in the range of ~50,000–70,000 barrels/d, perhaps modestly decreasing over the duration of the oil spill, for a total release of ~5.0 million barrels of oil, not accounting for BP's collection effort. By quantifying the amount of oil at different locations (wellhead, ocean surface, and atmosphere), we conclude that just over 2 million barrels of oil (after accounting for containment) and all of the released methane remained in the deep sea. By better understanding the fate of the hydrocarbons, the total discharge can be partitioned into separate components that pose threats to deep sea vs. coastal ecosystems, allowing responders in future events to scale their actions accordingly.

  14. Review of flow rate estimates of the Deepwater Horizon oil spill.

    Science.gov (United States)

    McNutt, Marcia K; Camilli, Rich; Crone, Timothy J; Guthrie, George D; Hsieh, Paul A; Ryerson, Thomas B; Savas, Omer; Shaffer, Frank

    2012-12-11

    The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ observations of the leaking well with a time-dependent flow rate model derived from pressure readings taken after the Macondo well was shut in for the well integrity test. Model simulations also proved valuable for predicting the effect of partial deployment of the blowout preventer rams on flow rate. Taken together, the scientific analyses support flow rates in the range of ∼50,000-70,000 barrels/d, perhaps modestly decreasing over the duration of the oil spill, for a total release of ∼5.0 million barrels of oil, not accounting for BP's collection effort. By quantifying the amount of oil at different locations (wellhead, ocean surface, and atmosphere), we conclude that just over 2 million barrels of oil (after accounting for containment) and all of the released methane remained in the deep sea. By better understanding the fate of the hydrocarbons, the total discharge can be partitioned into separate components that pose threats to deep sea vs. coastal ecosystems, allowing responders in future events to scale their actions accordingly.

  15. CHF during flow rate, pressure and power transients in heated channels

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.

    1987-01-01

    The behaviour of forced two-phase flows following inlet flow rate, pressure and power transients is presented here with reference to experiments performed with a R-12 loop. A circular duct, vertical test section (L = 2300 mm; D = 7.5 mm) instrumented with fluid (six) and wall (twelve) thermocouples has been employed. Transients have been carried out performing several values of flow decays (exponential decrease), depressurization rates (exponential decrease) and power inputs (step-wise increase). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast transients. Data analysis for a better theoretical prediction of CHF occurrence during transient conditions has been accomplished, and design correlations for critical heat flux and time-to-crisis predictions have been proposed for the different types of transients

  16. Impact of Optimized Flow Pattern on Pollutant Removal and Biogas Production Rate Using Wastewater Anaerobic Fermentation

    Directory of Open Access Journals (Sweden)

    Ruyi Huang

    2015-06-01

    Full Text Available This paper introduces a new-type of antigravity mixing method, which was applied in the biogas production process, using organic wastewater fermentation. It was found that the digesters with two designs, a high-position, centralized pressure outlet and a high-position, dispersed pressure outlets, both lead to an increase in biogas production rates by 89% and 125%, respectively. The biogas production peak appeared 1 day and 7 days earlier, and the COD removal rates were raised by 27% and 42%, respectively. The results indicated that the optimized flow field had a significant impact. This work also explains the mechanism of flow field optimization using computational fluid dynamics (CFD software for the simulation of the flow field form in the hydraulic mixing.

  17. PROGRESSIVE MUSCLE RELAXATION INCREASE PEAK EXPIRATORY FLOW RATE ON CHRONIC OBSTRUCTIVE PULMONARY DISEASE PATIENTS

    Directory of Open Access Journals (Sweden)

    Tintin Sukartini

    2017-07-01

    Full Text Available Introduction: Limited progressive air flow in Chronic Obstructive Pulmonary Disease (COPD can caused by small airway disease (bronchiolitis obstructive and loss of elasticity of the lung (emphysema. Further it can be decreasing the quality of life in COPD patients because dyspnea and uncomfortable in activity. Progressive muscle relaxation (PMR is one of the relaxation technique that can repair pulmonary ventilation by decreasing chronic constriction of the respiratory muscles. The objective of this study was to analyze the effect of progressive muscle relaxation on raised peak expiratory flow rate (PEFR. Method: A pre-experimental one group pre-post test design was used in this study. Population was all of the COPD patients at Pulmonary Specialist Polyclinic Dr Mohamad Soewandhie Surabaya. There were 8 respondents taken by using purposive sampling. PEFR was counted by using peak flow meter every six day. Data were analyzed by using Paired t-Test with significance level  p≤0.05. Result: The result showed that PMR had significance level on increasing of PEFR (p=0.012. Discussion: It can be concluded that PMR has an effect on raise PEFR. Further studies are recommended to measure the effect of PMR on respiratory rate (RR, heart rate (HR subjective dyspnoe symptoms, forced expiration volume on the first minute (FEV1 and mid maximum flow rate (MMFR in COPD patients.

  18. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Science.gov (United States)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  19. Botulinum toxin effect on salivary flow rate in children with cerebral palsy.

    NARCIS (Netherlands)

    Jongerius, P.H.; Rotteveel, J.J.; Limbeek, J. van; Gabreëls, F.J.M.; Hulst, K. van; Hoogen, F.J.A. van den

    2004-01-01

    OBJECTIVE: To investigate the effectiveness of botulinum neurotoxin (BoNT) type A in reducing salivary flow rate in children with cerebral palsy (CP) with severe drooling. METHODS: During a controlled clinical trial, single-dose BoNT injections into the submandibular salivary glands were compared

  20. Accurate Angle Estimator for High-Frame-rate 2-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Lindskov Hansen, Kristoffer

    2016-01-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using...

  1. A Direct inverse model to determine permeability fields from pressure and flow rate measurements

    NARCIS (Netherlands)

    Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.

    2008-01-01

    The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard

  2. Dental caries in diabetes mellitus: role of salivary flow rate and minerals.

    Science.gov (United States)

    Jawed, Muhammad; Shahid, Syed M; Qader, Shah A; Azhar, Abid

    2011-01-01

    This study was designed to evaluate the possible protective role of salivary factors like salivary flow rate and adequate level of calcium, phosphate, and fluoride in diabetes mellitus type 2 patients with dental caries. A total of 398 diabetes mellitus type 2 patients with dental caries and 395 age- and sex-matched non-diabetic subjects with dental caries were included as controls, all of whom gave informed consent. All subjects were divided into four groups according to their age. Decayed, missed, and filled teeth (DMFT) were scored to indicate the severity of dental caries. Saliva was collected, flow rate was noted, and calcium, phosphate, and fluoride were analyzed. The blood glucose, HbA1c, and DMFT indices were found to be significantly high in diabetic patients as compared to controls. The salivary flow rate, calcium, phosphate, and fluoride were found to be significantly low whereas no significant difference was found in salivary magnesium in patients as compared to controls. Optimum salivary flow rate is responsible for establishing protective environment against dental caries. Adequate level of salivary calcium, phosphate, and fluoride is also involved in significant deposition of these minerals in plaque, which greatly reduces the development of caries in the adjacent enamel of teeth. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  4. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  5. Impact of Pitot tube calibration on the uncertainty of water flow rate measurement

    Science.gov (United States)

    de Oliveira Buscarini, Icaro; Costa Barsaglini, Andre; Saiz Jabardo, Paulo Jose; Massami Taira, Nilson; Nader, Gilder

    2015-10-01

    Water utility companies often use Cole type Pitot tubes to map velocity profiles and thus measure flow rate. Frequent monitoring and measurement of flow rate is an important step in identifying leaks and other types of losses. In Brazil losses as high as 42% are common and in some places even higher values are found. When using Cole type Pitot tubes to measure the flow rate, the uncertainty of the calibration coefficient (Cd) is a major component of the overall flow rate measurement uncertainty. A common practice is to employ the usual value Cd = 0.869, in use since Cole proposed his Pitot tube in 1896. Analysis of 414 calibrations of Cole type Pitot tubes show that Cd varies considerably and values as high 0.020 for the expanded uncertainty are common. Combined with other uncertainty sources, the overall velocity measurement uncertainty is 0.02, increasing flowrate measurement uncertainty by 1.5% which, for the Sao Paulo metropolitan area (Brazil) corresponds to 3.5 × 107 m3/year.

  6. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    International Nuclear Information System (INIS)

    Prasetyaningrum, A.; Ratnawati,; Jos, B.

    2015-01-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O 3 ) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV

  7. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Science.gov (United States)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  8. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    African Journals Online (AJOL)

    The aim of study is to determine whether glucose pump test (GPT) is used for surveillance of native AV fistulas by using Doppler US as reference. Methods: In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US and GPT. For GPT, glucose was infused to 16 mL/min by ...

  9. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... Blood flow rates of AV fistula can be affected by osmotic and oncotic pressures of blood and arterial blood pressures. Sodium, glucose, hemoglobin, and albumin are significant effectors, created osmotic and oncotic pressures [Table 3]. Blood levels of hemoglobin. (Hb), albumin, sodium (Na), and glucose ...

  10. Influence of nitrogen flow rates on materials properties of CrNx films ...

    Indian Academy of Sciences (India)

    An elemental analysis of the samples was realized by means of energy dispersive spectroscopy. The electrical studies indicated the semiconducting behaviour of the films at the nitrogen flow rate of 15 ... important industrial process which is used to protect base ... than 40 μm can be obtained on a variety of engineering sub-.

  11. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US .... Arterial blood pressure from nonvascular access arm was measured by aneroid sphygmomanometer. The patients did not .... to detect differences in treatments across multiple test attempts. P < 0.05 ...

  12. Effect of liquid nitrogen flow rate on solidification of stagnant water in a horizontal tube

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    1995-01-01

    Five experiments are conducted to study the effect of liquid nitrogen flow rate on the solidification of stagnant water inside a horizontal stainless steel tube of inner diameter 19.6 cm and 12 mm thick. This tube simulates the down-comer of the nuclear reactor ET-R R-1. The apparatus design is mentioned more detail description. The results show that for the first experiment where the liquid nitrogen flow rate is 30 1/hr, the progress of solidification of water has stopped at a diameter of 12 cm. By increasing the flow rate from 30 1/hr to 40,50 and 60 1/hr, the time of freezing the water inside the tube is decreased from 86 to 67 and 60 minutes respectively. By increasing the liquid nitrogen flow rate to 70 1/hr, there is no much effect on the time of frozen. In all experiments, where the solidification is happened, the ice block formed inside the tube is subjected to a pressure of 3 at mg least, and is succeed to withstand this pressure without any leak. 7 figs

  13. Hydrogenotrophic denitrification in a packed bed reactor: effects of hydrogen-to-water flow rate ratio.

    Science.gov (United States)

    Lee, J W; Lee, K H; Park, K Y; Maeng, S K

    2010-06-01

    Hydrogen dissolution and hydrogenotrophic denitrification performance were investigated in a lab-scale packed bed reactor (PBR) by varying the hydrogen flow rate and hydraulic retention time (HRT). The denitrification performance was enhanced by increasing the hydrogen flow rate and HRT as a result of high dissolved hydrogen concentration (0.39mg/L) and utilization efficiencies (79%). In this study, the hydrogen-to-water flow rate ratio (Q(g)/Q(w)) was found to be a new operating factor representing the two parameters of hydrogen flow rate and HRT. Hydrogen dissolution and denitrification efficiency were nonlinearly and linearly correlated with the Q(g)/Q(w), respectively. Based on its excellent linear correlation with denitrification efficiency, Q(g)/Q(w) should be greater than 2.3 to meet the WHO's guideline of nitrate nitrogen for drinking water. This study demonstrates that Q(g)/Q(w) is a simple and robust factor to optimize hydrogen-sparged bioreactors for hydrogenotrophic denitrification. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Determination of the catalyst circulation rate in a FCC cold flow pilot unit using nuclear techniques

    International Nuclear Information System (INIS)

    Santos, Valdemir A. dos; Lima, Emerson A.O.

    2013-01-01

    Nuclear techniques of gamma transmission and radioactive tracer were used to estimate the catalyst circulation rate in a cold flow pilot plant unit of Fluid Catalytic Cracking (FCC). Catalyst circulation rate in a FCC unit, allow to determine operating conditions of the exchange catalyst and inlet data for fluid dynamic simulation computational program. The pilot unit was fabricated obeying geometrical parameters provided by the Petrobras Research Center (CENPES), based on hot pilot units to existing in that center. The cold flow pilot unit has a transfer line, two separation vessels flash type, a return column, a riser and a regenerator. The vertical sections as riser, return column, regenerator column and transfer line are made of transparent material (glass). The two separation vessels have bases with tapered cylindrical shapes and are made of steel plates. The riser is divided into four sections of different diameters (0.005 m, 0.010 m, 0.018 m and 0.025 m) and rising upwards, to simulate the increasing flow rate caused by the increase of volume with the increase of the number of moles due to molecules breakage. The radioactive tracer used was the catalyst itself (intrinsic tracer) irradiated by neutron activation, yielding the radioisotope 59 Fe. The velocity measurements were also obtained with aid of an electronic clock triggered by certain radiation levels across the two detectors. Besides estimates for the catalyst circulation rate was possible to identify the type of flow relative to the catalyst in return column. (author)

  15. Efficiency of the pre-heater against flow rate on primary the beta test loop

    International Nuclear Information System (INIS)

    Edy Sumarno; Kiswanta; Bambang Heru; Ainur R; Joko P

    2013-01-01

    Calculation of efficiency of the pre-heater has been carried out against the flow rate on primary the BETA Test Loop. BETA test loop (UUB) is a facilities of experiments to study the thermal hydraulic phenomenon, especially for thermal hydraulic post-LOCA (Lost of Coolant Accident). Sequences removal on the BETA Test Loop contained a pre-heater that serves as a getter heat from the primary side to the secondary side, determination of efficiency is to compare the incoming heat energy with the energy taken out by a secondary fluid. Characterization is intended to determine the performance of a pre-heater, then used as tool for analysis, and as a reference design experiments. Calculation of efficiency methods performed by operating the pre-heater with fluid flow rate variation on the primary side. Calculation of efficiency on the results obtained that the efficiency change with every change of flow rate, the flow rate is 71.26% on 163.50 ml/s and 60.65% on 850.90 ml/s. Efficiency value can be even greater if the pre-heater tank is wrapped with thermal insulation so there is no heat leakage. (author)

  16. Determination of flow-rate characteristics and parameters of piezo pilot valves

    Directory of Open Access Journals (Sweden)

    Takosoglu Jakub

    2017-01-01

    Full Text Available Pneumatic directional valves are used in most industrial pneumatic systems. Most of them are two-stage valves controlled by a pilot valve. Pilot valves are often chosen randomly. Experimental studies in order to determine the flow-rate characteristics and parameters of pilot valves were not conducted. The paper presents experimental research of two piezo pilot valves.

  17. Flow rate control in pressure-programmed capillary supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A versatile and simple system is described that allows variation of the column flow rate in open-tubular capillary supercritical fluid chromatography using both on-column and postcolumn detection. The system is based on column-effluent splitting in a low-dead-volume T piece at the column exit just

  18. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    Science.gov (United States)

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  19. Salivary flow rate and xerostomia in patients with type I and II diabetes mellitus.

    Science.gov (United States)

    Hoseini, Amineh; Mirzapour, Ali; Bijani, Ali; Shirzad, Atena

    2017-09-01

    Diabetes mellitus is one of the most prevalent metabolic diseases, with complications such as decreased salivary flow rate and xerostomia. This study aimed to determine the salivary flow rate and xerostomia in type I and II diabetic patients in comparison with healthy controls. This case-control study was performed on diabetic patients of a private office in Babol, Iran, between May 2015 and October 2016. This study involved two study groups (type I and II diabetes, with 40 in each group) and two control groups (control I and II, with 35 in each group) which were age- and sex-matched with the related study groups. They were all selected through simple sampling. Unstimulated whole saliva was collected through Navazesh method and the salivary flow rate was measured (ml/min). Xerostomia was evaluated via Fox's test. Moreover, the patients' data were recorded including age, sex, disease duration, type of diabetes, fasting blood glucose (FBG) and HbA1C. The obtained data were statistically analyzed by using SPSS version 17. Independent-samples t-test, Chi-square, Pearson correlation and multiple comparison post-hoc tests were employed as appropriated. psalivary flow rate in type I diabetics (0.35±0.11 ml/min) was lower than that in control I (0.50±0.07 ml/min) (p=0.01). The same difference was observed between type II diabetics (0.37±0.13 ml/min) and control II groups (0.47±0.11 ml/min) (p=0.01). No significant difference was observed in the salivary flow rate between type I and II diabetics (p=0.345). Furthermore, xerostomia was higher in type I (2.70±2.50, 1.17±1.60) and II (2.65±2.20-1.62±1.50) diabetics compared with the related control groups (p=0.01), (p=0.02). Type I, II diabetic patients revealed lower salivary flow rate and higher xerostomia compared with healthy controls. The salivary flow rate and xerostomia had inverse correlation.

  20. The feasible study of the water flow in the micro channel with the Y-junction and narrow structure for various flow rates

    Directory of Open Access Journals (Sweden)

    Jasikova D.

    2015-01-01

    Full Text Available Here we present the results of measurement in micro-channel with the Y-junction and narrow structure for various flow rates. There was used BSG micro-channel with trapezoidal cross-section. The parameters of the channel are described in the paper. The flow in the micro-channel was invested with micro-PIV technique and various flow rates were set on each inlet. The resulting flow rate in the steady area follows the laminar flow with very low Re 30. Here we are focused on the flow characteristic in the Y-junction and in selected narrow structure. The fluid flow is evaluated with vector and scalar maps and the profile plots that were taken in the point of interest.

  1. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Science.gov (United States)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  2. Quantifying radioxerostomia: salivary flow rate, examiner's score, and quality of life questionnaire

    International Nuclear Information System (INIS)

    Al-Nawas, B.; Al-Nawas, K.; Kunkel, M.; Groetz, K.A.

    2006-01-01

    Background and purpose: salivary flow rates alone are not sufficient to quantify all aspects of radioxerostomia. This is a problem in studies aiming to reduce radioxerostomia. The aim of this study was to evaluate the association between objectively measured salivary flow rate and subjective xerostomia ratings by the physician (RTOG scale) or the patients (quality of life [QoL] questionnaire). Patients and methods: in a case-control study patients who underwent recall for oral cancer were screened. Inclusion criteria for this diagnostic, noninterventional study were: history of oral carcinoma, surgical and radiation therapy, time interval from start of radiation therapy > 90 days, salivary glands within the radiation field. The control group consisted of patients, who had not received radiotherapy. RTOG salivary gland score, quality of life (EORTC QLQ-C30 and H and N35), and sialometry were recorded. Results: patients with RTOG score 0 had mean salivary flow rates of 0.3 ml/min, those with RTOG 1 0.12 ml/min, RTOG 2 0.02 ml/min, and RTOG 3 < 0.01 ml/min. RTOG score 4 (total fibrosis) did not occur. Based on salivary flow rates, all patients were grouped into xerostomia < 0.2 ml/min (30 patients) and nonxerostomia (twelve patients). QoL results revealed significant differences between patients with xerostomia and nonxerostomia for physical function, dyspnea, swallowing, social eating, dry mouth, nutritional support, and a tendency to higher values for appetite loss. Conclusion: the correlation between ''subjective'' QoL parameters and salivary flow was confirmed. The different subjective aspects of radioxerostomia seem to be better differentiated by the EORTC QoL questionnaire. (orig.)

  3. Quantifying radioxerostomia: salivary flow rate, examiner's score, and quality of life questionnaire

    Energy Technology Data Exchange (ETDEWEB)

    Al-Nawas, B.; Al-Nawas, K.; Kunkel, M.; Groetz, K.A. [Dept. of Oral and Maxillofacial Surgery, Hospital of the Johannes Gutenberg Univ., Mainz (Germany)

    2006-06-15

    Background and purpose: salivary flow rates alone are not sufficient to quantify all aspects of radioxerostomia. This is a problem in studies aiming to reduce radioxerostomia. The aim of this study was to evaluate the association between objectively measured salivary flow rate and subjective xerostomia ratings by the physician (RTOG scale) or the patients (quality of life [QoL] questionnaire). Patients and methods: in a case-control study patients who underwent recall for oral cancer were screened. Inclusion criteria for this diagnostic, noninterventional study were: history of oral carcinoma, surgical and radiation therapy, time interval from start of radiation therapy > 90 days, salivary glands within the radiation field. The control group consisted of patients, who had not received radiotherapy. RTOG salivary gland score, quality of life (EORTC QLQ-C30 and H and N35), and sialometry were recorded. Results: patients with RTOG score 0 had mean salivary flow rates of 0.3 ml/min, those with RTOG 1 0.12 ml/min, RTOG 2 0.02 ml/min, and RTOG 3 < 0.01 ml/min. RTOG score 4 (total fibrosis) did not occur. Based on salivary flow rates, all patients were grouped into xerostomia < 0.2 ml/min (30 patients) and nonxerostomia (twelve patients). QoL results revealed significant differences between patients with xerostomia and nonxerostomia for physical function, dyspnea, swallowing, social eating, dry mouth, nutritional support, and a tendency to higher values for appetite loss. Conclusion: the correlation between ''subjective'' QoL parameters and salivary flow was confirmed. The different subjective aspects of radioxerostomia seem to be better differentiated by the EORTC QoL questionnaire. (orig.)

  4. Prevalence of xerostomia and the salivary flow rate in diabetic patients.

    Science.gov (United States)

    Malicka, Barbara; Kaczmarek, Urszula; Skośkiewicz-Malinowska, Katarzyna

    2014-01-01

    Diabetes is a metabolic disease characterized by hyperglycemia, which results from relative or absolute insulin deficiency. One of the first oral symptoms of diabetes is xerostomia. The aim of the study was to determine the prevalence of the xerostomia symptoms and salivary flow rate in diabetic patients according to the type of diabetes, the level of metabolic control and the duration of the disease. The study involved 156 adult patients of both sexes including 34 patients with diabetes type 1 (group C1), 59 with diabetes type 2 (group C2), and 63 generally healthy individuals as two control groups, sex- and age-matched to the diabetic group. The patients suffering from both types of diabetes were additionally subdivided according to the level of metabolic control and the duration of the disease. Xerostomia was diagnosed with the use of a specially prepared questionnaire and Fox's test. Moreover, the salivary flow rate of resting mixed saliva was measured. In type 1 diabetics, a significantly lower salivary flow rate in comparison to the age-matched control group (0.38 ± 0.19 mL/min vs. 0.53 ± 0.20 mL/min, p diabetics, a slight lower salivary flow rate was noticed (on average, 20% lower). Dry mouth was far more frequently diagnosed in type 1 diabetics than in the control group. In type 1 diabetics, in comparison to healthy subjects, a significantly lower resting flow rate of saliva and significantly higher prevalence of xerosomia were observed, but in type 2 diabetics, only a trend of such variability was observed.

  5. Effect of solar chimney inclination angle on space flow pattern and ventilation rate

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Korah, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2009-02-15

    The solar chimney is a simple and practical idea that is applied to enhance space natural ventilation. The chimney could be vertical or inclined. The chimney inclination angle is an important parameter that greatly affects space flow pattern and ventilation rate. In the present study, the effect of chimney inclination angle on air change per hour and indoor flow pattern was numerically and analytically investigated. A numerical simulation using Ansys, a FEM-based code, was used to predict flow pattern. Then the results were compared with published experimental measurements. A FORTRAN program was developed to iteratively solve the mathematical model that was obtained through an overall energy balance on the solar chimney. The analytical results showed that an optimum air flow rate value was achieved when the chimney inclination is between 45 and 70 for latitude of 28.4 . The numerically predicted flow pattern inside the space supports this finding. Moreover, in the present study a correlation to predict the air change per hour was developed. The correlation was tested within a solar intensity greater than or equal to 500 W/m{sup 2}, and chimney width from 0.1 m to 0.35 m for different inclination angles with acceptable values. (author)

  6. Measurement of vapor behavior in tight-lattice bundles by neutron radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime

    2004-01-01

    Three-dimensional and instantaneous void fractions in tight-lattice 7-rod and 14-rod bundles were measured by neutron radiography in order to make clear the flow behavior and to verify the advanced fine-mesh numerical analysis codes for the R and D of the Reduced-Moderation Water Reactors (RMWR). Time-averaged 3D void fraction distribution is evaluated with the spatial resolution of 0.1 - 0.2 mm using neutron tomography, and consecutive change of vapor behavior is observed quantitatively with time step of 1 ms using high-frame-rate neutron radiography (HFR-NR). In this paper, void fraction distribution and vapor behavior of flow boiling of water in tight-lattice rod bundles are focused on and discussed based on the obtained results. 'High void fraction spot', 'void drift phenomenon', and 'vapor chimney' were observed under atmospheric pressure conditions. Here, 'high void fraction spot' indicates that high void fraction regions are appeared between adjacent rods, narrow space, at/near point of net vapor generation region. 'Void drift' and 'vapor chimney' represent that high void fraction region moves to wide triangular space and is formed a vapor flow channel so-called 'vapor chimney'. It was confirmed from the time-averaged 3D data that void fraction in the center is higher than that in the periphery. On the other hand, it was found from the HFR-NR experiments that big vapor bubbles and/or cluster flow upward intermittently not only in the center but in the periphery of the channel and, therefore, point of net vapor generation is scattered statistically in wide region. (author)

  7. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO–UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-12-04

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg{sup II}. •Each measure requires less than 5 min with a LOD of 3 ng mL{sup −1} (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL{sup −1}. -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C{sub 9}H{sub 9}HgNaO{sub 2}S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH{sub 4} solution, and AFS detection in an Ar/H{sub 2} miniaturized flame. The method was linear in the 0.01–2 μg mL{sup −1} range, with a LOD of 0.003 μg mL{sup −1}. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL{sup −1}.

  8. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro; Ferrari, Carlo; Bramanti, Emilia

    2013-01-01

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg II . •Each measure requires less than 5 min with a LOD of 3 ng mL −1 (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL −1 . -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C 9 H 9 HgNaO 2 S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH 4 solution, and AFS detection in an Ar/H 2 miniaturized flame. The method was linear in the 0.01–2 μg mL −1 range, with a LOD of 0.003 μg mL −1 . This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL −1

  9. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hong [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Department of Chemistry, Xuzhou Normal University, Xuzhou 221116 (China); Jin Yan [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Han Weiying [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Miao, Qiang [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Bi Shuping [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China)]. E-mail: bisp@nju.edu.cn

    2006-07-15

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH{sub 4} solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h{sup -1} with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l{sup -1} for Hg{sup 2+} and 2.0 ng l{sup -1} for CH{sub 3}Hg{sup +}. The precisions (RSD) for the 11 replicate measurements of each 0.2 {mu}g l{sup -1} of Hg{sup 2+} and CH{sub 3}Hg{sup +} were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  10. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Wu Hong; Jin Yan; Han Weiying; Miao, Qiang; Bi Shuping

    2006-01-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h -1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l -1 for Hg 2+ and 2.0 ng l -1 for CH 3 Hg + . The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l -1 of Hg 2+ and CH 3 Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples

  11. Model to calculate mass flow rate and other quantities of two-phase flow in a pipe with a densitometer, a drag disk, and a turbine meter

    International Nuclear Information System (INIS)

    Aya, I.

    1975-11-01

    The proposed model was developed at ORNL to calculate mass flow rate and other quantities of two-phase flow in a pipe when the flow is dispersed with slip between the phases. The calculational model is based on assumptions concerning the characteristics of a turbine meter and a drag disk. The model should be validated with experimental data before being used in blowdown analysis. In order to compare dispersed flow and homogeneous flow, the ratio of readings from each flow regime for each device discussed is calculated for a given mass flow rate and steam quality. The sensitivity analysis shows that the calculated flow rate of a steam-water mixture (based on the measurements of a drag disk and a gamma densitometer in which the flow is assumed to be homogeneous even if there is some slip between phases) is very close to the real flow rate in the case of dispersed flow at a low quality. As the steam quality increases at a constant slip ratio, all models are prone to overestimate. At 20 percent quality the overestimates reach 8 percent in the proposed model, 15 percent in Rouhani's model, 38 percent in homogeneous model, and 75 percent in Popper's model

  12. Infrared Tomography: Data Distribution System for Real-time Mass Flow Rate Measurement

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2007-06-01

    Full Text Available The system developed in this research has the objective of measuring mass flow rate in an online mode. If a single computer is used as data processing unit, a longer time is needed to produce a measurement result. In the research carried out by previous researcher shows about 11.2 seconds is needed to obtain one mass flow rate result in the offline mode (using offline data. This insufficient real-time result will cause problems in a feedback control process when applying the system on industrial plants. To increase the refreshing rate of the measurement result, an investigation on a data distribution system is performed to replace the existing data processing unit.

  13. Regulation of the flow rate of liquid-metal coolants on experimental stands

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Laptev, G.I.

    1988-01-01

    Systems for automatic regulation of the flow rate of alkali metals, based on the series ENIV, VIN, and TsLIN three-phase electromagnetic pumps with a pumping rate of 0.5-200 m 3 per hour, were evaluated. The stability of each system was investigated by the method of undamped oscillations. The possibility of employing the analog temperature regulators VRT-2, RPA-T, and R113 was assessed. The functions performed by the most suitable automatic regulation unit, the RPA-T, were described. The limiting period of flow rate oscillations with a maximum gain of the RPA-T in alkali metal regulation systems equaled about 0.5 sec and the minimum integration time of the RPA-T was an order of magnitude longer than the optimal interval. Use of the systems on experimental stands enabled raising the quality of the studies and expanding the zone of servicing of the facilities by the same personnel

  14. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  15. Effective transfer entropy approach to information flow between exchange rates and stock markets

    International Nuclear Information System (INIS)

    Sensoy, Ahmet; Sobaci, Cihat; Sensoy, Sadri; Alali, Fatih

    2014-01-01

    We investigate the strength and direction of information flow between exchange rates and stock prices in several emerging countries by the novel concept of effective transfer entropy (an alternative non-linear causality measure) with symbolic encoding methodology. Analysis shows that before the 2008 crisis, only low level interaction exists between these two variables and exchange rates dominate stock prices in general. During crisis, strong bidirectional interaction arises. In the post-crisis period, the strong interaction continues to exist and in general stock prices dominate exchange rates

  16. Development of high-frame rate neutron radiography and quantitative measurement method for multiphase flow research

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.

    1998-01-01

    Neutron radiography (NR) is one of the radiographic techniques which makes use of the difference in attenuation characteristics of neutrons in materials. Fluid measurement using the NR technique is a non-intrusive method which enables visualization of dynamic images of multiphase flow of opaque fluids and/or in a metallic duct. To apply the NR technique to multiphase flow research, high frame-rate NR was developed by combining up-to-date technologies for neutron sources, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and there is no need for a triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at recording speeds of 250, 500 and 1000 frames/s. The qualities of the consequent images were sufficient to observe the flow pattern and behavior. It was also demonstrated that some characteristics of two-phase flow could be measured from these images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, bubble rise velocity, and wave height and interfacial area in annular flow were obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction were performed. It was confirmed that this new technique may have significant advantages both in visualizing and measuring high-speed fluid phenomena when other methods, such as an optical method and X-ray radiography, cannot be applied. (author)

  17. The role of elastomeric pumps in postoperative analgesia in orthopaedics and factors affecting their flow rate.

    Science.gov (United States)

    Theodorides, Anthony Andreas

    2017-12-01

    Elastomeric pumps are mechanical devices composed of an elastomeric balloon reservoir into which the drug to be infused is stored, a protective casing (used by some manufacturers), a flow controller and a wound catheter. In orthopaedics they are used to provide continuous local infiltration analgesia. In this way patients rely less on other routes of analgesia and thus avoid their systemic side effects. Studies have shown good response to analgesia with these pumps for the first 24 hours but their benefit is not as clear at 48 and 72 hours. There are numerous factors that affect the flow rate of elastomeric pumps. Some are inherent to all elastomeric pumps such as: the pressure exerted by the elastomeric balloon, catheter size, the vertical height of the pump in relation to the wound, viscosity and partial filling. There are also other factors which vary according to the manufacturer such as: the optimal temperature to obtain the desired flow rate as this directly affects viscosity, the dialysate that the analgesic drug is mixed with (ie normal saline or 5% dextrose), and the storage conditions of the fluid to be infused. It is thus essential to follow the clinical guidelines provided by the manufacturer in order to obtain the desired flow rate. Copyright the Association for Perioperative Practice.

  18. The flow Rate Accuracy of Elastomeric Infusion Pumps After Repeated Filling.

    Science.gov (United States)

    Mohseni, Masood; Ebneshahidi, Amin

    2014-05-01

    One of the frequent applications of elastomeric infusion pumps is postoperative pain management. In daily practice, the disposable pumps get refilled with modified medication combinations in the successive days; although, the accuracy of infusion rates is unknown to clinicians. Our aim was to evaluate the effect of repeated filling on the delivery rate accuracy of an elastomeric pump available in our market. We examined 10 elastomeric infusion pumps (BOT-802, Nanchang Biotek Medical Device Company, China) with 100 mL capacity and nominal flow of 5 mL/h. Each pump was filled for three times, accounting for 30 series of experiments. A microset scaled in mL was used to measure the pump deliveries. Flow profile and reliability of infusion rate were analyzed after repeated use. The mean flow rate in the three series of measurements showed a gradual increase; however, the difference was not statistically significant (5.01 ± 0.07 vs. 5.03 ± 0.06 vs. 5.06 ± 0.08 mL/h; P = 0.81). The percentage of the flow rate error (deviation from 5 mL/h ± 15%) was 100% in the first and second hours of infusion, 96% in the third hour, 60% in the 20th hour and zero percent in the rest of the infusion time. This study indicated that the delivery rate accuracy of elastomeric infusion pumps is preserved after repeated usage. These laboratory findings suggested that elastomeric pumps could be safely refilled in the successive days to provide postoperative analgesia.

  19. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans

    OpenAIRE

    Wingo, Jonathan E.; Low, David A.; Keller, David M.; Brothers, R. Matthew; Shibasaki, Manabu; Crandall, Craig G.

    2010-01-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdial...

  20. The effect of chewing gum's flavor on salivary flow rate and pH.

    Science.gov (United States)

    Karami-Nogourani, Maryam; Kowsari-Isfahan, Raha; Hosseini-Beheshti, Mozhgan

    2011-12-01

    Chewing sugar-free gums is a convenient way to increase salivary flow. Salivary flow increases in response to both gustatory (taste) and mechanical (chewing) stimuli, and chewing gum can provide both of these stimuli. The aim of this study was to compare the effect of five different flavors of sugar-free chewing gum on the salivary flow rate (SFR) and pH. Fifteen dental students volunteered at the same time on six consecutive days, to collect one minute unstimulated saliva. After five minutes, while some volunteers continued to collect only unstimulated saliva, the others asked to start chewing one of the five flavored gums randomly. The flavors were spearmint, cinnamon, watermelon, strawberry, and apple. The whole saliva was collected over time periods of 0 - 1, 1 - 3, and 3 - 6 minutes, and the SFR and pH were also measured. The data were subjected to pair t-test, repeated-measures analysis of variance, and Duncan tests. Compared to the unstimulated rate, all five different flavored gums significantly increased the SFR within six minutes. Although the flow rate peaked during the first minute of stimulation with all five products, it reduced gradually, but still remained above the unstimulated saliva, after six minutes. In the first minute, the strawberry-flavored gums showed the highest weight, yet, it only induced a significantly higher SFR compared to the cinnamon-flavored gums. During one to three minutes, strawberry and apple-flavored gums showed significantly higher SFR, respectively, compared to cinnamon-flavored gums. There were no significant differences in the flow rates elicited by each flavored gum through the three-to-six minute interval, although the spearmint-flavored gums induced slightly higher SFR. Only the spearmint and cinnamon-flavored gum significantly increased the salivary pH. Gum flavor can affect the SFR and special flavors may be advised for different individuals according to their oral conditions.

  1. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Clanet, M

    1987-06-18

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO/sub 2/), oxygen extraction (EO/sub 2/) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO/sub 2/ and often a decrease in CMRO/sub 2/, whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO/sub 2/, EO/sub 2/ and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis.

  2. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    International Nuclear Information System (INIS)

    Clanet, M.

    1987-01-01

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO 2 ), oxygen extraction (EO 2 ) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO 2 and often a decrease in CMRO 2 , whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO 2 , EO 2 and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis [fr

  3. Non-contact flow gauging for the extension and development of rating curves

    Science.gov (United States)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves

  4. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  5. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  6. Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2009-05-01

    Full Text Available Permafrost thawing is likely to change the flow pathways taken by water as it moves through arctic and sub-arctic landscapes. The location and distribution of these pathways directly influence the carbon and other biogeochemical cycling in northern latitude catchments. While permafrost thawing due to climate change has been observed in the arctic and sub-arctic, direct observations of permafrost depth are difficult to perform at scales larger than a local scale. Using recession flow analysis, it may be possible to detect and estimate the rate of permafrost thawing based on a long-term streamflow record. We demonstrate the application of this approach to the sub-arctic Abiskojokken catchment in northern Sweden. Based on recession flow analysis, we estimate that permafrost in this catchment may be thawing at an average rate of about 0.9 cm/yr during the past 90 years. This estimated thawing rate is consistent with direct observations of permafrost thawing rates, ranging from 0.7 to 1.3 cm/yr over the past 30 years in the region.

  7. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  8. Temporal flow instability for Magnus-Robins effect at high rotation rates

    Science.gov (United States)

    Sengupta, T. K.; Kasliwal, A.; de, S.; Nair, M.

    2003-06-01

    The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a rotating and translating cylinder experiences temporal instability-a fact not corroborated by any theoretical studies so far. In the present paper we report very accurate solution of Navier-Stokes equation that displays the above-mentioned instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of /4π, instantaneously as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability sequence in terms of a new theory of instability based on full Navier-Stokes equation that does not require making any assumption about the flow field, unlike other stability theories.

  9. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  10. The efficacy of centralized flow rate control in 802.11-based wireless mesh networks

    KAUST Repository

    Jamshaid, K.

    2013-06-13

    Commodity WiFi-based wireless mesh networks (WMNs) can be used to provide last mile Internet access. These networks exhibit extreme unfairness with backlogged traffic sources. Current solutions propose distributed source-rate control algorithms requiring link-layer or transport-layer changes on all mesh nodes. This is often infeasible in large practical deployments. In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We wish to evaluate the feasibility of establishing similar centralized control via gateways in WMNs. In this paper, we focus on the efficacy of this control rather than the specifics of the controller design mechanism. We answer the question: Given sources that react predictably to congestion notification, can we enforce a desired rate allocation through a single centralized controller? The answer is not obvious because flows experience varying contention levels, and transmissions are scheduled by a node using imperfect local knowledge. We find that common router-assisted flow control schemes used in wired networks fail in WMNs because they assume that (1) links are independent, and (2) router queue buildups are sufficient for detecting congestion. We show that non-work-conserving, rate-based centralized scheduling can effectively enforce rate allocation. It can achieve results comparable to source rate limiting, without requiring any modifications to mesh routers or client devices. 2013 Jamshaid et al.; licensee Springer.

  11. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.

    Science.gov (United States)

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N

    2016-02-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. Published by Elsevier Ltd.

  12. Fluorophotometric determination of aqueous humor flow rates in red-tailed hawks (Buteo jamaicensis).

    Science.gov (United States)

    Jones, Michael P; Ward, Daniel A

    2012-04-01

    To determine aqueous humor flow rate (AHFR) in an avian species by use of anterior segment fluorophotometry. 9 healthy red-tailed hawks (Buteo jamaicensis; 4 males and 5 females) that ranged from 8 months to 8 years of age. A protocol was developed for fluorophotometric determination of AHFR. Topical administration of 10% fluorescein was used to load the corneas, and corneal and aqueous humor fluorescein concentrations were measured approximately 5, 6.5, and 8 hours later. Concentration-versus-time plots were generated, and slopes and cornea-to-aqueous humor concentration ratios from these plots were used to manually calculate flow rates. Mean ± SD AHFRs for the right eye, left eye, and both eyes were 3.17 ± 1.36 μL/min (range, 1.67 to 6.21 μL/min), 2.86 ± 0.88 μL/min (range, 2.04 to 4.30 μL/min), and 2.90 ± 0.90 μL/min (range, 1.67 to 4.42 μL/min), respectively. The AHFRs were similar for right and left eyes. These flow rates represented a mean aqueous humor transfer coefficient of 0.0082/min, which is similar to that of mammalian species. The AHFR in red-tailed hawks was similar to that of most mammalian species, and the fractional egress was almost identical to that of other species. This information will allow a greater understanding of aqueous humor flow in avian eyes, which is crucial when evaluating diseases that affect avian eyes as well as medications that alter aqueous humor flow.

  13. Clinical evaluation of a simple uroflowmeter for categorization of maximum urinary flow rate

    Directory of Open Access Journals (Sweden)

    Simon Pridgeon

    2007-01-01

    Full Text Available Objective: To evaluate the accuracy and diagnostic usefulness of a disposable flowmeter consisting of a plastic funnel with a spout divided into three chambers. Materials and Methods: Men with lower urinary tract symptoms (LUTS voided sequentially into a standard flowmeter and the funnel device recording maximum flow rate (Q max and voided volume (V void . The device was precalibrated such that filling of the bottom, middle and top chambers categorized maximum input flows as 15 ml s -1 respectively. Subjects who agreed to use the funnel device at home obtained readings of flow category and V void twice daily for seven days. Results: A single office reading in 46 men using the device showed good agreement with standard measurement of Q max for V void > 150 ml (Kappa = 0.68. All 14 men whose void reached the top chamber had standard Q max > 15 ml s -1 (PPV = 100%, NPV = 72% whilst eight of 12 men whose void remained in the bottom chamber had standard Q max < 10 ml s -1 (PPV = 70%, NPV = 94%. During multiple home use by 14 men the device showed moderate repeatability (Kappa = 0.58 and correctly categorized Q max in comparison to standard measurement for 12 (87% men. Conclusions: This study suggests that the device has sufficient accuracy and reliability for initial flow rate assessment in men with LUTS. The device can provide a single measurement or alternatively multiple home measurements to categorize men with Q max < 15 ml s -1 .

  14. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    Directory of Open Access Journals (Sweden)

    Gobyzov Oleg

    2016-01-01

    Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  15. Comparison of entropy production rates in two different types of self-organized flows: Benard convection and zonal flow

    International Nuclear Information System (INIS)

    Kawazura, Y.; Yoshida, Z.

    2012-01-01

    Two different types of self-organizing and sustaining ordered motion in fluids or plasmas--one is a Benard convection (or streamer) and the other is a zonal flow--have been compared by introducing a thermodynamic phenomenological model and evaluating the corresponding entropy production rates (EP). These two systems have different topologies in their equivalent circuits: the Benard convection is modeled by parallel connection of linear and nonlinear conductances, while the zonal flow is modeled by series connection. The ''power supply'' that drives the systems is also a determinant of operating modes. When the energy flux is a control parameter (as in usual plasma experiments), the driver is modeled by a constant-current power supply, and when the temperature difference between two separate boundaries is controlled (as in usual computational studies), the driver is modeled by a constant-voltage power supply. The parallel (series)-connection system tends to minimize (maximize) the total EP when a constant-current power supply drives the system. This minimum/maximum relation flips when a constant-voltage power supply is connected.

  16. Investigations on efficiencies of HT solar collectors for different flow rates and collector tilts

    DEFF Research Database (Denmark)

    Chen, Ziqian; Perers, Bengt; Furbo, Simon

    2013-01-01

    Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between the abso......Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates and tilt. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rates are obtained. The calculated efficiencies are in good...

  17. Flow-rate measurements in closed-conduits by tracer techniques

    International Nuclear Information System (INIS)

    Lund Plantat, C.

    1982-01-01

    This paper presents the study of the precision obtained measuring flow-rates in closed-conduits by tracer techniques. The flow-rates analyzed were in the range of 10 to 20 l/s and Reynolds numbers from 10 5 to 2 x 10 5 . Tracer used were fluoresceine and In-113 m; and the measurements were performed with the dilution method (punctual and continuous injection) and the Allen method. Precisions for the method of punctual and continuous injections were 6.25% and 9.45% for fluoresceine and 9.3% and 3% for In-113, respectively. For Allen method with In-113 m a precision of 5% was obtained; probably this value was affected by the short distance between detectors. In all cases the error corresponds with the expected value except in one measurement at a 68.3% confidence level. (I.V.)

  18. Salivary buffer capacity, pH, and stimulated flow rate of crack cocaine users.

    Science.gov (United States)

    Woyceichoski, Iverson Ernani Cogo; Costa, Carlos Henrique; de Araújo, Cristiano Miranda; Brancher, João Armando; Resende, Luciane Grochocki; Vieira, Iran; de Lima, Antonio Adilson Soares

    2013-08-01

    Crack cocaine is the freebase form of cocaine that can be smoked. The use of this drug has been considered a public health problem in many countries. The aim of this study was to assess the stimulated salivary flow rate (SSFR), pH, and the buffer capacity of saliva in crack cocaine users. Stimulated whole saliva was collected from 54 selected crack cocaine users and 40 non-users. All samples were analyzed for SSFR, pH, and buffer capacity. SSFR was analyzed by gravimetric method. The buffer capacity and pH were determined using a digital pH meter. The crack cocaine users demonstrated higher buffer capacity than the control group (P > 0.05). Salivary pH was lower in crack cocaine users (P 0.05). Crack cocaine users might exhibit a significant decrease in salivary pH, but not in salivary flow rate or buffer capacity. © 2012 Blackwell Publishing Asia Pty Ltd.

  19. Modeling of the reactant conversion rate in a turbulent shear flow

    Science.gov (United States)

    Frankel, S. H.; Madnia, C. K.; Givi, P.

    1992-01-01

    Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.

  20. Effect of Voltage and Flow Rate Electrospinning Parameters on Polyacrylonitrile Electrospun Fibers

    Science.gov (United States)

    Bakar, S. S. S.; Fong, K. C.; Eleyas, A.; Nazeri, M. F. M.

    2018-03-01

    Currently, electrospinning is a very famous technique and widely used for forming polymer nanofibers. In this paper, the Polyacrylonitrile (PAN) nanofibers were prepared in concentration of 10wt% with varied processing parameters that can affect the properties of PAN fiber in term of fiber diameter and electrical conductivity was presented. Voltage of 10, 15 and 20 kV with PAN flow rate of 1 electrospun PAN fibers were then undergo pyrolysis at 800°C for 30 minutes. The resultant PAN nanofibers were then analysed by SEM, XRD and four point probe test after pyrolysis process. SEM image show continuos uniform and smooth surface fibrous structure of electrospun PAN fibers with average diameter of 1.81 μm. The fiber morphology is controlled by manipulating the processing parameters of electrospinning process. The results showed that the resistance of electrospun PAN fibers decreases as the processing parameter changes by increasing the applied voltage and flow rate of electrospinning.